Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming.
Wallmann, Klaus; Riedel, M; Hong, W L; Patton, H; Hubbard, A; Pape, T; Hsu, C W; Schmidt, C; Johnson, J E; Torres, M E; Andreassen, K; Berndt, C; Bohrmann, G
2018-01-08
Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure forced gas hydrate dissociation and dissolved chloride depletions consistent with our geochemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane fluxes from dissociating hydrates were considerably smaller than present methane seepage rates implying that gas hydrates were not a major source of methane to the oceans, but rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.
Praetorius, Summer; Mix, Alan; Jensen, Britta; Froese, Duane; Milne, Glenn A.; Wolhowe, Matthew; Addison, Jason A.; Prahl, Fred
2016-01-01
Observations of enhanced volcanic frequency during the last deglaciation have led to the hypothesis that ice unloading in glaciated volcanic terrains can promote volcanism through decompression melting in the shallow mantle or a reduction in crustal magma storage time. However, a direct link between regional climate change, isostatic adjustment, and the initiation of volcanism remains to be demonstrated due to the difficulty of obtaining high-resolution well-dated records that capture short-term climate and volcanic variability traced to a particular source region. Here we present an exceptionally resolved record of 19 tephra layers paired with foraminiferal oxygen isotopes and alkenone paleotemperatures from marine sediment cores along the Southeast Alaska margin spanning the last deglacial transition. Major element compositions of the tephras indicate a predominant source from the nearby Mt. Edgecumbe Volcanic Field (MEVF). We constrain the timing of this regional eruptive sequence to 14.6–13.1 ka. The sudden increase in volcanic activity from the MEVF coincides with the onset of Bølling–Allerød interstadial warmth, the disappearance of ice-rafted detritus, and rapid vertical land motion associated with modeled regional isostatic rebound in response to glacier retreat. These data support the hypothesis that regional deglaciation can rapidly trigger volcanic activity. Rapid sea surface temperature fluctuations and an increase in local salinity (i.e., δ18Osw) variability are associated with the interval of intense volcanic activity, consistent with a two-way interaction between climate and volcanism in which rapid volcanic response to ice unloading may in turn enhance short-term melting of the glaciers, plausibly via albedo effects on glacier ablation zones.
The kinetics of dolomite reaction rim growth under isostatic and non-isostatic pressure conditions
NASA Astrophysics Data System (ADS)
Helpa, V.; Rybacki, E.; Morales, L. G.; Abart, R.; Dresen, G. H.
2013-12-01
During burial and exhumation, rocks are simultaneously exposed to metamorphic reactions and tectonic stresses. Therefore, the reaction rate of newly formed minerals may depend on chemical and mechanical driving forces. Here, we investigate the reaction kinetics of dolomite (CaMg[CO3]2) rim growth by solid-state reactions experiments on oriented calcite (CaCO3) and magnesite (MgCO3) single crystals under isostatic and non-isostatic pressure conditions. Cylindrical samples of 3-5 mm length and 7 mm diameter were drilled and polished perpendicular to the rhombohedral cleavage planes of natural clear crystals. The tests were performed using a Paterson-type deformation apparatus at P = 400 MPa confining pressure, temperatures, T, between 750 and 850°C, and reaction durations, t, of 2 - 146 h to calculate the kinetic parameters of dolomite rim growth under isostatic stress conditions. For non-isostatic reaction experiments we applied in addition differential stresses, σ, up to 40 MPa perpendicular to the contact interface at T = 750°C for 4 - 171 h duration, initiating minor inelastic deformation of calcite. The thickness of the resulting dolomite reaction rims increases linearly with the square root of time, indicating a diffusion-controlled reaction. The rims consist of two different textural domains. Granular dolomite grains (≈ 2 -5 μm grain size) form next to calcite and elongated palisade-shaped grains (1-6 μm diameter) grow perpendicular to the magnesite interface. Texture measurements with the electron backscatter diffraction technique indicate that the orientations of dolomite grains are mainly influenced by the orientation of the calcite educt crystal, in particular in the granular rim. To some extent, the texture of dolomite palisades is also influenced by the orientation of magnesite. The thickness of the two individual layers increases with temperature. At 400 MPa isostatic pressure, T = 750°C and t = 29 hours, a 5 μm thick granular dolomite layer
Can Satellite Geodesy Disentangle Holocene Rebound and Present-Day Glacier Balance Signatures?
NASA Technical Reports Server (NTRS)
Irvins, E.; James, T.; Yoder, C.
1995-01-01
The secular drift of the precession of the ascending node of the LAGOES -1 satellite is apparently linked to the Earth s paleoclimate through the slow viscous response of the mantle to ice sheet/ocean mass transfer during the last great continental deglaciation . The secular node acceleration is particularly sensitive to the longest wavelengths of the paleo -surface loading that have been memorized by the mantle glacio -isostatic flow. Tide gauge records for the last 130 years show a post-glacial rebound-corrected sea-level rise of 2.4 n 0.9 mm yr-1.
Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings
NASA Astrophysics Data System (ADS)
Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir
2016-04-01
The isostatic modeling represents one of the most useful "geological" reduction methods of the gravity field. With the isostatic correction, it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. Although there exist several isostatic compensation schemes, it is usually supposed that a choice of the model is not an important factor to first order, since the total weight of compensating masses remains the same. We compare two alternative models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which cannot be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also, the predicted "isostatic" Moho is very different from existing seismic observations. The second isostatic model includes the Moho, which is based on seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). According to this model, the upper mantle under the Arabian Shield is less dense than under the Platform. In the Arabian platform, the maximum density coincides with the Rub' al Khali, one of the richest oil basin in the world. This finding agrees with previous studies, showing that such basins are often underlain by dense mantle, possibly related to an eclogite layer that has caused their subsidence. The mantle density variations might be also a result of variations of the lithosphere thickness. With the combined isostatic model, it is possible to minimize regional anomalies over the Arabian plate. The residual local anomalies correspond well to tectonic structure of the plate. Still very significant anomalies, showing isostatic disturbances of the lithosphere, are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.
NASA Astrophysics Data System (ADS)
Ren, Z.; Zhang, Z.; Zhang, H.; Zheng, W.; Zhang, P. Z.
2017-12-01
The widely held understanding that reverse-faulting earthquakes play an important role in building mountains has been challenged by recent studies suggesting that co-seismic landslides of the 2008 Mw 7.9 Wenchuan earthquake led to a net co-seismic lowering of surface height. We use precise estimates of co-seismic landslide volumes to calculate the long-term isostatic response to landsliding during the 2008 Wenchuan earthquake. The total isostatic respond volume is 2.0 km3 which did not change much associated with thickness of Te, however, the distribution of the rebound changes associated with thickness of Te. The total co-seismic mass change could be 1.8 km3. The maximum isostatic response due to Wenchuan earthquake may have been as high as 0.9 meters in the highest Pengguan massif of the central Longmen Shan. We also find that the average net uplift is 0.16 meters within the total landslide region due to the Wenchuan earthquake. Our findings suggest that the local topographic evolution of the middle Longmen Shan region is closely related to repeated tectonic events such as the 2008 Wenchuan Earthquake.
NASA Astrophysics Data System (ADS)
Berman, K.; Axford, Y.; Lasher, G. E.
2017-12-01
Multi-proxy analysis of a coastal lake in southwest Greenland near Nuuk provides evidence for regional environmental changes, including the timing of isostatic rebound and the temperature history of the area. T1 (informal name) is a small lake 50 km south of Nuuk, at 17.5 m elevation and currently isolated from glacial meltwater drainage. The lake's sediment record begins approximately 9500 cal years BP, when the site was submerged beneath sea level due to glacial isostatic depression following the Last Glacial Maximum. The record captures the transition of the environment from a submerged, glacially-influenced marine site to a non-glacially fed (and initially meromictic) freshwater lake 8600 cal years BP. Magnetic susceptibility, a proxy for sediment minerogenic content, decreased rapidly from 9500 to 8600 years BP, before abruptly stabilizing and remaining relatively low and steady for the rest of the record. The transition to a lacustrine environment was characterized by a rapid and relatively simultaneous increase in primary productivity (inferred from biogenic silica concentrations) and shift towards terrestrial versus marine sources of organic matter (inferred from carbon:nitrogen ratios and nitrogen isotopes) between 8700 and 8400 years BP. Together, these proxies and the presence of marine shells below the transition provide robust evidence for the transition from a marine environment to a freshwater lake in response to regional postglacial isostatic rebound. Within the Holocene, measures of bulk sediment composition (e.g., biogenic silica, loss-on-ignition and magnetic susceptibility) are relatively stable. Chironomid (Insecta: Diptera: Chironomidae) assemblages, which in some environments are quantitative proxies for summer temperature changes, show species-level shifts within the Holocene that will be interpreted in this presentation alongside indicators of landscape change including carbon:nitrogen ratios, bulk sediment spectral reflectance and bulk
The isostatic state of the lunar Apennines and regional surroundings
NASA Technical Reports Server (NTRS)
Ferrari, A. J.; Sjogren, W. L.; Phillips, R. J.; Nelson, D. L.
1978-01-01
High-resolution gravity and topography data taken over the Apennine Mountains have been used to compute their isostatic state. Results show that the Apennines are uncompensated; thus this state implies that the lunar crust and upper mantle have been strong enough over 3.9 b.y. to support the load exerted by this topographic excess. The Apennines produce a maximum shear stress of 60 bars at a depth of 60 km. A lower bound on the lunar crustal viscosity of 10 to the 27th power P is calculated on the basis of the assumption of a 10% relaxation over 3.9 b.y. Studies of a broad negative regional anomaly located between Maria Serenitatis and Imbrium necessitate a locally thicker crust to satisfy the observed data. This anomaly may have been produced by a lateral transport of crustal material from beneath the giant impact basins as a result of rebound at the crust-mantle interface.
Isostatic models and isostatic gravity anomalies of the Arabian plate and surroundings
NASA Astrophysics Data System (ADS)
Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir
2015-04-01
Isostaic anomalies represent one of the most useful "geological" reduction of the gravity field. With the isostatic correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. This correction is based on the fact that a major part of the near-surface load is compensated by variations of the lithosphere boundaries (chiefly the Moho and LAB) and by density variations within the crust and upper mantle. It is usually supposed that it is less important to a first order, what is the actual compensation model when reducing the effect of compensating masses, since their total weight is exactly opposite to the near-surface load. We compare several compensating models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which can not be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also the predicted "isostatic" Moho is very different from the existing observations. The second group of the isostatic models includes the Moho, which is based on existing seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). In this way we minimize regional anomalies over the Arabian plate. The residual local anomalies well correspond to tectonic structure of the plate. Still very significant anomalies are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.
Geeraert, Nicolas
2013-09-01
A known consequence of stereotype suppression is post-suppressional rebound (PSR), an ironic activation of the suppressed stereotype. This is typically explained as an unintended by-product from a dual-process model of mental control. Relying on this model, stereotype rebound is believed to be conceptual. Alternative accounts predict PSR to be featural or procedural. According to the latter account, stereotype rebound would not be limited to the suppressed social category, but could occur for a target from any social category. The occurrence of procedural stereotype rebound was examined across five experiments. Suppression of one particular stereotype consistently led to rebound for social targets belonging to the same or a different stereotype in an essay-writing task (Experiments 1-3) and led to facilitation in recognition of stereotype-consistent words (Experiment 4). Finally, stereotype suppression was shown to impact on assessments of stereotype use but not on heuristic thinking (Experiment 5).
Rebound hyperglycaemia in diabetic cats.
Roomp, Kirsten; Rand, Jacquie
2016-08-01
Rebound hyperglycaemia (also termed Somogyi effect) is defined as hyperglycaemia caused by the release of counter-regulatory hormones in response to insulin-induced hypoglycaemia, and is widely believed to be common in diabetic cats. However, studies in human diabetic patients over the past quarter century have rejected the common occurrence of this phenomenon. Therefore, we evaluated the occurrence and prevalence of rebound hyperglycaemia in diabetic cats. In a retrospective study, 10,767 blood glucose curves of 55 cats treated with glargine using an intensive blood glucose regulation protocol with a median of five blood glucose measurements per day were evaluated for evidence of rebound hyperglycaemic events, defined in two different ways (with and without an insulin resistance component). While biochemical hypoglycaemia occurred frequently, blood glucose curves consistent with rebound hyperglycaemia with insulin resistance was confined to four single events in four different cats. In 14/55 cats (25%), a median of 1.5% (range 0.32-7.7%) of blood glucose curves were consistent with rebound hyperglycaemia without an insulin resistance component; this represented 0.42% of blood glucose curves in both affected and unaffected cats. We conclude that despite the frequent occurrence of biochemical hypoglycaemia, rebound hyperglycaemia is rare in cats treated with glargine on a protocol aimed at tight glycaemic control. For glargine-treated cats, insulin dose should not be reduced when there is hyperglycaemia in the absence of biochemical or clinical evidence of hypoglycaemia. © ISFM and AAFP 2015.
Geodesy: Modeling Earth's Post-Glacial Rebound
NASA Astrophysics Data System (ADS)
Spada, Giorgio; Antonioli, Andrea; Boschi, Lapo; Brandi, Valter; Cianetti, Spina; Galvani, Gabriele; Giunchi, Carlo; Perniola, Bruna; Agostinetti, Nicola Piana; Piersanti, Antonio; Stocchi, Paolo
2004-02-01
Efforts to mathematically model the Earth's post-glacial rebound, or, in general, long-term planetary-scale viscoelastic deformations, have been ongoing for several decades. Unfortunately, research in the post-glacial rebound community has not been characterized by much exchange of knowledge. Groups around the world have developed their code independently, sometimes with profoundly different approaches, occasionally leading to inconsistent results [e.g., Boschi et al., 1999]. Postglacial Rebound Calculator (TABOO) is a post-glacial rebound software that is being made freely available (through Samizdat Press at http://samizdat.mines.edu/taboo/)in the hope that it might become a common reference for all post-glacial rebound researchers. TABOO is portable and has been tested on Unix, Linux, and Windows systems; all it requires is a Fortran90 compiler supporting quadruple precision. The software is easy to use. It comes with a detailed guide that can work as a quick reference cookbook, and it is also accompanied by a textbook, The Theory Behind TABOO, collecting the most significant theoretical results from post-glacial rebound literature. TABOO is not a ``black-box,'' although it may easily be used as such. The entire source code is provided and should be easy to understand for intermediate-level Fortran programmers.
NASA Astrophysics Data System (ADS)
Takano, Y.; Yokoyama, Y.; Tyler, J. J.; Kojima, H.; Fukui, M.; Sato, T.; Ogawa, N. O.; Suzuki, N.; Kitazato, H.; Ohkouchi, N.
2010-06-01
We determined the mean crustal uplifting rate during the late Holocene along the Soya Coast, Lützow-Holm Bay, East Antarctica, by dating a marine-lacustrine transition recorded in lake sediments. We focused on temporal variations in the chemical composition of sediments recovered from Lake Skallen Oike at Skallen and Lake Oyako at Skarvsnes. Both sets of lake sediments record environmental changes associated with a transition from marine to lacustrine (fresh water) settings, as indicated by analyses of sedimentary facies for carbon and nitrogen contents, nitrogen isotopic compositions (15N/14N), and major element concentrations. Changes in the dominant primary producers during the marine-lacustrine transition were also clearly revealed by biogenic Opal-A, diatom assemblages, and gradient gel electrophoresis (DGGE) with 16S rRNA gene analysis. Geochronology based on radiocarbon dating of acid-insoluble organic carbon suggested that the environmental transition from saline to fresh water occurred at 2940±100 cal yr BP at L. Skallen and 1060±90 cal yr BP at L. Oyako. Based on these data and a linear approximation model, we estimated a mean crustal uplifting rate of 3.6 mm yr-1 for the period since the marine-lacustrine transition via brackish condition; this uplift is attributed to glacial-isostatic rebound along the Soya Coast. The geological setting was the primary factor in controlling the emergence event and the occurrence of simultaneous changes in sedimentary and biological facies along the zone of crustal uplift.
... relievers. Common pain relievers such as aspirin and acetaminophen (Tylenol, others) may contribute to rebound headaches — especially ... OTC) pain relievers that combine caffeine, aspirin and acetaminophen (Excedrin, others) are common culprits. This group also ...
Anomalous secular sea-level acceleration in the Baltic Sea caused by glacial isostatic adjustment
NASA Astrophysics Data System (ADS)
Spada, Giorgio; Galassi, Gaia; Olivieri, Marco
2014-05-01
Observations from the global array of tide gauges show that global sea-level has been rising at an average rate of 1.5-2 mm/yr during the last ˜ 150 years (Spada & Galassi, 2012). Although a global sea-level acceleration was initially ruled out, subsequent studies have coherently proposed values of ˜1 mm/year/century (Olivieri & Spada, 2012). More complex non-linear trends and abrupt sea-level variations have now also been recognized. Globally, they could manifest a regime shift between the late Holocene and the current rhythms of sea-level rise, while locally they result from ocean circulation anomalies, steric effects and wind stress (Bromirski et al. 2011). Although isostatic readjustment affects the local rates of secular sea-level change, a possible impact on regional acceleration have been so far discounted (Woodworth et al., 2009) since the process evolves on a millennium scale. Here we report a previously unnoticed anomaly in the long-term sea-level acceleration of the Baltic Sea tide gauge records, and we explain it by the classical post-glacial rebound theory and numerical modeling of glacial isostasy. Contrary to previous assumptions, our findings demonstrate that isostatic compensation plays a role in the regional secular sea-level acceleration. In response to glacial isostatic adjustment (GIA), tide gauge records located along the coasts of the Baltic Sea exhibit a small - but significant - long-term sea-level acceleration in excess to those in the far field of previously glaciated regions. The sign and the amplitude of the anomaly is consistent with the post-glacial rebound theory and with realistic numerical predictions of GIA models routinely employed to decontaminate the tide gauges observations from the GIA effects (Peltier, 2004). Model computations predict the existence of anomalies of similar amplitude in other regions of the globe where GIA is still particularly vigorous at present, but no long-term instrumental observations are available to
METHOD FOR SOLVENT-ISOSTATIC PRESSING
Archibald, P.B.
1962-09-18
This invention provides a method for producing densely compacted bodies having relatively large dimensions. The method comprises the addition of a small quantity of a suitable solvent to a powder which is to be compacted. The solvent- moistened powder is placed inside a flexible bag, and the bag is suspended in an isostatic press. The solvent is squeezed out of the powder by the isostatic pressure, and the resulting compacted body is recovered. The presence of the solvent markedly decreases the proportion of void space in the powder, thereby resulting in a denser, more homogeneous compact. Another effect of the solvent is that it allows the isostatic pressing operation to be conducted at substantially lower pressures than are conventionally employed. (AEC)
Elastic collapse in disordered isostatic networks
NASA Astrophysics Data System (ADS)
Moukarzel, C. F.
2012-02-01
Isostatic networks are minimally rigid and therefore have, generically, nonzero elastic moduli. Regular isostatic networks have finite moduli in the limit of large sizes. However, numerical simulations show that all elastic moduli of geometrically disordered isostatic networks go to zero with system size. This holds true for positional as well as for topological disorder. In most cases, elastic moduli decrease as inverse power laws of system size. On directed isostatic networks, however, of which the square and cubic lattices are particular cases, the decrease of the moduli is exponential with size. For these, the observed elastic weakening can be quantitatively described in terms of the multiplicative growth of stresses with system size, giving rise to bulk and shear moduli of order e-bL. The case of sphere packings, which only accept compressive contact forces, is considered separately. It is argued that these have a finite bulk modulus because of specific correlations in contact disorder, introduced by the constraint of compressivity. We discuss why their shear modulus, nevertheless, is again zero for large sizes. A quantitative model is proposed that describes the numerically measured shear modulus, both as a function of the loading angle and system size. In all cases, if a density p>0 of overconstraints is present, as when a packing is deformed by compression or when a glass is outside its isostatic composition window, all asymptotic moduli become finite. For square networks with periodic boundary conditions, these are of order \\sqrt{p} . For directed networks, elastic moduli are of order e-c/p, indicating the existence of an "isostatic length scale" of order 1/p.
On the implementation of faults in finite-element glacial isostatic adjustment models
NASA Astrophysics Data System (ADS)
Steffen, Rebekka; Wu, Patrick; Steffen, Holger; Eaton, David W.
2014-01-01
Stresses induced in the crust and mantle by continental-scale ice sheets during glaciation have triggered earthquakes along pre-existing faults, commencing near the end of the deglaciation. In order to get a better understanding of the relationship between glacial loading/unloading and fault movement due to the spatio-temporal evolution of stresses, a commonly used model for glacial isostatic adjustment (GIA) is extended by including a fault structure. Solving this problem is enabled by development of a workflow involving three cascaded finite-element simulations. Each step has identical lithospheric and mantle structure and properties, but evolving stress conditions along the fault. The purpose of the first simulation is to compute the spatio-temporal evolution of rebound stress when the fault is tied together. An ice load with a parabolic profile and simple ice history is applied to represent glacial loading of the Laurentide Ice Sheet. The results of the first step describe the evolution of the stress and displacement induced by the rebound process. The second step in the procedure augments the results of the first, by computing the spatio-temporal evolution of total stress (i.e. rebound stress plus tectonic background stress and overburden pressure) and displacement with reaction forces that can hold the model in equilibrium. The background stress is estimated by assuming that the fault is in frictional equilibrium before glaciation. The third step simulates fault movement induced by the spatio-temporal evolution of total stress by evaluating fault stability in a subroutine. If the fault remains stable, no movement occurs; in case of fault instability, the fault displacement is computed. We show an example of fault motion along a 45°-dipping fault at the ice-sheet centre for a two-dimensional model. Stable conditions along the fault are found during glaciation and the initial part of deglaciation. Before deglaciation ends, the fault starts to move, and fault
The Physics of Pollen and Spore Rebound from Plant Surfaces.
NASA Astrophysics Data System (ADS)
Paw U, Kyaw Tha
1980-12-01
The problem of particle rebound from plant surfaces has been examined. Particle rebound is a component of net deposition; the other components are reentrainment and impingement. I carried out several sets of wind tunnel experiments to examine the nature of rebound, reentrainment and impingement. Quantitative and qualitative analyses were carried out on the data. A simple computer model was created to predict particle deposition in wind tunnel conditions. My work confirms that rebound is an important process in the wind tunnel, and implies the existence of a process I call 'rebound/reentrainment'. I tested several major hypotheses. The first was that biological materials exhibit the same physical rebound characteristics as artificial materials. The second was that particles rebound in a manner predicted by Dahneke's (1971, 1975) theory. The third was that rebound is a dominant component of net deposition. The fourth was that surface characteristics may seriously influence rebound. I carried out my experiments in a low-speed wind tunnel. For surfaces I used glass and the leaves of tulip poplar (Liriodendron tulipifera), Coleus (Coleus blumeii) and American elm (Ulmus americana). For particles I used glass microbeads, lycopodium spores (Lycopodium spp.), and ragweed pollen (Ambrosia trifida). Four main sets of experiments were carried out. I examined rebound, as a function of particle speed, of particles impinging upon leaf surfaces, reentrainment of spores and pollen as a function of wind speed and time, net deposition, as a function of wind speed, and adhesion of pollen and spores to the leaf surfaces. From these experiments I concluded that in general, pollen and spore rebound can be described well by Dahneke's (1971, 1975) theory. Particle differences are far more significant than surface differences in the rebound process. I postulate the existence of rebound/reentrainment when particles impinge on surfaces with tangential fluid flow present. Particles will
Rebounding of a shaped-charge jet
NASA Astrophysics Data System (ADS)
Proskuryakov, E. V.; Sorokin, M. V.; Fomin, V. M.
2007-09-01
The phenomenon of rebounding of a shaped-charge jet from the armour surface with small angles between the jet axis and the target surface is considered. Rebounding angles as a function of jet velocity are obtained in experiments for a copper shaped-charge jet. An engineering calculation technique is developed. The results calculated with the use of this technique are in reasonable agreement with experimental data.
14 CFR 25.487 - Rebound landing condition.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rebound landing condition. 25.487 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.487 Rebound landing condition. (a) The landing gear and its supporting structure must be investigated for the loads occurring during...
14 CFR 25.487 - Rebound landing condition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rebound landing condition. 25.487 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.487 Rebound landing condition. (a) The landing gear and its supporting structure must be investigated for the loads occurring during...
Evaluation of a rebound tonometer (Tonovet) in clinically normal cat eyes.
Rusanen, Elina; Florin, Marion; Hässig, Michael; Spiess, Bernhard M
2010-01-01
To determine the accuracy of and to establish reference values for a rebound tonometer (Tonovet) in normal feline eyes, to compare it with an applanation tonometer (Tonopen Vet) and to evaluate the effect of topical anesthesia on rebound tonometry. Six enucleated eyes were used to compare both tonometers with direct manometry. Intraocular pressure (IOP) was measured in 100 cats to establish reference values for rebound tonometry. Of these, 22 cats were used to compare rebound tonometry with and without topical anesthesia and 33 cats to compare the rebound and applanation tonometers. All evaluated eyes were free of ocular disease. Both tonometers correlated well with direct manometry. The best agreement with the rebound tonometer was achieved between 25-50 mmHg. The applanation tonometer was accurate at pressures between 0 and 30 mmHg. The mean IOP in clinically normal cats was 20.74 mmHg with the rebound tonometer and 18.4 mmHg with the applanation tonometer. Topical anesthesia did not significantly affect rebound tonometry. As the rebound tonometer correlated well with direct manometry in the clinically important pressure range and was well tolerated by cats, it appears suitable for glaucoma diagnosis. The mean IOP obtained with the rebound tonometer was 2-3 mmHg higher than that measured with the applanation tonometer. This difference is within clinically acceptable limits, but indicates that the same type of tonometer should be used in follow-up examinations in a given cat.
Exchange rate rebounds after foreign exchange market interventions
NASA Astrophysics Data System (ADS)
Hoshikawa, Takeshi
2017-03-01
This study examined the rebounds in the exchange rate after foreign exchange intervention. When intervention is strongly effective, the exchange rate rebounds at next day. The effect of intervention is reduced slightly by the rebound after the intervention. The exchange rate might have been 67.12-77.47 yen to a US dollar without yen-selling/dollar-purchasing intervention of 74,691,100 million yen implemented by the Japanese government since 1991, in comparison to the actual exchange rate was 103.19 yen to the US dollar at the end of March 2014.
Application of isostatic gravity anomaly in the Yellow Sea area
NASA Astrophysics Data System (ADS)
Hao, Z.; Qin, J.; Huang, W.; Wu, X.
2017-12-01
In order to study the deep crustal structure of the Yellow Sea area, we used the Airy-Heiskanen model to calculate the isostatic gravity anomaly of this area. Based on the Bouguer gravity anomaly and water depth data of this area, we chose the calculating parameters as standard crustal thickness 30 km, crust-mantle density difference 0.6g/cm3and grid spacing 0.1°×0.1°. This study reveals that there are six faults and four isostatic negative anomalies in the study area. The isostatic anomalies in much of Yellow Sea areas give priority to those with positive anomalies. The isostatic anomalies in North Yellow Sea are higher than South Yellow Sea with Jiashan-Xiangshui fault as the boundary. In the north of the study area, isostatic anomalies are characterized by large areas of positive anomaly. The change is relatively slow, and the trends give priority to the trend NE or NEE. In the middle of the north Yellow Sea basin, there is a local negative anomaly, arranged as a string of beads in NE to discontinuous distribution. Negative anomaly range is small, basically corresponds to the region's former Cenozoic sedimentary basin position. To the south of Jiashan-Xiangshui fault and west of Yellow Sea eastern margin fault, including most of the south Yellow Sea and Jiangsu province, the isostatic anomalies are lower. And the positive and negative anomalies are alternative distribution, and negative anomaly trap in extensive development. The trends give priority to NE, NEE, both to the NW. On the basis of the characteristics of isostatic gravity anomalies, it is concluded that the Yellow Sea belongs to continental crustal isostatic area whose isostatic anomalies is smooth and slow. ReferencesHeiskanen, W. A., F. A. V. Meinesz, and S. A. Korff (1958), The Earth and Its Gravity Field, McGraw-Hill, New York. Meng, X. J., X. H. Zhang, and J. Y. Yang (2014), Geophysical survey in eastern China seas and the characteristics of gravity and magnetic fields, Marine Geoglogy
Small head circumference at birth and early age at adiposity rebound.
Eriksson, J G; Kajantie, E; Lampl, M; Osmond, C; Barker, D J P
2014-01-01
The adiposity rebound is the age in childhood when body mass index is at a minimum before increasing again. The age at rebound is highly variable. An early age is associated with increased obesity in later childhood and adult life. We have reported that an early rebound is predicted by low weight gain between birth and 1 year of age and resulting low body mass index at 1 year. Here, we examine whether age at adiposity rebound is determined by influences during infancy or is a consequence of foetal growth. Our hypothesis was that measurements of body size at birth are related to age at adiposity rebound. Longitudinal study of 2877 children born in Helsinki, Finland, during 1934-1944. Early age at adiposity rebound was associated with small head circumference and biparietal diameter at birth, but not with other measurements of body size at birth. The mean age at adiposity rebound rose from 5.8 years in babies with a head circumference of ≤33 cm to 6.2 in babies with a head circumference of >36 cm (P for trend = 0.007). The association between thinness in infancy and early rebound became apparent at 6 months of age. It was not associated with adverse living conditions. In a simultaneous regression, small head circumference at birth, high mother's body mass index and tall maternal stature each had statistically significant trends with early adiposity rebound (P = 0.002, <0.001, 0.004). We hypothesize that the small head size at birth that preceded an early adiposity rebound was the result of inability to sustain a rapid intra-uterine growth trajectory initiated in association with large maternal body size. This was followed by catch-up growth in infancy, and we hypothesize that this depleted the infant's fat stores. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Utilizing Visual Effects Software for Efficient and Flexible Isostatic Adjustment Modelling
NASA Astrophysics Data System (ADS)
Meldgaard, A.; Nielsen, L.; Iaffaldano, G.
2017-12-01
topographic features may influence the differential isostatic uplift in the area.
Measuring the Rebound Resilience of a Bouncing Ball
ERIC Educational Resources Information Center
Wadhwa, Ajay
2012-01-01
Some balls which are made of high-quality rubber (an elastomeric) material, such as tennis or squash balls, could be used for the determination of an important property of such materials called resilience. Since a bouncing ball involves a single impact we call this property "rebound resilience" and express it as the ratio of the rebound height to…
Numerical study of droplet impact and rebound on superhydrophobic surface
NASA Astrophysics Data System (ADS)
Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina
2017-11-01
Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).
Why do we need detailed gravity over continents: Some Australian examples
NASA Technical Reports Server (NTRS)
Lambeck, K.
1985-01-01
Geophysical quantities available over a continent are gravity and components of the magnetic field. Direct inferences on crustal structure are difficult to make and strongly dependent on mechanical assumptions the isostatic state. The data for Australia represents one of the best continental scale gravity surveys. The gravity anomalies are generally bland over the continent which confirms that stress relaxation and erosion and rebound were instrumental in reducing nonhydrostatic stresses. In central Australia very large gravity anomalies occur and the region is out of isostatic equilibrium despite the fact that tectonic activity ceased 300 ma ago. The isostatic response functions points to a substantial horizontal compression in the crust. Similar conclusions are drawn for the large anomalies in western Australia. The tectonic implications of these anomalies are examined. In eastern Australia the gravity anomalies are explained in terms of a model of erosion of the highlands and concomitant regional isostatic rebound.
Rebound upbeat nystagmus after lateral gaze in episodic ataxia type 2.
Kim, Hyo-Jung; Kim, Ji-Soo; Choi, Jae-Hwan; Shin, Jin-Hong; Choi, Kwang-Dong; Zee, David S
2014-06-01
Rebound nystagmus is a transient nystagmus that occurs on resuming the straight-ahead position after prolonged eccentric gaze. Even though rebound nystagmus is commonly associated with gaze-evoked nystagmus (GEN), development of rebound nystagmus in a different plane of gaze has not been described. We report a patient with episodic ataxia type 2 who showed transient upbeat nystagmus on resuming the straight-ahead position after sustained lateral gaze that had induced GEN and downbeat nystagmus. The rebound upbeat nystagmus may be ascribed to a shifting null in the vertical plane as a result of an adaptation to the downbeat nystagmus that developed during lateral gaze.
Glacial isostatic adjustment using GNSS permanent stations and GIA modelling tools
NASA Astrophysics Data System (ADS)
Kollo, Karin; Spada, Giorgio; Vermeer, Martin
2013-04-01
tested model the chi-square misfit for horizontal, vertical and three-dimensional velocity rates from the reference model was found (Milne, 2001). Finally, the best fitting models from GIA modelling were compared with rates obtained from GNSS data. Keywords: Fennoscandia, North America, land uplift, glacial isostatic adjustment, visco-elastic modelling, BIFROST. References Lidberg, M., Johannson, J., Scherneck, H.-G. and Milne, G. (2010). Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. Journal of Geodynamics, 50. pp. 8-18. Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazotti, S. and Dokka, R. K. (2007). Observations of glacial isostatic adjustment in "stable" North America with GPS. Geophysical Research Letters, 34, L02306. Spada, G., Stocchi, P. (2007). SELEN: A Fortran 90 program for solving the "sea-level equation". Computers & Geosciences, 33:538-562, 2007. Peltier, W. R. (2004). Global glacial isostasy and the surface of the ice-age Earth: The Ice-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32:111-149, 2004. Fleming, K. and Lambeck, K. (2004). Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models. Quaternary Science Reviews 23 (2004), pp. 1053-1077. Milne, G. A. and Davis, J. L. and Mitrovica, J. X. and Scherneck, H.-G. and Johansson, J. M. and Vermeer, M. and Koivula, H. (2001). Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291 (2001), pp. 2381-2385.
Drop rebound after impact: the role of the receding contact angle.
Antonini, C; Villa, F; Bernagozzi, I; Amirfazli, A; Marengo, M
2013-12-31
Data from the literature suggest that the rebound of a drop from a surface can be achieved when the wettability is low, i.e., when contact angles, measured at the triple line (solid-liquid-air), are high. However, no clear criterion exists to predict when a drop will rebound from a surface and which is the key wetting parameter to govern drop rebound (e.g., the "equilibrium" contact angle, θeq, the advancing and the receding contact angles, θA and θR, respectively, the contact angle hysteresis, Δθ, or any combination of these parameters). To clarify the conditions for drop rebound, we conducted experimental tests on different dry solid surfaces with variable wettability, from hydrophobic to superhydrophobic surfaces, with advancing contact angles 108° < θA < 169° and receding contact angles 89° < θR < 161°. It was found that the receding contact angle is the key wetting parameter that influences drop rebound, along with surface hydrophobicity: for the investigated impact conditions (drop diameter 2.4 < D0 < 2.6 mm, impact speed 0.8 < V < 4.1 m/s, Weber number 25 < We < 585), rebound was observed only on surfaces with receding contact angles higher than 100°. Also, the drop rebound time decreased by increasing the receding contact angle. It was also shown that in general care must be taken when using statically defined wetting parameters (such as advancing and receding contact angles) to predict the dynamic behavior of a liquid on a solid surface because the dynamics of the phenomenon may affect surface wetting close to the impact point (e.g., as a result of the transition from the Cassie-Baxter to Wenzel state in the case of the so-called superhydrophobic surfaces) and thus affect the drop rebound.
Rebound and jet formation of a fluid-filled sphere
NASA Astrophysics Data System (ADS)
Killian, Taylor W.; Klaus, Robert A.; Truscott, Tadd T.
2012-12-01
This study investigates the impact dynamics of hollow elastic spheres partially filled with fluid. Unlike an empty sphere, the internal fluid mitigates some of the rebound through an impulse driven exchange of energy wherein the fluid forms a jet inside the sphere. Surprisingly, this occurs on the second rebound or when the free surface is initially perturbed. Images gathered through experimentation show that the fluid reacts more quickly to the impact than the sphere, which decouples the two masses (fluid and sphere), imparts energy to the fluid, and removes rebound energy from the sphere. The experimental results are analyzed in terms of acceleration, momentum and an energy method suggesting an optimal fill volume in the neighborhood of 30%. While the characteristics of the fluid (i.e., density, viscosity, etc.) affect the fluid motion (i.e., type and size of jet formation), the rebound characteristics remain similar for a given fluid volume independent of fluid type. Implications of this work are a potential use of similar passive damping systems in sports technology and marine engineering.
Measuring the rebound resilience of a bouncing ball
NASA Astrophysics Data System (ADS)
Wadhwa, Ajay
2012-09-01
Some balls which are made of high-quality rubber (an elastomeric) material, such as tennis or squash balls, could be used for the determination of an important property of such materials called resilience. Since a bouncing ball involves a single impact we call this property 'rebound resilience' and express it as the ratio of the rebound height to the initial drop height of the ball. We determine the rebound resilience for three different types of ball by calculating the coefficient of restitution of the ball-surface combination from the experimentally measurable physical quantities, such as initial drop height and time interval between successive bounces. Using these we also determine the contact time of balls with the surface of impact. For measurements we have used audio, motion and surface-temperature sensors that were interfaced through a USB port with a computer.
Rebound from marital conflict and divorce prediction.
Gottman, J M; Levenson, R W
1999-01-01
Marital interaction has primarily been examined in the context of conflict resolution. This study investigated the predictive ability of couples to rebound from marital conflict in a subsequent positive conversation. Results showed that there was a great deal of consistency in affect across both conversations. Also examined was the ability of affective interaction to predict divorce over a 4-year period, separately in each of the two conversations. It was possible to predict divorce using affective variables from each conversation, with 82.6% accuracy from the conflict conversation and with 92.7% accuracy from the positive rebound conversation.
Body mass index kinetics around adiposity rebound in Anorexia nervosa: A case-control study.
Neveu, Rémi; Neveu, Dorine; Carrier, Edouard; Ourrad, Nadia; Perroud, Alain; Nicolas, Alain
2016-10-01
Anorexia nervosa (AN) is associated with parameters involved in body mass index (BMI) regulation. Contrary to obesity, BMI kinetics around the adiposity rebound is not documented in AN. This study aimed at investigating which characteristics of BMI kinetics around the adiposity rebound are associated with AN. Multicentre case-control study with 101 inpatient women with AN onset after 10 years of age, and 101 healthy women, all free of overweight history and matched for age, level of education and fathers' socio-professional status. Age at adiposity rebound, pre- and post-adiposity rebound BMI velocities and accelerations (change in velocity over time) were estimated with linear mixed models using data recorded between 2 and 10 years of age. Patients had an earlier adiposity rebound (mean (standard deviation (SD)): 5.3 (1.3) vs 5.7 (1.1) years), a larger BMI at adiposity rebound (mean (SD): 15.3 [1] vs 14.9 (0.9) kg/m 2 ) and 29% lower BMI acceleration after adiposity rebound than controls. After adjustment, only BMI at adiposity rebound and BMI acceleration after adiposity rebound were associated with a higher risk of AN (Odds ratio [95% confidence interval]: 2.15 [1.41-3.46] for an increase of 1 kg/m 2 and 2.44 [1.56-4.02] for an increase of 0.1 kg/(m 2 *years 2 ) respectively). These two factors were not correlated in patients (r = 0.007, p = 0.96). A flattened evolution of BMI after adiposity rebound and higher BMI at adiposity rebound were associated with AN. Further prospective study is needed to confirm these findings. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.
Improving design phase evaluations for high pile rebound sites : final report.
DOT National Transportation Integrated Search
2016-05-31
A testing program performed to help determine typical soils properties encountered during pile installation when high rebound : occurs produced a decision matrix for geotechnical engineers. High pile rebound (HPR) occurred at numerous sites in Florid...
NASA Astrophysics Data System (ADS)
Rémillard, Audrey M.; St-Onge, Guillaume; Bernatchez, Pascal; Hétu, Bernard; Buylaert, Jan-Pieter; Murray, Andrew S.; Lajeunesse, Patrick
2017-09-01
The Magdalen Islands (Québec, Canada) in the centre of the Gulf of St. Lawrence are located in a strategic position for providing an overview of the relative sea-level (RSL) history of the Maritime Provinces of eastern Canada. Although data are available for the coastal terrestrial areas of the Maritimes, data from the Gulf are very scarce and both the RSL and glacio-isostatic adjustment (GIA) models extrapolate for this central region. This study provides new stratigraphic and chronological data from four outcrops and two coring sites on the Magdalen Islands. In addition to the five samples used mainly for age control purposes, nine new luminescence ages are presented. With these new data added to the available literature, a new RSL curve is reconstructed for the LGM to the late Holocene period and a partial curve is proposed for the interval between the late MIS 4 to the MIS 3. Data also indicate a few insights for the MIS 5 period. Results reveal that for the LGM to the late Holocene, the curve corresponds to the J-shaped curve scenario recognized in the literature. The RSL changes during this period are the result of glacio-isostatic rebound, migration and collapse of the peripheral forebulge, and eustatic sea-level changes. For the LGM to the early Holocene, glacio-isostatic depression curves displaying a few local differences are also proposed. For the late Holocene, the data constrain the curve between two types of indicators, i.e. marine and terrestrial, and indicate that the RSL has risen at least 3 m during the last two millennia. Sediments dated to the MIS 5 and the interval between the late MIS 4 and the MIS 3 illustrate that the GIA following the LGM also occurred for the MIS 5 interglacial and the MIS 3 interstadial. Finally, recent GIA models are discussed in light of the results of this paper.
Tuning jammed frictionless disk packings from isostatic to hyperstatic.
Schreck, Carl F; O'Hern, Corey S; Silbert, Leonardo E
2011-07-01
We perform extensive computational studies of two-dimensional static bidisperse disk packings using two distinct packing-generation protocols. The first involves thermally quenching equilibrated liquid configurations to zero temperature over a range of thermal quench rates r and initial packing fractions followed by compression and decompression in small steps to reach packing fractions φ(J) at jamming onset. For the second, we seed the system with initial configurations that promote micro- and macrophase-separated packings followed by compression and decompression to φ(J). Using these protocols, we generate more than 10(4) static packings over a wide range of packing fraction, contact number, and compositional and positional order. We find that disordered, isostatic packings exist over a finite range of packing fractions in the large-system limit. In agreement with previous calculations, the most dilute mechanically stable packings with φ min ≈ 0.84 are obtained for r > r*, where r* is the rate above which φ(J) is insensitive to rate. We further compare the structural and mechanical properties of isostatic versus hyperstatic packings. The structural characterizations include the contact number, several order parameters, and mixing ratios of the large and small particles. We find that the isostatic packings are positionally and compositionally disordered (with only small changes in a number of order parameters), whereas bond-orientational and compositional order increase strongly with contact number for hyperstatic packings. In addition, we calculate the static shear modulus and normal mode frequencies (in the harmonic approximation) of the static packings to understand the extent to which the mechanical properties of disordered, isostatic packings differ from partially ordered packings. We find that the mechanical properties of the packings change continuously as the contact number increases from isostatic to hyperstatic.
Crack-Free, Nondistorting Can For Hot Isostatic Pressing
NASA Technical Reports Server (NTRS)
Juhas, John J.
1991-01-01
New method of canning specimens made of composites of arc-sprayed and plasma-sprayed tape reduces outgassing and warping during hot isostatic pressing. Produces can having reliable, crack-free seal and thereby helps to ensure pressed product of high quality. Specimen placed in ring of refractory metal between two face sheets, also of refractory metal. Assembly placed in die in vacuum hot press, where simultaneously heated and pressed until plates become diffusion-welded to ring, forming sealed can around specimen. Specimen becomes partially densified, and fits snugly within can. Ready for further densification by hot isostatic pressing.
Postglacial rebound and fault instability in Fennoscandia
NASA Astrophysics Data System (ADS)
Wu, Patrick; Johnston, Paul; Lambeck, Kurt
1999-12-01
The best available rebound model is used to investigate the role that postglacial rebound plays in triggering seismicity in Fennoscandia. The salient features of the model include tectonic stress due to spreading at the North Atlantic Ridge, overburden pressure, gravitationally self-consistent ocean loading, and the realistic deglaciation history and compressible earth model which best fits the sea-level and ice data in Fennoscandia. The model predicts the spatio-temporal evolution of the state of stress, the magnitude of fault instability, the timing of the onset of this instability, and the mode of failure of lateglacial and postglacial seismicity. The consistency of the predictions with the observations suggests that postglacial rebound is probably the cause of the large postglacial thrust faults observed in Fennoscandia. The model also predicts a uniform stress field and instability in central Fennoscandia for the present, with thrust faulting as the predicted mode of failure. However, the lack of spatial correlation of the present seismicity with the region of uplift, and the existence of strike-slip and normal modes of current seismicity are inconsistent with this model. Further unmodelled factors such as the presence of high-angle faults in the central region of uplift along the Baltic coast would be required in order to explain the pattern of seismicity today in terms of postglacial rebound stress. The sensitivity of the model predictions to the effects of compressibility, tectonic stress, viscosity and ice model is also investigated. For sites outside the ice margin, it is found that the mode of failure is sensitive to the presence of tectonic stress and that the onset timing is also dependent on compressibility. For sites within the ice margin, the effect of Earth rheology is shown to be small. However, ice load history is shown to have larger effects on the onset time of earthquakes and the magnitude of fault instability.
Joining of ceramics of different biofunction by hot isostatic pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jianguo; Harmansson, L.; Soeremark, R.
1993-10-01
Monolithic zirconia (Z) and zirconia-hydroxyapatite (Z/HA) composites were joined by cold isostatic pressing (CIP at 300 MPa) and subsequently by glass-encapsulated hot isostatic pressing (HIP at 1225 C, 1 h and 200 MPa). The physical and mechanical properties of the materials were measured. The fracture surface was studied using a light microscope. The results indicate a strength level of the joint similar to that of the corresponding composite material (Z/HA), 845 and 860 MPa, respectively. Similar experiments with monolithic alumina (A) and alumina-hydroxyapatite (A/HA) were carried out without success. Cracking occurred in the joint area during the cold isostatic pressingmore » process. It seems that ceramics with high green strength and similar green density are essential when joining ceramics by combined CIP and HIP processes.« less
NASA Astrophysics Data System (ADS)
Ding, M.; Lin, J.; Zuber, M. T.
2014-12-01
We analyze gravity and topography of Mars to investigate the spatial variations in crustal thickness, lithospheric strength, and mechanisms of support of prominent topographic features on Mars. The latest gravity model JGMRO110c (released in 2012) from the Mars Reconnaissance Orbiter mission has a spatial block size resolution of ~97 km (corresponding to degree-110), enabling us to resolve crustal structures at higher spatial resolution than those determined from previous degree-80 and 85 gravity models [Zuber et al., 2000; McGovern et al., 2002, 2004; Neumann et al., 2004; Belleguic et al., 2005]. Using the latest gravity data, we first inverted for a new version of crustal thickness model of Mars assuming homogeneous crust and mantle densities of 2.9 and 3.5 g/cm3. We calculated "isostatic" topography for the Airy local isostatic compensation mechanism, and "non-isostatic" topography after removing the isostatic part. We find that about 92% of the Martian surface is in relatively isostatic state, indicating either relatively small lithospheric strength and/or small vertical loading. Relatively isostatic regions include the hemispheric dichotomy, Hellas and Argyre Planitia, Noachis and Arabia Terra, and Terra Cimmeria. In contrast, regions with significant amount of non-isostatic topography include the Olympus, Ascraeus, Arsia, Pavonis, Alba, and Elysium Mons, Isidis Planitia and Valles Marineris. Their relatively large "non-isostatc topography" implies relatively strong lithospheric strength and large vertical loading. Spectral analysis of the admittance and correlation relationship between gravity and topography were conducted for the non-isostatic regions using the localized spectra method [Wieczorek and Simons, 2005, 2007] and thin-shell lithospheric flexural approximation [Forsyth, 1985; McGovern et al., 2002, 2004]. The best-fitting models reveal significant variations in the effective lithospheric thickness with the greatest values for the Olympus Mon
Characterisation of rebound depolarisation in mice deep dorsal horn neurons in vitro.
Rivera-Arconada, Ivan; Lopez-Garcia, Jose A
2015-09-01
Spinal dorsal horn neurons constitute the first relay for pain processing and participate in the processing of other sensory, motor and autonomic information. At the cellular level, intrinsic excitability is a factor contributing to network function. In turn, excitability is set by the array of ionic conductance expressed by neurons. Here, we set out to characterise rebound depolarisation following hyperpolarisation, a feature frequently described in dorsal horn neurons but never addressed in depth. To this end, an in vitro preparation of the spinal cord from mice pups was used combined with whole-cell recordings in current and voltage clamp modes. Results show the expression of H- and/or T-type currents in a significant proportion of dorsal horn neurons. The expression of these currents determines the presence of rebound behaviour at the end of hyperpolarising pulses. T-type calcium currents were associated to high-amplitude rebounds usually involving high-frequency action potential firing. H-currents were associated to low-amplitude rebounds less prone to elicit firing or firing at lower frequencies. For a large proportion of neurons expressing both currents, the H-current constitutes a mechanism to ensure a faster response after hyperpolarisations, adjusting the latency of the rebound firing. We conclude that rebound depolarisation and firing are intrinsic factors to many dorsal horn neurons that may constitute a mechanism to integrate somatosensory information in the spinal cord, allowing for a rapid switch from inhibited-to-excited states.
THE REBOUND CONDITION OF DUST AGGREGATES REVEALED BY NUMERICAL SIMULATION OF THEIR COLLISIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wada, Koji; Tanaka, Hidekazu; Yamamoto, Tetsuo
2011-08-10
Collisional growth of dust aggregates is a plausible root of planetesimals forming in protoplanetary disks. However, a rebound of colliding dust aggregates prevents dust from growing into planetesimals. In fact, rebounding aggregates are observed in laboratory experiments but not in previous numerical simulations. Therefore, the condition of rebound between dust aggregates should be clarified to better understand the processes of dust growth and planetesimal formation. We have carried out numerical simulations of aggregate collisions for various types of aggregates and succeeded in reproducing a rebound of colliding aggregates under specific conditions. Our finding is that in the rebound process, themore » key factor of the aggregate structure is the coordination number, namely, the number of particles in contact with a particle. A rebound is governed by the energy dissipation along with restructuring of the aggregates and a large coordination number inhibits the restructuring at collisions. Results of our numerical simulation for various aggregates indicate that they stick to each other when the mean coordination number is less than 6, regardless of their materials and structures, as long as their collision velocity is less than the critical velocity for fragmentation. This criterion of the coordination number would correspond to a filling factor of {approx}0.3, which is somewhat larger than that reported in laboratory experiments. In protoplanetary disks, dust aggregates are expected to have low bulk densities (<0.1 g cm{sup -3}) during their growth, which would prevent dust aggregates from rebounding. This result supports the formation of planetesimals with direct dust growth in protoplanetary disks.« less
Rebound nystagmus: EOG analysis of a case with a floccular tumour.
Yamazaki, A; Zee, D S
1979-01-01
Eye movements were recorded and quantitatively analysed in a patient with a tumour initially involving the cerebellar flocculus. Ocular motor abnormalities included (1) impaired smooth pursuit, (2) impaired cancellation of the vestibulo-ocular reflex when fixating an object rotating with the head, and (3) gaze paretic and rebound nystagmus. Comparable findings have been reported in monkeys with experimental floccular lesions. The rebound nystagmus (but not the other ocular motor abnormalities) disappeared when the tumour appeared to invade the brain stem in the region near the vestibular nuclei. This finding suggests that the floccular lesion unmasked a bias which created rebound nystagmus and that the bias probably arose in the vestibular nuclei. PMID:508695
Rebound effect of modern drugs: serious adverse event unknown by health professionals.
Teixeira, Marcus Zulian
2013-01-01
Supported in the Hippocratic aphorism primum non nocere, the bioethical principle of non-maleficence pray that the medical act cause the least damage or injury to the health of the patient, leaving it to the doctor to assess the risks of a particular therapy through knowledge of possible adverse events of drugs. Among these, the rebound effect represents a common side effect to numerous classes of modern drugs, may cause serious and fatal disorders in patients. This review aims to clarify the health professionals on clinical and epidemiological aspects of rebound phenomenon. A qualitative, exploratory and bibliographic review was held in the PubMed database using the keywords 'rebound', 'withdrawal', 'paradoxical', 'acetylsalicylic acid', 'anti-inflammatory', 'bronchodilator', 'antidepressant', 'statin', 'proton pump inhibitor' and 'bisphosphonate'. The rebound effect occurs after discontinuation of numerous classes of drugs that act contrary to the disease disorders, exacerbating them at levels above those prior to treatment. Regardless of the disease, the drug and duration of treatment, the phenomenon manifests itself in a small proportion of susceptible individuals. However, it may cause serious and fatal adverse events should be considered a public health problem in view of the enormous consumption of drugs by population. Bringing together a growing and unquestionable body of evidence, the physician needs to have knowledge of the consequences of the rebound effect and how to minimize it, increasing safety in the management of modern drugs. On the other hand, this rebound can be used in a curative way, broadening the spectrum of the modern therapeutics. Copyright © 2012 Elsevier Editora Ltda. All rights reserved.
Effects of Exercise Rehab on Male Asthmatic Patients: Aerobic Verses Rebound Training
Zolaktaf, Vahid; Ghasemi, Gholam A; Sadeghi, Morteza
2013-01-01
Background: There are some auspicious records on applying aerobic exercise for asthmatic patients. Recently, it is suggested that rebound exercise might even increase the gains. This study was designed to compare the effects of rebound therapy to aerobic training in male asthmatic patients. Methods: Sample included 37 male asthmatic patients (20-40 years) from the same respiratory clinic. After signing the informed consent, subjects volunteered to take part in control, rebound, or aerobic groups. There was no change in the routine medical treatment of patients. Supervised exercise programs continued for 8 weeks, consisting of two sessions of 45 to 60 minutes per week. Criteria measures were assessed pre- and post exercise program. Peak exercise capacity (VO2peak) was estimated by modified Bruce protocol, Forced vital capacity (FVC), Forced expiratory volume in 1 second (FEV1), and FEV1% were measured by spirometer. Data were analyzed by repeated measure analysis of variance (ANOVA). Results: Significant interactions were observed for all 4 criteria measures (P < 0.01), meaning that both the exercise programs were effective in improving FVC, FEV1, FEV1%, and VO2peak. Rebound exercise produced more improvement in FEV1, FEV1%, and VO2peak. Conclusions: Regular exercise strengthens the respiratory muscles and improves the cellular respiration. At the same time, it improves the muscular, respiratory, and cardio-vascular systems. Effects of rebound exercise seem to be promising. Findings suggest that rebound exercise is a useful complementary means for asthmatic male patients. PMID:23717762
Earth's isostatic gravity anomaly field: Contributions to National Geodetic Satellite Program
NASA Technical Reports Server (NTRS)
Khan, M. A.
1973-01-01
On the assumption that the compensation for the topographic load is achieved in the manner of Airy-Heiskenenan hypothesis at a compensation depth of 30 kilometers, the spherical harmonic coefficients of the isostatic reduction potential U are computed. The degree power spectra of these coefficients are compared with the power spectra of the isostatic reduction coefficients given by Uotila. Results are presented in tabular form.
Rebound Syndrome in Patients With Multiple Sclerosis After Cessation of Fingolimod Treatment.
Hatcher, Stacy Ellen; Waubant, Emmanuelle; Nourbakhsh, Bardia; Crabtree-Hartman, Elizabeth; Graves, Jennifer S
2016-07-01
The appropriate sequencing of agents with strong immune system effects has become increasingly important. Transitions require careful balance between safety and protection against relapse. The cases presented herein highlight that rebound events after ceasing fingolimod treatment may happen even with short washout periods (4 weeks) and may perpetuate despite steroid treatment or the immediate use of fast-acting immune therapies, such as rituximab. To describe rebound syndrome in patients with multiple sclerosis (MS) after cessation of fingolimod treatment. Clinical and demographic data were extracted from electronic medical records from the University of California, San Francisco, Multiple Sclerosis Center from January 2014 to December 2015. Magnetic resonance images were reviewed by MS neurologists (J.S.G., E.W., B.N., and E.C.H.). Rebound syndrome was defined as new severe neurological symptoms after ceasing fingolimod treatment, with the development of multiple new or enhancing lesions exceeding baseline activity. We reviewed the PubMed database from January 2010 to December 2015 for similar cases of severe disease reactivation after ceasing fingolimod treatment using search terms fingolimod and either rebound or reactivation. Participants were included if they stopped receiving fingolimod between January 2014 and December 2015. Five patients were identified who experienced rebound after ceasing fingolimod treatment. Each patient received treatment with oral fingolimod for various durations. Occurrence of rebound after ceasing fingolimod treatment. The mean (SD) age of the 5 female patients presented in this case series was 35.2 (6.4) years. Of the 46 patients that stopped fingolimod treatment within the 2-year period, 5 (10.9%) experienced severe relapse 4 to 16 weeks after ceasing fingolimod treatment. Despite varying prior severity of relapsing-remitting course, all participants experienced unexpectedly severe clinical relapses accompanied by drastic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, L.M.; Jones, A.H.
1986-04-01
The fracture toughness of CIP-HIP (cold isostatic pressed-hot isostatic pressed) beryllium was determined using the short-bar fracture-toughness (K/sub IcSB/) method. The K/sub IcSB/ value measured was 10.96 MPa x the square root of m at room temperature. This falls well within the expected range of 9 to 12 MPa x the square root of m as observed from previous fracture toughness measurements of beryllium. Toughness increased rapidly between 400 F and 500 F reaching a value of 16.7 MPa x the square root of m at 500 F.
NASA Astrophysics Data System (ADS)
Wilson, T. J.; Konfal, S. A.; Bevis, M. G.; Spada, G.; Melini, D.; Barletta, V. R.; Kendrick, E. C.; Saddler, D.; Smalley, R., Jr.; Dalziel, I. W. D.; Willis, M. J.
2016-12-01
Crustal motions measured by GPS provide a unique proxy record of ice mass change, due to the elastic and viscoelastic response of the earth to removal of ice loads. The ANET/POLENET array of bedrock GPS sites spans much of the Antarctic interior, encompassing regions where glacial isostatic adjustment (GIA) models predict large crustal displacements due to LGM ice loss and including coastal West Antarctica where major modern ice mass loss is documented. To isolate the long-term GIA component of measured crustal motions, we computed and removed elastic displacements due to recent ice mass change. We used the annually resolved ice mass balance data from Martín-Español et al. (2016) derived from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003-2013. The Regional Elastic Rebound Calculator (REAR) [Melini et al., 2015] was used to compute elastic vertical and horizontal surface displacements. Uplift due to elastic rebound is substantial in West Antarctica, very minimal in East Antarctica, and variable across the Weddell Embayment. The ANET GPS-derived crustal motion patterns ascribed to non-elastic GIA are spatially complex and differ significantly in magnitude from model predictions. We present a systematic comparison of measured and predicted velocities within different sectors of Antarctica, in order to examine spatial patterns relative to modern ice mass changes, ice history model uncertainties, and lateral variations in earth properties. In the Weddell Embayment region most vertical velocities are lower than uplift predicted by GIA models. Several sites in the southernmost Transantarctic Mountains and the Whitmore Mountains, where small ice mass increase occurs, have vertical uplift significantly exceeding GIA model predictions. There is an intriguing spatial correlation of these fast-moving sites with a low-velocity anomaly in the upper mantle documented by analysis of teleseismic Rayleigh waves by
Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles
Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.
2011-01-01
Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses. PMID:22088027
Berkwitt, Adam; Osborn, Rachel; Grossman, Matthew
2015-02-01
There are few data evaluating the role of inpatient rebound bilirubin levels in the management of infants readmitted after their birth hospitalization for indirect hyperbilirubinemia. The goal of the present study was to evaluate the clinical utility of inpatient rebound bilirubin levels within this patient population. A retrospective cohort study was conducted of 226 infants readmitted after their birth hospitalization for indirect hyperbilirubinemia. Data from 130 infants with rebound bilirubin levels drawn at a mean of 6.1±2.4 hours after discontinuation of phototherapy were compared with data from 96 infants without rebound bilirubin levels. The primary outcome was readmission to the hospital, and secondary outcomes included length of stay and discharge time. A subgroup analysis compared characteristics of children who required repeat phototherapy versus those who did not. Overall, 5 of 130 patients from the rebound group were readmitted compared with 4 of 96 patients from the no-rebound group (P=.98). Length of stay was significantly longer for patients with rebound bilirubin levels (27.7 vs 23.2 hours; P=.001). Patients with bilirubin levels lowered to ≤14 mg/dL were less likely to receive repeat phototherapy than those with levels>14 mg/dL (2 of 129 vs 12 of 97; P=.001). Early inpatient rebound bilirubin levels do not successfully predict which patients will require hospital readmission for repeat phototherapy. Children with bilirubin levels lowered to ≤14 mg/dL with phototherapy are unlikely to receive repeat phototherapy. Copyright © 2015 by the American Academy of Pediatrics.
Rebound Effects in the Context of Developing Country Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Rue du Can, Stephane; McNeil, Michael A.; Leventis, Greg
Energy efficiency-related “rebound effects” usually refer to the tendency of most consumers to increase their use of energy services in response to efficiency measures that have reduced their energy costs. This phenomenon is one reason why energy efficiency policies often result in lower energy savings than engineering-based estimates predict. Rebound effects have been the subject of intense debate in the field of energy efficiency policy for many years.1 In the past, the focus of this debate has been on the perceived loss of the expected energy savings and related benefits resulting from the rebound effects. However, more recently, there hasmore » been a growing recognition that policymakers need to consider the health, economic and other non-energy benefits that often result from the increase in energy services represented by user “rebound effects”. This is especially true in developing countries where basic energy service demands—such as lighting, heating, cooling, and refrigeration of food—are often not being met. As economic conditions improve and household incomes increase, demand for increased energy services (such as space conditioning and appliances) tends to rise rapidly. Improving energy efficiency reduces the amount of energy needed to produce one unit of energy service output (for example an hour of cooling at 21°C delivered for X vs Y kWh). Greater efficiency therefore often enables more rapid increased in energy services (and sometimes access), expanding the amount of services that can be provided by a fixed amount (or cost) of energy.« less
Peer Review of March 2013 LDV Rebound Report By Small ...
The regulatory option of encouraging the adoption of advanced technologies for improving vehicle efficiency can result in significant fuel savings and GHG emissions benefits. At the same time, it is possible that some of these benefits might be offset by additional driving that is encouraged by the reduced costs of operating more efficient vehicles. This so called “rebound effect”, the increased driving that results from an improvement in the energy efficiency of a vehicle, must be determined in order to reliably estimate the overall benefits of GHG regulations for light-duty vehicles. Dr. Ken Small, an Economist at the Department of Economics, University of California at Irvine, with contributions by Dr. Kent Hymel, Department of Economics, California State University at Northridge, have developed a methodology to estimate the rebound effect for light-duty vehicles in the U.S. Specifically, rebound is estimated as the change in vehicle miles traveled (VMT) with respect to the change in per mile fuel costs that can occur, for example, when vehicle operating efficiency is improved. The model analyzes aggregate personal motor-vehicle travel within a simultaneous model of aggregate VMT, fleet size, fuel efficiency, and congestion formation. To use the peer review process to help assure that the methodologies considered by the U.S. EPA for estimating VMT rebound have been thoroughly examined.
Fabrication of Monolithic RERTR Fuels by Hot Isostatic Pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jan-Fong Jue; Blair H. Park; Curtis R. Clark
2010-11-01
The RERTR (Reduced Enrichment for Research and Test Reactors) Program is developing advanced nuclear fuels for high-power test reactors. Monolithic fuel design provides higher uranium loading than that of the traditional dispersion fuel design. Hot isostatic pressing is a promising process for low-cost batch fabrication of monolithic RERTR fuel plates for these high-power reactors. Bonding U Mo fuel foil and 6061 Al cladding by hot isostatic press bonding was successfully developed at Idaho National Laboratory. Due to the relatively high processing temperature, the interaction between fuel meat and aluminum cladding is a concern. Two different methods were employed to mitigatemore » this effect: (1) a diffusion barrier and (2) a doping addition to the interface. Both types of fuel plates have been fabricated by hot isostatic press bonding. Preliminary results show that the direct fuel/cladding interaction during the bonding process was eliminated by introducing a thin zirconium diffusion barrier layer between the fuel and the cladding. Fuel plates were also produced and characterized with a silicon-rich interlayer between fuel and cladding. This paper reports the recent progress of this developmental effort and identifies the areas that need further attention.« less
Warfarin Poisoning with Delayed Rebound Toxicity.
Berling, Ingrid; Mostafa, Ahmed; Grice, Jeffrey E; Roberts, Michael S; Isbister, Geoffrey K
2017-02-01
Intentional poisoning with warfarin is not the same as over-anticoagulation, for which guidelines exist. The coagulopathy resulting from a warfarin overdose is reversed with vitamin K 1 , the dose and timing of which is often guided by experience with the management of over-anticoagulation with warfarin therapy, rather than acute overdose. We report a case of a 50-year-old man who ingested an unknown amount of his warfarin, venlafaxine, and paracetamol. He presented with an international normalized ratio (INR) of 2.5, which steadily increased over 24 h to 7, despite receiving an initial 1 mg of vitamin K 1 . He was then treated with 5 mg vitamin K 1 , and once the INR returned to 4.5, 40 h post ingestion, he was discharged home. He was also treated with a full course of acetylcysteine for the paracetamol overdose. The following day his INR rebounded to 8.5 and he suffered a spontaneous epistaxis requiring readmission; he was treated with low titrated doses of vitamin K 1 . The warfarin concentration was 74.6 μg/mL 26 h post ingestion and decreased to 3.7 μg/mL over 72 h. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Our case highlights the risk of a rebound elevated INR even 3 days after acute warfarin overdose despite treatment with vitamin K 1 . Understanding the pharmacokinetics of vitamin K 1 in comparison with warfarin, repeat INR testing, and continued treatment with oral vitamin K 1 may help avoid complications of rebound coagulopathy in warfarin overdose. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Teixeira, Marcus Zulian
2016-11-01
Employing the secondary action or adaptative reaction of the organism as therapeutic response, homeopathy uses the treatment by similitude (similia similibus curentur) administering to sick individuals the medicines that caused similar symptoms in healthy individuals. Such homeostatic or paradoxical reaction of the organism is scientifically explained through the rebound effect of drugs, which cause worsening of symptoms after withdrawal of several palliative treatments. Despite promoting an improvement in psoriasis at the beginning of the treatment, modern biological therapies provoke worsening of the psoriasis (rebound psoriasis) after discontinuation of drugs. Exploratory qualitative review of the literature on the occurrence of the rebound effect with the use of immunomodulatory drugs [T-cell modulating agents and tumor necrosis factor (TNF) inhibitors drugs] in the treatment of psoriasis. Several researches indicate the rebound effect as the mechanism of worsening of psoriasis with the use of efalizumab causing the suspension of its marketing authorization in 2009, in view of some severe cases. Other studies also have demonstrated the occurrence of rebound psoriasis with the use of alefacept, etanercept and infliximab. As well as studied in other classes of drugs, the rebound effect of biologic agents supports the principle of similitude (primary action of the drugs followed by secondary action and opposite of the organism). Copyright © 2016 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Plouff, Donald
1992-01-01
A residual isostatic gravity map (sheet 2) was prepared so that the regional effect of isostatic compensation present on the Bouguer gravity anomaly map (sheet 1) would be minimized. Isostatic corrections based on the Airy-Heiskanen system (Heiskanen and Vening Meinesz, 1958, p. 135-137) were estimated by using 3-minute topographic digitization and applying the method of Jachens and Roberts (1981). Parameters selected for the isostatic model were 25 km for the normal crustal thickness at sea level, 2.67 g/cm3 for the density of the crust, and 0.4 g/cm3 for the contrast in density between the crust and the upper mantle. These parameters were selected so that the isostatic residual gravity map would be consistent with isostatic residual gravity maps of the adjacent Walker Lake quadrangle (Plouff, 1987) and the state of Nevada (Saltus, 1988c).
A mathematical analysis of rebound in a target-mediated drug disposition model: II. With feedback.
Aston, Philip J; Derks, Gianne; Agoram, Balaji M; van der Graaf, Piet H
2017-07-01
We consider the possibility of free receptor (antigen/cytokine) levels rebounding to higher than the baseline level after the application of an antibody drug using a target-mediated drug disposition model. It is assumed that the receptor synthesis rate experiences homeostatic feedback from the receptor levels. It is shown for a very fast feedback response, that the occurrence of rebound is determined by the ratio of the elimination rates, in a very similar way as for no feedback. However, for a slow feedback response, there will always be rebound. This result is illustrated with an example involving the drug efalizumab for patients with psoriasis. It is shown that slow feedback can be a plausible explanation for the observed rebound in this example.
Brain prolactin is involved in stress-induced REM sleep rebound.
Machado, Ricardo Borges; Rocha, Murilo Ramos; Suchecki, Deborah
2017-03-01
REM sleep rebound is a common behavioural response to some stressors and represents an adaptive coping strategy. Animals submitted to multiple, intermittent, footshock stress (FS) sessions during 96h of REM sleep deprivation (REMSD) display increased REM sleep rebound (when compared to the only REMSD ones, without FS), which is correlated to high plasma prolactin levels. To investigate whether brain prolactin plays a role in stress-induced REM sleep rebound two experiments were carried out. In experiment 1, rats were either not sleep-deprived (NSD) or submitted to 96h of REMSD associated or not to FS and brains were evaluated for PRL immunoreactivity (PRL-ir) and determination of PRL concentrations in the lateral hypothalamus and dorsal raphe nucleus. In experiment 2, rats were implanted with cannulas in the dorsal raphe nucleus for prolactin infusion and were sleep-recorded. REMSD associated with FS increased PRL-ir and content in the lateral hypothalamus and all manipulations increased prolactin content in the dorsal raphe nucleus compared to the NSD group. Prolactin infusion in the dorsal raphe nucleus increased the time and length of REM sleep episodes 3h after the infusion until the end of the light phase of the day cycle. Based on these results we concluded that brain prolactin is a major mediator of stress-induced REMS. The effect of PRL infusion in the dorsal raphe nucleus is discussed in light of the existence of a bidirectional relationship between this hormone and serotonin as regulators of stress-induced REM sleep rebound. Copyright © 2016 Elsevier Inc. All rights reserved.
Measuring impact rebound with photography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumali, Hartono
2010-05-01
To study the rebound of a sphere colliding against a flat wall, a test setup was developed where the sphere is suspended with strings as a pendulum, elevated, and gravity-released to impact the wall. The motion of the sphere was recorded with a highspeed camera and traced with an image-processing program. From the speed of the sphere before and after each collision, the coefficient of restitution was computed, and shown to be a function of impact speed as predicted analytically.
Raboud, Janet M; Rae, Sandra; Woods, Ryan; Harris, Marianne; Montaner, Julio S G
2002-08-16
To describe the characteristics and predictors of transient plasma viral load (pVL) rebounds among patients on stable antiretroviral therapy and to determine the effect of one or more pVL rebounds on virological response at week 52. Individual data were combined from 358 patients from the INCAS, AVANTI-2 and AVANTI-3 studies. Logistic regression models were used to determine the relationship between the magnitude of an increase in pVL and the probability of returning to the lower limit of quantification (LLOQ: 20-50 copies/ml) and to determine the odds of virological success at 52 weeks associated with single and consecutive pVL rebounds. A group of 165 patients achieved a pVL nadir < LLOQ; of these, 85 patients experienced pVL rebounds within 52 weeks. The probability of a pVL rebound was greater among patients who did not adhere to treatment (68% vs 49%; P < 0.05). The probability of reachieving virological suppression after a pVL rebound was not associated with the magnitude of the rebound [odds ratio (OR), 0.86; P = 0.56] but was associated with triple therapy (OR, 2.22; P = 0.06) or non-adherence (OR, 0.40; P = 0.04). The probability of virological success at week 52 was not associated with an isolated pVL rebound but was less likely after detectable pVL at two consecutive visits. An isolated pVL rebound was not associated with virological success at 52 weeks but rebounds at two consecutive visits decreased the probability of later virological success. Given their high risk of short-term virological failure, patients who present with consecutive detectable pVL measurements following complete suppression should be considered ideal candidates for intervention studies.
Deployment of Autonomous GPS Stations in Marie Byrd Land, Antartica
NASA Technical Reports Server (NTRS)
Donnellan, A.; Luyendyk, B.; Smith, M.; Dace, G.
1999-01-01
During the 1998-1999 Antarctic field season, we installed three autonomous GPS stations in Marie Byrd Land, West Antarctica to measure glacio-isostatic rebound and rates of spreading across the West Antartic Rift System.
Isostatic Compensation of the Lunar Highlands
NASA Astrophysics Data System (ADS)
Sori, Michael M.; James, Peter B.; Johnson, Brandon C.; Soderblom, Jason M.; Solomon, Sean C.; Wieczorek, Mark A.; Zuber, Maria T.
2018-02-01
The lunar highlands are isostatically compensated at large horizontal scales, but the specific compensation mechanism has been difficult to identify. With topographic data from the Lunar Orbiter Laser Altimeter and gravity data from the Gravity Recovery and Interior Laboratory, we investigate support of highland topography. Poor correlation between crustal density and elevation shows that Pratt compensation is not important in the highlands. Using spectrally weighted admittance, we compared observed values of geoid-to-topography ratio (GTR) with those predicted by isostatic models. Observed GTRs are 25.8+7.5-5.7 m/km for the nearside highlands and 39.3+5.7-6.2 m/km for the farside highlands. These values are not consistent with flexural compensation of long-wavelength topography or Airy isostasy defined under an assumption of equal mass in crustal columns. Instead, the observed GTR values are consistent with models of Airy compensation in which isostasy is defined under a requirement of equal pressures at equipotential surfaces at depth. The gravity and topography data thus reveal that long-wavelength topography on the Moon is most likely compensated by variations in crustal thickness, implying that highland topography formed early in lunar history before the development of a thick elastic lithosphere.
Heating Capacity of ReBound Shortwave Diathermy and Moist Hot Packs at Superficial Depths
Hawkes, Amanda R.; Draper, David O.; Johnson, A. Wayne; Diede, Mike T.; Rigby, Justin H.
2013-01-01
Context: The effectiveness of a new continuous diathermy unit, ReBound, as a heating modality is unknown. Objective: To compare the effects of ReBound diathermy with silicate-gel moist hot packs on tissue temperature in the human triceps surae muscle. Design: Crossover study. Setting: University research laboratory. Patients or Other Participants: A total of 12 healthy, college-aged volunteers (4 men, 8 women; age = 22.2 ± 2.25 years, calf subcutaneous fat thickness = 7.2 ± 1.9 mm). Intervention(s): On 2 different days, 1 of 2 modalities (ReBound diathermy, silicate-gel moist hot pack) was applied to the triceps surae muscle of each participant for 30 minutes. After 30 minutes, the modality was removed, and temperature decay was recorded for 20 minutes. Main Outcome Measure(s): Medial triceps surae intramuscular tissue temperature at a depth of 1 cm was measured using an implantable thermocouple inserted horizontally into the muscle. Measurements were taken every 5 minutes during the 30-minute treatment and every minute during the 20-minute temperature decay, for a total of 50 minutes. Treatment was analyzed through a 2 × 7 mixed-model analysis of variance with repeated measures. Temperature decay was analyzed through a 2 × 21 mixed-model analysis of variance with repeated measures. Results: During the 30-minute application, tissue temperatures at a depth of 1 cm increased more with the ReBound diathermy than with the moist hot pack (F6,66 = 7.14, P < .001). ReBound diathermy and moist hot packs increased tissue temperatures 3.69°C ± 1.50°C and 2.82°C ± 0.90°C, respectively, from baseline. Throughout the temperature decay, ReBound diathermy produced a greater rate of heat dissipation than the moist hot pack (F20,222 = 4.42, P < .001). Conclusions: During a 30-minute treatment at a superficial depth, the ReBound diathermy increased tissue temperature to moderate levels, which were greater than the levels reached with moist hot packs. PMID:23855362
NASA Astrophysics Data System (ADS)
Yang, G.; Shen, C.; Wang, J.
2017-12-01
we calculated the Bouguer gravity anomaly and the Airy-Heiskanen isostatic anomaly in the New Britain ocean trenches and its surrounding areas of Papua New Guinea using the topography model and the gravity anomaly model from Scripps Institute of Oceanography, and analyzed the characteristics of isostatic anomaly and the earthquake dynamic environment of this region. The results show that there are obviously differences in the isostatic state between each block in the region, and the crustal tectonic movement is very intense in the regions with high positive or negative isostatic gravity anomalies; A number of sub-plates in this area is driven by the external tectonic action such as plate subduction and thrust of the Pacific plate, the Indian - Australian plate and the Eurasian plate. From the distribution of isostatic gravity anomaly, the tectonic action of anti-isostatic movement in this region is the main source of power; from the isostatic gravity and the spatial distribution of the earthquake, with the further contraction of the Indian-Australian plate, the southwestern part of the Solomon Haiya plate will become part of the Owen Stanley fold belt, the northern part will enter the lower part of the Bismarck plate, eastern part will enter the front of the Pacific plate, the huge earthquake will migrate to the north and east of the Solomon Haiya plate.
Ishida, Hideki; Kondo, Tsunenori; Shimizu, Tomokazu; Nozaki, Taiji; Tanabe, Kazunari
2015-03-01
The purpose of this study is to examine whether postoperative antiblood type antibody rebound is attributed to kidney allograft rejection in ABO blood type-incompatible (ABO-I) living-related kidney transplantation (KTx). A total of 191 ABO-I recipients who received ABO-I living-related KTx between 2001 and 2013 were divided into two groups: Group 1 consisted of low rebound [(≦1:32), N = 170] and Group 2 consisted of high rebound [(≧1:64), N = 21], according to the levels of the rebounded antiblood type antibodies within 1 year after transplantation. No prophylactic treatment for rejection was administered for elevated antiblood type antibodies, regardless of the levels of the rebounded antibodies. Within 1 year after transplantation, T-cell-mediated rejection was observed in 13 of 170 recipients (13/170, 8%) in Group 1 and in 2 of 21 recipients (2/21, 10%) in Group 2 (Groups 1 vs. 2, P = 0.432). Antibody-mediated rejection was observed in 15 of 170 recipients (15/170, 9%) and 2 of 21 recipients (2/21, 10%) in Groups 1 and 2, respectively (P = 0.898). In this study, we found no correlation between the postoperative antiblood type antibody rebound and the incidence of acute rejection. We concluded that no treatment is necessary for rebounded antiblood type antibodies. © 2014 Steunstichting ESOT.
The measurement of intraocular pressure over positive soft contact lenses by rebound tonometry.
Zeri, Fabrizio; De Cusatis, Mario; Lupelli, Luigi; Swann, Peter Graham
2016-01-01
To investigate if the accuracy of intraocular pressure (IOP) measurements using rebound tonometry over disposable hydrogel (etafilcon A) contact lenses (CL) is affected by the positive power of the CLs. The experimental group comprised 26 subjects, (8 male, 18 female). IOP measurements were undertaken on the subjects' right eyes in random order using a Rebound Tonometer (ICare). The CLs had powers of +2.00D and +6.00D. Measurements were taken over each contact lens and also before and after the CLs had been worn. The IOP measure obtained with both CLs was significantly lower compared to the value without CLs (t test; p<0.001) but no significant difference was found between the two powers of CLs. Rebound tonometry over positive hydrogel CLs leads to a certain degree of IOP underestimation. This result did not change for the two positive lenses used in the experiment, despite their large difference in power and therefore in lens thickness. Optometrists should bear this in mind when measuring IOP with the rebound tonometer over plus power contact lenses. Copyright © 2016 The Authors. Published by Elsevier Espana.. All rights reserved.
ostglacial rebound from VLBI Geodesy: On Establishing Vertical Reference
NASA Technical Reports Server (NTRS)
Argus, Donald .
1996-01-01
I propose that a useful reference frame for vertical motions is that found by minimizing differences between vertical motions observed with VLBI [Ma and Ryan, 1995] and predictions from postglacial rebound predictions [Peltier, 1995].
Font Vivanco, David; Tukker, Arnold; Kemp, René
2016-10-18
Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes in demand, however, choices related to modeling the environmental burdens from such changes have received less attention. In this study, we analyze choices in the environmental assessment methods (life cycle assessment (LCA) and hybrid LCA) and environmental input-output databases (E3IOT, Exiobase and WIOD) used as a source of bias. The analysis is done for a case study on battery electric and hydrogen cars in Europe. The results describe moderate rebound effects for both technologies in the short term. Additionally, long-run scenarios are calculated by simulating the total cost of ownership, which describe notable rebound effect sizes-from 26 to 59% and from 18 to 28%, respectively, depending on the methodological choices-with favorable economic conditions. Relevant sources of bias are found to be related to incomplete background systems, technology assumptions and sectorial aggregation. These findings highlight the importance of the method setup and of sensitivity analyses of choices related to environmental modeling in rebound effect assessments.
Removal of glass adhered to sintered ceramics in hot isostatic pressing
NASA Technical Reports Server (NTRS)
1985-01-01
In the hot isostatic pressing of ceramic materials in molten glass using an inert gas as a pressing medium, glass adhered to the sintered ceramics is heated to convert it to a porous glass and removed. Thus, Si3N4 powder was compacted at 5000 kg/sq cm, coated with a 0.5 mm thick BN, embedded in Pyrex glass in a graphite crucible, put inside a hot isostatic press containing Argon, hot pressed at 1750 C and 100 kg/sq cm; cooled, taken out from the crucible, heated at 1100 C for 30 minutes, cooled, and then glass adhered to the sintered body was removed.
Bibliography on Hot Isostatic Pressing (HIP) Technology
1992-11-01
alloys are used mainly as compressor discs and fan blades . Today titanium alloys are more important as structural materials for modern warplanes and...2.5Fc, microstructure. fatigue life crack initiation, tensile properties 2. P/M Processing of Titanium Aluminides Moll, John H., Yolton, C. F...toughness, hardness, titanium additions niobium additions 2. Consolidation of Nickel Aluminide Powders Using Hot Isostatic Pressing Wright, R. N., Knibloe
Wang, Jianxiu; Huang, Tianrong; Sui, Dongchang
2013-01-01
Based on the Yishan Metro Station Project of Shanghai Metro Line number 9, a centrifugal model test was conducted to investigate the behavior of stratified settlement and rebound (SSR) of Shanghai soft clay caused by dewatering in deep subway station pit. The soil model was composed of three layers, and the dewatering process was simulated by self-invention of decompressing devise. The results indicate that SSR occurs when the decompression was carried out, and only negative rebound was found in sandy clay, but both positive and negative rebound occurred in the silty clay, and the absolute value of rebound in sandy clay was larger than in silty clay, and the mechanism of SSR was discussed with mechanical sandwich model, and it was found that the load and cohesive force of different soils was the main source of different responses when decompressed.
Wang, Jianxiu; Huang, Tianrong; Sui, Dongchang
2013-01-01
Based on the Yishan Metro Station Project of Shanghai Metro Line number 9, a centrifugal model test was conducted to investigate the behavior of stratified settlement and rebound (SSR) of Shanghai soft clay caused by dewatering in deep subway station pit. The soil model was composed of three layers, and the dewatering process was simulated by self-invention of decompressing devise. The results indicate that SSR occurs when the decompression was carried out, and only negative rebound was found in sandy clay, but both positive and negative rebound occurred in the silty clay, and the absolute value of rebound in sandy clay was larger than in silty clay, and the mechanism of SSR was discussed with mechanical sandwich model, and it was found that the load and cohesive force of different soils was the main source of different responses when decompressed. PMID:23878521
Shideler, Gerald L.
1994-01-01
Coastal wetland ecosystems along the Great Lakes shorelines are extremely valuable natural resources. They provide numerous environmental and recreational benefits, and they serve as critical habitats for fish and wildlife populations. In general terms, wetlands can be defined as lands transitional between terrestrial and aquatic systems; they are characterized by periodic submergence or a water table at or near the surface and a predominance of hydric soils and hydrophytes. Changes in shoreline positions over time result in concomitant changes in the amount of adjacent coastal wetlands, frequently resulting in a permanent loss of these valuable resources. In the Great Lakes region, the main natural cause of shoreline changes are lake-level fluctuations that result from two interactive factors. One factor is the glacio-isostatic rebound of the lake basins, which has been occurring since the end of the late Wisconsin glaciation to the present. This crustal rebounding has slowly uplifted previous lake outlets, warped and tilted lake basins, and changed lake levels and shoreline positions. On the basis of historic lake-level gauge records, measured modern differential vertical uplift rates range from 0.26 ft/century in the southern part of the Great Lakes drainage basin to 1.74 ft/century in the northern part of the basin (Larsen, 1989). The second factor contributing to lake-level fluctuations is climate variability, which controls the amount of regional precipitation and evaporation, storm frequency, runoff, and resulting lake levels. Climate variability can occur over a wide spectrum of time scales; it can range from seasonal variations, to long-term trends of a few years or decades in duration, to trends lasting hundred of thousands of years. Climatic variations, in conjunction with glacio-isostatic rebound, have resulted in substantial temporal variability of the Great Lakes shorelines and associated wetland tracts during post-glacial times.
Become Involved with Someone Who Is on the Rebound?: How Fast Should You Run?
ERIC Educational Resources Information Center
Knox, David; Zusman, Marty E.
2009-01-01
Analysis of survey data from 1002 undergraduates at a large southeastern university revealed differences between the 535 or 53.4% who had become involved (while on the rebound from a previous love relationship) in a new relationship compared to 316 or 31.5% who had not become involved in a new relationship while on the rebound. A profile of the…
Hot-isostatically pressed wasteforms for Magnox sludge immobilisation
NASA Astrophysics Data System (ADS)
Heath, Paul G.; Stewart, Martin W. A.; Moricca, Sam; Hyatt, Neil C.
2018-02-01
Thermal treatment technologies offer many potential benefits for the treatment of radioactive wastes including the passivation of reactive species and significant waste volume reductions. This paper presents a study investigating the production of wasteforms using Hot-isostatic pressing technology for the immobilisation of Magnox sludges from the UK's Sellafield Site. Simulants considered physically representative of these sludges were used to determine possible processing parameters and to determine the phase assemblages and morphologies produced during processing. The study showed hot-isostatic pressing is capable of processing Magnox sludges at up to 60 wt% (oxide basis) into dense, mixed ceramic wasteforms. The wasteforms produced are a glass-bonded ceramic of mixed magnesium titanates, encapsulating localised grains of periclase. The ability to co-process Magnox sludges with SIXEP sand/clinoptilolite slurries has also been demonstrated. The importance of these results is presented through a comparison of volume reduction data, which shows HIPing may provide a 20-fold volume reduction over the current cementitious baseline and double the volume reduction attainable for vitrification technologies.
The remarkable environmental rebound effect of electric cars: a microeconomic approach.
Font Vivanco, David; Freire-González, Jaume; Kemp, René; van der Voet, Ester
2014-10-21
This article presents a stepwise, refined, and practical analytical framework to model the microeconomic environmental rebound effect (ERE) stemming from cost differences of electric cars in terms of changes in multiple life cycle environmental indicators. The analytical framework is based on marginal consumption analysis and hybrid life cycle assessment (LCA). The article makes a novel contribution through a reinterpretation of the traditional rebound effect and methodological refinements. It also provides novel empirical results about the ERE for plug-in hybrid electric (PHE), full-battery electric (FBE), and hydrogen fuel cell (HFC) cars for Europe. The ERE is found to have a remarkable impact on product-level environmental scores. For the PHE car, the ERE causes a marginal increase in demand and environmental pressures due to a small decrease in the cost of using this technology. For FBE and HFC cars, the high capital costs cause a noteworthy decrease in environmental pressures for some indicators (negative rebound effect). The results corroborate the concern over the high influence of cost differences for environmental assessment, and they prompt sustainable consumption policies to consider markets and prices as tools rather than as an immutable background.
Evaluation of monkey intraocular pressure by rebound tonometer
Yu, Wenhan; Cao, Guiqun; Qiu, Jinghua; Ma, Jia; Li, Ni; Yu, Man; Yan, Naihong; Chen, Lei; Pang, Iok-Hou
2009-01-01
Purpose To evaluate the usefulness of the TonoVet™ rebound tonometer in measuring intraocular pressure (IOP) of monkeys. Methods The accuracy of the TonoVet™ rebound tonometer was determined in cannulated eyes of anesthetized rhesus monkeys where IOP was controlled by adjusting the height of a connected perfusate reservoir. To assess the applicability of the equipment through in vivo studies, the diurnal fluctuation of IOP and effects of IOP-lowering compounds were evaluated in monkeys. Results IOP readings generated by the TonoVet™ tonometer correlated very well with the actual pressure in the cannulated monkey eye. The linear correlation had a slope of 0.922±0.014 (mean±SEM, n=4), a y-intercept of 3.04±0.61, and a correlation coefficient of r2=0.97. Using this method, diurnal IOP fluctuation of the rhesus monkey was demonstrated. The tonometer was also able to detect IOP changes induced by pharmacologically active compounds. A single topical ocular instillation (15 μg) of the rho kinase inhibitor, H1152, produced a 5–6 mmHg reduction (p<0.001) in IOP, lasting at least 4 h. In addition, topical administration of Travatan®, a prostaglandin agonist, induced a small transient IOP increase (1.1 mmHg versus vehicle control; p=0.26) at 2 h after treatment followed by a pressure reduction at 23 h (−2.4 mmHg; p<0.05). Multiple daily dosing with the drug produced a persistent IOP-lowering effect. Three consecutive days of Travatan treatment produced ocular hypotension of −2.0 to −2.2 mmHg (p<0.05) the following day. Conclusions The rebound tonometer was easy to use and accurately measured IOP in the rhesus monkey eye. PMID:19898690
Geeraert, Nicolas; Yzerbyt, Vincent Y
2007-06-01
Although social observers have been found to rely heavily on dispositions in their causal analysis, it has been proposed that culture strongly affects this tendency. Recent research has shown that suppressing dispositional inferences during social judgment can lead to a dispositional rebound, that is relying more on dispositional information in subsequent judgments. In the present research, we investigated whether culture also affects this rebound tendency. First, Thai and Belgian participants took part in a typical attitude attribution paradigm. Next, dispositional rebound was assessed by having participants describe a series of pictures. The dispositional rebound occurred for both Belgian and Thai participants when confronted with a forced target, but disappeared for Thai participants when the situational constraints of the target were made salient. The findings are discussed in light of the current cultural models of attribution theory.
Numerical investigations on the rebound phenomena and the bonding mechanisms in cold spray processes
NASA Astrophysics Data System (ADS)
Viscusi, A.
2018-05-01
Cold spray technology is a relatively new additive process allowing to create high quality metallic coatings, on both metallic and non-metallic substrates, without extensive heating of the powders sprayed. Upon impact with a target surface, conversion of kinetic energy to plastic deformation occurs, the solid particles deform and bond together. The actual bonding mechanism for cold spray particles is still not well understood, a high number of works has been carried out during the past two decades, several theories have been proposed to explain the adhesion/rebound mechanisms making the system ineffective for industrial applications. Therefore, the aim of this research activity is to better explain the complex adhesion/rebound phenomena into cold spray impact processes through numerical simulations; for this purpose, on the base of simplified hypothesis and results found in literature, an original 3D Finite Element Method (FEM) model of an aluminium particle impacting on an aluminium substrate was proposed. A cohesive behaviour algorithm was implemented in the particle-substrate contact regions aiming to simulate the bonding between the impacting particle and the substrate under specific working conditions. A rebound coefficient was also defined representing the particle residual energy. Different simulations were performed using a range of impact velocities and varying the interfacial cohesive strength. It was shown that at low impact velocities the rebound phenomenon is governed by the elastic energy stored in the system, meanwhile at high impact velocities, the rebound phenomenon is mainly due to the strain rate effects making the system mechanically stronger; therefore, a specific range of bonding velocities depending on substrate-particle contact area were found.
NASA Astrophysics Data System (ADS)
Thomas, Brinda A.; Hausfather, Zeke; Azevedo, Inês L.
2014-07-01
Many US states rely on energy efficiency goals as a strategy to reduce CO2e emissions and air pollution, to minimize investments in new power plants, and to create jobs. For those energy efficiency interventions that are cost-effective, i.e., saving money and reducing energy, consumers may increase their use of energy services, or re-spend cost savings on other carbon- and energy-intensive goods and services. In this paper, we simulate the magnitude of these ‘rebound effects’ in each of the 50 states in terms of CO2e emissions, focusing on residential electric end-uses under plausible assumptions. We find that a 10% reduction in annual electricity use by a household results in an emissions’ reduction penalty ranging from 0.1 ton CO2e in California to 0.3 ton CO2e in Alabama (from potential emissions reductions of 0.3 ton CO2e and 1.6 ton CO2e, respectively, in the no rebound case). Rebound effects, percentage-wise, range from 6% in West Virginia (which has a high-carbon electricity and low electricity prices), to as high as 40% in California (which has low-carbon electricity and high electricity prices). The magnitude of rebound effects percentage-wise depends on the carbon intensity of the grid: in states with low emissions factors and higher electricity prices, such as California, the rebound effects are much larger percentage-wise than in states like Pennsylvania. Conversely, the states with larger per cent rebound effects are the ones where the implications in terms of absolute emissions changes are the smallest.
Design phase identification of high pile rebound soils : final report
DOT National Transportation Integrated Search
2010-12-15
An engineering problem has occurred when installing displacement piles in certain soils. During driving, piles are rebounding excessively during each hammer blow, causing delay and as a result may not achieve the required design capacities. Piles dri...
Isostatic gravity map of the Point Sur 30 x 60 quadrangle and adjacent areas, California
Watt, J.T.; Morin, R.L.; Langenheim, V.E.
2011-01-01
This isostatic residual gravity map is part of a regional effort to investigate the tectonics and water resources of the central Coast Range. This map serves as a basis for modeling the shape of basins and for determining the location and geometry of faults in the area. Local spatial variations in the Earth's gravity field (after removing variations caused by instrument drift, earth-tides, latitude, elevation, terrain, and deep crustal structure), as expressed by the isostatic anomaly, reflect the distribution of densities in the mid- to upper crust, which in turn can be related to rock type. Steep gradients in the isostatic gravity field often indicate lithologic or structural boundaries. Gravity highs reflect the Mesozoic granitic and Franciscan Complex basement rocks that comprise both the northwest-trending Santa Lucia and Gabilan Ranges, whereas gravity lows in Salinas Valley and the offshore basins reflect the thick accumulations of low-density alluvial and marine sediment. Gravity lows also occur where there are thick deposits of low-density Monterey Formation in the hills southeast of Arroyo Seco (>2 km, Marion, 1986). Within the map area, isostatic residual gravity values range from approximately -60 mGal offshore in the northern part of the Sur basin to approximately 22 mGal in the Santa Lucia Range.
Sound Rhythms Are Encoded by Postinhibitory Rebound Spiking in the Superior Paraolivary Nucleus
Felix, Richard A.; Fridberger, Anders; Leijon, Sara; Berrebi, Albert S.; Magnusson, Anna K.
2013-01-01
The superior paraolivary nucleus (SPON) is a prominent structure in the auditory brainstem. In contrast to the principal superior olivary nuclei with identified roles in processing binaural sound localization cues, the role of the SPON in hearing is not well understood. A combined in vitro and in vivo approach was used to investigate the cellular properties of SPON neurons in the mouse. Patch-clamp recordings in brain slices revealed that brief and well timed postinhibitory rebound spiking, generated by the interaction of two subthreshold-activated ion currents, is a hallmark of SPON neurons. The Ih current determines the timing of the rebound, whereas the T-type Ca2+ current boosts the rebound to spike threshold. This precisely timed rebound spiking provides a physiological explanation for the sensitivity of SPON neurons to sinusoidally amplitude-modulated (SAM) tones in vivo, where peaks in the sound envelope drive inhibitory inputs and SPON neurons fire action potentials during the waveform troughs. Consistent with this notion, SPON neurons display intrinsic tuning to frequency-modulated sinusoidal currents (1–15Hz) in vitro and discharge with strong synchrony to SAMs with modulation frequencies between 1 and 20 Hz in vivo. The results of this study suggest that the SPON is particularly well suited to encode rhythmic sound patterns. Such temporal periodicity information is likely important for detection of communication cues, such as the acoustic envelopes of animal vocalizations and speech signals. PMID:21880918
Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus.
Felix, Richard A; Fridberger, Anders; Leijon, Sara; Berrebi, Albert S; Magnusson, Anna K
2011-08-31
The superior paraolivary nucleus (SPON) is a prominent structure in the auditory brainstem. In contrast to the principal superior olivary nuclei with identified roles in processing binaural sound localization cues, the role of the SPON in hearing is not well understood. A combined in vitro and in vivo approach was used to investigate the cellular properties of SPON neurons in the mouse. Patch-clamp recordings in brain slices revealed that brief and well timed postinhibitory rebound spiking, generated by the interaction of two subthreshold-activated ion currents, is a hallmark of SPON neurons. The I(h) current determines the timing of the rebound, whereas the T-type Ca(2+) current boosts the rebound to spike threshold. This precisely timed rebound spiking provides a physiological explanation for the sensitivity of SPON neurons to sinusoidally amplitude-modulated (SAM) tones in vivo, where peaks in the sound envelope drive inhibitory inputs and SPON neurons fire action potentials during the waveform troughs. Consistent with this notion, SPON neurons display intrinsic tuning to frequency-modulated sinusoidal currents (1-15Hz) in vitro and discharge with strong synchrony to SAMs with modulation frequencies between 1 and 20 Hz in vivo. The results of this study suggest that the SPON is particularly well suited to encode rhythmic sound patterns. Such temporal periodicity information is likely important for detection of communication cues, such as the acoustic envelopes of animal vocalizations and speech signals.
Improving design phase evaluations for high pile rebound sites [summary].
DOT National Transportation Integrated Search
2016-05-01
In Florida, many structures are built on driven piles. Though it seems straightforward, pile : driving involves complex interactions between the pile, the hammer, the soil, and driving : procedures. Soils can even rebound, or push back, after each ha...
Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption
Bar, K.J.; Sneller, M.C.; Harrison, L.J.; Justement, J.S.; Overton, E.T.; Petrone, M.E.; Salantes, D.B.; Seamon, C.A.; Scheinfeld, B.; Kwan, R.W.; Learn, G.H.; Proschan, M.A.; Kreider, E.F.; Blazkova, J.; Bardsley, M.; Refsland, E.W.; Messer, M.; Clarridge, K.E.; Tustin, N.B.; Madden, P.J.; Oden, K.S.; O’Dell, S.J.; Jarocki, B.; Shiakolas, A.R.; Tressler, R.L.; Doria-Rose, N.A.; Bailer, R.T.; Ledgerwood, J.E.; Capparelli, E.V.; Lynch, R.M.; Graham, B.S.; Moir, S.; Koup, R.A.; Mascola, J.R.; Hoxie, J.A.; Fauci, A.S.; Tebas, P.; Chun, T.-W.
2017-01-01
BACKGROUND The discovery of potent and broadly neutralizing antibodies (bNAbs) against human immunodeficiency virus (HIV) has made passive immunization a potential strategy for the prevention and treatment of HIV infection. We sought to determine whether passive administration of VRC01, a bNAb targeting the HIV CD4-binding site, can safely prevent or delay plasma viral rebound after the discontinuation of antiretroviral therapy (ART). METHODS We conducted two open-label trials (AIDS Clinical Trials Group [ACTG] A5340 and National Institutes of Health [NIH] 15-I-0140) of the safety, side-effect profile, pharmacokinetic properties, and antiviral activity of VRC01 in persons with HIV infection who were undergoing interruption of ART. RESULTS A total of 24 participants were enrolled, and one serious alcohol-related adverse event occurred. Viral rebound occurred despite plasma VRC01 concentrations greater than 50 μg per milliliter. The median time to rebound was 4 weeks in the A5340 trial and 5.6 weeks in the NIH trial. Study participants were more likely than historical controls to have viral suppression at week 4 (38% vs. 13%, P = 0.04 by a two-sided Fisher’s exact test in the A5340 trial; and 80% vs. 13%, P<0.001 by a two-sided Fisher’s exact test in the NIH trial) but the difference was not significant at week 8. Analyses of virus populations before ART as well as before and after ART interruption showed that VRC01 exerted pressure on rebounding virus, resulting in restriction of recrudescent viruses and selection for preexisting and emerging antibody neutralization–resistant virus. CONCLUSIONS VRC01 slightly delayed plasma viral rebound in the trial participants, as compared with historical controls, but it did not maintain viral suppression by week 8. In the small number of participants enrolled in these trials, no safety concerns were identified with passive immunization with a single bNAb (VRC01). (Funded by the National Institute of Allergy and
High density crystalline boron prepared by hot isostatic pressing in refractory metal containers
Hoenig, C.L.
1993-08-31
Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.
High density crystalline boron prepared by hot isostatic pressing in refractory metal containers
Hoenig, Clarence L.
1993-01-01
Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.
Mertaniemi, Henrikki; Forchheimer, Robert; Ikkala, Olli; Ras, Robin H A
2012-11-08
When water droplets impact each other while traveling on a superhydrophobic surface, we demonstrate that they are able to rebound like billiard balls. We present elementary Boolean logic operations and a flip-flop memory based on these rebounding water droplet collisions. Furthermore, bouncing or coalescence can be easily controlled by process parameters. Thus by the controlled coalescence of reactive droplets, here using the quenching of fluorescent metal nanoclusters as a model reaction, we also demonstrate an elementary operation for programmable chemistry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Consolidation of Si3N4 without additives (by hot isostatic pressing)
NASA Technical Reports Server (NTRS)
Yeh, H. C.
1983-01-01
The potential of using hot isostatic pressing (HIP'ing) technique to produce dense silicon nitride materials without or with a reduced amount of additives (much less than 5 w/o) was investigated. Hot isostatic pressing technique can provide higher pressure and temperature than hot pressing can, thus has the potential of requiring less densification aids to consolidate Si3N4 materials. It was anticipated that if such dense materials could be fabricated, the high temperature strength of the material should be improved significantly. Observations on the phase transformation, densification behavior, and microstructures of the samples are also documented. Density, microhardness, four point bend strength (room temperature and 1370 C) were measured on selected densified materials.
A comparison of VLBI with the ICE-3G glacial rebound model
NASA Technical Reports Server (NTRS)
James, Thomas S.; Lambert, Anthony
1993-01-01
Crustal motion predicted by the ICE-3G glacial rebound model exhibits a pattern of tangential (horizontal) divergence away from the centers of uplift, which in North America and Europe are located around Hudson Bay and the Gulf of Bothnia. Tangential velocities reach peak magnitudes of 1-2 mm/yr, and must be included when predicting VLBI baseline length change rates due to postglacial rebound. Out of 18 observed VLBI baselines examined three are situated such that their predicted length rates are around their 2 sigma uncertainties or greater. It is encouraging that two of these baselines exhibit predicted length rates within 2 sigma of the observed rates.
2015-03-26
INVESTIGATION OF THE HIGH -CYCLE FATIGUE LIFE OF SELECTIVE LASER MELTED AND HOT ISOSTATICALLY PRESSED TI-6AL-4V THESIS Kevin D. Rekedal...ENY-MS-15-M-212 INVESTIGATION OF THE HIGH -CYCLE FATIGUE LIFE OF SELECTIVE LASER MELTED AND HOT ISOSTATICALLY PRESSED TI-6AL-4V THESIS...AFIT-ENY-MS-15-M-212 INVESTIGATION OF THE HIGH -CYCLE FATIGUE LIFE OF SELECTIVE LASER MELTED AND HOT ISOSTATICALLY PRESSED TI-6AL-4V
Percolating Contact Subnetworks on the Edge of Isostaticity
2011-01-01
pressure, and cyclic loading of photoelastic disks under constant vol- ume. D. M. Walker · A. Tordesillas (B) Department of Mathematics and Statistics ...Complex networks · Spanning trees · Force chains · Force cycles · Isostatic 1 Introduction Ioannis Vardoulakis and his collaborators brought soil ...57, 706–727 (2009) 2. Vardoulakis, I.: Shear-banding and liquefaction in granular mate- rials on the basis of a Cosserat continuum theory. Ingenieur
Hamlyn, Elizabeth; Ewings, Fiona M; Porter, Kholoud; Cooper, David A; Tambussi, Giuseppe; Schechter, Mauro; Pedersen, Court; Okulicz, Jason F; McClure, Myra; Babiker, Abdel; Weber, Jonathan; Fidler, Sarah
2012-01-01
The magnitude of HIV viral rebound following ART cessation has consequences for clinical outcome and onward transmission. We compared plasma viral load (pVL) rebound after stopping ART initiated in primary (PHI) and chronic HIV infection (CHI). Two populations with protocol-indicated ART cessation from SPARTAC (PHI, n = 182) and SMART (CHI, n = 1450) trials. Time for pVL to reach pre-ART levels after stopping ART was assessed in PHI using survival analysis. Differences in pVL between PHI and CHI populations 4 weeks after stopping ART were examined using linear and logistic regression. Differences in pVL slopes up to 48 weeks were examined using linear mixed models and viral burden was estimated through a time-averaged area-under-pVL curve. CHI participants were categorised by nadir CD4 at ART stop. Of 171 PHI participants, 71 (41.5%) rebounded to pre-ART pVL levels, at a median of 50 (95% CI 48-51) weeks after stopping ART. Four weeks after stopping treatment, although the proportion with pVL ≥ 400 copies/ml was similar (78% PHI versus 79% CHI), levels were 0.45 (95% CI 0.26-0.64) log(10) copies/ml lower for PHI versus CHI, and remained lower up to 48 weeks. Lower CD4 nadir in CHI was associated with higher pVL after ART stop. Rebound for CHI participants with CD4 nadir >500 cells/mm(3) was comparable to that experienced by PHI participants. Stopping ART initiated in PHI and CHI was associated with viral rebound to levels conferring increased transmission risk, although the level of rebound was significantly lower and sustained in PHI compared to CHI.
Gaze-evoked and rebound nystagmus in a case of migrainous vertigo.
Oh, Sun-Young; Seo, Man-Wook; Kim, Young-Hyun; Choi, Kwang-Dong; Kim, Dae-Seong; Shin, Byoung-Soo
2009-03-01
A patient with migrainous vertigo showed pronounced gaze-evoked and rebound nystagmus during an attack. These findings, which have not been previously documented, suggest that migrainous vertigo is based on central vestibular dysfunction.
Sayers, W Michael; Sayette, Michael A
2013-09-01
Research on emotion suppression has shown a rebound effect, in which expression of the targeted emotion increases following a suppression attempt. In prior investigations, participants have been explicitly instructed to suppress their responses, which has drawn the act of suppression into metaconsciousness. Yet emerging research emphasizes the importance of nonconscious approaches to emotion regulation. This study is the first in which a craving rebound effect was evaluated without simultaneously raising awareness about suppression. We aimed to link spontaneously occurring attempts to suppress cigarette craving to increased smoking motivation assessed immediately thereafter. Smokers (n = 66) received a robust cued smoking-craving manipulation while their facial responses were videotaped and coded using the Facial Action Coding System. Following smoking-cue exposure, participants completed a behavioral choice task previously found to index smoking motivation. Participants evincing suppression-related facial expressions during cue exposure subsequently valued smoking more than did those not displaying these expressions, which suggests that internally generated suppression can exert powerful rebound effects.
Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C–H activation
Huang, Xiongyi; Groves, John T.
2016-12-01
Since our initial report in 1976, the oxygen rebound mechanism has become the consensus mechanistic feature for an expanding variety of enzymatic C–H functionalization reactions and small molecule biomimetic catalysts. For both the biotransformations and models, an initial hydrogen atom abstraction from the substrate (R–H) by high-valent iron-oxo species (Fe n=O) generates a substrate radical and a reduced iron hydroxide, [Fe n-1–OH ·R]. This caged radical pair then evolves on a complicated energy landscape through a number of reaction pathways, such as oxygen rebound to form R–OH, rebound to a non-oxygen atom affording R–X, electron transfer of the incipient radicalmore » to yield a carbocation, R +, desaturation to form olefins, and radical cage escape. These various flavors of the rebound process, often in competition with each other, give rise to the wide range of C–H functionalization reactions performed by iron-containing oxygenases. In this review, we first recount the history of radical rebound mechanisms, their general features, and key intermediates involved. We will discuss in detail the factors that affect the behavior of the initial caged radical pair and the lifetimes of the incipient substrate radicals. Several representative examples of enzymatic C–H transformations are selected to illustrate how the behaviors of the radical pair [Fe n-1–OH ·R] determine the eventual reaction outcome. Finally, we discuss the powerful potential of “radical rebound” processes as a general paradigm for developing novel C–H functionalization reactions with synthetic, biomimetic catalysts. We envision that new chemistry will continue to arise by bridging enzymatic “radical rebound” with synthetic organic chemistry.« less
Antarctic Rebound and the Time-Dependence of the Earth's Shape
NASA Technical Reports Server (NTRS)
Ivins, Erik R.; James, Thomas S.
2000-01-01
Great strides have been made during the past 30 years in refining models of the last global glaciation. The refinements draw upon a vastly expanded relative sea level and sedimentary core record. Furthermore, we now possess a sharpened understanding of the mechanisms that drive climate changes associated with deglaciation. Some 15 years ago, using only 5.5 years of ranging data, analyses of the drift in LAGEOS I node acceleration was used to infer that postglacial rebound was responsible for a secular change in the Earth's ellipsoidal shape (Yoder et al., .1983]. Today there exists a wealth of geodynamics satellite orbit data that constrain the secular time-dependence of the Earth's shape and low order gravity field, which includes mass redistribution from present-day glacier and great ice sheet imbalance and from postglacial rebound. We have shown that an unambiguous determination of the secular variation in the Earth's pear shaped harmonic (l = 3, m = 0) might provide information that bears on the present-day mass balance of Antarctica. This issue is revisited in light of new constraints on glacial loading during the late-Pleistocene and Holocene. An especially critical issue for the interpretation of secular odd degree zonal harmonics, l = 3 to 7, is the timing and magnitude of the deglaciation of Antarctica from Last Glacial Maximum. We explore ways in which the recovery of secular variation in both zonal and non-zonal harmonics for l = 2 through 7 can improve constraints on both rebound and present-day ice sheet balance.
Postglacial Rebound from VLBI Geodesy: On Establishing Vertical Reference
NASA Technical Reports Server (NTRS)
Argus, Donald F.
1996-01-01
Difficulty in establishing a reference frame fixed to the earth's interior complicates the measurement of the vertical (radial) motions of the surface. I propose that a useful reference frame for vertical motions is that found by minimizing differences between vertical motions observed with VLBI [Ma and Ryan] and predictions from postglacial rebound predictions [Peltier]. The optimal translation of the geocenter is 1.7mm/year toward 36degN, 111degE when determined from the motions of 10 VLBI sites. This translation gives a better fit of observations to predictions than does the VLBI reference frame used by Ma and Ryan, but the improvement is statistically insignificant. The root mean square of differences decreases 20% to 0.73 mm/yr and the correlation coefficient increases from 0.76 to 0.87. Postglacial rebound is evident in the uplift of points in Sweden and Ontario that were beneath the ancient ice sheets of Fennoscandia and Canada, and in the subsidence of points in the northeastern U.S., Germany, and Alaska that were around the periphery of the ancient ice sheets.
NASA Astrophysics Data System (ADS)
Narancic, Biljana; Pienitz, Reinhard; Francus, Pierre; Rolland, Nicolas; Wagner, Anne-Marie
2013-04-01
radiometric dating of the isolation contacts helps refine regional glacio-isostatic rebound and the duration and extent of the postglacial Tyrrell Sea marine phase. Post-glacial marine regression and the associated changes in paleosalinity are also reflected in the sediment core sedimentology and geochemistry analysed using a Multi Sensor Core Logger and a microfluorescence scanner. Jacobs J. D., Headley A. N., Maus L. A., Mode W. N. et Simms E. L., 1997. Climate and vegetation of the interior lowlands of southern Baffin Island : long-term stability at the low artic limit. Arctic 50 (2) : 167-177. Oliver D. R., 1964. A limnological investigation of a large Arctic lake, Nettilling lake, Baffin island. Papers University of Calgary 17 : 69-83. Pienitz R., Douglas M. S. V. et Smol P. J., 2004 Paleolimnological research in polar regions : An introduction. In : Pienitz R., Douglas M. S. V., Smol P. J. (Eds) Long- term environmental change in Arctic and Antarctic lakes. Springer, Dordrecht, 562 p.
Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T
2017-07-01
Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact
Peterson, Christopher W.; Kiem, Hans-Peter
2017-01-01
ABSTRACT Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the “Berlin patient” remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we
High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers
Hoenig, Clarence L.
1994-01-01
Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2200.degree. C. and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made.
High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers
Hoenig, C.L.
1994-08-09
Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2,200 C and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made. 1 fig.
REBOUND: A Media-Based Life Skills and Risk Education Programme
ERIC Educational Resources Information Center
Kröninger-Jungaberle, Henrik; Nagy, Ede; von Heyden, Maximilian; DuBois, Fletcher
2015-01-01
Background: REBOUND is a novel media-based life skills and risk education programme developed for 14- to 25-year olds in school, university or youth group settings. This paper outlines the programme's rationale, curriculum and implementation. It provides information of relevance to researchers, programme developers and policymakers. Methods/design…
Isostatic gravity map of the Nevada Test Site and vicinity, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, D.A.; Harris, R.N.; Oliver, H.W.
1988-12-31
The isostatic gravity map of the Nevada Test Site (NTS) and vicinity is based on about 16,000 gravity stations. Principal facts of the gravity data were listed by Harris and others (1989) and their report included descriptions of base stations, high-precision and absolute gravity stations, and data accuracy. Observed gravity values were referenced to the International Gravity Standardization Net 1971 gravity datum described by Morelli (1974) and reduced using the Geodetic Reference System 1967 formula for the normal gravity on the ellipsoid (International Union of Geodesy and Geophysics, 1971). Free-air, Bouguer, curvature, and terrain corrections for a standard reduction densitymore » of 2.67 g/cm{sup 3} were made to compute complete Bouguer anomalies. Terrain corrections were made to a radial distance of 166.7 km from each station using a digital elevation model and a computer procedure by Plouff (1977) and, in general, include manually estimated inner-zone terrain corrections. Finally, isostatic corrections were made using a procedure by Simpson and others (1983) based on an Airy-Heiskanen model with local compensation (Heiskanen and Moritz, 1967) with an upper-crustal density of 2.67 g/cm{sup 3}, a crustal thickness of 25 km, and a density contrast between the lower-crust and upper-mantle of 0.4 g/cm{sup 3}. Isostatic corrections help remove the effects of long-wavelength anomalies related to topography and their compensating masses and, thus, enhance short- to moderate-wavelength anomalies caused by near surface geologic features. 6 refs.« less
Measurement and interpretation of crustal deformation rates associated with postglacial rebound
NASA Technical Reports Server (NTRS)
Davis, James L.
1993-01-01
This project involves obtaining Global Positioning System (GPS) measurements in Scandinavia, and using the measurements to estimate the viscosity profile of the Earth's mantle and to correct tide-gage measurements for the rebound effect. Several aspects of this project are reported.
Glacial isostatic stress shadowing by the Antarctic ice sheet
NASA Technical Reports Server (NTRS)
Ivins, E. R.; James, T. S.; Klemann, V.
2005-01-01
Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.
The Darfur Swell, Africa: Gravity constraints on its isostatic compensation
NASA Astrophysics Data System (ADS)
Crough, S. Thomas
The free-air gravity anomaly observed over the Darfur Swell is explainable by local isostatic balance with a root approximately 50 km deep on average. This root depth is similar to that inferred beneath other African domes and beneath oceanic midplate swells, suggesting that the Darfur Swell is a hotspot uplift created by lithospheric reheating.
Drought, water conservation, and water demand rebound in California
NASA Astrophysics Data System (ADS)
Gonzales, P.; Ajami, N.
2017-12-01
There is growing recognition that dynamic community values, preferences, and water use behaviors are important drivers of water demand in addition to external factors such as temperature and precipitation. Water demand drivers have been extensively studied, yet they have traditionally been applied to models that assume static conditions and usually do not account for potential societal changes in response to increased scarcity awareness. For example, following a period of sustained low demand such as during a drought, communities often increase water use during a hydrologically wet period, a phenomenon known as "rebounding" water use. Yet previous experiences show the extent of this rebound is not a straightforward function of policy and efficiency improvements, but may also reflect short-term or long-lasting change in community behavior, which are not easily captured by models that assume stationarity. In this study we explore cycles of decreased water demand during drought and subsequent water use rebound observed in California in recent decades. We have developed a novel dynamic system model for water demand in three diverse but interconnected service areas in the San Francisco Bay Area, exposing local trends of changing water use behaviors and long-term impacts on water demand since 1980 to the present. In this model, we apply the concept of social memory, defined as a community's inherited knowledge about hazardous events or degraded environmental conditions from past experiences. While this concept has been applied to further conceptual understanding of socio-hydrologic systems in response to hydrological extremes, to the best of our knowledge this the first study to incorporate social memory to model the water demand rebound phenomenon and to use such a model in the examination of changing dynamics validated by historical data. In addition, we take a closer look at water demand during the recent historic drought in California from 2012-16, and relate our
Hoenig, Clarence L.
1992-01-01
Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.
Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.; ...
2018-06-06
AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.
AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less
Development of monolithic nuclear fuels for RERTR by hot isostatic pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jue, J.-F.; Park, Blair; Chapple, Michael
2008-07-15
The RERTR Program (Reduced Enrichment for Research and Test Reactors) is developing advanced nuclear fuels for high power test reactors. Monolithic fuel design provides a higher uranium loading than that of the traditional dispersion fuel design. In order to bond monolithic fuel meat to aluminum cladding, several bonding methods such as roll bonding, friction stir bonding and hot isostatic pressing, have been explored. Hot isostatic pressing is a promising process for low cost, batch fabrication of monolithic RERTR fuel plates. The progress on the development of this process at the Idaho National Laboratory will be presented. Due to the relativelymore » high processing temperature used, the reaction between fuel meat and aluminum cladding to form brittle intermetallic phases may be a concern. The effect of processing temperature and time on the fuel/cladding reaction will be addressed. The influence of chemical composition on the reaction will also be discussed. (author)« less
Social and Structural Patterns of Drought-Related Water Conservation and Rebound
NASA Astrophysics Data System (ADS)
Gonzales, Patricia; Ajami, Newsha
2017-12-01
Water use practices and conservation are the result of complex sociotechnical interactions of political, economic, hydroclimatic, and social factors. While the drivers of water demand have been extensively studied, they have traditionally been applied to models that assume stationary relationships between these various factors, and usually do not account for potential societal changes in response to increased scarcity awareness. For example, following a period of sustained low demand such as during a drought, communities often increase water use during a hydrologically wet period, a phenomenon known as "rebounding" water use. Previous experiences show the extent of this rebound is not a straightforward function of policy and efficiency improvements, but may also reflect short-term or long-lasting change in community behavior, which are not easily captured by models that assume stationarity. In this work, we develop a system dynamics model to represent water demand as a function of both structural and social factors. We apply this model to the analysis of three diverse water utilities in the San Francisco Bay Area between 1980 and 2017, identifying drought response trends and drivers over time. Our model is consistent with empirical patterns and historical context of water use in California, and provides important insights on the rebound phenomenon that can be extended to other locations. This comparative assessment indicates that policies, public outreach, and better data availability have played a key role in raising public awareness of water scarcity, especially with the raise of the internet era in recent years.
Mass Transfer via Low-Velocity Rebound in a Microgravity Environment
NASA Astrophysics Data System (ADS)
Jarmak, S. G.; Colwell, J. E.; Brisset, J.; Dove, A.; Brown, A. Q.
2017-12-01
Observations of low-velocity collisions (< 1 m/s) between μm to cm-size particles in a microgravity environment are crucial to an understanding of the surface properties of small, airless bodies as well as the processes that lead to their formation. The COLLIDE (Collisions Into Dust Experiment) and PRIME (Physics of Regolith Impacts in Microgravity Experiment) programs created impacts into simulated planetary regolith with cm-scale impactors to observe ejecta production and coefficients of restitution in microgravity. These experiments were carried out on orbit (COLLIDE, COLLIDE-2), in suborbital space (COLLIDE-3), and on parabolic airplane flights (PRIME) under vacuum. Some impacts at speeds less than 40 cm/s resulted in mass transfer from the target regolith onto the impactor. To study these mass-transfer collisions in more detail without the cost or time requirements of spaceflight or parabolic flights, we developed an experimental apparatus in a laboratory drop tower (free-fall time 0.75 s) and performed experiments at standard pressure. The impactor is suspended from a spring and remains in contact with the bed of regolith until free-fall allows the spring to retract and pull the impactor upwards. This method allowed us to simulate the rebound portion of a low-velocity collision in a laboratory microgravity environment. We achieved rebound velocities of 10 - 60 cm/s, and we observed mass transfer events with rebound speeds below 40 cm/s. The amount of mass transfer produced was more significant than a monolayer of granular material, but less than the amount observed in the COLLIDE and PRIME experiments. These mass-transfer collisions may play a role in the growth of planetesimals. We will present the results of our laboratory-based studies where we vary impact velocity and target material, and discuss implications for collisional evolution in the protoplanetary disk and planetary rings.
Correction to “Changes in the Earth's rotation by tectonic movements”
NASA Astrophysics Data System (ADS)
Vermeersen, L. L. A.; Vlaar, N. J.
1993-06-01
Present-day true polar wander and the secular non-tidal acceleration of the earth are usually attributed to post-glacial rebound. In the models which relate this rebound to changes in rotation, the mantle is assumed to relax passively to the melted ice-loads. The lithosphere is usually modeled as a highly viscous upper layer in these models, having viscosities which exceed mantle viscosities by several orders of magnitude. We propose that lithospheric processes unrelated to post-glacial rebound and taking place under non-isostatic conditions are also able to induce non-negligible influences on the earth's rotation. Examples of such processes are mountain building and erosion, foundering flexure of oceanic basins and lithospheric snapbacking resulting from detachment of subducting slabs. Lithospheric and crustal rheologies and intraplate-stresses are the dominant factors in these mechanisms, contrary to the mantle rheologies which are assumed to dominate the process of post-glacial rebound.
Small, Will; Milloy, M J; McNeil, Ryan; Maher, Lisa; Kerr, Thomas
2016-01-01
People who inject drugs (PWID) living with HIV often experience sub-optimal antiretroviral therapy (ART) treatment outcomes, including HIV plasma viral load (PVL) rebound. While previous studies have identified risk factors for PVL rebound among PWID, no study has examined the perspectives of PWID who have experienced PVL rebound episodes. We conducted an ethno-epidemiological study to investigate the circumstances surrounding the emergence of rebound episodes among PWID in Vancouver, BC, Canada. Comprehensive clinical records linked to a community-based prospective observational cohort of HIV-positive drug users were used to identify PWID who had recently experienced viral rebound. In-depth qualitative interviews with 16 male and 11 female participants explored participant perspectives regarding the emergence of viral rebound. A timeline depicting each participant's HIV viral load and adherence to ART was used to elicit discussion of circumstances surrounding viral rebound. Viral rebound episodes were shaped by interplay between various individual, social, and environmental factors that disrupted routines facilitating adherence. Structural-environmental influences resulting in non-adherence included housing transitions, changes in drug use patterns and intense drug scene involvement, and inadequate care for co-morbid health conditions. Social-environmental influences on ART adherence included poor interactions between care providers and patients producing non-adherence, and understandings of HIV treatment that fostered intentional treatment discontinuation. This study describes key pathways which led to rebound episodes among PWID receiving ART and illustrates how environmental forces may increase vulnerability for non-adherence leading to treatment failure. Our findings have potential to help inform interventions and supports that address social-structural forces that foster non-adherence among PWID.
Poroelastic rebound along the Landers 1992 earthquake surface rupture
Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.
1998-01-01
Maps of surface displacement following the 1992 Landers, California, earthquake, generated by interferometric processing of ERS-1 synthetic aperture radar (SAR) images, reveal effects of various postseismic deformation processes along the 1992 surface rupture. The large-scale pattern of the postseismic displacement field includes large lobes, mostly visible on the west side of the fault, comparable in shape with the lobes observed in the coseismic displacement field. This pattern and the steep displacement gradient observed near the Emerson-Camp Rock fault cannot be simply explained by afterslip on deep sections of the 1992 rupture. Models show that horizontal slip occurring on a buried dislocation in a Poisson's material produces a characteristic quadripole pattern in the surface displacement field with several centimeters of vertical motion at distances of 10-20 km from the fault, yet this pattern is not observed in the postseismic interferograms. As previously proposed to explain local strain in the fault step overs [Peltzer et al., 1996b], we argue that poroelastic rebound caused by pore fluid flow may also occur over greater distances from the fault, compensating the vertical ground shift produced by fault afterslip. Such a rebound is explained by the gradual change of the crustal rocks' Poisson's ratio value from undrained (coseismic) to drained (postseismic) conditions as pore pressure gradients produced by the earthquake dissipate. Using the Poisson's ratio values of 0.27 and 0.31 for the drained and undrained crustal rocks, respectively, elastic dislocation models show that the combined contributions of afterslip on deep sections of the fault and poroelastic rebound can account for the range change observed in the SAR data and the horizontal displacement measured at Global Positioning System (GPS) sites along a 60-km-long transect across the Emerson fault [Savage and Svarc, 1997]. Using a detailed surface slip distribution on the Homestead Valley, Kickapoo
Glass Coats For Hot Isostatic Pressing
NASA Technical Reports Server (NTRS)
Ecer, Gunes M.
1989-01-01
Surface voids sealed from pressurizing gas. Coating technique enables healing of surface defects by hot isostatic pressing (HIP). Internal pores readily closed by HIP, but surface voids like cracks and pores in contact with pressurizing gas not healed. Applied to casting or weldment as thick slurry of two glass powders: one melts at temperature slightly lower than used for HIP, and another melts at higher temperature. For example, powder is glass of 75 percent SiO2 and 25 percent Na2O, while other powder SiO2. Liquid component of slurry fugitive organic binder; for example, mixture of cellulose acetate and acetone. Easy to apply, separates voids from surrounding gas, would not react with metal part under treatment, and easy to remove after pressing.
Mikulincer, Mario; Dolev, Tamar; Shaver, Phillip R
2004-12-01
The authors conducted 2 studies of attachment-related variations in thought suppression. Participants were asked, or not asked, to suppress thoughts about a relationship breakup and then to perform a Stroop task under high or low cognitive load. The dependent variables were the rebound, of previously suppressed separation-related thoughts (Study 1) and the accessibility of self-traits (Study 2). Under low cognitive load, avoidant individuals did not show any rebound of separation-related thoughts and activated positive self-representations. Under high cognitive load, avoidant participants failed to suppress thoughts of separation and were more likely to activate negative self-representations. Attachment anxiety was associated with high activation of negative self-representations and unremitting separation-related thoughts. The results are discussed in terms of the hidden vulnerabilities of avoidant individuals. ((c) 2004 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Kuchar, J.; Milne, G. A.; Wolstencroft, M.; Love, R.; Tarasov, L.; Hijma, M.
2017-12-01
Sea level rise presents a hazard for coastal populations and the Mississippi Delta (MD) is a region particularly at risk due to the high rates of land subsidence. We apply a gravitationally self-consistent model of glacial and sediment isostatic adjustment (SIA) along with a realistic sediment load reconstruction in this region for the first time to determine isostatic contributions to relative sea level (RSL) and land motion. We determine optimal model parameters (Earth rheology and ice history) using a new high quality compaction-free sea level indicator database and a parameter space of four ice histories and 400 Earth rheologies. Using the optimal model parameters, we show that SIA is capable of lowering predicted RSL in the MD area by several metres over the Holocene and so should be taken into account when modelling these data. We compare modelled contemporary rates of vertical land motion with those inferred using GPS. This comparison indicates that isostatic processes can explain the majority of the observed vertical land motion north of latitude 30.7oN, where subsidence rates average about 1 mm/yr; however, vertical rates south of this latitude shows large data-model discrepancies of greater than 3 mm/yr, indicating the importance of non-isostatic processes controlling the observed subsidence. This discrepancy extends to contemporary RSL change, where we find that the SIA contribution in the Delta is on the order of 10-1 mm per year. We provide estimates of the isostatic contributions to 20th and 21st century sea level rates at Gulf Coast PSMSL tide gauge locations as well as vertical and horizontal land motion at GPS station locations near the Mississippi Delta.
Rebound coagulopathy in patients with snakebite presenting with marked initial coagulopathy.
Witham, Willam R; McNeill, Cathy; Patel, Sunny
2015-06-01
An estimated 70% of patients with pit viper snakebites require antivenom to treat serious complications such as coagulopathy. Evidence-based guidance is limited for the appropriate administration of Crotalinae Polyvalent Immune Fab (FabAV) and the duration of laboratory follow-up. The objective of our study was to assess the incidence of marked and recurrent envenomation coagulopathy at our trauma center and identify practice patterns that may prevent serious complications. A retrospective case review was conducted over a 3-year period on patients treated for symptomatic snakebite injury. Case records were reviewed for the inclusion criteria of international normalized ratio (INR) greater than 2.0. The exclusion criterion was limited to patients receiving anticoagulant therapy. In all, 61 patients were identified on retrospective chart review and 3 patients (4.9%) met inclusion criteria. Two of the 3 patients had marked rebound coagulopathy requiring readmission and additional treatment. In our small series, 2 patients presenting after crotaline envenomation with increased INR (>6.0), decreased fibrinogen (<60 mg/dL), and decreased platelet count (<100,000/mL) had recurrent coagulopathy and were asymptomatic, and recurrence was noted only with follow-up laboratory testing. All patients responded positively within a matter of hours to repeat FabAV administration, with resolution of rebound coagulopathy. We recommend periodic monitoring of patients with increased INR, decreased fibrinogen, and decreased platelet count. Patients should be monitored for 10 to 14 days after envenomation to identify asymptomatic rebound coagulopathy. Prompt readministration of FabAV appears to correct the coagulopathy. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
[Preparing of Al2O3/ZrO2 composite dental ceramics through isostatic pressing technology].
Liang, Xiao-Feng; Yin, Guang-Fu; Yang, Shi-Yuan; Wang, Jun-Xia
2006-08-01
To find out how to prepare high-density dental ceramics through isostatic pressing so that sintering shrinkage will be reduced. To prepare Al2O3/ZrO2 composite powder first, then to mold through dry-pressing, and to shape the green-body through isostatic pressing. The green-bodies were sintered at the temperature of 1 400 degrees C and kept at the temperature for different period of time (2 h, 3 h, 4 h). After that, the density and fracture strength were measured and the microstructure observed by scanning electron microscope (SEM). The sample product's density, line-shrinkage, and fracture strength of ceramics was rising with the sintering time lengthened. The sample product kept under the temperature of 1 400 degrees C for 4 hours, the fracture strength was (497.27 +/- 78.45) MPa and glass phase distributed evenly in the ceramics and the grains were integrated owing to the glass phase. The longer the sintering time, the more even the microstructure was. The sintering quality and the efficiency were improved through isostatic pressing.
Emerging and Submerging Shorelines: Impacts of Physical Change on Bioband Length
NASA Astrophysics Data System (ADS)
Kruger, L. E.; Johnson, A. C.; Gregovich, D.; Buma, B.; Noel, J.
2017-12-01
We approximated shifts in coastal benthic species for shoreline length units undergoing both sea level rise and relative sea level lowering (often post-glacial, termed isostatic rebound) where subsistence-based, southeast Alaska Natives reside. From six community centers, we examined 30 km radii shoreline reaches by merging relevant portions of the NOAA ShoreZone database with near shore bathymetry and measures of mean global sea level rise with local global positioning system information (GIS) of tectonic shift and isostatic rebound. For our analysis, we estimated change for 9,868 assessed shoreline length units having uniform substrate and biologic type over a 100-yr time span (2008-2108) using geometric analysis of shoreline attributes. For each shoreline length unit we assessed relationships among substrate, slope, exposure, and presence of five benthic species including eel grass (Zostera marina), blue mussel (Mytilus edulis), butter clams (Saxidomus gigantean), bull kelp (Nereocytis leutkeana), and foliose red algae including ribbon kelp (Palmaria sp.). Our research indicates that both emergence, up to 1.8 m, and submergence, up 0.2 m, of the land will result in disportionately larger shoreline length segment alterations for habitats in protected low-slope gradient bays and estuaries (dominated by eelgrass and butter clam habitats) with less change for rocky steep-gradient exposed penninsulas (red algae and canopy kelp). This trend, holding true regardless of isostatic rebound, tectonic shift or sea level rise rate, highlights the importance of initial geomorphology-based assessments serving to improve bio-physical, chemical, and socially-related coastal research. Where shorelines are emerging 30% decreases in estuary lengths are predicted, but where shorelines are submerging up to 3% increases in estuaries are expected. Our research results are consistent with anthropology studies assessing past coastal change. Coastal change, influencing subsistance foods
NASA Astrophysics Data System (ADS)
Meldgaard, Asger; Nielsen, Lars; Iaffaldano, Giampiero
2017-04-01
Relative sea level data, primarily obtained through isolation basin analysis in western Greenland and on Disko Island, indicates asynchronous rates of uplift during the Early Holocene with larger rates of uplift in southern Disko Bay compared to the northern part of the bay. Similar short-wavelength variations can be inferred from the Holocene marine limit as observations on the north and south side of Disko Island differ by as much as 60 m. While global isostatic adjustment models are needed to account for far field contributions to the relative sea level and for the calculation of accurate ocean functions, they are generally not suited for a detailed analysis of the short-wavelength uplift patterns observed close to present ice margins. This is in part due to the excessive computational cost required for sufficient resolution, and because these models generally ignore regional lateral heterogeneities in mantle and lithosphere rheology. To mitigate this problem, we perform sensitivity tests to investigate the effects of near field loading on a regional plane-Earth finite element model of the lithosphere and mantle of the Disko Bay area, where the global isostatic uplift chronology is well documented. By loading the model area through detailed regional ocean function and ice models, and by including a high resolution topography model of the area, we seek to assess the isostatic rebound generated by surface processes with wavelengths similar to those of the observed rebound signal. We also investigate possible effects of varying lithosphere and mantle rheology, which may play an important role in explaining the rebound signal. We use the abundance of relative sea level curves obtained in the region primarily through isolation basin analysis on Disko Island to constrain the parameters of the Earth model.
Concrete density estimation by rebound hammer method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Mohamad Pauzi bin, E-mail: pauzi@nm.gov.my; Masenwat, Noor Azreen bin; Sani, Suhairy bin
Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containingmore » crushed granite.« less
Isostatic GOCE Moho model for Iran
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Ebadi, Sahar; Tenzer, Robert
2017-05-01
One of the major issues associated with a regional Moho recovery from the gravity or gravity-gradient data is the optimal choice of the mean compensation depth (i.e., the mean Moho depth) for a certain area of study, typically for orogens characterised by large Moho depth variations. In case of selecting a small value of the mean compensation depth, the pattern of deep Moho structure might not be reproduced realistically. Moreover, the definition of the mean compensation depth in existing isostatic models affects only low-degrees of the Moho spectrum. To overcome this problem, in this study we reformulate the Sjöberg and Jeffrey's methods of solving the Vening-Meinesz isostatic problem so that the mean compensation depth contributes to the whole Moho spectrum. Both solutions are then defined for the vertical gravity gradient, allowing estimating the Moho depth from the GOCE satellite gravity-gradiometry data. Moreover, gravimetric solutions provide realistic results only when a priori information on the crust and upper mantle structure is known (usually from seismic surveys) with a relatively good accuracy. To investigate this aspect, we formulate our gravimetric solutions for a variable Moho density contrast to account for variable density of the uppermost mantle below the Moho interface, while taking into consideration also density variations within the sediments and consolidated crust down to the Moho interface. The developed theoretical models are applied to estimate the Moho depth from GOCE data at the regional study area of the Iranian tectonic block, including also parts of surrounding tectonic features. Our results indicate that the regional Moho depth differences between Sjöberg and Jeffrey's solutions, reaching up to about 3 km, are caused by a smoothing effect of Sjöberg's method. The validation of our results further shows a relatively good agreement with regional seismic studies over most of the continental crust, but large discrepancies are
NASA Astrophysics Data System (ADS)
Kaban, M. K.; El Khrepy, S.; Al-Arifi, N. S.
2016-12-01
The isostatic anomalies are often considered as one of the most useful correction of the gravity field for investigation of the upper crust structure in many practical applications. By applying this correction, a substantial part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomaly, can be removed. With this approach, it is not even necessary to know the deep density structure of the crust and upper mantle in details; it is sufficient to prescribe some type of compensation (regional vs. local) and a compensation depth. However, even when all the parameters are chosen correctly, this reduction of the gravity field does not show the full gravity effect of unknown anomalies in the crust. The last ones should be also compensated to some extent; therefore their impact is substantially reduced by the isostatic compensation. Long ago (Cordell et al., 1991), it was suggested a so-called decompensative correction of the isostatic anomalies, which provides a possibility to separate these effects. However, the decompensative correction is very sensitive to the parameters of the compensation scheme. In the present study we analyse the ways to choose these parameters and extend this approach by assuming a possibility for the regional compensation via elastic deformations of the lithosphere. Based on this technique, we estimate the isostatic and decompensative anomalies for the Arabian plate and surrounding regions. The parameters of the isostatic model are chosen based on previous studies. It was demonstrated that the decompensative correction is very significant at the mid-range wavelengths and may exceed 100 mGal, therefore ignoring this effect would lead to wrong conclusions about the upper crust structure. The total amplitude of the decompensative anomalies reaches ±250 mGal, evidencing for both, large density anomalies of the upper crust (including sediments) and strong isostatic disturbances of the lithosphere. These results improve
Analysis of a spaceborne mirror on a main plate with isostatic mounts
NASA Astrophysics Data System (ADS)
Chan, Chia-Yen; Lien, Chun-Chieh; Huang, Po-Hsuan; Chang, Shenq-Tsong; Huang, Ting-Ming
2014-09-01
The paper is aimed at obtaining the deformation results and optical aberration configurations of a spaceborne mirror made of ZERODUR® glass on a main plate with three isostatic mounts for a space Cassegrain telescope. On the rear side of the main plate four screws will be locked to fix the focal plane assembly. The locking modes for the four screws will be simulated as push and pull motions in the Z axis for simplification. The finite element analysis and Zernike polynomial fitting are applied to the whole integrated optomechanical analysis process. Under the analysis, three isostatic mounts are bonded to the neutral plane of the mirror. The deformation results and optical aberration configurations under six types of push and pull motions as well as self-weight loading have been obtained. In addition, the comparison between the results under push and pull motions with 0.01 mm and 0.1 mm displacements in Z axis will be attained.
NASA Astrophysics Data System (ADS)
Klemann, V.; Rau, D.; Martinec, Z.; Wolf, D.
2009-05-01
The strong structural dichotomy between East and West Antarctica is related to the West Antarctic Rift. The rheological implications are a reduction of the elastic-lithosphere thickness by a factor of more than 2 from East to West Antarctica as well as a strongly reduced mantle viscosity below West Antarctica and the Antarctic Peninsula. For modelling glacial-isostatic adjustment, we use a global viscoelastic earth model and apply the spectral finite-element method for the solution of the field equations. Ice models ICE-5G and IJ05 are used for parameterizing the last Pleistocene deglaciation. Lateral viscosity variations in the upper mantle are derived from variations in seismic velocity by applying scaling laws. Considering also lateral variations in the lithosphere structure, we study the implications of lateral variability on the glacial-isostatic adjustment of Antarctica.
NASA Technical Reports Server (NTRS)
Zuber, Maria T.; Bechtel, Timothy D.; Forsyth, Donald W.
1989-01-01
The isostatic compensation of Australia is investigated using an isostatic model for the Australian lithosphere that assumes regional compensation of an elastic plate which undergoes flexure in response to surface and subsurface loading. Using the coherence between Bouguer gravity and topography and two separate gravity/topography data sets, it was found that, for the continent as a whole, loads with wavelengths above 1500 km are locally compensated. Loads with wavelengths in the range 600-1500 km are partially supported by regional stresses, and loads with wavelengths less than 600 km are almost entirely supported by the strength of the lithosphere. It was found that the predicted coherence for a flexural model of a continuous elastic plate does not provide a good fit to the observed coherence of central Australia. The disagreement between model and observations is explained.
Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.
Wetmore, Daniel Z; Mukamel, Eran A; Schnitzer, Mark J
2008-10-01
A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals<100 ms may induce Purkinje cell plasticity, cerebellar nuclei neurons drive conditioned responses only if the CS-US training interval was >100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.
NASA Astrophysics Data System (ADS)
Gómez-Romeu, J.; Kusznir, N.; Manatschal, G.; Roberts, A.
2017-12-01
During the formation of magma-poor rifted margins, upper lithosphere thinning and stretching is achieved by extensional faulting, however, there is still debate and uncertainty how faults evolve during rifting leading to breakup. Seismic data provides an image of the present-day structural and stratigraphic configuration and thus initial fault geometry is unknown. To understand the geometric evolution of extensional faults at rifted margins it is extremely important to also consider the flexural response of the lithosphere produced by fault displacement resulting in footwall uplift and hangingwall subsidence. We investigate how the flexural isostatic response to extensional faulting controls the structural development of rifted margins. To achieve our aim, we use a kinematic forward model (RIFTER) which incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. Inputs for RIFTER are derived from seismic reflection interpretation and outputs of RIFTER are the prediction of the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. Using RIFTER we model the simultaneous tectonic development of the Iberia-Newfoundland conjugate rifted margins along the ISE01-SCREECH1 and TGS/LG12-SCREECH2 seismic lines. We quantitatively test and calibrate the model against observed target data restored to breakup time. Two quantitative methods are used to obtain this target data: (i) gravity anomaly inversion which predicts Moho depth and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling to give water and Moho depths at breakup time. We show that extensional faulting occurs on steep ( 60°) normal faults in both proximal and distal parts of rifted margins. Extensional faults together with their flexural isostatic response produce not only sub-horizontal exhumed footwall surfaces (i.e. the rolling hinge model) and highly rotated (60
Measurement and Interpretation of Crustal Deformation Rates Associated with Postglacial Rebound
NASA Technical Reports Server (NTRS)
Davis, James L.
1998-01-01
This project involves obtaining GPS measurements in Scandinavia, and using the measurements to estimate the viscosity profile of the Earth's mantle and to correct tide-gauge measurements for the rebound effect. Many aspects of this project have been reported in the literature (see Section III). In Section II, we report on the primary geodetic results from this project.
Shay, Christopher F.; Ferrante, Michele; Chapman, G. William; Hasselmo, Michael E.
2015-01-01
Rebound spiking properties of medial entorhinal cortex (mEC) stellate cells induced by inhibition may underlie their functional properties in awake behaving rats, including the temporal phase separation of distinct grid cells and differences in grid cell firing properties. We investigated rebound spiking properties using whole cell patch recording in entorhinal slices, holding cells near spiking threshold and delivering sinusoidal inputs, superimposed with realistic inhibitory synaptic inputs to test the capacity of cells to selectively respond to specific phases of inhibitory input. Stellate cells showed a specific phase range of hyperpolarizing inputs that elicited spiking, but non-stellate cells did not show phase specificity. In both cell types, the phase range of spiking output occurred between the peak and subsequent descending zero crossing of the sinusoid. The phases of inhibitory inputs that induced spikes shifted earlier as the baseline sinusoid frequency increased, while spiking output shifted to later phases. Increases in magnitude of the inhibitory inputs shifted the spiking output to earlier phases. Pharmacological blockade of h-current abolished the phase selectivity of hyperpolarizing inputs eliciting spikes. A network computational model using cells possessing similar rebound properties as found in vitro produces spatially periodic firing properties resembling grid cell firing when a simulated animal moves along a linear track. These results suggest that the ability of mEC stellate cells to fire rebound spikes in response to a specific range of phases of inhibition could support complex attractor dynamics that provide completion and separation to maintain spiking activity of specific grid cell populations. PMID:26385258
Dynamics and structure of the Alpine Fold Belt
NASA Technical Reports Server (NTRS)
Kahle, H. G.
1985-01-01
The structure and present-day dynamics of the Alps interms of geodesy and gravimetry are discusssed. A strong correlation of precise leveling and isostatic gravity along the central Alpine chain, especially in Canton Graubunden, East Switzerland are shown. It is assumed that the uplift is partly controlled by isostatic rebound effects. Field observations indicate that these phenomena are still active in the Alps. The study of the uplift processes by applying a number of geodetic and gravimetric measuring techniques, such as the determination of nonperiodic secular variations of gravity, of the deflections of the vertical and tilt changes monitored by hydrostatic leveling is proposed.
Gebreselassie, H M; Kraus, D; Fux, C A; Haubitz, S; Scherrer, A; Hatz, C; Veit, O; Stoeckle, M; Fehr, J; de Lucia, S; Cavassini, M; Bernasconi, E; Schmid, P; Furrer, H; Staehelin, C
2017-09-01
The number of HIV-infected individuals from developed countries travelling to tropical and subtropical areas has increased as a result of the clinical and survival benefits of combination antiretroviral therapy. The aim of our study was to describe the traveler population in the SHCS and to determine the frequency of viral rebound in virologically suppressed individuals after a travel episode to the tropics compared to non-travelers. Swiss HIV Cohort Study participants with at least one follow-up visit between 1 January 1989 and 28 February 2015 were eligible for inclusion in the study. The primary outcome was the occurrence of viral rebound (viral load > 200 HIV-1 RNA copies/mL) after a travel episode compared with a nontravel episode in previously suppressed individuals (≤ 200 copies/mL). All virologically suppressed patients contributed multiple travel or nontravel episodes to the analysis. Logistic regression was performed including factors associated with viral rebound. We included 16 635 patients in the study, of whom 6084 (36.5%) had ever travelled to the tropics. Travel frequency increased over time, with travellers showing better HIV parameters than nontravellers [less advanced Centers for Disease Control and Prevention (CDC) stage and higher CD4 count nadir]. Viral rebound was seen in 477 (3.9%) of 12 265 travel episodes and in 5121 (4.5%) of 114 884 nontravel episodes [unadjusted odds ratio (OR) 0.87; 95% confidence interval (CI) 0.78-0.97]. Among these 477 post-travel viral rebounds, 115 had a resistance test performed and 51 (44%) of these showed new resistance mutations. Compared with European and North American patients, the odds for viral rebound were significantly lower in Southeast Asian (OR 0.67; 95% CI 0.51-0.88) and higher in sub-Saharan African (SSA) patients (OR 1.41; 95% CI 1.22-1.62). Travel further increased the odds of viral rebound in SSA patients (OR 2.00; 95% CI 1.53-2.61). Region of origin is the main risk factor for viral rebound
Comparisons of global topographic/isostatic models to the Earth's observed gravity field
NASA Technical Reports Server (NTRS)
Rummel, Reiner; Rapp, Richard H.; Suenkel, Hans; Tscherning, C. Christian
1988-01-01
The Earth's gravitational potential, as described by a spherical harmonic expansion to degree 180, was compared to the potential implied by the topography and its isostatic compensation using five different hypothesis. Initially, series expressions for the Airy/Heiskanen topographic isostatic model were developed to the third order in terms of (h/R), where h is equivalent rock topography and R is a mean Earth radius. Using actual topographic developments for the Earth, it was found that the second and third terms of the expansion contributed 30 and 3 percents, of the first of the expansion. With these new equations it is possible to compute depths (D) of compensation, by degree, using 3 different criteria. The results show that the average depth implied by criterion I is 60 km while it is about 33 km for criteria 2 and 3 with smaller compensation depths at the higher degrees. Another model examined was related to the Vening-Meinesz regional hypothesis implemented in the spectral domain. Finally, oceanic and continental response functions were derived for the global data sets and comparisons made to locally determined values.
Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere
NASA Technical Reports Server (NTRS)
Hager, B. H.
1981-01-01
Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon.
An isostatic model for the Tharsis province, Mars
NASA Technical Reports Server (NTRS)
Sleep, N. H.; Phillips, R. J.
1979-01-01
A crust-upper mantle configuration is proposed for the Tharsis province of Mars which is isostatic and satisfies the observed gravity data. The model is that of a low density upper mantle compensating loads at both the surface and crust-mantle boundary. Solutions are found for lithospheric thickness greater than about 300 km, for which the stress differences are less than 750 bars. This model for Tharsis is similar to the compensation mechanism under the Basin and Range province of the western United States. These provinces also compare favorably in the sense that they are both elevated regions of extensional tectonics and extensive volcanism.
Delay-induced rebounds in CO2 emissions and critical time-scales to meet global warming targets
NASA Astrophysics Data System (ADS)
Manoli, Gabriele; Katul, Gabriel G.; Marani, Marco
2016-12-01
While climate science debates are focused on the attainment of peak anthropogenic CO2 emissions and policy tools to reduce peak temperatures, the human-energy-climate system can hold "rebound" surprises beyond this peak. Following the second industrial revolution, global per capita CO2 emissions (cc) experienced a punctuated growth of about 100% every 60 years, mainly attributable to technological development and its global spread. A model of the human-energy-climate system capable of reproducing past punctuated dynamics shows that rebounds in global CO2 emissions emerge due to delays intrinsic to the diffusion of innovations. Such intrinsic delays in the adoption and spread of low-carbon emitting technologies, together with projected population growth, upset the warming target set by the Paris Agreement. To avoid rebounds and their negative climate effects, model calculations show that the diffusion of climate-friendly technologies must occur with lags one-order of magnitude shorter (i.e., ˜6 years) than the characteristic timescale of past punctuated growth in cc. Radically new strategies to globally implement the technological advances at unprecedented rates are needed if the current emission goals are to be achieved.
Modification of General Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System
2016-08-01
Having 1.5-inch stroke low-volume actuators, retracted t t Approved for public release; distribution is unlimited. 3 multiple impacts from...rebound period at 1000 fps. Fig. 5 New upgraded 3-inch pneumatic cylinders 3.0-inch stroke high-volume actuators Retracted Position Extended
Isostatic gravity map with simplified geology of the Los Angeles 30 x 60 minute quadrangle
Wooley, R.J.; Yerkes, R.F.; Langenheim, V.E.; Chuang, F.C.
2003-01-01
This isostatic residual gravity map is part of the Southern California Areal Mapping Project (SCAMP) and is intended to promote further understanding of the geology in the Los Angeles 30 x 60 minute quadrangle, California, by serving as a basis for geophysical interpretations and by supporting both geological mapping and topical (especially earthquake) studies. Local spatial variations in the Earth's gravity field (after various corrections for elevation, terrain, and deep crustal structure explained below) reflect the lateral variation in density in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. The map shows contours of isostatic gravity overlain on a simplified geology including faults and rock types. The map is draped over shaded-relief topography to show landforms.
Nuhu, Jibril M; Maharaj, Sonill S
2018-04-01
Exercises are important as an adjuvant for managing diabetes but due to fatigue and time constraints, individuals with diabetes may not engage in them. Jumping on a mini-trampoline referred to as rebound exercise is an aerobic activity used for exercise training benefits but only little research is available on its effects in diabetes. The purpose of this study was to determine the effect of mini-trampoline rebound exercise on insulin resistance, lipid profile and central obesity in type 2 diabetics. Sixty non-insulin dependent type 2 diabetics (median age: 39.0 years, median body mass index: 25.2 kg/m2) recruited using convenience sampling were randomized to a rebound exercise group (N.=30) or a control group (N.=30). The control group read health magazines or watched television while the rebound exercise group jumped on a mini-trampoline at moderate intensity for 30 minutes three times per week for 12 weeks. Postrebound exercise, significant improvements in insulin resistance, lipid profile and waist circumference were noted when compared to the control (P<0.05). The values for high density lipoprotein cholesterol increased with low density lipoprotein cholesterol, triglycerides, insulin resistance decreasing significantly from baseline (P<0.05). The findings suggest that mini-trampoline rebound exercise is beneficial for individuals with type 2 diabetes and can serve as a useful exercise approach in the management of cardiovascular risk in diabetes.
Mayer, Larry; Lu, Zhong
2001-01-01
A basic model incorporating satellite synthetic aperture radar (SAR) interferometry of the fault rupture zone that formed during the Kocaeli earthquake of August 17, 1999, documents the elastic rebound that resulted from the concomitant elastic strain release along the North Anatolian fault. For pure strike-slip faults, the elastic rebound function derived from SAR interferometry is directly invertible from the distribution of elastic strain on the fault at criticality, just before the critical shear stress was exceeded and the fault ruptured. The Kocaeli earthquake, which was accompanied by as much as ∼5 m of surface displacement, distributed strain ∼110 km around the fault prior to faulting, although most of it was concentrated in a narrower and asymmetric 10-km-wide zone on either side of the fault. The use of SAR interferometry to document the distribution of elastic strain at the critical condition for faulting is clearly a valuable tool, both for scientific investigation and for the effective management of earthquake hazard.
An Investigation of Tic Suppression and the Rebound Effect in Tourette's Disorder
ERIC Educational Resources Information Center
Meidinger, Amy L.; Miltenberger, Raymond G.; Himle, Michael; Omvig, Matthew; Trainor, Casey; Crosby, Ross
2005-01-01
Many patients, parents of children with Tourettes disorder, and professionals have suggested that following a period of suppression, tics will rebound to a rate that will exceed the average rate of occurrence. At present, there are no empirical data to support or refute such an effect. This experiment utilized an A-B-A design with replication to…
NASA Astrophysics Data System (ADS)
Wu, G.; Moresi, L. N.
2017-12-01
differential subduction and isostatic differences along strike are the major cause of complex trench behavior and tectonic variations in the overriding plate. Finally, our models must be placed in a reference frame outside our modeled domain when used in global scale.
Intraocular pressure measurement over soft contact lens by rebound tonometer: a comparative study
Nacaroglu, Senay Asik; Un, Emine Seker; Ersoz, Mehmet Giray; Tasci, Yelda
2015-01-01
AIM To evaluate the intraocular pressure (IOP) measurements by Icare rebound tonometer over a contact lens in comparison with Goldmann applanation tonometry (GAT). METHODS Fifty patients using contact lens were included in this study. One of the eyes of the patients was selected randomly and their IOP were measured by rebound tonometer with and without contact lens (RTCL, RT respectively) and by GAT, as well as their central corneal thickness (CCT) by optical pachymeter. The results of both methods were compared by correlation analysis, general linear method repeated measure and Bland-Altman analysis. RESULTS Mean IOP values measured by RTCL, RT and GAT were 15.68±3.7, 14.50±3.4 and 14.16±2.8 (P<0.001), respectively. Mean IOP by RTCL was significantly higher than the measurements implemented by RT and GAT (P<0.001), while there was no difference between the measurements by GAT and RT (P=0.629). There was a good level of positive correlation between GAT and RTCL as well as RT (r=0.786 P<0.001, r=0.833 P<0.001, respectively). We have observed that CCT increase did not show any correlation with the differences of the measurements between RTCL and RT (P=0.329), RTCL and GAT (P=0.07) as well as RT and GAT (P=0.189) in linear regression model. CONCLUSION The average of the measurements over contact lens by rebound tonometer was found to be higher than what was measured by GAT. Although this difference is statistically significant, it may be clinically negligible in the normal population. PMID:26086004
Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An Overview
NASA Astrophysics Data System (ADS)
Spada, Giorgio
2017-01-01
Glacial isostatic adjustment (GIA) encompasses a suite of geophysical phenomena accompanying the waxing and waning of continental-scale ice sheets. These involve the solid Earth, the oceans and the cryosphere both on short (decade to century) and on long (millennia) timescales. In the framework of contemporary sea-level change, the role of GIA is particular. In fact, among the processes significantly contributing to contemporary sea-level change, GIA is the only one for which deformational, gravitational and rotational effects are simultaneously operating, and for which the rheology of the solid Earth is essential. Here, I review the basic elements of the GIA theory, emphasizing the connections with current sea-level changes observed by tide gauges and altimetry. This purpose is met discussing the nature of the "sea-level equation" (SLE), which represents the basis for modeling the sea-level variations of glacial isostatic origin, also giving access to a full set of geodetic variations associated with GIA. Here, the SLE is employed to characterize the remarkable geographical variability of the GIA-induced sea-level variations, which are often expressed in terms of "fingerprints". Using harmonic analysis, the spatial variability of the GIA fingerprints is compared to that of other components of contemporary sea-level change. In closing, some attention is devoted to the importance of the "GIA corrections" in the context of modern sea-level observations, based on tide gauges or satellite altimeters.
NASA Astrophysics Data System (ADS)
Kuchar, Joseph; Milne, Glenn; Wolstencroft, Martin; Love, Ryan; Tarasov, Lev; Hijma, Marc
2018-01-01
Sea level rise presents a hazard for coastal populations, and the Mississippi Delta (MD) is a region particularly at risk due to the high rates of land subsidence. We apply a gravitationally self-consistent model of glacial and sediment isostatic adjustment (SIA) along with a realistic sediment load reconstruction in this region for the first time to determine isostatic contributions to relative sea level (RSL) and land motion. We determine optimal model parameters (Earth rheology and ice history) using a new high-quality compaction-free sea level indicator database. Using the optimal model parameters, we show that SIA can lower predicted RSL in the MD area by several meters over the Holocene and so should be taken into account when modeling these data. We compare modeled contemporary rates of vertical land motion with those inferred using GPS. This comparison indicates that isostatic processes can explain the majority of the observed vertical land motion north of latitude 30.7°N, where subsidence rates average about 1 mm/yr; however, subsidence south of this latitude shows large data-model discrepancies of greater than 3 mm/yr, indicating the importance of nonisostatic processes. This discrepancy extends to contemporary RSL change, where we find that the SIA contribution in the Delta is on the order of 10-1 mm/yr. We provide estimates of the isostatic contributions to 20th and 21st century sea level rates at Gulf Coast Permanent Service for Mean Sea Level tide gauge locations as well as vertical and horizontal land motion at GPS station locations near the MD.
Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells
Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo
2013-01-01
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607
An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.
Makhijani, V B; Yang, H Q; Singhal, A K; Hwang, N H
1994-04-01
A combined experimental-computational study was performed to investigate the flow mechanics which could cause cavitation during the squeezing and rebounding phases of valve closure in the 29 mm mitral bileaflet Edwards-Duromedics (ED) mechanical heart valve (MHV). Leaflet closing motion was measured in vitro, and input into a computational fluid mechanics software package, CFD-ACE, to compute flow velocities and pressures in the small gap space between the occluder tip and valve housing. The possibility of cavitation inception was predicted when fluid pressures dropped below the saturated vapor pressure for blood plasma. The computational analysis indicated that cavitation is more likely to be induced during valve rebound rather than the squeezing phase of valve closure in the 29 mm ED-MHV. Also, there is a higher probability of cavitation at lower values of the gap width at the point of impact between the leaflet tip and housing. These predictions of cavitation inception are not likely to be significantly influenced by the water-hammer pressure gradient that develops during valve closure.
Marcellin, Fabienne; Lions, Caroline; Winnock, Maria; Salmon, Dominique; Durant, Jacques; Spire, Bruno; Mora, Marion; Loko, Marc-Arthur; Dabis, François; Dominguez, Stéphanie; Roux, Perrine; Carrieri, Maria Patrizia
2013-07-01
Studying alcohol abuse impact, as measured by physicians' perceptions and patients' self-reports, on HIV virological rebound among patients chronically co-infected with HIV and hepatitis C virus (HCV). Cohort study. Seventeen French hospitals. Five hundred and twelve patients receiving antiretroviral therapy (ART) with an undetectable initial HIV viral load and at least two viral load measures during follow-up. Medical records and self-administered questionnaires. HIV virological rebound defined as HIV viral load above the limit of detection of the given hospital's laboratory test. Alcohol abuse defined as reporting to have drunk regularly at least 4 (for men) or 3 (for women) alcohol units per day during the previous 6 months. Correlates of time to HIV virological rebound identified using Cox proportional hazards models. At enrolment, 9% of patients reported alcohol abuse. Physicians considered 14.8% of all participants as alcohol abusers. Self-reported alcohol abuse was associated independently with HIV virological rebound [hazard ratio (95% confidence interval): 2.04 (1.13-3.67); P = 0.02], after adjustment for CD4 count, time since ART initiation and hospital HIV caseload. No significant relationship was observed between physician-reported alcohol abuse and virological rebound (P = 0.87). In France, the assessment of alcohol abuse in patients co-infected with HIV and hepatitis C virus should be based on patients' self-reports, rather than physicians' perceptions. Baseline screening of self-reported alcohol abuse may help identify co-infected patients at risk of subsequent HIV virological rebound. © 2013 Society for the Study of Addiction.
Isostatic gravity map of the Death Valley ground-water model area, Nevada and California
Ponce, D.A.; Blakely, R.J.; Morin, R.L.; Mankinen, E.A.
2001-01-01
An isostatic gravity map of the Death Valley groundwater model area was prepared from over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.
Aguilar Cordero, María José; Ortegón Piñero, Alberto; Baena García, Laura; Noack Segovia, Jessica Pamela; Levet Hernández, María Cristina; Sánchez López, Antonio Manuel
2015-12-01
studies show that overweight and obesity are the result of a complex interaction between genetic and environmental factors that begins prenatally. In evidence of this relationship the potential impact of prenatal nutrition experience in the development of the endocrine and neuroendocrine systems that regulate energy balance, with special emphasis on leptin, an adipocytederived hormone. Different authors relate the risk of obesity with rapid weight gain in the first years of life. Breastfeeding children have a lower degree of abdominal adiposity and, therefore, lower waist circumference. Similarly, it has been associated with exclusively breastfeeding with a slower weight gain rate of about 20 %. In the study of obesity, a rebound effect is considered when the child recovers its initial weight a year after finishing the procedure. This problem is common, therefore family intervention is essential in order to achieve the child's motivation to lead a healthy life. For this review we have selected studies to evaluate interventions of medium and long term in childhood obesity, ensuring adherence to treatment and the rebound effect, once the intervention ended. to review studies examining the rebound effect and adherence to weight loss treatments for children and adolescents with overweight and obesity. the systematic review was prepared following the PRISMA guidelines. Are selected 19 studies related to the proposed issue. several authors have established the beneficial short and long term effects of interventions that combine diet and physical activity among obese children. These results show the importance of multidisciplinary treatment programs for childhood obesity, emphasizing its encouraging longterm effects. there are studies were the rebound effect in short duration programs is evident. During interventions it is significantly reduced BMI, but then increased quickly to reach even higher levels initial weight. The most effective type of actions tend to be those
Ductile Fracture Behaviour of Hot Isostatically Pressed Inconel 690 Superalloy
NASA Astrophysics Data System (ADS)
Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.
2018-04-01
Herein we assess the differences in Charpy impact behavior between Hot Isostatically Pressed and forged Inconel 690 alloy over the temperature range of 300 °C to - 196 °C. The impact toughness of forged 690 exhibited a relatively small temperature dependence, with a maximum difference of ca. 40 J measured between 300 °C and - 196 °C, whereas the HIP'd alloy exhibited a difference of approximately double that of the forged alloy over the same temperature range. We have conducted Charpy impact testing, tensile testing, and metallographic analyses on the as-received materials as well as fractography of the failed Charpy specimens in order to understand the mechanisms that cause the observed differences in material fracture properties. The work supports a recent series of studies which assess differences in fundamental fracture behavior between Hot Isostatically Pressed and forged austenitic stainless steel materials of equivalent grades, and the results obtained in this study are compared to those of the previous stainless steel investigations to paint a more general picture of the comparisons between HIP vs forged material fracture behavior. Inconel 690 was selected in this study since previous studies were unable to completely omit the effects of strain-induced martensitic transformation at the tip of the Chary V-notch from the fracture mechanism; Inconel 690 is unable to undergo strain-induced martensitic transformation due to the alloy's high nickel content, thereby providing a sister study with the omission of any martensitic transformation effects on ductile fracture behavior.
Core groups, antimicrobial resistance and rebound in gonorrhoea in North America.
Chan, Christina H; McCabe, Caitlin J; Fisman, David N
2012-04-01
Genital tract infections caused by Neisseria gonorrhoeae are a major cause of sexually transmitted disease worldwide. Surveillance data suggest that incidence has increased in recent years after initially falling in the face of intensified control efforts. The authors sought to evaluate the potential contribution of antimicrobial resistance to such rebound and to identify optimal treatment strategies in the face of resistance using a mathematical model of gonorrhoea. The authors built risk-structured 'susceptible-infectious-susceptible' models with and without the possibility of antibiotic resistance and used these models as a platform for the evaluation of competing plausible treatment strategies, including changing antimicrobial choice when resistance prevalence surpassed fixed thresholds, random assignment of treatment and use of combination antimicrobial therapy. Absent antimicrobial resistance, strategies that focus on treatment of highest risk individuals (the so-called core group) result in collapse of disease transmission. When antimicrobial resistance exists, a focus on the core group causes rebound in incidence, with maximal dissemination of antibiotic resistance. Random assignment of antimicrobial treatment class outperformed the use of fixed resistance thresholds with respect to sustained reduction in gonorrhoea prevalence. Gonorrhoea control is achievable only when core groups are treated, but treatment of core groups maximises dissemination of antimicrobial-resistant strains. This paradox poses a great dilemma to the control and prevention of gonorrhoea and underlines the need for gonococcal vaccines.
NASA Astrophysics Data System (ADS)
Konfal, S.; Wilson, T.; Bevis, M. G.; Kendrick, E. C.; Hall, B. L.
2011-12-01
Geologic records and geodetic measurements of glacial isostatic crustal motions are presented from the southern Victoria Land region of Antarctica. In much of the world, key records used for mapping and modeling glacial isostatic crustal motions come from raised paleoshorelines and beaches of ice-marginal lakes and seas. While such records are scarce in Antarctica, preserved paleoshorelines are present in the southern Victoria Land region of Antarctica. Light detection and ranging (LiDAR) data coverages of these features were acquired during the 2001-2002 austral summer field season by NASA's Airborne Topographic Mapper (ATM) system, resulting in 2 meter horizontal resolution digital elevation models (DEMs). This study utilizes these DEM data to derive crustal tilt values from observed changes in elevation along the length of the shorelines. Radiocarbon age data are correlated with the associated degree of shoreline tilt to derive a rate of crustal deformation since deglaciation. Modern rates of glacial isostatic crustal motion are derived from GPS stations in the same region. Campaign station occupation began in 1996-1997 under the TAMDEF (Transantarctic Mountain DEFormation Network) project, and continuous GPS data collected began in 1999 and continues under the ANET/POLENET (Antarctica Polar Earth Observing Network) project, enabling analysis of decadal scale time series. Integrated gradient curves from paleoshoreline records and GPS crustal velocities show exponential form and indicate tilting down to the east. Eastward tilt may be the result of substantial loss of East Antarctic ice, a collapsing forebulge linked to ice centers in the Ross Sea region or in interior West Antarctica, or differences in earth response due to laterally varying earth structure. Modeling of these new data, along with comparison of tilt directions to centers of ice mass loss, provide tests of these scenarios and yield new insights into earth models and ice history.
Hot isostatically pressed manufacture of high strength MERL 76 disk and seal shapes
NASA Technical Reports Server (NTRS)
Eng, R. D.; Evans, D. J.
1982-01-01
The feasibility of using MERL 76, an advanced high strength direct hot isostatic pressed powder metallurgy superalloy, as a full scale component in a high technology, long life, commercial turbine engine were demonstrated. The component was a JT9D first stage turbine disk. The JT9D disk rim temperature capability was increased by at least 22 C and the weight of JT9D high pressure turbine rotating components was reduced by at least 35 pounds by replacement of forged Superwaspaloy components with hot isostatic pressed (HIP) MERL 76 components. The process control plan and acceptance criteria for manufacture of MERL 76 HIP consolidated components were generated. Disk components were manufactured for spin/burst rig test, experimental engine tests, and design data generation, which established lower design properties including tensile, stress-rupture, 0.2% creep and notched (Kt = 2.5) low cycle fatigue properties, Sonntag, fatigue crack propagation, and low cycle fatigue crack threshold data. Direct HIP MERL 76, when compared to conventionally forged Superwaspaloy, is demonstrated to be superior in mechanical properties, increased rim temperature capability, reduced component weight, and reduced material cost by at least 30% based on 1980 costs.
Isostatic gravity map of the Monterey 30 x 60 minute quadrangle and adjacent areas, California
Langenheim, V.E.; Stiles, S.R.; Jachens, R.C.
2002-01-01
The digital dataset consists of one file (monterey_100k.iso) containing 2,385 gravity stations. The file, monterey_100k.iso, contains the principal facts of the gravity stations, with one point coded per line. The format of the data is described below. Each gravity station has a station name, location (latitude and longitude, NAD27 projection), elevation, and an observed gravity reading. The data are on the IGSN71 datum and the reference ellipsoid is the Geodetic Reference System 1967 (GRS67). The free-air gravity anomalies were calculated using standard formulas (Telford and others, 1976). The Bouguer, curvature, and terrain corrections were applied to the free-air anomaly at each station to determine the complete Bouguer gravity anomalies at a reduction density of 2.67 g/cc. An isostatic correction was then applied to remove the long-wavelength effect of deep crustal and/or upper mantle masses that isostatically support regional topography.
Grennan, J Troy; Loutfy, Mona R; Su, DeSheng; Harrigan, P Richard; Cooper, Curtis; Klein, Marina; Machouf, Nima; Montaner, Julio S G; Rourke, Sean; Tsoukas, Christos; Hogg, Bob; Raboud, Janet
2012-04-15
The importance of human immunodeficiency virus (HIV) blip magnitude on virologic rebound has been raised in clinical guidelines relating to viral load assays. Antiretroviral-naive individuals initiating combination antiretroviral therapy (cART) after 1 January 2000 and achieving virologic suppression were studied. Negative binomial models were used to identify blip correlates. Recurrent event models were used to determine the association between blips and rebound by incorporating multiple periods of virologic suppression per individual. 3550 participants (82% male; median age, 40 years) were included. In a multivariable negative binomial regression model, the Amplicor assay was associated with a lower blip rate than branched DNA (rate ratio, 0.69; P < .01), controlling for age, sex, region, baseline HIV-1 RNA and CD4 count, AIDS-defining illnesses, year of cART initiation, cART type, and HIV-1 RNA testing frequency. In a multivariable recurrent event model controlling for age, sex, intravenous drug use, cART start year, cART type, assay type, and HIV-1 RNA testing frequency, blips of 500-999 copies/mL were associated with virologic rebound (hazard ratio, 2.70; P = .002), whereas blips of 50-499 were not. HIV-1 RNA assay was an important determinant of blip rates and should be considered in clinical guidelines. Blips ≥500 copies/mL were associated with increased rebound risk.
NASA Technical Reports Server (NTRS)
Bills, Bruce G.; De Silva, Shanaka L.; Currey, Donald R.; Emenger, Robert S.; Lillquist, Karl D.; Donnellan, Andrea; Worden, Bruce
1994-01-01
Sufficiently large lake loads provide a means of probing rheological stratification of the crust and upper mantle. Lake Minchin was the largest of the late Pleistocene pluvial lakes in the central Andes. Prominent shorelines, which formed during temporary still-stands in the climatically driven lake level history, preserve records of lateral variations in subsequent net vertical motions. At its maximum extent the lake was 140 m deep and spanned 400 km N-S and 200 km E-R. The load of surficial water contained in Lake Minchin was sufficient to depress the crust and underlying mantle by 20-40 m, depending on the subjacent rheology. Any other differential vertical motions will also be recorded as departures from horizontality of the shorelines. We recently conducted a survey of shoreline elevations of Lake Minchin with the express intent of monitoring the hydro-isostatic deflection and tectonic tilting. Using real-time differential Global Positioning System (GPS), we measured topographic profiles across suites of shorelines at 15 widely separated locations throughout the basin. Horizontal and vertical accuracies attained are roughly 30 and 70 cm, respectively. Geomorphic evidence suggests that the highest shoreline was occupied only briefly (probably less than 200 years) and radiocarbon dates on gastropod shells found in association with the shore deposits constrain the age to roughly 17 kyr. The basin-side pattern of elevations of the highest shoreline is composed of two distinct signals: (27 +/- 1) m of hydro-isostatic deflection due to the lake load, and a planar tilt with east and north components of (6.8 +/- 0.4) 10(exp -5) and 9-5.3 +/- 0.3) 10(exp -5). This rate of tilting is too high to be plausibly attributed to steady tectonism, and presumably reflects some unresolved combination of tectonism plus the effects of oceanic and lacustrine loads on a laterally heterogeneous substrate. The history of lake level fluctuations is still inadequately known to allow
2011 Mound Site Groundwater Plume Rebound Exercise and Follow-Up - 13440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooten, Gwendolyn; Cato, Rebecca; Lupton, Greg
2013-07-01
The Mound Site facility near Miamisburg, Ohio, opened in 1948 to support early atomic weapons programs. It grew into a research, development, and production facility performing work in support of the U.S. Department of Energy (DOE) weapons and energy programs. The plant was in operation until 1995. During the course of operation, an onsite landfill was created. The landfill was located over a finger of a buried valley aquifer, which is a sole drinking water source for much of the Miami Valley. In the 1980's, volatile organic compounds (VOCs) were discovered in groundwater at the Mound site. The site wasmore » placed on the National Priorities List on November 21, 1989. DOE signed a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Federal Facility Agreement with the U.S. Environmental Protection Agency (EPA) and the Ohio Environmental Protection Agency. The agreement became effective in October 1990. The area that included the landfill was designated Operational Unit 1 (OU-1). In 1995, a Record of Decision was signed that called for the installation and operation of a pump and treatment (P and T) system in order to prevent the VOCs in OU-1 groundwater from being captured by the onsite water production wells. In addition to the P and T system, a soil vapor extraction (SVE) system was installed in 1997 to accelerate removal of VOCs from groundwater in the OU-1 area. The SVE system was successful in removing large amounts of VOCs and continued to operate until 2007, when the amount of VOCs removed became minimal. A rebound study was started in February 2003 to determine how the groundwater system and contaminants would respond to shutting down the P and T system. The rebound test was stopped in February 2004 because predetermined VOC threshold concentrations were exceeded down-gradient of the landfill. The P and T and SVE systems were restarted after the termination of the rebound test. In 2006, the remediation of the Mound site was
Zhang, Zhen-yu; Zhang, Hui-sheng
2004-11-01
Surface tension effects on the behavior of a pure vapor cavity or a cavity containing some noncondensible contents, which is growing, collapsing, and rebounding axisymmetrically near a rigid wall, are investigated numerically by the boundary integral method for different values of dimensionless stand-off parameter gamma, buoyancy parameter delta, and surface tension parameter beta. It is found that at the late stage of the collapse, if the resultant action of the Bjerknes force and the buoyancy force is not small, surface tension will not have significant effects on bubble behavior except that the bubble collapse time is shortened and the liquid jet becomes wider. If the resultant action of the two force is small enough, surface tension will have significant and in some cases substantial effects on bubble behavior, such as changing the direction of the liquid jet, making a new liquid jet appear, in some cases preventing the bubble from rebound before jet impact, and in other cases causing the bubble to rebound or even recollapse before jet impact. The mechanism of surface tension effects on the collapsing behavior of a cavity has been analyzed. The mechanisms of some complicated phenomena induced by surface tension effects are illustrated by analysis of the computed velocity fields and pressure contours of the liquid flow outside the bubble at different stages of the bubble evolution.
Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts.
Yildirim, Baran; Yang, Hankang; Gouldstone, Andrew; Müftü, Sinan
2017-08-01
The impact mechanics of micrometre-scale metal particles with flat metal surfaces is investigated for high-velocity impacts ranging from 50 m s -1 to more than 1 km s -1 , where impact causes predominantly plastic deformation. A material model that includes high strain rate and temperature effects on the yield stress, heat generation due to plasticity, material damage due to excessive plastic strain and heat transfer is used in the numerical analysis. The coefficient of restitution e is predicted by the classical work using elastic-plastic deformation analysis with quasi-static impact mechanics to be proportional to [Formula: see text] and [Formula: see text] for the low and moderate impact velocities that span the ranges of 0-10 and 10-100 m s -1 , respectively. In the elastic-plastic and fully plastic deformation regimes the particle rebound is attributed to the elastic spring-back that initiates at the particle-substrate interface. At higher impact velocities (0.1-1 km s -1 ) e is shown to be proportional to approximately [Formula: see text]. In this deeply plastic deformation regime various deformation modes that depend on plastic flow of the material including the time lag between the rebound instances of the top and bottom points of particle and the lateral spreading of the particle are identified. In this deformation regime, the elastic spring-back initiates subsurface, in the substrate.
Densification of oxide superconductors by hot isostatic pressing
NASA Astrophysics Data System (ADS)
Tien, J. K.; Borofka, J. C.; Hendrix, B. C.; Caulfield, T.; Reichman, S. H.
1988-07-01
Currently, consolidation of high Tc superconductor powders is done by sintering, which is not effective in the reduction of porosity. This work assesses the feasibility of hot isostatic pressing (HIP) to obtain fully dense bulk superconductor using HIP modeling and experimental verification. It is concluded that fully dense YBa2Cu3O7 can be obtained in reasonable times at temperatures down to around 650 °C. The trade-offs between temperature, time, and pressure are examined as well as the effects of powder particle size, powder grain size, and trapped gas pressure. The model has. been verified by experiment under three conditions: 100 MPa HIP at 900 °C for 2 hours, 100 MPa HIP at 750 °C for 2 hours, and sintering at 950 °C for 16 hours. The additional advantages of HIPing oxide superconductors are also discussed.
Biomimetic evaluation of β tricalcium phosphate prepared by hot isostatic pressing
Mateescu, Mihaela; Rguitti, Emmanuelle; Ponche, Arnaud; Descamps, Michel; Anselme, Karine
2012-01-01
Two types of completely densified β-TCP tablets were synthesized from a stoichiometric β-TCP powder. The first ones (TCP) were conventionally sintered, while the second ones (TCP-T) were sintered and treated by hot isostatic process (HIP). The HIP produced completely densified materials with relative densities greater than 99.9% and a transparent appearance of tablets. Samples were immersed in culture medium with (CM) or without serum (NCM) in static and dynamic conditions for a biomimetic evaluation. Similarly, SaOs-2 cells were cultured on samples in a static or dynamic flow perfusion system. The results of surface transformation in absence of cells showed that the dynamic condition increased the speed of calcium phosphate precipitations compared with the static condition. The morphology of precipitates was different with nature of tablets. The immersion in CM did impede this precipitation. XPS analysis of TCP-T tablets showed the presence of hydroxyapatite (HA) precipitates after incubation in NCM while octacalcium phosphate (OCP) precipitates were formed after incubation in CM. The analysis of the response of SaOs-2 cells on surfaces showed that the two types of materials are biocompatible. However, the dynamic mode of culture stimulated the differentiation of cells. Finally, it appears that the HIP treatment of TCP produces highly densified and transparent samples that display a good in vitro biocompatibility in static and dynamic culture conditions. Moreover, an interesting result of this work is the relationship between the presence of proteins in the immersion medium and the quality of precipitates formed on hipped TCP surface. PMID:23507861
Capriotti, Matthew R; Brandt, Bryan C; Ricketts, Emily J; Espil, Flint M; Woods, Douglas W
2012-01-01
Tics are rapid, repetitive, stereotyped movements or vocalizations that arise from neurobiological dysfunction and are influenced by environmental factors. Although persons with tic disorders often experience aversive social reactions in response to tics, little is known about the behavioral effects of such consequences. Along several dimensions, the present study compared the effects of two treatments on tics: response cost (RC) and differential reinforcement of other behavior (DRO). Four children with Tourette syndrome were exposed to free-to-tic baseline, DRO, RC, and quasibaseline rebound evaluation conditions using an alternating treatments design. Both DRO and RC produced substantial decreases in tics from baseline levels. No differential effects of DRO and RC contingencies were seen on self-reported stress or in the strength of the reflexive motivating operation (i.e., premonitory urge) believed to trigger tics, and neither condition produced tic-rebound effects. Implications of these findings and directions for future research are discussed.
Capriotti, Matthew R; Brandt, Bryan C; Ricketts, Emily J; Espil, Flint M; Woods, Douglas W
2012-01-01
Tics are rapid, repetitive, stereotyped movements or vocalizations that arise from neurobiological dysfunction and are influenced by environmental factors. Although persons with tic disorders often experience aversive social reactions in response to tics, little is known about the behavioral effects of such consequences. Along several dimensions, the present study compared the effects of two treatments on tics: response cost (RC) and differential reinforcement of other behavior (DRO). Four children with Tourette syndrome were exposed to free-to-tic baseline, DRO, RC, and quasibaseline rebound evaluation conditions using an alternating treatments design. Both DRO and RC produced substantial decreases in tics from baseline levels. No differential effects of DRO and RC contingencies were seen on self-reported stress or in the strength of the reflexive motivating operation (i.e., premonitory urge) believed to trigger tics, and neither condition produced tic-rebound effects. Implications of these findings and directions for future research are discussed. PMID:22844135
Ice cap melting and low viscosity crustal root explain narrow geodetic uplift of the Western Alps
NASA Astrophysics Data System (ADS)
Chery, Jean; Genti, Manon; Vernant, Philippe
2016-04-01
More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Three uplift mechanisms have been proposed so far: (1) the isostatic response to denudation. However this process is responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting. This process leads to a broader uplifting region than the one evidenced by geodetic observations. (3) a deep source motion associated with slab motion or some deep isostatic unbalance. Using a numerical model accounting for crustal and mantle rheology of the Alps and its foreland, we model the response to Wurmian ice cap melting. We show that a crustal viscosity contrast between the foreland and the central part of the Alps, the later being weaker with a viscosity of 1021 Pa.s, is needed to produce a narrow uplift. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly thanks to the continuity between the low viscosity parts of the crust and mantle. References: Champagnac, J.-D., F. Schlunegger, K. Norton, F. von Blanckenburg, L. M. Abbühl, and M. Schwab (2009), Erosion-driven uplift of the modern Central Alps, Tectonophysics, 474(1-2), 236-249. Vernant, P., F. Hivert, J. Chéry, P. Steer, R. Cattin, and A. Rigo (2013), Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges, geology, 41(4), 467-470.
Recent Earth oblateness variations: unraveling climate and postglacial rebound effects.
Dickey, Jean O; Marcus, Steven L; de Viron, Olivier; Fukumori, Ichiro
2002-12-06
Earth's dynamic oblateness (J2) has been decreasing due to postglacial rebound (PGR). However, J2 began to increase in 1997, indicating a pronounced global-scale mass redistribution within Earth's system. We have determined that the observed increases in J2 are caused primarily by a recent surge in subpolar glacial melting and by mass shifts in the Southern, Pacific, and Indian oceans. When these effects are removed, the residual trend in J2 (-2.9 x 10(-11) year-1) becomes consistent with previous estimates of PGR from satellite and eclipse data. The climatic significance of these rapid shifts in glacial and oceanic mass, however, remains to be investigated.
Glacial isostatic uplift of the European Alps
Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D.; Egholm, David L.; Tesauro, Magdala; Schildgen, Taylor F.; Strecker, Manfred R.
2016-01-01
Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the Alps can be explained by the Earth’s viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern Alps delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions. PMID:27830704
Glacial isostatic uplift of the European Alps.
Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D; Egholm, David L; Tesauro, Magdala; Schildgen, Taylor F; Strecker, Manfred R
2016-11-10
Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the Alps can be explained by the Earth's viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern Alps delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions.
Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene.
Kingslake, J; Scherer, R P; Albrecht, T; Coenen, J; Powell, R D; Reese, R; Stansell, N D; Tulaczyk, S; Wearing, M G; Whitehouse, P L
2018-06-01
To predict the future contributions of the Antarctic ice sheets to sea-level rise, numerical models use reconstructions of past ice-sheet retreat after the Last Glacial Maximum to tune model parameters 1 . Reconstructions of the West Antarctic Ice Sheet have assumed that it retreated progressively throughout the Holocene epoch (the past 11,500 years or so) 2-4 . Here we show, however, that over this period the grounding line of the West Antarctic Ice Sheet (which marks the point at which it is no longer in contact with the ground and becomes a floating ice shelf) retreated several hundred kilometres inland of today's grounding line, before isostatic rebound caused it to re-advance to its present position. Our evidence includes, first, radiocarbon dating of sediment cores recovered from beneath the ice streams of the Ross Sea sector, indicating widespread Holocene marine exposure; and second, ice-penetrating radar observations of englacial structure in the Weddell Sea sector, indicating ice-shelf grounding. We explore the implications of these findings with an ice-sheet model. Modelled re-advance of the grounding line in the Holocene requires ice-shelf grounding caused by isostatic rebound. Our findings overturn the assumption of progressive retreat of the grounding line during the Holocene in West Antarctica, and corroborate previous suggestions of ice-sheet re-advance 5 . Rebound-driven stabilizing processes were apparently able to halt and reverse climate-initiated ice loss. Whether these processes can reverse present-day ice loss 6 on millennial timescales will depend on bedrock topography and mantle viscosity-parameters that are difficult to measure and to incorporate into ice-sheet models.
NASA Astrophysics Data System (ADS)
Sreejith, K. M.; Krishna, K. S.
2013-10-01
Ninetyeast Ridge (NER), one of the longest linear volcanic features on the Earth, offers an excellent opportunity of understanding the isostatic response to the interactions of mantle plume with the migrating mid-ocean ridge. Bathymetry, geoid, and gravity (shipborne and satellite) data along 72 closely spaced transects and 17 overlapping grids on the NER are analyzed and modeled to determine the effective elastic thickness (Te) beneath the entire ridge. The results of 2-D and 3-D flexural modeling of the NER show large spatial variations in Te values ranging from 4 to 35 km, suggesting that the ridge was compensated along its length by different isostatic mechanisms. The southern (south of 22°S latitude) and northern (north of 2°N latitude) parts of the NER have Te values of >10 and >23 km, respectively, revealing that the southern part was emplaced on a lithosphere of intermediate strength possibly on flank of the Indian plate, whereas the northern part was emplaced in an intraplate setting. In contrast, in the central part of the NER (between latitudes 22°S and 2°N), highly variable Te values (4-22 km) are estimated. The scattered Te values in the central NER suggest that this part may have evolved due to the occurrence of frequent ridge jumps caused by the interaction of Kerguelen hot spot with rapid northward migration of the Wharton spreading ridge. Residual Mantle Bouguer Anomaly (RMBA) map of the NER and adjacent basins reveals that the entire length of the NER is associated with a significant negative anomaly up to 200 mGal, indicating the presence of thickened crust or less dense mantle beneath the ridge. 3-D crustal thickness map of the NER, generated by inversion of the RMBA data, shows a thick crust ranging from 15 to 19 km. The present study clearly shows that NER possesses a highly segmented isostatic pattern with the occurrence of subcrustal underplating or subsurface loading.
Masuo, Kazuko; Katsuya, Tomohiro; Kawaguchi, Hideki; Fu, Yuxiao; Rakugi, Hiromi; Ogihara, Toshio; Tuck, Michael L
2005-11-01
A successful weight loss program is essential treatment for obesity-related diseases, but it is well known that the majority of individuals do not succeed in weight loss maintenance. The present study evaluates hormonal mechanisms and the relationship of beta2-adrenoceptor polymorphisms involved in individuals who regain weight after initially successful weight loss. Overweight Japanese men (n = 154) were enrolled in a 24-month weight loss program. Body mass index (BMI), total body fat mass, plasma norepinephrine (NE) and leptin levels, and beta2-adrenoceptor polymorphisms (Arg16Gly, Gln27Glu) were measured every 6 months for the 24-month period. Maintenance of weight loss was defined as significant weight loss (>or=10% reduction) from entry weight at 6 months and maintenance of the weight loss for an additional 18 months. Rebound weight gain was defined as significant weight loss at 6 months but subsequent regain of body weight during the next 18 months. The results showed that 37 subjects maintained weight loss during 24 months, whereas 36 subjects had rebound weight gain. The BMI at entry and calorie intake and physical activity at each period were similar between the two groups. Subjects who maintained weight loss had at entry a significantly lower fat mass and plasma NE levels compared to those with rebound weight gain. Body fat mass, NE, and leptin levels at entry predicted the degree of change in body weight during the 24-month study period. Subjects with rebound weight gain had a significantly higher frequency of the Gly16 allele for the beta2-adrenoceptor polymorphism compared to subjects who had a 24-month maintenance of weight loss. Subjects carrying the Gly16 allele also had significantly higher plasma NE, leptin, and body fat mass levels and a greater waist-to-hip ratio both at entry and throughout the study. A high initial degree of body fat mass and high plasma NE levels as determined by the Gly16 allele for the beta2-adrenoceptor polymorphisms
Postseismic rebound in fault step-overs caused by pore fluid flow
Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.
1996-01-01
Near-field strain induced by large crustal earthquakes results in changes in pore fluid pressure that dissipate with time and produce surface deformation. Synthetic aperture radar (SAR) interferometry revealed several centimeters of postseismic uplift in pull-apart structures and subsidence in a compressive jog along the Landers, California, 1992 earthquake surface rupture, with a relaxation time of 270 ?? 45 days. Such a postseismic rebound may be explained by the transition of the Poisson's ratio of the deformed volumes of rock from undrained to drained conditions as pore fluid flow allows pore pressure to return to hydrostatic equilibrium.
Odonkor, Charles A; Chhatre, Akhil
2016-01-01
Tramadol has gained traction as an analgesic of choice among pain practicing physicians. However some concerns regarding a previously unlabeled adverse reaction - hypoglycemia - have cast it in a dim light. Prior reports have noted an associated risk of hospitalization for hypoglycemia after tramadol use, but whether tramadol is the main causal agent is poorly understood and the underlying mechanisms are not well delineated. We present a unique case of rebound hypoglycemia as a variation of the theme of tramadol's adverse effect profile in a patient with type 1 diabetes mellitus, and reappraise potential mechanisms underlying this underappreciated phenomenon. A 71-year-old woman presented with right buttock pain and right lateral leg discomfort of 9-month duration. Her physical exam suggested sacroiliac joint (SIJ) etiology, confirmed by magnetic resonance imaging (MRI). She was scheduled for an SIJ-diagnostic and therapeutic block and started on tramadol 50 mg 3 times daily on as needed basis. The patient subsequently developed severe hypoglycemia initially resistant to euglycemia restorative interventions with a rebound episode. Hypoglycemia resolved with oral ingestion of high levels of glucose and the patient was taken off tramadol. Fortunately, she did not require hospitalization. The clinical scenario described is a case of rebound hypoglycemia after tramadol use in a patient with type-1 diabetes naïve to opioid analgesics. The episodes of hypoglycemia aligned perfectly with the anticipated pharmacodynamic and pharmacokinetic properties of tramadol. The specificity and temporality of events after tramadol use in this patient fulfilled causality criteria. Tramadol may cause rebound hypoglycemia in patients via interference of the intrinsic euglycemia-restoration pathways and a blunted autonomic counter-regulatory response to antecedent hypoglycemia. Its use must be tempered by this underappreciated adverse effect profile.Key words: Tramadol, hypoglycemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, E.K.H.; Funkenbusch, P.D.
1993-06-01
Hot isostatic pressing (HIP) of powder mixtures (containing differently sized components) and of composite powders is analyzed. Recent progress, including development of a simple scheme for estimating radial distribution functions, has made modeling of these systems practical. Experimentally, powders containing bimodal or continuous size distributions are observed to hot isostatically press to a higher density tinder identical processing conditions and to show large differences in the densification rate as a function of density when compared with the monosize powders usually assumed for modeling purposes. Modeling correctly predicts these trends and suggests that they can be partially, but not entirely, attributedmore » to initial packing density differences. Modeling also predicts increased deformation in the smaller particles within a mixture. This effect has also been observed experimentally and is associated with microstructural changes, such as preferential recrystallization of small particles. Finally, consolidation of a composite mixture containing hard, but deformable, inclusions has been modeled for comparison with existing experimental data. Modeling results match both the densification and microstructural observations reported experimentally. Densification is retarded due to contacts between the reinforcing particles which support a significant portion of the applied pressure. In addition, partitioning of deformation between soft matrix and hard inclusion powders results in increased deformation of the softer material.« less
Mikulecká, A; Mareš, P; Kubová, H
2011-01-01
The purpose of our study was to determine whether a single administration of anticonvulsant doses of two ligands of benzodiazepine receptors, clonazepam and Ro 19-8022, leads to development of rebound phenomena in immature 12-day-old rats. Three tests were used: pentylenetetrazole (PTZ)-induced seizures, isolation-induced ultrasonic vocalizations, and motor performance. Susceptibility to the convulsant effects of PTZ decreased 24 hours, but increased 48 hours, after clonazepam administration. Ultrasonic vocalizations were completely suppressed 30 minutes and 3 hours after clonazepam; a moderate inhibitory effect persisted even at 48 hours. Motor abilities were slightly compromised up to 3 hours. Similar effects of Ro 19-8022 on PTZ-induced seizures and ultrasonic vocalizations were observed 24 and 48 hours after administration; motor performance was not affected. Rebound proconvulsant effects followed different time courses after administration of the two benzodiazepine receptor ligands in developing animals. Anxiolytic-like effects of these drugs were still present at the time when animals exhibited rebound proconvulsant effects. Copyright © 2010 Elsevier Inc. All rights reserved.
Hardness of pulsed electric current sintered and hot isostatically pressed Mo(Si,Al)2
NASA Astrophysics Data System (ADS)
Tanabe, Jun
2005-05-01
We improved the reactivity and mechanical characteristics of Mo(Si,Al)2 by pulsed electric current sintering (PECS) and hot isostatic pressing (HIP), and evaluated its reaction state and mechanical characteristics using energy dispersive spectroscopy (EDS), X-ray diffraction, and a hardness test. Mo(Si,Al)2 was generated by pretreatment using a furnace, and the application of the PECS and HIP treatments further densified the sintered body, resulting in an increase in the hardness.
Isostatic compensation of Ishtar Terra, Venus
NASA Astrophysics Data System (ADS)
Kucinskas, Algis B.; Turcotte, Donald L.; Arkani-Hamed, Jafar
We have used spherical harmonic representations of the Venus topography and geopotential, obtained from Magellan data, to evaluate isostatic support in several areas within the Ishtar Terra highlands, including the Lakshmi plateau, its surrounding mountain belts, namely Akna and Freyja, and Maxwell Montes, and the Fortuna Tessera province. We find that topography in Ishtar is largely isostatically compensated (>80%). Regional geoidtopography variations in the subregions can be explained by a combination of Airy (crustal thickening) and thermal (lithospheric thinning) mechanisms, provided Venus has a thick reference thermal lithosphere (~300-400 km). With the exception of eastern Fortuna, low elevation areas (h<3-4 km above the mean planetary radius, MPR) with large geoidtopography ratios (GTR) seem to be associated, to various degrees, with thermal isostasy, whereas the higher areas (h>4 km above MPR) with small GTRs are almost certainly Airy compensated via thickened crust. Relatively large (>60 km) total Airy crustal thicknesses obtained in the western Ishtar mountain belts, together with a probable basalt-eclogite phase change, suggest a possible silicic composition for these structures, provided they are older than ~25-50 Ma. Lakshmi Planum seems essentially thermally supported, with the thermal lithosphere thinned to ~100 km. We suggest, as one possibility, that the lithospheric thinning process under Lakshmi is delamination of a dense eclogite lower lithosphere layer into the mantle. The decrease in GTR observed in Ishtar between Lakshmi to the west (GTR ~20 m/km), Maxwell and west Fortuna (GTR~8 m/km), and eastern Fortuna (GTR~4 m/km) may correspond to a decay in thermal compensation attributed to lithospheric delamination, which would be fairly recent (~100 Ma) in Lakshmi, partially decayed in west Fortuna, and absent in east Fortuna, where a mostly Airy-supported topography is essentially relaxed with no thermal uplift. Alternatively, if surficial
Rumination and Rebound from Failure as a Function of Gender and Time on Task
Whiteman, Ronald C.; Mangels, Jennifer A.
2016-01-01
Rumination is a trait response to blocked goals that can have positive or negative outcomes for goal resolution depending on where attention is focused. Whereas “moody brooding” on affective states may be maladaptive, especially for females, “reflective pondering” on concrete strategies for problem solving may be more adaptive. In the context of a challenging general knowledge test, we examined how Brooding and Reflection rumination styles predicted students’ subjective and event-related responses (ERPs) to negative feedback, as well as use of this feedback to rebound from failure on a later surprise retest. For females only, Brooding predicted unpleasant feelings after failure as the task progressed. It also predicted enhanced attention to errors through both bottom-up and top-down processes, as indexed by increased early (400–600 ms) and later (600–1000 ms) late positive potentials (LPP), respectively. Reflection, despite increasing females’ initial attention to negative feedback (i.e., early LPP), as well as both genders’ recurring negative thoughts, did not result in sustained top-down attention (i.e., late LPP) or enhanced negative feelings toward errors. Reflection also facilitated rebound from failure in both genders, although Brooding did not hinder it. Implications of these gender and time-related rumination effects for learning in challenging academic situations are discussed. PMID:26901231
Adjoint-Based Sensitivity Kernels for Glacial Isostatic Adjustment in a Laterally Varying Earth
NASA Astrophysics Data System (ADS)
Crawford, O.; Al-Attar, D.; Tromp, J.; Mitrovica, J. X.; Austermann, J.; Lau, H. C. P.
2017-12-01
We consider a new approach to both the forward and inverse problems in glacial isostatic adjustment. We present a method for forward modelling GIA in compressible and laterally heterogeneous earth models with a variety of linear and non-linear rheologies. Instead of using the so-called sea level equation, which must be solved iteratively, the forward theory we present consists of a number of coupled evolution equations that can be straightforwardly numerically integrated. We also apply the adjoint method to the inverse problem in order to calculate the derivatives of measurements of GIA with respect to the viscosity structure of the Earth. Such derivatives quantify the sensitivity of the measurements to the model. The adjoint method enables efficient calculation of continuous and laterally varying derivatives, allowing us to calculate the sensitivity of measurements of glacial isostatic adjustment to the Earth's three-dimensional viscosity structure. The derivatives have a number of applications within the inverse method. Firstly, they can be used within a gradient-based optimisation method to find a model which minimises some data misfit function. The derivatives can also be used to quantify the uncertainty in such a model and hence to provide understanding of which parts of the model are well constrained. Finally, they enable construction of measurements which provide sensitivity to a particular part of the model space. We illustrate both the forward and inverse aspects with numerical examples in a spherically symmetric earth model.
The isostatic state of Mead crater
NASA Technical Reports Server (NTRS)
Banerdt, W. B.; Konopliv, A. S.; Rappaport, N. J.; Sjogren, W. L.; Grimm, R. E.; Ford, P. G.
1994-01-01
We have analyzed high-resolution Magellan Doppler tracking data over Mead crater, using both line-of-sight and spherical harmonic methods, and have found a negative gravity anomaly of about 4-5 mgal (at spacecraft altitude, 182 km). This is consistent with no isostatic compensation of the present topography; the uncertainty in the analysis allows perhaps as much as 30% compensation at shallow dpeths (approximately 25 km). This is similar to observations of large craters on Earth, which are not generally compensated, but contrasts with at least some lunar basins which are inferred to have large Moho uplifts and corresponding positive Bouguer anomalies. An uncompensated load of this size requires a lithosphere with an effective elastic lithosphere thickness greater than 30 km. In order for the crust-mantle boundary not to have participated in the deformation associated with the collapse of the transient cavity during the creation of the crater, the yield strength near the top of the mantle must have been significantly higher on Earth and Venus than on the Moon at the time of basin formation. This might be due to increased strength against frictional sliding at the higher confining pressures within the larger planets. Alternatively, the thinner crusts of Earth and Venus compared to that of the Moon may result in higher creep strength of the upper mantle at shallower depths.
Plumes in the mantle. [free air and isostatic gravity anomalies for geophysical interpretation
NASA Technical Reports Server (NTRS)
Khan, M. A.
1973-01-01
Free air and isostatic gravity anomalies for the purposes of geophysical interpretation are presented. Evidence for the existance of hotspots in the mantle is reviewed. The prosposed locations of these hotspots are not always associated with positive gravity anomalies. Theoretical analysis based on simplified flow models for the plumes indicates that unless the frictional viscosities are several orders of magnitude smaller than the present estimates of mantle viscosity or alternately, the vertical flows are reduced by about two orders of magnitude, the plume flow will generate implausibly high temperatures.
Influence of hot isostatic pressing on ZrO2-CaO dental ceramics properties.
Gionea, Alin; Andronescu, Ecaterina; Voicu, Georgeta; Bleotu, Coralia; Surdu, Vasile-Adrian
2016-08-30
Different hot isostatic pressing conditions were used to obtain zirconia ceramics, in order to assess the influence of HIP on phase transformation, compressive strength, Young's modulus and density. First, CaO stabilized zirconia powder was synthesized through sol-gel method, using zirconium propoxide, calcium isopropoxide and 2-metoxiethanol as precursors, then HIP treatment was applied to obtain final dense ceramics. Ceramics were morphologically and structurally characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Density measurements, compressive strength and Young's modulus tests were also performed in order to evaluate the effect of HIP treatment. The zirconia powders heat treated at 500°C for 2h showed a pure cubic phase with average particle dimension about 70nm. The samples that were hot isostatic pressed presented a mixture of monoclinic-tetragonal or monoclinic-cubic phases, while for pre-sintered samples, cubic zirconia was the single crystalline form. Final dense ceramics were obtained after HIP treatment, with relative density values higher than 94%. ZrO2-CaO ceramics presented high compressive strength, with values in the range of 500-708.9MPa and elastic behavior with Young's modulus between 1739MPa and 4372MPa. Finally zirconia ceramics were tested for biocompatibility allowing the normal development of MG63 cells in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.
Fagan, Ryan P; Neil, Karen P; Sasich, Randy; Luquez, Carolina; Asaad, Hakam; Maslanka, Susan; Khalil, Wajahat
2011-11-01
Investigational heptavalent botulinum antitoxin (HBAT) is now the primary antitoxin for US noninfant botulism patients. HBAT consists of equine Fab/F(ab')2 IgG fragments, which are cleared from circulation faster than whole immunoglobulins. Rebound botulism after antitoxin administration is not previously documented but occurred in our patient 10 days after HBAT administration.
Assessment of Glacial Isostatic Adjustment in Greenland using GPS
NASA Astrophysics Data System (ADS)
Khan, S. A.; Bevis, M. G.; Sasgen, I.; van Dam, T. M.; Wahr, J. M.; Wouters, B.; Bamber, J. L.; Willis, M. J.; Knudsen, P.; Helm, V.; Kuipers Munneke, P.; Muresan, I. S.
2015-12-01
The Greenland GPS network (GNET) was constructed to provide a new means to assess viscoelastic and elastic adjustments driven by past and present-day changes in ice mass. Here we assess existing glacial isostatic adjustments (GIA) predictions by analysing 1995-2015 data from 61 continuous GPS receivers located along the margin of the Greenland ice sheet. Since GPS receivers measure both the GIA and elastic signals, we isolate GIA, by removing the elastic adjustments of the lithosphere due to present-day mass changes using high-resolution fields of ice surface elevation change derived from satellite and airborne altimetry measurements (ERS1/2, ICESat, ATM, ENVISAT, and CryoSat-2). For most GPS stations, our observed GIA rates contradict GIA predictions; particularly, we find huge uplift rates in southeast Greenland of up to 14 mm/yr while models predict rates of 0-2 mm/yr. Our results suggest possible improvements of GIA predictions, and hence of the poorly constrained ice load history and Earth structure models for Greenland.
Chen, Vicky Ping; Gao, Yang; Geng, Liyi; Brimijoin, Stephen
2017-10-10
The worldwide prevalence of obesity is increasing at an alarming rate but treatment options remain limited. Despite initial success, weight loss by calorie restriction (CR) often fails because of rebound weight gain. Postdieting hyperphagia along with altered hypothalamic neuro-architecture appears to be one direct cause of this undesirable outcome. In response to calorie deficiency the circulating levels of the appetite-promoting hormone, acyl-ghrelin, rise sharply. We hypothesize that proper modulation of acyl-ghrelin and its receptor's sensitivity will favorably impact energy intake and reprogram the body weight set point. Here we applied viral gene transfer of the acyl-ghrelin hydrolyzing enzyme, butyrylcholinesterase (BChE), in a mouse model of diet-induced obesity. Our results confirmed that BChE overexpression decreased circulating acyl-ghrelin levels, suppressed CR-provoked ghrelin signaling, and restored central ghrelin sensitivity. In addition to maintaining healthy body weights, BChE treated mice had modest postdieting food intake and showed normal glucose homeostasis. Spontaneous activity and energy expenditure did not differ significantly between treated and untreated mice after body weight rebound, suggesting that BChE gene transfer did not alter energy expenditure in the long term. These findings indicate that combining BChE treatment with CR could be an effective approach in treating human obesity and aiding lifelong weight management.
Li, Ying; Davey, Robert A.; Lynch, William P.
2014-01-01
Certain retroviruses induce progressive spongiform motor neuron disease with features resembling prion diseases and amyotrophic lateral sclerosis. With the neurovirulent murine leukemia virus (MLV) FrCasE, Env protein expression within glia leads to postsynaptic vacuolation, cellular effacement, and neuronal loss in the absence of neuroinflammation. To understand the physiological changes associated with MLV-induced spongiosis, and its neuronal specificity, we employed patch-clamp recordings and voltage-sensitive dye imaging in brain slices of the mouse inferior colliculus (IC), a midbrain nucleus that undergoes extensive spongiosis. IC neurons characterized by postinhibitory rebound firing (PIR) were selectively affected in FrCasE-infected mice. Coincident with Env expression in microglia and in glia characterized by NG2 proteoglycan expression (NG2 cells), rebound neurons (RNs) lost PIR, became hyperexcitable, and were reduced in number. PIR loss and hyperexcitability were reversed by raising internal calcium buffer concentrations in RNs. PIR-initiated rhythmic circuits were disrupted, and spontaneous synchronized bursting and prolonged depolarizations were widespread. Other IC neuron cell types and circuits within the same degenerative environment were unaffected. Antagonists of NMDA and/or AMPA receptors reduced burst firing in the IC but did not affect prolonged depolarizations. Antagonists of L-type calcium channels abolished both bursts and slow depolarizations. IC infection by the nonneurovirulent isogenic virus Friend 57E (Fr57E), whose Env protein is structurally similar to FrCasE, showed no RN hyperactivity or cell loss; however, PIR latency increased. These findings suggest that spongiform neurodegeneration arises from the unique excitability of RNs, their local regulation by glia, and the disruption of this relationship by glial expression of abnormal protein. PMID:25252336
Robertson, McKaylee; Laraque, Fabienne; Mavronicolas, Heather; Braunstein, Sarah; Torian, Lucia
2015-01-01
The success of antiretroviral therapy (ART) as treatment for the individual patient and as prevention requires the achievment and maintenance of human immunodeficiency virus (HIV) viral suppression. Linkage to and retention in care are required for access to ART. We describe the impact of care on viral suppression using routinely reported surveillance data. We included New York City residents ≥13 years of age, diagnosed with HIV/AIDS from 1 July 2005 to 30 June 2009 with a viral load (VL) or CD4 reported within six months of diagnosis and ≥1 VL reported from 1 July 2005 to 30 June 2011. To examine viral rebound, we restricted the analysis to those who achieved viral suppression and had a subsequent VL measure reported by 30 June 2011. Cox proportional hazards models were used to evaluate factors associated with time to viral suppression (VL ≤ 400 copies/mL) and rebound (VL > 1000 copies/mL). Initiation of care within three months of diagnosis (CD4/VL report within three months of diagnosis), female sex, and an initial CD4 < 350 (cells/mm(3)) at diagnosis significantly increased the likelihood of viral suppression. Irregular care (no CD4/VL reported every six months), younger age, non-white race/ethnicity, having an initial CD4 ≥ 350 at diagnosis, and AIDS diagnosis by 2010 increased the likelihood of rebound. These findings lend support to interventions for improving linkage to and maintenance in regular care as a way to achieve and maintain suppression. Surveillance data represent an ideal means for monitoring engagement in care and viral suppression at the population level.
Kamaria, Monique; Liao, Wilson; Koo, J Y
2010-01-01
The biologic agents vary considerably in terms of their long-term duration of effect. Using the definitions provided by the National Psoriasis Foundation Medical Board, the objective of this review was to compare all biologic agents with respect to time to relapse and potential for rebound. Overall, alefacept had the longest off-treatment benefit (29.9 weeks in Psoriasis Area and Severity Index [PASI] 75 responders), followed by ustekinumab (22 weeks), infliximab (19.5 weeks), adalimumab (18 weeks), etanercept (12.1 weeks in PASI 50 responders), and, lastly, efalizumab (9.6 weeks). Rebound was reported commonly for efalizumab (14%) and, extremely rarely, for etanercept (0.002%).
Geologic and isostatic map of the Nenana Basin area, central Alaska
Frost, G.M.; Barnes, D.F.; Stanley, R.G.
2002-01-01
Introduction The Nenana Basin area is a prospective petroleum province in central Alaska, and this geologic and isostatic gravity map is part of a petroleum resource assessment of the area. The geology was compiled from published sources (Chapman and others, 1971, 1975a, 1975b, 1982; Chapman and Yeend, 1981; Csejtey and others, 1986; Jones and others, 1983; Pewe and others, 1966; Reed, 1961; and Weber and others, 1992), as shown on the index map (map sheet). Map units are organized and presented according to the scheme of lithotectonic terranes proposed by Jones and others (1987) and Silberling and Jones (1984); we recognize, however, that this terrane scheme is controversial and likely to be revised in the future. In some cases, we combined certain terranes because we were unable to match the terrane boundaries given by Jones and others (1987) and Silberling and Jones (1984) with specific faults shown on existing geologic maps. Postaccretion cover deposits represent overlap assemblages that depositionally overlie accreted terranes. Plutonic igneous rocks shown on this map include several plutons that are clearly postaccretionary, based on isotopic ages and (or) field relations. It is possible that some of the plutons predate accretion, but this has not been demonstrated. According to Jones and others (1982), the terranes in the area of our map were assembled during late Mesozoic or earliest Cenozoic time. The gravity contours are derived from data used in earlier compilations (Barnes, 1961, 1977; Hackett, 1981; Valin and others, 1991; Frost and Stanley, 1991) that are supplemented by some National Oceanic and Atmospheric Administration data along the Alaska Pipeline level line (W.E. Strange, written commun., 1980). The earlier compilations were used for simple Bouguer maps, prepared primarily by non-digital methods, and are superseded by this map. The present map is the result of digital processing that includes the 1967 Geodetic Reference System, the IGSN-71
A post-Calumet shoreline along southern Lake Michigan
Capps, D.K.; Thompson, T.A.; Booth, R.K.
2007-01-01
The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan's late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ???184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ???2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ?? 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does. ?? 2006 Springer Science+Business Media B.V.
NASA Technical Reports Server (NTRS)
Shimanuki, Y.; Nishino, Y.; Masui, M.; Doi, H.
1980-01-01
The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries.
Chen, Vicky Ping; Gao, Yang; Geng, Liyi; Brimijoin, Stephen
2017-01-01
The worldwide prevalence of obesity is increasing at an alarming rate but treatment options remain limited. Despite initial success, weight loss by calorie restriction (CR) often fails because of rebound weight gain. Postdieting hyperphagia along with altered hypothalamic neuro-architecture appears to be one direct cause of this undesirable outcome. In response to calorie deficiency the circulating levels of the appetite-promoting hormone, acyl-ghrelin, rise sharply. We hypothesize that proper modulation of acyl-ghrelin and its receptor’s sensitivity will favorably impact energy intake and reprogram the body weight set point. Here we applied viral gene transfer of the acyl-ghrelin hydrolyzing enzyme, butyrylcholinesterase (BChE), in a mouse model of diet-induced obesity. Our results confirmed that BChE overexpression decreased circulating acyl-ghrelin levels, suppressed CR-provoked ghrelin signaling, and restored central ghrelin sensitivity. In addition to maintaining healthy body weights, BChE treated mice had modest postdieting food intake and showed normal glucose homeostasis. Spontaneous activity and energy expenditure did not differ significantly between treated and untreated mice after body weight rebound, suggesting that BChE gene transfer did not alter energy expenditure in the long term. These findings indicate that combining BChE treatment with CR could be an effective approach in treating human obesity and aiding lifelong weight management. PMID:28973869
Ruf, J C; Berger, J L; Renaud, S
1995-01-01
We investigated in rats fed a purified diet for 2 and 4 months whether wine drinking was associated with the rebound effect on thrombin-induced platelet aggregation observed after alcohol withdrawal. With 6% ethanol drinking or its equivalent in red or white wine, platelet aggregation was reduced similarly by 70% when the animals drank the alcoholic beverages up to the venipuncture. Depriving the rats of alcoholic beverages for 18 hours was associated with an increase in the platelet response of 124% in those receiving 6% ethanol, of 46% with white wine but a decrease of 59% in those with red wine. The protective effect of red wine on platelets could be reproduced by tannins (procyanidins) extracted from grape seeds or red wine and added to 6% ethanol, but not by glycerol or wine without alcohol. That was related to inhibition of the alcohol-induced lipid peroxidation as shown by the lowering of conjugated dienes, lipid peroxides, and the increase in vitamin E in plasma. Owing to tannins, the platelets of rats drinking red wine did not exhibit the rebound effect observed hours after alcohol drinking, eventually associated with sudden death and stroke in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crapps, Justin M.; Clarke, Kester D.; Katz, Joel D.
2012-06-06
We use experimentation and finite element modeling to study a Hot Isostatic Press (HIP) manufacturing process for U-10Mo Monolithic Fuel Plates. Finite element simulations are used to identify the material properties affecting the process and improve the process geometry. Accounting for the high temperature material properties and plasticity is important to obtain qualitative agreement between model and experimental results. The model allows us to improve the process geometry and provide guidance on selection of material and finish conditions for the process strongbacks. We conclude that the HIP can must be fully filled to provide uniform normal stress across the bondingmore » interface.« less
Costiniuk, Cecilia T; Kovacs, Colin; Routy, Jean-Pierre; Singer, Joel; Gurunathan, Sanjay; Sekaly, Rafick-Pierre; Angel, Jonathan B
2013-02-01
Although there is discordance between human immunodeficiency virus (HIV) blood plasma and seminal plasma viral loads (VL), little is known about the dynamics of VL rebound in these compartments upon discontinuation of highly active antiretroviral therapy (HAART). Therefore, we sought to examine the relationship between blood and semen VL rebound after discontinuation of HAART. Participants in this substudy were men enrolled from two centers of a multicenter, placebo-controlled randomized trial of HIV therapeutic vaccination using ALVAC with or without Remune. With at least 2 years of sustained virologic suppression and following a 20-week vaccination course, subjects underwent structured HAART interruption. Fourteen men provided semen samples. Seven to 12 weeks after HAART interruption, all 14 men had detectable blood VLs whereas 8 of 14 had detectable seminal VLs. There was a significant correlation between blood and seminal VLs (Spearman r=0.58, p=0.03) at the time of semen collection. An earlier time to detectable blood VL after HAART interruption was associated with higher seminal VL (Spearman r=-0.64, p=0.02). These findings support the compartmentalization of HIV and underscore the importance of understanding the genital tract as an HIV reservoir in the quest to minimize HIV transmission.
Effect of Temperature on the Fracture Toughness of Hot Isostatically Pressed 304L Stainless Steel
NASA Astrophysics Data System (ADS)
Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.
2018-03-01
Herein, we have performed J- Resistance multi-specimen fracture toughness testing of hot isostatically pressed (HIP'd) and forged 304L austenitic stainless steel, tested at elevated (300 °C) and cryogenic (- 140 °C) temperatures. The work highlights that although both materials fail in a pure ductile fashion, stainless steel manufactured by HIP displays a marked reduction in fracture toughness, defined using J 0.2BL, when compared to equivalently graded forged 304L, which is relatively constant across the tested temperature range.
Measurement and interpretation of crustal deformation rates associated with postglacial rebound
NASA Technical Reports Server (NTRS)
Davis, James L.
1994-01-01
This project involves obtaining GPS measurements in Scandinavia and using the measurements to estimate the viscosity profile of the earth's mantle and to correct tide-gauge measurements for the rebound effect. We report on several aspects of this project. The DSGS was not scheduled to be reoccupied with DOSE receivers during the report period. The permanent network set up by Onsala Space Observatory continues to operate, and the data are being evaluated. An important technical advance we intend for this project is to use the full three dimensional site velocity information for inferring geophysical parameters. During the report period, two papers have been been accepted for publication in the Journal of Geophysical Research and will be published in April. Reprints of these papers are contained in the Appendix.
NASA Astrophysics Data System (ADS)
Freudling, Maximilian; Klammer, Jesko; Lousberg, Gregory; Schumacher, Jean-Marc; Körner, Christian
2016-07-01
A novel isostatic mounting concept for a space born TMA of the Meteosat Third Generation Infrared Sounder is presented. The telescope is based on a light-weight all-aluminium design. The mounting concept accommodates the telescope onto a Carbon-Fiber-Reinforced Polymer (CRFP) structure. This design copes with the high CTE mismatch without introducing high stresses into the telescope structure. Furthermore a Line of Sight stability of a few microrads under geostationary orbit conditions is provided. The design operates with full performance at a temperature 20K below the temperature of the CFRP structure and 20K below the integration temperature. The mounting will sustain launch loads of 47g. This paper will provide the design of the Back Telescope Assembly (BTA) isostatic mounting and will summarise the consolidated technical baseline reached following a successful Preliminary Design Review (PDR).
Worldwide complete spherical Bouguer and isostatic anomaly maps
NASA Astrophysics Data System (ADS)
Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.
2011-12-01
We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis
Moghadam, Fatemeh Velayati; Majidinia, Sara; Chasteen, Joseph; Ghavamnasiri, Marjaneh
2013-01-01
Aim: The purpose of the present randomized clinical trial was to evaluate the color change, rebound effect and sensitivity of at-home bleaching with 15% carbamide peroxide and power bleaching using 38% hydrogen peroxide. Materials and Methods: For bleaching techniques, 20 subjects were randomized in a split mouth design (at-home and power bleaching): In maxillary and mandibular anterior teeth (n = 20). Color was recorded before bleaching, immediately after bleaching, at 2 weeks, 1, 3 and 6 month intervals. Tooth sensitivity was recorded using the visual analog scale. The Mann-Whitney test was used to compare both groups regarding bleaching effectiveness (ΔE1), rebound effect (ΔE2) and color difference between the rebounded tooth color and unbleached teeth (ΔE3) while the Wilcoxon compared ΔE within each group. Distribution of sensitivity was evaluated using the Chi-square test (α =0.05). Results: There was no significant difference between groups regarding ΔE1 and ΔE3 (P > 0.05). Even though, ΔE2 showed no significant difference between groups after bleaching as well as at 2 week, 1 month and 3 month follow-up periods (P > 0.05). Although, significant difference was found in ΔE2 (P < 0.05 Mann-Whitney) between two methods after 6 months and a high degree of rebound effect was obtained with power bleaching. Within each group, there was no significant difference between ΔE1 and ΔE3 (P < 0.05 Wilcoxon). The distribution of sensitivity was identical with both techniques (P > 0.05). Conclusion: Bleaching techniques resulted in identical tooth whitening and post-operative sensitivity using both techniques, but faster color regression was found with power bleaching even though color regression to the baseline of the teeth in both groups was the same after 6 months. PMID:24932113
NASA Astrophysics Data System (ADS)
Cooper, A. J.; Smith, R. J.; Sherry, A. H.
2017-05-01
Type 300 austenitic stainless steel manufactured by hot isostatic pressing (HIP) has recently been shown to exhibit subtly different fracture behavior from that of equivalent graded forged steel, whereby the oxygen remaining in the component after HIP manifests itself in the austenite matrix as nonmetallic oxide inclusions. These inclusions facilitate fracture by acting as nucleation sites for the initiation, growth, and coalescence of microvoids in the plastically deforming austenite matrix. Here, we perform analyses based on the Rice-Tracey (RT) void growth model, supported by instrumented Charpy and J-integral fracture toughness testing at ambient temperature, to characterize the degree of void growth ahead of both a V-notch and crack in 304L stainless steel. We show that the hot isostatically pressed (HIP'd) 304L steel exhibits a lower critical void growth at the onset of fracture than that observed in forged 304L steel, which ultimately results in HIP'd steel exhibiting lower fracture toughness at initiation and impact toughness. Although the reduction in toughness of HIP'd steel is not detrimental to its use, due to the steel's sufficiently high toughness, the study does indicate that HIP'd and forged 304L steel behave as subtly different materials at a microstructural level with respect to their fracture behavior.
Modulation of post-movement beta rebound by contraction force and rate of force development.
Fry, Adam; Mullinger, Karen J; O'Neill, George C; Barratt, Eleanor L; Morris, Peter G; Bauer, Markus; Folland, Jonathan P; Brookes, Matthew J
2016-07-01
Movement induced modulation of the beta rhythm is one of the most robust neural oscillatory phenomena in the brain. In the preparation and execution phases of movement, a loss in beta amplitude is observed [movement related beta decrease (MRBD)]. This is followed by a rebound above baseline on movement cessation [post movement beta rebound (PMBR)]. These effects have been measured widely, and recent work suggests that they may have significant importance. Specifically, they have potential to form the basis of biomarkers for disease, and have been used in neuroscience applications ranging from brain computer interfaces to markers of neural plasticity. However, despite the robust nature of both MRBD and PMBR, the phenomena themselves are poorly understood. In this study, we characterise MRBD and PMBR during a carefully controlled isometric wrist flexion paradigm, isolating two fundamental movement parameters; force output, and the rate of force development (RFD). Our results show that neither altered force output nor RFD has a significant effect on MRBD. In contrast, PMBR was altered by both parameters. Higher force output results in greater PMBR amplitude, and greater RFD results in a PMBR which is higher in amplitude and shorter in duration. These findings demonstrate that careful control of movement parameters can systematically change PMBR. Further, for temporally protracted movements, the PMBR can be over 7 s in duration. This means accurate control of movement and judicious selection of paradigm parameters are critical in future clinical and basic neuroscientific studies of sensorimotor beta oscillations. Hum Brain Mapp 37:2493-2511, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Immunological biomarkers predict HIV-1 viral rebound after treatment interruption
Hurst, Jacob; Hoffmann, Matthias; Pace, Matthew; Williams, James P.; Thornhill, John; Hamlyn, Elizabeth; Meyerowitz, Jodi; Willberg, Chris; Koelsch, Kersten K.; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David A.; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Babiker, Abdel; Weber, Jonathan; Kelleher, Anthony D.; Phillips, Rodney E.; Frater, John
2015-01-01
Treatment of HIV-1 infection with antiretroviral therapy (ART) in the weeks following transmission may induce a state of ‘post-treatment control' (PTC) in some patients, in whom viraemia remains undetectable when ART is stopped. Explaining PTC could help our understanding of the processes that maintain viral persistence. Here we show that immunological biomarkers can predict time to viral rebound after stopping ART by analysing data from a randomized study of primary HIV-1 infection incorporating a treatment interruption (TI) after 48 weeks of ART (the SPARTAC trial). T-cell exhaustion markers PD-1, Tim-3 and Lag-3 measured prior to ART strongly predict time to the return of viraemia. These data indicate that T-cell exhaustion markers may identify those latently infected cells with a higher proclivity to viral transcription. Our results may open new avenues for understanding the mechanisms underlying PTC, and eventually HIV-1 eradication. PMID:26449164
Quest for postdialysis urea rebound-equilibrated Kt/V with only intradialytic urea samples.
Jean, G; Charra, B; Chazot, C; Laurent, G
1999-09-01
Postdialysis urea rebound (PDUR) is a cause of Kt/V overestimation when it is calculated from predialysis and the immediate postdialysis blood urea collections. Measuring PDUR requires a 30- or 60-minute postdialysis sampling, which is inconvenient. Several methods had been devised for a reasonable approach to determine PDUR-equilibrated Kt/V in short dialysis without the need for a delayed sample. The aim of our study was to compare these different Kt/V methods during the longer eight-hour hemodialysis sessions, and to determine the optimum intradialytic urea sample time that fits best with PDUR. The study included 21 patients (mean age 71.9 years) who were hemodialyzed for 60+/-60 months at three times eight hours weekly, using bicarbonate dialysate and cellulosic membranes. Blood urea samples were obtained at onset, and then at 17, 33, 50, 66, 75, 80, 85, and 100% of the dialysis session times, after 30 seconds of low flow, and then at 60-minutes postdialysis. All patients had a meal during dialysis. We compared four different formulas of Kt/V [(a) Kt/V-Smye with a 33% dialysis time urea sample, (b) two-pool equilibrated eKt/V, (c) Kt/V-std (Daugirdas-2) obtained with an immediate postdialytic sample, and (d) the different intradialytic urea samples for Kt/V (50, 66, 75, 80, and 85% of dialysis time)] with the equilibrated 60-minute PDUR Kt/V (Kt/V-r-60) formula as the reference method. The mean PDUR was 17.2+/-9%, leading to an overestimation of Kt/V-std by 12.2%. Kt/V-r-60 was 1.68+/-0.34. Kt/V-std was 1.88+/-0.36 (Delta = 12.2+/-4.8%, r = 0.8). eKt/V was 1.77+/-0.3 (Delta = 5+/-5%, r = 0.96), and Kt/V-Smye was 1.79+/-0.47 (Delta = 5.2+/-14%, r = 0.9). The best time for the intradialytic sampling was 80% (that is, at 6 hr and 24 min). The Kt/V-80 was 1.64+/-0.3 and was best fitted with Kt/V-r-60 (Delta = -1.8+/-8%, r = 0.91). The mean intradialytic urea evolution showed a three-exponential rate, in discrepancy with the two-exponential rate theoretical model
Farallon slab detachment and deformation of the Magdalena Shelf, southern Baja California
Brothers, Daniel S.; Harding, Alistair J.; Gonzalez-Fernandez, Antonio; Holbrook, W.S. Steven; Kent, Graham M.; Driscoll, Neal W.; Fletcher, John M.; Lizarralde, Daniel; Umhoefer, Paul J.; Axen, Gary
2012-01-01
Subduction of the Farallon plate beneath northwestern Mexico stalled by ~12 Ma when the Pacific-Farallon spreading-ridge approached the subduction zone. Coupling between remnant slab and the overriding North American plate played an important role in the capture of the Baja California (BC) microplate by the Pacific Plate. Active-source seismic reflection and wide-angle seismic refraction profiles across southwestern BC (~24.5°N) are used to image the extent of remnant slab and study its impact on the overriding plate. We infer that the hot, buoyant slab detached ~40 km landward of the fossil trench. Isostatic rebound following slab detachment uplifted the margin and exposed the Magdalena Shelf to wave-base erosion. Subsequent cooling, subsidence and transtensional opening along the shelf (starting ~8 Ma) starved the fossil trench of terrigenous sediment input. Slab detachment and the resultant rebound of the margin provide a mechanism for rapid uplift and exhumation of forearc subduction complexes.
Measurement and Interpretation of Crustal Deformation Rates Associated with Postglacial Rebound
NASA Technical Reports Server (NTRS)
Davis, James L.
1993-01-01
This project involves obtaining GPS measurements in Scandinavia, and using the measurements to estimate the viscosity profile of the Earth's mantle and to correct tide-gauge measurements for the rebound effect. Below, we report on several aspects of this project. The DSGS was occupied in August 1993. This campaign also inaugurated SWEPOS, the Swedish permanent GPS network. Initial results are presented in Johansson et al., a copy of which is contained in Appendix A. An important technical advance we intend for this project is to use the full three dimensional site velocity information for inferring geophysical parameters. To this end, we have investigated using VLBI determined baseline length rates in North America to constraining proposed combinations of ice history and earth rheology, and presented this work in Mitrovica et al., a copy of which is contained in Appendix B.
Kim, Seonah; Ståhlberg, Jerry; Sandgren, Mats; Paton, Robert S.; Beckham, Gregg T.
2014-01-01
Lytic polysaccharide monooxygenases (LPMOs) exhibit a mononuclear copper-containing active site and use dioxygen and a reducing agent to oxidatively cleave glycosidic linkages in polysaccharides. LPMOs represent a unique paradigm in carbohydrate turnover and exhibit synergy with hydrolytic enzymes in biomass depolymerization. To date, several features of copper binding to LPMOs have been elucidated, but the identity of the reactive oxygen species and the key steps in the oxidative mechanism have not been elucidated. Here, density functional theory calculations are used with an enzyme active site model to identify the reactive oxygen species and compare two hypothesized reaction pathways in LPMOs for hydrogen abstraction and polysaccharide hydroxylation; namely, a mechanism that employs a η1-superoxo intermediate, which abstracts a substrate hydrogen and a hydroperoxo species is responsible for substrate hydroxylation, and a mechanism wherein a copper-oxyl radical abstracts a hydrogen and subsequently hydroxylates the substrate via an oxygen-rebound mechanism. The results predict that oxygen binds end-on (η1) to copper, and that a copper-oxyl–mediated, oxygen-rebound mechanism is energetically preferred. The N-terminal histidine methylation is also examined, which is thought to modify the structure and reactivity of the enzyme. Density functional theory calculations suggest that this posttranslational modification has only a minor effect on the LPMO active site structure or reactivity for the examined steps. Overall, this study suggests the steps in the LPMO mechanism for oxidative cleavage of glycosidic bonds. PMID:24344312
Testing the Rebound Peer Review Concept
Choi, Augustine M.K.
2013-01-01
Abstract This invited editorial addresses the rescue of the article by Skrzypek et al. “Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis.” The work was rejected by the standard peer review system and subsequently rescued by the Rebound Peer Review (RPR) mechanism offered by Antioxidants and Redox Signaling (Antioxid Redox Signal 16: 293–296, 2012). The reviewers who openly rescued the article were James F. George, Justin C. Mason, Mahin D. Maines, and Yasufumi Sato. The initial article was a de novo resubmission of a previously rejected article, which was then reviewed by six reviewers. The reviewers raised substantial scientific concerns, including questions pertaining to the specificity of the findings, quality of the presentation, and other technical concerns; the editor returned a decision of reject. The authors voluntarily chose to exercise the option to rescue the article utilizing the RPR system, where the authors found qualified reviewers who were willing to advocate for acceptance with scientific reasoning. The open reviewers felt that the scientific and technical concerns raised by the reviewers were outweighed by the strengths and novelty of the findings to justify acceptance. The RPR, in this case, was a “success” in that it rescued a rejected article. Despite this assessment, we question the necessity of open peer review as a means to overturn a peer review decision, with concerns for the larger-than-usual peer review process, and the voluntary relinquishing of editorial privilege and disclosure of reviewer identity. Antioxid. Redox Signal. 19, 639–643. PMID:23725371
NASA Astrophysics Data System (ADS)
Radhakrishna, M.; Searle, R. C.
2006-04-01
The Alula-Fartak and Owen transforms are the active parts of major fracture zones with a distinct topographic expression in the Eastern Gulf of Aden and the Arabian Sea, respectively. While the Alula-Fartak transform offsets the Sheba Ridge by about 180 km and is associated with a broad steep-sided valley with a relief of nearly 3.5 km, the Owen transform offsets the Carlsberg Ridge by nearly 300 km and is associated with a broad step-like valley surrounded by deeper water depths. The gravity and topography data along several profiles selected across these two transforms have been analysed using cross-spectral analysis in order to investigate their isostatic compensation. The observed admittance estimates have been compared with three theoretical isostatic compensation models, two local compensation models (Airy I and II) and one regional compensation (plate) model. Comparing the longer wavelength admittance estimates suggests that the regional compensation model gives the best fit for both the Alula-Fartak transform and the Owen transform, with effective elastic thickness (Te) of 5 km and slightly less than 10 km, respectively. For the Alula-Fartak transform, the Airy II model might also be acceptable, though with large scatter in the observed values: it suggests a mean value of 9 km for the mantle layer with a 6 km thick crust. For the Owen transform, on the other hand, the two local compensation models failed. The difference in Te estimate between the two transforms could be ascribed to differences in thermal structure arising from their varied tectonic history. A comparison with the isostatic response estimates of transform/fracture zones along the slow-spreading Mid-Atlantic Ridge suggests that the regional compensation model is generally applicable for transform/fracture zone topography along such mid-ocean ridges.
NASA Astrophysics Data System (ADS)
Stephenson, Beth A.
Climate change is a well-documented phenomenon. If left unchecked greenhouse gas emissions will continue global surface warming, likely leading to severe and irreversible impacts. Generating renewable energy has become an increasingly salient topic in energy policy as it may mitigate the impact of climate change. State renewable energy financial incentives have been in place since the mid-1970s in some states and over 40 states have adopted one or more incentives at some point since then. Using multivariate linear and fixed effects regression for the years 2002 through 2012, I estimate the relationship between state renewable energy financial incentives and residential electricity consumption, along with the associated policy implications. My hypothesis is that a renewable energy rebound effect is present; therefore, states with renewable energy financial incentives have a higher rate of residential electricity consumption. I find a renewable energy rebound effect is present in varying degrees for each model, but the results do not definitively indicate how particular incentives influence consumer behavior. States should use caution when adopting and keeping renewable energy financial incentives as this may increase consumption in the short-term. The long-term impact is unclear, making it worthwhile for policymakers to continue studying the potential for renewable energy financial incentives to alter consumer behavior.
NASA Astrophysics Data System (ADS)
Mercier, Denis; Coquin, Julien; Feuillet, Thierry; Decaulne, Armelle; Cossart, Etienne; Jónsson, Helgi Pall; Sæmundsson, Þorstein
2017-11-01
In Iceland there are numerous rock-slope failures, especially in the Tertiary basaltic formations of the northern, eastern and northwestern regions. The temporal pattern of rock-slope failures is fundamental for understanding post-glacial events. In the Skagafjörður district, central northern Iceland, 17 rock-slope failures were investigated to determine the age of their occurrence. A geomorphic survey was carried out to identify and characterize landform units, both on the rock-slope failures and in their immediate vicinity. In this coastal area, we used geomorphological stacking which included the relationship between rock-slope failures and raised beaches caused by glacial isostatic rebounds, the chronology of which was established in previous studies. We searched for depressions on the rock-slope failures to then excavate a series of pits and map the stratigraphy. The resulting stratigraphic framework was then validated using (i) radiocarbon dating of wood remains, and (ii) tephrochronology, both of which were complemented by age-depth model calibration. The results confirm that all the rock-slope failures potentially occurred before the Boreal (8 ka), while 94% occurred before the Preboreal (10 ka). They all potentially occurred after the glacial retreat following the maximal ice extent and the Preboreal. More precisely, 11 of them potentially occurred between the Preboreal and the first half of the Holocene. This study demonstrates the relationship between the deglaciation and destabilization of slopes during the paraglacial phase (debuttressing, decompression, glacial isostatic rebound, seismic activity, etc.), which are also controlling factors favouring landsliding, but are difficult to identify for each individual rock-slope failure.
REBOUND-ing Off Asteroids: An N-body Particle Model for Ejecta Dynamics on Small Bodies
NASA Astrophysics Data System (ADS)
Larson, Jennifer; Sarid, Gal
2017-10-01
Here we describe our numerical approach to model the evolution of ejecta clouds. Modeling with an N-body particle method enables us to study the micro-dynamics while varying the particle size distribution. A hydrodynamic approach loses many of the fine particle-particle interactions included in the N-body particle approach (Artemieva 2008).We use REBOUND, an N-body integration package (Rein et al. 2012) developed to model various dynamical systems (planetary orbits, ring systems, etc.) with high resolution calculations at a lower performance cost than other N-body integrators (Rein & Tamayo 2017). It offers both symplectic (WHFast) and non-symplectic (IAS15) methods (Rein & Spiegel 2014, Rein & Tamayo 2015). We primarily use the IAS15 integrator due to its robustness and accuracy with short interaction distances and non-conservative forces. We implemented a wrapper (developed in Python) to handle changes in time step and integrator at different stages of ejecta particle evolution.To set up the system, each particle is given a velocity away from the target body’s surface at a given angle within a defined ejecta cone. We study the ejecta cloud evolution beginning immediately after an impact rather than the actual impact itself. This model considers effects such as varying particle size distribution, radiation pressure, perturbations from a binary component, particle-particle collisions and non-axisymmetric gravity of the target body. Restrictions on the boundaries of the target body’s surface define the physical shape and help count the number of particles that land on the target body. Later, we will build the central body from individual particles to allow for a wider variety of target body shapes and topographies.With our particle modeling approach, individual particle trajectories are tracked and predicted on short, medium and long timescales. Our approach will be applied to modeling of the ejecta cloud produced during the Double Asteroid Redirection Test
NASA Technical Reports Server (NTRS)
Zuber, M. T.; Parmentier, E. M.
1990-01-01
Venus lithospheric structure models are presently formulated in which regional isostatic elevation, d, and the spacing wavelength, lambda, of tectonic features formed due to horizontal extension and compression are functions of both surface thermal gradient and crustal thickness c. It is shown that, in areas of Venus where the upper mantle is stronger than the upper crust, the spacings of short-wavelength features should increase with increasing d, if that change in turn is due to increasing c, but should decrease with increasing d, if this change is in turn due to increasing surface thermal gradient.
2007-02-01
fabrication of dense thin sheets of gamma titanium aluminide . Polarized light microscopy revealed a fine-grained microstructure but a few isolated...HIPed (near-gamma) microstructure occurred. 15. SUBJECT TERMS gamma titanium aluminide , thin sheet, tape casting, hot isostatic pressing 16...sheets (250–300 μm thick) of gamma titanium aluminide (γ-TiAl). Polarized light microscopy revealed a fine-grained microstructure (average grain
Modulation of post‐movement beta rebound by contraction force and rate of force development
Fry, Adam; Mullinger, Karen J.; O'Neill, George C.; Barratt, Eleanor L.; Morris, Peter G.; Bauer, Markus; Folland, Jonathan P.
2016-01-01
Abstract Movement induced modulation of the beta rhythm is one of the most robust neural oscillatory phenomena in the brain. In the preparation and execution phases of movement, a loss in beta amplitude is observed [movement related beta decrease (MRBD)]. This is followed by a rebound above baseline on movement cessation [post movement beta rebound (PMBR)]. These effects have been measured widely, and recent work suggests that they may have significant importance. Specifically, they have potential to form the basis of biomarkers for disease, and have been used in neuroscience applications ranging from brain computer interfaces to markers of neural plasticity. However, despite the robust nature of both MRBD and PMBR, the phenomena themselves are poorly understood. In this study, we characterise MRBD and PMBR during a carefully controlled isometric wrist flexion paradigm, isolating two fundamental movement parameters; force output, and the rate of force development (RFD). Our results show that neither altered force output nor RFD has a significant effect on MRBD. In contrast, PMBR was altered by both parameters. Higher force output results in greater PMBR amplitude, and greater RFD results in a PMBR which is higher in amplitude and shorter in duration. These findings demonstrate that careful control of movement parameters can systematically change PMBR. Further, for temporally protracted movements, the PMBR can be over 7 s in duration. This means accurate control of movement and judicious selection of paradigm parameters are critical in future clinical and basic neuroscientific studies of sensorimotor beta oscillations. Hum Brain Mapp 37:2493–2511, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc PMID:27061243
Peura, David; Le Moigne, Anne; Pollack, Charles; Nagy, Peter; Lind, Tore
2016-08-01
Esomeprazole 20 mg once daily has been shown to be effective for treating frequent heartburn over 14 days in subjects who are likely to self-treat with over-the-counter medications. These analyses were conducted to assess durability of effects and symptomatic rebound after cessation of treatment, treatment satisfaction, and rescue antacid use with esomeprazole 20 mg once daily for 14 days. Adults with frequent heartburn (≥ two days/week in the past four weeks) were randomly assigned to 14 days of double-blind treatment with esomeprazole 20 mg or placebo in two identical multicenter studies. All subjects entered a 1-week single-blind placebo follow-up period after treatment. The results of the primary efficacy endpoints were reported previously. The percentage of heartburn-free days during the 1-week follow-up, use of rescue antacids, and treatment satisfaction, measured with the Global Assessment Questions instrument, are described. The percentage of heartburn-free days was maintained during the 1-week follow-up period; the proportion was 43% among esomeprazole subjects in these studies, suggesting no evidence of symptomatic rebound. Rescue antacid use generally decreased compared with the run-in period in the 14-day treatment and 1-week follow-up periods. Significantly more subjects taking esomeprazole were "very satisfied" or "satisfied" with treatment versus placebo (Study 1: 78% vs. 63%, respectively, P = 0.0038; Study 2: 81% vs. 60%, respectively, P = 0.0002). Subjects who are likely to self-treat their frequent heartburn with over-the-counter medications reported satisfaction with esomeprazole 20 mg. Esomeprazole's treatment effect was maintained for ≥ one week after treatment ended, with no sign of symptomatic rebound. These trials were registered at ClinicalTrials.gov: NCT01370525; NCT01370538.
Mountain building and earth rotation.
NASA Astrophysics Data System (ADS)
Vermeersen, L. L. A.; Sabadini, R.; Spada, G.; Vlaar, N. J.
1994-06-01
Whereas the present-day true polar wander and the secular non-tidal acceleration of the Earth have usually been attributed to postglacial rebound, it has recently been suggested that non-glacially induced vertical tectonic movements taking place under non-isostatic conditions can also be effective in changing the Earth's rotation. The authors present a case study in which they analyse the effects of some simple uplift histories of the Himalayas and the Tibetan Plateau on the rotational axis and on the second-degree zonal harmonic of the geoid, for time-scales of up to a few million years.
Colby, Donn J; Trautmann, Lydie; Pinyakorn, Suteeraporn; Leyre, Louise; Pagliuzza, Amélie; Kroon, Eugène; Rolland, Morgane; Takata, Hiroshi; Buranapraditkun, Supranee; Intasan, Jintana; Chomchey, Nitiya; Muir, Roshell; Haddad, Elias K; Tovanabutra, Sodsai; Ubolyam, Sasiwimol; Bolton, Diane L; Fullmer, Brandie A; Gorelick, Robert J; Fox, Lawrence; Crowell, Trevor A; Trichavaroj, Rapee; O'Connell, Robert; Chomont, Nicolas; Kim, Jerome H; Michael, Nelson L; Robb, Merlin L; Phanuphak, Nittaya; Ananworanich, Jintanat
2018-06-11
Antiretroviral therapy during the earliest stage of acute HIV infection (Fiebig I) might minimize establishment of a latent HIV reservoir and thereby facilitate viremic control after analytical treatment interruption. We show that 8 participants, who initiated treatment during Fiebig I and were treated for a median of 2.8 years, all experienced rapid viral load rebound following analytical treatment interruption, indicating that additional strategies are required to control or eradicate HIV.
Yb:Y2O3 transparent ceramics processed with hot isostatic pressing
NASA Astrophysics Data System (ADS)
Wang, Jun; Ma, Jie; Zhang, Jian; Liu, Peng; Luo, Dewei; Yin, Danlei; Tang, Dingyuan; Kong, Ling Bing
2017-09-01
Highly transparent 5 at.% Yb:Y2O3 ceramics were fabricated by using a combination method of vacuum sintering and hot isostatic pressing (HIP). Co-precipitated Yb:Y2O3 powders, with 1 at.% ZrO2 as the sintering aid, were used as the starting material. The Yb:Y2O3 ceramics, vacuum sintered at 1700 °C for 2 h and HIPed at 1775 °C for 4 h, exhibited small grain size of 1.9 μm and highly dense microstructure. In-line optical transmittance of the ceramics reached 83.4% and 78.9% at 2000 and 600 nm, respectively. As the ceramic slab was pumped by a fiber-coupled laser diode at about 940 nm, a maximum output power of 0.77 W at 1076 nm was achieved, with a corresponding slope efficiency of 10.6%.
Galantuomo, Maria Silvana; Fossarello, Maurizio; Cuccu, Alberto; Farci, Roberta; Preising, Markus N; Lorenz, Birgit; Napoli, Pietro Emanuele
2016-01-01
Juvenile X-linked retinoschisis (RS1, OMIM: 312700) is a hereditary vitreoretinal dystrophy characterized by bilateral foveal schisis and, in half of the patients, splitting through the nerve fiber layer in the peripheral retina. In the first decade of life, patients usually develop a decrease in visual acuity. Long-term visual outcomes can be poor due to the limited number of known successful treatments. The purposes of this study were to present, for the first time, a p.Arg197Cys missense mutation in the RS1 gene (OMIM: 300839) in a four-generation Italian family with RS1 and to examine the clinical response to the treatment with acetazolamide tablets alone or in combination with dorzolamide eye drops as assessed by spectral-domain optical coherence tomography (SD-OCT). Eleven individuals, including two brothers with RS1 (patients 1 and 2), underwent a full medical history examination and a comprehensive ocular assessment that involved SD-OCT, fluorescein angiography, electroretinography and DNA analysis. Each RS1 patient received oral acetazolamide (375 mg daily) during the first three months. Thereafter, patient 1 continued only with dorzolamide eyedrops three times a day for a period of three months, while patient 2 spontaneously stopped both medications. Sequence analysis of the RS1 gene identified a hemizygous c.589C>T (p.Arg197Cys) missense mutation in exon 6, which has not been previously reported in an Italian family. A different response to the medical therapy was observed in the four eyes of the two affected brothers hemizygous for this abnormality. Of note, after acetazolamide interruption, a rebound effect on cystoid macular edema reduced the beneficial effects of the initial therapy for RS1 from p.Arg197Cys mutation. Indeed, a minimal rebound effect on cystoid macular edema, and an improvement in visual acuity, was observed in patient 1 during the six months of treatment. Conversely, in patient 2, an initial improvement in cystoid macular edema was
Plume splitting and rebounding in a high-intensity CO{sub 2} laser induced air plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Anmin; Jiang Yuanfei; Liu Hang
2012-07-15
The dynamics of plasma plume formed by high-intensity CO{sub 2} laser induced breakdown of air at atmospheric pressure is investigated. The laser wavelength is 10.6 {mu}m. Measurements were made using 3 ns gated fast photography as well as space and time resolved optical emission spectroscopy. The behavior of the plasma plume was studied with a laser energy of 3 J and 10 J. The results show that the evolution of the plasma plume is very complicated. The splitting and rebounding of the plasma plume is observed to occur early in the plumes history.
NASA Astrophysics Data System (ADS)
Gómez-Romeu, Júlia; Kusznir, Nick; Manatschal, Gianreto; Roberts, Alan
2017-04-01
Despite magma-poor rifted margins having been extensively studied for the last 20 years, the evolution of extensional fault geometry and the flexural isostatic response to faulting remain still debated topics. We investigate how the flexural isostatic response to faulting controls the structural development of the distal part of rifted margins in the hyper-extended domain and the resulting sedimentary record. In particular we address an important question concerning the geometry and evolution of extensional faults within distal hyper-extended continental crust; are the seismically observed extensional fault blocks in this region allochthons from the upper plate or are they autochthons of the lower plate? In order to achieve our aim we focus on the west Iberian rifted continental margin along the TGS and LG12 seismic profiles. Our strategy is to use a kinematic forward model (RIFTER) to model the tectonic and stratigraphic development of the west Iberia margin along TGS-LG12 and quantitatively test and calibrate the model against breakup paleo-bathymetry, crustal basement thickness and well data. RIFTER incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. The model predicts the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. The target data used to constrain model predictions consists of two components: (i) gravity anomaly inversion is used to determine Moho depth, crustal basement thickness and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling consisting of flexural backstripping, decompaction and reverse post-rift thermal subsidence modelling is used to give paleo-bathymetry at breakup time. We show that successful modelling of the structural and stratigraphic development of the TGS-LG12 Iberian margin transect also requires the simultaneous modelling of the Newfoundland conjugate margin, which we
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Toshihiro; Hirota, Ken; Yamaguchi, Osamu
1995-07-01
Dense sintered composites of ZrO{sub 2} (2 mol% Y{sub 2}O{sub 3}) and MoSi{sub 2} have been fabricated by hot isostatic pressing for 2 h at 1400 C under 196 MPa. The ZrO{sub 2} particles in the composites consist of only t-ZrO{sub 2}. There is no reaction between ZrO{sub 2} and MoSi{sub 2}. Microstructures and mechanical properties are examined, in connection with increased ZrO{sub 2} content. The fracture toughness and bending strength of the composite with 40 mol% ZrO{sub 2} addition are 6.18 MPa{center_dot}m{sup 1/2} and 1034 MPa, respectively.
MIS 5e relative sea-level changes in the Mediterranean Sea: Contribution of isostatic disequilibrium
NASA Astrophysics Data System (ADS)
Stocchi, Paolo; Vacchi, Matteo; Lorscheid, Thomas; de Boer, Bas; Simms, Alexander R.; van de Wal, Roderik S. W.; Vermeersen, Bert L. A.; Pappalardo, Marta; Rovere, Alessio
2018-04-01
Sea-level indicators dated to the Last Interglacial, or Marine Isotope Stage (MIS) 5e, have a twofold value. First, they can be used to constrain the melting of Greenland and Antarctic Ice Sheets in response to global warming scenarios. Second, they can be used to calculate the vertical crustal rates at active margins. For both applications, the contribution of glacio- and hydro-isostatic adjustment (GIA) to vertical displacement of sea-level indicators must be calculated. In this paper, we re-assess MIS 5e sea-level indicators at 11 Mediterranean sites that have been generally considered tectonically stable or affected by mild tectonics. These are found within a range of elevations of 2-10 m above modern mean sea level. Four sites are characterized by two separate sea-level stands, which suggest a two-step sea-level highstand during MIS 5e. Comparing field data with numerical modeling we show that (i) GIA is an important contributor to the spatial and temporal variability of the sea-level highstand during MIS 5e, (ii) the isostatic imbalance from the melting of the MIS 6 ice sheet can produce a >2.0 m sea-level highstand, and (iii) a two-step melting phase for the Greenland and Antarctic Ice Sheets reduces the differences between observations and predictions. Our results show that assumptions of tectonic stability on the basis of the MIS 5e records carry intrinsically large uncertainties, stemming either from uncertainties in field data and GIA models. The latter are propagated to either Holocene or Pleistocene sea-level reconstructions if tectonic rates are considered linear through time.
Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies
NASA Astrophysics Data System (ADS)
Balmino, G.; Vales, N.; Bonvalot, S.; Briais, A.
2012-07-01
The availability of high-resolution global digital elevation data sets has raised a growing interest in the feasibility of obtaining their spherical harmonic representation at matching resolution, and from there in the modelling of induced gravity perturbations. We have therefore estimated spherical Bouguer and Airy isostatic anomalies whose spherical harmonic models are derived from the Earth's topography harmonic expansion. These spherical anomalies differ from the classical planar ones and may be used in the context of new applications. We succeeded in meeting a number of challenges to build spherical harmonic models with no theoretical limitation on the resolution. A specific algorithm was developed to enable the computation of associated Legendre functions to any degree and order. It was successfully tested up to degree 32,400. All analyses and syntheses were performed, in 64 bits arithmetic and with semi-empirical control of the significant terms to prevent from calculus underflows and overflows, according to IEEE limitations, also in preserving the speed of a specific regular grid processing scheme. Finally, the continuation from the reference ellipsoid's surface to the Earth's surface was performed by high-order Taylor expansion with all grids of required partial derivatives being computed in parallel. The main application was the production of a 1' × 1' equiangular global Bouguer anomaly grid which was computed by spherical harmonic analysis of the Earth's topography-bathymetry ETOPO1 data set up to degree and order 10,800, taking into account the precise boundaries and densities of major lakes and inner seas, with their own altitude, polar caps with bedrock information, and land areas below sea level. The harmonic coefficients for each entity were derived by analyzing the corresponding ETOPO1 part, and free surface data when required, at one arc minute resolution. The following approximations were made: the land, ocean and ice cap gravity spherical
Benoit, Anita C; Younger, Jaime; Beaver, Kerrigan; Jackson, Randy; Loutfy, Mona; Masching, Renée; Nobis, Tony; Nowgesic, Earl; O'Brien-Teengs, Doe; Whitebird, Wanda; Zoccole, Art; Hull, Mark; Jaworsky, Denise; Rachlis, Anita; Rourke, Sean; Burchell, Ann N; Cooper, Curtis; Hogg, Robert; Klein, Marina B; Machouf, Nima; Montaner, Julio; Tsoukas, Chris; Raboud, Janet
2017-01-01
This study compared time to virological suppression and rebound between Indigenous and non-Indigenous individuals living with HIV in Canada initiating combination antiretroviral therapy (cART). Data were from the Canadian Observational Cohort collaboration; eight studies of treatment-naive persons with HIV initiating cART after 1/1/2000. Fine and Gray models were used to estimate the effect of ethnicity on time to virological suppression (two consecutive viral loads [VLs] <50 copies/ml at least 3 months apart) after adjusting for the competing risk of death and time until virological rebound (two consecutive VLs >200 copies/ml at least 3 months apart) following suppression. Among 7,080 participants were 497 Indigenous persons of whom 413 (83%) were from British Columbia. The cumulative incidence of suppression 1 year after cART initiation was 54% for Indigenous persons, 77% for Caucasian and 80% for African, Caribbean or Black (ACB) persons. The cumulative incidence of rebound 1 year after suppression was 13% for Indigenous persons, 6% for Caucasian and 7% for ACB persons. Indigenous persons were less likely to achieve suppression than Caucasian participants (aHR=0.58, 95% CI 0.50, 0.68), but not more likely to experience rebound (aHR=1.03, 95% CI 0.84, 1.27) after adjusting for age, gender, injection drug use, men having sex with men status, province of residence, baseline VL and CD4 + T-cell count, antiretroviral class and year of cART initiation. Lower suppression rates among Indigenous persons suggest a need for targeted interventions to improve HIV health outcomes during the first year of treatment when suppression is usually achieved.
Preliminary Isostatic Gravity Map of Joshua Tree National Park and Vicinity, Southern California
Langenheim, V.E.; Biehler, Shawn; McPhee, D.K.; McCabe, C.A.; Watt, J.T.; Anderson, M.L.; Chuchel, B.A.; Stoffer, P.
2007-01-01
This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in Joshua Tree National Park, southern California. This map will serve as a basis for modeling the shape of basins beneath the Park and in adjacent valleys and also for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure, reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic or structural boundaries. High-density basement rocks exposed within the Eastern Transverse Ranges include crystalline rocks that range in age from Proterozoic to Mesozoic and these rocks are generally present in the mountainous areas of the quadrangle. Alluvial sediments, usually located in the valleys, and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range of densities, but, on average, are less dense than the pre-Cenozoic basement rocks. Basalt within the Park is as dense as crystalline basement, but is generally thin (less than 100 m thick; e.g., Powell, 2003). Isostatic residual gravity values within the map area range from about 44 mGal over Coachella Valley to about 8 mGal between the Mecca Hills and the Orocopia Mountains. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the San Andreas Fault bounding the east side of Coachella Valley and east-west-striking, left-lateral faults, such as the Pinto Mountain, Blue Cut, and Chiriaco Faults (Fig. 1). Gravity gradients also define concealed basin-bounding faults, such as those beneath the
Kim, Sung-Min
2018-01-01
Cessation of dewatering following underground mine closure typically results in groundwater rebound, because mine voids and surrounding strata undergo flooding up to the levels of the decant points, such as shafts and drifts. SIMPL (Simplified groundwater program In Mine workings using the Pipe equation and Lumped parameter model), a simplified lumped parameter model-based program for predicting groundwater levels in abandoned mines, is presented herein. The program comprises a simulation engine module, 3D visualization module, and graphical user interface, which aids data processing, analysis, and visualization of results. The 3D viewer facilitates effective visualization of the predicted groundwater level rebound phenomenon together with a topographic map, mine drift, goaf, and geological properties from borehole data. SIMPL is applied to data from the Dongwon coal mine and Dalsung copper mine in Korea, with strong similarities in simulated and observed results. By considering mine workings and interpond connections, SIMPL can thus be used to effectively analyze and visualize groundwater rebound. In addition, the predictions by SIMPL can be utilized to prevent the surrounding environment (water and soil) from being polluted by acid mine drainage. PMID:29747480
Production of near-full density uranium nitride microspheres with a hot isostatic press
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMurray, Jacob W.; Kiggans, Jr., Jim O.; Helmreich, Grant W.
Depleted uranium nitride (UN) kernels with diameters ranging from 420 to 858 microns and theoretical densities (TD) between 87 and 91 percent were postprocessed using a hot isostatic press (HIP) in an argon gas media. This treatment was shown to increase the TD up to above 97%. Uranium nitride is highly reactive with oxygen. Therefore, a novel crucible design was implemented to remove impurities in the argon gas via in situ gettering to avoid oxidation of the UN kernels. The density before and after each HIP procedure was calculated from average weight, volume, and ellipticity determined with established characterization techniquesmore » for particle. Furthermore, micrographs confirmed the nearly full densification of the particles using the gettering approach and HIP processing parameters investigated in this work.« less
Tanner, Zachary; Lachowsky, Nathan; Ding, Erin; Samji, Hasina; Hull, Mark; Cescon, Angela; Patterson, Sophie; Chia, Jason; Leslie, Alia; Raboud, Janet; Loutfy, Mona; Cooper, Curtis; Klein, Marina; Machouf, Nima; Tsoukas, Christos; Montaner, Julio; Hogg, Robert S
2016-10-21
Gay, bisexual and other men who have sex with men (MSM) are disproportionately affected by HIV in Canada. Combination antiretroviral therapy has been shown to dramatically decrease progression to AIDS, premature death and HIV transmission. However, there are no comprehensive data regarding combination antiretroviral therapy outcomes among this population. We sought to identify socio-demographic and clinical correlates of viral suppression and rebound. Our analysis included MSM participants in the Canadian Observational Cohort, a multi-site cohort of HIV-positive adults from Canada's three most populous provinces, aged ≥18 years who first initiated combination antiretroviral therapy between 2000 and 2011. We used accelerated failure time models to identify factors predicting time to suppression (2 measures <50 copies/mL ≥30 days apart) and subsequent rebound (2 measures >200 copies/mL ≥30 days apart). Of 2,858 participants, 2,448 (86 %) achieved viral suppression in a median time of 5 months (Q1-Q3: 3-7 months). Viral suppression was significantly associated with later calendar year of antiretroviral therapy initiation, no history of injection drug use, lower baseline viral load, being on an initial regimen consisting of non-nucleoside reverse-transcriptase inhibitors, and older age. Among those who suppressed, 295 (12 %) experienced viral rebound. This was associated with earlier calendar year of antiretroviral therapy initiation, injection drug use history, younger age, higher baseline CD4 cell count, and living in British Columbia. Further strategies are required to optimize combination antiretroviral therapy outcomes in men who have sex with men in Canada, specifically targeting younger MSM and those with a history of injection drug use.
Summary of Calcine Disposal Development Using Hot Isostatic Pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Ken; Wahlquist, Dennis; Hart, Edward
2015-03-01
Battelle Energy Alliance, LLC, has demonstrated the effectiveness of the hot isostatic press (HIP) process for treatment of hazardous high-level waste known as calcine that is stored at the Idaho Nuclear Technology and Engineering Center (INTEC) at Idaho National Laboratory. HIP trials performed with simulated calcines at Idaho National Laboratory’s Materials and Fuels Complex and an Australian Nuclear Science and Technology Organization facility from 2007 to 2010 produced a dense, monolithic waste form with increased chemical durability and effective (storage) volume reductions of ~10 to ~70% compared to granular calcine forms. In December 2009, the U.S. Department of Energy signedmore » an amended Record of Decision selecting HIP technology as the treatment method for the 4,400 m3 of granular zirconia and alumina calcine stored at INTEC. Testing showed that HIP treatment reduces the risks associated with radioactive and hazardous constituent release, post-production handling, and long-term (repository) storage of calcines and would result in estimated storage cost savings in the billions of dollars. Battelle Energy Alliance has the ability to complete pilot-scale HIP processing of INTEC calcine, which is the next necessary step in implementing HIP processing as a calcine treatment method.« less
NASA Astrophysics Data System (ADS)
Hougardy, Devin D.
The history of glacial Lake Agassiz is complex and has intrigued researchers for over a century. Over the course of its ˜5,000 year existence, the size, shape, and location of Lake Agassiz changed dramatically depending on the location of the southern margin of the Laurentide Ice Sheet (LIS), the location and elevation of outflow channels, and differential isostatic rebound. Some of the best-preserved sequences of Lake Agassiz sediments are found in remnant lake basins where erosional processes are less pronounced than in adjacent higher-elevation regions. Lake of the Woods (LOTW), Minnesota, is among the largest of the Lake Agassiz remnant lakes and is an ideal location for Lake Agassiz sediment accumulation. High-resolution seismic-reflection (CHIRP) data collected from the southern basin of LOTW reveal up to 28 m of stratified lacustrine sediment deposited on top of glacial diamicton and bedrock. Five seismic units (SU A-E) were identified and described based on their reflection character, reflection configuration, and external geometries. Three prominent erosional unconformities (UNCF 1-3) underlie the upper three seismic units and indicate that deposition at LOTW was interrupted by a series of relatively large fluctuations in lake level. The lowermost unconformity (UNCF-1) truncates uniformly draped reflections within SU-B at the margins of the basin, where as much as four meters of sediment were eroded. The drop in lake level is interpreted to be contemporaneous with the onset of the low-stand Moorhead phase of Lake Agassiz identified from subaerial deposits in the Red River Valley, Rainy River basin, and Lake Winnipeg. A rise in lake level, indicated by onlapping reflections within SU-C onto UNCF-1, shifted the wave base outwards and as much as 11 m of sediment were deposited (SU-C) in the middle of the basin before a second drop, and subsequent rise, in lake level resulted in the formation of UNCF-2. Reflections in the lower part of SU-D onlap onto UNCF-2
Isostatic compensation of equatorial highlands on Venus
NASA Technical Reports Server (NTRS)
Kucinskas, Algis B.; Turcotte, Donald L.
1994-01-01
Spherical harmonic models for Venus' global topography and gravity incorporating Magellan data are used to test isostatic compensation models in five 30 deg x 30 deg regions representative of the main classes of equatorial highlands. The power spectral density for the harmonic models obeys a power-law scaling with spectral slope Beta approximately 2 (Brown noise) for the topography and Beta approximately 3 (Kaula's law) for the geoid, similar to what is observed for Earth. The Venus topography spectrum has lower amplitudes than Earth's which reflects the dominant lowland topography on Venus. Observed degree geoid to topography ratios (GTRs) on Venus are significantly smaller than degree GTRs for uncompensated topography, indicative of substantial compensation. Assuming a global Airy compensation, most of the topography is compensated at depths greater than 100 km, suggesting a thick lithosphere on Venus. For each region considered we obtain a regional degree of compensation C from a linear regression of Bouguer anomaly versus Bouguer gravity data. Geoid anomaly (N) versus topography variation (h) data for each sample were compared, in the least-squares sense, to theoretical correlations for Pratt, Airy, and thermal thinning isostasy models yielding regional GTR, zero-elevation crustal thickness (H), and zero elevation thermal lithosphere thickness (y(sub L(sub 0)), respectively. We find the regional compensation to be substantial (C approximately 52-80%), and the h, N data correlations in the chosen areas can be explained by isostasy models applicable on the Earth and involving variations in crustal thickness (Airy) and/or lithospheric (thermal thinning) thickness. However, a thick crust and lithosphere (y(sub L(sub 0)) approximately 300 km) must be assumed for Venus.
Adiposity rebound and the development of metabolic syndrome.
Koyama, Satomi; Ichikawa, Go; Kojima, Megumi; Shimura, Naoto; Sairenchi, Toshimi; Arisaka, Osamu
2014-01-01
The age of adiposity rebound (AR) is defined as the time at which BMI starts to rise after infancy and is thought to be a marker of later obesity. To determine whether this age is related to future occurrence of metabolic syndrome, we investigated the relationship of the timing of AR with metabolic consequences at 12 years of age. A total of 271 children (147 boys and 124 girls) born in 1995 and 1996 were enrolled in the study. Serial measurements of BMI were conducted at the ages of 4 and 8 months and 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 years, based on which age of AR was calculated. Plasma lipids and blood pressure were measured at 12 years of age. An earlier AR (<4 years of age) was associated with a higher BMI (≥ 20) and a lipoprotein phenotype representative of insulin resistance. This phenotype consists of elevated triglycerides, apolipoprotein B, and atherogenic index and decreased high-density lipoprotein cholesterol in boys and elevated apolipoprotein B in girls at 12 years of age. The earlier AR was also related to elevated blood pressure in boys. This longitudinal population-based study indicates that children who exhibit AR at a younger age are predisposed to future development of metabolic syndrome. Therefore, monitoring of AR may be an effective method for the early identification of children at risk for metabolic syndrome.
NASA Astrophysics Data System (ADS)
Morgan, R. L.; Watts, A. B.
2016-12-01
Seaward Dipping Reflectors (SDRs) are ubiquitous features of volcanic rifted continental margins where they comprise characteristic wedge-shaped packages of mainly extrusive lava flows. However, their origin has been disputed with some workers suggesting they form by progressive subsidence of extended crust while others propose they are accommodated within the crust by one or more continent-dipping normal faults. We present here a simple model in which SDRs are formed by successive dykes, which intrude and load the crust causing a surface flexure which is subsequently infilled and then loaded by volcanic material, including lava flows. The model explains the arcuate shape, limited offlap geometries and down-dip thickening of SDRs as observed in seismic reflection profiles. By comparing observed and calculated dips we have been able to constrain the elastic plate model type and the effective elastic thickness of rifted lithosphere, Te. Results suggest a broken rather than continuous plate model and Te in the range 3-15 km. The thickness of the resulting SDR package increases with decreasing Te and decreasing compensation density. Decreasing the Tefor successive loads as rifting progresses produces offlap of sub-packages. We have verified our results using process-oriented gravity modelling, in which the gravity effect of surface volcanic infill loads is calculated and combined with the gravity effect of buried dyke loads. Results show good general agreement between observed Airy isostatic anomalies and calculated gravity anomalies. This suggests that the steep gradient that is often observed in the Airy isostatic gravity anomaly at rifted margins is a useful proxy for the landward edge of the dykes that intrude the crust prior to seafloor spreading, rather than a change in basement elevation at the boundary between oceanic and continental crust, as proposed by previous workers.
Hoggan, Rita E.; Zuck, Larry D.; Cannon, W. Roger; ...
2016-05-26
A study of improved methods of processing fuel pellets was undertaken using ceria and zirconia/yttria/alumina as surrogates. Through proper granulation and vertical vibration (tapping) of the parts bag prior to dry bag isostatic pressing (DBIP), reproducibility of diameter profiles among multiple pellets of ceria was improved by almost an order of magnitude. Reproducibility of sintered pellets was sufficiently good to possibly avoid grinding. Deviation from the mean diameter along the length of multiple pellets, as well as, deviation from roundness, decreased after sintering. This is not generally observed with dry pressed pellets. Thus it is possible to machine to tolerancemore » before sintering if grinding is necessary.« less
NASA Astrophysics Data System (ADS)
Peltier, W. R.; Argus, D.; Drummond, R.; Moore, A. W.
2012-12-01
We compare, on a global basis, estimates of site velocity against predictions of the newly constructed postglacial rebound model ICE-6G (VM5a). This model is fit to observations of North American postglacial rebound thereby demonstrating that the ice sheet at last glacial maximum must have been, relative to ICE-5G,thinner in southern Manitoba, thinner near Yellowknife (northwest Territories), thicker in eastern and southern Quebec, and thicker along the British Columbia-Alberta border. The GPS based estimates of site velocity that we employ are more accurate than were previously available because they are based on GPS estimates of position as a function of time determined by incorporating satellite phase center variations [Desai et al. 2011]. These GPS estimates are constraining postglacial rebound in North America and Europe more tightly than ever before. In particular, given the high density of GPS sites in North America, and the fact that the velocity of the mass center (CM) of Earth is also more tightly constrained, the new model much more strongly constrains both the lateral extent of the proglacial forebulge and the rate at which this peripheral bulge (that was emplaced peripheral to the late Pleistocence Laurentia ice sheet) is presently collapsing. This fact proves to be important to the more accurate inference of the current rate of ice loss from both Greenland and Alaska based upon the time dependent gravity observations being provided by the GRACE satellite system. In West Antarctica we have also been able to significantly revise the previously prevalent ICE-5G deglaciation history so as to enable its predictions to be optimally consistent with GPS site velocities determined by connecting campaign WAGN measurements to those provided by observations from the permanent ANET sites. Ellsworth Land (south of the Antarctic peninsula), is observed to be rising at 6 ±3 mm/yr according to our latest analyses; the Ellsworth mountains themselves are observed to be
Hot isostatic pressing of SiC particulate reinforced metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loh, N.L.; Wei, Z.; Xu, Z.
1996-12-31
Two as-cast SiC particulate reinforced A359-based composites were hot isostatically pressed for a fixed length of time but at various pressures (in the range 100--150 MPa) and temperatures (in the range 450--550 C). It was found that HIP treatment generally increased the ductility but reduced the yield stress drastically. The improvement of ductility was attributed to a reduction of the porosity levels. Quantitative image analyses showed that the HIP treatment reduced the porosity levels significantly. It is of interest to observe that increasing HIP temperature is more effective than increasing HIP pressure in terms of improvement in strength and ductility.more » Another interesting observation is that most eutectic Si particles were spheroidized during HIP. The spheroidization of Si was believed to contribute to the improvement of mechanical properties, because fracture initiation of the composites was observed to be related to either the breaking of Si particles or the debonding of Si particles from the nearby SiC particles.« less
Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance
NASA Astrophysics Data System (ADS)
Bradley, Sarah L.; Hindmarsh, Richard C. A.; Whitehouse, Pippa; Bentley, Michael J.; King, Matt
2014-05-01
The Holocene deglaciation of West Antarctica resulted in widespread ice surface lowering. While many ice-sheet reconstructions generally assume a monotone Holocene retreat for the West Antarctica Ice sheet (WAIS) [Ivins et al., 2013; Peltier, 2004; Whitehouse et al., 2012], an increasing number of glaciological observations infer it is readvancing, following retreat behind the present-day margin[Siegert et al., 2013]. We will show that a readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice-streams grounded on beds that deepen inland in apparent contradiction to theory [Schoof, 2007]; and (ii) the inability of models of Glacial Isostatic Adjustment (GIA) to match present-day uplift rates [Whitehouse et al., 2012]. Combining a suite of ice loading histories that include a readvance with a model of GIA provides significant improvements to predictions of present-day uplift rates, and we are able to reproduce previously unexplained observations of subsidence in the southern sector of the Weddell Sea. We hypothesize that retreat behind present grounding lines occurred when the bed was lower, and isostatic recovery led to shallowing, ice sheet re-grounding and readvance. We will conclude that some sections of the current WAIS grounding line that are theoretically unstable, may be advancing and that the volume change of the WAIS may have been more complex in the Late Holocene than previously posited. This revised Holocene ice-loading history would have important implications for the GIA correction applied to Gravity Recovery and Climate Experiment (GRACE) data, likely resulting in a reduction in the GIA correction and a smaller estimate of present-day ice mass loss within the Weddell Sea region of the WAIS. Ivins, E. R., T. S. James, J. Wahr, E. J. O. Schrama, F. W. Landerer, and K. M. Simon (2013), Antarctic contribution to sea level rise observed by GRACE with improved GIA correction
Manufacture of astroloy turbine disk shapes by hot isostatic pressing, volume 1
NASA Technical Reports Server (NTRS)
Eng, R. D.; Evans, D. J.
1978-01-01
The Materials in Advanced Turbine Engines project was conducted to demonstrate container technology and establish manufacturing procedures for fabricating direct Hot Isostatic Pressing (HIP) of low carbon Astroloy to ultrasonic disk shapes. The HIP processing procedures including powder manufacture and handling, container design and fabrication, and HIP consolidation techniques were established by manufacturing five HIP disks. Based upon dimensional analysis of the first three disks, container technology was refined by modifying container tooling which resulted in closer conformity of the HIP surfaces to the sonic shape. The microstructure, chemistry and mechanical properties of two HIP low carbon Astroloy disks were characterized. One disk was subjected to a ground base experimental engine test, and the results of HIP low carbon Astroloy were analyzed and compared to conventionally forged Waspaloy. The mechanical properties of direct HIP low carbon Astroloy exceeded all property goals and the objectives of reduction in material input weight and reduction in cost were achieved.
Geophysical investigations of the tectonic boundary between East and West Antarctica
ten Brink, Uri S.; Bannister, S.; Beaudoin, B.C.; Stern, T.A.
1993-01-01
The Transantarctic Mountains (TAM), which separate the West Antarctic rift system from the stable shield of East Antarctica, are the largest mountains developed adjacent to a rift. The cause of uplift of mountains bordering rifts is poorly understood. One notion based on observations of troughs next to many uplifted blocks is that isostatic rebound produces a coeval uplift and subsidence. The results of an over-snow seismic experiment in Antarctica do not show evidence for a trough next to the TAM but indicate the extension of rifted mantle lithosphere under the TAM. Furthermore, stretching preceded the initiation of uplift, which suggests thermal buoyancy as the cause for uplift.
Lee, Jae Bong; Dos Santos, Salomé; Antonini, Carlo
2016-08-16
Understanding the interaction between liquids and deformable solid surfaces is a fascinating fundamental problem, in which interaction and coupling of capillary and viscoelastic effects, due to solid substrate deformation, give rise to complex wetting mechanisms. Here we investigated as a model case the behavior of water drops on two smooth bitumen substrates with different rheological properties, defined as hard and soft (with complex shear moduli in the order of 10(7) and 10(5) Pa, respectively, at 1 Hz), focusing both on wetting and on dewetting behavior. By means of classical quasi-static contact angle measurements and drop impact tests, we show that the water drop behavior can significantly change from the quasi-static to the dynamic regime on soft viscoelastic surfaces, with the transition being defined by the substrate rheological properties. As a result, we also show that on the hard substrate, where the elastic response is dominant under all investigated conditions, classical quasi-static contact angle measurements provide consistent results that can be used to predict the drop dynamic wetting behavior, such as drop deposition or rebound after impact, as typically observed for nondeformable substrates. Differently, on soft surfaces, the formation of wetting ridges did not allow to define uniquely the substrate intrinsic advancing and receding contact angles. In addition, despite showing a high adhesion to the soft surface in quasi-static measurements, the drop was surprisingly able to rebound and escape from the surface after impact, as it is typically observed for hydrophobic surfaces. These results highlight that measurements of wetting properties for viscoelastic substrates need to be critically used and that wetting behavior of a liquid on viscoelastic surfaces is a function of the characteristic time scales.
Trecker, Molly A; Hogan, Daniel J; Waldner, Cheryl L; Dillon, Jo-Anne R; Osgood, Nathaniel D
2015-06-01
To determine the effects of using discrete versus continuous quantities of people in a compartmental model examining the contribution of antimicrobial resistance (AMR) to rebound in the prevalence of gonorrhoea. A previously published transmission model was reconfigured to represent the occurrence of gonorrhoea in discrete persons, rather than allowing fractions of infected individuals during simulations. In the revised model, prevalence only rebounded under scenarios reproduced from the original paper when AMR occurrence was increased by 10(5) times. In such situations, treatment of high-risk individuals yielded outcomes very similar to those resulting from treatment of low-risk and intermediate-risk individuals. Otherwise, in contrast with the original model, prevalence was the lowest when the high-risk group was treated, supporting the current policy of targeting treatment to high-risk groups. Simulation models can be highly sensitive to structural features. Small differences in structure and parameters can substantially influence predicted outcomes and policy prescriptions, and must be carefully considered. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Cai, Chao; Song, Bo; Wei, Qingsong; Yan, Wu; Xue, Pengju; Shi, Yusheng
2017-01-01
For the net-shape hot isostatic pressing (HIP) process, control of the internal surface roughness of as-HIPped parts remains a challenge for practical engineering. To reveal the evolution mechanism of the internal surface of the parts during the HIP process, the effect of different tooling materials (H13, T8, Cr12 steel, and graphite) as internal cores on the interfacial diffusion and surface roughness was systematically studied.
In-Situ Lithospheric Rheology Measurement Using Isostatic Response and Geophysical State
NASA Astrophysics Data System (ADS)
Lowry, A. R.; Becker, T. W.; Buehler, J. S.; ma, X.; Miller, M. S.; Perez-Gussinye, M.; Ravat, D.; Schutt, D.
2013-12-01
Measurements of effective elastic thickness, Te, from flexural isostatic modeling are sensitive to flow rheology of the lithosphere. Nevertheless, Te has not been widely used to estimate in-situ rheology. Past methodological controversies regarding Te measurement are partly to blame for under-utilization of isostatic response in rheology studies, but these controversies are now largely resolved. The remaining hurdles include uncertainties in properties of geophysical state such as temperature, lithology, and water content. These are ambiguous in their relative contributions to total strength, and the unknown state-of-stress adds to ambiguity in the rheology. Dense seismic and other geophysical arrays such as EarthScope's USArray are providing a wealth of new information about physical state of the lithosphere, however, and these data promise new insights into rheology and deformation processes. For example, new estimates of subsurface mass distributions derived from seismic data enable us to examine controversial assumptions about the nature of lithospheric loads. Variations in crustal lithology evident in bulk crustal velocity ratio, vP/vS, contribute a surprisingly large fraction of total loading. Perhaps the most interesting new information on physical state derives from imaging of uppermost mantle velocities using refracted mantle phases, Pn and Sn, and depths to negative velocity gradients imaged as converted phases in receiver functions (so-called seismic lithosphere-asthenosphere boundary, 'LAB', and mid-lithosphere discontinuity, 'MLD'). Imaging of the ~580°C isotherm associated with the phase transition from alpha- to beta-quartz affords another exciting new avenue for investigation, in part because the transition closely matches the Curie temperature thought to control magnetic bottom in some continental crust. Reconciling seismic estimates of temperature variations with measurements of Te and upper-mantle negative velocity gradients in the US requires
NASA Astrophysics Data System (ADS)
Vacchi, Matteo; Rovere, Alessio; Marriner, Nick; Morhange, Christophe; Spada, Giorgio; Fontana, Alessandro
2016-04-01
After the review of 918 radiocarbon dated Relative Sea-Level (RSL) data-points we present here the first quality-controlled database constraining the Holocene sea-level histories of the western Mediterranean Sea (Spain, France, Italy, Slovenia, Croatia, Malta and Tunisia). We reviewed and standardized the geological RSL data-points using a new multi-proxy methodology based on: (1) modern taxa assemblages in Mediterranean lagoons and marshes; (2) beachrock characteristics (cement fabric and chemistry, sedimentary structures); and (3) the modern distribution of Mediterranean fixed biological indicators. These RSL data-points were coupled with the large number of archaeological RSL indicators available for the western Mediterranean. We assessed the spatial variability of RSL histories for 22 regions and compared these with the ICE-5G VM2 GIA model. In the western Mediterranean, RSL rose continuously for the whole Holocene with a sudden slowdown at ~7.5 ka BP and a further deceleration during the last ~4.0 ka BP, after which time observed RSL changes are mainly related to variability in isostatic adjustment. The sole exception is southern Tunisia, where data show evidence of a mid-Holocene high-stand compatible with the isostatic impacts of the melting history of the remote Antarctic ice sheet. Our results indicate that late-Holocene sea-level rise was significantly slower than the current one. First estimates of GIA contribution indicate that, at least in the northwestern sector, it accounts at least for the 25-30% of the ongoing sea-level rise recorded by Mediterranean tidal gauges. Such contribution is less constrained at lower latitudes due to the lower quality of the late Holocene index points. Future applications of spatio-temporal statistical techniques are required to better quantify the gradient of the isostatic contribution and to provide improved context for the assessment of 20th century acceleration of Mediterranean sea-level rise.
Langenheim, V.E.; Roberts, C.W.; McCabe, C.A.; McPhee, D.K.; Tilden, J.E.; Jachens, R.C.
2006-01-01
This isostatic residual gravity map is part of a three-dimensional mapping effort focused on the subsurface distribution of rocks of the Sonoma volcanic field in Napa and Sonoma counties, northern California. This map will serve as a basis for modeling the shapes of basins beneath the Santa Rosa Plain and Napa and Sonoma Valleys, and for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field (after accounting for variations caused by elevation, terrain, and deep crustal structure explained below) reflect the distribution of densities in the mid to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. High-density basement rocks exposed within the northern San Francisco Bay area include those of the Mesozoic Franciscan Complex and Great Valley Sequence present in the mountainous areas of the quadrangle. Alluvial sediment and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range in densities, but, on average, are less dense than the Mesozoic basement rocks. Isostatic residual gravity values within the map area range from about -41 mGal over San Pablo Bay to about 11 mGal near Greeg Mountain 10 km east of St. Helena. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the West Napa fault bounding the west side of Napa Valley, the projection of the Hayward fault in San Pablo Bay, the Maacama Fault, and the Rodgers Creek fault in the vicinity of Santa Rosa. These gradients result from juxtaposing dense basement rocks against thick Tertiary volcanic and sedimentary rocks.
M3FT-17OR0301070211 - Preparation of Hot Isostatically Pressed AgZ Waste Form Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, Robert Thomas; Bruffey, Stephanie H.; Jordan, Jacob A.
The production of radioactive iodine-bearing waste forms that exhibit long-term stability and are suitable for permanent geologic disposal has been the subject of substantial research interest. One potential method of iodine waste form production is hot isostatic pressing (HIP). Recent studies at Oak Ridge National Laboratory (ORNL) have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by HIP. ORNL has performed HIP with a variety of sample compositions and pressing conditions. The base mineral has varied among AgZ (in pure and engineered forms), silver-exchanged faujasite, and silverexchanged zeolite A. Two iodine loading methods, occlusion andmore » chemisorption, have been explored. Additionally, the effects of variations in temperature and pressure of the process have been examined, with temperature ranges of 525°C–1,100°C and pressure ranges of 100–300 MPa. All of these samples remain available to collaborators upon request. The sample preparation detailed in this document is an extension of that work. In addition to previously prepared samples, this report documents the preparation of additional samples to support stability testing. These samples include chemisorbed I-AgZ and pure AgI. Following sample preparation, each sample was processed by HIP by American Isostatic Presses Inc. and returned to ORNL for storage. ORNL will store the samples until they are requested by collaborators for durability testing. The sample set reported here will support waste form durability testing across the national laboratories and will provide insight into the effects of varied iodine content on iodine retention by the produced waste form and on potential improvements in waste form durability provided by the zeolite matrix.« less
NKG201xGIA - first results for a new model of glacial isostatic adjustment in Fennoscandia
NASA Astrophysics Data System (ADS)
Steffen, Holger; Barletta, Valentina; Kollo, Karin; Milne, Glenn A.; Nordman, Maaria; Olsson, Per-Anders; Simpson, Matthew J. R.; Tarasov, Lev; Ågren, Jonas
2016-04-01
Glacial isostatic adjustment (GIA) is a dominant process in northern Europe, which is observed with several geodetic and geophysical methods. The observed land uplift due to this process amounts to about 1 cm/year in the northern Gulf of Bothnia. GIA affects the establishment and maintenance of reliable geodetic and gravimetric reference networks in the Nordic countries. To support a high level of accuracy in the determination of position, adequate corrections have to be applied with dedicated models. Currently, there are efforts within a Nordic Geodetic Commission (NKG) activity towards a model of glacial isostatic adjustment for Fennoscandia. The new model, NKG201xGIA, to be developed in the near future will complement the forthcoming empirical NKG land uplift model, which will substitute the currently used empirical land uplift model NKG2005LU (Ågren & Svensson, 2007). Together, the models will be a reference for vertical and horizontal motion, gravity and geoid change and more. NKG201xGIA will also provide uncertainty estimates for each field. Following former investigations, the GIA model is based on a combination of an ice and an earth model. The selected reference ice model, GLAC, for Fennoscandia, the Barents/Kara seas and the British Isles is provided by Lev Tarasov and co-workers. Tests of different ice and earth models will be performed based on the expertise of each involved modeler. This includes studies on high resolution ice sheets, different rheologies, lateral variations in lithosphere and mantle viscosity and more. This will also be done in co-operation with scientists outside NKG who help in the development and testing of the model. References Ågren, J., Svensson, R. (2007): Postglacial Land Uplift Model and System Definition for the New Swedish Height System RH 2000. Reports in Geodesy and Geographical Information Systems Rapportserie, LMV-Rapport 4, Lantmäteriet, Gävle.
NASA Technical Reports Server (NTRS)
Buzzard, R. J.; Metroka, R. R.
1974-01-01
The effects were studied of a thin tungsten liner on the tensile properties of T-111 tubing considered for fuel cladding in a space power nuclear reactor concept. The results indicate that the metallurgically bonded liner had no appreciable effects on the properties of the T-111 tubing. A hot isostatic pressing method used to apply the liners is described along with a means for overcoming the possible embrittling effects of hydrogen contamination.
REM Sleep Rebound as an Adaptive Response to Stressful Situations
Suchecki, Deborah; Tiba, Paula Ayako; Machado, Ricardo Borges
2011-01-01
Stress and sleep are related to each other in a bidirectional way. If on one hand poor or inadequate sleep exacerbates emotional, behavioral, and stress-related responses, on the other hand acute stress induces sleep rebound, most likely as a way to cope with the adverse stimuli. Chronic, as opposed to acute, stress impairs sleep and has been claimed to be one of the triggering factors of emotional-related sleep disorders, such as insomnia, depressive- and anxiety-disorders. These outcomes are dependent on individual psychobiological characteristics, conferring even more complexity to the stress-sleep relationship. Its neurobiology has only recently begun to be explored, through animal models, which are also valuable for the development of potential therapeutic agents and preventive actions. This review seeks to present data on the effects of stress on sleep and the different approaches used to study this relationship as well as possible neurobiological underpinnings and mechanisms involved. The results of numerous studies in humans and animals indicate that increased sleep, especially the rapid eye movement phase, following a stressful situation is an important adaptive behavior for recovery. However, this endogenous advantage appears to be impaired in human beings and rodent strains that exhibit high levels of anxiety and anxiety-like behavior. PMID:22485105
Characterization of 316L(N)-IG SS joint produced by hot isostatic pressing technique
NASA Astrophysics Data System (ADS)
Nakano, J.; Miwa, Y.; Tsukada, T.; Kikuchi, M.; Kita, S.; Nemoto, Y.; Tsuji, H.; Jitsukawa, S.
2002-12-01
Type 316L(N) stainless steel of the international thermonuclear experimental reactor grade (316L(N)-IG SS) is being considered for the first wall/blanket module. Hot isostatic pressing (HIP) technique is expected for the fabrication of the module. To evaluate the integrity and susceptibility to stress corrosion cracking (SCC) of HIPed 316L(N)-IG SS, tensile tests in vacuum and slow strain rate tests in high temperature water were performed. Specimen with the HIPed joint had similar tensile properties to specimens of 316L(N)-IG SS, and did not show susceptibility to SCC in oxygenated water at 423 K. Thermally sensitized specimen was low susceptible to SCC even in the creviced condition. It is concluded that the tensile properties of HIPed SS are as high as those of the base alloy and the HIP process caused no deleterious effects.
Transformation of Cs-IONSIV® into a ceramic wasteform by hot isostatic pressing
NASA Astrophysics Data System (ADS)
Chen, Tzu-Yu; Maddrell, Ewan R.; Hyatt, Neil C.; Gandy, Amy S.; Stennett, Martin C.; Hriljac, Joseph A.
2018-01-01
A simple method to directly convert Cs-exchanged IONSIV® IE-911 into a ceramic wasteform by hot isostatic pressing (1100 °C/190 MPa/2 hr) is presented. Two major Cs-containing phases, Cs2TiNb6O18 and Cs2ZrSi6O15, and a series of mixed oxides form. The microstructure and phase assemblage of the samples as a function of Cs content were examined using XRD, XRF, SEM and TEM/EDX. The chemical aqueous durability of the materials was investigated using the MCC-1 and PCT-B standard test methods. For HIPed Cs-IONSIV® samples, the MCC-1 normalised release rates of Cs were <1.57 × 10-1 g m-2 d-1 at 0-28 days, and <3.78 × 10-2 g m-2 d-1 for PCT-B at 7 days. The low rates are indicative of a safe long-term immobilisation matrix for Cs formed directly from spent IONSIV®. It was also demonstrated that the phase formation can be altered by adding Ti metal due to a controlled redox environment.
Zheng, Nan; Raman, Indira M.
2011-01-01
Neurons in the cerebellar nuclei fire at accelerated rates for prolonged periods after trains of synaptic inhibition that interrupt spontaneous firing. Both in vitro and in vivo, however, this prolonged rebound firing is favored by strong stimulation of afferents, suggesting that neurotransmitters other than GABA may contribute to the increased firing rates. Here, we tested whether metabotropic glutamate receptors modulate excitability of nuclear cells in cerebellar slices from mouse. In current clamp, the prolonged rebound firing rate after high-frequency synaptic stimulation was reduced by a variety of group I mGluR antagonists, including CPCCOEt (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester), JNJ16259685 ((3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone)+MPEP, or 3-MATIDA (α-amino-5-carboxy-3-methyl-2-thiopheneacetic acid) +MPEP, as long as both mGluR1 and mGluR5 were blocked. This mGluR-dependent acceleration of firing was reduced but still evident when IPSPs were prevented by GABAA receptor antagonists. In voltage clamp, voltage ramps revealed a non-inactivating, low-voltage-activated, nimodipine-sensitive current that was enhanced by the selective group I mGluR agonist s-DHPG ((S)-3,5-dihydroxyphenylglycine). This putative L-type current also increased when mGluRs were activated by trains of evoked synaptic currents instead of direct application of agonist. In current clamp, blocking L-type Ca channels with the specific blocker nifedipine greatly reduced prolonged post-stimulus firing and occluded the effect of adding group I mGluR antagonists. Thus, potentiation of a low-voltage-activated L-type current by synaptically released glutamate accounted nearly fully for the mGluR-dependent acceleration of firing. Together, these data suggest that prolonged rebound firing in the cerebellar nuclei in vivo is most likely to occur when GABAA and mGluRs are simultaneously activated by concurrent excitation and
Dutel, Guy-Daniel; Langlois, Patrick; Tingaud, David; Vrel, Dominique; Dirras, Guy
2017-04-01
Data regarding bulk polycrystalline nickel samples obtained by powder metallurgy using Spark Plasma Sintering (SPS) are presented, with a special emphasis on the influence of a cold isostatic pre-compaction on the resulting morphologies and subsequent mechanical properties. Three types of initial powders are used, nanometric powders, micrometric powders and a mixture of the formers. For each type of powder, the SPS cycle has been optimized for the powders without pre-compaction and the same cycle has been used to also sinter pre-compacted powders.
NASA Astrophysics Data System (ADS)
Tang, H. P.; Wang, J.; Song, C. N.; Liu, N.; Jia, L.; Elambasseril, J.; Qian, M.
2017-03-01
Sheet (0.41-4.80 mm thick) or thin plate structures commonly exist in additively manufactured Ti-6Al-4V components for load-bearing applications. A batch of 64 Ti-6Al-4V sheet samples with dimensions of 210/180 mm × 42 mm × 3 mm have been additively manufactured by selective electron beam melting (SEBM). A comprehensive assessment was then made of their density, surface flatness, microstructure, and mechanical properties in both as-built and hot isostatically pressed conditions, including the influence of the hot isostatic pressing (HIP) temperature. In particular, standard long tensile (156 mm long, 2 mm thick) and fatigue (206 mm long, 2 mm thick) test sheet samples were used for assessment. As-built SEBM Ti-6Al-4V sheet samples with machined surfaces fully satisfied the minimum tensile property requirements for mill-annealed TIMETAL Ti-6Al-4V sheet products, whereas HIP-processed samples (2 mm thick) with machined surfaces achieved a high cycle fatigue (HCF) strength of 625 MPa (R = 0.06, 107 cycles), similar to mill-annealed Ti-6Al-4V (500-700 MPa). The unflatness was limited to 0.2 mm in both the as-built and HIP-processed conditions. A range of other revealing observations was discussed for the additive manufacturing of the Ti-6Al-4V sheet structures.
Process and equipment development for hot isostatic pressing treatability study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim
2015-03-01
Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP withinmore » INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.« less
NASA Astrophysics Data System (ADS)
Shahraki, Meysam; Schmeling, Harro; Haas, Peter
2018-01-01
Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.
Mega debris flow deposits on the western Wilkes Land margin, East Antarctica
Donda, F.; O'Brien, P.E.; De Santis, L.; Rebesco, M.; Brancolini, Giuliano
2007-01-01
Multichannel seismic data collected off Western Wilkes Land (East Antarctica) reveal the occurrence of mega debris flow deposits on the lower slope and rise that were formed throughout the Miocene. Commonly, debris flow units are separated by thin deposits of well-stratified facies, interpreted as predominantly glaciomarine mixed contouritic and distal turbidite deposits. These units could act as weak layers and could have played a major role in the slope instability. High sedimentation rates, due to large amounts of sediment delivered from a temperate, wet-based ice sheet, constituted a key factor in the sediment failures. The main trigger mechanism would probably have been earthquakes enhanced by isostatic rebound following major ice sheet retreats.
Thermal stresses, differential subsidence, and flexure at oceanic fracture zones
NASA Technical Reports Server (NTRS)
Wessel, Pal; Haxby, William F.
1990-01-01
Geosat geoid undulations over four Pacific fracture zones have been analyzed. After correcting for the isostatic thermal edge effect, the amplitudes of the residuals are shown to be proportional to the age offset. The shape of the residuals seems to broaden with increasing age. Both geoid anomalies and available ship bathymetry data suggest that slip must sometimes occur on the main fracture zone or secondary faults. Existing models for flexure at fracture zones cannot explain the observed anomalies. A combination model accounting for slip and including flexure from thermal stresses and differential subsidence is presented. This model accounts for lateral variations in flexural rigidity from brittle and ductile yielding due to both thermal and flexural stresses and explains both the amplitudes and the shape of the anomalies along each fracture zone. The best fitting models have mechanical plate thicknesses that are described by the depth to the 600-700 C isotherms.
Gravity and isostatic anomaly maps of Greece produced
NASA Astrophysics Data System (ADS)
Lagios, E.; Chailas, S.; Hipkin, R. G.
A gravity anomaly map of Greece was first compiled in the early 1970s [Makris and Stavrou, 1984] from all available gravity data collected by different Hellenic institutions. However, to compose this map the data had to be smoothed to the point that many of the smaller-wavelength gravity anomalies were lost. New work begun in 1987 has resulted in the publication of an updated map [Lagios et al., 1994] and an isostatic anomaly map derived from it.The gravity data cover the area between east longitudes 19° and 27° and north latitudes 32° and 42°, organized in files of 100-km squares and grouped in 10-km squares using UTM zone 34 coordinates. Most of the data on land come from the gravity observations of Makris and Stavrou [1984] with additional data from the Institute of Geology and Mining Exploration, the Public Oil Corporation of Greece, and Athens University. These data were checked using techniques similar to those used in compiling the gravity anomaly map of the United States, but the horizontal gradient was used as a check rather than the gravity difference. Marine data were digitized from the maps of Morelli et al. [1975a, 1975b]. All gravity anomaly values are referred to the IGSN-71 system, reduced with the standard Bouger density of 2.67 Mg/m3. We estimate the errors of the anomalies in the continental part of Greece to be ±0.9 mGal; this is expected to be smaller over fairly flat regions. For stations whose height has been determined by leveling, the error is only ±0.3 mGal. For the marine areas, the errors are about ±5 mGal [Morelli, 1990].
Optimizing the Synthesis of Alumina Inserts Using Hot Isostatic Pressing (HIP)
NASA Astrophysics Data System (ADS)
Ariff, T. F.; Azhar, A. Z.; Sariff, M. N.; Rasid, S. N.; Zahari, S. Z.; Bahar, R.; Karim, M.; Nurul Amin, AKM
2018-01-01
Alumina or Aluminium Oxide (Al2O3) is well known for its high strength and hardness. Its low heat retention and low specific heat characteristics make it attractive to be used widely as a cutting tool for grinding, milling and turning processes. Various synthesis methods have been used for the purpose of enhancing the properties of the alumina inserts. However, the optimization process using Hot Isostatic Pressing (HIP) has not been performed. This research aims in finding the optimum parameters in synthesizing the alumina inserts (98Al2O3 1.6ZrO2 0.4MgO, 93Al2O3 6.4ZrO2 0.6MgO and 85Al2O3 14.5ZrO2 0.5MgO) using HIP at different temperatures (1200, 1250 and 1300°C) and sintering time (10, 30 and 60 minutes). Hardness, density, shrinkage and microstructure using SEM were analysed. The optimum sintering condition for the alumina insert was found in 98Al2O3 1.6ZrO2 0.4MgO sintered at 1300°C for 60 minutes for it exhibited the highest values of hardness (1917HV), density (3.95g/cm3), shrinkage (9.6%).
Besharat Pour, M; Bergström, A; Bottai, M; Magnusson, J; Kull, I; Moradi, T
2017-02-01
This paper aims to assess association between breastfeeding and maternal immigration background and body mass index development trajectories from age 2 to 16 years. A cohort of children born in Stockholm during 1994 to 1996 was followed from age 2 to 16 years with repeated measurement of height and weight at eight time points (n = 2278). Children were categorized into groups by breastfeeding status during the first 6 months of life and maternal immigration background. Body mass index (BMI) trajectories and age at adiposity rebound were estimated using mixed-effects linear models. Body mass index trajectories were different by breastfeeding and maternal immigration status (P-value < 0.0001). Compared with exclusively breastfed counterparts, never/short breastfed children of Swedish mothers had a higher BMI trajectory, whereas never/short breastfed children of immigrant mothers followed a lower BMI trajectory. Ages at adiposity rebound were earlier for higher BMI trajectories regardless of maternal immigration background. Differences in BMI trajectories between offspring of immigrant and of Swedish mothers suggest a lack of beneficial association between breastfeeding and long-term BMI development among children of immigrant mothers. Given the relation between long-term BMI development and risk of overweight/obesity, these differences challenge the notion that exclusive breastfeeding is always beneficial for children's BMI development and subsequent risk of overweight/obesity. © 2016 World Obesity Federation.
Levy-Varon, Jennifer H; Schuster, William S F; Griffin, Kevin L
2014-04-01
Forests serve an essential role in climate change mitigation by removing CO2 from the atmosphere. Within a forest, disturbance events can greatly impact C cycling and subsequently influence the exchange of CO2 between forests and the atmosphere. This connection makes understanding the forest C cycle response to disturbance imperative for climate change research. The goal of this study was to examine the temporal response of soil respiration after differing levels of stand disturbance for 3 years at the Black Rock Forest (southeastern NY, USA; oaks comprise 67% of the stand). Tree girdling was used to mimic pathogen attack and create the following treatments: control, girdling all non-oaks (NOG), girdling half of the oak trees (O50), and girdling all the oaks (OG). Soil respiratory rates on OG plots declined for 2 years following girdling before attaining a full rebound of belowground activity in the third year. Soil respiration on NOG and O50 were statistically similar to the control for the duration of the study although a trend for a stronger decline in respiration on O50 relative to NOG occurred in the first 2 years. Respiratory responses among the various treatments were not proportional to the degree of disturbance and varied over time. The short-lived respiratory response on O50 and OG suggests that belowground activity is resilient to disturbance; however, sources of the recovered respiratory flux on these plots are likely different than they were pre-treatment. The differential taxon response between oaks and non-oaks suggests that after a defoliation or girdling event, the temporal response of the soil respiratory flux may be related to the C allocation pattern of the affected plant group.
Kaka, Bashir; Maharaj, Sonill Sooknunan
2018-05-07
The incidence of type 2 diabetes mellitus, a chronic lifestyle disease, and its complications are on the rise. Exercise has been documented as being effective in the management of musculoskeletal pain, depression, and reduction of hyperglycemia in diabetic patients. However, there is no consensus regarding the types of exercise that reduce musculoskeletal pain and depression and improve quality of life as well as respiratory function among individuals with type 2 diabetes. The objective of this study is to determine the effects of rebound and circuit training on musculoskeletal pain, blood glucose level, cholesterol level, quality of life, depression, and respiratory parameters in patients with type 2 diabetes mellitus. A total of 70 participants are expected to be recruited in this single blind randomized controlled trial. Computer-generated random numbers will be used to randomize the participants into 3 groups, namely, the rebound exercise group, the circuit exercise group, and the control group. Measurements will be taken at baseline and at the end of the 8 weeks of the study. Participants' musculoskeletal pain will be assessed using the visual analog scale, quality of life will be assessed using the SF 12 Health Survey Questionnaire, depression using the Beck Depression Inventory, respiratory parameters using the spirometer, and biochemical parameters such as glucose level and cholesterol level using the glucometer. Data will be analyzed using descriptive statistics and inferential statistics of multivariate analysis of variance between the groups and paired t test within the group. Alpha will be set at .05. The results of this study will identify the effectiveness of rebound exercise and circuit training, compared with the control, in the management of type 2 diabetes mellitus and on quality of life, musculoskeletal pain, depression, glycemic control, cholesterol level, as well as improvement in respiratory function. Though different additional strategies
Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys
NASA Technical Reports Server (NTRS)
Harf, F. H.
1982-01-01
The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.
Expanded Analysis of Hot Isostatic Pressed Iodine-Loaded Silver-Exchanged Mordenite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, R. T.; Bruffey, S. H.; Patton, K. K.
2014-09-30
Reduced silver-exchanged mordenite (Ag0Z) is being evaluated as a potential material to control the release of radioactive iodine that is released during the reprocessing of used nuclear fuel into the plant off-gas streams. The purpose of this study was to determine if hot pressing could directly convert this iodine loaded sorbent into a waste form suitable for long-term disposition. The minimal pretreatment required for production of pressed pellets makes hot pressing a technically and economically desirable process. Initial scoping studies utilized hot uniaxial pressing (HUPing) to prepare samples of non-iodine-loaded reduced silver exchanged mordenite (Ag0Z). The resulting samples were verymore » fragile due to the low pressure (~ 28 MPa) used. It was recommended that hot isostatic pressing (HIPing), performed at higher temperatures and pressures, be investigated. HIPing was carried out in two phases, with a third and final phase currently underway. Phase I evaluated the effects of pressure and temperature conditions on the manufacture of a pressed sample. The base material was an engineered form of silver zeolite. Six samples of Ag0Z and two samples of I-Ag0Z were pressed. It was found that HIPing produced a pressed pellet of high density. Analysis of each pressed pellet by scanning electron microscopy-energy dispersive spectrophotometry (SEM-EDS) and X-ray diffraction (XRD) demonstrated that under the conditions used for pressing, the majority of the material transforms into an amorphous structure. The only crystalline phase observed in the pressed Ag0Z material was SiO2. For the samples loaded with iodine (I-Ag0Z) iodine was present as AgI clusters at low temperatures, and transformed into AgIO4 at high temperatures. Surface mapping and EDS demonstrate segregation between silver iodide phases and silicon dioxide phases. Based on the results of the Phase I study, an expanded test matrix was developed to examine the effects of multiple source materials
NASA Technical Reports Server (NTRS)
Ihnen, S. M.; Whitcomb, J. H.
1983-01-01
The broad gravity low in the equatorial Indian Ocean south of Sri Lanka is the largest and most striking feature in the gravitational field of the earth. The most negative long-wavelength free-air gravity anomalies are found there and the sea surface (geoid) lies more than 100 meters below the best fitting ellipsoid. A model of the lithosphere and upper mantle is proposed which accurately predicts the observed free-air gravity and geoid elevation. This model is consistent with bathymetry and sediment thickness data and suggests that the crust south of India currently floats as much as 600 meters lower than would be expected if the region were isostatically compensated. This residual depression of the crust is apparently confirmed by observations of ocean depth. An uncompensated depression is consistent with the presence of a mechanical wake left in the upper mantle behind India as it traveled toward Asia.
Postglacial Rebound From Space Geodesy
NASA Astrophysics Data System (ADS)
Argus, D. F.; Peltier, W. R.
2005-12-01
To study the viscous response of the earth to the unloading of the late Pleistocene ice sheets and, to a lesser extent, the elastic response of the earth to current changes in ice sheet mass, we integrate geodetic observations from VLBI over 24 years, from SLR over 23 years, from DORIS over 12 years, and from GPS over 11 years. The excellent geodetic velocity solutions upon which this study are based are from Chopo Ma and Dan MacMillan (Goddard Space Flight Center), Michael Heflin (Jet Propulsion Laboratory), John Ries and Richard Eanes (Center for Space Research, University of Texas at Austin), and Pascal Willis (Institut Geogpraphique National and Jet Propulsion Laboratory). The rates of uplift and subsidence we determine, which in places differ significantly from published studies, are constraining postglacial rebound models like that of Peltier [1994], Peltier [1996], Milne [2001], and Peltier [2004]. We find the following: Yellowknife is rising at 5.7 ±1.8 mm/yr (95% confidence limits), showing [Peltier 2002, 2004], with complimentary ground observations of gravity [Lambert et al. 2001], that the western part of the Laurentide ice sheet was thicker during the Last Glacial Maximum than previously [Peltier 1994, 1996] believed. Onsala (Sweden) is rising at 2.4 ±1.3 mm/yr and Algonquin Park (Ontario) is rising at 2.3 ±1.4 mm/yr, constraining the positions of the margins of the Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum. The eastern United States is falling at ~1 mm/yr, suggesting that the area around the ancient Laurentide ice sheet is subsiding more slowly than predicted by the model of Peltier [2004]. Western and central Europe are falling at ~0.5 mm/yr, suggesting that the area around the ancient Fennoscandian ice sheet is hardly subsiding at all, consistent with the model of Peltier [2004]. Kellyville (Greenland) is falling insignificantly at 1.1 ±4.3 mm/yr, not requiring current loading of the ice sheet [Wahr et al. 2002
Glacial isostatic adjustment on the Northern Hemisphere - new results from GRACE
NASA Astrophysics Data System (ADS)
Mueller, J.; Steffen, H.; Gitlein, O.; Denker, H.; Timmen, L.
2007-12-01
The Earth's gravity field mapped by the Gravity Recovery and Climate Experiment (GRACE) satellite mission shows variations due to the integral effect of mass variations in the atmosphere, hydrosphere and geosphere. The Earth's gravity field is provided in form of monthly solutions by several institutions, e.~g. GFZ Potsdam, CSR and JPL. During the GRACE standard processing of these analysis centers, oceanic and atmospheric contributions as well as tidal effects are reduced. The solutions of the analysis centers differ slightly, which is due the application of different reduction models and center-specific processing schemes. We present our investigation of mass variations in the areas of glacial isostatic adjustment (GIA) in North America and Northern Europe from GRACE data. One key issue is the separation of GIA parts and the reduction of the observed quantities by applying dedicated filters (e.~g. isotropic, non-isotropic, and destriping filters) and global models of hydrological variations (e.~g. WGHM, LaDWorld, GLDAS). In a further step, we analyze the results of both regions regarding their reliability, and finally present a comparison to results of a geodynamical modeling and absolute gravity measurements. Our results clearly show that the quality of the GRACE-derived gravity- change signal benefits from improved reduction models and chosen analysis techniques. Nevertheless, the comparison to results of geodynamic models still reveals differences, and thus further studies are in progress.
NASA Technical Reports Server (NTRS)
Harf, F. H.
1985-01-01
Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.
Koyama, Taku; Sato, Toru; Yoshinari, Masao
2012-01-01
This study investigated the influence of surface roughness and cyclic loading on fatigue resistance in Y-TZP subjected to hot isostatic pressing (HIP). Fifty Y-TZP cylinders 3.0 mm in diameter were divided into Group A (polished by centerless method; TZP-CP) or Group B (blasted and acid-etched: TZP-SB150E). Twenty five cp-titanium cylinders (Ti-SB150E) were used as a control. Static and cyclic tests were carried out according to ISO 14801. The cyclic fatigue test was performed in distilled water at 37°C. Surface morphology and roughness as well as crystal phase on the surfaces were also evaluated. Fracture force under the static test was 1,765N (TZP-CP), 1,220N (TZP-SB150E), and 850 N (yield force, Ti-SB150E). Fracture values under the cyclic test decreased to approximately 70% of those under the static tests. These results indicate that HIPed Y-TZP with a 3.0-mm diameter has sufficient durability for application to dental implants.
Hot isostatic pressing of silicon nitride with boron nitride, boron carbide, and carbon additions
NASA Technical Reports Server (NTRS)
Mieskowski, Diane M.; Sanders, William A.
1989-01-01
Si3N4 test bars containing additions of BN, B4C, and C, were hot isostatically pressed in Ta cladding at 1900 and 2050 C to 98.9 percent to 99.5 percent theoretical density. Room-temperature strength data on specimens containing 2 wt pct BN and 0.5 wt pct C were comparable to data obtained for Si3N4 sintered with Y2O3, Y2O3 and Al2O3, or ZrO2. The 1370 C strengths were less than those obtained for additions of Y2O3 or ZrO2 but greater than those obtained from a combination of Y2O3 and Al2O3. SEM fractography indicated that, as with other types of Si3N4, room-temperature strength was controlled by processing flaws. The decrease in strength at 1370 C was typical of Si3N4 having an amorphous grain-boundary phase. The primary advantage of nonoxide additions appears to be in facilitating specimen removal from the Ta cladding.
THE PHOENIX POPULATION: DEMOGRAPHIC CRISIS AND REBOUND IN CAMBODIA*
HEUVELINE, PATRICK; POCH, BUNNAK
2014-01-01
The study of mortality crises provides an unusual and valuable perspective on the relationship between mortality and fertility changes, a relationship that has puzzled demographers for decades. In this article, we combine nationally representative survey and demographic-surveillance system data to study fertility trends around the time of the Khmer Rouge (KR) regime, under which 25% of the Cambodian population died. We present the first quantitative evidence to date that attests to a one-third decline of fertility during this regime, followed by a substantial “baby boom” after the fall of the KR. Further analyses reveal that the fertility rebound was produced not only by a two-year marriage bubble but also by a surge in marital fertility that remained for nearly a decade above its precrisis level. Our results illustrate the potential influence of mortality on fertility, which may be more difficult to identify for more gradual mortality declines. To the extent that until recently, Cambodian fertility appears to fit natural fertility patterns, our findings also reinforce meaning of this core paradigm of demographic analysis. In July 1978, a youth named Korb, bound hand and foot, arrived at a Pol Pot regime extermination camp. The local security chief, “Comrade Uncle An,” was handed the following note: Formerly this person was normal in character. Then, over about ten days, he went crazy. […] If many people come in, first he begins to whistle, and then he sings the following rhyme out loud: O! Khmers with black blood Now the eight-year Buddhist prophecy is being fulfilled. Vietnam is the elder brother Kampuchea is the younger. If we do not follow the Vietnamese as our elder brothers There will be nothing left of the Khmer this time but ashes.(Kiernan and Boua 1982:363) PMID:17583312
Ponce, David A.; Mankinen, E.A.; Davidson, J.G.; Morin, R.L.; Blakely, R.J.
2000-01-01
An isostatic gravity map of the Nevada Test Site area was prepared from publicly available gravity data (Ponce, 1997) and from gravity data recently collected by the U.S. Geological Survey (Mankinen and others, 1999; Morin and Blakely, 1999). Gravity data were processed using standard gravity data reduction techniques. Southwest Nevada is characterized by gravity anomalies that reflect the distribution of pre-Cenozoic carbonate rocks, thick sequences of volcanic rocks, and thick alluvial basins. In addition, regional gravity data reveal the presence of linear features that reflect large-scale faults whereas detailed gravity data can indicate the presence of smaller-scale faults.
NASA Technical Reports Server (NTRS)
Perry, S. K.; Schamel, S.
1985-01-01
Tectonic extension within continental crust creates a variety of major features best classed as extensional orogens. These features have come under increasing attention in recent years, with the welding of field observation and theoretical concepts. Most recent advances have come from the Basin and Range Province of the southwestern United States and from the North Sea. Application of these geometric and isostatic concepts, in combination with seismic interpretation, to the southern Gulf of Suez, an active extensional orogen, allows generation of detailed structural maps and geometrically balanced sections which suggest a regional structural model. Geometric models which should prove to be a valuable adjunct to numerical and thermal models for the rifting process are discussed.
Hansen, Keir T; Cronin, John B; Pickering, Stuart L; Douglas, Lee
2011-09-01
The purpose of this study was to investigate the discriminative ability of rebound jump squat force-time and power-time measures in differentiating speed performance and competition level in elite and elite junior rugby union players. Forty professional rugby union players performed 3 rebound jump squats with an external load of 40 kg from which a number of force-time and power-time variables were acquired and analyzed. Additionally, players performed 3 sprints over 30 m with timing gates at 5, 10, and 30 m. Significant differences (p < 0.05) between the fastest 20 and slowest 20 athletes, and elite (n = 25) and elite junior (n = 15) players in speed and force-time and power-time variables were determined using independent sample t-tests. The fastest and slowest sprinters over 10 m differed in peak power (PP) expressed relative to body weight. Over 30 m, there were significant differences in peak velocity and relative PP and rate of power development. There was no significant difference in speed over any distance between elite and elite junior rugby union players; however, a number of force and power variables including peak force, PP, force at 100 milliseconds from minimum force, and force and impulse 200 milliseconds from minimum force were significantly (p < 0.05) different between playing levels. Although only power values expressed relative to body weight were able to differentiate speed performance, both absolute and relative force and power values differentiated playing levels in professional rugby union players. For speed development in rugby union players, training strategies should aim to optimize the athlete's power to weight ratio, and lower body resistance training should focus on movement velocity. For player development to transition elite junior players to elite status, adding lean mass is likely to be most beneficial.
Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation
Leão, Richardson N.; Edwards, Steven J.
2017-01-01
Martinotti cells are the most prominent distal dendrite–targeting interneurons in the cortex, but their role in controlling pyramidal cell (PC) activity is largely unknown. Here, we show that the nicotinic acetylcholine receptor α2 subunit (Chrna2) specifically marks layer 5 (L5) Martinotti cells projecting to layer 1. Furthermore, we confirm that Chrna2-expressing Martinotti cells selectively target L5 thick-tufted type A PCs but not thin-tufted type B PCs. Using optogenetic activation and inhibition, we demonstrate how Chrna2-Martinotti cells robustly reset and synchronize type A PCs via slow rhythmic burst activity and rebound excitation. Moreover, using optical feedback inhibition, in which PC spikes controlled the firing of surrounding Chrna2-Martinotti cells, we found that neighboring PC spike trains became synchronized by Martinotti cell inhibition. Together, our results show that L5 Martinotti cells participate in defined cortical circuits and can synchronize PCs in a frequency-dependent manner. These findings suggest that Martinotti cells are pivotal for coordinated PC activity, which is involved in cortical information processing and cognitive control. PMID:28182735
Fundamental Aspects of Zeolite Waste Form Production by Hot Isostatic Pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, Robert Thomas; Bruffey, Stephanie H.; Jordan, Jacob A.
The direct conversion of iodine-bearing sorbents into a stable waste form is a research topic of interest to the US Department of Energy. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary in order to comply with the regulatory requirements that apply to facilities sited within the United States (Jubin et al., 2012a), and any iodine-containing media or solid sorbents generated by this process would contain 129I and would be destined for eventual geological disposal. While recovery of iodine from some sorbents is possible, a method to directly convert iodineloaded sorbentsmore » to a durable waste form with little or no additional waste materials being formed and a potentially reduced volume would be beneficial. To this end, recent studies have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by hot isostatic pressing (HIPing) (Bruffey and Jubin, 2015). Silver mordenite (AgZ), of the zeolite class of minerals, is under consideration for use in adsorbing iodine from nuclear reprocessing off-gas streams. Direct conversion of I-AgZ by HIPing may provide the following benefits: (1) a waste form of high density that is tolerant to high temperatures, (2) a waste form that is not significantly chemically hazardous, and (3) a robust conversion process that requires no pretreatment.« less
Tan, Liming; He, Guoai; Liu, Feng; Li, Yunping; Jiang, Liang
2018-01-01
The microstructure with homogeneously distributed grains and less prior particle boundary (PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing (HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain coarsening under high temperature could be inhibited by increasing HIPping pressure which facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and homogeneously refined grains. PMID:29495312
Tan, Liming; He, Guoai; Liu, Feng; Li, Yunping; Jiang, Liang
2018-02-24
The microstructure with homogeneously distributed grains and less prior particle boundary (PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing (HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain coarsening under high temperature could be inhibited by increasing HIPping pressure which facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and homogeneously refined grains.
Hot Isostatic Pressing of Engineered Forms of I-AgZ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, Robert Thomas; Watkins, Thomas R.; Bruffey, Stephanie H.
Hot isostatic pressing (HIP) is being considered for direct conversion of 129I-bearing materials to a radiological waste form. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary to comply with regulatory requirements regarding reprocessing facilities sited within the United States, and any iodine-containing media or solid sorbents generated by offgas abatement will require disposal. Zeolite minerals such as silver-exchanged mordenite (AgZ) have been studied as potential iodine sorbents and will contain 129I as chemisorbed AgI. Oak Ridge National Laboratory (ORNL) has conducted several recent studies on the HIP of both iodine-loadedmore » AgZ (I-AgZ) and other iodine-bearing zeolite minerals. The goal of these research efforts is to achieve a stable, highly leach resistant material that is reduced in volume as compared to bulk iodine-loaded I-AgZ. Through the use of HIP, it may be possible to achieve this with the addition of little or no additional materials (waste formers). Other goals for the process include that the waste form will be tolerant to high temperatures and pressures, not chemically hazardous, and that the process will result in minimal secondary waste generation. This document describes the preparation of 27 samples that are distinct from previous efforts in that they are prepared exclusively with an engineered form of AgZ that is manufactured using a binder. Iodine was incorporated solely by chemisorption. This base material is expected to be more representative of an operational system than were samples prepared previously with pure minerals.« less
NASA Astrophysics Data System (ADS)
Main, Ian; Irving, Duncan; Musson, Roger; Reading, Anya
1999-05-01
Earthquake populations have recently been shown to have many similarities with critical-point phenomena, with fractal scaling of source sizes (energy or seismic moment) corresponding to the observed Gutenberg-Richter (G-R) frequency-magnitude law holding at low magnitudes. At high magnitudes, the form of the distribution depends on the seismic moment release rate Msolar and the maximum magnitude m_max . The G-R law requires a sharp truncation at an absolute maximum magnitude for finite Msolar. In contrast, the gamma distribution has an exponential tail which allows a soft or `credible' maximum to be determined by negligible contribution to the total seismic moment release. Here we apply both distributions to seismic hazard in the mainland UK and its immediate continental shelf, constrained by a mixture of instrumental, historical and neotectonic data. Tectonic moment release rates for the seismogenic part of the lithosphere are calculated from a flexural-plate model for glacio-isostatic recovery, constrained by vertical deformation rates from tide-gauge and geomorphological data. Earthquake focal mechanisms in the UK show near-vertical strike-slip faulting, with implied directions of maximum compressive stress approximately in the NNW-SSE direction, consistent with the tectonic model. Maximum magnitudes are found to be in the range 6.3-7.5 for the G-R law, or 7.0-8.2 m_L for the gamma distribution, which compare with a maximum observed in the time period of interest of 6.1 m_L . The upper bounds are conservative estimates, based on 100 per cent seismic release of the observed vertical neotectonic deformation. Glacio-isostatic recovery is predominantly an elastic rather than a seismic process, so the true value of m_max is likely to be nearer the lower end of the quoted range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vance, Eric R.; La Robina, Michael; Li, Huijun
2007-07-01
A synroc-D ceramic consisting mostly of spinel, hollandite, pyrochlore-structured CaUTi{sub 2}O{sub 7}, UO{sub 2}, and Ti-rich regions shows promise for immobilisation of a HLW containing mainly Al and U, together with fission products. Ceramics with virtually zero porosities and waste loadings of 50-60 wt% on an oxide basis were prepared by cold crucible melting (CCM) at {approx}1500 deg. C, and also by subsolidus hot isostatic pressing (HIP) at 1100 deg. C to prevent volatile losses. PCT leaching test values for Cs were < 13 g/L, with all other normalised elemental extractions being well below 1 g/L. (authors)
Li, Jonathan Z.; Heisey, Andrea; Ahmed, Hayat; Wang, Hongying; Zheng, Lu; Carrington, Mary; Wrin, Terri; Schooley, Robert T.; Lederman, Michael M.; Kuritzkes, Daniel R.
2014-01-01
Objectives To evaluate the impact of therapeutic HIV vaccination on the HIV reservoir, and assess the relationship of the viral reservoir with HIV-specific immune status and viral rebound kinetics. Design Retrospective analysis of ACTG A5197, a randomized, placebo-controlled trial of a therapeutic rAd5 HIV-1 gag vaccine. Methods Participants received vaccine/placebo at weeks 0, 4, and 26 prior to a 16-week analytic treatment interruption (ATI) at week 38. Cell-associated HIV-1 RNA and DNA (CA-RNA and CA-DNA) and HIV-1 residual viremia (RV) were quantified at weeks 0, 8, and 38. HIV-specific CD4+/CD8+ activity were assessed by an intracellular cytokine staining assay. Results At study entry, CA-RNA and CA-DNA levels were correlated inversely with the numbers of HIV-specific CD4+ interferon-γ-producing cells (CA-RNA: r = −0.23, P=0.03 and CA-DNA: r = −0.28, P<0.01, N=93). Therapeutic HIV vaccination induced HIV-specific CD4+ activity, but did not significantly affect levels of CA-RNA or CA-DNA. Vaccine recipients with undetectable RV at week 8 had higher frequencies of HIV-specific CD4+ and CD8+ interferon-γ-producing cells (undetectable versus detectable RV: 277 versus 161 CD4+ cells/106 lymphocytes, P=0.03 and 1326 versus 669 CD8+ cells/106 lymphocytes, P=0.04). Pre-ATI CA-RNA and CA-DNA were associated with post-ATI plasma HIV set point (CA-RNA: r = 0.51, P<0.01 and CA-DNA: r = 0.47, P<0.01). Conclusions Vaccine-induced T-cell responses were associated with a modest transient effect on RV, but more potent immune responses and/or combination treatment with latency-reversing agents are needed to reduce the HIV reservoir. HIV reservoir measures may act as biomarkers of post-ATI viral rebound kinetics. PMID:25254301
NASA Astrophysics Data System (ADS)
Nield, G.; Whitehouse, P. L.; Blank, B.; van der Wal, W.; O'Donnell, J. P.; Stuart, G. W.; Lloyd, A. J.; Wiens, D.
2017-12-01
Accurate models of Glacial Isostatic Adjustment (GIA) are required for correcting satellite measurements of ice-mass change and for interpretation of geodetic data at the location of present and former ice sheets. Global models of GIA tend to adopt a 1-D representation of Earth structure, varying in the radial direction only. In some regions rheological parameters may differ significantly from this global average leading to bias in model predictions of present-day deformation, geoid change rates and sea-level change. The advancement of 3-D GIA modelling techniques in recent years has led to improvements in the representation of the Earth via the incorporation of laterally varying structure. This study investigates the influence of 3-D Earth structure on deformation rates in West Antarctica using a finite element GIA model with power-law rheology. We utilise datasets of seismic velocity and temperature for the crust and upper mantle with the aim of determining a data-driven Earth model, and consider the differences when compared to deformation predicted from an equivalent 1-D Earth structure.
NASA Technical Reports Server (NTRS)
Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.
1993-01-01
We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories, these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the VLBI observations.
NASA Technical Reports Server (NTRS)
Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.
1993-01-01
We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three-dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories; these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the Very Long Base Interferometry (VLBI) observations.
Monjazeb, Arta M; Kent, Michael S; Grossenbacher, Steven K; Mall, Christine; Zamora, Anthony E; Mirsoian, Annie; Chen, Mingyi; Kol, Amir; Shiao, Stephen L; Reddy, Abhinav; Perks, Julian R; T N Culp, William; Sparger, Ellen E; Canter, Robert J; Sckisel, Gail D; Murphy, William J
2016-09-01
Previous studies demonstrate that intratumoral CpG immunotherapy in combination with radiotherapy acts as an in-situ vaccine inducing antitumor immune responses capable of eradicating systemic disease. Unfortunately, most patients fail to respond. We hypothesized that immunotherapy can paradoxically upregulate immunosuppressive pathways, a phenomenon we term "rebound immune suppression," limiting clinical responses. We further hypothesized that the immunosuppressive enzyme indolamine-2,3-dioxygenase (IDO) is a mechanism of rebound immune suppression and that IDO blockade would improve immunotherapy efficacy. We examined the efficacy and immunologic effects of a novel triple therapy consisting of local radiotherapy, intratumoral CpG, and systemic IDO blockade in murine models and a pilot canine clinical trial. In murine models, we observed marked increase in intratumoral IDO expression after treatment with radiotherapy, CpG, or other immunotherapies. The addition of IDO blockade to radiotherapy + CpG decreased IDO activity, reduced tumor growth, and reduced immunosuppressive factors, such as regulatory T cells in the tumor microenvironment. This triple combination induced systemic antitumor effects, decreasing metastases, and improving survival in a CD8(+) T-cell-dependent manner. We evaluated this novel triple therapy in a canine clinical trial, because spontaneous canine malignancies closely reflect human cancer. Mirroring our mouse studies, the therapy was well tolerated, reduced intratumoral immunosuppression, and induced robust systemic antitumor effects. These results suggest that IDO maintains immune suppression in the tumor after therapy, and IDO blockade promotes a local antitumor immune response with systemic consequences. The efficacy and limited toxicity of this strategy are attractive for clinical translation. Clin Cancer Res; 22(17); 4328-40. ©2016 AACR. ©2016 American Association for Cancer Research.
Crustal structure, and topographic relief in the high southern Scandes, Norway
NASA Astrophysics Data System (ADS)
Stratford, W.; Thybo, H.; Frassetto, A.
2010-05-01
Resolving the uplift history of southern Norway is hindered by the lack of constraint available from the geologic record. Sediments that often contain information of burial and uplift history have long since been stripped from the onshore regions in southern Norway, and geophysical, dating methods and geomorphological studies are the remaining means of unraveling uplift history. New constraints on topographic evolution and uplift in southern Norway have been added by a recent crustal scale refraction project. Magnus-Rex (Mantle investigation of Norwegian uplift Structure, refraction experiment) recorded three ~400 km long active source seismic profiles across the high southern Scandes Mountains. The goal of the project is to determine crustal thickness and establish whether these mountains are supported at depth by a crustal root or by other processes. The southern Scandes Mountains were formed during the Caledonian Orogeny around 440 Ma. These mountains, which reach elevations of up to ~2.5 km, are comprised of one or more palaeic (denudation) surfaces of rolling relief that are incised by fluvial and glacial erosion. Extreme vertical glacial incision of up to 1000 m cuts into the surfaces in the western fjords, while the valleys of eastern Norway are more fluvial in character. Climatic controls on topography here are the Neogene - Recent effects of rebound due to removal of the Fennoscandian ice sheet and isostatic rebound due to incisional erosion. However, unknown tectonic uplift mechanisms may also be in effect, and separating the tectonic and climate-based vertical motions is often difficult. Sediment and rock has been removed by the formation of the palaeic surfaces and uplift measurements cannot be directly related to present elevations. Estimates so far have indicated that rebound due to incisional erosion has a small effect of ~500 m on surface elevation. Results from Magnus-Rex indicate the crust beneath the high mountains is up to 40 km thick. This
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Xiong, X.; Zhao, Z. W.; Xie, L.; Min, X. B.; Yan, J. H.; Xia, G. M.; Zheng, F.
2015-08-01
Tungsten nozzle was produced by plasma spray forming (PSF, relative density of 86 ± 2%) followed by hot isostatic pressing (HIPing, 97 ± 2%) at 2000 °C and 180 MPa for 180 min. Scanning electron microscope, x-ray diffractometer, Archimedes method, Vickers hardness, and tensile tests have been employed to study microstructure, phase composition, density, micro-hardness, and mechanical properties of the parts. Resistance of thermal shock and ablation behavior of W nozzle were investigated by hot-firing test on solid rocket motor (SRM). Comparing with PSF nozzle, less damage was observed for HIPed sample after SRM test. Linear ablation rate of nozzle made by PSF was (0.120 ± 0.048) mm/s, while that after HIPing reduced to (0.0075 ± 0.0025) mm/s. Three types of ablation mechanisms including mechanical erosion, thermophysical erosion, and thermochemical ablation took place during hot-firing test. The order of degree of ablation was nozzle throat > convergence > dilation inside W nozzle.
MgB2 wire diameter reduction by hot isostatic pressing—a route for enhanced critical current density
NASA Astrophysics Data System (ADS)
Morawski, A.; Cetner, T.; Gajda, D.; Zaleski, A. J.; Häßler, W.; Nenkov, K.; Rindfleisch, M. A.; Tomsic, M.; Przysłupski, P.
2018-07-01
The effect of wire diameter reduction on the critical current density of pristine MgB2 wire was studied. Wires were treated by a hot isostatic pressing method at 570 °C and at pressures of up to 1.1 GPa. It was found that the wire diameter reduction induces an increase of up to 70% in the mass density of the superconducting cores. This feature leads to increases in critical current, critical current density, and pinning force density. The magnitude and field dependence of the critical current density are related to both grain connectivity and structural defects, which act as effective pinning centers. High field transport properties were obtained without doping of the MgB2 phase. A critical current density jc of 3500 A mm‑2 was reached at 4 K, 6 T for the best sample, which was a five-fold increase compared to MgB2 samples synthesized at ambient pressure.
NASA Astrophysics Data System (ADS)
Gentzbittel, J. M.; Chu, I.; Burlet, H.
2002-12-01
The production of reduced activation ferritic/martensitic (RAFM) steel by powder metallurgy and high isostatic pressing (HIP) offers numerous advantages for different nuclear applications. The objective of this work is to optimise the Eurofer powder HIP process in order to obtain RAFM solid HIPed steel with similar mechanical properties to those of a forged material. Starting from the forged solid Eurofer steel batch, the material is atomized and the Eurofer powder is characterized in terms of granulometry, chemical composition, surface oxides, etc. Different compaction HIP cycle parameters in the temperature range (950-1100 °C) are tested. The chemical composition of the HIPed material is comparable to the initial forged Eurofer. All the obtained materials are fully dense and the microstructure of the compacted material is well martensitic. The prior austenite grain size seems to be constant in this temperature range. The mechanical tests performed at room temperature reveal acceptable hardness, tensile and Charpy impact properties regarding the ITER specification.
NASA Astrophysics Data System (ADS)
Sugano, T.; Heki, K.
2002-12-01
Direct estimation of mass distribution on the lunar nearside surface using the Lunar Prospector (LP) line-of-sight (LOS) acceleration data has several merits over conventional methods to estimate Stokes' coefficients of the lunar gravity field, such as (1) high resolution gravity anomaly recovery without introducing Kaula's constraint, (2) fast inversion calculation by stepwise estimation of parameter sets enabled by small correlation between parameters sets. Resolution of the lunar free-air gravity anomaly map obtained here, is as high as a gravity model complete to degree/order 225, and yet less noisy than the recent models. Next we performed terrain correction for the raw LOS acceleration data using lunar topography model from the Clementine laser altimetry data and the average crustal density of 2.9 g/cm3. By conducting the same inversion for the data after the correction, we obtained the map of Bouguer gravity anomaly that mainly reflects the MOHO topography. By comparing maps we notice that signatures of medium-sized (80-300 km in diameter) craters visible as topographic depression and negative free air anomaly, disappear in the Bouguer anomaly. The absence of mass deficits in the Bouguer anomaly suggests that the MOHO beneath them is flat. Generally speaking, longer wavelength topographic features have to be supported by MOHO topography (Airy isostatic compensation) while small scale topographic features are supported by lithospheric strength. The boundary between these two modes constrains the lithosphere thickness, and hence thermal structure near the surface. Larger craters are known to have become Mascons; mantle plugs and high-density mare basalts cause positive gravity anomalies there. The smallest Mascon has diameters a little larger than 300 km (e.g. Schiller-Zuccius), and the boundary between the two compensation status seems to lie around 300 km. Thermal evolution history of the Moon suggests temporally increasing thickness of lithosphere over its
Iijima, Toshihiko; Homma, Shinya; Sekine, Hideshi; Sasaki, Hodaka; Yajima, Yasutomo; Yoshinari, Masao
2013-01-01
Hot isostatic pressing processed yttria-stabilized tetragonal zirconia polycrystal (HIP Y-TZP) has the potential for application to implants due to its high mechanical performance. The aim of this study was to investigate the influence of surface treatment of HIP Y-TZP on cyclic fatigue strength. HIP Y-TZP specimens were subjected to different surface treatments. Biaxial flexural strength was determined by both static and cyclic fatigue testing. In the cyclic fatigue test, the load was applied at a frequency of 10 Hz for 10(6) cycles in distilled water at 37°C. The surface morphology, roughness, and crystal phase of the surfaces were also evaluated. The cyclic fatigue strength (888 MPa) of HIP Y-TZP with sandblasting and acid-etching was more than twice that of Y-TZP as specified in ISO 13356 for surgical implants (320 MPa), indicating the clinical potential of this material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indla, Srinivas; Das, Dibakar, E-mail: ddse@uohyd.ernet.in; Chelvane, Arout
2016-05-06
Nano crystalline CoFe{sub 2}O{sub 4} powder was prepared by combustion synthesis method. As synthesized powder was calcined at an appropriate condition to remove the impurities and to promote phase formation. Phase pure CoFe{sub 2}O{sub 4} powder was pressed into cylindrical rod at an applied pressure of 200 MPa using a cold isostatic pressing. Sintering of the green compact at 1350°c for 12 hrs resulted in sintered cylindrical rod with ~85% of the theoretical density. Single phase cubic spinel structure was observed in the powder x-ray diffraction pattern of the sintered pellet. Scanning electron micrographs (SEM) of the as sintered pelletmore » revealed the microstructure to be composed of ferrite grains of average size ~4 µm. Saturation magnetization of 72 emu/g and coercivity of 355 Oe were observed for cobalt ferrite sample. The magnetostriction was measured on a circular disc (12 mm diameter and 12 mm length) with the strain gauge (350 Ω) mounted on the flat surface of the circular disc. Magnetostriciton of 180 ppm and strain derivative of 1 × 10{sup −9} m/A were observed for the sintered CoFe{sub 2}O{sub 4} sample.« less
McPhee, D.K.; Langenheim, V.E.; Watt, J.T.
2011-01-01
This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.
EEG-based classification of imaginary left and right foot movements using beta rebound.
Hashimoto, Yasunari; Ushiba, Junichi
2013-11-01
The purpose of this study was to investigate cortical lateralization of event-related (de)synchronization during left and right foot motor imagery tasks and to determine classification accuracy of the two imaginary movements in a brain-computer interface (BCI) paradigm. We recorded 31-channel scalp electroencephalograms (EEGs) from nine healthy subjects during brisk imagery tasks of left and right foot movements. EEG was analyzed with time-frequency maps and topographies, and the accuracy rate of classification between left and right foot movements was calculated. Beta rebound at the end of imagination (increase of EEG beta rhythm amplitude) was identified from the two EEGs derived from the right-shift and left-shift bipolar pairs at the vertex. This process enabled discrimination between right or left foot imagery at a high accuracy rate (maximum 81.6% in single trial analysis). These data suggest that foot motor imagery has potential to elicit left-right differences in EEG, while BCI using the unilateral foot imagery can achieve high classification accuracy, similar to ordinary BCI, based on hand motor imagery. By combining conventional discrimination techniques, the left-right discrimination of unilateral foot motor imagery provides a novel BCI system that could control a foot neuroprosthesis or a robotic foot. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Beresnev, A. G.
2012-05-01
A concept of a two-stage hot isostatic pressing (HIP) cycle is developed for castings made of nickel superalloys in order to minimize plastic deformation and the recrystallization ability of their structure. At the first stage of the cycle, diffusion pore dissolution is predominant due to the motion of vacancies toward grain boundaries in a polycrystal; at the second stage, retained coarse pores are filled during plastic deformation. The effect of uniform compression pressure during HIP and microstructure defects on the vacancy diffusion in nickel superalloys is estimated. A two-stage HIP regime is developed for processing of cast gas-turbine engine blades made of a ZhS6U alloy in order to substantially decrease the shrinkage porosity and to increase the high-temperature characteristics, including the creep and fatigue resistance.
NASA Astrophysics Data System (ADS)
Roy, D.; Mitra, R.; Ojo, O. A.; Lojkowski, W.; Manna, I.
2011-08-01
The structure and mechanical properties of nanocrystalline intermetallic phase dispersed amorphous matrix composite prepared by hot isostatic pressing (HIP) of mechanically alloyed Al65Cu20Ti15 amorphous powder in the temperature range 573 K to 873 K (300 °C to 600 °C) with 1.2 GPa pressure were studied. Phase identification by X-ray diffraction (XRD) and microstructural investigation by transmission electron microscopy confirmed that sintering in this temperature range led to partial crystallization of the amorphous powder. The microstructures of the consolidated composites were found to have nanocrystalline intermetallic precipitates of Al5CuTi2, Al3Ti, AlCu, Al2Cu, and Al4Cu9 dispersed in amorphous matrix. An optimum combination of density (3.73 Mg/m3), hardness (8.96 GPa), compressive strength (1650 MPa), shear strength (850 MPa), and Young's modulus (182 GPa) were obtained in the composite hot isostatically pressed ("hipped") at 773 K (500 °C). Furthermore, these results were compared with those from earlier studies based on conventional sintering (CCS), high pressure sintering (HPS), and pulse plasma sintering (PPS). HIP appears to be the most preferred process for achieving an optimum combination of density and mechanical properties in amorphous-nanocrystalline intermetallic composites at temperatures ≤773 K (500 °C), while HPS is most suited for bulk amorphous alloys. Both density and volume fraction of intermetallic dispersoids were found to influence the mechanical properties of the composites.
Kato, Yoshitake; Nakakura, Shunsuke; Matsuo, Naoko; Yoshitomi, Kayo; Handa, Marina; Tabuchi, Hitoshi; Kiuchi, Yoshiaki
2018-04-01
To evaluate the inter-device agreement among the Goldmann applanation tonometer (GAT), iCare and Icare PRO rebound tonometers, non-contact tonometer (NCT), and Tonopen XL tonometer. Sixty healthy elderly subjects were enrolled. The intraocular pressure (IOP) in each subject's right eye was measured thrice using each of the five tonometers. Intra-device agreement was evaluated by calculating intraclass correlation coefficients (ICCs). Inter-device agreement was evaluated by ICC and Bland-Altman analyses. ICCs for intra-device agreement for each tonometer were >0.8. IOP as measured by iCare (mean ± SD, 11.6 ± 2.5 mmHg) was significantly lower (p < 0.05) than that measured by GAT (14.0 ± 2.8 mmHg), NCT (13.6 ± 2.5 mmHg), Tonopen XL (13.7 ± 4.1 mmHg), and Icare PRO (12.6 ± 2.2 mmHg; Bonferroni test). There was no significant difference in mean IOP among GAT, NCT, and Tonopen XL. Regarding inter-device agreement, ICC was lower between Tonopen XL and other tonometers (all ICCs < 0.4). However, ICCs of GAT, iCare, Icare PRO, and NCT showed good agreement (0.576-0.700). The Bland-Altman analysis revealed that the width of the 95% limits of agreement was larger between the Tonopen XL and the other tonometers ranged from 14.94 to 16.47 mmHg. Among the other tonometers, however, the widths of 95% limits of agreement ranged from 7.91 to 9.24 mmHg. There was good inter-device agreement among GAT, rebound tonometers, and NCT. Tonopen XL shows the worst agreement with the other tonometers; therefore, we should pay attention to its' respective IOP. Japan Clinical Trials Register; number: UMIN000011544.
NASA Astrophysics Data System (ADS)
Sasgen, Ingo; Martín-Español, Alba; Horvath, Alexander; Klemann, Volker; Petrie, Elizabeth J.; Wouters, Bert; Horwath, Martin; Pail, Roland; Bamber, Jonathan L.; Clarke, Peter J.; Konrad, Hannes; Wilson, Terry; Drinkwater, Mark R.
2018-03-01
The poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA) is a major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry and to a lesser extent satellite altimetry. In the past decade, much progress has been made in consistently modeling ice sheet and solid Earth interactions; however, forward-modeling solutions of GIA in Antarctica remain uncertain due to the sparsity of constraints on the ice sheet evolution, as well as the Earth's rheological properties. An alternative approach towards estimating GIA is the joint inversion of multiple satellite data - namely, satellite gravimetry, satellite altimetry and GPS, which reflect, with different sensitivities, trends in recent glacial changes and GIA. Crucial to the success of this approach is the accuracy of the space-geodetic data sets. Here, we present reprocessed rates of surface-ice elevation change (Envisat/Ice, Cloud,and land Elevation Satellite, ICESat; 2003-2009), gravity field change (Gravity Recovery and Climate Experiment, GRACE; 2003-2009) and bedrock uplift (GPS; 1995-2013). The data analysis is complemented by the forward modeling of viscoelastic response functions to disc load forcing, allowing us to relate GIA-induced surface displacements with gravity changes for different rheological parameters of the solid Earth. The data and modeling results presented here are available in the PANGAEA database (https://doi.org/10.1594/PANGAEA.875745). The data sets are the input streams for the joint inversion estimate of present-day ice-mass change and GIA, focusing on Antarctica. However, the methods, code and data provided in this paper can be used to solve other problems, such as volume balances of the Antarctic ice sheet, or can be applied to other geographical regions in the case of the viscoelastic response functions
NASA Astrophysics Data System (ADS)
Farr, T. G.; Fairbanks, A.
2017-12-01
Recent rains in California caused a pause, and even a reversal in some areas, of the subsidence that has plagued the Central Valley for decades. The 3 main drivers of surface deformation in the Central Valley are: Subsurface hydro-geology, precipitation and surface water deliveries, and groundwater pumping. While the geology is relatively fixed in time, water inputs and outputs vary greatly both in time and space. And while subsurface geology and water inputs are reasonably well-known, information about groundwater pumping amounts and rates is virtually non-existent in California. We have derived regional maps of surface deformation in the region for the period 2006 - present which allow reconstruction of seasonal and long-term changes. In order to understand the spatial and temporal patterns of subsidence and rebound in the Central Valley, we have been compiling information on the geology and water inputs and have attempted to infer pumping rates using maps of fallowed fields and published pumping information derived from hydrological models. In addition, the spatial and temporal patterns of hydraulic head as measured in wells across the region allow us to infer the spatial and temporal patterns of groundwater pumping and recharge more directly. A better understanding of how different areas (overlying different stratigraphy) of the Central Valley respond to water inputs and outputs will allow a predictive capability, potentially defining sustainable pumping rates related to water inputs. * work performed under contract to NASA and the CA Dept. of Water Resources
Tensile Fracture Behavior of 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing
NASA Astrophysics Data System (ADS)
Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.
2018-02-01
Herein we investigate how the oxygen content in hot isostatically pressed (HIP'd) 316L stainless steel affects the mechanical properties and tensile fracture behavior. This work follows on from previous studies, which aimed to understand the effect of oxygen content on the Charpy impact toughness of HIP'd steel. We expand on the work by performing room-temperature tensile testing on different heats of 316L stainless steel, which contain different levels of interstitial elements (carbon and nitrogen) as well as oxygen in the bulk material. Throughout the work we repeat the experiments on conventionally forged 316L steel as a reference material. The analysis of the work indicates that oxygen does not contribute to a measureable solution strengthening mechanism, as is the case with carbon and nitrogen in austenitic stainless steels (Werner in Mater Sci Eng A 101:93-98, 1988). Neither does oxygen, in the form of oxide inclusions, contribute to precipitation hardening due to the size and spacing of particles. However, the oxide particles do influence fracture behavior; fractography of the failed tension test specimens indicates that the average ductile dimple size is related to the oxygen content in the bulk material, the results of which support an on-going hypothesis relating oxygen content in HIP'd steels to their fracture mechanisms by providing additional sites for the initiation of ductile damage in the form of voids.
Gómez, Miguel A; Lorenzo, Alberto; Barakat, Rubén; Ortega, Enrique; Palao, José M
2008-02-01
The aim of the present study was to identify game-related statistics that differentiate winning and losing teams according to game location. The sample included 306 games of the 2004-2005 regular season of the Spanish professional men's league (ACB League). The independent variables were game location (home or away) and game result (win or loss). The game-related statistics registered were free throws (successful and unsuccessful), 2- and 3-point field goals (successful and unsuccessful), offensive and defensive rebounds, blocks, assists, fouls, steals, and turnovers. Descriptive and inferential analyses were done (one-way analysis of variance and discriminate analysis). The multivariate analysis showed that winning teams differ from losing teams in defensive rebounds (SC = .42) and in assists (SC = .38). Similarly, winning teams differ from losing teams when they play at home in defensive rebounds (SC = .40) and in assists (SC = .41). On the other hand, winning teams differ from losing teams when they play away in defensive rebounds (SC = .44), assists (SC = .30), successful 2-point field goals (SC = .31), and unsuccessful 3-point field goals (SC = -.35). Defensive rebounds and assists were the only game-related statistics common to all three analyses.
NASA Astrophysics Data System (ADS)
Lambeck, Kurt; Purcell, Anthony; Flemming, Nicholas. C.; Vita-Finzi, Claudio; Alsharekh, Abdullah M.; Bailey, Geoffrey N.
2011-12-01
The history of sea level within the Red Sea basin impinges on several areas of research. For archaeology and prehistory, past sea levels of the southern sector define possible pathways of human dispersal out of Africa. For tectonics, the interglacial sea levels provide estimates of rates for vertical tectonics. For global sea level studies, the Red Sea sediments contain a significant record of changing water chemistry with implications on the mass exchange between oceans and ice sheets during glacial cycles. And, because of its geometry and location, the Red Sea provides a test laboratory for models of glacio-hydro-isostasy. The Red Sea margins contain incomplete records of sea level for the Late Holocene, for the Last Glacial Maximum, for the Last Interglacial and for earlier interglacials. These are usually interpreted in terms of tectonics and ocean volume changes but it is shown here that the glacio-hydro-isostatic process is an additional important component with characteristic spatial variability. Through an iterative analysis of the Holocene and interglacial evidence a separation of the tectonic, isostatic and eustatic contributions is possible and we present a predictive model for palaeo-shorelines and water depths for a time interval encompassing the period proposed for migrations of modern humans out of Africa. Principal conclusions include the following. (i) Late Holocene sea level signals evolve along the length of the Red Sea, with characteristic mid-Holocene highstands not developing in the central part. (ii) Last Interglacial sea level signals are also location dependent and, in the absence of tectonics, are not predicted to occur more than 1-2 m above present sea level. (iii) For both periods, Red Sea levels at 'expected far-field' elevations are not necessarily indicative of tectonic stability and the evidence points to a long-wavelength tectonic uplift component along both the African and Arabian northern and central sides of the Red Sea. (iv) The
Isostatic Gravity Map with Geology of the Santa Ana 30' x 60' Quadrangle, Southern California
Langenheim, V.E.; Lee, Tien-Chang; Biehler, Shawn; Jachens, R.C.; Morton, D.M.
2006-01-01
This report presents an updated isostatic gravity map, with an accompanying discussion of the geologic significance of gravity anomalies in the Santa Ana 30 by 60 minute quadrangle, southern California. Comparison and analysis of the gravity field with mapped geology indicates the configuration of structures bounding the Los Angeles Basin, geometry of basins developed within the Elsinore and San Jacinto Fault zones, and a probable Pliocene drainage network carved into the bedrock of the Perris block. Total cumulative horizontal displacement on the Elsinore Fault derived from analysis of the length of strike-slip basins within the fault zone is about 5-12 km and is consistent with previously published estimates derived from other sources of information. This report also presents a map of density variations within pre-Cenozoic metamorphic and igneous basement rocks. Analysis of basement gravity patterns across the Elsinore Fault zone suggests 6-10 km of right-lateral displacement. A high-amplitude basement gravity high is present over the San Joaquin Hills and is most likely caused by Peninsular Ranges gabbro and/or Tertiary mafic intrusion. A major basement gravity gradient coincides with the San Jacinto Fault zone and marked magnetic, seismic-velocity, and isotopic gradients that reflect a discontinuity within the Peninsular Ranges batholith in the northeast corner of the quadrangle.
Effects of mantle rheologies on viscous heating induced by Glacial Isostatic Adjustment
NASA Astrophysics Data System (ADS)
Huang, PingPing; Wu, Patrick; van der Wal, Wouter
2018-04-01
It has been argued that viscous dissipation from mantle flow in response to surface loading during glacial cycles can result in short-term heating and thus trigger transient volcanism or changes in mantle properties, which may in turn affect mantle dynamics. Furthermore, heating near the Earth's surface can also affect the stability of ice sheets. We have studied the magnitude and spatial-temporal distribution of viscous heating induced in the mantle by the realistic ice model ICE-6G and gravitationally consistent ocean loads. Three types of mantle rheologies, including linear, non-linear and composite rheologies are considered to see if non-linear creep can induce larger viscous heating than linear rheology. We used the Coupled-Laplace-Finite-Element model of Glacial Isostatic Adjustment (GIA) to compute the strain, stress and shear heating during a glacial cycle. We also investigated the upper bound of temperature change and surface heat flux change due to viscous heating. We found that maximum viscous heating occurs near the end of deglaciation near the edge of the ice sheet with amplitude as high as 120 times larger than that of the chondritic radioactive heating. The maximum heat flux due to viscous heating can reach 30 mW m-2, but the area with large heat flux is small and the timescale of heating is short. As a result, the upper bound of temperature change due to viscous heating is small. Even if 30 glacial cycles are included, the largest temperature change can be of the order of 0.3 °C. Thus, viscous heating induced by GIA cannot induce volcanism and cannot significantly affect mantle material properties, mantle dynamics nor ice-sheet stability.
NASA Astrophysics Data System (ADS)
Ramudu, M.; Rajkumar, D. M.
2018-04-01
The effect of aging time on the magnetic properties of Sm2Co17 permanent magnets processed through a novel method of cold isostatic pressing was investigated. Sintered Sm2Co17 samples were subjected to different aging times in the range of 10-30 h and their respective microstructures were correlated with the magnetic properties obtained. The values of remanant magnetization (Br) were observed to be constant in samples aged from 10-20 h beyond which a gradual decrease in Br values was observed. The values of coercivity (Hc) displayed a sharp increase in samples aged from 10 to 20 h beyond which the coercivity values showed marginal improvement. Hence a good combination of magnetic properties could be achieved in samples aged for 20 h. A maximum energy product of 27 MGOe was achieved in the 20 h aged sample processed through a novel route.
Vienna SAC-SOS: Analysis of the European VLBI Sessions
NASA Astrophysics Data System (ADS)
Ros, C. T.; Pavetich, P.; Nilsson, T.; Böhm, J.; Schuh, H.
2012-12-01
The Institute of Geodesy and Geophysics (IGG) of the Vienna University of Technology as an IVS Special Analysis Center for Specific Observing Sessions (SAC-SOS) has analyzed the European VLBI sessions using the software VieVS. Between 1990 and 2011, 115 sessions have been carried out. The analyzed baselines have lengths ranging from approximately 445 to 4580 km, and they show good repeatabilities, apart from the ones containing station Simeiz. The station velocities have also been investigated. The stations situated in the stable part of Europe have not shown significant relative movements w.r.t. Wettzell, whereas the stations located in the northern areas have the largest vertical motions as a result of the post glacial isostatic rebound of the zone. The stations placed in Italy, around the Black Sea, in Siberia, and near the Arctic Circle show the largest relative horizontal motions because they belong to different geodynamical units.
NASA Astrophysics Data System (ADS)
Fadil, Abdelali; Sichoix, Lydie; Barriot, Jean-Pierre; Ortéga, Pascal; Willis, Pascal
2011-05-01
Monitoring vertical land motion is of crucial interest in observations of long-term sea level change and its reconstruction, but is among of the most, yet highly challenging, tasks of space geodesy. The aim of the paper is to compare the vertical velocity estimates of Tahiti Island obtained from five independent geophysical measurements, namely a decade of GPS and DORIS data, 17 years sea level difference (altimeter minus tide gauge (TG)) time series, ICE-5G (VM2 L90) Post-Glacial Rebound (PGR) model predictions, and coral reef stratigraphy. Except for the Glacial Isostatic Adjustment (GIA also known as PGR) model, all the techniques are in a good agreement and reveal a very slow subsidence of the Tahiti Island averaged at -0.5 mm/yr which is barely significant. Nevertheless, despite of that vertical motion, Tahiti remains an ideal location for the calibration of satellite altimeter measurements.
NASA Astrophysics Data System (ADS)
Chéry, J.; Genti, M.; Vernant, P.
2016-04-01
More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Two uplift mechanisms have been proposed: (1) the isostatic response to denudation responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting which predicts a broader uplifting region than the one evidenced by geodetic observations. Using a numerical model to fit the geodetic data, we show that a crustal viscosity contrast between the foreland and the central part of the Alps, the latter being weaker with a viscosity of 1021 Pa s, is needed. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly over the entire lithosphere.
Bedrock Erosion Surfaces Record Former East Antarctic Ice Sheet Extent
NASA Astrophysics Data System (ADS)
Paxman, Guy J. G.; Jamieson, Stewart S. R.; Ferraccioli, Fausto; Bentley, Michael J.; Ross, Neil; Armadillo, Egidio; Gasson, Edward G. W.; Leitchenkov, German; DeConto, Robert M.
2018-05-01
East Antarctica hosts large subglacial basins into which the East Antarctic Ice Sheet (EAIS) likely retreated during past warmer climates. However, the extent of retreat remains poorly constrained, making quantifying past and predicted future contributions to global sea level rise from these marine basins challenging. Geomorphological analysis and flexural modeling within the Wilkes Subglacial Basin are used to reconstruct the ice margin during warm intervals of the Oligocene-Miocene. Flat-lying bedrock plateaus are indicative of an ice sheet margin positioned >400-500 km inland of the modern grounding zone for extended periods of the Oligocene-Miocene, equivalent to a 2-m rise in global sea level. Our findings imply that if major EAIS retreat occurs in the future, isostatic rebound will enable the plateau surfaces to act as seeding points for extensive ice rises, thus limiting extensive ice margin retreat of the scale seen during the early EAIS.
Anderson, R.E.; Barnhard, T.P.
1993-01-01
The Virgin River depression and surrounding mountains are Neogene features that are partly contiguous with the little-strained rocks of the structural transition to the Colorado Plateau province. This contiguity makes the area ideally suited for evaluating the sense, magnitude, and kinematics of Neogene deformation. Analysis along the strain boundary shows that, compared to the adjacent little-strained area, large-magnitude vertical deformation greatly exceeds extensional deformation and that significant amounts of lateral displacement approximately parallel the province boundary. Isostatic rebound following tectonic denudation is an unlikely direct cause of the strong vertical structural relief adjacent to the strain boundary. Instead, the observed structures are first-order features defining a three-dimensional strain field produced by approximately east-west extension, vertical structural attenuation, and extension-normal shortening. All major structural elements of the strain-boundary strain field are also found in the adjacent Basin and Range. -from Authors
NASA Astrophysics Data System (ADS)
Zhang, Shouyi; Liu, Peng; Xu, Xiaodong; Zhang, Jian
2018-06-01
In this work, the TAG transparent ceramics doped with 0.4 wt.% TEOS and different concentration of MgO were fabricated by a reactive sintering process under vacuum sintering combined with hot isostatic pressing (HIP) treatment. The effect of MgO on the microstructure evolution and optical properties of delivered ceramics were investigated. The results showed that the TAG ceramics doped with 0.4 wt.% TEOS and 0.1 wt.% MgO exhibited the optimum optical transmittance, which can reach about 81% in the visible and near-infrared (NIR) regions. The addition of MgO inhibited the grain growth and accelerated the densification of TAG ceramic at the sintering temperature reached about 1600 °C.
NASA Technical Reports Server (NTRS)
Misra, M. S.; Lemeshewsky, S.; Bolstad, D.
1982-01-01
The Ti-5Al-2.5Sn extremely low interstitial alloy employed in the large castings which form the critical attachment fittings of the Space Shuttle External Tank was selected because of its high fracture resistance at cryogenic temperatures. Casting was selected over alternative fabrication methods because of its lower cost and adaptability to design changes, although it was found necessary to weld-repair surface and subsurface casting defects in order to reduce the scrap rate and maintain the inherent cost advantage of the castings. Hot Isostatic Pressing was experimentally found to heal the surface and internal defects of the castings, but did not improve tensile or fracture properties and was therefore rejected as a production technique. Production castings are instead weld-repaired, without any mechanical property degradation.
Li, Yanping; Malik, Vasanti; Hu, Frank B
2017-08-01
We analyzed trends in rates of health insurance coverage in China in the period 1991-2011 and the association of health insurance with hypertension and diabetes based on data from eight waves of the China Health and Nutrition Survey. The rate of coverage fell from 32.3 percent in 1991 to 21.9 percent in 2000, rebounding to 49.7 percent in 2006 and then rapidly climbing to 94.7 percent in 2011. Our study indicated that neither the prevalence of diabetes nor that of hypertension was significantly associated with health insurance coverage. When patients were aware of their condition or disease, those with insurance had a significantly higher likelihood of treatment for diabetes and hypertension, compared to those without insurance. We observed an association between health insurance coverage and seeking preventive care and receiving medical treatment when patients were aware of their condition or disease. Project HOPE—The People-to-People Health Foundation, Inc.
NASA Astrophysics Data System (ADS)
Riddick, Thomas; Brovkin, Victor; Hagemann, Stefan; Mikolajewicz, Uwe
2017-04-01
The continually evolving large ice sheets present in the Northern Hemisphere during the last glacial cycle caused significant changes to river pathways both through directly blocking rivers and through glacial isostatic adjustment. These river pathway changes are believed to of had a significant impact on the evolution of ocean circulation through changing the pattern of fresh water discharge into the oceans. A fully coupled ESM simulation of the last glacial cycle thus requires a hydrological discharge model that uses a set of river pathways that evolve with the earth's changing orography while being able to reproduce the known present-day river network given the present-day orography. Here we present a method for dynamically modelling hydrological discharge that meets such requirements by applying relative manual corrections to an evolving fine scale orography (accounting for the changing ice sheets and isostatic rebound) each time the river directions are recalculated. The corrected orography thus produced is then used to create a set of fine scale river pathways and these are then upscaled to a course scale. An existing present-day hydrological discharge model within the JSBACH3 land surface model is run using the course scale river pathways generated. This method will be used in fully coupled paleoclimate runs made using MPI-ESM1 as part of the PalMod project. Tests show this procedure reproduces the known present-day river network to a sufficient degree of accuracy.
Mancini, F.; Negusini, M.; Zanutta, A.; Capra, A.
2007-01-01
Following the densification of GPS permanent and episodic trackers in Antarctica, geodetic observations are playing an increasing role in geodynamics research and the study of the glacial isostatic adjustment (GIA). The improvement in geodetic measurements accuracy suggests their use in constraining GIA models. It is essential to have a deeper knowledge on the sensitivity of GPS data to motionsrelated to long-term ice mass changes and the present-day mass imbalance of the ice sheets. In order to investigate the geodynamic phenomena in Northern Victoria Land (NVL), GPS geodetic observations were made during the last decade within the VLNDEF (Victoria Land Network for Deformation control) project. The processed data provided a picture of the motions occurring in NVL with a high level of accuracy and depicts, for the whole period, a well defined pattern of vertical motion. The comparison between GPS-derived vertical displacementsand GIA is addressed, showing a good degree of agreement and highlighting the future use of geodetic GPS measurements as constraints in GIA models. In spite of this agreement, the sensitivity of GPS vertical rates to non-GIA vertical motions has to be carefully evaluated.
Evaluation of rebound tonometry in red-eared slider turtles (Trachemys scripta elegans).
Delgado, Cherlene; Mans, Christoph; McLellan, Gillian J; Bentley, Ellison; Sladky, Kurt K; Miller, Paul E
2014-07-01
To evaluate feasibility and accuracy of intraocular pressure (IOP) measurement by rebound tonometry in adult red-eared slider turtles and determine the effects of manual and chemical restraint on IOP. Seventeen adult red-eared slider turtles. Intraocular pressure was measured with TonoLab® and TonoVet® tonometers in conscious, unrestrained turtles. To evaluate the effects of manual restraint, turtles were restrained by digital pressure on the rostral head or proximal neck. The effect of two chemical restraint protocols (dexmedetomidine, ketamine, midazolam [DKM] and dexmedetomidine, ketamine [DK] subcutaneously) on IOP was evaluated. Triplicate TonoLab® and TonoVet® readings were compared with direct manometry in three ex vivo turtle eyes. TonoLab® correlated better with manometry at IOPs < 45 mmHg than TonoVet® (linear regression slopes of 0.89 and 0.30, respectively). Mean (±SD) IOP in unrestrained conscious turtles was significantly lower (P < 0.01) with TonoLab® (10.02 ± 0.66 mmHg) than with TonoVet® (11.32 ± 1.57 mmHg). Manual neck restraint caused a significant increase in IOP (+6.31 ± 5.59 mmHg), while manual rostral head restraint did not. Both chemical restraint protocols significantly reduced IOP (DKM: −1.0 ± 0.76 mmHg; DK: −1.79 ± 1.17) compared with measurements in conscious unrestrained turtles. Chemical and manual neck restraint affected IOP. Rostral head restraint had no significant effect on IOP and is, therefore, recommended as the appropriate restraint technique in red-eared slider turtles. TonoLab® measurements estimated actual IOP more accurately, within physiologic range, than measurements obtained using the TonoVet®. © 2013 American College of Veterinary Ophthalmologists.
EVALUATION OF REBOUND TONOMETRY IN RED-EARED SLIDER TURTLES (TRACHEMYS SCRIPTA ELEGANS)
Delgado, Cherlene; Mans, Christoph; McLellan, Gillian J.; Bentley, Ellison; Sladky, Kurt K.; Miller, Paul E.
2013-01-01
Objective To evaluate feasibility and accuracy of intraocular pressure (IOP) measurement by rebound tonometry in adult red-eared slider turtles and determine the effects of manual and chemical restraint on IOP. Animal studied Seventeen adult red-eared slider turtles. Procedures IOP was measured with TonoLab® and TonoVet® tonometers in conscious, unrestrained turtles. To evaluate the effects of manual restraint, turtles were restrained by digital pressure on the rostral head or proximal neck. The effect of two chemical restraint protocols (dexmedetomidine, ketamine, midazolam [DKM] and dexmedetomidine, ketamine [DK] subcutaneously) on IOP was evaluated. Triplicate TonoLab® and TonoVet® readings were compared to direct manometry in 3 ex vivo turtle eyes. Results TonoLab® correlated better with manometry at IOPs <45 mm Hg than TonoVet® (linear regression slopes of 0.89 and 0.30 respectively). Mean (±SD) IOP in unrestrained conscious turtles was significantly lower (P<0.01) with TonoLab® (10.02 ± 0.66 mmHg) than with TonoVet® (11.32 ± 1.57 mmHg). Manual neck restraint caused a significant increase in IOP (+6.31 ± 5.59 mmHg), while manual rostral head restraint did not. Both chemical restraint protocols significantly reduced IOP (DKM: −1.0 ± 0.76 mmHg,; DK: −1.79 ± 1.17) compared to measurements in conscious unrestrained turtles. Conclusions Chemical and manual neck restraint affected IOP. Rostral head restraint had no significant effect on IOP and is, therefore, recommended as the appropriate restraint technique in red-eared-slider turtles. TonoLab® measurements estimated actual IOP more accurately, within physiologic range, than measurements obtained using the TonoVet®. PMID:25097909
Late Stage 5 Glacio-isostatic Sea in the St. Lawrence Valley, Canada and United States
Occhietti, S.; Balescu, S.; Lamothe, M.; Clet, M.; Cronin, T.; Ferland, P.; Pichet, P.
1996-01-01
Although post-glacial marine sediments of late Wisconsinan and early Holocene age are common in eastern Canada and the northeastern United States, remnants of older Pleistocene marine sediments are scarce. A fossiliferous marine clay that predates the classical Wisconsinan was recently discovered in the St. Lawrence Valley. A dominantly estuarine environment is inferred from the geochemistry of the shells (??18O = -7.1) and from benthic foraminifer and ostracode assemblages. The clay indicates a marine invasion (Cartier Sea) shallower and probably shorter than that during the upper late Wisconsinan Champlain Sea episode (12,000-9,500 yr B.P.). The pollen content shows that regional vegetation during the marine episode began as open tundra, then became a Betula and Alnus crispa forest, reached a climatic optimum with Quercus, Corylus, and Abies, and concluded as a Pinus/Picea boreal forest. A corrected infrared stimulated luminescence age of 98,000 ?? 9000 yr is compatible with the epimerization ratio of shells. The Cartier Sea resulted from a post-glacial glacio-isostatic marine invasion in the St. Lawrence lowlands. It probably occurred during late stage 5 and is tentatively assigned to the transition of oxygen isotope substages 5b/5a. This marine episode dates to stage 5 of the preceding continental glacier which extended to middle latitudes in NE America. ?? 1996 University of Washington.
On the gravity and geoid effects of glacial isostatic adjustment in Fennoscandia - a short note
NASA Astrophysics Data System (ADS)
Sjöberg, L. E.
2015-12-01
Many geoscientists argue that there is a gravity low of 10-30 mGal in Fennoscandia as a remaining fingerprint of the last ice age and load, both vanished about 10 kyr ago. However, the extraction of the gravity signal related with Glacial Isostatic Adjustment (GIA) is complicated by the fact that the total gravity field is caused by many significant density distributions in the Earth. Here we recall a methodology originating with A. Bjerhammar 35 years ago, that emphasizes that the present land uplift phenomenon mainly occurs in the region thatwas covered by the ice cap, and it is highly correlated with the spectral window of degrees 10-22 of the global gravity field, whose lower limit fairly well corresponds to the wavelength that agrees with the size of the region. This implies that, although in principle the GIA is a global phenomenon, the geoid and gravity lows as well as the land upheaval in Fennoscandia are typically regional phenomena that cannot be seen in a global correlation study as it is blurred by many irrelevant gravity signals. It is suggested that a regional multi-regression analysis with a band-limited spectral gravity signal as the observable, a method tested already 2 decades ago, can absorb possible significant disturbing signals, e.g. from topographic and crustal depth variations, and thereby recover the GIA signal.
Viveros, Julie; Kub, Joan
2014-01-01
The Charlotte Rescue Mission is a 90-day residential program that serves approximately 530 men and 365 women experiencing the disease of addiction annually. It has a long rich history and has been serving the Charlotte community for over 75 years for men and almost 25 years for women. "The men's program provides a five-fold, client-centered treatment approach addressing spiritual, mental, physical, social, and vocational needs to battle addiction. The objective is to help individuals fighting addiction and homelessness to accomplish spiritual, mental, physical, social, and vocational goals and be free of addiction." "Dove's Nest, Charlotte Rescue Mission's women's recovery program, opened its doors in 1992. The program provides a structured, yet loving and stable living environment, with a dedicated staff aimed at helping women understand and deal with the core issues of addiction as a disease". (Web site: http:// charlotterescuemission.org/). I had the privilege of interviewing Julie Viveros, RN, the Director of Nursing for the Rebound men's program, about her unique role at the Rescue Mission.
Glacial Isostatic Adjustment with ICE-6G{_}C (VM5a) and Laterally Heterogeneous Mantle Viscosity
NASA Astrophysics Data System (ADS)
Li, Tanghua; Wu, Patrick; Steffen, Holger
2017-04-01
Recently, Peltier et al. (2015) introduced the ICE-6GC (VM5a) ice-earth model pair, which has successfully explained many observations of Glacial Isostatic Adjustment (GIA) simultaneously. However, their earth model used (VM5a) to infer the ice history (ICE-6G_C) is laterally homogeneous with viscosity profile varying in the radial direction only. Since surface geology and seismic tomography clearly indicates that the Earth's material properties also vary in the lateral direction, laterally heterogeneity must be included in GIA models. This can be achieved by using the Coupled-Laplace-Finite-Element method (Wu 2004) to model GIA in a spherical, self-gravitating, compressible viscoelastic Earth with linear rheology and lateral heterogeneity. In fact, Wu et al (2013) have used such model with GIA observations (e.g. global relative sea level data, GRACE data with recent hydrology contributions removed and GPS crustal uplift rates) to study the thermal contribution to lateral heterogeneity in the mantle. Their lateral viscosity perturbations are inferred from the seismic shear wave tomography model S20A (Ekstrom & Dziewonski 1998) by applying a scaling law, which includes both the effect of anharmonicity and anelasticity. The thermal contribution to seismic tomography, which is represented by the beta factor in the scaling relationship, is searched in the upper and lower mantle, for the best combination that gives the best fit between GIA predictions and observations. However, their study is based on ICE-4G only, and the new ice-earth model pair may give other best beta value combinations in the upper and lower mantle. Here, we follow the work of Wu et al (2013) but use the new ICE-6GC ice model instead. The higher resolution seismic tomography model by Bunge & Grand (2000) substitutes S20A. Earth model VM5a is used as the reference background viscosity model. The full viscosity model is obtained by superposing the background model with the lateral viscosity
World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids
NASA Astrophysics Data System (ADS)
Bonvalot, S.; Balmino, G.; Briais, A.; Kuhn, M.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.
2012-04-01
We present here a set of digital maps of the Earth's gravity anomalies (surface free air, Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. The Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, 2011). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy-Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial
CuCrZr alloy microstructure and mechanical properties after hot isostatic pressing bonding cycles
NASA Astrophysics Data System (ADS)
Frayssines, P.-E.; Gentzbittel, J.-M.; Guilloud, A.; Bucci, P.; Soreau, T.; Francois, N.; Primaux, F.; Heikkinen, S.; Zacchia, F.; Eaton, R.; Barabash, V.; Mitteau, R.
2014-04-01
ITER first wall (FW) panels are a layered structure made of the three following materials: 316L(N) austenitic stainless steel, CuCrZr alloy and beryllium. Two hot isostatic pressing (HIP) cycles are included in the reference fabrication route to bond these materials together for the normal heat flux design supplied by the European Union (EU). This reference fabrication route ensures sufficiently good mechanical properties for the materials and joints, which fulfil the ITER mechanical specifications, but often results in a coarse grain size for the CuCrZr alloy, which is not favourable, especially, for the thermal creep properties of the FW panels. To limit the abnormal grain growth of CuCrZr and make the ITER FW fabrication route more reliable, a study began in 2010 in the EU in the frame of an ITER task agreement. Two material fabrication approaches have been investigated. The first one was dedicated to the fabrication of solid CuCrZr alloy in close collaboration with an industrial copper alloys manufacturer. The second approach investigated was the manufacturing of CuCrZr alloy using the powder metallurgy (PM) route and HIP consolidation. This paper presents the main mechanical and microstructural results associated with the two CuCrZr approaches mentioned above. The mechanical properties of solid CuCrZr, PM CuCrZr and joints (solid CuCrZr/solid CuCrZr and solid CuCrZr/316L(N) and PM CuCrZr/316L(N)) are also presented.
Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite
NASA Astrophysics Data System (ADS)
Le, Trong Trung; Valdez-Nava, Zarel; Lebey, Thierry; Mazaleyrat, Frédéric
2018-04-01
In power electronics, there is the need to develop solutions to increase the power density of converters. Interleaved multicellular transformers allow interleaving many switching cells and, as a result, a possible increase in the power density. This converter is often composed of a magnetic core having the function of an intercell transformer (ICT) and, depending on the complexity of the designed architecture, its shape could be extremely complex. The switching frequencies (1-10 MHz) for the new wide band gap semiconductors (SiC, GaN) allow to interleave switching cell at higher frequencies than silicon-based semiconductors (<1 MHz). Intercell transformers must follow this increase in frequency times-fold the number of switching cells. Current applications for ICT transformers use Mn-Zn based materials, but their limit in frequency drive raises the need of higher frequency magnetic materials, such Ni-Zn ferrites. These materials can operate in medium and high power converters up to 10 MHz. We propose to use Ni0,30Zn0,57Cu0,15Fe2O4 ferrite and to compress it by cold isostatic pressing (CIP) into a a green ceramic block and to machine it to obtain the desired ICT of complex shape prior sintering. We compare the magnetic permeability spectra and hysteresis loops the CIP and uniaxially pressed ferrites. The effect of temperature and sintering time as well as high-pressure on properties will be presented in detail. The magnetic properties of the sintered cores are strongly dependent on the microstructure obtained.
Langenheim, Victoria; Willis, H.; Athens, N.D.; Chuchel, Bruce A.; Roza, J.; Hiscock, H.I.; Hardwick, C.L.; Kraushaar, S.M.; Knepprath, N.E.; Rosario, Jose J.
2013-01-01
A new isostatic residual gravity map of the northwest corner of Utah is based on compilation of preexisting data and new data collected by the Utah and United States Geological Surveys. Pronounced gravity lows occur over Junction, Grouse Creek, and upper Raft River Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Raft River Mountains. Higher values in the eastern part of the map may be produced in part by deeper crustal density variations or crustal thinning. Steep linear gravity gradients coincide with mapped Neogene normal faults near Goose Creek and may define basin-bounding faults concealed beneath Junction and Upper Raft River Valleys.
Reliability and sensitivity of the TonoLab rebound tonometer in awake Brown Norway rats.
Morrison, John C; Jia, Lijun; Cepurna, William; Guo, Ying; Johnson, Elaine
2009-06-01
To compare the sensitivity of the TonoLab rebound tonometer with the Tono-Pen in awake Brown Norway rats and to compare their ability to predict optic nerve damage induced by experimental IOP elevation. TonoLab and Tono-Pen tonometers were calibrated in cannulated rat eyes connected to a pressure transducer. The TonoLab was used in awake animals housed in standard lighting to measure IOP during light and dark phases. Both instruments were used to monitor chronically elevated IOP produced by episcleral vein injection of hypertonic saline. Measured IOPs were correlated with quantified optic nerve damage in injected eyes. Although they were lower than transducer and Tono-Pen measurements at all levels, TonoLab readings showed an excellent linear fit with transducer readings from 20 to 80 mm Hg (R(2) = 0.99) in cannulated eyes. In awake animals housed in standard lighting, the TonoLab documented significantly higher pressures during the dark phase (27.9 +/- 1.7 mm Hg) than during the light phase (16.7 +/- 2.3 mm Hg). With elevated IOP, correlation between TonoLab and Tono-Pen readings (R(2) = 0.86, P < 0.0001) was similar to that in cannulated eyes. Although both instruments provided measurements that correlated well with optic nerve injury grade, only the Tono-Pen documented significant IOP elevation in eyes with the least amount of injury (P < 0.05). The TonoLab is sensitive enough to be used in awake Brown Norway rats, though instrument fluctuation may limit its ability to identify significant pressure elevations in eyes with minimal optic nerve damage.
The role of bedrock in creating habitat in temperate watercourses
NASA Astrophysics Data System (ADS)
Entwistle, N. S.; Heritage, G. L.; Milan, D. J.
2016-12-01
Bedrock influenced rivers are a relatively common yet little studied river type across temperate regions, occurring predominantly in upland areas and in areas where isostatic rebound has promoted rapid watercourse downcutting through resistant bedrock. The presence of bedrock in the bed and banks exerts a major influence on channel development, controlling local flow hydraulics and subsequently influencing in-channel and valley bottom sedimentary feature development. This paper summarises extensive field audit evidence of bedrock influenced features on watercourses in the UK to characterise the diverse morphology of bedrock influenced channels and reviews the bedrock induced hydraulic influences on their development and maintenance. Such features include bedrock waterfalls, steps, rapids and cascades and associated alluvial deposits forming lee bars, bedrock obstruction bars, plunge pool bars and fine sediment drapes and veneers. Bedrock influence on valley bottom features is also reviewed and a functional typology is developed for this river type based on the feature assemblage and degree of bedrock/alluvial influence.
Compositional dependence of lower crustal viscosity
NASA Astrophysics Data System (ADS)
Shinevar, William J.; Behn, Mark D.; Hirth, Greg
2015-10-01
We calculate the viscosity structure of the lower continental crust as a function of its bulk composition using multiphase mixing theory. We use the Gibbs free-energy minimization routine Perple_X to calculate mineral assemblages for different crustal compositions under pressure and temperature conditions appropriate for the lower continental crust. The effective aggregate viscosities are then calculated using a rheologic mixing model and flow laws for the major crust-forming minerals. We investigate the viscosity of two lower crustal compositions: (i) basaltic (53 wt % SiO2) and (ii) andesitic (64 wt % SiO2). The andesitic model predicts aggregate viscosities similar to feldspar and approximately 1 order of magnitude greater than that of wet quartz. The viscosity range calculated for the andesitic crustal composition (particularly when hydrous phases are stable) is most similar to independent estimates of lower crust viscosity in actively deforming regions based on postglacial isostatic rebound, postseismic relaxation, and paleolake shoreline deflection.
Isostatic Gravity Map of the Battle Mountain 30 x 60 Minute Quadrangle, North Central Nevada
Ponce, D.A.; Morin, R.L.
2000-01-01
Introduction Gravity investigations of the Battle Mountain 30 x 60 minute quadrangle were begun as part of an interagency effort by the U.S. Geological Survey (USGS) and the Bureau of Land Management to help characterize the geology, mineral resources, hydrology, and ecology of the Humboldt River Basin in north-central Nevada. The Battle Mountain quadrangle is located between 40?30' and 41?N. lat. and 116? and 117?W. long. This isostatic gravity map of the Battle Mountain quadrangle was prepared from data from about 1,180 gravity stations. Most of these data are publicly available on a CD-ROM of gravity data of Nevada (Ponce, 1997) and in a published report (Jewel and others, 1997). Data from about 780 gravity stations were collected by the U.S. Geological Survey since 1996; data from about 245 of these are unpublished (USGS, unpub. data, 1998). Data collected from the 400 gravity stations prior to 1996 are a subset of a gravity data compilation of the Winnemucca 1:250,000-scale quadrangle described in great detail by Wagini (1985) and Sikora (1991). This detailed information includes gravity meters used, dates of collection, sources, descriptions of base stations, plots of data, and a list of principal facts. A digital version of the entire data set for the Battle Mountain quadrangle is available on the World Wide Web at: http://wrgis.wr.usgs.gov/docs/gump/gump.html
Hoffmann, Jörn; Zebker, Howard A.; Galloway, Devin L.; Amelung, Falk
2001-01-01
Analyses of areal variations in the subsidence and rebound occurring over stressed aquifer systems, in conjunction with measurements of the hydraulic head fluctuations causing these displacements, can yield valuable information about the compressibility and storage properties of the aquifer system. Historically, stress‐strain relationships have been derived from paired extensometer/piezometer installations, which provide only point source data. Because of the general unavailability of spatially detailed deformation data, areal stress‐strain relations and their variability are not commonly considered in constraining conceptual and numerical models of aquifer systems. Interferometric synthetic aperture radar (InSAR) techniques can map ground displacements at a spatial scale of tens of meters over 100 km wide swaths. InSAR has been used previously to characterize larger magnitude, generally permanent aquifer system compaction and land subsidence at yearly and longer timescales, caused by sustained drawdown of groundwater levels that produces intergranular stresses consistently greater than the maximum historical stress. We present InSAR measurements of the typically small‐magnitude, generally recoverable deformations of the Las Vegas Valley aquifer system occurring at seasonal timescales. From these we derive estimates of the elastic storage coefficient for the aquifer system at several locations in Las Vegas Valley. These high‐resolution measurements offer great potential for future investigations into the mechanics of aquifer systems and the spatial heterogeneity of aquifer system structure and material properties as well as for monitoring ongoing aquifer system compaction and land subsidence.
Impact of Glacial Isostatic Adjustment on North America Plate Specific Terrestrial Reference Frame
NASA Astrophysics Data System (ADS)
Herring, Thomas; Melbourne, Tim; Murray, Mark; Floyd, Mike; Szeliga, Walter; King, Robert; Phillips, David; Puskas, Christine
2017-04-01
We examine the impact of incorporating glacial isostatic adjustment (GIA) models in determining the Euler poles for plate specific terrestrial reference frames. We will specifically examine the impact of GIA models on the realization of a North America Reference frame. We use a combination of the velocity fields determined by the Geodesy Advancing Geosciences and EarthScope (GAGE) Facility which analyzes GPS data from the Plate Boundary Observatory (PBO) and other geodetic quality GPS sites in North America, and from the ITRF2014 re-analysis. Initial analysis of the GAGE velocity field shows reduced root-mean-square (RMS) scatter of velocity estimate residuals when the North America Euler pole is estimated including the ICE-6G GIA mode. The reduction in the north-south direction is from 0.69 mm/yr to 0.52 mm/yr, in the east-west direction from 0.34 mm/yr to 0.30 mm/yr and in height from 0.93 mm/yr to 0.72 mm/yr. The reduction in the height RMS is not surprising since the contemporary geodetic height velocity estimates are used in the developing the ICE-6G model. Contemporary horizontal motions are not used the GIA model development, and the reduction in horizontal RMS provides a partial validation of the model. There is no reduction in the horizontal velocity residual when the ICE-5G model is used. Although removing the ICE-6G model before fitting an Euler pole for the North American plate reduces the RMS of the residuals, the pattern of residuals is still systematic suggesting possibly that a spherically symmetric viscosity model might not be adequate for accurate modeling of the horizontal motions associated with GIA in North America. This presentation in focus on the prospects and impacts of incorporating GIA models in plate-specific Euler poles with emphasis on North America.
Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change
NASA Astrophysics Data System (ADS)
Gunter, B. C.; Didova, O.; Riva, R. E. M.; Ligtenberg, S. R. M.; Lenaerts, J. T. M.; King, M. A.; van den Broeke, M. R.; Urban, T.
2014-04-01
This study explores an approach that simultaneously estimates Antarctic mass balance and glacial isostatic adjustment (GIA) through the combination of satellite gravity and altimetry data sets. The results improve upon previous efforts by incorporating a firn densification model to account for firn compaction and surface processes as well as reprocessed data sets over a slightly longer period of time. A range of different Gravity Recovery and Climate Experiment (GRACE) gravity models were evaluated and a new Ice, Cloud, and Land Elevation Satellite (ICESat) surface height trend map computed using an overlapping footprint approach. When the GIA models created from the combination approach were compared to in situ GPS ground station displacements, the vertical rates estimated showed consistently better agreement than recent conventional GIA models. The new empirically derived GIA rates suggest the presence of strong uplift in the Amundsen Sea sector in West Antarctica (WA) and the Philippi/Denman sectors, as well as subsidence in large parts of East Antarctica (EA). The total GIA-related mass change estimates for the entire Antarctic ice sheet ranged from 53 to 103 Gt yr-1, depending on the GRACE solution used, with an estimated uncertainty of ±40 Gt yr-1. Over the time frame February 2003-October 2009, the corresponding ice mass change showed an average value of -100 ± 44 Gt yr-1 (EA: 5 ± 38, WA: -105 ± 22), consistent with other recent estimates in the literature, with regional mass loss mostly concentrated in WA. The refined approach presented in this study shows the contribution that such data combinations can make towards improving estimates of present-day GIA and ice mass change, particularly with respect to determining more reliable uncertainties.
Early adiposity rebound is associated with metabolic risk in 7-year-old children.
González, L; Corvalán, C; Pereira, A; Kain, J; Garmendia, M L; Uauy, R
2014-10-01
Early adiposity rebound (AR <5 years) has been consistently associated with increased obesity risk, but its relationship with metabolic markers is less clear; in addition, the biologic mechanisms involved in these associations have not been established. The objective of this study was to assess the association between timing of AR and metabolic status at age 7 years, evaluating the potential role of adiposity, adipose functionality and skeletal maturation in this association. We estimated the age of AR from the body mass index (BMI) trajectories from 0 to 7 years in 910 children from the Growth and Obesity Chilean Cohort Study (GOCS). At 7 years, we measured waist circumference (WC) and blood glucose, insulin, triglycerides and high-density lipoprotein-cholesterol levels and constructed a metabolic risk score. We also measured percent fat mass (adiposity), plasma concentrations of leptin and adiponectin (adipose functionality) and bone age using wrist ultrasound (skeletal maturation). We found that 44% of the children had an AR <5 years. Earlier AR was associated with larger WC (β: 5.10 (95% confidence interval (CI): 4.29-5.91)), higher glucose (β: 1.02 (1.00-1.03)), insulin resistance (β Homeostatic Model Assessment: 1.06 (1.03-1.09)), triglycerides (β: 10.37 (4.01-6.73)) and adverse metabolic score (β: 0.30 (0.02-0.37)). Associations decreased significantly if adiposity was added to the models (i.e. β WC: 0.85 (0.33-1.38)) and, to a lesser extent, when adipokines (i.e. β WC: 0.73 (0.14-1.32)) and skeletal maturation (i.e. β WC: 0.65 (0.10-1.20)) were added. In GOCS children, AR at a younger age predicts higher metabolic risk at 7 years; these associations are mostly explained by increased adiposity, but adipose dysfunction and accelerated skeletal maturation also have a role.
Sediment basin modeling through GOCE gradients controlled by thermo-isostatic constraints
NASA Astrophysics Data System (ADS)
Pivetta, Tommaso; Braitenberg, Carla
2015-04-01
Exploration of geodynamic and tectonic structures through gravity methods has experienced an increased interest in the recent years thank's to the possibilities offered by satellite gravimetry (e.g. GOCE). The main problem with potential field methods is the non-uniqueness of the underground density distributions that satisfy the observed gravity field. In terrestrial areas with scarce geological and geophysical information, valid constraints to the density model could be obtained from the application of geodynamic models. In this contribution we present the study of the gravity signals associated to the thermo-isostatic McKenzie-model (McKenzie, 1978) that predicts the development of sedimentary basins from the stretching of lithosphere. This model seems to be particularly intriguing for gravity studies as we could obtain estimates of densities and thicknesses of crust and mantle before and after a rifting event and gain important information about the time evolution of the sedimentary basin. The McKenzie-model distinguishes the rifting process into two distinct phases: a syn-rift phase that occurs instantly and is responsible of the basin formation, the thinning of lithosphere and the upwelling of hot asthenosphere. Then a second phase (post-rift), that is time dependent, and predicts further subsidence caused by the cooling of mantle and asthenosphere and subsequently increase in rock density. From the application of the McKenzie-model we have derived density underground distributions for two scenarios: the first scenario involves the lithosphere density distribution immediately after the stretching event; the second refers to the density model when thermal equilibrium between stretched and unstretched lithospheres is achieved. Calculations of gravity anomalies and gravity gradient anomalies are performed at 5km height and at the GOCE mean orbit quota (250km). We have found different gravity signals for syn-rift (gravimetric maximum) and post-rift (gravimetric
The influence of lateral Earth structure on glacial isostatic adjustment in Greenland
NASA Astrophysics Data System (ADS)
Milne, Glenn A.; Latychev, Konstantin; Schaeffer, Andrew; Crowley, John W.; Lecavalier, Benoit S.; Audette, Alexandre
2018-05-01
We present the first results that focus on the influence of lateral Earth structure on Greenland glacial isostatic adjustment (GIA) using a model that can explicitly incorporate 3-D Earth structure. In total, eight realisations of lateral viscosity structure were developed using four global seismic velocity models and two global lithosphere (elastic) thickness models. Our results show that lateral viscosity structure has a significant influence on model output of both deglacial relative sea level (RSL) changes and present-day rates of vertical land motion. For example, lateral structure changes the RSL predictions in the Holocene by several 10 s of metres in many locations relative to the 1-D case. Modelled rates of vertical land motion are also significantly affected, with differences from the 1-D case commonly at the mm/yr level and exceeding 2 mm/yr in some locations. The addition of lateral structure was unable to account for previously identified data-model RSL misfits in northern and southern Greenland, suggesting limitations in the adopted ice model (Lecavalier et al. 2014) and/or the existence of processes not included in our model. Our results show large data-model discrepancies in uplift rates when applying a 1-D viscosity model tuned to fit the RSL data; these discrepancies cannot be reconciled by adding the realisations of lateral structure considered here. In many locations, the spread in model output for the eight different 3-D Earth models is of similar amplitude or larger than the influence of lateral structure (as defined by the average of all eight model runs). This reflects the differences between the four seismic and two lithosphere models used and implies a large uncertainty in defining the GIA signal given that other aspects that contribute to this uncertainty (e.g. scaling from seismic velocity to viscosity) were not considered in this study. In order to reduce this large model uncertainty, an important next step is to develop more accurate
Regional ice-mass changes and glacial-isostatic adjustment in Antarctica from GRACE
NASA Astrophysics Data System (ADS)
Sasgen, Ingo; Martinec, Zdeněk; Fleming, Kevin
2007-12-01
We infer regional mass changes in Antarctica using ca. 4 years of Gravity Recovery and Climate Experiment (GRACE) level 2 data. We decompose the time series of the Stokes coefficients into their linear as well as annual and semi-annual components by a least-squares adjustment and apply a statistical reliability test to the Stokes potential-coefficients' linear temporal trends. Mass changes in three regions of Antarctica that display prominent geoid-height change are determined by adjusting predictions of glacier melting at the tip of the Antarctic Peninsula and in the Amundsen Sea Sector, and of the glacial-isostatic adjustment (GIA) over the Ronne Ice Shelf. We use the GFZ RL04, CNES RL01C, JPL RL04 and CSR RL04 potential-coefficient releases, and show that, although all data sets consistently reflect the prominent mass changes, differences in the mass-change estimates are considerably larger than the uncertainties estimated by the propagation of the GRACE errors. We then use the bootstrapping method based on the four releases and six time intervals, each with 3.5 years of data, to quantify the variability of the mean mass-change estimates. We find 95% of our estimates to lie within 0.08 and 0.09 mm/a equivalent sea-level (ESL) change for the Antarctic Peninsula and within 0.18 and 0.20 mm/a ESL for the Amundsen Sea Sector. Forward modelling of the GIA over the Ronne Ice Shelf region suggests that the Antarctic continent was covered by 8.4 to 9.4 m ESL of additional ice during the Last-Glacial Maximum (ca. 22 to 15 ka BP). With regards to the mantle-viscosity values and the glacial history used, this value is considered as a minimum estimate. The mass-change estimates derived from all GRACE releases and time intervals lie within ca. 20% (Amundsen Sea Sector), 30% (Antarctic Peninsula) and 50% (Ronne Ice Shelf region) of the bootstrap-estimated mean, demonstrating the reliability of results obtained using GRACE observations.
Heywood, Charles E.
2002-01-01
The geologic structure of the Mimbres ground-water basin in southwest New Mexico is characterized by north- and northwest-trending structural subbasins. Sedimentation of Miocene and Pliocene age has filled and obscured the boundaries of these subbasins and formed poten- tially productive aquifers of varied thickness. The location and depth of the subbasins can be esti- mated from analysis of isostatic residual gravity anomalies. Density contrasts of various basement lithologies generate complex regional gravity trends, which are convolved with the gravity signal from the Miocene and Pliocene alluvial fill. An iterative scheme was used to separate these regional gravity trends from the alluvial-fill grav- ity signal, which was inverted with estimated depth-density relations to compute the thickness of the alluvial fill at 1-kilometer spacing. The thickness estimates were constrained by explor- atory drill-hole information, interpreted seismic- refraction profiles, and location of bedrock lithol- ogy from surficial geologic mapping. The result- ing map of alluvial-fill thickness suggests large areas of thin alluvium that separate deep structural subbasins.
NASA Technical Reports Server (NTRS)
Hart, F. H.
1984-01-01
Because almost the entire U.S. consumption of cobalt depends on imports, this metal has been designated "strategic'. The role and effectiveness of cobalt is being evaluated in commercial nickel-base superalloys. Udiment 700 type alloys in which the cobalt content was reduced from the normal 17% down to 12.7%, 8.5%, 4.3%, and 0% were prepared by standard powder metallurgy techniques and hot isostatically pressed into billets. Mechanical testing and microstructural investigations were performed. The mechanical properties of alloys with reduced cobalt contents which were heat-treated identically were equal or better than those of the standard alloy, except that creep rates tended to increase as cobalt was reduced. The effects of long time exposures at 760 C on mechanical properties and at 760 C and 845 C on microstructures were determined. Decreased tensile properties and shorter rupture lives with increased creep rates were observed in alloy modifications. The exposures caused gamma prime particle coarsening and formation of sigma phase in the alloys with higher cobalt contents. Exposure at 845 C also reduced the amount of MC carbides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsushima, Toshinori, E-mail: tmatusim@opera.kyushu-u.ac.jp, E-mail: adachi@cstf.kyushu-u.ac.jp; Adachi, Chihaya, E-mail: tmatusim@opera.kyushu-u.ac.jp, E-mail: adachi@cstf.kyushu-u.ac.jp; Japan Science and Technology Agency
2014-12-15
Spatial gaps between grains and other grains, substrates, or electrodes in organic electronic devices are one of the causes of the reduction in the electrical characteristics. In this study, we demonstrate that cold isostatic pressing (CIP) is an effective method to crush the gaps and enhance the electrical characteristics. CIP of metal-free phthalocyanine (H{sub 2}PC) films induced a decrease in the film thickness by 34%–40% because of the gap crush. The connection of smaller grains into a larger grain and planarization of the film surface were also observed in the CIP film. The crystal axes of the H{sub 2}PC crystallitesmore » were rearranged from the a-axis to the c-axis of the α-phase crystal structure in a direction perpendicular to the substrate by CIP, indicating favorable hole injection and transport in this direction because of a better overlap of π orbitals. Thermally stimulated current measurements showed that deep hole traps disappeared and the total hole-trap density decreased after CIP. These CIP-induced changes of the film thicknesses, crystal axes and the hole traps lead to a marked increase in the hole mobility of the H{sub 2}PC films from 2.0 × 10{sup −7} to 4.0 × 10{sup −4} cm{sup 2}/V s by 2000 times in the perpendicular direction. We believe that these findings are important for unveiling the underlying carrier injection and transport mechanisms of organic films and for enhancing the performance of future organic electronic devices.« less
Enhancement of Fe diffusion in ZnSe/S laser crystals under hot isostatic pressing
NASA Astrophysics Data System (ADS)
Gafarov, Ozarfar; Martinez, Alan; Fedorov, Vladimir; Mirov, Sergey
2017-02-01
Many organic molecules have strong and narrow absorption features in the middle Infrared (mid-IR) spectral range. The ability to directly probe absorption features of molecules enables numerous mid-IR applications in non-invasive medical diagnosis, industrial processing and process control, environmental monitoring, etc. Thus, there is a strong demand for lasers operating in mid-IR spectral range. Transition metal (TM) doped II-VI semiconductors such as Fe/Cr:ZnSe/S are the material of choice for fabrication of mid-IR gain media due to favorable combination of properties: a four level energy structure, absence of excited state absorption , broad mid-IR vibronic absorption and emission bands. Despite the significant progress in post-growth thermal diffusion technology of TM:II-VI fabrication there are still some difficulties associated with diffusion of certain TM's in these materials. In this work we address the issue of poor diffusion of Fe in ZnSe/S polycrystals. It is well known that with the temperature increase the diffusion rate of impurity also increases. However, simple application of high temperatures during the diffusion process is problematic for ZnSe/S crystals due to their strong sublimation. The sublimation processes can be suppressed by application of high pressures. Hot isostatic pressing was utilized as the means for simultaneous application of high temperatures (1300°C) and high pressures (1000atm, 3000atm). It was determined that diffusion coefficient of Fe was improved 13 and 14 fold in ZnSe and ZnS, respectively, as compared to the standard diffusion at 950°C. The difference in diffusion coefficients can be due to strong increase in the grain size of polycrystals.
NASA Astrophysics Data System (ADS)
Pederson, J. L.
2012-12-01
-to-apples across this landscape reveals a distinct central-Colorado Plateau bullseye of faster river incision that contrasts sharply with expectations based upon the patterns of energy expenditure and topography, but which matches modeled isostatic rebound from broad late Cenozoic exhumation of the Canyonlands district. Finally, recently proposed sources of late-Cenozoic mantle-driven support for topography at the south and west flanks of the plateau have low estimated rates of uplift, which are poorly constrained in terms of actual ongoing uplift versus just topographic support. Patterns of steepness and incision rate do not match the proposed mantle uplift, illustrating a poorly understood decoupling of erosion, topography, and mantle tectonics in the Colorado Plateau. Prime examples of this decoupling are the highly incised and steep Grand Canyon region where there are proposed sources of mantle uplift but contrastingly low rates of incision, versus the broadly exhumed central plateau that features much more rapid incision yet no mantle sources of uplift. Instead of active tectonics, bedrock resistance and possible drainage transients define geomorphic patterns in this landscape, while at broader wavelengths, the central plateau bullseye of rapid incision strongly matches the pattern of passive isostatic rebound.
Merrison-Hort, Robert; Zhang, Hong-Yan; Borisyuk, Roman
2014-01-01
Many neural circuits are capable of generating multiple stereotyped outputs after different sensory inputs or neuromodulation. We have previously identified the central pattern generator (CPG) for Xenopus tadpole swimming that involves antiphase oscillations of activity between the left and right sides. Here we analyze the cellular basis for spontaneous left–right motor synchrony characterized by simultaneous bursting on both sides at twice the swimming frequency. Spontaneous synchrony bouts are rare in most tadpoles, and they instantly emerge from and switch back to swimming, most frequently within the first second after skin stimulation. Analyses show that only neurons that are active during swimming fire action potentials in synchrony, suggesting both output patterns derive from the same neural circuit. The firing of excitatory descending interneurons (dINs) leads that of other types of neurons in synchrony as it does in swimming. During synchrony, the time window between phasic excitation and inhibition is 7.9 ± 1 ms, shorter than that in swimming (41 ± 2.3 ms). The occasional, extra midcycle firing of dINs during swimming may initiate synchrony, and mismatches of timing in the left and right activity can switch synchrony back to swimming. Computer modeling supports these findings by showing that the same neural network, in which reciprocal inhibition mediates rebound firing, can generate both swimming and synchrony without circuit reconfiguration. Modeling also shows that lengthening the time window between phasic excitation and inhibition by increasing dIN synaptic/conduction delay can improve the stability of synchrony. PMID:24760866
Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E; McCarley, Robert W; Choi, Jee Hyun
2017-02-28
Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.
Using coastal lagoons to better constrain the isostatic signal in the western Mediterranean Sea
NASA Astrophysics Data System (ADS)
Vacchi, M.; Rovere, A.; Melis, R. T.; Ghilardi, M.; Marriner, N.; Giaime, M.
2017-12-01
Coastal lagoons represent a very common feature of the microtidal Mediterranean coastlines. They are inland waterbodies, usually developing parallel to the coast, typically separated from the open sea by a sandy barrier. One or more restricted inlets ensure their continuous or intermittent connection to the open sea. The water depth is generally less than 1 m and seldom exceeds a few meters. They represent a very useful proxy for the reconstruction of Mediterranean Relative Sea Level (RSL). However, caution should be used in the definition of a correct indicative meaning that can be obtained only with a multiproxy analysis of both sedimentary features and faunal assemblages of the cores extracted in marshy to lagoonal environment. We report here the results of a wide coring campaign we carried out in in the last 2 years in a number of Mediterranean lagoons located close to important archaeological settlements in Corsica (France) Sardinia (Italy) and Mallorca Island (Spain). The multiproxy analysis of the cores allowed defining the depositional environments and their relationship (or non relationship) with the former mean sea level. These data were chronologically supported by a significant dataset of more than 100 new 14C dating performed on organic sediments, wood, plant remains and marine/lagoonal shells. We then produced alarge amount of new data to constrain the RSL evolution in the center of Western Mediterranean where the available geophysical models predict the largest glacio-hydro isostatic (GIA) influence at basin scale. However, such models where tested only on a limited dataset mainly composed of archaeological RSL indicators (i.e. last 2 ka BP). Our new record, expanding the last 10 ka BP, significantly improves the ability to define the general anatomy of Mediterranean Holocene RSL changes and to constrain the maximal GIA magnitude in the basin.
NASA Astrophysics Data System (ADS)
Schmidt, P.; Lund, B.; Näslund, J.-O.; Fastook, J.
2014-05-01
In this study we compare a recent reconstruction of the Weichselian Ice Sheet as simulated by the University of Maine ice sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modelling: ICE-5G and ANU (Australian National University, also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling, whereas ANU and ICE-5G are global models based on the sea level equation. The three models of the Weichselian Ice Sheet are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. Whereas UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), the thickness and areal extent of the ICE-5G ice sheet is more or less constant up until the LGM. During the post-LGM deglaciation phase ANU and ICE-5G melt relatively uniformly over the entire ice sheet in contrast to UMISM, which melts preferentially from the edges, thus reflecting the fundamental difference in the reconstruction scheme. We find that all three reconstructions fit the present-day uplift rates over Fennoscandia equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present-day uplift rates, and ANU the slowest. Moreover, only for ANU can a unique best-fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present-day uplift rates equally well. This is understood from the higher present-day uplift rates predicted by ICE-5G and UMISM, which result in bifurcations in the best-fit upper- and lower-mantle viscosities. We study the areal distributions of present-day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that
The rotational feedback on linear-momentum balance in glacial isostatic adjustment
NASA Astrophysics Data System (ADS)
Martinec, Zdenek; Hagedoorn, Jan
2015-04-01
The influence of changes in surface ice-mass redistribution and associated viscoelastic response of the Earth, known as glacial-isostatic adjustment (GIA), on the Earth's rotational dynamics has long been known. Equally important is the effect of the changes in the rotational dynamics on the viscoelastic deformation of the Earth. This signal, known as the rotational feedback, or more precisely, the rotational feedback on the sea-level equation, has been mathematically described by the sea-level equation extended for the term that is proportional to perturbation in the centrifugal potential and the second-degree tidal Love number. The perturbation in the centrifugal force due to changes in the Earth's rotational dynamics enters not only into the sea-level equation, but also into the conservation law of linear momentum such that the internal viscoelastic force, the perturbation in the gravitational force and the perturbation in the centrifugal force are in balance. Adding the centrifugal-force perturbation to the linear-momentum balance creates an additional rotational feedback on the viscoelastic deformations of the Earth. We term this feedback mechanism as the rotational feedback on the linear-momentum balance. We extend both the time-domain method for modelling the GIA response of laterally heterogeneous earth models and the traditional Laplace-domain method for modelling the GIA-induced rotational response to surface loading by considering the rotational feedback on linear-momentum balance. The correctness of the mathematical extensions of the methods is validated numerically by comparing the polar motion response to the GIA process and the rotationally-induced degree 2 and order 1 spherical harmonic component of the surface vertical displacement and gravity field. We present the difference between the case where the rotational feedback on linear-momentum balance is considered against that where it is not. Numerical simulations show that the resulting difference
[A comparison of rebound tonometry (ICare) with TonoPenXL and Goldmann applanation tonometry].
Schreiber, W; Vorwerk, C K; Langenbucher, A; Behrens-Baumann, W; Viestenz, A
2007-04-01
Goldmann applanation tonometry and dynamic contour tonometry (PASCAL) are two well established slit lamp mounted tonometric methods. Intraocular pressure measurement in bedridden patients and children is often only possible using hand held tonometers (TonoPenXL, Perkins tonometer, Draeger tonometer). This study was performed to evaluate the hand held ICare tonometer, which is based on the rebound method. A total of 102 eyes were examined by two highly experienced ophthalmologists for: 1) ophthalmological status, 2) central corneal power (Zeiss IOL-Master), 3) central corneal thickness (Tomey ultrasound pachymetry, five successive measurements, SD<5%), 4) intraocular pressure (IOP) measurement with the Goldmann applantation tonometer (GAT) 1x, 5) TonoPenXL (1x), 6) ICare with three successive measurement series of 6 single measurements. The mean IOP(GAT) was 13.2+/-3.0 mmHg compared with the mean IOP(TonoPenXL) (13.4+/-3.1 mmHg) and with the IOP(ICare) (mean value of first measurement series: 13.4+/-3.1 mmHg). The series of measurements with the ICare showed a tonography effect (decrease of IOP from 14.6 mmHg at the first measurement and 14.2 mmHg at the second to 14.0 at the third measurement). The ICare-measurements were highly reliable (Cronbach's alpha=0.974) and showed a good correlation between the measurement series (r=0.592-0.642; p<0.001). There was a great intra-individual variability of up to 17 mmHg between the GAT, TonoPenXL and ICare methods. The ICare tonometer is easy to handle and high reliability. The data are comparable with those from the Goldmann tonometer. A tonography effect of 0.6 mmHg in the successive measurement series was found.
Langenheim, Victoria; Oaks, R.Q.; Willis, H.; Hiscock, A.I.; Chuchel, Bruce A.; Rosario, Jose J.; Hardwick, C.L.
2014-01-01
A new isostatic residual gravity map of the Tremonton 30' x 60' quadrangle of Utah is based on compilation of preexisting data and new data collected by the Utah and U.S. Geological Surveys. Pronounced gravity lows occur over North Bay, northwest of Brigham City, and Malad and Blue Creek Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Promontory, Clarkston, and Wellsville Mountains. The highest gravity values are located in southern Curlew Valley and may be produced in part by deeper crustal density variations or crustal thinning. Steep, linear gravity gradients coincide with Quaternary faults bounding the Wellsville and Clarkston Mountains. Steep gradients also coincide with the margins of the Promontory Mountains, Little Mountain, West Hills, and the eastern margin of the North Promontory Mountains and may define concealed basin-bounding faults.
Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E.; McCarley, Robert W.; Choi, Jee Hyun
2017-01-01
Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation. PMID:28193862
Ferrante, Michele; Shay, Christopher F.; Tsuno, Yusuke; William Chapman, G.; Hasselmo, Michael E.
2017-01-01
Abstract Medial entorhinal cortex Layer-II stellate cells (mEC-LII-SCs) primarily interact via inhibitory interneurons. This suggests the presence of alternative mechanisms other than excitatory synaptic inputs for triggering action potentials (APs) in stellate cells during spatial navigation. Our intracellular recordings show that the hyperpolarization-activated cation current (Ih) allows post-inhibitory-rebound spikes (PIRS) in mEC-LII-SCs. In vivo, strong inhibitory-post-synaptic potentials immediately preceded most APs shortening their delay and enhancing excitability. In vitro experiments showed that inhibition initiated spikes more effectively than excitation and that more dorsal mEC-LII-SCs produced faster and more synchronous spikes. In contrast, PIRS in Layer-II/III pyramidal cells were harder to evoke, voltage-independent, and slower in dorsal mEC. In computational simulations, mEC-LII-SCs morphology and Ih homeostatically regulated the dorso-ventral differences in PIRS timing and most dendrites generated PIRS with a narrow range of stimulus amplitudes. These results suggest inhibitory inputs could mediate the emergence of grid cell firing in a neuronal network. PMID:26965902
Linking slope stability and climate change: the Nordfjord region, western Norway, case study
NASA Astrophysics Data System (ADS)
Vasskog, K.; Waldmann, N.; Ariztegui, D.; Simpson, G.; Støren, E.; Chapron, E.; Nesje, A.
2009-12-01
Valleys, lakes and fjords are spectacular features of the Norwegian landscape and their sedimentary record recall past climatic, environmental and glacio-isostatic changes since the late glacial. A high resolution multi-proxy study is being performed on three lakes in western Norway combining different geophysical methods and sediment coring with the aim of reconstructing paleoclimate and to investigate how the frequency of hazardous events in this area has changed through time. A very high resolution reflection seismic profiling revealed a series of mass-wasting deposits. These events, which have also been studied in radiocarbon-dated cores, suggest a changing impact of slope instability on lake sedimentation since the late glacial. A specially tailored physically-based mathematical model allowed a numerical simulation of one of these mass wasting events and related tsunami, which occurred during a devastating rock avalanche in 1936 killing 74 persons. The outcome has been further validated against historical, marine and terrestrial information, providing a model that can be applied to comparable basins at various temporal and geographical scales. Detailed sedimentological and geochemical studies of selected cores allows characterizing the sedimentary record and to disentangle each mass wasting event. This combination of seismic, sedimentary and geophysical data permits to extend the record of mass wasting events beyond historical times. The geophysical and coring data retrieved from these lakes is a unique trace of paleo-slope stability generated by isostatic rebound and climate change, thus providing a continuous archive of slope stability beyond the historical record. The results of this study provide valuable information about the impact of climate change on slope stability and source-to-sink processes.
NASA Astrophysics Data System (ADS)
Fadil, A.; Barriot, J.; Sichoix, L.; Ortega, P.; Willis, P.; Serafini, J.
2010-12-01
Monitoring vertical land motion is of crucial interest in observations of long-term sea level change and its reconstruction, but is among of the most, yet highly challenging, tasks of space geodesy. The aim of the paper is to compare the vertical velocity estimates of Tahiti Island obtained from six independent geophysical measurements, namely a decade of GPS, DORIS, and GRACE data, 17 years sea level difference (altimeter minus tide gauge (TG)) time series, ICE-5G (VM2 L90) Post-Glacial Rebound (PGR) model predictions, and coral reef stratigraphy. Except The Glacial Isostatic Adjustment (GIA also known as PGR) model, all the techniques are in a good agreement and reveal a very slow subsidence of the Tahiti Island averaged at -0.3 mm/yr which is barely significant. Neverthless, despite of that vertical motion, Tahiti remains an ideal location for the calibration of satellite altimeter measurements.Estimated vertical crustal motions from GPS, DORIS, GRACE, (altimetry - tide-gauge) sea level records, coral reef stratigraphy, and GIA. GG = GAMIT-GLOBK software packageGOA= GIPSY-OASIS II software package
NASA Astrophysics Data System (ADS)
Park, Y.; Eriksson, N.; Newell, R.; Keiser, D. D.; Sohn, Y. H.
2016-11-01
Eutectoid decomposition of γ-phase (cI2) into α-phase (oC4) and γ‧-phase (tI6) during the hot isostatic pressing (HIP) of the U-10 wt% Mo (U10Mo) alloy was investigated using monolithic fuel plate samples consisting of U10Mo fuel alloy, Zr diffusion barrier and AA6061 cladding. The decomposition of the γ-phase was observed because the HIP process is carried out near the eutectoid temperature, 555 °C. Initially, a cellular structure, consisting of γ‧-phase surrounded by α-phase, developed from the destabilization of the γ-phase. The cellular structure further developed into an alternating lamellar structure of α- and γ‧-phases. Using scanning electron microscopy and transmission electron microscopy, qualitative and quantitative microstructural analyses were carried out to identify the phase constituents, and elucidate the microstructural development based on time-temperature-transformation diagram of the U10Mo alloy. The destabilization of γ -phase into α- and γ‧-phases would be minimized when HIP process was carried out with rapid ramping/cooling rate and dwell temperature higher than 560 °C.
An assessment of the ICE6G_C(VM5a) glacial isostatic adjustment model
NASA Astrophysics Data System (ADS)
Purcell, A.; Tregoning, P.; Dehecq, A.
2016-05-01
The recent release of the next-generation global ice history model, ICE6G_C(VM5a), is likely to be of interest to a wide range of disciplines including oceanography (sea level studies), space gravity (mass balance studies), glaciology, and, of course, geodynamics (Earth rheology studies). In this paper we make an assessment of some aspects of the ICE6G_C(VM5a) model and show that the published present-day radial uplift rates are too high along the eastern side of the Antarctic Peninsula (by ˜8.6 mm/yr) and beneath the Ross Ice Shelf (by ˜5 mm/yr). Furthermore, the published spherical harmonic coefficients—which are meant to represent the dimensionless present-day changes due to glacial isostatic adjustment (GIA)—contain excessive power for degree ≥90, do not agree with physical expectations and do not represent accurately the ICE6G_C(VM5a) model. We show that the excessive power in the high-degree terms produces erroneous uplift rates when the empirical relationship of Purcell et al. (2011) is applied, but when correct Stokes coefficients are used, the empirical relationship produces excellent agreement with the fully rigorous computation of the radial velocity field, subject to the caveats first noted by Purcell et al. (2011). Using the Australian National University (ANU) groups CALSEA software package, we recompute the present-day GIA signal for the ice thickness history and Earth rheology used by Peltier et al. (2015) and provide dimensionless Stokes coefficients that can be used to correct satellite altimetry observations for GIA over oceans and by the space gravity community to separate GIA and present-day mass balance change signals. We denote the new data sets as ICE6G_ANU.
The rotational feedback on linear-momentum balance in glacial isostatic adjustment
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk; Hagedoorn, Jan
2014-12-01
The influence of changes in surface ice-mass redistribution and associated viscoelastic response of the Earth, known as glacial isostatic adjustment (GIA), on the Earth's rotational dynamics has long been known. Equally important is the effect of the changes in the rotational dynamics on the viscoelastic deformation of the Earth. This signal, known as the rotational feedback, or more precisely, the rotational feedback on the sea level equation, has been mathematically described by the sea level equation extended for the term that is proportional to perturbation in the centrifugal potential and the second-degree tidal Love number. The perturbation in the centrifugal force due to changes in the Earth's rotational dynamics enters not only into the sea level equation, but also into the conservation law of linear momentum such that the internal viscoelastic force, the perturbation in the gravitational force and the perturbation in the centrifugal force are in balance. Adding the centrifugal-force perturbation to the linear-momentum balance creates an additional rotational feedback on the viscoelastic deformations of the Earth. We term this feedback mechanism, which is studied in this paper, as the rotational feedback on the linear-momentum balance. We extend both the time-domain method for modelling the GIA response of laterally heterogeneous earth models developed by Martinec and the traditional Laplace-domain method for modelling the GIA-induced rotational response to surface loading by considering the rotational feedback on linear-momentum balance. The correctness of the mathematical extensions of the methods is validated numerically by comparing the polar-motion response to the GIA process and the rotationally induced degree 2 and order 1 spherical harmonic component of the surface vertical displacement and gravity field. We present the difference between the case where the rotational feedback on linear-momentum balance is considered against that where it is not
NASA Astrophysics Data System (ADS)
Poiré, Antoine G.; Lajeunesse, Patrick; Normandeau, Alexandre; Francus, Pierre; St-Onge, Guillaume; Nzekwe, Obinna P.
2018-04-01
High-resolution swath bathymetry imagery allowed mapping in great detail the sublacustrine geomorphology of lakes Pentecôte, Walker and Pasteur, three deep adjacent fjord-lakes of the Québec North Shore (eastern Canada). These sedimentary basins have been glacio-isostatically uplifted to form deep steep-sided elongated lakes. Their key geographical position and limnogeological characteristics typical of fjords suggest exceptional potential for long-term high-resolution paleoenvironmental reconstitutions. Acoustic subbottom profiles acquired using a bi-frequency Chirp echosounder (3.5 & 12 kHz), together with cm- and m-long sediment core data, reveal the presence of four acoustic stratigraphic units. The acoustic basement (Unit 1) represents the structural bedrock and/or the ice-contact sediments of the Laurentide Ice Sheet and reveals V-shaped bedrock valleys at the bottom of the lakes occupied by ice-loaded sediments in a basin-fill geometry (Unit 2). Moraines observed at the bottom of lakes and in their structural valleys indicate a deglaciation punctuated by short-term ice margin stabilizations. Following ice retreat and their isolation, the fjord-lakes were filled by a thick draping sequence of rhythmically laminated silts and clays (Unit 3) deposited during glaciomarine and/or glaciolacustrine settings. These sediments were episodically disturbed by mass-movements during deglaciation due to glacial-isostatic rebound. AMS 14C dating reveal that the transition between deglaciation of the lakes Pentecôte and Walker watersheds and the development of para- and post-glacial conditions occurred around 8000 cal BP. The development of the lake-head river delta plain during the Holocene provided a constant source of fluvial sediment supply to the lakes and the formation of turbidity current bedforms on the sublacustrine delta slopes. The upper sediment succession (i.e., ∼4-∼6.5 m) consists of a continuous para-to post-glacial sediment drape (Unit 4) that contains
NASA Astrophysics Data System (ADS)
Sun, W.; Miura, S.; Sato, T.; Sugano, T.; Freymueller, J.; Kaufman, M.; Larsen, C. F.; Cross, R.; Inazu, D.
2010-12-01
For the past 300 years, southeastern Alaska has undergone rapid ice-melting and land uplift attributable to global warming. Corresponding crustal deformation (3 cm/yr) caused by the Little Ice Age retreat is detectable with modern geodetic techniques such as GPS and tidal gauge measurements. Geodetic deformation provides useful information for assessing ice-melting rates, global warming effects, and subcrustal viscosity. Nevertheless, integrated geodetic observations, including gravity measurements, are important. To detect crustal deformation caused by glacial isostatic adjustment and to elucidate the viscosity structure in southeastern Alaska, Japanese and U.S. researchers began a joint 3-year project in 2006 using GPS, Earth tide, and absolute gravity measurements. A new absolute gravity network was established, comprising five sites around Glacier Bay, near Juneau, Alaska. This paper reports the network's gravity measurements during 2006-2008. The bad ocean model in this area hindered ocean loading correction: Large tidal residuals remain in the observations. Accurate tidal correction necessitated on-site tidal observation. Results show high observation precision for all five stations: <1 μGal. The gravity rate of change was found to be -3.5 to -5.6 μGal/yr in the gravity network. Furthermore, gravity results obtained during the 3 years indicate a similar gravity change rate. These gravity data are anticipated for application in geophysical studies of southeastern Alaska. Using gravity and vertical displacement data, we constructed a quantity to remove viscoelastic effects. The observations are thus useful to constrain present-day ice thickness changes. A gravity bias of about -13.2 ± 0.1 mGal exists between the Potsdam and current FG5 gravity data.
Langenheim, Victoria; Athens, N.D.; Churchel, B.A.; Willis, H.; Knepprath, N.E.; Rosario, Jose J.; Roza, J.; Kraushaar, S.M.; Hardwick, C.L.
2013-01-01
A new isostatic residual gravity map of the Newfoundland Mountains and east of the Wells 30×60 quadrangles of Utah is based on compilation of preexisting data and new data collected by the Utah and U.S. Geological Surveys. Pronounced gravity lows occur over Grouse Creek Valley and locally beneath the Great Salt Lake Desert, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Newfoundland, Silver Island, and Little Pigeon Mountains. Gravity values measured on pre-Tertiary basement to the north in the Bovine and Hogup Mountains are as much as 10mGal lower. Steep, linear gravity gradients may define basin-bounding faults concealed along the margins of the Newfoundland, Silver Island, and Little Pigeon Mountains, Lemay Island and the Pilot Range.
Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; Kurtenbach, Enrico; Kusche, Jürgen; Vermeersen, Bert
2011-11-01
In areas dominated by Glacial Isostatic Adjustment (GIA), the free-air gravity anomaly rate can be converted to uplift rate to good approximation by using a simple spectral relation. We provide quantitative comparisons between gravity rates derived from monthly gravity field solutions (GFZ Potsdam, CSR Texas, IGG Bonn) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with uplift rates measured by GPS in these areas. The band-limited gravity data from the GRACE satellite mission can be brought to very good agreement with the point data from GPS by using scaling factors derived from a GIA model (the root-mean-square of differences is 0.55 mm yr-1 for a maximum uplift rate signal of 10 mm yr-1). The root-mean-square of the differences between GRACE derived uplift rates and GPS derived uplift rates decreases with increasing GRACE time period to a level below the uncertainty that is expected from GRACE observations, GPS measurements and the conversion from gravity rate to uplift rate. With the current length of time-series (more than 8 yr) applying filters and a hydrology correction to the GRACE data does not reduce the root-mean-square of differences significantly. The smallest root-mean-square was obtained with the GFZ solution in Fennoscandia and with the CSR solution in North America. With radial gravity rates in excellent agreement with GPS uplift rates, more information on the GIA process can be extracted from GRACE gravity field solutions in the form of tangential gravity rates, which are equivalent to a rate of change in the deflection of the vertical scaled by the magnitude of gravity rate vector. Tangential gravity rates derived from GRACE point towards the centre of the previously glaciated area, and are largest in a location close to the centre of the former ice sheet. Forward modelling showed that present day tangential gravity rates have maximum sensitivity between the centre and edge of the former ice sheet, while radial gravity
Péneau, S; González-Carrascosa, R; Gusto, G; Goxe, D; Lantieri, O; Fezeu, L; Hercberg, S; Rolland-Cachera, M F
2016-07-01
Early-life growth characteristics and in particular age at adiposity rebound (AR), have been shown to impact nutritional status later in life but studies investigating the association with long-term health remain scarce. Our aims were to identify determinants of age at AR and its relationship with nutritional status and cardiometabolic risk factors at adulthood. A total of 1465 subjects aged 20-60 years participated in this retrospective cohort study. Height, weight, waist circumference, blood glucose, lipids and blood pressure were measured at adulthood. Childhood weight, height, gestational age, birth weight and early nutrition were collected retrospectively from health booklets and age at AR was assessed. Participants self-reported parental silhouettes. Associations were assessed using multiple linear and logistic regression. An earlier AR was associated with higher body mass index and waist circumference at adulthood in both men and women (P<0.0001). In addition, women with an earlier occurrence of AR had higher triglyceride (P=0.001), low-density lipoprotein-cholesterol (P=0.001), systolic (P=0.02) and diastolic blood pressure (P=0.04) at adulthood. Both men (odds ratio (OR) (95% confidence interval (CI)): 0.82 (0.70-0.95)) and women (OR (95% CI): 0.84 (0.73-0.96) with an AR occurring earlier were more likely to develop a metabolic syndrome. Larger parental silhouette was associated with an earlier AR. This long-term study showed that age at AR was associated with nutritional status and metabolic syndrome at adulthood. These results highlight the importance of monitoring childhood growth so as to help identify children at risk of developing an adverse cardiometabolic profile in adulthood. AR determinants for use in overweight surveillance were identified.
Venus - Ishtar gravity anomaly
NASA Technical Reports Server (NTRS)
Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.
1984-01-01
The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.
NASA Astrophysics Data System (ADS)
Root, Bart; Tarasov, Lev; van der Wal, Wouter
2014-05-01
The global ice budget is still under discussion because the observed 120-130 m eustatic sea level equivalent since the Last Glacial Maximum (LGM) can not be explained by the current knowledge of land-ice melt after the LGM. One possible location for the missing ice is the Barents Sea Region, which was completely covered with ice during the LGM. This is deduced from relative sea level observations on Svalbard, Novaya Zemlya and the North coast of Scandinavia. However, there are no observations in the middle of the Barents Sea that capture the post-glacial uplift. With increased precision and longer time series of monthly gravity observations of the GRACE satellite mission it is possible to constrain Glacial Isostatic Adjustment in the center of the Barents Sea. This study investigates the extra constraint provided by GRACE data for modeling the past ice geometry in the Barents Sea. We use CSR release 5 data from February 2003 to July 2013. The GRACE data is corrected for the past 10 years of secular decline of glacier ice on Svalbard, Novaya Zemlya and Frans Joseph Land. With numerical GIA models for a radially symmetric Earth, we model the expected gravity changes and compare these with the GRACE observations after smoothing with a 250 km Gaussian filter. The comparisons show that for the viscosity profile VM5a, ICE-5G has too strong a gravity signal compared to GRACE. The regional calibrated ice sheet model (GLAC) of Tarasov appears to fit the amplitude of the GRACE signal. However, the GRACE data are very sensitive to the ice-melt correction, especially for Novaya Zemlya. Furthermore, the ice mass should be more concentrated to the middle of the Barents Sea. Alternative viscosity models confirm these conclusions.
NASA Astrophysics Data System (ADS)
Wu, X.; Jiang, Y.; Simonsen, S.; van den Broeke, M. R.; Ligtenberg, S.; Kuipers Munneke, P.; van der Wal, W.; Vermeersen, B. L. A.
2017-12-01
Determining present-day mass transport (PDMT) is complicated by the fact that most observations contain signals from both present day ice melting and Glacial Isostatic Adjustment (GIA). Despite decades of progress in geodynamic modeling and new observations, significant uncertainties remain in both. The key to separate present-day ice mass change and signals from GIA is to include data of different physical characteristics. We designed an approach to separate PDMT and GIA signatures by estimating them simultaneously using globally distributed interdisciplinary data with distinct physical information and a dynamically constructed a priori GIA model. We conducted a high-resolution global reappraisal of present-day ice mass balance with focus on Earth's polar regions and its contribution to global sea-level rise using a combination of ICESat, GRACE gravity, surface geodetic velocity data, and an ocean bottom pressure model. Adding ice altimetry supplies critically needed dual data types over the interiors of ice covered regions to enhance separation of PDMT and GIA signatures, and achieve half an order of magnitude expected higher accuracies for GIA and consequently ice mass balance estimates. The global data based approach can adequately address issues of PDMT and GIA induced geocenter motion and long-wavelength signatures important for large areas such as Antarctica and global mean sea level. In conjunction with the dense altimetry data, we solved for PDMT coefficients up to degree and order 180 by using a higher-resolution GRACE data set, and a high-resolution a priori PDMT model that includes detailed geographic boundaries. The high-resolution approach solves the problem of multiple resolutions in various data types, greatly reduces aliased errors from a low-degree truncation, and at the same time, enhances separation of signatures from adjacent regions such as Greenland and Canadian Arctic territories.
NASA Astrophysics Data System (ADS)
Williams, Felicity; Tamisiea, Mark E.; Rohling, Eelco J.; Grant, Katharine M.
2014-05-01
Submarine sills are critical points that regulate the exchange flow between enclosed basins and the open ocean. Isostatic modelling of two sills is presented: The Hanish Sill, which regulates exchange between the Red Sea and the Indian Ocean, and the Camarinal Sill which performs a similar function between the Mediterranean Sea and the Atlantic Ocean. A 244 kyr ice history, based on the of the ICE-5G global ice model is used, and a spherically symmetrical, viscoelastic earth is parameterised over three lithospheric thicknesses and a range of upper and lower mantle viscosities. Though the sills are in geologically different settings, with one sill on the basin side, and one sill on the ocean side of the narrowest passage, the relative sea level response is strikingly similar. We determine that in each case, while the offset between relative and global mean sea level is not constant over time, it roughly scales proportionally with land-ice variations such that an estimation of global mean sea level, and thus global ice volume, can be recovered from continuous sea level curves generated at these sills. The relationship between global mean sea level (ESL) and relative sea level (RSL) at the Camarinal Sill can be expressed as ESL=1.23(±0.08)RSL +0.5(±1.9) with errors expressed at two standard deviations. The Hanish Sill response, which displays greater sensitivity to duration of interglacial, is better characterised by two equations which describe an envelope of possible behaviour dependent on phase of glaciation (ESL=1.13RSL +8.5) or deglaciation (ESL=1.24RSL -9.0).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.
Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba 1.0Cs 0.3Cr 1.0Al 0.3Fe 1.0Ti 5.7O 16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayedmore » prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed “islands” rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.« less
Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; ...
2018-02-08
Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba 1.0Cs 0.3Cr 1.0Al 0.3Fe 1.0Ti 5.7O 16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayedmore » prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed “islands” rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.« less
NASA Astrophysics Data System (ADS)
Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; Vance, Eric R.; Amoroso, Jake W.
2018-04-01
Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba1.0Cs0.3Cr1.0Al0.3Fe1.0Ti5.7O16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayed prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed "islands" rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.
A data-driven model for constraint of present-day glacial isostatic adjustment in North America
NASA Astrophysics Data System (ADS)
Simon, K. M.; Riva, R. E. M.; Kleinherenbrink, M.; Tangdamrongsub, N.
2017-09-01
Geodetic measurements of vertical land motion and gravity change are incorporated into an a priori model of present-day glacial isostatic adjustment (GIA) in North America via least-squares adjustment. The result is an updated GIA model wherein the final predicted signal is informed by both observational data, and prior knowledge (or intuition) of GIA inferred from models. The data-driven method allows calculation of the uncertainties of predicted GIA fields, and thus offers a significant advantage over predictions from purely forward GIA models. In order to assess the influence each dataset has on the final GIA prediction, the vertical land motion and GRACE-measured gravity data are incorporated into the model first independently (i.e., one dataset only), then simultaneously. The relative weighting of the datasets and the prior input is iteratively determined by variance component estimation in order to achieve the most statistically appropriate fit to the data. The best-fit model is obtained when both datasets are inverted and gives respective RMS misfits to the GPS and GRACE data of 1.3 mm/yr and 0.8 mm/yr equivalent water layer change. Non-GIA signals (e.g., hydrology) are removed from the datasets prior to inversion. The post-fit residuals between the model predictions and the vertical motion and gravity datasets, however, suggest particular regions where significant non-GIA signals may still be present in the data, including unmodeled hydrological changes in the central Prairies west of Lake Winnipeg. Outside of these regions of misfit, the posterior uncertainty of the predicted model provides a measure of the formal uncertainty associated with the GIA process; results indicate that this quantity is sensitive to the uncertainty and spatial distribution of the input data as well as that of the prior model information. In the study area, the predicted uncertainty of the present-day GIA signal ranges from ∼0.2-1.2 mm/yr for rates of vertical land motion, and
Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III
1991-01-01
Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glass transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder X ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structural transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.
Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III
1991-01-01
Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glasss transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder x ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structure transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.
Lewin, Andrew; Lasseter, Kenneth C; Dong, Fang; Whalen, John C
2012-01-01
Rapid withdrawal of antihypertensive drugs may lead to blood pressure (BP) increase above pretreatment values or symptoms such as palpitations, chest pain, and tremor. This phase IV trial assessed the consequences of abrupt and stepwise withdrawal of nebivolol, a β(1)-selective blocker, in individuals with stage I-II hypertension. After a 4- to 5-week placebo washout phase and 12-week single-blind nebivolol treatment (10-40 mg/day, titrated based on BP response), participants achieving BP control (systolic BP [SBP]/diastolic BP [DBP] <140/90 mm Hg) or response (SBP decrease ≥10 mm Hg or DBP decrease ≥5 mm Hg) entered a 4-week, randomized, double-blind phase of continued nebivolol treatment (n = 102) or withdrawal to placebo (n = 105). Primary and secondary efficacy measures were changes in mean sitting DBP and SBP, respectively, analyzed using an analysis of covariance model. Safety and tolerability were also assessed. In the withdrawal phase, nebivolol and placebo groups demonstrated mean DBP increases of 1.8 and 7.7 mm Hg, respectively (P < .001), and SBP increases of 3.5 and 7.6 mm Hg (P = .011). Twenty-three (22.5%) nebivolol-treated and 18 (17.1%) placebo-treated participants experienced a treatment-emergent adverse event. No adverse events associated with β-blocker withdrawal and considered causally related to nebivolol were reported. Nebivolol withdrawal resulted in a mean BP increase near pretreatment levels and was not associated with rebound hypertension. Copyright © 2012 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
On Lateral Viscosity Contrast in the Mantle and the Rheology of Low-Frequency Geodynamics
NASA Technical Reports Server (NTRS)
Ivins, Erik R.; Sammis, Charles G.
1995-01-01
Mantle-wide heterogeneity is largely controlled by deeply penetrating thermal convective currents. These thermal currents are likely to produce significant lateral variation in rheology, and this can profoundly influence overall material behaviour. How thermally related lateral viscosity variations impact models of glacio-isostatic and tidal deformation is largely unknown. An important step towards model improvement is to quantify, or bound, the actual viscosity variations that characterize the mantle. Simple scaling of viscosity to shear-wave velocity fluctuations yields map-views of long- wavelength viscosity variation. These give a general quantitative description and aid in estimating the depth dependence of rheological heterogeneity throughout the mantle. The upper mantle is probably characterized by two to four orders of magnitude variation (peak-to-peak). Discrepant time-scales for rebounding Holocene shorelines of Hudson Bay and southern Iceland are consistent with this characterization. Results are given in terms of a local average viscosity ratio, (Delta)eta(bar)(sub i), of volumetric concentration, phi(sub i). For the upper mantle deeper than 340 km the following reasonable limits are estimated for (delta)eta(bar) approx. equal 10(exp -2): 0.01 less than or equal to phi less than or equal to 0.15. A spectrum of ratios (Delta)eta(bar)(sub i) less than 0.1 at concentration level eta(sub i) approx. equal 10(exp -6) - 10(exp -1) in the lower mantle implies a spectrum of shorter time-scale deformational response modes for second-degree spherical harmonic deformations of the Earth. Although highly uncertain, this spectrum of spatial variation allows a purely Maxwellian viscoelastic rheology simultaneously to explain all solid tidal dispersion phenomena and long-term rebound-related mantle viscosity. Composite theory of multiphase viscoelastic media is used to demonstrate this effect.
Gaetz, W; Macdonald, M; Cheyne, D; Snead, O C
2010-06-01
We measured visually-cued motor responses in two developmentally separate groups of children and compared these responses to a group of adults. We hypothesized that if post-movement beta rebound (PMBR) depends on developmentally sensitive processes, PMBR will be greatest in adults and progressively decrease in children performing a basic motor task as a function of age. Twenty children (10 young children 4-6 years; 10 adolescent children 11-13 years) and 10 adults all had MEG recorded during separate recordings of right and left index finger movements. Beta band (15-30 Hz) event-related desynchronization (ERD) of bi-lateral sensorimotor areas was observed to increase significantly from both contralateral and ipsilateral MI with age. Movement-related gamma synchrony (60-90 Hz) was also observed from contralateral MI for each age group. However, PMBR was significantly reduced in the 4-6 year group and, while more prominent, remained significantly diminished in the adolescent (11-13 year) age group as compared to adults. PMBR measures were weak or absent in the youngest children tested and appear maximally from bilateral MI in adults. Thus PMBR may reflect an age-dependent inhibitory process of the primary motor cortex which comes on-line with normal development. Previous studies have shown PMBR may be observed from MI following a variety of movement-related tasks in adult participants - however, the origin and purpose of the PMBR is unclear. The current study shows that the expected PMBR from MI observed from adults is increasingly diminished in adolescent and young children respectively. A reduction in PMBR from children may reflect reduced motor cortical inhibition. Relatively less motor inhibition may facilitate neuronal plasticity and promote motor learning in children. Copyright 2010 Elsevier Inc. All rights reserved.
Post-Glacial and Paleo-Environmental History of the West Coast of Vancouver Island
NASA Astrophysics Data System (ADS)
Dallimore, A.; Enkin, R. J.
2005-12-01
Annually laminated sediments in anoxic fjords are potentially ideal paleoclimate recorders, particularly once proxy measurements for atmospheric, oceanographic and sedimentological conditions have been calibrated. On the west coast of Canada, these sediments also record the changing environment as glaciers retreated from this area about 12 ka y BP. In Effingham Inlet, a 40 m core taken from the French ship the Marion Dufresne as part of the international IMAGES/PAGES program, gives evidence of an isolation basin at maximum glacial isostatic rebound and lowest paleo-sea level followed by eustatic sea level rise about 10 ka y BP. The Late Pleistocene record also marks dramatic changes in glacial sedimentary source and transport. Excellent chronological control is provided by complementary yet independent dating methods including radiocarbon dates on both plants and shells, identification of the Mazama Ash, varve counting and paleomagnetic, paleosecular variation correlations in the lower, pro-glacial section of the core which does not contain organic material. Paleoenvironmental evidence from this core provides information on immediate post-glacial conditions along the coast and rapid climatic changes throughout the Holocene, with implications for the possibility of early human migration routes and refugia.
The Provo shoreline of Lake Bonneville: Chapter 7
Miller, David
2016-01-01
G.K. Gilbert studied the Bonneville basin 150 years ago and his findings have largely stood the test of time: The Provo shoreline, the most prominent geomorphic feature of Lake Bonneville, reflects threshold-stabilized overflow of the lake after the Bonneville flood and before a drier climate caused the lake to shrink. Subsequent refinements in chronology allow the Provo lake to be identified as about 18.2–14.8 cal ka BP, and stratigraphic studies show that the lake was gradually growing deeper during that time. Because the lake deepened through time as isostatic rebound occurred, individual landforms in general reflect processes operating for a small part of the ~ 3400 year of Provo time. Opportunities remain to improve our knowledge of the Provo lake; topics include (1) refinement of lake levels using delta and beach stratigraphy; (2) improved understanding of lake water chemistry and its role in determining deep-water sediment and cave deposits, which have disparate interpretations; (3) identifying processes at the threshold that caused the lake level to rise; and (4) identifying climate variability signals during Provo time.
Crow, Ryan S.; Karl Karlstrom,; Laura Crossey,; Richard Young,; Michael Ort,; Yemane Asmerom,; Victor Polyak,; Andrew Darling,
2014-01-01
The Grand Canyon region provides an excellent laboratory to examine the interplay between river incision, magmatism, and the geomorphic and tectonic processes that shape landscapes. Here we apply U-series, Ar–Ar, and cosmogenic burial dating of river terraces to examine spatial variations in incision rates along the 445 km length of the Colorado River through Grand Canyon. We also analyze strath terrace sequences that extend to heights of several hundred meters above the river, and integrate these with speleothem constrained maximum incision rates in several reaches to examine any temporal incision variations at the million-year time frame. This new high-resolution geochronology shows temporally steady long-term incision in any given reach of Grand Canyon but significant variations along its length from 160 m/Ma in the east to 101 m/Ma in the west. Spatial and temporal patterns of incision, and the long timescale of steady incision rule out models where geomorphic controls such as climate oscillations, bedrock strength, sediment load effects, or isostatic response to differential denudation are the first order drivers of canyon incision. The incision pattern is best explained by a model of Neogene and ongoing epeirogenic uplift due to an eastward propagating zone of increased upper mantle buoyancy that we infer from propagation of Neogene basaltic volcanism and a strong lateral gradient in modern upper mantle seismic structure.
ERIC Educational Resources Information Center
Weinstein, Margery
2011-01-01
A return to normal after a crisis is a good thing. Who doesn't want back what once seemed lost? The problem is it usually isn't a simple task figuring out how to patch together a scaled-back training program. When the recession hit in fall 2008, trainers were asked to scale down programming and make do with fewer resources. With a recovery in full…
NASA Astrophysics Data System (ADS)
Van Der Wal, W.; Barnhoorn, A.; Stocchi, P.; Drury, M. R.; Wu, P. P.; Vermeersen, B. L.
2011-12-01
Ice melting in Greenland and Antarctica can be estimated from GRACE satellite measurements. The largest source of error in these estimates is uncertainty in models for Glacial Isostatic Adjustment (GIA). GIA models that are used to correct the GRACE data have several shortcomings, including (i) mantle viscosity is only varied with depth, and (ii) stress-dependence of viscosity is ignored. Here we attempt to improve on these two issues with the ultimate goal of providing more realistic GIA predictions in areas that are currently ice covered. The improved model is first tested against observations in Fennoscandia, where there is good coverage with GIA observations, before applying it to Greenland. Deformation laws for diffusion and dislocation creep in olivine are taken from a compilation of laboratory experiments. Temperature is obtained from two different sources: surface heatflow maps as input for the heat transfer equation, and seismic velocity anomalies converted to upper mantle temperatures. Grain size and olivine water content are kept as free parameters. Surface loading is provided by an ice loading history that is constructed from constraints on past ice margins and input from climatology. The finite element model includes self-gravitation but not compressibility and background stresses. It is found that the viscosity in Fennoscandia changes in time by two orders of magnitude for a wet rheology with large grain size. The wet rheology provides the best fit to historic sea level data. However, present-day uplift and gravity rates are too low for such a rheology. We apply a wet rheology on Greenland, and simulate a Little Ice Age (LIA) increase in thickness on top of the ICE-5G ice loading history. Preliminary results show a negative geoid rate of magnitude more than 0.5 mm/year due to the LIA increase in ice thickness in combination with the non-linear upper mantle rheology. More tests are necessary to determine the influence of mantle rheology on GIA model
Honaga, Eiko; Ishii, Ryouhei; Kurimoto, Ryu; Canuet, Leonides; Ikezawa, Koji; Takahashi, Hidetoshi; Nakahachi, Takayuki; Iwase, Masao; Mizuta, Ichiro; Yoshimine, Toshiki; Takeda, Masatoshi
2010-07-12
The mu rhythm is regarded as a physiological indicator of the human mirror neuron system (MNS). The dysfunctional MNS hypothesis in patients with autistic spectrum disorder (ASD) has often been tested using EEG and MEG, targeting mu rhythm suppression during action observation/execution, although with controversial results. We explored neural activity related to the MNS in patients with ASD, focusing on power increase in the beta frequency band after observation and execution of movements, known as post-movement beta rebound (PMBR). Multiple source beamformer (MSBF) and BrainVoyager QX were used for MEG source imaging and statistical group analysis, respectively. Seven patients with ASD and ten normal subjects participated in this study. During the MEG recordings, the subjects were asked to observe and later execute object-related hand actions performed by an experimenter. We found that both groups exhibited pronounced PMBR exceeding 20% when observing and executing actions with a similar topographic distribution of maximal activity. However, significantly reduced PMBR was found only during the observation condition in the patients relative to controls in cortical regions within the MNS, namely the sensorimotor area, premotor cortex and superior temporal gyrus. Reduced PMBR during the observation condition was also found in the medial prefrontal cortex. These results support the notion of a dysfunctional execution/observation matching system related to MNS impairment in patients with ASD, and the feasibility of using MEG to detect neural activity, in particular PMBR abnormalities, as an index of MNS dysfunction during performance of motor or cognitive tasks. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Niv, Yaron
2011-09-01
Gastro esophageal reflux disease and ulcer related or non-ulcer dyspepsia, attacks 20% of the Western population. These millions of patients are treated continuously with PPI for different periods, many for many years. Recently, rebound acid hypersecretion was recognized as a major clinical event after cessation of PPI therapy. Sustained hypergastrinemia due to daily PPI therapy causes increased acid-secretory capacity that appears when the drug is stopped. The transient increase in blood and urinary pH following gastric secretion has been termed the alkaline tide phenomenon. Carbonic acid, formed in the presence of the enzyme carbonic anhydrase, neutralizes intracellular hydroxyl ions produced as a result of luminal acid secretion. The bicarbonate generated is removed from the cell via the baso-lateral chloride bicarbonate exchanger. We have shown in several studies that this phenomenon parallels acid secretion. Thus, stimulation of acid secretion with test meal increased base excess maximally after 45 min and these changes parallel peak acid output measured in gastric aspirate. We hypothesize that gradual step down cessation of PPI will prevent this clinical relevant event. By measuring alkaline tide after PPI cessation we may prove this hypothesis. Copyright © 2011 Elsevier Ltd. All rights reserved.
An, Ke; Elkassabany, Nabil M.; Liu, Jiabin
2015-01-01
Background Dexamethasone has been studied as an effective adjuvant to prolong the analgesia duration of local anesthetics in peripheral nerve block. However, the route of action for dexamethasone and its potential neurotoxicity are still unclear. Methods A mouse sciatic nerve block model was used. The sciatic nerve was injected with 60ul of combinations of various medications, including dexamethasone and/or bupivacaine. Neurobehavioral changes were observed for 2 days prior to injection, and then continuously for up to 7 days after injection. In addition, the sciatic nerves were harvested at either 2 days or 7 days after injection. Toluidine blue dyeing and immunohistochemistry test were performed to study the short-term and long-term histopathological changes of the sciatic nerves. There were six study groups: normal saline control, bupivacaine (10mg/kg) only, dexamethasone (0.5mg/kg) only, bupivacaine (10mg/kg) combined with low-dose (0.14mg/kg) dexamethasone, bupivacaine (10mg/kg) combined with high-dose (0.5mg/kg) dexamethasone, and bupivacaine (10mg/kg) combined with intramuscular dexamethasone (0.5mg/kg). Results High-dose perineural dexamethasone, but not systemic dexamethasone, combined with bupivacaine prolonged the duration of both sensory and motor block of mouse sciatic nerve. There was no significant difference on the onset time of the sciatic nerve block. There was “rebound hyperalgesia” to thermal stimulus after the resolution of plain bupivacaine sciatic nerve block. Interestingly, both low and high dose perineural dexamethasone prevented bupivacaine-induced hyperalgesia. There was an early phase of axon degeneration and Schwann cell response as represented by S-100 expression as well as the percentage of demyelinated axon and nucleus in the plain bupivacaine group compared with the bupivacaine plus dexamethasone groups on post-injection day 2, which resolved on post-injection day 7. Furthermore, we demonstrated that perineural dexamethasone
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; Wu, Patrick; Sideris, Michael G.; Shum, C. K.
2008-10-01
Monthly geopotential spherical harmonic coefficients from the GRACE satellite mission are used to determine their usefulness and limitations for studying glacial isostatic adjustment (GIA) in North-America. Secular gravity rates are estimated by unweighted least-squares estimation using release 4 coefficients from August 2002 to August 2007 provided by the Center for Space Research (CSR), University of Texas. Smoothing is required to suppress short wavelength noise, in addition to filtering to diminish geographically correlated errors, as shown in previous studies. Optimal cut-off degrees and orders are determined for the destriping filter to maximize the signal to noise ratio. The halfwidth of the Gaussian filter is shown to significantly affect the sensitivity of the GRACE data (with respect to upper mantle viscosity and ice loading history). Therefore, the halfwidth should be selected based on the desired sensitivity. It is shown that increase in water storage in an area south west of Hudson Bay, from the summer of 2003 to the summer of 2006, contributes up to half of the maximum estimated gravity rate. Hydrology models differ in the predictions of the secular change in water storage, therefore even 4-year trend estimates are influenced by the uncertainty in water storage changes. Land ice melting in Greenland and Alaska has a non-negligible contribution, up to one-fourth of the maximum gravity rate. The estimated secular gravity rate shows two distinct peaks that can possibly be due to two domes in the former Pleistocene ice cover: west and south east of Hudson Bay. With a limited number of models, a better fit is obtained with models that use the ICE-3G model compared to the ICE-5G model. However, the uncertainty in interannual variations in hydrology models is too large to constrain the ice loading history with the current data span. For future work in which GRACE will be used to constrain ice loading history and the Earth's radial viscosity profile, it is
NASA Astrophysics Data System (ADS)
Sasgen, Ingo; Klemann, Volker; Martinec, Zdeněk
2012-09-01
We perform an inversion of gravity fields from the Gravity Recovery and Climate Experiment (GRACE) (August 2002 to August 2009) of four processing centres for glacial-isostatic adjustment (GIA) over North America and present-day ice-mass change in Alaska and Greenland. We apply a statistical filtering approach to reduce noise in the GRACE data by confining our investigations to GRACE coefficients containing a statistically significant linear trend. Selecting the subset of reliable coefficients in all GRACE time series (GFZ RL04, ITG 2010, JPL RL04 and CSR RL04) results in a non-isotropic smoothing of the GRACE gravity fields, which is effective in reducing the north-south oriented striping associated with correlated errors in GRACE coefficients. In a next step, forward models of GIA induced by the glacial history NAWI (Zweck and Huybrechts, 2005), as well as present-day ice mass changes in Greenland from ICESat (Sørensen et al., 2011) and Alaska from airborne laser altimetry (Arendt et al., 2002) are simultaneously adjusted in scale to minimize the misfit to the filtered GRACE trends. From the adjusted models, we derive the recent sea-level contributions for Greenland and Alaska (August 2002 to August 2009), and, interpret the residual misfit over the GIA-dominated region around the Hudson Bay, Canada, in terms of mantle viscosities beneath North America.
NASA Astrophysics Data System (ADS)
Wang, J.; Tang, H. P.; Yang, K.; Liu, N.; Jia, L.; Qian, M.
2018-03-01
Many novel designs for additive manufacturing (AM) contain thin-walled (≤ 3 mm) sections in different orientations. Selective electron beam melting (SEBM) is particularly suited to AM of such thin-walled titanium components because of its high preheating temperature and high vacuum. However, experimental data on SEBM of Ti-6Al-4V thin sections remains scarce because of the difficulty and high cost of producing long, thin and smooth strip tensile specimens (see Fig. 1). In this study, 80 SEBM Ti-6Al-4V strips (180 mm long, 42 mm wide, 3 mm thick) were built both vertically (V-strips) and horizontally (H-strips). Their density, microstructure and tensile properties were investigated. The V-strips showed clearly higher tensile strengths but lower elongation than the H-strips. Hot isostatic pressing (HIP) produced the same lamellar α-β microstructures in terms of the average α-lath thickness in both types of strips. The retained prior-β columnar grain boundaries after HIP showed no measurable influence on the tensile properties, irrespective of their length and orientation, because of the formation of randomly distributed fine α-laths.[Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Martin-Espanol, Alba; Zammit-Mangion, Andrew; Clarke, Peter J.; Flament, Thomas; Helm, Veit; King, Matt A.; Luthcke, Scott B.; Petrie, Elizabeth; Remy, Frederique; Schon, Nana;
2016-01-01
We present spatiotemporal mass balance trends for the Antarctic Ice Sheet from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003-2013. Our method simultaneously determines annual trends in ice dynamics, surface mass balance anomalies, and a time-invariant solution for glacio-isostatic adjustment while remaining largely independent of forward models. We establish that over the period 2003-2013, Antarctica has been losing mass at a rateof -84 +/- 22 Gt per yr, with a sustained negative mean trend of dynamic imbalance of -111 +/- 13 Gt per yr. West Antarctica is the largest contributor with -112 +/- 10 Gt per yr, mainly triggered by high thinning rates of glaciers draining into the Amundsen Sea Embayment. The Antarctic Peninsula has experienced a dramatic increase in mass loss in the last decade, with a mean rate of -28 +/- 7 Gt per yr and significantly higher values for the most recent years following the destabilization of the Southern Antarctic Peninsula around 2010. The total mass loss is partly compensated by a significant mass gain of 56 +/- 18 Gt per yr in East Antarctica due to a positive trend of surface mass balance anomalies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, S.; Yamanaka, Y.; Kato, K.
1999-07-01
The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction bymore » the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: {rho}d of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density ({rho}d: 1.4--2.0 Mg/m{sup 3}) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10{sup {minus}13} m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite.« less
NASA Astrophysics Data System (ADS)
Richard Peltier, W.; Argus, Donald F.; Drummond, Rosemarie
2018-02-01
The most recently published model of the glacial isostatic adjustment process in the ICE-NG (VMX) sequence from the University of Toronto, denoted ICE-6G_C (VM5a), was originally developed to degree and order 256 in spherical harmonics and has been shown to provide accurate fits to a voluminous database of GPS observations from North America, Eurasia, and Antarctica, to time dependent gravity data being provided by the GRACE satellites, and to radiocarbon-dated relative sea level histories through the Holocene epoch. The authors of the Purcell et al. (2016, https://doi.org/10.1002/2015JB012742) paper have suggested this model to be flawed. We have produced a further version of our model, denoted ICE-6G_D (VM5a), by employing the same BEDMAP2 bathymetry for the Southern Ocean as employed in their analysis which has somewhat reduced the differences between our results. However, significant physically important differences remain, including the magnitude of present-day vertical crustal motion in the embayments and in the spectrum of Stokes coefficients for present-day geoid height time dependence which continues to "flatten" at high spherical harmonic degree. We explore the reasons for these differences and trace them to the use by Purcell et al. of a loading history for the embayments that differs significantly from that tabulated for both the original and modified versions of our model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fachinger, Johannes; Muller, Walter; Marsat, Eric
2013-07-01
or negligible porosity and a water impermeable structure. Structural analysis shows that the glass in the composite has replaced the pores in the graphite structure. The typical pore volume of a graphite material is in the range of 20 vol.%. Therefore no volume increase will occur in comparison with the former graphite material. This IGM material will allow the encapsulation of graphite with package densities larger than 1.5 ton per cubic meter. Therefore a huge volume saving can be achieved by such an alternative encapsulation method. Disposal performance is also enhanced since little or no leaching of radionuclides is observed due to the impermeability of the material NNL and FNAG have proved that IGM can be produced by hot isostatic pressing (HIP) which has several advantages for radioactive materials over the HVP process. - The sealed HIP container avoids the release of any radionuclides. - The outside of the waste package is not contaminated. - The HIP process time is shorter than the HVP process time. The isostatic press avoids anisotropic density distributions. - Simple filling of the HIP container has advantages over the filling of an axial die. (authors)« less
Mellberg, Tomas; Gonzalez, Veronica D; Lindkvist, Annica; Edén, Arvid; Sönnerborg, Anders; Sandberg, Johan K; Svennerholm, Bo; Gisslén, Magnus
2011-06-28
High dosage of intravenous immunoglobulin (IVIG) has been observed as a possible activator of HIV gene expression in latently infected resting CD4+ T-cells, leading to a substantial decrease in both the reservoir and the residual plasma viremia when added to effective ART. IVIG treatment has also been reported to expand T regulatory cells (Tregs). The aim of this study was to evaluate possible long-term effect of IVIG treatment on residual viremia and T-lymphocyte activation. Nine HIV-infected subjects on effective ART included in a previously reported study on IVIG treatment were evaluated 48-104 weeks after therapy. In addition, 14 HIV-infected controls on suppressive ART were included. HIV-1 RNA was analyzed in cell-free plasma by using an ultrasensitive PCR-method with a detection limit of 2 copies/mL. T-lymphocyte activation markers and serum interleukins were measured. Plasma residual viremia rebounded to pre-treatment levels, 48-104 weeks after the initial decrease that was observed following treatment with high-dosage IVIG. No long-term effect was observed regarding T-lymphocyte activation markers, T-regulatory cells or serum interleukins. In a post-hoc analysis, a correlation between plasma HIV-1-RNA and CD4+ T-cell count was found in both IVIG-treated patients and controls. These results indicate that the decrease in the latent HIV-1 pool observed during IVIG treatment is transient. Although not our primary objective, we found a correlation between HIV-1 RNA and CD4+ T-cell count suggesting the possibility that patients with a higher CD4+ T-cell count might harbor a larger residual pool of latently infected CD4+ T-cells.
Kowal, Małgorzata; Kryst, Łukasz; Woronkowicz, Agnieszka; Brudecki, Janusz; Sobiecki, Jan
2015-01-01
The prevalence of childhood obesity has been increasing during the last decades in many countries, but less is known about secular trends in growth curves covering the whole childhood span. The main purpose of this study was to explore changes in body weight, height, BMI, percent body fat (%BF), adiposity rebound (AR), and pubertal timing in boys from Kraków between 1983 and 2010. Totally, 4,986 boys (3-18 years) were measured during cross-sectional studies. Using the results of height, weight, and skinfold measurements, BMI and %BF were calculated. The LMS method was used to construct BMI and %BF percentiles. Three cut-off points were distinguished in individual age groups of the subjects-below the 15th percentile, 50th percentile, and above the 85th percentile. The mean age at pubarche was calculated by the probit method. The boys from 2010 were taller and heavier than the boys from 1983. Before the time of AR, boys from 2010 had lower BMI, but after AR had higher BMI than boys from 1983. An earlier AR appeared in all BMI 2010 percentile curves as compared to 1983. The boys from 2010 also showed an acceleration of sexual maturation and earlier Tanner Stage II, equaling 11.80 years. In boys from 2010, AR occurs earlier than in boys from 1983. Changes in timing of AR cannot be explained only by changes in degree of body adiposity. Early AR could be a marker of the acceleration of development. © 2015 Wiley Periodicals, Inc.
Cugusi, Lucia; Manca, Andrea; Serpe, Roberto; Romita, Giovanni; Bergamin, Marco; Cadeddu, Christian; Solla, Paolo; Mercuro, Giuseppe
2018-03-01
Mini-trampoline rebounding exercise (MRE) is becoming a very popular form of fitness training. Despite awareness of this activity worldwide, a limited number of studies have systematically investigated the health effects correlated with MRE training. The aim of our study was to evaluate manifold health outcomes after 12 weeks of an MRE program in a group of overweight Italian women. Eighteen overweight women (age 38.05±10.5 years, BMI: 27.6±2.1 kg/m2) were enrolled in this study. Functional profile, strength, body composition, quality of life and pain intensity were assessed at baseline and after 12 weeks of MRE. Significant improvements were observed in the measurements of anthropometric profile and body composition (circumferences, fat mass, lean and muscular mass). Both a significant decrease in systolic and diastolic blood pressure values (from 128/80.5 to 123/71 mmHg, P<0.05) and an improvement in lipid and glucose profiles were observed. At maximal exercise testing, an increase in work capacity (from 104 to 123 watts, P=0.003) and VO2max (from 15.4 to 16.9 mL/kg/min, P=0.04) was found. SF-36 showed positive changes in four of the eight items as well as in the Mental Component Summary. With regard to the Brief Pain Inventory-SF, a decrease in both pain severity and the pain interference score was detected. MRE appears feasible to ensure positive effects on overall health and can be proposed to populations that could greatly benefit from training programs, such as overweight women.
Muhs, Daniel R.; Simmons, Kathleen R.; Schumann, R. Randall; Groves, Lindsey T.; Mitrovica, Jerry X.; Laurel, Deanna
2012-01-01
sea stands on New Guinea and Barbados. Numerical models of the glacial isostatic adjustment (GIA) process presented here demonstrate that these differences in the high stands are expected, given the variable geographic distances between the sites and the former Laurentide and Cordilleran ice sheets. Moreover, the numerical results show that the absolute and differential elevations of the observed high stands provide a potentially important constraint on ice volumes during this time interval and on Earth structure.
Using Differentials to Differentiate Trigonometric and Exponential Functions
ERIC Educational Resources Information Center
Dray, Tevian
2013-01-01
Starting from geometric definitions, we show how differentials can be used to differentiate trigonometric and exponential functions without limits, numerical estimates, solutions of differential equations, or integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akimov, G.Y.; Prokhorov, I.Y.; Gorelik, I.V.
1995-09-01
The physicomechanical properties of ceramics obtained from plasmachemical and sol-gel powders of partially stabilized (3% Y{sub 2}O{sub 3}) zirconia (PSZ) and its compositions with 20% Al{sub 2}O{sub 3} by cold isostatic pressing (CIP) at a pressure of at most 2 GPa and sintering at 1300-1650{degrees}C are investigated. It is established that plasmachemical PSZ exhibits its best properties (K{sub 1c} = 7.8 MPa {center_dot} m{sup 1/2}, a strength of 650 MPa) only after complete disintegration at a CIP of 0.1 GPa and a sintering temperature of 1650{degrees}C, when the material is sintered to a density of 5.5 g/cm{sup 3}. After partialmore » stabilization and CIP at 0.1 GPa the plasmachemical composition of PSZ + 20% Al{sub 2}O{sub 3} is sintered at 1650{degrees}C to a density of 4.7 g/cm{sup 3}, but has K{sub 1c} = 8.5 MPa {center_dot} m{sup 1/2} and a strength of 700 MPa. The deagglomerated sol-gel powder exhibits properties at a level of K{sub 1c} = 12.4 MPa {center_dot} m{sup 1/2} and a strength of 950 MPa at a density above 6.0 g/cm{sup 3} after CIP at 0.3 GPa and sintering at 1450{degrees}C. The latter obviously has the best mechanical properties of all the investigated materials.« less
Sink to survive: The persistence of ancient mountain belts through crustal density changes
NASA Astrophysics Data System (ADS)
Blackburn, T. J.; Ferrier, K.; Perron, J.
2012-12-01
Mountain belts form when collisions between continents thicken the Earth's crust, which buoyantly rises to remain in isostatic equilibrium with the underlying asthenosphere. Just as isostasy leads to the birth of mountain belts, it contributes to their destruction by responding to erosion with rock uplift, which in turn promotes further erosion. If the continental crust consisted of a single layer of constant density, erosion and isostatic rebound would continue thinning the crust until it was completely eroded. Such total destruction evidently does not happen, however, as the roots of Earth's oldest mountains have persisted for billions of years. One explanation for this preservation is that an orogen's isostatic response to erosion decreases over time as the crust increases in density as the lower crust undergoes metamorphic phase changes that accompany lithosphere cooling. The implication of this hypothesis is that erosion rates in mountain belts are linked to the thermal and density evolution of the lithosphere. We test this hypothesis with a global compilation of exhumation rates and erosion rates determined from published apatite fission track and cosmogenic 10Be measurements in collisional orogens ranging in formation age from 0 to 2 billion years. We compare these data to a numerical model of the thermal, density and erosional evolution of a decaying mountain belt. Measured and modeled data indicate that erosion is fastest in young, hot, low-density, and topographically high mountain belts, and that erosion rates decrease dramatically after 200-300 million years (My). This 200-300 My timescale is consistent with titanite U-Pb thermochronologic data from lower crustal xenoliths, which record cooling to temperatures consistent with garnet growth and crustal densification (~650 °C) within 200-300 My after orogenesis. For the same orogens, Sm-Nd and/or Lu-Hf garnet-whole rock isochron dates constrains lower crustal garnet growth and a corresponding crustal
Differentiating Knowledge, Differentiating (Occupational) Practice
ERIC Educational Resources Information Center
Hordern, Jim
2016-01-01
This paper extends arguments for differentiating knowledge into conceptualisations of occupational practice. It is argued that specialised forms of knowledge and practice require recognition and differentiation in ways that many contemporary approaches to practice theory deny. Drawing on Hager's interpretation of MacIntyre, it is suggested that…
NASA Astrophysics Data System (ADS)
Nield, Grace A.; Whitehouse, Pippa L.; van der Wal, Wouter; Blank, Bas; O'Donnell, John Paul; Stuart, Graham W.
2018-04-01
Differences in predictions of Glacial Isostatic Adjustment (GIA) for Antarctica persist due to uncertainties in deglacial history and Earth rheology. The Earth models adopted in many GIA studies are defined by parameters that vary in the radial direction only and represent a global average Earth structure (referred to as 1D Earth models). Over-simplifying actual Earth structure leads to bias in model predictions in regions where Earth parameters differ significantly from the global average, such as West Antarctica. We investigate the impact of lateral variations in lithospheric thickness on GIA in Antarctica by carrying out two experiments that use different rheological approaches to define 3D Earth models that include spatial variations in lithospheric thickness. The first experiment defines an elastic lithosphere with spatial variations in thickness inferred from seismic studies. We compare the results from this 3D model with results derived from a 1D Earth model that has a uniform lithospheric thickness defined as the average of the 3D lithospheric thickness. Irrespective of deglacial history and sub-lithospheric mantle viscosity, we find higher gradients of present-day uplift rates (i.e. higher amplitude and shorter wavelength) in West Antarctica when using the 3D models, due to the thinner-than-1D-average lithosphere prevalent in this region. The second experiment uses seismically-inferred temperature as input to a power-law rheology thereby allowing the lithosphere to have a viscosity structure. Modelling the lithosphere with a power-law rheology results in behaviour that is equivalent to a thinner-lithosphere model, and it leads to higher amplitude and shorter wavelength deformation compared with the first experiment. We conclude that neglecting spatial variations in lithospheric thickness in GIA models will result in predictions of peak uplift and subsidence that are biased low in West Antarctica. This has important implications for ice-sheet modelling
Martín-Español, Alba; Zammit-Mangion, Andrew; Clarke, Peter J; Flament, Thomas; Helm, Veit; King, Matt A; Luthcke, Scott B; Petrie, Elizabeth; Rémy, Frederique; Schön, Nana; Wouters, Bert; Bamber, Jonathan L
2016-02-01
We present spatiotemporal mass balance trends for the Antarctic Ice Sheet from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003-2013. Our method simultaneously determines annual trends in ice dynamics, surface mass balance anomalies, and a time-invariant solution for glacio-isostatic adjustment while remaining largely independent of forward models. We establish that over the period 2003-2013, Antarctica has been losing mass at a rate of -84 ± 22 Gt yr -1 , with a sustained negative mean trend of dynamic imbalance of -111 ± 13 Gt yr -1 . West Antarctica is the largest contributor with -112 ± 10 Gt yr -1 , mainly triggered by high thinning rates of glaciers draining into the Amundsen Sea Embayment. The Antarctic Peninsula has experienced a dramatic increase in mass loss in the last decade, with a mean rate of -28 ± 7 Gt yr -1 and significantly higher values for the most recent years following the destabilization of the Southern Antarctic Peninsula around 2010. The total mass loss is partly compensated by a significant mass gain of 56 ± 18 Gt yr -1 in East Antarctica due to a positive trend of surface mass balance anomalies.
Glacial isostatic adjustment model with composite 3-D Earth rheology for Fennoscandia
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; Barnhoorn, Auke; Stocchi, Paolo; Gradmann, Sofie; Wu, Patrick; Drury, Martyn; Vermeersen, Bert
2013-07-01
Models for glacial isostatic adjustment (GIA) can provide constraints on rheology of the mantle if past ice thickness variations are assumed to be known. The Pleistocene ice loading histories that are used to obtain such constraints are based on an a priori 1-D mantle viscosity profile that assumes a single deformation mechanism for mantle rocks. Such a simplified viscosity profile makes it hard to compare the inferred mantle rheology to inferences from seismology and laboratory experiments. It is unknown what constraints GIA observations can provide on more realistic mantle rheology with an ice history that is not based on an a priori mantle viscosity profile. This paper investigates a model for GIA with a new ice history for Fennoscandia that is constrained by palaeoclimate proxies and glacial sediments. Diffusion and dislocation creep flow law data are taken from a compilation of laboratory measurements on olivine. Upper-mantle temperature data sets down to 400 km depth are derived from surface heatflow measurements, a petrochemical model for Fennoscandia and seismic velocity anomalies. Creep parameters below 400 km are taken from an earlier study and are only varying with depth. The olivine grain size and water content (a wet state, or a dry state) are used as free parameters. The solid Earth response is computed with a global spherical 3-D finite-element model for an incompressible, self-gravitating Earth. We compare predictions to sea level data and GPS uplift rates in Fennoscandia. The objective is to see if the mantle rheology and the ice model is consistent with GIA observations. We also test if the inclusion of dislocation creep gives any improvements over predictions with diffusion creep only, and whether the laterally varying temperatures result in an improved fit compared to a widely used 1-D viscosity profile (VM2). We find that sea level data can be explained with our ice model and with information on mantle rheology from laboratory experiments
NASA Astrophysics Data System (ADS)
Van Vliet-Lanoë, B.; Bonnet, S.; Hallegouët, B.; Laurent, M.
1997-09-01
In Brittany and SW England, evidence for low magnitude Quaternary seismicity can be found in sand pit exposures and beach sections. Deformation is especially well seen in alluvial and estuarine complexes resting on Late Pliocene sands or thick saprolite. The deformations are shallow, dominantly hydroplastic (high water-table) and led to overconsolidated sands, silts or clays. They reveal normal loading at micro (millimetric) and macro (decametric) scales as controlled by the local rheological properties of the sediments, by strikeslip faults associated with positive flower structures, folding, and intraformational water expulsion or hill slope sliding with reverse microfaulting. All the sites where these features occur, are in the vicinity of presumed active faults or steep slopes in highly fractured Proterozoic basement rocks indicating a possible shear zone. In most cases, these features are not associated with synsedimentary deformation, as strong superficial red soils are generally reworked by them. All these features are reworked by microfaulting after overconsolidation. Additional periglacial phenomena are superimposed on them and are often confused with them. Deformation occurred after the development of Holstenian peats (isotopic stage 11,400 ka BP) at Crozon (Brittany), after 317 ka BP (beginning of isotopic stage 9) in the Vilaine estuary, and in most other sites before the last rubified pedogenesis in the Middle Pleistocene (presumed isotopic stage 9). These dates correspond to the same episode that gave rise to the last main reactivation of the fossil cliff around 300 ka BP and to local uplift. One or several seismic clusters have taken place, probably due to delayed crustal rebound after a major glacial event (stage 10) and to rapid loading resulting from younger ice sheet growth (stage 8). Similar events occurred in late stage 7 and late stage 5. These events might have locally amplified the crustal deformation of the old Brittany and Cornubian
Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation.
Glass, Donald A; Bialek, Peter; Ahn, Jong Deok; Starbuck, Michael; Patel, Millan S; Clevers, Hans; Taketo, Mark M; Long, Fanxin; McMahon, Andrew P; Lang, Richard A; Karsenty, Gerard
2005-05-01
Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast differentiation and suggest that it may regulate bone formation in differentiated osteoblasts. Here, we study later events and find that stabilization of beta-catenin in differentiated osteoblasts results in high bone mass, while its deletion from differentiated osteoblasts leads to osteopenia. Surprisingly, histological analysis showed that these mutations primarily affect bone resorption rather than bone formation. Cellular and molecular studies showed that beta-catenin together with TCF proteins regulates osteoblast expression of Osteoprotegerin, a major inhibitor of osteoclast differentiation. These findings demonstrate that beta-catenin, and presumably Wnt signaling, promote the ability of differentiated osteoblasts to inhibit osteoclast differentiation; thus, they broaden our knowledge of the functions Wnt proteins have at various stages of skeletogenesis.
Lumens, Joost; Tayal, Bhupendar; Walmsley, John; Delgado-Montero, Antonia; Huntjens, Peter R; Schwartzman, David; Althouse, Andrew D; Delhaas, Tammo; Prinzen, Frits W; Gorcsan, John
2015-09-01
Left ventricular (LV) mechanical discoordination, often referred to as dyssynchrony, is often observed in patients with heart failure regardless of QRS duration. We hypothesized that different myocardial substrates for LV mechanical discoordination exist from (1) electromechanical activation delay, (2) regional differences in contractility, or (3) regional scar and that we could differentiate electromechanical substrates responsive to cardiac resynchronization therapy (CRT) from unresponsive non-electrical substrates. First, we used computer simulations to characterize mechanical discoordination patterns arising from electromechanical and non-electrical substrates and accordingly devise the novel systolic stretch index (SSI), as the sum of posterolateral systolic prestretch and septal systolic rebound stretch. Second, 191 patients with heart failure (QRS duration ≥120 ms; LV ejection fraction ≤35%) had baseline SSI quantified by automated echocardiographic radial strain analysis. Patients with SSI≥9.7% had significantly less heart failure hospitalizations or deaths 2 years after CRT (hazard ratio, 0.32; 95% confidence interval, 0.19-0.53; P<0.001) and less deaths, transplants, or LV assist devices (hazard ratio, 0.28; 95% confidence interval, 0.15-0.55; P<0.001). Furthermore, in a subgroup of 113 patients with intermediate electrocardiographic criteria (QRS duration of 120-149 ms or non-left bundle branch block), SSI≥9.7% was independently associated with significantly less heart failure hospitalizations or deaths (hazard ratio, 0.41; 95% confidence interval, 0.23-0.79; P=0.004) and less deaths, transplants, or LV assist devices (hazard ratio, 0.27; 95% confidence interval, 0.12-0.60; P=0.001). Computer simulations differentiated patterns of LV mechanical discoordination caused by electromechanical substrates responsive to CRT from those related to regional hypocontractility or scar unresponsive to CRT. The novel SSI identified patients who benefited more
A Precise 6 Ma Start Date for Fluvial Incision of the Northeastern Colorado Plateau Canyonlands
NASA Astrophysics Data System (ADS)
Thomson, S. N.; Soreghan, G. S.; Reiners, P. W.; Peyton, S. L.; Murray, K. E.
2015-12-01
Outstanding questions regarding late Cenozoic Colorado Plateau landscape evolution include: (1) the relative roles of isostatic rebound as result Colorado River incision versus longer-term geodynamic processes in driving overall rock uplift of the plateau; and (2) whether incision was triggered by river integration or by a change in deep-seated mantle lithosphere dynamics. A key to answering these questions is to date more precisely the onset of incision to refine previous estimates of between 6 and 10 Ma. We present new low-temperature thermochronologic results from bedrock and deep borehole samples in the northeastern Colorado Plateau to show that rapid river incision began here at 6 Ma (5.93±0.66 Ma) with incision rates increasing from 15-50 m/Myr to 160-200 m/Myr. The onset time is constrained independently by both inverse time-temperature modeling and by the break-in-slope in fission track age-elevation relationships. This new time constraint has several important implications. First, the coincidence in time with 5.97-5.3 Ma integration of the lower Colorado River through the Grand Canyon to the Gulf of California strongly favors downstream river integration triggering carving of the canyonlands of the upper Colorado River system. Second, it implies integration of the entire Colorado River system in less than 2 million years. Third, rock uplift of the plateau driven by the flexural isostatic response to river incision is restricted to just the last 6 Ma, as is associated increased sediment budget. Fourth, incision starting at 6 Ma means that previous estimates of upper Colorado River incision rates based on 10-12 Ma basalt datum levels are too low. This also changes the dependency of measured time interval on incision rate from a non-steady-state negative power-law dependence (exponent of -0.24) to a near steady-state dependence (exponent of 0.07) meaning that long-term upper Colorado river incision rates can provide a reliable proxy for rock uplift rates.
NASA Astrophysics Data System (ADS)
Finkelstein, Sarah A.; Davis, Anthony M.
2006-01-01
Pollen and diatom assemblages, and peat stratigraphies, from a coastal wetland on the northern shore of Lake Erie were used to analyze water level and climatic changes since the middle Holocene and their effects on wetland plant communities. Peat deposition began 4700 cal yr B.P. during the Nipissing II transgression, which was driven by isostatic rebound. At that time, a diatom-rich wild rice marsh existed at the site. Water level dropped at the end of the Nipissing rise at least 2 m within 200 yr, leading to the development of shallower-water plant communities and an environment too dry for most diatoms to persist. The sharp decline in water level was probably driven primarily by outlet incision, but climate likely played some role. The paleoecological records provide evidence for post-Nipissing century-scale transgressions occurring around 2300, 1160, 700 and 450 cal yr B.P. The chronology for these transgressions correlates with other studies from the region and implies climatic forcing. Peat inception in shallow sloughs across part of the study area around 700 cal yr B.P. coincides with the Little Ice Age. These records, considered alongside others from the region, suggest that the Little Ice Age may have resulted in a wetter climate across the eastern Great Lakes region.
NASA Astrophysics Data System (ADS)
Mouchene, M.; van der Beek, P.; Carretier, S.; Mouthereau, F.
2017-12-01
Alluvial megafans are sensitive recorders of landscape evolution, controlled by both autogenic processes and allogenic forcing, and they are influenced by the coupled dynamics of the fan with its mountainous catchment. The Mio-Pliocene Lannemezan megafan in the northern Pyrenean foreland (SW France) was abandoned by its mountainous feeder stream during the Quaternary and subsequently incised. The flight of alluvial terraces abandoned along the stream network may suggest a climatic control on the incision. We use a landscape evolution numerical model (CIDRE) to explore the relative roles of autogenic processes and external forcing in the building, abandonment and incision of a foreland megafan, and we compare the results with the inferred evolution of the Lannemezan megafan. Autogenic processes are sufficient to explain the building of a megafan and the long-term entrenchment of its feeding river on time and space scales that match the Lannemezan setting. Climate, through temporal variations in precipitation rate, may have played a role in the episodic pattern of incision on a shorter timescale. In contrast, base-level changes, tectonic activity in the mountain range or tilting of the foreland through flexural isostatic rebound do not appear to have played a role in the abandonment of the megafan.
NASA Astrophysics Data System (ADS)
Stearns, L. A.; Walker, B.; Pratt-Sitaula, B.
2015-12-01
GETSI (Geodesy Tools for Societal Issues) is an NSF-funded partnership program between UNAVCO, Indiana University, Mt. San Antonio College, and the Science Education Resource Center (SERC). We present results from classroom testing and assessment of the GETSI Ice Mass and Sea Level Changes module that utilizes geodetic data to teach about ice sheet mass loss in introductory undergraduate courses. The module explores the interactions between global sea level rise, Greenland ice mass loss, and the response of the solid Earth. It brings together topics typically addressed in introductory Earth science courses (isostatic rebound, geologic measurements, and climate change) in a way that highlights the interconnectivity of the Earth system and the interpretation of geodetic data. The module was tested 3 times at 3 different institution types (R1 institution, comprehensive university, and community college), and formative and summative assessment data were obtained. We will provide an overview of the instructional materials, describe our teaching methods, and discuss how formative and summative assessment data assisted in revisions of the teaching materials and changes in our pedagogy during subsequent implementation of the module. We will also provide strategies for faculty who wish to incorporate the module into their curricula. Instructional materials, faculty and student resources, and implementation tips are freely available on the GETSI website.
NASA Astrophysics Data System (ADS)
Olds, S. E.; Bartel, B. A.
2016-12-01
Hands-on demonstrations are an effective way for novice learners, whether they are students, public, or museum visitors, to experience geoscience processes. UNAVCO and community members have developed hands-on demonstrations of a variety of geophysical processes highlighting the geodetic techniques used to measure these processes. These demonstrations illustrate how observations of changes at the earth's surface can be quantified and inform us about forces within the earth that we can't see. They also emphasize the societal impact of research related to each earth process. In this presentation, we will provide descriptions of a suite of these demonstrations, major concepts covered, materials needed, instructions for assembly and how to lead the demonstration, sample questions to ask participants, weaknesses inherent in the model, and a list of supporting handouts that augment the demonstration. Some of the demonstrations to be highlighted include: volcanic deformation using flour or an augmented-reality sandbox; isostatic rebound from glacial melt using flubber; compression of the Pacific Northwest using springs; and tsunami early warning using a tub of water and foam buoys. We will also discuss the process of developing interactive demonstrations and provide initial feedback from classroom and science festival events. Write-ups of the demonstrations are freely available on the UNAVCO Education website (search terms: UNAVCO geodetic demonstrations).
NASA Astrophysics Data System (ADS)
Glesener, G. B.; Peltzer, G.; Stubailo, I.; Cochran, E. S.; Lawrence, J. F.
2009-12-01
The Modeling and Educational Demonstrations Laboratory (MEDL) at the University of California, Los Angeles has developed a fourth version of the Elastic Rebound Strike-slip (ERS) Fault Model to be used to educate students and the general public about the process and mechanics of earthquakes from strike-slip faults. The ERS Fault Model is an interactive hands-on teaching tool which produces failure on a predefined fault embedded in an elastic medium, with adjustable normal stress. With the addition of an accelerometer sensor, called the Joy Warrior, the user can experience what it is like for a field geophysicist to collect and observe ground shaking data from an earthquake without having to experience a real earthquake. Two knobs on the ERS Fault Model control the normal and shear stress on the fault. Adjusting the normal stress knob will increase or decrease the friction on the fault. The shear stress knob displaces one side of the elastic medium parallel to the strike of the fault, resulting in changing shear stress on the fault surface. When the shear stress exceeds the threshold defined by the static friction of the fault, an earthquake on the model occurs. The accelerometer sensor then sends the data to a computer where the shaking of the model due to the sudden slip on the fault can be displayed and analyzed by the student. The experiment clearly illustrates the relationship between earthquakes and seismic waves. One of the major benefits to using the ERS Fault Model in undergraduate courses is that it helps to connect non-science students with the work of scientists. When students that are not accustomed to scientific thought are able to experience the scientific process first hand, a connection is made between the scientists and students. Connections like this might inspire a student to become a scientist, or promote the advancement of scientific research through public policy.
NASA Astrophysics Data System (ADS)
Sasgen, Ingo; Martín-Español, Alba; Horvath, Alexander; Klemann, Volker; Petrie, Elizabeth J.; Wouters, Bert; Horwath, Martin; Pail, Roland; Bamber, Jonathan L.; Clarke, Peter J.; Konrad, Hannes; Drinkwater, Mark R.
2017-12-01
A major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry, and to a lesser extent satellite altimetry, is the poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA). Although much progress has been made in consistently modeling the ice-sheet evolution throughout the last glacial cycle, as well as the induced bedrock deformation caused by these load changes, forward models of GIA remain ambiguous due to the lack of observational constraints on the ice sheet's past extent and thickness and mantle rheology beneath the continent. As an alternative to forward-modeling GIA, we estimate GIA from multiple space-geodetic observations: Gravity Recovery and Climate Experiment (GRACE), Envisat/ICESat and Global Positioning System (GPS). Making use of the different sensitivities of the respective satellite observations to current and past surface-mass (ice mass) change and solid Earth processes, we estimate GIA based on viscoelastic response functions to disc load forcing. We calculate and distribute the viscoelastic response functions according to estimates of the variability of lithosphere thickness and mantle viscosity in Antarctica. We compare our GIA estimate with published GIA corrections and evaluate its impact in determining the ice-mass balance in Antarctica from GRACE and satellite altimetry. Particular focus is applied to the Amundsen Sea Sector in West Antarctica, where uplift rates of several centimetres per year have been measured by GPS. We show that most of this uplift is caused by the rapid viscoelastic response to recent ice-load changes, enabled by the presence of a low-viscosity upper mantle in West Antarctica. This paper presents the second and final contributions summarizing the work carried out within a European Space Agency funded study, REGINA (www.regina-science.eu).
Differential transimpedance amplifier circuit for correlated differential amplification
Gresham, Christopher A [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger P [Tucson, AZ
2008-07-22
A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.
Vakhtin, Andrei A.; Kodituwakku, Piyadasa W.; Garcia, Christopher M.; Tesche, Claudia D.
2015-01-01
Dependent on maternal (e.g. genetic, age) and exposure (frequency, quantity, and timing) variables, the effects of prenatal alcohol exposure on the developing fetus are known to vary widely, producing a broad range of morphological anomalies and neurocognitive deficits in offspring, referred to as fetal alcohol spectrum disorders (FASD). Maternal drinking during pregnancy remains a leading risk factor for the development of intellectual disabilities in the US. While few functional findings exist today that shed light on the mechanisms responsible for the observed impairments in individuals with FASD, animal models consistently report deleterious effects of early alcohol exposure on GABA-ergic inhibitory pathways. The post-motor beta rebound (PMBR), a transient increase of 15–30 Hz beta power in the motor cortex that follows the termination of movement, has been implicated as a neural signature of GABA-ergic inhibitory activity. Further, PMBR has been shown to be a reliable predictor of age in adolescents. The present study sought to investigate any differences in the development of PMBR between FASD and control groups. Beta event-related de-synchronization (ERD) and movement-related gamma synchronization (MRGS), although not clearly linked to brain maturation, were also examined. Twenty-two participants with FASD and 22 age and sex-matched controls (12–22 years old) underwent magnetoencephalography scans while performing an auditory oddball task, which required a button press in response to select target stimuli. The data surrounding the button presses were localized to the participants' motor cortices, and the time courses from the locations of the maximally evoked PMBR were subjected to wavelet analyses. The subsequent analysis of PMBR, ERD, and MRGS revealed a significant interaction between group and age in their effects on PMBR. While age had a significant effect on PMBR in the controls, no simple effects of age were detected in the FASD group. The FASD
Romański, K W
2010-02-01
Administration of hexamethonium (Hx) and atropine inhibits myoelectric and motor activity and then evokes a stimulatory effect called rebound excitation (RE) in the ovine small bowel. RE has not been precisely characterized so far and it is possible that it is composed of different types of motility. This study was thus devoted to characterizing these excitatory changes in the myoelectric and motor activity of the small bowel, particularly in the duodenum in conscious sheep. These alterations occurred in response to different intravenous doses of Hx and atropine administered alone or in combinations during various phases of the migrating myoelectric or motor complex (MMC) in the fasted and non-fasted sheep. Initially two basic types of excitatory response to the cholinergic blockade were found. In the course of chronic experiments different doses of Hx and atropine evoked phase 3-like activity (unorganized phase 3 of the MMC or its fragments) alternating with the less regular RE and the duration of these changes was related to the drug dose. In the nonfasted sheep these changes were less pronounced than in the fasted animals. When the drug was given during phase 1 of the MMC, RE did not occur or was greatly reduced. Administration of Hx and atropine in the course of phase 2a and phase 2b of the MMC produced roughly similar effects. Hx triggered stronger phase 3-like activity and RE than atropine. Combinations of Hx and atropine induced an additive effect, more evident in the fasted animals. These actions of Hx and atropine, thus, appear to involve at least partly the same intramural pathways. It is concluded that Hx and atropine evoke phase 3-like activity alternating with RE as the secondary stimulatory response in conscious sheep and both these types of the intestinal motility represent two distinct motility patterns.
Lambert, P D; Anderson, K D; Sleeman, M W; Wong, V; Tan, J; Hijarunguru, A; Corcoran, T L; Murray, J D; Thabet, K E; Yancopoulos, G D; Wiegand, S J
2001-04-10
Ciliary Neurotrophic Factor (CNTF) was first characterized as a trophic factor for motor neurons in the ciliary ganglion and spinal cord, leading to its evaluation in humans suffering from motor neuron disease. In these trials, CNTF caused unexpected and substantial weight loss, raising concerns that it might produce cachectic-like effects. Countering this possibility was the suggestion that CNTF was working via a leptin-like mechanism to cause weight loss, based on the findings that CNTF acts via receptors that are not only related to leptin receptors, but also similarly distributed within hypothalamic nuclei involved in feeding. However, although CNTF mimics the ability of leptin to cause fat loss in mice that are obese because of genetic deficiency of leptin (ob/ob mice), CNTF is also effective in diet-induced obesity models that are more representative of human obesity, and which are resistant to leptin. This discordance again raised the possibility that CNTF might be acting via nonleptin pathways, perhaps more analogous to those activated by cachectic cytokines. Arguing strongly against this possibility, we now show that CNTF can activate hypothalamic leptin-like pathways in diet-induced obesity models unresponsive to leptin, that CNTF improves prediabetic parameters in these models, and that CNTF acts very differently than the prototypical cachectic cytokine, IL-1. Further analyses of hypothalamic signaling reveals that CNTF can suppress food intake without triggering hunger signals or associated stress responses that are otherwise associated with food deprivation; thus, unlike forced dieting, cessation of CNTF treatment does not result in binge overeating and immediate rebound weight gain.
NASA Astrophysics Data System (ADS)
Hombegowda, H. C.; van Straaten, O.; Köhler, M.; Hölscher, D.
2016-01-01
Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is influenced by the type of the agroforestry system established, the soil and climatic conditions, and management. In this regional-scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): home garden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across 4 climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference, an agriculture reference and two of the same AFS types of two ages (30-60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50-61 %) in the top meter of soil depending on the climate zone. The establishment of home garden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture SOC stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in home garden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.
NASA Astrophysics Data System (ADS)
Hombegowda, H. C.; van Straaten, O.; Köhler, M.; Hölscher, D.
2015-08-01
Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is however influenced by the type of the agroforestry system established, the soil and climatic conditions and management. In this regional scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): homegarden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across four climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference plot, an agriculture reference and two of the same AFS types of two ages (30-60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50-61 %) in the top meter of soil depending on the climate zone. The establishment of homegarden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in homegarden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.
ERIC Educational Resources Information Center
Kennedy, Mike
2009-01-01
Some regions are prone to hurricanes, tornadoes, floods or earthquakes. Other tragedies, such as fires or acts of violence, can occur just about anywhere. Regardless of the specific type of disaster, schools and universities must be prepared to cope with crises that can disrupt operations, destroy facilities, and displace students and staff.…
Steeply dipping heaving bedrock, Colorado: Part 3 - Environmental controls and heaving processes
Noe, D.C.; Higgins, J.D.; Olsen, H.W.
2007-01-01
This paper examines the environmental processes and mechanisms that govern differential heaving in steeply dipping claystone bedrock near Denver, Colorado. Three potential heave mechanisms and causal processes were evaluated: (1) rebound expansion, from reduced overburden stress; (2) expansive gypsum-crystal precipitation, from oxidation of pyrite; and (3) swelling of clay minerals, from increased ground moisture. First, we documented the effect of short-term changes in overburden stress, atmospheric exposure, and ground moisture on bedrock at various field sites and in laboratory samples. Second, we documented differential heaving episodes in outcrops and at construction and developed sites. We found that unloading and exposure of the bedrock in construction-cut areas are essentially one-time processes that result in drying and desiccation of the near-surface bedrock, with no visible heaving response. In contrast, wetting produces a distinct swelling response in the claystone strata, and it may occur repeatedly as natural precipitation or from lawn irrigation. We documented 2.5 to 7.5 cm (1 to 3 in.) of differential heaving in 24 hours triggered by sudden infiltration of water at the exposed ground surface in outcrops and at construction sites. From these results, we interpret that rebound and pyrite weathering, both of which figure strongly into the long-term geologic evolution of the geologic framework, do not appear to be major heave mechanisms at these excavation depths. Heaving of the claystone takes two forms: (1) hydration swelling of dipping bentonitic beds or zones, and (2) hydration swelling within bedrock blocks accommodated by lateral, thrust-shear movements, along pre-existing bedding and fracture planes.
NASA Astrophysics Data System (ADS)
Schmidt, Peter; Lund, Björn; Hieronymus, Christoph
2012-03-01
When general-purpose finite element analysis software is used to model glacial isostatic adjustment (GIA), the first-order effect of prestress advection has to be accounted for by the user. We show here that the common use of elastic foundations at boundaries between materials of different densities will produce incorrect displacements, unless the boundary is perpendicular to the direction of gravity. This is due to the foundations always acting perpendicular to the surface to which they are attached, while the body force they represent always acts in the direction of gravity. If prestress advection is instead accounted for by the use of elastic spring elements in the direction of gravity, the representation will be correct. The use of springs adds a computation of the spring constants to the analysis. The spring constant for a particular node is defined by the product of the density contrast at the boundary, the gravitational acceleration, and the area supported by the node. To be consistent with the finite element formulation, the area is evaluated by integration of the nodal shape functions. We outline an algorithm for the calculation and include a Python script that integrates the shape functions over a bilinear quadrilateral element. For linear rectangular and triangular elements, the area supported by each node is equal to the element area divided the number of defining nodes, thereby simplifying the computation. This is, however, not true in the general nonrectangular case, and we demonstrate this with a simple 1-element model. The spring constant calculation is simple and performed in the preprocessing stage of the analysis. The time spent on the calculation is more than compensated for by a shorter analysis time, compared to that for a model with foundations. We illustrate the effects of using springs versus foundations with a simple two-dimensional GIA model of glacial loading, where the Earth model has an inclined boundary between the overlying elastic
Materials for Neural Differentiation, Trans-Differentiation, and Modeling of Neurological Disease.
Gong, Lulu; Cao, Lining; Shen, Zhenmin; Shao, Li; Gao, Shaorong; Zhang, Chao; Lu, Jianfeng; Li, Weida
2018-04-01
Neuron regeneration from pluripotent stem cells (PSCs) differentiation or somatic cells trans-differentiation is a promising approach for cell replacement in neurodegenerative diseases and provides a powerful tool for investigating neural development, modeling neurological diseases, and uncovering the mechanisms that underlie diseases. Advancing the materials that are applied in neural differentiation and trans-differentiation promotes the safety, efficiency, and efficacy of neuron regeneration. In the neural differentiation process, matrix materials, either natural or synthetic, not only provide a structural and biochemical support for the monolayer or three-dimensional (3D) cultured cells but also assist in cell adhesion and cell-to-cell communication. They play important roles in directing the differentiation of PSCs into neural cells and modeling neurological diseases. For the trans-differentiation of neural cells, several materials have been used to make the conversion feasible for future therapy. Here, the most current applications of materials for neural differentiation for PSCs, neuronal trans-differentiation, and neurological disease modeling is summarized and discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Guihang; Jiang, Xiaosong; Qiao, ChangJun; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao; Valcarcel, Victor
2018-06-11
Single-crystal α-Al₂O₃ fibres can be utilized as a novel reinforcement in high-temperature composites owing to their high elastic modulus, chemical and thermal stability. Unlike non-oxide fibres and polycrystalline alumina fibres, high-temperature oxidation and polycrystalline particles boundary growth will not occur for single-crystal α-Al₂O₃ fibres. In this work, single-crystal α-Al₂O₃ whiskers and Al₂O₃ particles synergistic reinforced copper-graphite composites were fabricated by mechanical alloying and hot isostatic pressing techniques. The phase compositions, microstructures, and fracture morphologies of the composites were investigated using X-ray diffraction, a scanning electron microscope equipped with an X-ray energy-dispersive spectrometer (EDS), an electron probe microscopic analysis equipped with wavelength-dispersive spectrometer, and a transmission electron microscope equipped with EDS. The mechanical properties have been measured by a micro-hardness tester and electronic universal testing machine. The results show that the reinforcements were unevenly distributed in the matrix with the increase of their content and there were some micro-cracks located at the interface between the reinforcement and the matrix. With the increase of the Al₂O₃ whisker content, the compressive strength of the composites first increased and then decreased, while the hardness decreased. The fracture and strengthening mechanisms of the composite materials were explored on the basis of the structure and composition of the composites through the formation and function of the interface. The main strengthening mechanism in the composites was fine grain strengthening and solid solution strengthening. The fracture type of the composites was brittle fracture.
NASA Astrophysics Data System (ADS)
Love, R.; Milne, G. A.; Tarasov, L.; Engelhart, S. E.; Hijma, M.; Latychev, K.; Horton, B.; Tornqvist, T. E.
2017-12-01
Using recently compiled and quality-assessed databases of past RSL, including new databases for the United States Gulf Coast and Atlantic Canada, we infer glacial isostatic adjustment (GIA) model parameters to aid in future projections of sea level change. Utilizing the aforementioned RSL databases, we determine those model parameters for 3 different regions which minimizes the misfit of our 1D spherically symmetric model of GIA. From our ensemble of of 363 different viscosity models and 35 different land ice histories we provide uncertainty estimates for future RSL at 13 cities along this coastline. Furthermore, we examine the role of lateral viscosity structure using a 3D finite volume Earth model and find that the influence of lateral structure on RSL is significant, particularly in the early to mid-Holocene. At 13 cities along this coastline, we estimate the GIA contribution to range from a few centimeters (e.g., 3 [-1 to 9] cm Miami) to a few decimeters (e.g., 18 [12-22] cm, Halifax) for the period 2085-2100 relative to 2006-2015 [1σ]. Contributions from ocean steric and dynamic changes as well as those from changes in land ice are also estimated to provide context for the GIA projections at the regional scale. When summing the contributions from all evaluated processes at the 13 cities considered along this coastline, using median or best-estimate values, the GIA signal comprises 5-38% of the total depending on the adopted climate forcing and location. Examining the spatial distribution of other contributors to RSL, we find an approximate net cancellation in their spatial variability. In our results, GIA dominates the net RSL spatial variability north of 35°N, emphasizing the importance of regional scale GIA studies in future sea level projections.
NASA Astrophysics Data System (ADS)
Li, Tanghua; Wu, Patrick; Steffen, Holger; Wang, Hansheng
2018-05-01
Most models of Glacial Isostatic Adjustment (GIA) assume that the Earth is laterally homogeneous. However, seismic and geological observations clearly show that the Earth's mantle is laterally heterogeneous. Previous studies of GIA with lateral heterogeneity mostly focused on its effect or sensitivity on GIA predictions, and it is not clear to what extent can lateral heterogeneity solve the misfits between GIA predictions and observations. Our aim is to search for the best 3D viscosity models that can simultaneously fit the global relative sea-level (RSL) data, the peak uplift rates (u-dot from GNSS) and peak gravity-rate-of-change (g-dot from the GRACE satellite mission) in Laurentia and Fennoscandia. However, the search is dependent on the ice and viscosity model inputs - the latter depends on the background viscosity and the seismic tomography models used. In this paper, the ICE-6G_C ice model, with Bunge & Grand's seismic tomography model and background viscosity models close to VM5 will be assumed. A Coupled Laplace-Finite Element Method is used to compute gravitationally self-consistent sea level change with time dependent coastlines and rotational feedback in addition to changes in deformation, gravity and the state of stress. Several laterally heterogeneous models are found to fit the global sea level data better than laterally homogeneous models. Two of these laterally heterogeneous models also fit the ICE-6G_C peak g-dot and u-dot rates observed in Laurentia simultaneously. However, even with the introduction of lateral heterogeneity, no model that is able to fit the present-day g-dot and uplift rate data in Fennoscandia has been found. Therefore, either the ice history of ICE-6G_C in Fennoscandia and Barent Sea needs some modifications, or the sub-lithospheric property/non-thermal effect underneath northern Europe must be different from that underneath Laurentia.
O'Connor, Jemma; Smith, Colette; Lampe, Fiona C; Johnson, Margaret A; Chadwick, David R; Nelson, Mark; Dunn, David; Winston, Alan; Post, Frank A; Sabin, Caroline; Phillips, Andrew N
2017-07-01
The length of time that people with HIV on antiretroviral therapy (ART) with viral load suppression will be able to continue before developing viral rebound is unknown. We aimed to investigate the rate of first viral rebound in people that have achieved initial suppression with ART, to determine factors associated with viral rebound, and to use these estimates to predict long-term durability of viral suppression. The UK Collaborative HIV Cohort (UK CHIC) Study is an ongoing multicentre cohort study that brings together in a standardised format data on people with HIV attending clinics around the UK. We included participants who started ART with three or more drugs and who had achieved viral suppression (≤50 copies per mL) by 9 months after the start of ART (baseline). Viral rebound was defined as the first single viral load of more than 200 copies per mL or treatment interruption (for ≥1 month). We investigated factors associated with viral rebound with Poisson regression. These results were used to calculate the rate of viral rebound according to several key factors, including age, calendar year at start of ART, and time since baseline. Of the 16 101 people included, 4519 had a first viral rebound over 58 038 person-years (7·8 per 100 person-years, 95% CI 7·6-8·0). Of the 4519 viral rebounds, 3105 (69%) were defined by measurement of a single viral load of more than 200 copies per mL, and 1414 (31%) by a documented treatment interruption. The rate of first viral rebound declined substantially over time until 7 years from baseline. The other factors associated with viral rebound were current age at follow-up and calendar year at ART initiation (p<0·0001) and HIV risk group (p<0·0001); higher pre-ART CD4 count (p=0·0008) and pre-ART viral load (p=0·0003) were associated with viral rebound in the multivariate analysis only. For 1322 (29%) of the 3105 people with observed viral rebound, the next viral load value after rebound was 50 copies per mL or
Maharjan, Anu S.; Pilling, Darrell; Gomer, Richard H.
2011-01-01
Background Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×106 Da). During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8–8×105 Da). Methods and Findings In this report, we show that HMWHA potentiates the differentiation of human monocytes into fibrocytes, while LMWHA inhibits fibrocyte differentiation. Digestion of HMWHA with hyaluronidase produces small hyaluronic acid fragments, and these fragments inhibit fibrocyte differentiation. Monocytes internalize HMWHA and LMWHA equally well, suggesting that the opposing effects on fibrocyte differentiation are not due to differential internalization of HMWHA or LMWHA. Adding HMWHA to PBMC does not appear to affect the levels of the hyaluronic acid receptor CD44, whereas adding LMWHA decreases CD44 levels. The addition of anti-CD44 antibodies potentiates fibrocyte differentiation, suggesting that CD44 mediates at least some of the effect of hyaluronic acid on fibrocyte differentiation. The fibrocyte differentiation-inhibiting factor serum amyloid P (SAP) inhibits HMWHA-induced fibrocyte differentiation and potentiates LMWHA-induced inhibition. Conversely, LMWHA inhibits the ability of HMWHA, interleukin-4 (IL-4), or interleukin-13 (IL-13) to promote fibrocyte differentiation. Conclusions We hypothesize that hyaluronic acid signals at least in part through CD44 to regulate fibrocyte differentiation, with a dominance hierarchy of SAP>LMWHA≥HMWHA>IL-4 or IL-13. PMID:22022512
Horton, B.P.; Peltier, W.R.; Culver, S.J.; Drummond, R.; Engelhart, S.E.; Kemp, A.C.; Mallinson, D.; Thieler, E.R.; Riggs, S.R.; Ames, D.V.; Thomson, K.H.
2009-01-01
We have synthesized new and existing relative sea-level (RSL) data to produce a quality-controlled, spatially comprehensive database from the North Carolina coastline. The RSL database consists of 54 sea-level index points that are quantitatively related to an appropriate tide level and assigned an error estimate, and a further 33 limiting dates that confine the maximum and minimum elevations of RSL. The temporal distribution of the index points is very uneven with only five index points older than 4000 cal a BP, but the form of the Holocene sea-level trend is constrained by both terrestrial and marine limiting dates. The data illustrate RSL rapidly rising during the early and mid Holocene from an observed elevation of -35.7 ?? 1.1 m MSL at 11062-10576 cal a BP to -4.2 m ?? 0.4 m MSL at 4240-3592 cal a BP. We restricted comparisons between observations and predictions from the ICE-5G(VM2) with rotational feedback Glacial Isostatic Adjustment (GIA) model to the Late Holocene RSL (last 4000 cal a BP) because of the wealth of sea-level data during this time interval. The ICE-5G(VM2) model predicts significant spatial variations in RSL across North Carolina, thus we subdivided the observations into two regions. The model forecasts an increase in the rate of sea-level rise in Region 1 (Albemarle, Currituck, Roanoke, Croatan, and northern Pamlico sounds) compared to Region 2 (southern Pamlico, Core and Bogue sounds, and farther south to Wilmington). The observations show Late Holocene sea-level rising at 1.14 ?? 0.03 mm year-1 and 0.82 ?? 0.02 mm year-1 in Regions 1 and 2, respectively. The ICE-5G(VM2) predictions capture the general temporal trend of the observations, although there is an apparent misfit for index points older than 2000 cal a BP. It is presently unknown whether these misfits are caused by possible tectonic uplift associated with the mid-Carolina Platform High or a flaw in the GIA model. A comparison of local tide gauge data with the Late Holocene RSL
NASA Astrophysics Data System (ADS)
Helpa, Vanessa; Rybacki, Erik; Dresen, Georg
2017-04-01
To investigate the influence of differential stress and microstructure on reaction rates, we studied experimentally enstatite-forsterite double rim formation in between periclase and quartz according to the reaction MgO +
NASA Astrophysics Data System (ADS)
LI, T., II; Wu, P.; Steffen, H.; Wang, H.
2017-12-01
The global ice history model ICE-6G_C was constructed based on the laterally homogeneous earth model VM5a. The combined model of glacial isostatic adjustment (GIA) called ICE-6G_C (VM5a) fits global observations of GIA simultaneously well. However, seismic and geological observations clearly show that the Earth's mantle is laterally heterogeneous. Our aim therefore is to search for the best laterally heterogeneous viscosity models with ICE-6G_C ice history that is able to fit the global relative sea-level (RSL) data, the peak uplift rates (from GNSS) and peak g-dot rates (from the GRACE satellite mission) in Laurentia and Fennoscandia simultaneously. The Coupled Laplace-Finite Element Method is used to compute gravitationally self-consistent sea levels with time dependent coastlines and rotational feedback in addition to changes in deformation, gravity and the state of stress. As a start, the VM5a Earth model is used as the radial background viscosity structure but other radial background viscosity models will also be investigated. Lateral mantle viscosity structure is obtained by the superposition of the radial background viscosity and the lateral viscosity perturbations logarithmically. The latter is inferred from a seismic tomography model using a scaling relationship that takes into account the effects of anharmonicity, anelasticity and non-thermal effects. We will show that several laterally heterogeneous mantle viscosity models can fit the global sea level, GPS and GRACE data better than laterally homogeneous models, provided that the scaling relationship for mantle heterogeneity under northern Europe is allowed to be different from that under Laurentia. In addition, the effects of laterally heterogeneous lithosphere, as inferred from seismic tomography, and the lateral changes in sub-lithospheric properties will also be presented.
NASA Astrophysics Data System (ADS)
Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming’En; Hu, Zhiwei; Zhu, Jiliang
A large number of pores and a low relative density that are frequently observed in solid electrolytes reduce severely their ionic conductivity and thus limit their applicability. Here, we report on the use of hot isostatic pressing (HIP) for ameliorating the garnet-type lithium-ion conducting solid electrolyte of Ga2O3-doped Li7La3Zr2O12 (Ga-LLZO) with nominal composition of Li6.55Ga0.15La3Zr2O12. The Ga-LLZO pellets were conventionally sintered at 1075∘C for 12h, and then were followed by HIP treatment at 120MPa and 1160∘C under an Ar atmosphere. It is found that the HIP-treated Ga-LLZO shows an extremely dense microstructure and a significantly enhanced ionic conductivity. Coherent with the increase in relative density from 90.5% (untreated) to 97.5% (HIP-treated), the ionic conductivity of the HIP-treated Ga-LLZO reaches as high as 1.13×10‑3S/cm at room temperature (25∘C), being two times higher than that of 4.58×10‑4S/cm for the untreated one.
Rebound of a coal tar creosote plume following partial source zone treatment with permanganate.
Thomson, N R; Fraser, M J; Lamarche, C; Barker, J F; Forsey, S P
2008-11-14
indicated a highly variable and random spatial distribution of mass within the source zone and provided no insight into the mass removed of any of the monitored species. The down-gradient plume was monitored approximately 1, 2 and 4 years following treatment. The data collected at 1 and 2 years post-treatment showed a decrease in mass discharge (10 to 60%) and/or total plume mass (0 to 55%); however, by 4 years post-treatment there was a rebound in both mass discharge and total plume mass for all monitored compounds to pre-treatment values or higher. The variability of the data collected was too large to resolve subtle changes in plume morphology, particularly near the source zone, that would provide insight into the impact of the formation and deposition of manganese oxides that occurred during treatment on mass transfer and/or flow by-passing. Overall, the results from this pilot-scale investigation indicate that there was a significant but short-term (months) reduction of mass emanating from the source zone as a result of permanganate treatment but there was no long-term (years) impact on the ability of this coal tar creosote source zone to generate a multi-component plume.
Thimgan, Matthew S; Seugnet, Laurent; Turk, John; Shaw, Paul J
2015-05-01
Flies mutant for the canonical clock protein cycle (cyc(01)) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc(01) mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc(01) mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. Laboratory. Drosophila melanogaster. Sleep deprivation and starvation. We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc(01) mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis. © 2015 Associated Professional Sleep Societies, LLC.
Large-Scale Crustal-Block-Extrusion During Late Alpine Collision.
Herwegh, Marco; Berger, Alfons; Baumberger, Roland; Wehrens, Philip; Kissling, Edi
2017-03-24
The crustal-scale geometry of the European Alps has been explained by a classical subduction-scenario comprising thrust-and-fold-related compressional wedge tectonics and isostatic rebound. However, massive blocks of crystalline basement (External Crystalline Massifs) vertically disrupt the upper-crustal wedge. In the case of the Aar massif, top basement vertically rises for >12 km and peak metamorphic temperatures increase along an orogen-perpendicular direction from 250 °C-450 °C over horizontal distances of only <15 km (Innertkirchen-Grimselpass), suggesting exhumation of midcrustal rocks with increasing uplift component along steep vertical shear zones. Here we demonstrate that delamination of European lower crust during lithosphere mantle rollback migrates northward in time. Simultaneously, the Aar massif as giant upper crustal block extrudes by buoyancy forces, while substantial volumes of lower crust accumulate underneath. Buoyancy-driven deformation generates dense networks of steep reverse faults as major structures interconnected by secondary branches with normal fault component, dissecting the entire crust up to the surface. Owing to rollback fading, the component of vertical motion reduces and is replaced by a late stage of orogenic compression as manifest by north-directed thrusting. Buoyancy-driven vertical tectonics and modest late shortening, combined with surface erosion, result in typical topographic and metamorphic gradients, which might represent general indicators for final stages of continent-continent collisions.
Differentiation therapy revisited.
de Thé, Hugues
2018-02-01
The concept of differentiation therapy emerged from the fact that hormones or cytokines may promote differentiation ex vivo, thereby irreversibly changing the phenotype of cancer cells. Its hallmark success has been the treatment of acute promyelocytic leukaemia (APL), a condition that is now highly curable by the combination of retinoic acid (RA) and arsenic. Recently, drugs that trigger differentiation in a variety of primary tumour cells have been identified, suggesting that they are clinically useful. This Opinion article analyses the basis for the clinical successes of RA or arsenic in APL by assessing the respective roles of terminal maturation and loss of self-renewal. By reviewing other successful examples of drug-induced tumour cell differentiation, novel approaches to transform differentiating drugs into more efficient therapies are proposed.
Nonlinear differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis ismore » on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.« less
NASA Astrophysics Data System (ADS)
Park, Y.; Yoo, J.; Huang, K.; Keiser, D. D.; Jue, J. F.; Rabin, B.; Moore, G.; Sohn, Y. H.
2014-04-01
Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45-345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the α-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the α-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the α-U, Mo2Zr, and UZr2 phases.
Dias, Robert F.; Lewan, Michael D.; Birdwell, Justin E.; Kotarba, Maciej J.
2014-01-01
So as to better understand how the gas generation potential of coal changes with increasing rank, same-seam samples of bituminous coal from the Illinois Basin that were naturally matured to varying degrees by the intrusion of an igneous dike were subjected to hydrous pyrolysis (HP) conditions of 360 °C for 72 h. The accumulated methane in the reactor headspace was analyzed for δ13C and δ2H, and mol percent composition. Maximum methane production (9.7 mg/g TOC) occurred in the most immature samples (0.5 %Ro), waning to minimal methane values at 2.44 %Ro (0.67 mg/g TOC), and rebounding to 3.6 mg/g TOC methane in the most mature sample (6.76 %Ro). Methane from coal with the highest initial thermal maturity (6.76 %Ro) shows no isotopic dependence on the reactor water and has a microbial δ13C value of −61‰. However, methane from coal of minimal initial thermal maturity (0.5 %Ro) shows hydrogen isotopic dependence on the reaction water and has a δ13C value of −37‰. The gas released from coals under hydrous pyrolysis conditions represents a quantifiable mixture of ancient (270 Ma) methane (likely microbial) that was generated in situ and trapped within the rock during the rapid heating by the dike, and modern (laboratory) thermogenic methane that was generated from the indigenous organic matter due to thermal maturation induced by hydrous pyrolysis conditions. These findings provide an analytical framework for better assessment of natural gas sources and for differentiating generated gas from pre-existing trapped gas in coals of various ranks.
NASA Astrophysics Data System (ADS)
Peltier, W. R.; Vettoretti, G.; Argus, D. F.
2017-12-01
Global models of the glacial isostatic adjustment (GIA) process are designed to fit a wide range of geophysical and geomorphological observations that simultaneously constrain the internal viscoelastic structure of Earths interior and the history of grounded ice thickness variations that has occurred over the most recent ice-age cycle of the Late Quaternary interval of time. The most recent refinement of the ICE-NG (VMX) series of such global models from the University of Toronto, ICE-6G_C (VM5a), has recently been slightly modified insofar as its Antarctic component is concerned to produce a "_D" version of the structure. This has been chosen to provide the boundary conditions for the next round of model-data inter-comparisons in the context of the international Paleoclimate Modeling Inter-comparison Project (PMIP). The output of PMIP will contribute to the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change which is now under way. A highly significant test of the utility of this latest model has recently been performed that is focused upon the Dansgaard-Oeschger oscillation that was the primary source of climate variability during Marine Isotope Stage 3 (MIS3) of the most recent glacial cycle. By introducing the surface boundary conditions for paleotopography and paleobathymetry, land-sea mask and surface albedo into the NCAR CESM1 coupled climate model configured at full one degree by one degree CMIP5 resolution, together with the appropriate trace gas and orbital insolation forcing, we show that the millennium timescale Dansgard-Oeschger oscillation naturally develops following spin- up of the model into the glacial state.
ERIC Educational Resources Information Center
Nassau County Board of Cooperative Educational Services, Westbury, NY.
This is a compilation of articles examining many aspects of differentiated staffing and creating a basic document for all school districts. The articles are grouped into seven sections: 1) "Why Change?"; 2) "A Consideration of Staffing Problems"; 3) "Critics and Crusaders: An Analysis of Differentiated Staffing" (subsections on concept and…
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; IJpelaar, Thijs
2017-09-01
Models for glacial isostatic adjustment (GIA) routinely include the effects of meltwater redistribution and changes in topography and coastlines. Since the sediment transport related to the dynamics of ice sheets may be comparable to that of sea level rise in terms of surface pressure, the loading effect of sediment deposition could cause measurable ongoing viscous readjustment. Here, we study the loading effect of glacially induced sediment redistribution (GISR) related to the Weichselian ice sheet in Fennoscandia and the Barents Sea. The surface loading effect and its effect on the gravitational potential is modeled by including changes in sediment thickness in the sea level equation following the method of Dalca et al. (2013). Sediment displacement estimates are estimated in two different ways: (i) from a compilation of studies on local features (trough mouth fans, large-scale failures, and basin flux) and (ii) from output of a coupled ice-sediment model. To account for uncertainty in Earth's rheology, three viscosity profiles are used. It is found that sediment transport can lead to changes in relative sea level of up to 2 m in the last 6000 years and larger effects occurring earlier in the deglaciation. This magnitude is below the error level of most of the relative sea level data because those data are sparse and errors increase with length of time before present. The effect on present-day uplift rates reaches a few tenths of millimeters per year in large parts of Norway and Sweden, which is around the measurement error of long-term GNSS (global navigation satellite system) monitoring networks. The maximum effect on present-day gravity rates as measured by the GRACE (Gravity Recovery and Climate Experiment) satellite mission is up to tenths of microgal per year, which is larger than the measurement error but below other error sources. Since GISR causes systematic uplift in most of mainland Scandinavia, including GISR in GIA models would improve the
Deferential Differentiation: What Types of Differentiation Do Students Want?
ERIC Educational Resources Information Center
Kanevsky, Lannie
2011-01-01
Deferential differentiation occurs when the curriculum modification process defers to students' preferred ways of learning rather than relying on teachers' judgments. The preferences of 416 students identified as gifted (grades 3-8) for features of differentiated curriculum recommended for gifted students were compared with those of 230 students…
Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation
Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro
2017-01-01
Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3-E1 osteoblastic cells and osteoclast-like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST-1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated that mangiferin significantly increased the mRNA level of runt-related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate-resistant acid phosphatase-positive multinuclear cells. RT-PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast-associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3-E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes. PMID:28627701
Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro
2017-08-01
Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3‑E1 osteoblastic cells and osteoclast‑like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST‑1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription‑polymerase chain reaction (RT‑PCR) demonstrated that mangiferin significantly increased the mRNA level of runt‑related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate‑resistant acid phosphatase‑positive multinuclear cells. RT‑PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast‑associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3‑E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes.
Dubowy, Christine; Moravcevic, Katarina; Yue, Zhifeng; Wan, Joy Y; Van Dongen, Hans P A; Sehgal, Amita
2016-05-01
Sleep rebound-the increase in sleep that follows sleep deprivation-is a hallmark of homeostatic sleep regulation that is conserved across the animal kingdom. However, both the mechanisms that underlie sleep rebound and its relationship to habitual daily sleep remain unclear. To address this, we developed an efficient thermogenetic method of inducing sleep deprivation in Drosophila that produces a substantial rebound, and applied the newly developed method to assess sleep rebound in a screen of 1,741 mutated lines. We used data generated by this screen to identify lines with reduced sleep rebound following thermogenetic sleep deprivation, and to probe the relationship between habitual sleep amount and sleep following thermogenetic sleep deprivation in Drosophila. To develop a thermogenetic method of sleep deprivation suitable for screening, we thermogenetically stimulated different populations of wake-promoting neurons labeled by Gal4 drivers. Sleep rebound following thermogenetically-induced wakefulness varies across the different sets of wake-promoting neurons that were stimulated, from very little to quite substantial. Thermogenetic activation of neurons marked by the c584-Gal4 driver produces both strong sleep loss and a substantial rebound that is more consistent within genotypes than rebound following mechanical or caffeine-induced sleep deprivation. We therefore used this driver to induce sleep deprivation in a screen of 1,741 mutagenized lines generated by the Drosophila Gene Disruption Project. Flies were subjected to 9 h of sleep deprivation during the dark period and released from sleep deprivation 3 h before lights-on. Recovery was measured over the 15 h following sleep deprivation. Following identification of lines with reduced sleep rebound, we characterized baseline sleep and sleep depth before and after sleep deprivation for these hits. We identified two lines that consistently exhibit a blunted increase in the duration and depth of sleep after
NASA Technical Reports Server (NTRS)
Varaiya, P. P.
1972-01-01
General discussion of the theory of differential games with two players and zero sum. Games starting at a fixed initial state and ending at a fixed final time are analyzed. Strategies for the games are defined. The existence of saddle values and saddle points is considered. A stochastic version of a differential game is used to examine the synthesis problem.
Jesus, Ana Laura Tibério de; Leite, Thiago Soares; Cristianini, Marcelo
2018-03-01
The present study evaluated the effect of high isostatic pressure (HIP) on the activity of peroxidase (POD) and polyphenol oxidase (PPO) from açaí. Açaí pulp was submitted to several combinations of pressure (400, 500, 600MPa), temperature (25 and 65°C) for 5 and 15min. The combined effect of HIP technology and high temperatures (690MPa by 2 and 5min at 80°C) was also investigated and compared to the conventional thermal treatment (85°C/1min). POD and PPO enzyme activity and instrumental color were examined after processing and after 24h of refrigerated storage. Results showed stability of POD for all pressures at 25°C, which proved to be heat-resistant and baro-resistant at 65°C. For PPO, the inactivation at 65°C was 71.7% for 600MPa after 15min. In general, the increase in temperature from 25°C to 65°C reduced the PPO relative activity with no changes in color. Although the thermal treatment and the HIP (690MPa) along with high temperature (80°C) reduced the PPO relative activity, and relevant darkening was observed in the processed samples. Thus, it can be concluded that POD is more baro-resistant than PPO in açaí pulp subjected to the same HIP processing conditions and processing at 600MPa/65°C for 5min may be an effective alternative for thermal pasteurization treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Linear Back-Drive Differentials
NASA Technical Reports Server (NTRS)
Waydo, Peter
2003-01-01
Linear back-drive differentials have been proposed as alternatives to conventional gear differentials for applications in which there is only limited rotational motion (e.g., oscillation). The finite nature of the rotation makes it possible to optimize a linear back-drive differential in ways that would not be possible for gear differentials or other differentials that are required to be capable of unlimited rotation. As a result, relative to gear differentials, linear back-drive differentials could be more compact and less massive, could contain fewer complex parts, and could be less sensitive to variations in the viscosities of lubricants. Linear back-drive differentials would operate according to established principles of power ball screws and linear-motion drives, but would utilize these principles in an innovative way. One major characteristic of such mechanisms that would be exploited in linear back-drive differentials is the possibility of designing them to drive or back-drive with similar efficiency and energy input: in other words, such a mechanism can be designed so that a rotating screw can drive a nut linearly or the linear motion of the nut can cause the screw to rotate. A linear back-drive differential (see figure) would include two collinear shafts connected to two parts that are intended to engage in limited opposing rotations. The linear back-drive differential would also include a nut that would be free to translate along its axis but not to rotate. The inner surface of the nut would be right-hand threaded at one end and left-hand threaded at the opposite end to engage corresponding right- and left-handed threads on the shafts. A rotation and torque introduced into the system via one shaft would drive the nut in linear motion. The nut, in turn, would back-drive the other shaft, creating a reaction torque. Balls would reduce friction, making it possible for the shaft/nut coupling on each side to operate with 90 percent efficiency.
Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Tomonobu M.; World Premier Initiative, iFREC, Osaka University, Osaka 565-0871; Higuchi, Sayaka
Highlights: Black-Right-Pointing-Pointer Change in the epigenetic landscape during myogenesis was optically investigated. Black-Right-Pointing-Pointer Mobility of nuclear proteins was used to state the epigenetic status of the cell. Black-Right-Pointing-Pointer Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. Black-Right-Pointing-Pointer Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extentmore » of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Park; J. Yoo; K. Huang
2014-04-01
Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45–345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface betweenmore » the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the a-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the a-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the a-U, Mo2Zr, and UZr2 phases.« less
Poorly Differentiated Thyroid Carcinoma.
Setia, Namrata; Barletta, Justine A
2014-12-01
Poorly differentiated thyroid carcinoma (PDTC) has been recognized for the past 30 years as an entity showing intermediate differentiation and clinical behavior between well-differentiated thyroid carcinomas (ie, papillary thyroid carcinoma and follicular thyroid carcinoma) and anaplastic thyroid carcinoma; however, there has been considerable controversy around the definition of PDTC. In this review, the evolution in the definition of PDTC, current diagnostic criteria, differential diagnoses, potentially helpful immunohistochemical studies, and molecular alterations are discussed with the aim of highlighting where the diagnosis of PDTC currently stands. Published by Elsevier Inc.
Auto-Zero Differential Amplifier
NASA Technical Reports Server (NTRS)
Quilligan, Gerard T. (Inventor); Aslam, Shahid (Inventor)
2017-01-01
An autozero amplifier may include a window comparator network to monitor an output offset of a differential amplifier. The autozero amplifier may also include an integrator to receive a signal from a latched window comparator network, and send an adjustment signal back to the differential amplifier to reduce an offset of the differential amplifier.
Todd, Stephanie M; Zhou, Cilla; Clarke, David J; Chohan, Tariq W; Bahceci, Dilara; Arnold, Jonathon C
2017-02-01
The evidence base for the use of medical cannabis preparations containing specific ratios of cannabidiol (CBD) and Δ 9 -tetrahydrocannabinol (THC) is limited. While there is abundant data on acute interactions between CBD and THC, few studies have assessed the impact of their repeated co-administration. We previously reported that CBD inhibited or potentiated the acute effects of THC dependent on the measure being examined at a 1:1 CBD:THC dose ratio. Further, CBD decreased THC effects on brain regions involved in memory, anxiety and body temperature regulation. Here we extend on these finding by examining over 15 days of treatment whether CBD modulated the repeated effects of THC on behaviour and neuroadaption markers in the mesolimbic dopamine pathway. After acute locomotor suppression, repeated THC caused rebound locomotor hyperactivity that was modestly inhibited by CBD. CBD also slightly reduced the acute effects of THC on sensorimotor gating. These subtle effects were found at a 1:1 CBD:THC dose ratio but were not accentuated by a 5:1 dose ratio. CBD did not alter the trajectory of enduring THC-induced anxiety nor tolerance to the pharmacological effects of THC. There was no evidence of CBD potentiating the behavioural effects of THC. However we demonstrated for the first time that repeated co-administration of CBD and THC increased histone 3 acetylation (H3K9/14ac) in the VTA and ΔFosB expression in the nucleus accumbens. These changes suggest that while CBD may have protective effects acutely, its long-term molecular actions on the brain are more complex and may be supradditive. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Scherrer, S S; Cattani-Lorente, M; Yoon, S; Karvonen, L; Pokrant, S; Rothbrust, F; Kuebler, J
2013-09-01
Processing parameters (powder granulation, compaction, debinding, greenbody shaping, sintering) and post-sinter rough, even fine grinding are influencing the final mechanical properties of 3Y-TZP. The hypothesis of this study was that post-sinter hot isostatic pressing (post-HIP) would be beneficial for improving reliability and strength of both sintered and coarse ground sintered zirconia by closing or reducing surface and/or small volume defects. 75 sintered bars of an experimental 3Y-TZP (3mm×4mm×45mm) with chamfered edges and 15μm diamond surface finish were provided by the manufacturer (Ivoclar Vivadent) and randomly distributed in five groups of N=15 each. G1 served as control (as received); G2 was post-HIPed at 1400°C and G3 at 1350°C, both using a pressure of 195MPa in Ar for 1h; G4 was coarse ground with 120μm diamond disk grain size; G5 was ground 120μm and post-HIPed at 1350°C at 195MPa, 1h in Ar. The specimens were fractured in air in 4 point-bending. Weibull characteristic strength (σ0) in MPa, m parameter (reliability) and confidence intervals (CI) at 90% confidence level are reported. Identification of the critical flaw was performed by SEM on the fractured surface of all specimens and XRD performed in all groups. G1: σ0=973 (932-1016), m=10.6 (7.45-15.1); G2: σ0=930 (871-995), m=6.9 (4.87-9.9); G3: σ0=898 (848-952), m=7.94 (5.6-11.4); G4: σ0=921 (857-991), m=6.35 (4.48-9.11); G5: σ0=881 (847-918), m=11.4 (8.03-16.3). G5 had a significantly lower σ0 than G1. No significant differences were seen in the reliability (m) among the groups. Fractography revealed critical intrinsic subsurface flaws of 10-60μm present in all groups resulting from the processing parameters. No "healing" (i.e. closing of defects by densification) resulted after post-HIP. Grinding sintered zirconia with 120μm diamond disks induced radial cracks of 10-20μm and an important pseudo-cubic phase transformation (56wt%) that was not completely removed after post
Hahn, Judith A; Emenyonu, Nneka I; Fatch, Robin; Muyindike, Winnie R; Kekiibina, Allen; Carrico, Adam W; Woolf-King, Sarah; Shiboski, Stephen
2016-02-01
We examined whether unhealthy alcohol consumption, which negatively impacts HIV outcomes, changes after HIV care entry overall and by several factors. We also compared using phosphatidylethanol (PEth, an alcohol biomarker) to augment self-report to using self-report alone. A prospective 1-year observational cohort study with quarterly visits. Large rural HIV clinic in Mbarara, Uganda. A total of 208 adults (89 women and 119 men) entering HIV care, reporting any prior year alcohol consumption. Unhealthy drinking was PEth+ (≥ 50 ng/ml) or Alcohol Use Disorders Identification Test-Consumption+ (AUDIT-C+, over 3 months, women ≥ 3; men ≥ 4). We calculated adjusted odds ratios (AOR) for unhealthy drinking per month since baseline, and interactions of month since baseline with perceived health, number of HIV symptoms, antiretroviral therapy (ART), gender and self-reported prior unhealthy alcohol use. The majority of participants (64%) were unhealthy drinkers (PEth+ or AUDIT-C+) at baseline. There was no significant trend in unhealthy drinking overall [per-month AOR: 1.01; 95% confidence interval (CI) = 0.94-1.07], while the per-month AORs were 0.91 (95% CI = 0.83-1.00) and 1.11 (95% CI = 1.01-1.22) when participants were not yet on ART and on ART, respectively (interaction P-value < 0.01). In contrast, 44% were AUDIT-C+; the per-month AORs for being AUDIT-C+ were 0.89 (95% CI = 0.85-0.95) overall, and 0.84 (95% CI = 0.78-0.91) and 0.97 (95% CI = 0.89-1.05) when participants were not on and were on ART, respectively. Unhealthy alcohol use among Ugandan adults entering HIV care declines prior to the start of anti-retroviral therapy but rebounds with time. Augmenting self-reported alcohol use with biomarkers increases the ability of current alcohol use measurements to detect unhealthy alcohol use. © 2015 Society for the Study of Addiction.
NASA Astrophysics Data System (ADS)
Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.
2014-12-01
Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could
Sorensen, E.G.; Gordon, C.M.
1959-02-10
Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.
Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M
2018-02-07
Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.
DCGL v2.0: an R package for unveiling differential regulation from differential co-expression.
Yang, Jing; Yu, Hui; Liu, Bao-Hong; Zhao, Zhongming; Liu, Lei; Ma, Liang-Xiao; Li, Yi-Xue; Li, Yuan-Yuan
2013-01-01
Differential co-expression analysis (DCEA) has emerged in recent years as a novel, systematic investigation into gene expression data. While most DCEA studies or tools focus on the co-expression relationships among genes, some are developing a potentially more promising research domain, differential regulation analysis (DRA). In our previously proposed R package DCGL v1.0, we provided functions to facilitate basic differential co-expression analyses; however, the output from DCGL v1.0 could not be translated into differential regulation mechanisms in a straightforward manner. To advance from DCEA to DRA, we upgraded the DCGL package from v1.0 to v2.0. A new module named "Differential Regulation Analysis" (DRA) was designed, which consists of three major functions: DRsort, DRplot, and DRrank. DRsort selects differentially regulated genes (DRGs) and differentially regulated links (DRLs) according to the transcription factor (TF)-to-target information. DRrank prioritizes the TFs in terms of their potential relevance to the phenotype of interest. DRplot graphically visualizes differentially co-expressed links (DCLs) and/or TF-to-target links in a network context. In addition to these new modules, we streamlined the codes from v1.0. The evaluation results proved that our differential regulation analysis is able to capture the regulators relevant to the biological subject. With ample functions to facilitate differential regulation analysis, DCGL v2.0 was upgraded from a DCEA tool to a DRA tool, which may unveil the underlying differential regulation from the observed differential co-expression. DCGL v2.0 can be applied to a wide range of gene expression data in order to systematically identify novel regulators that have not yet been documented as critical. DCGL v2.0 package is available at http://cran.r-project.org/web/packages/DCGL/index.html or at our project home page http://lifecenter.sgst.cn/main/en/dcgl.jsp.
Differential comparator cirucit
Hickling, Ronald M.
1996-01-01
A differential comparator circuit for an Analog-to-Digital Converter (ADC) or other application includes a plurality of differential comparators and a plurality of offset voltage generators. Each comparator includes first and second differentially connected transistor pairs having equal and opposite voltage offsets. First and second offset control transistors are connected in series with the transistor pairs respectively. The offset voltage generators generate offset voltages corresponding to reference voltages which are compared with a differential input voltage by the comparators. Each offset voltage is applied to the offset control transistors of at least one comparator to set the overall voltage offset of the comparator to a value corresponding to the respective reference voltage. The number of offset voltage generators required in an ADC application can be reduced by a factor of approximately two by applying the offset voltage from each offset voltage generator to two comparators with opposite logical sense such that positive and negative offset voltages are produced by each offset voltage generator.
Multi-output differential technologies
NASA Astrophysics Data System (ADS)
Bidare, Srinivas R.
1997-01-01
A differential is a very old and proven mechanical device that allows a single input to be split into two outputs having equal torque irrespective of the output speeds. A standard differential is capable of providing only two outputs from a single input. A recently patented multi-output differential technology known as `Plural-Output Differential' allows a single input to be split into many outputs. This new technology is the outcome of a systematic study of complex gear trains (Bidare 1992). The unique feature of a differential (equal torque at different speeds) can be applied to simplify the construction and operation of many complex mechanical devices that require equal torque's or forces at multiple outputs. It is now possible to design a mechanical hand with three or more fingers with equal torque. Since these finger are powered via a differential they are `mechanically intelligent'. A prototype device is operational and has been used to demonstrate the utility and flexibility of the design. In this paper we shall review two devices that utilize the new technology resulting in increased performance, robustness with reduced complexity and cost.
Isostaticity in Cosserat Continuum
2012-01-01
Geotech . Eng. Div. 106(4), 419–433 (1980) 13. Walker, D.M., Tordesillas, A., Thornton, C., Behringer, R.P., Zhang, J., Peters, J.F.: Percolating contact...thermomicromechanical approach to multiscale continuum modeling of dense granular materials. Acta Geotech . 3, 225–240 (2008) 17. Oda, M., Takemura, T
NASA Technical Reports Server (NTRS)
Comstock, Robert L.; Bills, Bruce G.
2004-01-01
Salt flats are aptly named: they are composed largely of salt, and are maintained as nearly equipotential surfaces via frequent flooding. The salar de Uyuni, on the Altiplano in southwestern Bolivia, is the largest salt flat on Earth, with an area of 9,800 sq km. Except for a few bedrock islands, it has less than 40 cm of relief. The upper-most salt unit averages 5 m thick and contains 50 cu km of nearly pure halite. It includes most of the salt that was in solution in paleolake Minchin, which attained a maximum area of 60,000 sq km and a maximum depth of 150 m, roughly 15 kyr ago. Despite approx. 10 m of differential isostatic rebound since deposition, the salar surface has been actively maintained as an extraordinarily flat and smooth surface by annual flooding during the rainy season. We have used the strong optical absorption properties of water in the visible band to map spatial variations in water depth during a time when the salar was flooded. As water depth increases, the initially pure white surface appears both darker and bluer. We utilized MISR images taken during the interval from April to November 2001. The red and infra-red bands (672 and 867 nm wavelength) were most useful since the water depth is small and the absorption at those wavelengths is quite strong. Nadir pointed MISR images have 275 m spatial resolution. To aid in our evaluation of water depth variations over the saiar surface, we utilized two sources of direct topographic measurements: several ICESAT altimetry tracks cross the area, and a 40x50 km GPS grid was surveyed to calibrate ICESAT. A difficulty in using these data types is that both give salt surface elevations relative to the ellipsoid, whereas the water surface will, in the absence of wind or tidal disturbances, follow an equipotential surface. Geoid height is not known to the required accuracy of a few cm in the central Andes. As a result, before comparing optical absorption from MISR to salt surface topography from GPS or
Differential Pricing of Undergraduate Education.
ERIC Educational Resources Information Center
Yanikoski, Richard A.; Wilson, Richard F.
1984-01-01
The concept of differential pricing and its current application in undergraduate education are examined, particularly differentiating tuition by program at the upper-division level. Differential pricing is proposed as a policy that can benefit both students and institutions. (Author/MLW)
One step HIP canning of powder metallurgy composites
NASA Technical Reports Server (NTRS)
Juhas, John J. (Inventor)
1990-01-01
A single step is relied on in the canning process for hot isostatic pressing (HIP) powder metallurgy composites. The binders are totally removed while the HIP can of compatible refractory metal is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.
Mather, Quang; Priego, Jonathon; Ward, Kristi; Kundan, Verma; Tran, Dat; Dwivedi, Alok; Bryan, Brad A
2017-09-01
Benign lipomas and well-differentiated liposarcomas share many histological and molecular features. Due to their similarities, patients with these lipomatous tumors are misdiagnosed up to 40% of the time following radiological detection, up to 17% of the time following histological examination, and in as many as 15% of cases following fluorescent in situ hybridization for chromosomal anomalies. Incorrect classification of these two tumor types leads to increased costs to the patient and delayed accurate diagnoses. In this study, we used genomics analysis to identify several genes whose mRNA expression patterns were significantly altered between lipomas and well-differentiated liposarcomas. We confirmed our findings at the protein level using a panel of 30 human lipomatous tumors, revealing that C4BPB, class II, major histocompatibility complex, CIITA, EPHB2, HOXB7, GLS2, RBBP5, and regulator of RGS2 protein levels were increased in well-differentiated liposarcomas compared to lipomas. We developed a multi-protein model of these markers to increase discriminatory ability, finding the combined expression model with CIITA and RGS2 provided a high ability (AUC=0.93) to differentiate between lipomas and well-differentiated liposarcomas with sensitivity at 83.3% and specificity at 90.9%.
Matrix differentiation formulas
NASA Technical Reports Server (NTRS)
Usikov, D. A.; Tkhabisimov, D. K.
1983-01-01
A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.
Portable basketball rim testing device
Abbott, W. Bruce; Davis, Karl C.
1993-01-01
A portable basketball rim rebound testing device 10 is illustrated in two preferred embodiments for testing the rebound or energy absorption characteristics of a basketball rim 12 and its accompanying support to determine likely rebound or energy absorption charcteristics of the system. The apparatus 10 includes a depending frame 28 having a C-clamp 36 for releasably rigidly connecting the frame to the basketball rim 12. A glide weight 60 is mounted on a guide rod 52 permitting the weight 60 to be dropped against a calibrated spring 56 held on an abutment surface on the rod to generate for deflecting the basketball rim and then rebounding the weight upwardly. A photosensor 66 is mounted on the depending frame 28 to sense passage of reflective surfaces 75 on the weight to thereby obtain sufficient data to enable a processing means 26 to calculate the rebound velocity and relate it to an energy absorption percentage rate of the rim system 12. A readout is provided to display the energy absorption percentage.
Bubble Proliferation in Shock Wave Lithotripsy Occurs during Inertial Collapse
NASA Astrophysics Data System (ADS)
Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Williams, James C.; Bailey, Michael R.; Sapozhnikov, Oleg A.
2008-06-01
In shock wave lithotripsy (SWL), firing shock pulses at slow pulse repetition frequency (0.5 Hz) is more effective at breaking kidney stones than firing shock waves (SWs) at fast rate (2 Hz). Since at fast rate the number of cavitation bubbles increases, it appears that bubble proliferation reduces the efficiency of SWL. The goal of this work was to determine the basis for bubble proliferation when SWs are delivered at fast rate. Bubbles were studied using a high-speed camera (Imacon 200). Experiments were conducted in a test tank filled with nondegassed tap water at room temperature. Acoustic pulses were generated with an electromagnetic lithotripter (DoLi-50). In the focus of the lithotripter the pulses consisted of a ˜60 MPa positive-pressure spike followed by up to -8 MPa negative-pressure tail, all with a total duration of about 7 μs. Nonlinear propagation steepened the shock front of the pulses to become sufficiently thin (˜0.03 μm) to impose differential pressure across even microscopic bubbles. High-speed camera movies showed that the SWs forced preexisting microbubbles to collapse, jet, and break up into daughter bubbles, which then grew rapidly under the negative-pressure phase of the pulse, but later coalesced to re-form a single bubble. Subsequent bubble growth was followed by inertial collapse and, usually, rebound. Most, if not all, cavitation bubbles emitted micro-jets during their first inertial collapse and re-growth. After jetting, these rebounding bubbles could regain a spherical shape before undergoing a second inertial collapse. However, either upon this second inertial collapse, or sometimes upon the first inertial collapse, the rebounding bubble emerged from the collapse as a cloud of smaller bubbles rather than a single bubble. These daughter bubbles could continue to rebound and collapse for a few cycles, but did not coalesce. These observations show that the positive-pressure phase of SWs fragments preexisting bubbles but this initial
Differentiable McCormick relaxations
Khan, Kamil A.; Watson, Harry A. J.; Barton, Paul I.
2016-05-27
McCormick's classical relaxation technique constructs closed-form convex and concave relaxations of compositions of simple intrinsic functions. These relaxations have several properties which make them useful for lower bounding problems in global optimization: they can be evaluated automatically, accurately, and computationally inexpensively, and they converge rapidly to the relaxed function as the underlying domain is reduced in size. They may also be adapted to yield relaxations of certain implicit functions and differential equation solutions. However, McCormick's relaxations may be nonsmooth, and this nonsmoothness can create theoretical and computational obstacles when relaxations are to be deployed. This article presents a continuously differentiablemore » variant of McCormick's original relaxations in the multivariate McCormick framework of Tsoukalas and Mitsos. Gradients of the new differentiable relaxations may be computed efficiently using the standard forward or reverse modes of automatic differentiation. Furthermore, extensions to differentiable relaxations of implicit functions and solutions of parametric ordinary differential equations are discussed. A C++ implementation based on the library MC++ is described and applied to a case study in nonsmooth nonconvex optimization.« less
NASA Astrophysics Data System (ADS)
Santarius, Tilman
2015-03-01
Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may `eat up' parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential `psychological rebound effects.' It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough "rule of thumb", in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.
Differential Rationality and Personal Development.
ERIC Educational Resources Information Center
Fincher, Cameron
This publication discusses differential rationality; it asserts that the development of institutions, professions, and individuals involves the differentiation of forms and styles of thinking and knowing that are, in various ways, idiosyncratic. Based on this understanding, differential rationality can be seen as a developmental construct that…
5 CFR 532.511 - Environmental differentials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Environmental differentials. 532.511... PREVAILING RATE SYSTEMS Premium Pay and Differentials § 532.511 Environmental differentials. (a) Entitlements to environmental differential pay.(1) In accordance with section 5343(c)(4) of title 5, United States...
NASA Astrophysics Data System (ADS)
Akopyan, T. K.; Padalko, A. G.; Belov, N. A.
2015-11-01
Hot isostatic pressing (HIP) is applied for treatment of castings of innovative low-ally high-strength aluminum alloy, nikalin ATs6N0.5Zh based on the Al-Zn-Mg-Cu-Ni-Fe system. The influence of HIP on the structure and properties of castings is studied by means of three regimes of barometric treatment with different temperatures of isometric holding: t 1 = 505 ± 2°C, p 1 = 100 MPa, τ1 = 3 h (HIP1); t 2 = 525 ± 2°C, p 2 = 100 MPa, τ2 = 3 h (HIP2); and t 3 = 545 ± 2°C, p 3 = 100 MPa, τ3 = 3 h (HIP3). It is established that high-temperature HIP leads to actually complete elimination of porosity and additional improvement of the morphology of second phases. Improved structure after HIP provides improvement properties, especially of plasticity. In particular, after heat treatment according of regime HIP2 + T4 (T4 is natural aging), the alloy plasticity is improved by about two times in comparison with the initial state (from ~6 to 12%). While applying regime HIP3 + T6 (T6 is artificial aging for reaching the maximum strength), the plasticity has improved by more than three times in comparison with the initial state, as after treatment according to regimes HIP1 + T6 and HIP2 + T6 (from ~1.2 to ~5.0%), which are characterized by a lower HIP temperature.
Bergström, Petra; Agholme, Lotta; Nazir, Faisal Hayat; Satir, Tugce Munise; Toombs, Jamie; Wellington, Henrietta; Strandberg, Joakim; Bontell, Thomas Olsson; Kvartsberg, Hlin; Holmström, Maria; Boreström, Cecilia; Simonsson, Stina; Kunath, Tilo; Lindahl, Anders; Blennow, Kaj; Hanse, Eric; Portelius, Erik; Wray, Selina; Zetterberg, Henrik
2016-07-07
Amyloid precursor protein (APP) and its cleavage product amyloid β (Aβ) have been thoroughly studied in Alzheimer's disease. However, APP also appears to be important for neuronal development. Differentiation of induced pluripotent stem cells (iPSCs) towards cortical neurons enables in vitro mechanistic studies on human neuronal development. Here, we investigated expression and proteolytic processing of APP during differentiation of human iPSCs towards cortical neurons over a 100-day period. APP expression remained stable during neuronal differentiation, whereas APP processing changed. α-Cleaved soluble APP (sAPPα) was secreted early during differentiation, from neuronal progenitors, while β-cleaved soluble APP (sAPPβ) was first secreted after deep-layer neurons had formed. Short Aβ peptides, including Aβ1-15/16, peaked during the progenitor stage, while processing shifted towards longer peptides, such as Aβ1-40/42, when post-mitotic neurons appeared. This indicates that APP processing is regulated throughout differentiation of cortical neurons and that amyloidogenic APP processing, as reflected by Aβ1-40/42, is associated with mature neuronal phenotypes.
Dubowy, Christine; Moravcevic, Katarina; Yue, Zhifeng; Wan, Joy Y.; Van Dongen, Hans P.A.; Sehgal, Amita
2016-01-01
Study Objectives: Sleep rebound—the increase in sleep that follows sleep deprivation—is a hallmark of homeostatic sleep regulation that is conserved across the animal kingdom. However, both the mechanisms that underlie sleep rebound and its relationship to habitual daily sleep remain unclear. To address this, we developed an efficient thermogenetic method of inducing sleep deprivation in Drosophila that produces a substantial rebound, and applied the newly developed method to assess sleep rebound in a screen of 1,741 mutated lines. We used data generated by this screen to identify lines with reduced sleep rebound following thermogenetic sleep deprivation, and to probe the relationship between habitual sleep amount and sleep following thermogenetic sleep deprivation in Drosophila. Methods: To develop a thermogenetic method of sleep deprivation suitable for screening, we thermogenetically stimulated different populations of wake-promoting neurons labeled by Gal4 drivers. Sleep rebound following thermogenetically-induced wakefulness varies across the different sets of wake-promoting neurons that were stimulated, from very little to quite substantial. Thermogenetic activation of neurons marked by the c584-Gal4 driver produces both strong sleep loss and a substantial rebound that is more consistent within genotypes than rebound following mechanical or caffeine-induced sleep deprivation. We therefore used this driver to induce sleep deprivation in a screen of 1,741 mutagenized lines generated by the Drosophila Gene Disruption Project. Flies were subjected to 9 h of sleep deprivation during the dark period and released from sleep deprivation 3 h before lights-on. Recovery was measured over the 15 h following sleep deprivation. Following identification of lines with reduced sleep rebound, we characterized baseline sleep and sleep depth before and after sleep deprivation for these hits. Results: We identified two lines that consistently exhibit a blunted increase in the
Tan, Sisi; Wu, Zhao; Lei, Lei; Hu, Shoujin; Dong, Jianji; Zhang, Xinliang
2013-03-25
We propose and experimentally demonstrate an all-optical differentiator-based computation system used for solving constant-coefficient first-order linear ordinary differential equations. It consists of an all-optical intensity differentiator and a wavelength converter, both based on a semiconductor optical amplifier (SOA) and an optical filter (OF). The equation is solved for various values of the constant-coefficient and two considered input waveforms, namely, super-Gaussian and Gaussian signals. An excellent agreement between the numerical simulation and the experimental results is obtained.
Alternative Fuels Data Center: Maps and Data
reduced AFV acquisition requirements. However, overall AFV acquisitions have since rebounded to pre-Great acquisitions have since rebounded to pre-Great Recession levels. Share Embed Share Copy and share this link
Thompson, Robert S.; Roller, Rachel; Mika, Agnieszka; Greenwood, Benjamin N.; Knight, Rob; Chichlowski, Maciej; Berg, Brian M.; Fleshner, Monika
2017-01-01
Severe, repeated or chronic stress produces negative health outcomes including disruptions of the sleep/wake cycle and gut microbial dysbiosis. Diets rich in prebiotics and glycoproteins impact the gut microbiota and may increase gut microbial species that reduce the impact of stress. This experiment tested the hypothesis that consumption of dietary prebiotics, lactoferrin (Lf) and milk fat globule membrane (MFGM) will reduce the negative physiological impacts of stress. Male F344 rats, postnatal day (PND) 24, received a diet with prebiotics, Lf and MFGM (test) or a calorically matched control diet. Fecal samples were collected on PND 35/70/91 for 16S rRNA sequencing to examine microbial composition and, in a subset of rats; Lactobacillus rhamnosus was measured using selective culture. On PND 59, biotelemetry devices were implanted to record sleep/wake electroencephalographic (EEG). Rats were exposed to an acute stressor (100, 1.5 mA, tail shocks) on PND 87 and recordings continued until PND 94. Test diet, compared to control diet, increased fecal Lactobacillus rhamnosus colony forming units (CFU), facilitated non-rapid eye movement (NREM) sleep consolidation (PND 71/72) and enhanced rapid eye movement (REM) sleep rebound after stressor exposure (PND 87). Rats fed control diet had stress-induced reductions in alpha diversity and diurnal amplitude of temperature, which were attenuated by the test diet (PND 91). Stepwise multiple regression analysis revealed a significant linear relationship between early-life Deferribacteres (PND 35) and longer NREM sleep episodes (PND 71/72). A diet containing prebiotics, Lf and MFGM enhanced sleep quality, which was related to changes in gut bacteria and modulated the impact of stress on sleep, diurnal rhythms and the gut microbiota. PMID:28119579
Differentiation in Practice: A Resource Guide for Differentiating Curriculum, Grades 9-12
ERIC Educational Resources Information Center
Tomlinson, Carol Ann; Strickland, Cindy A.
2005-01-01
Join Carol Ann Tomlinson and Cindy A. Strickland in the continuing exploration of how real teachers incorporate differentiation principles and strategies throughout an entire instructional unit. Focusing on the high school grades, but applicable at all levels, Differentiation in Practice, Grades 9?12 will teach anyone interested in designing and…
Kulkarni, Kanchan; Van Nostrand, Douglas; Atkins, Francis; Mete, Mihriye; Wexler, Jason; Wartofsky, Leonard
2014-02-01
The protective effect of sialagogues following I therapy became controversial after a study proposed that sialagogues increase the reaccumulation of I in the parotid glands (PGs) to a level higher than when sialagogues are not administered ('rebound effect'). The present study examined PG radiopharmacokinetics within 2-4 h after radioiodine administration to evaluate whether sialagogues cause a 'rebound effect'. This prospective study was conducted at the Medstar Washington Hospital Center. The study patients had (i) differentiated thyroid cancer, (ii) no history of salivary gland disease or medications affecting the salivary glands, (iii) a clinical salivary scan (SS) with lemon juice (LJ) (SSwLJ) that was performed before I therapy, and (iv) a second SS performed without LJ (SSwoLJ) performed prior to I therapy after giving informed consent. Each PG was assessed for I uptake using time-activity curves (TACs) that were (i) corrected for background and decay, (ii) smoothed using a seven-point unweighted moving average, and (iii) normalized to the administered I activity. TACs of the SSwLJ and SSwoLJ were compared with activity at each time point over 120 min. Areas under the TACs for the PGs were calculated for each gland's SSwLJ and SSwoLJ, and the relative percentage change in potential radiation absorbed dose (PRAD) was calculated. A total of 2100 time points were analyzed in nine patients (18 PGs). I activity in the PGs on SSwLJ exceeded activity seen on the SSwoLJ at 134 time points (6.3%), and 98 (73%) of these were on the basis of spontaneous salivation during SSwoLJ. Mean percentage decrease in relative PRAD was 34.2±17.4% (range, 3.1-66.1%). During the time period studied, LJ administration did not result in a 'rebound effect' but resulted in mean relative decrease of 34.2% in PRAD to the PGs.
Process for HIP canning of composites
NASA Technical Reports Server (NTRS)
Juhas, John J. (Inventor)
1990-01-01
A single step is relied on in the canning process for hot isostatic pressing (HIP) metallurgy composites. The composites are made from arc sprayed and plasma sprayed monotape. The HIP can is of compatible refractory metal and is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.
Nrf2 promotes neuronal cell differentiation.
Zhao, Fei; Wu, Tongde; Lau, Alexandria; Jiang, Tao; Huang, Zheping; Wang, Xiao-Jun; Chen, Weimin; Wong, Pak Kin; Zhang, Donna D
2009-09-15
The transcription factor Nrf2 has emerged as a master regulator of the endogenous antioxidant response, which is critical in defending cells against environmental insults and in maintaining intracellular redox balance. However, whether Nrf2 has any role in neuronal cell differentiation is largely unknown. In this report, we have examined the effects of Nrf2 on cell differentiation using a neuroblastoma cell line, SH-SY5Y. Retinoic acid (RA) and 12-O-tetradecanoylphorbol 13-acetate, two well-studied inducers of neuronal differentiation, are able to induce Nrf2 and its target gene NAD(P)H quinone oxidoreductase 1 in a dose- and time-dependent manner. RA-induced Nrf2 up-regulation is accompanied by neurite outgrowth and an induction of two neuronal differentiation markers, neurofilament-M and microtubule-associated protein 2. Overexpression of Nrf2 in SH-SY5Y cells promotes neuronal differentiation, whereas inhibition of endogenous Nrf2 expression inhibited neuronal differentiation. More remarkably, the positive role of Nrf2 in neuronal differentiation was verified ex vivo in primary neuron culture. Primary neurons isolated from Nrf2-null mice showed a retarded progress in differentiation, compared to those from wild-type mice. Collectively, our data demonstrate a novel role for Nrf2 in promoting neuronal cell differentiation, which will open new perspectives for therapeutic uses of Nrf2 activators in patients with neurodegenerative diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santarius, Tilman, E-mail: tilman@santarius.de
Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may ‘eat up’ parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential ‘psychological rebound effects.’ It then discusses meso-economic rebound effects,more » i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough “rule of thumb”, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.« less
Sumoylation Dynamics During Keratinocyte Differentiation
Deyrieux, Adeline F.; Rosas-Acosta, Germán; Ozbun, Michelle A.; Wilson, Van G.
2012-01-01
Summary SUMO modification regulates the activity of numerous transcription factors that have a direct role in cell cycle progression, apoptosis, cellular proliferation, and development, but its role in differentiation processes is less clear. Keratinocyte differentiation requires the coordinated activation of a series of transcription factors, and as several critical keratinocyte transcription factors are known to be SUMO substrates, we investigated the role of sumoylation in keratinocyte differentiation. In a human keratinocyte cell line model (HaCaT cells), calcium-induced differentiation led to the transient and coordinated transcriptional activation of the genes encoding critical sumoylation system components, including SAE1, SAE2, Ubc9, SENP1, Miz-1 (PIASxβ), SUMO2, and SUMO3. The increased gene expression resulted in higher levels of the respective proteins and changes in the pattern of sumoylated substrate proteins during the differentiation process. Similar to the HaCaT results, stratified human foreskin keratinocytes showed an upregulation of Ubc9 in the suprabasal layers. Lastly, abrogation of sumoylation by Gam1 expression severely disrupted normal HaCaT differentiation, consistent with an important role for sumoylation in the proper progression of this biological process. PMID:17164289
Gene amplification during myogenic differentiation
Fischer, Ulrike; Ludwig, Nicole; Raslan, Abdulrahman; Meier, Carola; Meese, Eckart
2016-01-01
Gene amplifications are mostly an attribute of tumor cells and drug resistant cells. Recently, we provided evidence for gene amplifications during differentiation of human and mouse neural progenitor cells. Here, we report gene amplifications in differentiating mouse myoblasts (C2C12 cells) covering a period of 7 days including pre-fusion, fusion and post-fusion stages. After differentiation induction we found an increase in copy numbers of CDK4 gene at day 3, of NUP133 at days 4 and 7, and of MYO18B at day 4. The amplification process was accompanied by gamma-H2AX foci that are indicative of double stand breaks. Amplifications during the differentiating process were also found in primary human myoblasts with the gene CDK4 and NUP133 amplified both in human and mouse myoblasts. Amplifications of NUP133 and CDK4 were also identified in vivo on mouse transversal cryosections at stage E11.5. In the course of myoblast differentiation, we found amplifications in cytoplasm indicative of removal of amplified sequences from the nucleus. The data provide further evidence that amplification is a fundamental mechanism contributing to the differentiation process in mammalians. PMID:26760505
NASA Astrophysics Data System (ADS)
Lizotte, Todd; Ohar, Orest
2009-08-01
Accessibility to fresh clean water has determined the location and survival of civilizations throughout the ages [1]. The tangible economic value of water is demonstrated by industry's need for water in fields such as semiconductor, food and pharmaceutical manufacturing. Economic stability for all sectors of industry depends on access to reliable volumes of good quality water. As can be seen on television a nation's economy is seriously affected by water shortages through drought or mismanagement and as such those water resources must therefore be managed both for the public interest and the economic future. For over 50 years ultraviolet water purification has been the mainstay technology for water treatment, killing potential microbiological agents in water for leisure activities such as swimming pools to large scale waste water treatment facilities where the UV light photo-oxidizes various pollutants and contaminants. Well tailored to the task, UV provides a cost effective way to reduce the use of chemicals in sanitization and anti-biological applications. Predominantly based on low pressure Hg UV discharge lamps, the system is plagued with lifetime issues (~1 year normal operation), the last ten years has shown that the technology continues to advance and larger scale systems are turning to more advanced lamp designs and evaluating solidstate UV light sources and more powerful laser sources. One of the issues facing the treatment of water with UV lasers is an appropriate means of delivering laser light efficiently over larger volumes or cross sections of water. This paper examines the potential advantages of laser beam shaping components made from isostatically micro molding microstructured PTFE materials for integration into large scale water purification and sterilization systems, for both lamps and laser sources. Applying a unique patented fabrication method engineers can form micro and macro scale diffractive, holographic and faceted reflective structures
Increasing Participation through Differentiation
ERIC Educational Resources Information Center
Christenson, Bridget; Wager, Anita A.
2012-01-01
One of the many challenges teachers face is trying to differentiate instruction so all students have equal opportunities to participate, learn, and engage. To provide guidelines for differentiated instruction in mathematics, staff from the Madison Metropolitan School District in Wisconsin created a pedagogical framework for teaching called…