VanderKraats, Nathan D.; Hiken, Jeffrey F.; Decker, Keith F.; Edwards, John R.
2013-01-01
Methylation of the CpG-rich region (CpG island) overlapping a gene’s promoter is a generally accepted mechanism for silencing expression. While recent technological advances have enabled measurement of DNA methylation and expression changes genome-wide, only modest correlations between differential methylation at gene promoters and expression have been found. We hypothesize that stronger associations are not observed because existing analysis methods oversimplify their representation of the data and do not capture the diversity of existing methylation patterns. Recently, other patterns such as CpG island shore methylation and long partially hypomethylated domains have also been linked with gene silencing. Here, we detail a new approach for discovering differential methylation patterns associated with expression change using genome-wide high-resolution methylation data: we represent differential methylation as an interpolated curve, or signature, and then identify groups of genes with similarly shaped signatures and corresponding expression changes. Our technique uncovers a diverse set of patterns that are conserved across embryonic stem cell and cancer data sets. Overall, we find strong associations between these methylation patterns and expression. We further show that an extension of our method also outperforms other approaches by generating a longer list of genes with higher quality associations between differential methylation and expression. PMID:23748561
Guntrum, Megan; Vlasova, Ekaterina; Davis, Tamara L
2017-01-01
Differential DNA methylation plays a critical role in the regulation of imprinted genes. The differentially methylated state of the imprinting control region is inherited via the gametes at fertilization, and is stably maintained in somatic cells throughout development, influencing the expression of genes across the imprinting cluster. In contrast, DNA methylation patterns are more labile at secondary differentially methylated regions which are established at imprinted loci during post-implantation development. To investigate the nature of these more variably methylated secondary differentially methylated regions, we adopted a hairpin linker bisulfite mutagenesis approach to examine CpG dyad methylation at differentially methylated regions associated with the murine Dlk1/Gtl2 imprinting cluster on both complementary strands. We observed homomethylation at greater than 90% of the methylated CpG dyads at the IG-DMR, which serves as the imprinting control element. In contrast, homomethylation was only observed at 67-78% of the methylated CpG dyads at the secondary differentially methylated regions; the remaining 22-33% of methylated CpG dyads exhibited hemimethylation. We propose that this high degree of hemimethylation could explain the variability in DNA methylation patterns at secondary differentially methylated regions associated with imprinted loci. We further suggest that the presence of 5-hydroxymethylation at secondary differentially methylated regions may result in hemimethylation and methylation variability as a result of passive and/or active demethylation mechanisms.
Tajbakhsh, Jian; Gertych, Arkadiusz; Fagg, W. Samuel; Hatada, Seigo; Fair, Jeffrey H.
2011-01-01
The genome organization in pluripotent cells undergoing the first steps of differentiation is highly relevant to the reprogramming process in differentiation. Considering this fact, chromatin texture patterns that identify cells at the very early stage of lineage commitment could serve as valuable tools in the selection of optimal cell phenotypes for regenerative medicine applications. Here we report on the first-time use of high-resolution three-dimensional fluorescence imaging and comprehensive topological cell-by-cell analyses with a novel image-cytometrical approach towards the identification of in situ global nuclear DNA methylation patterns in early endodermal differentiation of mouse ES cells (up to day 6), and the correlations of these patterns with a set of putative markers for pluripotency and endodermal commitment, and the epithelial and mesenchymal character of cells. Utilizing this in vitro cell system as a model for assessing the relationship between differentiation and nuclear DNA methylation patterns, we found that differentiating cell populations display an increasing number of cells with a gain in DNA methylation load: first within their euchromatin, then extending into heterochromatic areas of the nucleus, which also results in significant changes of methylcytosine/global DNA codistribution patterns. We were also able to co-visualize and quantify the concomitant stochastic marker expression on a per-cell basis, for which we did not measure any correlation to methylcytosine loads or distribution patterns. We observe that the progression of global DNA methylation is not correlated with the standard transcription factors associated with endodermal development. Further studies are needed to determine whether the progression of global methylation could represent a useful signature of cellular differentiation. This concept of tracking epigenetic progression may prove useful in the selection of cell phenotypes for future regenerative medicine applications. PMID:21779341
Characterization of tumor cells and stem cells by differential nuclear methylation imaging
NASA Astrophysics Data System (ADS)
Tajbakhsh, Jian; Wawrowsky, Kolja A.; Gertych, Arkadiusz; Bar-Nur, Ori; Vishnevsky, Eugene; Lindsley, Erik H.; Farkas, Daniel L.
2008-02-01
DNA methylation plays a key role in cellular differentiation. Aberrant global methylation patterns are associated with several cancer types, as a result of changes in long-term activation status of up to 50% of genes, including oncogenes and tumor-suppressor genes, which are regulated by methylation and demethylation of promoter region CpG dinucleotides (CpG islands). Furthermore, DNA methylation also occurs in nonisland CpG sites (> 95% of the genome), present once per 80 dinucleotides on average. Nuclear DNA methylation increases during the course of cellular differentiation while cancer cells usually show a net loss in methylation. Given the large dynamic range in DNA methylation load, the methylation pattern of a cell can provide a valuable distinction as to its status during differentiation versus the disease state. By applying immunofluorescence, confocal microscopy and 3D image analysis we assessed the potential of differential nuclear distribution of methylated DNA to be utilized as a biomarker to characterize cells during development and when diseased. There are two major fields that may immediately benefit from this development: (1) the search for factors that contribute to pluripotency and cell fate in human embryonic stem cell expansion and differentiation, and (2) the characterization of tumor cells with regard to their heterogeneity in molecular composition and behavior. We performed topological analysis of the distribution of methylated CpG-sites (MeC) versus heterochromatin. This innovative approach revealed significant differences in colocalization patterns of MeC and heterochromatin-derived signals between undifferentiated and differentiated human embryonic stem cells, as well as untreated AtT20 mouse pituitary tumor cells compared to a subpopulation of these cells treated with 5-azacytidine for 48 hours.
USDA-ARS?s Scientific Manuscript database
Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methy...
Cell-of-Origin DNA Methylation Signatures Are Maintained during Colorectal Carcinogenesis.
Bormann, Felix; Rodríguez-Paredes, Manuel; Lasitschka, Felix; Edelmann, Dominic; Musch, Tanja; Benner, Axel; Bergman, Yehudit; Dieter, Sebastian M; Ball, Claudia R; Glimm, Hanno; Linhart, Heinz G; Lyko, Frank
2018-06-12
Colorectal adenomas are precursor lesions of colorectal cancers and represent clonal amplifications of single cells from colonic crypts. DNA methylation patterns specify cell-type identity during cellular differentiation and, therefore, provide opportunities for the molecular analysis of tumors. We have now analyzed DNA methylation patterns in colorectal adenomas and identified three biologically defined subclasses that describe different intestinal crypt differentiation stages. Importantly, colorectal carcinomas could be classified into the same methylation subtypes, reflecting their shared cell types of origin with adenomas. Further data analysis also revealed significantly reduced overall survival for one of the subtypes. Our results provide a concept for understanding the methylation patterns observed in colorectal cancer and provide opportunities for tumor subclassification and patient stratification. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Negrotto, Soledad; Ng, Kwok Peng; Jankowska, Ania M.; Bodo, Juraj; Gopalan, Banu; Guinta, Kathryn; Mulloy, James C.; Hsi, Eric; Maciejewski, Jaroslaw; Saunthararajah, Yogen
2011-01-01
The DNA hypomethylating drug decitabine maintains normal hematopoietic stem cell (HSC) self-renewal but induces terminal differentiation in acute myeloid leukemia (AML) cells. The basis for these contrasting cell-fates, and for selective CpG hypomethylation by decitabine, is poorly understood. Promoter CpGs, with methylation measured by microarray, were classified by the direction of methylation change with normal myeloid maturation. In AML cells, the methylation pattern at maturation-responsive CpG suggested at least partial maturation. Consistent with partial maturation, in gene expression analyses, AML cells expressed high levels of the key lineage-specifying factor CEBPA, but relatively low levels of the key late-differentiation driver CEBPE. In methylation analysis by mass-spectrometry, CEBPE promoter CpG that are usually hypomethylated during granulocyte maturation were significantly hypermethylated in AML cells. Decitabine treatment induced cellular differentiation of AML cells, and the largest methylation decreases were at CpG that are hypomethylated with myeloid maturation, including CEBPE promoter CpG. In contrast, decitabine-treated normal HSC retained immature morphology, and methylation significantly decreased at CpG that are less methylated in immature cells. High expression of lineage-specifying factor and aberrant epigenetic repression of some key late-differentiation genes distinguishes AML cells from normal HSC and could explain the contrasting differentiation and methylation responses to decitabine. PMID:21836612
Inácio, Vera; Barros, Pedro M; Costa, Augusta; Roussado, Cristóvão; Gonçalves, Elsa; Costa, Rita; Graça, José; Oliveira, M Margarida; Morais-Cecílio, Leonor
2017-01-01
DNA methylation is thought to influence Quercus suber cork quality, which is the main constraint for its economic valorisation. However, a deep knowledge of the cytosine methylation patterns disclosing the epigenetic variability of trees with different cork quality types is totally missing. This study investigates the hypothesis that variations in DNA methylation contribute to differences in cork cellular characteristics directly related to original or traumatic phellogen activity. We used MSAPs (Methylation Sensitive Amplified Polymorphism) to assess DNA methylation patterns of cork and leaf tissues of Q. suber adult trees growing in three cork oak stands. The relationship between the detected polymorphisms and the diversity of cork quality traits was explored by a marker-trait analysis focusing on the most relevant quality characteristics. Populations differed widely in cork quality, but only slightly in degree of epigenetic differentiation. Four MSAP markers (1.3% of the total) were significantly associated with the most noteworthy quality traits: wood inclusions (nails) and porosity. This evidence supports the potential role of cytosine methylation in the modulation of differential phellogen activity either involved in localized cell death or in pore production, resulting in different cork qualities. Although, the underlying basis of the methylation polymorphism of loci affecting cork quality traits remain unclear, the disclosure of markers statistically associated with cork quality strengthens the potential role of DNA methylation in the regulation of these traits, namely at the phellogen level.
Kirby, Marie K; Ramaker, Ryne C; Roberts, Brian S; Lasseigne, Brittany N; Gunther, David S; Burwell, Todd C; Davis, Nicholas S; Gulzar, Zulfiqar G; Absher, Devin M; Cooper, Sara J; Brooks, James D; Myers, Richard M
2017-04-17
Current diagnostic tools for prostate cancer lack specificity and sensitivity for detecting very early lesions. DNA methylation is a stable genomic modification that is detectable in peripheral patient fluids such as urine and blood plasma that could serve as a non-invasive diagnostic biomarker for prostate cancer. We measured genome-wide DNA methylation patterns in 73 clinically annotated fresh-frozen prostate cancers and 63 benign-adjacent prostate tissues using the Illumina Infinium HumanMethylation450 BeadChip array. We overlaid the most significantly differentially methylated sites in the genome with transcription factor binding sites measured by the Encyclopedia of DNA Elements consortium. We used logistic regression and receiver operating characteristic curves to assess the performance of candidate diagnostic models. We identified methylation patterns that have a high predictive power for distinguishing malignant prostate tissue from benign-adjacent prostate tissue, and these methylation signatures were validated using data from The Cancer Genome Atlas Project. Furthermore, by overlaying ENCODE transcription factor binding data, we observed an enrichment of enhancer of zeste homolog 2 binding in gene regulatory regions with higher DNA methylation in malignant prostate tissues. DNA methylation patterns are greatly altered in prostate cancer tissue in comparison to benign-adjacent tissue. We have discovered patterns of DNA methylation marks that can distinguish prostate cancers with high specificity and sensitivity in multiple patient tissue cohorts, and we have identified transcription factors binding in these differentially methylated regions that may play important roles in prostate cancer development.
Xiong, L Z; Xu, C G; Saghai Maroof, M A; Zhang, Q
1999-04-01
DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. In this study, we assessed the extent and pattern of cytosine methylation in the rice genome, using the technique of methylation-sensitive amplified polymorphism (MSAP), which is a modification of the amplified fragment length polymorphism (AFLP) method that makes use of the differential sensitivity of a pair of isoschizomers to cytosine methylation. The tissues assayed included seedlings and flag leaves of an elite rice hybrid, Shanyou 63, and the parental lines Zhenshan 97 and Minghui 63. In all, 1076 fragments, each representing a recognition site cleaved by either or both of the isoschizomers, were amplified using 16 pairs of selective primers. A total of 195 sites were found to be methylated at cytosines in one or both parents, and the two parents showed approximately the same overall degree of methylation (16.3%), as revealed by the incidence of differential digestion by the isoschizomers. Four classes of patterns were identified in a comparative assay of cytosine methylation in the parents and hybrid; increased methylation was detected in the hybrid compared to the parents at some of the recognition sites, while decreased methylation in the hybrid was detected at other sites. A small proportion of the sites was found to be differentially methylated in seedlings and flag leaves; DNA from young seedlings was methylated to a greater extent than that from flag leaves. Almost all of the methylation patterns detected by MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrate that the MSAP technique is highly efficient for large-scale detection of cytosine methylation in the rice genome. We believe that the technique can be adapted for use in other plant species.
Alu repeated DNAs are differentially methylated in primate germ cells.
Rubin, C M; VandeVoort, C A; Teplitz, R L; Schmid, C W
1994-01-01
A significant fraction of Alu repeats in human sperm DNA, previously found to be unmethylated, is nearly completely methylated in DNA from many somatic tissues. A similar fraction of unmethylated Alus is observed here in sperm DNA from rhesus monkey. However, Alus are almost completely methylated at the restriction sites tested in monkey follicular oocyte DNA. The Alu methylation patterns in mature male and female monkey germ cells are consistent with Alu methylation in human germ cell tumors. Alu sequences are hypomethylated in seminoma DNAs and more methylated in a human ovarian dysgerminoma. These results contrast with methylation patterns reported for germ cell single-copy, CpG island, satellite, and L1 sequences. The function of Alu repeats is not known, but differential methylation of Alu repeats in the male and female germ lines suggests that they may serve as markers for genomic imprinting or in maintaining differences in male and female meiosis. Images PMID:7800508
The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera
Drewell, Robert A.; Bush, Eliot C.; Remnant, Emily J.; Wong, Garrett T.; Beeler, Suzannah M.; Stringham, Jessica L.; Lim, Julianne; Oldroyd, Benjamin P.
2014-01-01
In honey bees (Apis mellifera), the epigenetic mark of DNA methylation is central to the developmental regulation of caste differentiation, but may also be involved in additional biological functions. In this study, we examine the whole genome methylation profiles of three stages of the haploid honey bee genome: unfertilised eggs, the adult drones that develop from these eggs and the sperm produced by these drones. These methylomes reveal distinct patterns of methylation. Eggs and sperm show 381 genes with significantly different CpG methylation patterns, with the vast majority being more methylated in eggs. Adult drones show greatly reduced levels of methylation across the genome when compared with both gamete samples. This suggests a dynamic cycle of methylation loss and gain through the development of the drone and during spermatogenesis. Although fluxes in methylation during embryogenesis may account for some of the differentially methylated sites, the distinct methylation patterns at some genes suggest parent-specific epigenetic marking in the gametes. Extensive germ line methylation of some genes possibly explains the lower-than-expected frequency of CpG sites in these genes. We discuss the potential developmental and evolutionary implications of methylation in eggs and sperm in this eusocial insect species. PMID:24924193
Herrera, Carlos M; Bazaga, Pilar
2010-08-01
*In plants, epigenetic variations based on DNA methylation are often heritable and could influence the course of evolution. Before this hypothesis can be assessed, fundamental questions about epigenetic variation remain to be addressed in a real-world context, including its magnitude, structuring within and among natural populations, and autonomy in relation to the genetic context. *Extent and patterns of cytosine methylation, and the relationship to adaptive genetic divergence between populations, were investigated for wild populations of the southern Spanish violet Viola cazorlensis (Violaceae) using the methylation-sensitive amplified polymorphism (MSAP) technique, a modification of the amplified fragment length polymorphism method (AFLP) based on the differential sensitivity of isoschizomeric restriction enzymes to site-specific cytosine methylation. *The genome of V. cazorlensis plants exhibited extensive levels of methylation, and methylation-based epigenetic variation was structured into distinct between- and within- population components. Epigenetic differentiation of populations was correlated with adaptive genetic divergence revealed by a Bayesian population-genomic analysis of AFLP data. Significant associations existed at the individual genome level between adaptive AFLP loci and the methylation state of methylation-susceptible MSAP loci. *Population-specific, divergent patterns of correlated selection on epigenetic and genetic individual variation could account for the coordinated epigenetic-genetic adaptive population differentiation revealed by this study.
Mosquera Orgueira, Adrián
2015-01-01
DNA methylation is a frequent epigenetic mechanism that participates in transcriptional repression. Variations in DNA methylation with respect to gene expression are constant, and, for unknown reasons, some genes with highly methylated promoters are sometimes overexpressed. In this study we have analyzed the expression and methylation patterns of thousands of genes in five groups of cancer and normal tissue samples in order to determine local and genome-wide differences. We observed significant changes in global methylation-expression correlation in all the neoplasms, which suggests that differential correlation events are frequent in cancer. A focused analysis in the breast cancer cohort identified 1662 genes whose correlation varies significantly between normal and cancerous breast, but whose DNA methylation and gene expression patterns do not change substantially. These genes were enriched in cancer-related pathways and repressive chromatin features across various model cell lines, such as PRC2 binding and H3K27me3 marks. Substantial changes in methylation-expression correlation indicate that these genes are subject to epigenetic remodeling, where the differential activity of other factors break the expected relationship between both variables. Our findings suggest a complex regulatory landscape where a redistribution of local and large-scale chromatin repressive domains at differentially correlated genes (DCGs) creates epigenetic hotspots that modulate cancer-specific gene expression.
Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J; Pak, Toni R
2017-05-01
Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the previous 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24 h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. Copyright © 2016 Elsevier Inc. All rights reserved.
Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J.; Pak, Toni R.
2016-01-01
Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the last 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. PMID:27817987
DNA Methylation Profiling of Embryonic Stem Cell Differentiation into the Three Germ Layers
Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki
2011-01-01
Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes. PMID:22016810
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.
Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki
2011-01-01
Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes.
Li, Wanzhen; Wang, Yulong; Zhu, Jianyu; Wang, Zhangxun; Tang, Guiliang; Huang, Bo
2017-03-01
Conidia and mycelia are two important developmental stages in the asexual life cycle of entomopathogenic fungus Metarhizium. Despite the crucial role that DNA methylation plays in many biological processes, its role in regulation of gene expression and development in fungi is not yet fully understood. We performed genome-wide analysis of DNA methylation patterns of an M. robertsii strain with single base pair resolution. Specifically, we examined for changes in methylation patterns between the conidia and mycelia stages. The results showed that approximately 0.38 % of cytosines are methylated in conidia, which is lower than the DNA methylation level (0.42 %) in mycelia. We found that DNA methylation undergoes genome-wide reprogramming during fungal development in M. robertsii. 132 differentially methylated regions (DMRs), which were mostly distributed in gene regions, were identified. KEGG analysis revealed that the DMR-associated genes belong to metabolic pathways. Intriguingly, in contrast to most other eukaryotes, promoter activities in M. robertsii seemed differentially modulated by DNA methylation levels. We found that transcription tended to be enhanced in genes with moderate promoter methylation, while gene expression was decreased in genes with high or low promoter methylation. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Persistent organic pollutants alter DNA methylation during human adipocyte differentiation.
van den Dungen, Myrthe W; Murk, Albertinka J; Kok, Dieuwertje E; Steegenga, Wilma T
2017-04-01
Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what extent DNA methylation can be related to gene transcription. Adipocyte differentiation was induced in two human cell models with continuous exposure to different POPs throughout differentiation. From the seven tested POPs, perfluorooctanesulfonic acid (PFOS) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) decreased lipid accumulation, while tributyltin (TBT) increased lipid accumulation. In human mesenchymal stem cells (hMSCs), TCDD and TBT induced opposite gene expression profiles, whereas after PFOS exposure gene expression remained relatively stable. Genome-wide DNA methylation analysis showed that all three POPs affected DNA methylation patterns in adipogenic and other genes, possibly related to the phenotypic outcome, but without concomitant gene expression changes. Differential methylation was predominantly detected in intergenic regions, where the biological relevance of alterations in DNA methylation is unclear. This study demonstrates that POPs, at environmentally relevant levels, are able to induce differential DNA methylation in human differentiating adipocytes. Copyright © 2017 Wageningen University. Published by Elsevier Ltd.. All rights reserved.
Epigenetic Patterns in Successful Weight Loss Maintainers: A Pilot Study
Hawley, Nicola L.; Wing, Rena R.; Kelsey, Karl T.; McCaffery, Jeanne M.
2014-01-01
DNA methylation changes occur in animal models of calorie restriction, simulating human dieting, and in human subjects undergoing behavioral weight loss interventions. This suggests that obese individuals may possess unique epigenetic patterns that may vary with weight loss. Here, we examine whether methylation patterns in leukocytes differ in individuals who lost sufficient weight to go from obese to normal weight (successful weight loss maintainers; SWLM) vs currently obese (OB) or normal weight (NW) individuals. This study examined peripheral blood mononuclear cell (PBMC) methylation patterns in NW (n=16, current/lifetime BMI 18.5-24.9) and OB individuals (n=16, current BMI≥30), and SWLM (n=16, current BMI 18.5-24.9, lifetime maximum BMI ≥30, average weight loss 57.4 lbs) using an Illumina Infinium HumanMethylation450 BeadArray. No leukocyte population-adjusted epigenome-wide analyses were significant; however, potentially differentially methylated loci across groups were observed in RYR1 (p=1.54E-6), MPZL3 (p=4.70E-6), and TUBA3C (p=4.78E-6). In 32 obesity-related candidate genes, differential methylation patterns were found in BDNF (gene-wide p=0.00018). In RYR1, TUBA3C and BDNF, SWLM differed from OB but not NW. In this preliminary investigation, leukocyte SWLM DNA methylation patterns more closely resembled NW than OB individuals in three gene regions. These results suggest that PBMC methylation is associated with weight status. PMID:25520250
Costa, Augusta; Roussado, Cristóvão; Gonçalves, Elsa; Costa, Rita; Graça, José; Oliveira, M. Margarida
2017-01-01
DNA methylation is thought to influence Quercus suber cork quality, which is the main constraint for its economic valorisation. However, a deep knowledge of the cytosine methylation patterns disclosing the epigenetic variability of trees with different cork quality types is totally missing. This study investigates the hypothesis that variations in DNA methylation contribute to differences in cork cellular characteristics directly related to original or traumatic phellogen activity. We used MSAPs (Methylation Sensitive Amplified Polymorphism) to assess DNA methylation patterns of cork and leaf tissues of Q. suber adult trees growing in three cork oak stands. The relationship between the detected polymorphisms and the diversity of cork quality traits was explored by a marker-trait analysis focusing on the most relevant quality characteristics. Populations differed widely in cork quality, but only slightly in degree of epigenetic differentiation. Four MSAP markers (1.3% of the total) were significantly associated with the most noteworthy quality traits: wood inclusions (nails) and porosity. This evidence supports the potential role of cytosine methylation in the modulation of differential phellogen activity either involved in localized cell death or in pore production, resulting in different cork qualities. Although, the underlying basis of the methylation polymorphism of loci affecting cork quality traits remain unclear, the disclosure of markers statistically associated with cork quality strengthens the potential role of DNA methylation in the regulation of these traits, namely at the phellogen level. PMID:28045988
Differential epigenome-wide DNA methylation patterns in childhood obesity-associated asthma
Rastogi, Deepa; Suzuki, Masako; Greally, John M.
2013-01-01
While DNA methylation plays a role in T-helper (Th) cell maturation, its potential dysregulation in the non-atopic Th1-polarized systemic inflammation observed in obesity-associated asthma is unknown. We studied DNA methylation epigenome-wide in peripheral blood mononuclear cells (PBMCs) from 8 obese asthmatic pre-adolescent children and compared it to methylation in PBMCs from 8 children with asthma alone, obesity alone and healthy controls. Differentially methylated loci implicated certain biologically relevant molecules and pathways. PBMCs from obese asthmatic children had distinctive DNA methylation patterns, with decreased promoter methylation of CCL5, IL2RA and TBX21, genes encoding proteins linked with Th1 polarization, and increased promoter methylation of FCER2, a low-affinity receptor for IgE, and of TGFB1, inhibitor of Th cell activation. T-cell signaling and macrophage activation were the two primary pathways that were selectively hypomethylated in obese asthmatics. These findings suggest that dysregulated DNA methylation is associated with non-atopic inflammation observed in pediatric obesity-associated asthma. PMID:23857381
Novakovic, Boris; Fournier, Thierry; Harris, Lynda K; James, Joanna; Roberts, Claire T; Yong, Hannah E J; Kalionis, Bill; Evain-Brion, Danièle; Ebeling, Peter R; Wallace, Euan M; Saffery, Richard; Murthi, Padma
2017-07-03
Homeobox genes regulate embryonic and placental development, and are widely expressed in the human placenta, but their regulatory control by DNA methylation is unclear. DNA methylation analysis was performed on human placentae from first, second and third trimesters to determine methylation patterns of homeobox gene promoters across gestation. Most homeobox genes were hypo-methylated throughout gestation, suggesting that DNA methylation is not the primary mechanism involved in regulating HOX genes expression in the placenta. Nevertheless, several genes showed variable methylation patterns across gestation, with a general trend towards an increase in methylation over gestation. Three genes (TLX1, HOXA10 and DLX5) showed inverse gains of methylation with decreasing mRNA expression throughout pregnancy, supporting a role for DNA methylation in their regulation. Proteins encoded by these genes were primarily localised to the syncytiotrophoblast layer, and showed decreased expression later in gestation. siRNA mediated downregulation of DLX5, TLX1 and HOXA10 in primary term villous cytotrophoblast resulted in decreased proliferation and increased expression of differentiation markers, including ERVW-1. Our data suggest that loss of DLX5, TLX1 and HOXA10 expression in late gestation is required for proper placental differentiation and function.
Wang, Yao; Jadhav, Rohit Ramakant; Liu, Joseph; Wilson, Desiree; Chen, Yidong; Thompson, Ian M; Troyer, Dean A; Hernandez, Javier; Shi, Huidong; Leach, Robin J; Huang, Tim H-M; Jin, Victor X
2016-02-29
Aberrant DNA methylation at promoters is often linked to tumorigenesis. But many aspects of DNA methylation remain unexplored, including the individual roles of distal and gene body methylation, as well as their collaborative roles with promoter methylation. Here we performed a MBD-seq analysis on prostate specimens classified into low, high, and very high risk group based on Gleason score and TNM stages. We identified gene sets with differential methylation regions (DMRs) in Distal, TSS, gene body and TES. To understand the collaborative roles, TSS was compared with the other three DMRs, resulted in 12 groups of genes with collaborative differential methylation patterns (CDMPs). We found several groups of genes that show opposite methylation patterns in Distal and Genic regions compared to TSS region, and in general they are differentially expressed genes (DEGs) in tumors in TCGA RNA-seq data. IPA (Ingenuity Pathway Analysis) reveals AR/TP53 signaling network to be a major signaling pathway, and survival analysis indicates genes subsets significantly associated with prostate cancer recurrence. Our results suggest that DNA methylation in Distal and Genic regions also plays critical roles in contributing to prostate tumorigenesis, and may act either positively or negatively with TSSs to alter gene regulation in tumors.
DNMT1 maintains progenitor function in self-renewing somatic tissue.
Sen, George L; Reuter, Jason A; Webster, Daniel E; Zhu, Lilly; Khavari, Paul A
2010-01-28
Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, the role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unclear. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis showed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, UHRF1 (refs 9, 10), a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A and B, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue.
DNA methylation signature of human fetal alcohol spectrum disorder.
Portales-Casamar, Elodie; Lussier, Alexandre A; Jones, Meaghan J; MacIsaac, Julia L; Edgar, Rachel D; Mah, Sarah M; Barhdadi, Amina; Provost, Sylvie; Lemieux-Perreault, Louis-Philippe; Cynader, Max S; Chudley, Albert E; Dubé, Marie-Pierre; Reynolds, James N; Pavlidis, Paul; Kobor, Michael S
2016-01-01
Prenatal alcohol exposure is the leading preventable cause of behavioral and cognitive deficits, which may affect between 2 and 5 % of children in North America. While the underlying mechanisms of alcohol's effects on development remain relatively unknown, emerging evidence implicates epigenetic mechanisms in mediating the range of symptoms observed in children with fetal alcohol spectrum disorder (FASD). Thus, we investigated the effects of prenatal alcohol exposure on genome-wide DNA methylation in the NeuroDevNet FASD cohort, the largest cohort of human FASD samples to date. Genome-wide DNA methylation patterns of buccal epithelial cells (BECs) were analyzed using the Illumina HumanMethylation450 array in a Canadian cohort of 206 children (110 FASD and 96 controls). Genotyping was performed in parallel using the Infinium HumanOmni2.5-Quad v1.0 BeadChip. After correcting for the effects of genetic background, we found 658 significantly differentially methylated sites between FASD cases and controls, with 41 displaying differences in percent methylation change >5 %. Furthermore, 101 differentially methylated regions containing two or more CpGs were also identified, overlapping with 95 different genes. The majority of differentially methylated genes were highly expressed at the level of mRNA in brain samples from the Allen Brain Atlas, and independent DNA methylation data from cortical brain samples showed high correlations with BEC DNA methylation patterns. Finally, overrepresentation analysis of genes with up-methylated CpGs revealed a significant enrichment for neurodevelopmental processes and diseases, such as anxiety, epilepsy, and autism spectrum disorders. These findings suggested that prenatal alcohol exposure is associated with distinct DNA methylation patterns in children and adolescents, raising the possibility of an epigenetic biomarker of FASD.
Mosquera Orgueira, Adrián
2015-01-01
DNA methylation is a frequent epigenetic mechanism that participates in transcriptional repression. Variations in DNA methylation with respect to gene expression are constant, and, for unknown reasons, some genes with highly methylated promoters are sometimes overexpressed. In this study we have analyzed the expression and methylation patterns of thousands of genes in five groups of cancer and normal tissue samples in order to determine local and genome-wide differences. We observed significant changes in global methylation-expression correlation in all the neoplasms, which suggests that differential correlation events are frequent in cancer. A focused analysis in the breast cancer cohort identified 1662 genes whose correlation varies significantly between normal and cancerous breast, but whose DNA methylation and gene expression patterns do not change substantially. These genes were enriched in cancer-related pathways and repressive chromatin features across various model cell lines, such as PRC2 binding and H3K27me3 marks. Substantial changes in methylation-expression correlation indicate that these genes are subject to epigenetic remodeling, where the differential activity of other factors break the expected relationship between both variables. Our findings suggest a complex regulatory landscape where a redistribution of local and large-scale chromatin repressive domains at differentially correlated genes (DCGs) creates epigenetic hotspots that modulate cancer-specific gene expression. PMID:26029238
Nonparametric Bayesian clustering to detect bipolar methylated genomic loci.
Wu, Xiaowei; Sun, Ming-An; Zhu, Hongxiao; Xie, Hehuang
2015-01-16
With recent development in sequencing technology, a large number of genome-wide DNA methylation studies have generated massive amounts of bisulfite sequencing data. The analysis of DNA methylation patterns helps researchers understand epigenetic regulatory mechanisms. Highly variable methylation patterns reflect stochastic fluctuations in DNA methylation, whereas well-structured methylation patterns imply deterministic methylation events. Among these methylation patterns, bipolar patterns are important as they may originate from allele-specific methylation (ASM) or cell-specific methylation (CSM). Utilizing nonparametric Bayesian clustering followed by hypothesis testing, we have developed a novel statistical approach to identify bipolar methylated genomic regions in bisulfite sequencing data. Simulation studies demonstrate that the proposed method achieves good performance in terms of specificity and sensitivity. We used the method to analyze data from mouse brain and human blood methylomes. The bipolar methylated segments detected are found highly consistent with the differentially methylated regions identified by using purified cell subsets. Bipolar DNA methylation often indicates epigenetic heterogeneity caused by ASM or CSM. With allele-specific events filtered out or appropriately taken into account, our proposed approach sheds light on the identification of cell-specific genes/pathways under strong epigenetic control in a heterogeneous cell population.
Epigenetic patterns in successful weight loss maintainers: a pilot study.
Huang, Yen-Tsung; Maccani, Jennifer Z J; Hawley, Nicola L; Wing, Rena R; Kelsey, Karl T; McCaffery, Jeanne M
2015-05-01
DNA methylation changes occur in animal models of calorie restriction, simulating human dieting, and in human subjects undergoing behavioral weight loss interventions. This suggests that obese (OB) individuals may possess unique epigenetic patterns that may vary with weight loss. Here, we examine whether methylation patterns in leukocytes differ in individuals who lost sufficient weight to go from OB to normal weight (NW; successful weight loss maintainers; SWLMs) vs currently OB or NW individuals. This study examined peripheral blood mononuclear cell (PBMC) methylation patterns in NW (n=16, current/lifetime BMI 18.5-24.9) and OB individuals (n=16, current body mass index (BMI)⩾30), and SWLM (n=16, current BMI 18.5-24.9, lifetime maximum BMI ⩾30, average weight loss 57.4 lbs) using an Illumina Infinium HumanMethylation450 BeadArray. No leukocyte population-adjusted epigenome-wide analyses were significant; however, potentially differentially methylated loci across the groups were observed in ryanodine receptor-1 (RYR1; P=1.54E-6), myelin protein zero-like 3 (MPZL3; P=4.70E-6) and alpha 3c tubulin (TUBA3C; P=4.78E-6). In 32 obesity-related candidate genes, differential methylation patterns were found in brain-derived neurotrophic factor (BDNF; gene-wide P=0.00018). In RYR1, TUBA3C and BDNF, SWLM differed from OB but not NW. In this preliminary investigation, leukocyte SWLM DNA methylation patterns more closely resembled NW than OB individuals in three gene regions. These results suggest that PBMC methylation is associated with weight status.
DNMT1 Maintains Progenitor Function in Self-Renewing Somatic Tissue
Sen, George L.; Reuter, Jason A.; Webster, Daniel E.; Zhu, Lilly; Khavari, Paul A.
2010-01-01
Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation1,2. DNA methylation3,4,5 provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1)6,7 maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance,8 a clear role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unknown. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis revealed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, we show that UHRF1,9,10 a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A11,12 and B13, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue. PMID:20081831
Wermann, Hendrik; Stoop, Hans; Gillis, Ad J M; Honecker, Friedemann; van Gurp, Ruud J H L M; Ammerpohl, Ole; Richter, Julia; Oosterhuis, J Wolter; Bokemeyer, Carsten; Looijenga, Leendert H J
2010-08-01
Differences in the global methylation pattern, ie hyper- as well as hypo-methylation, are observed in cancers including germ cell tumours (GCTs). Related to their precursor cells, GCT methylation status differs according to histology. We investigated the methylation pattern of normal fetal, infantile, and adult germ cells (n = 103) and GCTs (n = 251) by immunohistochemical staining for 5-(m)cytidine. The global methylation pattern of male germ cells changes from hypomethylation to hypermethylation, whereas female germ cells remain unmethylated at all stages. Undifferentiated GCTs (seminomas, intratubular germ cell neoplasia unclassified, and gonadoblastomas) are hypomethylated, whereas more differentiated GCTs (teratomas, yolk sac tumours, and choriocarcinomas) show a higher degree of methylation. Embryonal carcinomas show an intermediate pattern. Resistance to cisplatin was assessed in the seminomatous cell line TCam-2 before and after demethylation using 5-azacytidine. Exposure to 5-azacytidine resulted in decreased resistance to cisplatin. Furthermore, after demethylation, the stem cell markers NANOG and POU5F1 (OCT3/4), as well as the germ cell-specific marker VASA, showed increased expression. Following treatment with 5-azacytidine, TCam-2 cells were analysed using a high-throughput methylation screen for changes in the methylation sites of 14,000 genes. Among the genes revealing changes, interesting targets were identified: ie demethylation of KLF11, a putative tumour suppressor gene, and hypermethylation of CFLAR, a gene previously described in treatment resistance in GCTs.
Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer.
Kim, Jung H; Dhanasekaran, Saravana M; Prensner, John R; Cao, Xuhong; Robinson, Daniel; Kalyana-Sundaram, Shanker; Huang, Christina; Shankar, Sunita; Jing, Xiaojun; Iyer, Matthew; Hu, Ming; Sam, Lee; Grasso, Catherine; Maher, Christopher A; Palanisamy, Nallasivam; Mehra, Rohit; Kominsky, Hal D; Siddiqui, Javed; Yu, Jindan; Qin, Zhaohui S; Chinnaiyan, Arul M
2011-07-01
Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression. We mapped the global DNA methylation patterns in select prostate tissues and cell lines using MethylPlex-next-generation sequencing (M-NGS). Hidden Markov model-based next-generation sequence analysis identified ∼68,000 methylated regions per sample. While global CpG island (CGI) methylation was not differential between benign adjacent and cancer samples, overall promoter CGI methylation significantly increased from ~12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues, respectively (P-value < 2 × 10(-16)). We found distinct patterns of promoter methylation around transcription start sites, where methylation occurred not only on the CGIs, but also on flanking regions and CGI sparse promoters. Among the 6691 methylated promoters in prostate tissues, 2481 differentially methylated regions (DMRs) are cancer-specific, including numerous novel DMRs. A novel cancer-specific DMR in the WFDC2 promoter showed frequent methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for alternate transcription start site utilization, and these modifications segregated into distinct regions when present on the same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene fusion-positive and -negative cancers, and we confirmed this observation using pyrosequencing on a tissue panel. This comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.
Redundancy analysis allows improved detection of methylation changes in large genomic regions.
Ruiz-Arenas, Carlos; González, Juan R
2017-12-14
DNA methylation is an epigenetic process that regulates gene expression. Methylation can be modified by environmental exposures and changes in the methylation patterns have been associated with diseases. Methylation microarrays measure methylation levels at more than 450,000 CpGs in a single experiment, and the most common analysis strategy is to perform a single probe analysis to find methylation probes associated with the outcome of interest. However, methylation changes usually occur at the regional level: for example, genomic structural variants can affect methylation patterns in regions up to several megabases in length. Existing DMR methods provide lists of Differentially Methylated Regions (DMRs) of up to only few kilobases in length, and cannot check if a target region is differentially methylated. Therefore, these methods are not suitable to evaluate methylation changes in large regions. To address these limitations, we developed a new DMR approach based on redundancy analysis (RDA) that assesses whether a target region is differentially methylated. Using simulated and real datasets, we compared our approach to three common DMR detection methods (Bumphunter, blockFinder, and DMRcate). We found that Bumphunter underestimated methylation changes and blockFinder showed poor performance. DMRcate showed poor power in the simulated datasets and low specificity in the real data analysis. Our method showed very high performance in all simulation settings, even with small sample sizes and subtle methylation changes, while controlling type I error. Other advantages of our method are: 1) it estimates the degree of association between the DMR and the outcome; 2) it can analyze a targeted or region of interest; and 3) it can evaluate the simultaneous effects of different variables. The proposed methodology is implemented in MEAL, a Bioconductor package designed to facilitate the analysis of methylation data. We propose a multivariate approach to decipher whether an outcome of interest alters the methylation pattern of a region of interest. The method is designed to analyze large target genomic regions and outperforms the three most popular methods for detecting DMRs. Our method can evaluate factors with more than two levels or the simultaneous effect of more than one continuous variable, which is not possible with the state-of-the-art methods.
Rodríguez-Dorantes, M; Lizano-Soberón, M; Camacho-Arroyo, I; Calzada-León, R; Morimoto, S; Téllez-Ascencio, N; Cerbón, M A
2002-03-01
The synthesis of dihydrotestosterone (DHT) is catalyzed by steroid 5alpha-reductase isozymes 1 and 2, and this function determines the development of the male phenotype during embriogenesis and the growth of androgen sensitive tissues during puberty. The aim of this study was to determine the cytosine methylation status of 5alpha-reductase isozymes types 1 and 2 genes in normal and in 5alpha-reductase deficient men. Genomic DNA was obtained from lymphocytes of both normal subjects and patients with primary 5alpha-reductase deficiency due to point mutations in 5alpha-reductase 2 gene. Southern blot analysis of 5alpha-reductase types 1 and 2 genes from DNA samples digested with HpaII presented a different cytosine methylation pattern compared to that observed with its isoschizomer MspI, indicating that both genes are methylated in CCGG sequences. The analysis of 5alpha-reductase 1 gene from DNA samples digested with Sau3AI and its isoschizomer MboI which recognize methylation in GATC sequences showed an identical methylation pattern. In contrast, 5alpha-reductase 2 gene digested with Sau3AI presented a different methylation pattern to that of the samples digested with MboI, indicating that steroid 5alpha-reductase 2 gene possess methylated cytosines in GATC sequences. Analysis of exon 4 of 5alpha-reductase 2 gene after metabisulfite PCR showed that normal and deficient subjects present a different methylation pattern, being more methylated in patients with 5alpha-reductase 2 mutated gene. The overall results suggest that 5alpha-reductase genes 1 and 2 are differentially methylated in lymphocytes from normal and 5alpha-reductase deficient patients. Moreover, the extensive cytosine methylation pattern observed in exon 4 of 5alpha-reductase 2 gene in deficient patients, points out to an increased rate of mutations in this gene.
Zhi, Hui; Li, Xin; Wang, Peng; Gao, Yue; Gao, Baoqing; Zhou, Dianshuang; Zhang, Yan; Guo, Maoni; Yue, Ming; Shen, Weitao
2018-01-01
Abstract Lnc2Meth (http://www.bio-bigdata.com/Lnc2Meth/), an interactive resource to identify regulatory relationships between human long non-coding RNAs (lncRNAs) and DNA methylation, is not only a manually curated collection and annotation of experimentally supported lncRNAs-DNA methylation associations but also a platform that effectively integrates tools for calculating and identifying the differentially methylated lncRNAs and protein-coding genes (PCGs) in diverse human diseases. The resource provides: (i) advanced search possibilities, e.g. retrieval of the database by searching the lncRNA symbol of interest, DNA methylation patterns, regulatory mechanisms and disease types; (ii) abundant computationally calculated DNA methylation array profiles for the lncRNAs and PCGs; (iii) the prognostic values for each hit transcript calculated from the patients clinical data; (iv) a genome browser to display the DNA methylation landscape of the lncRNA transcripts for a specific type of disease; (v) tools to re-annotate probes to lncRNA loci and identify the differential methylation patterns for lncRNAs and PCGs with user-supplied external datasets; (vi) an R package (LncDM) to complete the differentially methylated lncRNAs identification and visualization with local computers. Lnc2Meth provides a timely and valuable resource that can be applied to significantly expand our understanding of the regulatory relationships between lncRNAs and DNA methylation in various human diseases. PMID:29069510
Genomic Distribution and Inter-Sample Variation of Non-CpG Methylation across Human Cell Types
Liao, Jing; Zhang, Yingying; Gu, Hongcang; Bock, Christoph; Boyle, Patrick; Epstein, Charles B.; Bernstein, Bradley E.; Lengauer, Thomas; Gnirke, Andreas; Meissner, Alexander
2011-01-01
DNA methylation plays an important role in development and disease. The primary sites of DNA methylation in vertebrates are cytosines in the CpG dinucleotide context, which account for roughly three quarters of the total DNA methylation content in human and mouse cells. While the genomic distribution, inter-individual stability, and functional role of CpG methylation are reasonably well understood, little is known about DNA methylation targeting CpA, CpT, and CpC (non-CpG) dinucleotides. Here we report a comprehensive analysis of non-CpG methylation in 76 genome-scale DNA methylation maps across pluripotent and differentiated human cell types. We confirm non-CpG methylation to be predominantly present in pluripotent cell types and observe a decrease upon differentiation and near complete absence in various somatic cell types. Although no function has been assigned to it in pluripotency, our data highlight that non-CpG methylation patterns reappear upon iPS cell reprogramming. Intriguingly, the patterns are highly variable and show little conservation between different pluripotent cell lines. We find a strong correlation of non-CpG methylation and DNMT3 expression levels while showing statistical independence of non-CpG methylation from pluripotency associated gene expression. In line with these findings, we show that knockdown of DNMTA and DNMT3B in hESCs results in a global reduction of non-CpG methylation. Finally, non-CpG methylation appears to be spatially correlated with CpG methylation. In summary these results contribute further to our understanding of cytosine methylation patterns in human cells using a large representative sample set. PMID:22174693
Koch, Ilana Janowitz; Clark, Michelle M.; Thompson, Michael J.; Deere-Machemer, Kerry A.; Wang, Jun; Duarte, Lionel; Gnanadesikan, Gitanjali E.; McCoy, Eskender L.; Rubbi, Liudmilla; Stahler, Daniel R.; Pellegrini, Matteo; Ostrander, Elaine A.; Wayne, Robert K.; Sinsheimer, Janet S.; vonHoldt, Bridgett M.
2015-01-01
The process of domestication can exert intense trait-targeted selection on genes and regulatory regions. Specifically, rapid shifts in the structure and sequence of genomic regulatory elements could provide an explanation for the extensive, and sometimes extreme, variation in phenotypic traits observed in domesticated species. Here, we explored methylation differences from >24,000 cytosines distributed across the genomes of the domesticated dog (Canis familiaris) and the gray wolf (C. lupus). PCA and model-based cluster analyses identified two primary groups, domestic versus wild canids. A scan for significantly differentially methylated sites (DMSs) revealed species-specific patterns at 68 sites after correcting for cell heterogeneity, with weak yet significant hyper-methylation typical of purebred dogs when compared to wolves (59% and 58%, p<0.05, respectively). Additionally, methylation patterns at eight genes significantly deviated from neutrality, with similar trends of hyper-methylation in purebred dogs. The majority (>66%) of differentially methylated regions contained or were associated with repetitive elements, indicative of a genotype-mediated trend. However, DMSs were also often linked to functionally relevant genes (e.g. neurotransmitters). Finally, we utilized known genealogical relationships among Yellowstone wolves to survey transmission stability of methylation marks, from which we found a substantial fraction that demonstrated high heritability (both H2 and h2>0.99). These analyses provide a unique epigenetic insight into the molecular consequences of recent selection and radiation of our most ancient domesticated companion, the dog. These findings suggest selection has acted on methylation patterns, providing a new genomic perspective on phenotypic diversification in domesticated species. PMID:27112634
Differential DNA methylation and lymphocyte proportions in a Costa Rican high longevity region.
McEwen, Lisa M; Morin, Alexander M; Edgar, Rachel D; MacIsaac, Julia L; Jones, Meaghan J; Dow, William H; Rosero-Bixby, Luis; Kobor, Michael S; Rehkopf, David H
2017-01-01
The Nicoya Peninsula in Costa Rica has one of the highest old-age life expectancies in the world, but the underlying biological mechanisms of this longevity are not well understood. As DNA methylation is hypothesized to be a component of biological aging, we focused on this malleable epigenetic mark to determine its association with current residence in Nicoya versus elsewhere in Costa Rica. Examining a population's unique DNA methylation pattern allows us to differentiate hallmarks of longevity from individual stochastic variation. These differences may be characteristic of a combination of social, biological, and environmental contexts. In a cross-sectional subsample of the Costa Rican Longevity and Healthy Aging Study, we compared whole blood DNA methylation profiles of residents from Nicoya ( n = 48) and non-Nicoya (other Costa Rican regions, n = 47) using the Infinium HumanMethylation450 microarray. We observed a number of differences that may be markers of delayed aging, such as bioinformatically derived differential CD8+ T cell proportions. Additionally, both site- and region-specific analyses revealed DNA methylation patterns unique to Nicoyans. We also observed lower overall variability in DNA methylation in the Nicoyan population, another hallmark of younger biological age. Nicoyans represent an interesting group of individuals who may possess unique immune cell proportions as well as distinct differences in their epigenome, at the level of DNA methylation.
White, Nicole; Benton, Miles; Kennedy, Daniel; Fox, Andrew; Griffiths, Lyn; Lea, Rodney; Mengersen, Kerrie
2017-01-01
Cell- and sex-specific differences in DNA methylation are major sources of epigenetic variation in whole blood. Heterogeneity attributable to cell type has motivated the identification of cell-specific methylation at the CpG level, however statistical methods for this purpose have been limited to pairwise comparisons between cell types or between the cell type of interest and whole blood. We developed a Bayesian model selection algorithm for the identification of cell-specific methylation profiles that incorporates knowledge of shared cell lineage and allows for the identification of differential methylation profiles in one or more cell types simultaneously. Under the proposed methodology, sex-specific differences in methylation by cell type are also assessed. Using publicly available, cell-sorted methylation data, we show that 51.3% of female CpG markers and 61.4% of male CpG markers identified were associated with differential methylation in more than one cell type. The impact of cell lineage on differential methylation was also highlighted. An evaluation of sex-specific differences revealed differences in CD56+NK methylation, within both single and multi- cell dependent methylation patterns. Our findings demonstrate the need to account for cell lineage in studies of differential methylation and associated sex effects.
QDMR: a quantitative method for identification of differentially methylated regions by entropy
Zhang, Yan; Liu, Hongbo; Lv, Jie; Xiao, Xue; Zhu, Jiang; Liu, Xiaojuan; Su, Jianzhong; Li, Xia; Wu, Qiong; Wang, Fang; Cui, Ying
2011-01-01
DNA methylation plays critical roles in transcriptional regulation and chromatin remodeling. Differentially methylated regions (DMRs) have important implications for development, aging and diseases. Therefore, genome-wide mapping of DMRs across various temporal and spatial methylomes is important in revealing the impact of epigenetic modifications on heritable phenotypic variation. We present a quantitative approach, quantitative differentially methylated regions (QDMRs), to quantify methylation difference and identify DMRs from genome-wide methylation profiles by adapting Shannon entropy. QDMR was applied to synthetic methylation patterns and methylation profiles detected by methylated DNA immunoprecipitation microarray (MeDIP-chip) in human tissues/cells. This approach can give a reasonable quantitative measure of methylation difference across multiple samples. Then DMR threshold was determined from methylation probability model. Using this threshold, QDMR identified 10 651 tissue DMRs which are related to the genes enriched for cell differentiation, including 4740 DMRs not identified by the method developed by Rakyan et al. QDMR can also measure the sample specificity of each DMR. Finally, the application to methylation profiles detected by reduced representation bisulphite sequencing (RRBS) in mouse showed the platform-free and species-free nature of QDMR. This approach provides an effective tool for the high-throughput identification of potential functional regions involved in epigenetic regulation. PMID:21306990
Whole-genome fingerprint of the DNA methylome during human B cell differentiation.
Kulis, Marta; Merkel, Angelika; Heath, Simon; Queirós, Ana C; Schuyler, Ronald P; Castellano, Giancarlo; Beekman, Renée; Raineri, Emanuele; Esteve, Anna; Clot, Guillem; Verdaguer-Dot, Néria; Duran-Ferrer, Martí; Russiñol, Nuria; Vilarrasa-Blasi, Roser; Ecker, Simone; Pancaldi, Vera; Rico, Daniel; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Pascual, Marien; Agirre, Xabier; Prosper, Felipe; Alignani, Diego; Paiva, Bruno; Caron, Gersende; Fest, Thierry; Muench, Marcus O; Fomin, Marina E; Lee, Seung-Tae; Wiemels, Joseph L; Valencia, Alfonso; Gut, Marta; Flicek, Paul; Stunnenberg, Hendrik G; Siebert, Reiner; Küppers, Ralf; Gut, Ivo G; Campo, Elías; Martín-Subero, José I
2015-07-01
We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.
Regional differences in mitochondrial DNA methylation in human post-mortem brain tissue.
Devall, Matthew; Smith, Rebecca G; Jeffries, Aaron; Hannon, Eilis; Davies, Matthew N; Schalkwyk, Leonard; Mill, Jonathan; Weedon, Michael; Lunnon, Katie
2017-01-01
DNA methylation is an important epigenetic mechanism involved in gene regulation, with alterations in DNA methylation in the nuclear genome being linked to numerous complex diseases. Mitochondrial DNA methylation is a phenomenon that is receiving ever-increasing interest, particularly in diseases characterized by mitochondrial dysfunction; however, most studies have been limited to the investigation of specific target regions. Analyses spanning the entire mitochondrial genome have been limited, potentially due to the amount of input DNA required. Further, mitochondrial genetic studies have been previously confounded by nuclear-mitochondrial pseudogenes. Methylated DNA Immunoprecipitation Sequencing is a technique widely used to profile DNA methylation across the nuclear genome; however, reads mapped to mitochondrial DNA are often discarded. Here, we have developed an approach to control for nuclear-mitochondrial pseudogenes within Methylated DNA Immunoprecipitation Sequencing data. We highlight the utility of this approach in identifying differences in mitochondrial DNA methylation across regions of the human brain and pre-mortem blood. We were able to correlate mitochondrial DNA methylation patterns between the cortex, cerebellum and blood. We identified 74 nominally significant differentially methylated regions ( p < 0.05) in the mitochondrial genome, between anatomically separate cortical regions and the cerebellum in matched samples ( N = 3 matched donors). Further analysis identified eight significant differentially methylated regions between the total cortex and cerebellum after correcting for multiple testing. Using unsupervised hierarchical clustering analysis of the mitochondrial DNA methylome, we were able to identify tissue-specific patterns of mitochondrial DNA methylation between blood, cerebellum and cortex. Our study represents a comprehensive analysis of the mitochondrial methylome using pre-existing Methylated DNA Immunoprecipitation Sequencing data to identify brain region-specific patterns of mitochondrial DNA methylation.
Plasticity of DNA methylation and gene expression under zinc deficiency in Arabidopsis roots.
Chen, Xiaochao; Schönberger, Brigitte; Menz, Jochen; Ludewig, Uwe
2018-05-25
DNA methylation is a heritable chromatin modification that maintains chromosome stability, regulates transposon silencing and appears to be involved in gene expression in response to environmental conditions. Environmental stress alters DNA methylation patterns that are correlated with gene expression differences. Here, genome-wide differential DNA-methylation was identified upon prolonged Zn deficiency, leading to hypo- and hyper-methylated chromosomal regions. Preferential CpG methylation changes occurred in gene promoters and gene bodies, but did not overlap with transcriptional start sites. Methylation changes were also prominent in transposable elements. By contrast, non-CG methylation differences were exclusively found in promoters of protein coding genes and in transposable elements. Strongly Zn deficiency-induced genes and their promoters were mostly non-methylated, irrespective of Zn supply. Differential DNA methylation in the CpG and CHG, but not in the CHH context, was found close to a few up-regulated Zn-deficiency genes. However, the transcriptional Zn-deficiency response in roots appeared little correlated with associated DNA methylation changes in promoters or gene bodies. Furthermore, under Zn deficiency, developmental defects were identified in an Arabidopsis mutant lacking non-CpG methylation. The root methylome thus responds specifically to a micro-nutrient deficiency and is important for efficient Zn utilization at low availability, but the relationship of differential methylation and differentially expressed genes is surprisingly poor.
From Histones to RNA: Role of Methylation in Signal Proteins Involved in Adipogenesis.
Wang, Xinxia; Wang, Yizhen
2017-01-01
New fat cells originate from a preexisting population of undifferentiated progenitor cells named preadipocytes. The process in which preadipocytes proliferate and differentiate into mature adipocytes under certain circumstances is called adipogenesis. In the past decade, many epigenetic factors have been shown to be pivotal for the appropriate timing of adipogenesis. A large number of coregulators at critical gene promoters set up specific patterns of DNA methylation, histone methylation and RNA methylation, which act as an epigenetic code to modulate the correct progress of adipocyte differentiation and adipogenesis. In this review, we focus on the functions and roles of epigenetic processes in preadipocyte differentiation and adipogenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Rea, Matthew; Eckstein, Meredith; Eleazer, Rebekah; Smith, Caroline; Fondufe-Mittendorf, Yvonne N.
2017-02-01
Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. Additionally, these differential methylation changes correlated positively with changes in gene expression and alternative splicing. Interestingly, most of these differentially methylated genes function in cell adhesion and communication pathways. To gain insight into how genomic DNA methylation patterns are regulated during iAs-mediated carcinogenesis, we show that iAs probably targets CTCF binding at the promoter of DNA methyltransferases, regulating their expression. These findings reveal how CTCF binding regulates DNA methyltransferase to reprogram the methylome in response to an environmental toxin.
Rea, Matthew; Eckstein, Meredith; Eleazer, Rebekah; Smith, Caroline; Fondufe-Mittendorf , Yvonne N.
2017-01-01
Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. Additionally, these differential methylation changes correlated positively with changes in gene expression and alternative splicing. Interestingly, most of these differentially methylated genes function in cell adhesion and communication pathways. To gain insight into how genomic DNA methylation patterns are regulated during iAs-mediated carcinogenesis, we show that iAs probably targets CTCF binding at the promoter of DNA methyltransferases, regulating their expression. These findings reveal how CTCF binding regulates DNA methyltransferase to reprogram the methylome in response to an environmental toxin. PMID:28150704
DNA methylation patterns and gene expression associated with litter size in Berkshire pig placenta
Kwon, Seulgi; Park, Da Hye; Kim, Tae Wan; Kang, Deok Gyeong; Yu, Go Eun; Kim, Il-Suk; Park, Hwa Chun; Ha, Jeongim; Kim, Chul Wook
2017-01-01
Increasing litter size is of great interest to the pig industry. DNA methylation is an important epigenetic modification that regulates gene expression, resulting in livestock phenotypes such as disease resistance, milk production, and reproduction. We classified Berkshire pigs into two groups according to litter size and estimated breeding value: smaller (SLG) and larger (LLG) litter size groups. Genome-wide DNA methylation and gene expression were analyzed using placenta genomic DNA and RNA to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs) associated with litter size. The methylation levels of CpG dinucleotides in different genomic regions were noticeably different between the groups, while global methylation pattern was similar, and excluding intergenic regions they were found the most frequently in gene body regions. Next, we analyzed RNA-Seq data to identify DEGs between the SLG and LLG groups. A total of 1591 DEGs were identified: 567 were downregulated and 1024 were upregulated in LLG compared to SLG. To identify genes that simultaneously exhibited changes in DNA methylation and mRNA expression, we integrated and analyzed the data from bisulfite-Seq and RNA-Seq. Nine DEGs positioned in DMRs were found. The expression of only three of these genes (PRKG2, CLCA4, and PCK1) was verified by RT-qPCR. Furthermore, we observed the same methylation patterns in blood samples as in the placental tissues by PCR-based methylation analysis. Together, these results provide useful data regarding potential epigenetic markers for selecting hyperprolific sows. PMID:28880934
Bens, S; Ammerpohl, O; Martin-Subero, J I; Appari, M; Richter, J; Hiort, O; Werner, R; Riepe, F G; Siebert, R; Holterhus, P-M
2011-01-01
Male external genital differentiation is accompanied by implementation of a long-term, male-specific gene expression pattern indicating androgen programming in cultured genital fibroblasts. We hypothesized the existence of an epigenetic background contributing to this phenomenon. DNA methylation levels in 2 normal scrotal fibroblast strains from 46,XY males compared to 2 labia majora fibroblast strains from 46,XY females with complete androgen insensitivity syndrome (AIS) due to androgen receptor (AR) mutations were analyzed by Illumina GoldenGate methylation arrays®. Results were validated with pyrosequencing in labia majora fibroblast strains from fifteen 46,XY patients and compared to nine normal male scrotal fibroblast strains. HOXA5 showed a significantly higher methylation level in complete AIS. This finding was confirmed by bisulfite pyrosequencing of 14 CpG positions within the HOXA5 promoter in the same strains. Extension of the 2 groups revealed a constant low HOXA5 methylation pattern in the controls in contrast to a highly variable methylation pattern in the AIS patients. HOXA5 represents a candidate gene of androgen-mediated promoter methylation. The constantly low HOXA5 DNA methylation level of normal male scrotal fibroblast strains and the frequently high methylation levels in labia majora fibroblast strains in AIS indicate for the first time that androgen programming in sexual differentiation is not restricted to global gene transcription but also occurs at the epigenetic level. 2011 S. Karger AG, Basel.
Zhi, Hui; Li, Xin; Wang, Peng; Gao, Yue; Gao, Baoqing; Zhou, Dianshuang; Zhang, Yan; Guo, Maoni; Yue, Ming; Shen, Weitao; Ning, Shangwei; Jin, Lianhong; Li, Xia
2018-01-04
Lnc2Meth (http://www.bio-bigdata.com/Lnc2Meth/), an interactive resource to identify regulatory relationships between human long non-coding RNAs (lncRNAs) and DNA methylation, is not only a manually curated collection and annotation of experimentally supported lncRNAs-DNA methylation associations but also a platform that effectively integrates tools for calculating and identifying the differentially methylated lncRNAs and protein-coding genes (PCGs) in diverse human diseases. The resource provides: (i) advanced search possibilities, e.g. retrieval of the database by searching the lncRNA symbol of interest, DNA methylation patterns, regulatory mechanisms and disease types; (ii) abundant computationally calculated DNA methylation array profiles for the lncRNAs and PCGs; (iii) the prognostic values for each hit transcript calculated from the patients clinical data; (iv) a genome browser to display the DNA methylation landscape of the lncRNA transcripts for a specific type of disease; (v) tools to re-annotate probes to lncRNA loci and identify the differential methylation patterns for lncRNAs and PCGs with user-supplied external datasets; (vi) an R package (LncDM) to complete the differentially methylated lncRNAs identification and visualization with local computers. Lnc2Meth provides a timely and valuable resource that can be applied to significantly expand our understanding of the regulatory relationships between lncRNAs and DNA methylation in various human diseases. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Liu, Zhijing; Feng, Qiang; Sun, Pengpeng; Lu, Yan; Yang, Minlan; Zhang, Xiaowei; Jin, Xiangshu; Li, Yulin; Lu, Shi-Jiang; Quan, Chengshi
2017-12-01
To investigate the role of DNA methylation during erythrocyte production by human embryonic stem cells (hESCs). We employed an erythroid differentiation model from hESCs, and then tracked the genome-wide DNA methylation maps and gene expression patterns through an Infinium HumanMethylation450K BeadChip and an Ilumina Human HT-12 v4 Expression Beadchip, respectively. A negative correlation between DNA methylation and gene expression was substantially enriched during the later differentiation stage and was present in both the promoter and the gene body. Moreover, erythropoietic genes with differentially methylated CpG sites that were primarily enriched in nonisland regions were upregulated, and demethylation of their gene bodies was associated with the presence of enhancers and DNase I hypersensitive sites. Finally, the components of JAK-STAT-NF-κB signaling were DNA hypomethylated and upregulated, which targets the key genes for erythropoiesis. Erythroid lineage commitment by hESCs requires genome-wide DNA methylation modifications to remodel gene expression dynamics.
Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.
Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M
2002-12-01
AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.
Smith, Gilbert; Smith, Carl; Kenny, John G; Chaudhuri, Roy R; Ritchie, Michael G
2015-04-01
Epigenetic marks such as DNA methylation play important biological roles in gene expression regulation and cellular differentiation during development. To examine whether DNA methylation patterns are potentially associated with naturally occurring phenotypic differences, we examined genome-wide DNA methylation within Gasterosteus aculeatus, using reduced representation bisulfite sequencing. First, we identified highly methylated regions of the stickleback genome, finding such regions to be located predominantly within genes, and associated with genes functioning in metabolism and biosynthetic processes, cell adhesion, signaling pathways, and blood vessel development. Next, we identified putative differentially methylated regions (DMRs) of the genome between complete and low lateral plate morphs of G. aculeatus. We detected 77 DMRs that were mainly located in intergenic regions. Annotations of genes associated with these DMRs revealed potential functions in a number of known divergent adaptive phenotypes between G. aculeatus ecotypes, including cardiovascular development, growth, and neuromuscular development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mosher, M J; Melton, P E; Stapleton, P; Schanfield, M S; Crawford, M H
2016-04-01
DNA methylation is the most widely studied of epigenetic mechanisms, with environmental effects recorded through patterned attachments of methyl groups along the DNA that are capable of modifying gene expression without altering the DNA sequencing. The degree to which these patterns of DNA methylation are heritable, the expected range of normality across populations, and the phenotypic relevance of pattern variation remain unclear. Genes regulating metabolic pathways appear to be vulnerable to ongoing nutritional programming over the life course, as dietary nutrients are significant environmental determinants of DNA methylation, supplying both the methyl groups and energy to generate the methylation process. Here we examine methylation patterns along a region of the metabolic gene leptin (LEP). LEP's putative functions include regulation of energy homeostasis, with its signals affecting energy intake and expenditure, adipogenesis and energy storage, lipid and glucose metabolism, bone metabolism, and reproductive endocrine function. A pattern of differential methylation across CpG sites of the LEP core promoter has been previously identified; however, any consistency of pattern or its phenotypic significance is not fully elucidated among populations. Using DNA extracted from unfractionated white blood cells of peripheral blood samples, our pilot study, divided into two parts, examined the significance of variation in DNA methylation patterns along the leptin core promoter in four populations (phase 1) and used biomarkers reflecting leptin's functional process in two of those populations, western Buryat of Siberia and the Mennonite of central Kansas, to investigate the relevance of the ethnic variation identified in the DNA methylation (phase 2). LEP's core promoter region contains both the binding site for C/EBPα (CCAAT/enhancer binding protein alpha), which tempers the final step in adipocyte maturity and capacity to synthesize leptin, and the TATA motif controlling leptin synthesis. Previous studies report that increased methylation in this region is correlated to decreased gene expression, suggesting tissue-specific methylation variation at this region ( Melzner et al. 2002 ). We hypothesized that evidence of nutritional epigenetic programming would be identified through variation in patterns of DNA methylation and that functional relevance of that variation among populations would be identified through biomarkers that reflect leptin's metabolic signals: serum leptin levels, lipoproteins of the lipid transport system, and anthropometric measures. In phase 1, our combined analyses of 313 individuals documented a distinct and consistent overall pattern of differential DNA methylation across seven CpG sites of LEP core promoter in all ethnicities and both sexes. This pattern replicates those identified in previous studies, suggesting a conserved core promoter region across populations. Phase 2 analyses of two of the four populations (n = 239), correlating methylation at the C/EBPα transcription binding site (TBS) with metabolic and anthropometric biomarkers reflecting LEP roles, showed that stature, which reflects bone growth and remodeling, was significantly and inversely correlated with the percentage of DNA methylation at this site in both sexes. We suggest that variation in DNA methylation along the LEP core promoter plays a substantial role in energy signals affecting both adipogenesis and bone metabolism.
Apple skin patterning is associated with differential expression of MYB10
2011-01-01
Background Some apple (Malus × domestica Borkh.) varieties have attractive striping patterns, a quality attribute that is important for determining apple fruit market acceptance. Most apple cultivars (e.g. 'Royal Gala') produce fruit with a defined fruit pigment pattern, but in the case of 'Honeycrisp' apple, trees can produce fruits of two different kinds: striped and blushed. The causes of this phenomenon are unknown. Results Here we show that striped areas of 'Honeycrisp' and 'Royal Gala' are due to sectorial increases in anthocyanin concentration. Transcript levels of the major biosynthetic genes and MYB10, a transcription factor that upregulates apple anthocyanin production, correlated with increased anthocyanin concentration in stripes. However, nucleotide changes in the promoter and coding sequence of MYB10 do not correlate with skin pattern in 'Honeycrisp' and other cultivars differing in peel pigmentation patterns. A survey of methylation levels throughout the coding region of MYB10 and a 2.5 Kb region 5' of the ATG translation start site indicated that an area 900 bp long, starting 1400 bp upstream of the translation start site, is highly methylated. Cytosine methylation was present in all three contexts, with higher methylation levels observed for CHH and CHG (where H is A, C or T) than for CG. Comparisons of methylation levels of the MYB10 promoter in 'Honeycrisp' red and green stripes indicated that they correlate with peel phenotypes, with an enrichment of methylation observed in green stripes. Conclusions Differences in anthocyanin levels between red and green stripes can be explained by differential transcript accumulation of MYB10. Different levels of MYB10 transcript in red versus green stripes are inversely associated with methylation levels in the promoter region. Although observed methylation differences are modest, trends are consistent across years and differences are statistically significant. Methylation may be associated with the presence of a TRIM retrotransposon within the promoter region, but the presence of the TRIM element alone cannot explain the phenotypic variability observed in 'Honeycrisp'. We suggest that methylation in the MYB10 promoter is more variable in 'Honeycrisp' than in 'Royal Gala', leading to more variable color patterns in the peel of this cultivar. PMID:21599973
Wang, Zegang; Tang, Kai; Zhang, Dayong; Wan, Yizhen; Wen, Yan; Lu, Quanyou; Wang, Lei
2017-01-01
This study is the first to comprehensively characterize m6A patterns in the Arabidopsis chloroplast and mitochondria transcriptomes based on our open accessible data deposited in NCBI's Gene Expression Omnibus with GEO Series accession number of GSE72706. Over 86% of the transcripts were methylated by m6A in the two organelles. Over 550 and 350 m6A sites were mapped, with ~5.6 to ~5.8 and ~4.6 to ~4.9 m6A sites per transcript, to the chloroplast and mitochondria genome, respectively. The overall m6A methylation extent in the two organelles was greatly higher than that in the nucleus. The m6A motif sequences in the transcriptome of two organelles were similar to the nuclear motifs, suggesting that selection of the m6A motifs for RNA methylation was conserved between the nucleus and organelle transcriptomes. The m6A patterns of rRNAs and tRNAs in the organelle were similar to those in the nucleus. However, the m6A patterns in coding RNAs were distinct between the nucleus and the organelle, suggesting that that regulation of the m6A methylation patterns may be different between the nuclei and the organelles. The extensively methylated transcripts in the two organelles were mainly associated with rRNA, ribosomal proteins, photosystem reaction proteins, tRNA, NADH dehydrogenase and redox. On average, 64% and 79% of the transcripts in the two organelles showed differential m6A methylation across three organs of the leaves, flowers and roots. The m6A methylation extent in the chloroplast was higher than that in the mitochondria. This study provides deep insights into the m6A methylation topology and differentiation in the plant organelle transcriptomes.
Li, Zhenhui; Zheng, Xuejuan; Jia, Xinzheng; Nie, Qinghua; Zhang, Xiquan
2013-01-01
Introduction Growth traits are important in poultry production, however, little is known for its regulatory mechanism at epigenetic level. Therefore, in this study, we aim to compare DNA methylation profiles between fast- and slow-growing broilers in order to identify candidate genes for chicken growth. Methylated DNA immunoprecipitation-sequencing (MeDIP-seq) was used to investigate the genome-wide DNA methylation pattern in high and low tails of Recessive White Rock (WRRh; WRRl) and that of Xinhua Chickens (XHh; XHl) at 7 weeks of age. The results showed that the average methylation density was the lowest in CGIs followed by promoters. Within the gene body, the methylation density of introns was higher than that of UTRs and exons. Moreover, different methylation levels were observed in different repeat types with the highest in LINE/CR1. Methylated CGIs were prominently distributed in the intergenic regions and were enriched in the size ranging 200–300 bp. In total 13,294 methylated genes were found in four samples, including 4,085 differentially methylated genes of WRRh Vs. WRRl, 5,599 of XHh Vs. XHl, 4,204 of WRRh Vs. XHh, as well as 7,301 of WRRl Vs. XHl. Moreover, 132 differentially methylated genes related to growth and metabolism were observed in both inner contrasts (WRRh Vs. WRRl and XHh Vs. XHl), whereas 129 differentially methylated genes related to growth and metabolism were found in both across-breed contrasts (WRRh Vs. XHh and WRRl Vs. XHl). Further analysis showed that overall 75 genes exhibited altered DNA methylation in all four contrasts, which included some well-known growth factors of IGF1R, FGF12, FGF14, FGF18, FGFR2, and FGFR3. In addition, we validate the MeDIP-seq results by bisulfite sequencing in some regions. Conclusions This study revealed the global DNA methylation pattern of chicken muscle, and identified candidate genes that potentially regulate muscle development at 7 weeks of age at methylation level. PMID:23441189
Bhardwaj, Jyoti; Mahajan, Monika; Yadav, Sudesh Kumar
2013-08-01
DNA methylation is known as an epigenetic modification that affects gene expression in plants. Variation in CpG methylation behavior was studied in two natural horse gram (Macrotyloma uniflorum [Lam.] Verdc.) genotypes, HPKC2 (drought-sensitive) and HPK4 (drought-tolerant). The methylation pattern in both genotypes was studied through methylation-sensitive amplified polymorphism. The results revealed that methylation was higher in HPKC2 (10.1%) than in HPK4 (8.6%). Sequencing demonstrated sequence homology with the DRE binding factor (cbf1), the POZ/BTB protein, and the Ty1-copia retrotransposon among some of the polymorphic fragments showing alteration in methylation behavior. Differences in DNA methylation patterns could explain the differential drought tolerance and the epigenetic signature of these two horse gram genotypes.
Kalantari, Mina; Lee, Denis; Calleja-Macias, Itzel E; Lambert, Paul F; Bernard, Hans-Ulrich
2008-05-10
Human papillomavirus-16 (HPV-16) genomes in cell culture and in situ are affected by polymorphic methylation patterns, which can repress the viral transcription. In order to understand some of the underlying mechanisms, we investigated changes of the methylation of HPV-16 DNA in cell cultures in response to cellular differentiation, to recombination with cellular DNA, and to an inhibitor of methylation. Undifferentiated W12E cells, derived from a precancerous lesion, contained extrachromosomal HPV-16 DNA with a sporadically methylated enhancer-promoter segment. Upon W12E cell differentiation, the viral DNA was demethylated, suggesting a link between differentiation and the epigenetic state of HPV-16 DNA. The viral genomes present in two W12I clones, in which individual copies of the HPV-16 genome have integrated into cellular DNA (type 1 integrants), were unmethylated, akin to that seen in the cervical carcinoma cell line SiHa (also a type 1 integrant). This finding is consistent with hypomethylation being necessary for continued viral gene expression. In contrast, two of three type 2 integrant W12I clones, containing concatemers of HPV-16 genomes integrated into the cellular DNA contained hypermethylated viral DNA, as observed in the cervical carcinoma cell line CaSki (also a type 2 integrant). A third, type 2, W12I clone, interestingly with fewer copies of the viral genome, contained unmethylated HPV-16 genomes. Epithelial differentiation of W12I clones did not lead to demethylation of chromosomally integrated viral genomes as was seen for extrachromosomal HPV-16 DNA in W12E clones. Hypomethylation of CaSki cells in the presence of the DNA methylation inhibitor 5-aza-2'-deoxycytidine reduced the cellular viability, possibly as a consequence of toxic effects of an excess of HPV-16 gene products. Our data support a model wherein (i) the DNA methylation state of extrachromosomal HPV16 replicons and epithelial differentiation are inversely coupled during the viral life cycle, (ii) integration of the viral genome into the host chromosome events leads to an alteration in methylation patterns on the viral genome that is dependent upon the type of integration event and possibly copy number, and (iii) integration universally results in the viral DNA becoming refractory to changes in methylation state upon cellular differentiation that are observed with extrachromosomal HPV-16 genomes.
The caste- and sex-specific DNA methylome of the termite Zootermopsis nevadensis
Glastad, Karl M.; Gokhale, Kaustubh; Liebig, Jürgen; Goodisman, Michael A. D.
2016-01-01
Epigenetic inheritance plays an important role in mediating alternative phenotype in highly social species. In order to gain a greater understanding of epigenetic effects in societies, we investigated DNA methylation in the termite Zootermopsis nevadensis. Termites are the most ancient social insects, and developmentally distinct from highly-studied, hymenopteran social insects. We used replicated bisulfite-sequencing to investigate patterns of DNA methylation in both sexes and among castes of Z. nevadensis. We discovered that Z. nevadensis displayed some of the highest levels of DNA methylation found in insects. We also found strong differences in methylation between castes. Methylated genes tended to be uniformly and highly expressed demonstrating the antiquity of associations between intragenic methylation and gene expression. Differentially methylated genes were more likely to be alternatively spliced than not differentially methylated genes, and possessed considerable enrichment for development-associated functions. We further observed strong overrepresentation of multiple transcription factor binding sites and miRNA profiles associated with differential methylation, providing new insights into the possible function of DNA methylation. Overall, our results show that DNA methylation is widespread and associated with caste differences in termites. More generally, this study provides insights into the function of DNA methylation and the success of insect societies. PMID:27848993
Early demethylation of non-CpG, CpC-rich, elements in the myogenin 5′-flanking region
Fuso, Andrea; Ferraguti, Giampiero; Grandoni, Francesco; Ruggeri, Raffaella; Scarpa, Sigfrido; Strom, Roberto
2010-01-01
The dynamic changes and structural patterns of DNA methylation of genes without CpG islands are poorly characterized. The relevance of CpG to the non-CpG methylation equilibrium in transcriptional repression is unknown. In this work, we analyzed the DNA methylation pattern of the 5′-flanking of the myogenin gene, a positive regulator of muscle differentiation with no CpG island and low CpG density, in both C2C12 muscle satellite cells and embryonic muscle. Embryonic brain was studied as a non-expressing tissue. High levels of both CpG and non-CpG methylation were observed in non-expressing experimental conditions. Both CpG and non-CpG methylation rapidly dropped during muscle differentiation and myogenin transcriptional activation with active demethylation dynamics. Non-CpG demethylation occurred more rapidly than CpG demethylation. Demethylation spread from initially highly methylated short CpC-rich elements to a virtually unmethylated status. These short elements have a high CpC content and density, share some motifs and largely coincide with putative recognition sequences of some differentiation-related transcription factors. Our findings point to a dynamically controlled equilibrium between CpG and non-CpG active demethylation in the transcriptional control of tissue-specific genes. The short CpC-rich elements are new structural features of the methylation machinery, whose functions may include priming the complete demethylation of a transcriptionally crucial DNA region. PMID:20935518
Gonzalez-Nahm, Sarah; Mendez, Michelle; Robinson, Whitney; Murphy, Susan K.; Hoyo, Cathrine; Hogan, Vijaya; Rowley, Diane
2017-01-01
Abstract Diet is dictated by the surrounding environment, as food access and availability may change depending on where one lives. Maternal diet during pregnancy is an important part of the in utero environment, and may affect the epigenome. Studies looking at overall diet pattern in relation to DNA methylation have been lacking. The Mediterranean diet is known for its health benefits, including decreased inflammation, weight loss, and management of chronic diseases. This study assesses the association between maternal adherence to a Mediterranean diet pattern during pregnancy and infant DNA methylation at birth. Mediterranean diet adherence in early pregnancy was measured in 390 women enrolled in the Newborn Epigenetic Study, and DNA methylation was assessed in their infants at birth. Multinomial logistic regression was used to assess the association between adherence to a Mediterranean diet and infant methylation at the MEG3, MEG3-IG, pleiomorphic adenoma gene-like 1, insulin-like growth factor 2 gene, H19, mesoderm-specific transcript, neuronatin, paternally expressed gene 3, sarcoglycan and paternally expressed gene 10 regions, measured by pyrosequencing. Infants of mothers with a low adherence to a Mediterranean diet had a greater odds of hypo-methylation at the MEG3-IG differentially methylated region (DMR). Sex-stratified models showed that this association was present in girls only. This study provides early evidence on the association between overall diet pattern and methylation at the 9 DMRs included in this study, and suggests that maternal diet can have a sex-specific impact on infant DNA methylation at specific imprinted DMRs. PMID:29492309
Lodde, V.; Modina, S.C.; Franciosi, F.; Zuccari, E.; Tessaro, I.; Luciano, A.M.
2009-01-01
DNA methyltransferase-1 (Dnmt1) is involved in the maintenance of DNA methylation patterns and is crucial for normal mammalian development. The aim of the present study was to assess the localization of Dnmt1 in cow, during the latest phases of oocyte differentiation and during the early stages of segmentation. Dnmt1 expression and localization were assessed in oocytes according to the chromatin configuration, which in turn provides an important epigenetic mechanism for the control of global gene expression and represents a morphological marker of oocyte differentiation. We found that the initial chromatin condensation was accompanied by a slight increase in the level of global DNA methylation, as assessed by 5-methyl-cytosine immunostaining followed by laser scanning confocal microscopy analysis (LSCM). RT-PCR confirmed the presence of Dnmt1 transcripts throughout this phase of oocyte differentiation. Analogously, Dnmt1 immunodetection and LSCM indicated that the protein was always present and localized in the cytoplasm, regardless the chromatin configuration and the level of global DNA methylation. Moreover, our data indicate that while Dnmt1 is retained in the cytoplasm in metaphase II stage oocytes and zygotes, it enters the nuclei of 8–16 cell stage embryos. As suggested in mouse, the functional meaning of the presence of Dnmt1 in the bovine embryo nuclei could be the maintainement of the methylation pattern of imprinted genes. In conclusion, the present work provides useful elements for the study of Dnmt1 function during the late stage of oocyte differentiation, maturation and early embryonic development in mammals. PMID:22073356
Whole-Genome Saliva and Blood DNA Methylation Profiling in Individuals with a Respiratory Allergy
Declerck, Ken; Traen, Sophie; Koppen, Gudrun; Van Camp, Guy; Schoeters, Greet; Vanden Berghe, Wim; De Boever, Patrick
2016-01-01
The etiology of respiratory allergies (RA) can be partly explained by DNA methylation changes caused by adverse environmental and lifestyle factors experienced early in life. Longitudinal, prospective studies can aid in the unravelment of the epigenetic mechanisms involved in the disease development. High compliance rates can be expected in these studies when data is collected using non-invasive and convenient procedures. Saliva is an attractive biofluid to analyze changes in DNA methylation patterns. We investigated in a pilot study the differential methylation in saliva of RA (n = 5) compared to healthy controls (n = 5) using the Illumina Methylation 450K BeadChip platform. We evaluated the results against the results obtained in mononuclear blood cells from the same individuals. Differences in methylation patterns from saliva and mononuclear blood cells were clearly distinguishable (PAdj<0.001 and |Δβ|>0.2), though the methylation status of about 96% of the cg-sites was comparable between peripheral blood mononuclear cells and saliva. When comparing RA cases with healthy controls, the number of differentially methylated sites (DMS) in saliva and blood were 485 and 437 (P<0.05 and |Δβ|>0.1), respectively, of which 216 were in common. The methylation levels of these sites were significantly correlated between blood and saliva. The absolute levels of methylation in blood and saliva were confirmed for 3 selected DMS in the PM20D1, STK32C, and FGFR2 genes using pyrosequencing analysis. The differential methylation could only be confirmed for DMS in PM20D1 and STK32C genes in saliva. We show that saliva can be used for genome-wide methylation analysis and that it is possible to identify DMS when comparing RA cases and healthy controls. The results were replicated in blood cells of the same individuals and confirmed by pyrosequencing analysis. This study provides proof-of-concept for the applicability of saliva-based whole-genome methylation analysis in the field of respiratory allergy. PMID:26999364
DNA demethylation activates genes in seed maternal integument development in rice (Oryza sativa L.).
Wang, Yifeng; Lin, Haiyan; Tong, Xiaohong; Hou, Yuxuan; Chang, Yuxiao; Zhang, Jian
2017-11-01
DNA methylation is an important epigenetic modification that regulates various plant developmental processes. Rice seed integument determines the seed size. However, the role of DNA methylation in its development remains largely unknown. Here, we report the first dynamic DNA methylomic profiling of rice maternal integument before and after pollination by using a whole-genome bisulfite deep sequencing approach. Analysis of DNA methylation patterns identified 4238 differentially methylated regions underpin 4112 differentially methylated genes, including GW2, DEP1, RGB1 and numerous other regulators participated in maternal integument development. Bisulfite sanger sequencing and qRT-PCR of six differentially methylated genes revealed extensive occurrence of DNA hypomethylation triggered by double fertilization at IAP compared with IBP, suggesting that DNA demethylation might be a key mechanism to activate numerous maternal controlling genes. These results presented here not only greatly expanded the rice methylome dataset, but also shed novel insight into the regulatory roles of DNA methylation in rice seed maternal integument development. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Janowitz Koch, Ilana; Clark, Michelle M; Thompson, Michael J; Deere-Machemer, Kerry A; Wang, Jun; Duarte, Lionel; Gnanadesikan, Gitanjali E; McCoy, Eskender L; Rubbi, Liudmilla; Stahler, Daniel R; Pellegrini, Matteo; Ostrander, Elaine A; Wayne, Robert K; Sinsheimer, Janet S; vonHoldt, Bridgett M
2016-04-01
The process of domestication can exert intense trait-targeted selection on genes and regulatory regions. Specifically, rapid shifts in the structure and sequence of genomic regulatory elements could provide an explanation for the extensive, and sometimes extreme, variation in phenotypic traits observed in domesticated species. Here, we explored methylation differences from >24 000 cytosines distributed across the genomes of the domesticated dog (Canis familiaris) and the grey wolf (Canis lupus). PCA and model-based cluster analyses identified two primary groups, domestic vs. wild canids. A scan for significantly differentially methylated sites (DMSs) revealed species-specific patterns at 68 sites after correcting for cell heterogeneity, with weak yet significant hypermethylation typical of purebred dogs when compared to wolves (59% and 58%, P < 0.05, respectively). Additionally, methylation patterns at eight genes significantly deviated from neutrality, with similar trends of hypermethylation in purebred dogs. The majority (>66%) of differentially methylated regions contained or were associated with repetitive elements, indicative of a genotype-mediated trend. However, DMSs were also often linked to functionally relevant genes (e.g. neurotransmitters). Finally, we utilized known genealogical relationships among Yellowstone wolves to survey transmission stability of methylation marks, from which we found a substantial fraction that demonstrated high heritability (both H(2) and h(2 ) > 0.99). These analyses provide a unique epigenetic insight into the molecular consequences of recent selection and radiation of our most ancient domesticated companion, the dog. These findings suggest selection has acted on methylation patterns, providing a new genomic perspective on phenotypic diversification in domesticated species. © 2015 John Wiley & Sons Ltd.
Tost, Jörg
2016-01-01
DNA methylation is the most studied epigenetic modification, and altered DNA methylation patterns have been identified in cancer and more recently also in many other complex diseases. Furthermore, DNA methylation is influenced by a variety of environmental factors, and the analysis of DNA methylation patterns might allow deciphering previous exposure. Although a large number of techniques to study DNA methylation either genome-wide or at specific loci have been devised, they all are based on a limited number of principles for differentiating the methylation state, viz., methylation-specific/methylation-dependent restriction enzymes, antibodies or methyl-binding proteins, chemical-based enrichment, or bisulfite conversion. Second-generation sequencing has largely replaced microarrays as readout platform and is also becoming more popular for locus-specific DNA methylation analysis. In this chapter, the currently used methods for both genome-wide and locus-specific analysis of 5-methylcytosine and as its oxidative derivatives, such as 5-hydroxymethylcytosine, are reviewed in detail, and the advantages and limitations of each approach are discussed. Furthermore, emerging technologies avoiding PCR amplification and allowing a direct readout of DNA methylation are summarized, together with novel applications, such as the detection of DNA methylation in single cells or in circulating cell-free DNA.
Geens, M; Seriola, A; Barbé, L; Santalo, J; Veiga, A; Dée, K; Van Haute, L; Sermon, K; Spits, C
2016-04-01
Does a preferential X chromosome inactivation (XCI) pattern exist in female human pluripotent stem cells (hPSCs) and does the pattern change during long-term culture or upon differentiation? We identified two independent phenomena that lead to aberrant XCI patterns in female hPSC: a rapid loss of histone H3 lysine 27 trimethylation (H3K27me3) and long non-coding X-inactive specific transcript (XIST) expression during culture, often accompanied by erosion of XCI-specific methylation, and a frequent loss of random XCI in the cultures. Variable XCI patterns have been reported in female hPSC, not only between different hPSC lines, but also between sub-passages of the same cell line, however the reasons for this variability remain unknown. Moreover, while non-random XCI-linked DNA methylation patterns have been previously reported, their origin and extent have not been investigated. We investigated the XCI patterns in 23 human pluripotent stem cell (hPSC) lines, during long-term culture and after differentiation, by gene expression analysis, histone modification assessment and study of DNA methylation. The presence and location of H3K27me3 was studied by immunofluorescence, XIST expression by real-time PCR, and mono- or bi-allelic expression of X-linked genes was studied by sequencing of cDNA. XCI-specific DNA methylation was analysed using methylation-sensitive restriction and PCR, and more in depth by massive parallel bisulphite sequencing. All hPSC lines showed XCI, but we found a rapid loss of XCI marks during the early stages of in vitro culture. While this loss of XCI marks was accompanied in several cases by an extensive erosion of XCI-specific methylation, it did not result in X chromosome reactivation. Moreover, lines without strong erosion of methylation frequently displayed non-random DNA methylation, which occurred independently from the loss of XCI marks. This bias in X chromosome DNA methylation did not appear as a passenger event driven by clonal culture take-over of chromosome abnormalities and was independent of the parental origin of the X chromosome. Therefore, we suggest that a culture advantage conferred by alleles on the X chromosome or by XCI-related mechanisms may be at the basis of this phenomenon. Finally, differentiated populations inherited the aberrant XCI patterns from the undifferentiated cells they were derived from. All hPSC lines in this study were cultured in highly similar conditions. Our results may therefore be specific for these conditions and alternative culture conditions might lead to different findings. Our findings are only a first step towards elucidating the molecular events leading to the phenomena we observed. Our results highlight the significant extent of aberrant XCI in female hPSC. The fact that these aberrations are inherited by the differentiated progeny may have a significant impact on downstream research and clinical uses of hPSC. In order to achieve the full potential of hPSC, more insight into the XCI status and its stability in hPSC and its effect on the properties of the differentiated progeny is needed. Not applicable. Our research is supported by grants from the Research Foundation - Flanders (FWO-Vlaanderen, grant 1502512N), Generalitat de Catalunya (2014SGR-005214) and the Methusalem grant of the Research Council of the Vrije Universiteit Brussel, on name of K.S. L.V.H. is funded by EMBO (ALTF 701-2013). The authors declare no potential conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DNA methylation-based variation between human populations.
Kader, Farzeen; Ghai, Meenu
2017-02-01
Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.
Heßelbach, Katharina; Kim, Gwang-Jin; Flemming, Stephan; Häupl, Thomas; Bonin, Marc; Dornhof, Regina; Günther, Stefan; Merfort, Irmgard; Humar, Matjaz
2017-09-01
Exposure to particulate matter (PM) is recognized as a major health hazard, but molecular responses are still insufficiently described. We analyzed the epigenetic impact of ambient PM 2.5 from biomass combustion on the methylome of primary human bronchial epithelial BEAS-2B cells using the Illumina HumanMethylation450 BeadChip. The transcriptome was determined by the Affymetrix HG-U133 Plus 2.0 Array. PM 2.5 induced genome wide alterations of the DNA methylation pattern, including differentially methylated CpGs in the promoter region associated with CpG islands. Gene ontology analysis revealed that differentially methylated genes were significantly clustered in pathways associated with the extracellular matrix, cellular adhesion, function of GTPases, and responses to extracellular stimuli, or were involved in ion binding and shuttling. Differential methylations also affected tandem repeats. Additionally, 45 different miRNA CpG loci showed differential DNA methylation, most of them proximal to their promoter. These miRNAs are functionally relevant for lung cancer, inflammation, asthma, and other PM-associated diseases. Correlation of the methylome and transcriptome demonstrated a clear bias toward transcriptional activation by hypomethylation. Genes that exhibited both differential methylation and expression were functionally linked to cytokine and immune responses, cellular motility, angiogenesis, inflammation, wound healing, cell growth, differentiation and development, or responses to exogenous matter. Disease ontology of differentially methylated and expressed genes indicated their prominent role in lung cancer and their participation in dominant cancer related signaling pathways. Thus, in lung epithelial cells, PM 2.5 alters the methylome of genes and noncoding transcripts or elements that might be relevant for PM- and lung-associated diseases.
Heßelbach, Katharina; Kim, Gwang-Jin; Flemming, Stephan; Häupl, Thomas; Bonin, Marc; Dornhof, Regina; Günther, Stefan; Merfort, Irmgard; Humar, Matjaz
2017-01-01
ABSTRACT Exposure to particulate matter (PM) is recognized as a major health hazard, but molecular responses are still insufficiently described. We analyzed the epigenetic impact of ambient PM2.5 from biomass combustion on the methylome of primary human bronchial epithelial BEAS-2B cells using the Illumina HumanMethylation450 BeadChip. The transcriptome was determined by the Affymetrix HG-U133 Plus 2.0 Array. PM2.5 induced genome wide alterations of the DNA methylation pattern, including differentially methylated CpGs in the promoter region associated with CpG islands. Gene ontology analysis revealed that differentially methylated genes were significantly clustered in pathways associated with the extracellular matrix, cellular adhesion, function of GTPases, and responses to extracellular stimuli, or were involved in ion binding and shuttling. Differential methylations also affected tandem repeats. Additionally, 45 different miRNA CpG loci showed differential DNA methylation, most of them proximal to their promoter. These miRNAs are functionally relevant for lung cancer, inflammation, asthma, and other PM-associated diseases. Correlation of the methylome and transcriptome demonstrated a clear bias toward transcriptional activation by hypomethylation. Genes that exhibited both differential methylation and expression were functionally linked to cytokine and immune responses, cellular motility, angiogenesis, inflammation, wound healing, cell growth, differentiation and development, or responses to exogenous matter. Disease ontology of differentially methylated and expressed genes indicated their prominent role in lung cancer and their participation in dominant cancer related signaling pathways. Thus, in lung epithelial cells, PM2.5 alters the methylome of genes and noncoding transcripts or elements that might be relevant for PM- and lung-associated diseases. PMID:28742980
Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs.
Hossain, Md Shakhawat; Kawakatsu, Taiji; Kim, Kyung Do; Zhang, Ning; Nguyen, Cuong T; Khan, Saad M; Batek, Josef M; Joshi, Trupti; Schmutz, Jeremy; Grimwood, Jane; Schmitz, Robert J; Xu, Dong; Jackson, Scott A; Ecker, Joseph R; Stacey, Gary
2017-04-01
Chromatin modifications, such as cytosine methylation of DNA, play a significant role in mediating gene expression in plants, which affects growth, development, and cell differentiation. As root hairs are single-cell extensions of the root epidermis and the primary organs for water uptake and nutrients, we sought to use root hairs as a single-cell model system to measure the impact of environmental stress. We measured changes in cytosine DNA methylation in single-cell root hairs as compared with multicellular stripped roots, as well as in response to heat stress. Differentially methylated regions (DMRs) in each methylation context showed very distinct methylation patterns between cell types and in response to heat stress. Intriguingly, at normal temperature, root hairs were more hypermethylated than were stripped roots. However, in response to heat stress, both root hairs and stripped roots showed hypomethylation in each context, especially in the CHH context. Moreover, expression analysis of mRNA from similar tissues and treatments identified some associations between DMRs, genes and transposons. Taken together, the data indicate that changes in DNA methylation are directly or indirectly associated with expression of genes and transposons within the context of either specific tissues/cells or stress (heat). © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Rigal, Mélanie; Becker, Claude; Pélissier, Thierry; Pogorelcnik, Romain; Devos, Jane; Ikeda, Yoko; Weigel, Detlef; Mathieu, Olivier
2016-01-01
Genes and transposons can exist in variable DNA methylation states, with potentially differential transcription. How these epialleles emerge is poorly understood. Here, we show that crossing an Arabidopsis thaliana plant with a hypomethylated genome and a normally methylated WT individual results, already in the F1 generation, in widespread changes in DNA methylation and transcription patterns. Novel nonparental and heritable epialleles arise at many genic loci, including a locus that itself controls DNA methylation patterns, but with most of the changes affecting pericentromeric transposons. Although a subset of transposons show immediate resilencing, a large number display decreased DNA methylation, which is associated with de novo or enhanced transcriptional activation and can translate into transposon mobilization in the progeny. Our findings reveal that the combination of distinct epigenomes can be viewed as an epigenomic shock, which is characterized by a round of epigenetic variation creating novel patterns of gene and TE regulation. PMID:27001853
Pangeson, Tanapat; Sanguansermsri, Phanchana; Sanguansermsri, Torpong; Seeratanachot, Teerapat; Suwanakhon, Narutchala; Srikummool, Metawee; Kaewkong, Worasak; Mahingsa, Khwanruedee
2017-01-01
In the wild-type allele, DNA methylation levels of 10 consecutive CpG sites adjacent to the upstream 5′-breakpoint of α-thalassemia Southeast Asian (SEA) deletion are not different between placenta and leukocytes. However, no previous study has reported the map of DNA methylation in the SEA allele. This report aims to show that the SEA mutation is associated with DNA methylation changes, resulting in differential methylation between placenta and leukocytes. Methylation-sensitive high-resolution analysis was used to compare DNA methylation among placenta, leukocytes, and unmethylated control DNA. The result indicates that the DNA methylation between placenta and leukocyte DNA is different and shows that the CpG status of both is not fully unmethylated. Mapping of individual CpG sites was performed by targeted bisulfite sequencing. The DNA methylation level of the 10 consecutive CpG sites was different between placenta and leukocyte DNA. When the 10th CpG of the mutation allele was considered as a hallmark for comparing DNA methylation level, it was totally different from the unmethylated 10th CpG of the wild-type allele. Finally, the distinct DNA methylation patterns between both DNA were extracted. In total, 24 patterns were found in leukocyte samples and 9 patterns were found in placenta samples. This report shows that the large deletion is associated with DNA methylation change. In further studies for clinical application, the distinct DNA methylation pattern might be a potential marker for detecting cell-free fetal DNA. PMID:29162979
Xie, Huahan; Konate, Moumouni; Sai, Na; Tesfamicael, Kiflu G.; Cavagnaro, Timothy; Gilliham, Matthew; Breen, James; Metcalfe, Andrew; Stephen, John R.; De Bei, Roberta; Collins, Cassandra; Lopez, Carlos M. R.
2017-01-01
Understanding how grapevines perceive and adapt to different environments will provide us with an insight into how to better manage crop quality. Mounting evidence suggests that epigenetic mechanisms are a key interface between the environment and the genotype that ultimately affect the plant’s phenotype. Moreover, it is now widely accepted that epigenetic mechanisms are a source of useful variability during crop varietal selection that could affect crop performance. While the contribution of DNA methylation to plant performance has been extensively studied in other major crops, very little work has been done in grapevine. To study the genetic and epigenetic diversity across 22 vineyards planted with the cultivar Shiraz in six wine sub-regions of the Barossa, South Australia. Methylation sensitive amplified polymorphisms (MSAPs) were used to obtain global patterns of DNA methylation. The observed epigenetic profiles showed a high level of differentiation that grouped vineyards by their area of provenance despite the low genetic differentiation between vineyards and sub-regions. Pairwise epigenetic distances between vineyards indicate that the main contributor (23–24%) to the detected variability is associated to the distribution of the vineyards on the N–S axis. Analysis of the methylation profiles of vineyards pruned with the same system increased the positive correlation observed between geographic distance and epigenetic distance suggesting that pruning system affects inter-vineyard epigenetic differentiation. Finally, methylation sensitive genotyping by sequencing identified 3,598 differentially methylated genes in grapevine leaves that were assigned to 1,144 unique gene ontology terms of which 8.6% were associated with response to environmental stimulus. Our results suggest that DNA methylation differences between vineyards and sub-regions within The Barossa are influenced both by the geographic location and, to a lesser extent, by pruning system. Finally, we discuss how epigenetic variability can be used as a tool to understand and potentially modulate terroir in grapevine. PMID:29163587
DNA methylation: the future of crime scene investigation?
Gršković, Branka; Zrnec, Dario; Vicković, Sanja; Popović, Maja; Mršić, Gordan
2013-07-01
Proper detection and subsequent analysis of biological evidence is crucial for crime scene reconstruction. The number of different criminal acts is increasing rapidly. Therefore, forensic geneticists are constantly on the battlefield, trying hard to find solutions how to solve them. One of the essential defensive lines in the fight against the invasion of crime is relying on DNA methylation. In this review, the role of DNA methylation in body fluid identification and other DNA methylation applications are discussed. Among other applications of DNA methylation, age determination of the donor of biological evidence, analysis of the parent-of-origin specific DNA methylation markers at imprinted loci for parentage testing and personal identification, differentiation between monozygotic twins due to their different DNA methylation patterns, artificial DNA detection and analyses of DNA methylation patterns in the promoter regions of circadian clock genes are the most important ones. Nevertheless, there are still a lot of open chapters in DNA methylation research that need to be closed before its final implementation in routine forensic casework.
High-Resolution Analysis of Cytosine Methylation in Ancient DNA
Cropley, Jennifer E.; Cooper, Alan; Suter, Catherine M.
2012-01-01
Epigenetic changes to gene expression can result in heritable phenotypic characteristics that are not encoded in the DNA itself, but rather by biochemical modifications to the DNA or associated chromatin proteins. Interposed between genes and environment, these epigenetic modifications can be influenced by environmental factors to affect phenotype for multiple generations. This raises the possibility that epigenetic states provide a substrate for natural selection, with the potential to participate in the rapid adaptation of species to changes in environment. Any direct test of this hypothesis would require the ability to measure epigenetic states over evolutionary timescales. Here we describe the first single-base resolution of cytosine methylation patterns in an ancient mammalian genome, by bisulphite allelic sequencing of loci from late Pleistocene Bison priscus remains. Retrotransposons and the differentially methylated regions of imprinted loci displayed methylation patterns identical to those derived from fresh bovine tissue, indicating that methylation patterns are preserved in the ancient DNA. Our findings establish the biochemical stability of methylated cytosines over extensive time frames, and provide the first direct evidence that cytosine methylation patterns are retained in DNA from ancient specimens. The ability to resolve cytosine methylation in ancient DNA provides a powerful means to study the role of epigenetics in evolution. PMID:22276161
Identification of Differentially Methylated Sites with Weak Methylation Effects
Tran, Hong; Zhu, Hongxiao; Wu, Xiaowei; Kim, Gunjune; Clarke, Christopher R.; Larose, Hailey; Haak, David C.; Westwood, James H.; Zhang, Liqing
2018-01-01
Deoxyribonucleic acid (DNA) methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs) among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM) was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ) twins who have different pain sensitivities—both datasets have weak methylation effects of <1%—show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs) are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same concepts, with the only difference being how methylation information across the genome is summarized. If methylation levels are determined by grouping neighboring cytosine sites, then they are DMRs; if methylation levels are calculated based on single cytosines, they are DMCs. PMID:29419727
Jeziorska, Danuta M.; Murray, Robert J. S.; De Gobbi, Marco; Gaentzsch, Ricarda; Garrick, David; Ayyub, Helena; Chen, Taiping; Li, En; Telenius, Jelena; Lynch, Magnus; Graham, Bryony; Smith, Andrew J. H.; Lund, Jonathan N.; Hughes, Jim R.; Higgs, Douglas R.
2017-01-01
The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease. PMID:28827334
Venegas, Daniela; Marmolejo-Valencia, Alejandro; Valdes-Quezada, Christian; Govenzensky, Tzipe; Recillas-Targa, Félix; Merchant-Larios, Horacio
2016-09-15
Sex determination in vertebrates depends on the expression of a conserved network of genes. Sea turtles such as Lepidochelys olivacea have temperature-dependent sex determination. The present work analyses some of the epigenetic processes involved in this. We describe sexual dimorphism in global DNA methylation patterns between ovaries and testes of L. olivacea and show that the differences may arise from a combination of DNA methylation and demethylation events that occur during sex determination. Irrespective of incubation temperature, 5-hydroxymethylcytosine was abundant in the bipotential gonad; however, following sex determination, this modification was no longer found in pre-Sertoli cells in the testes. These changes correlate with the establishment of the sexually dimorphic DNA methylation patterns, down regulation of Sox9 gene expression in ovaries and irreversible gonadal commitment towards a male or female differentiation pathway. Thus, DNA methylation changes may be necessary for the stabilization of the gene expression networks that drive the differentiation of the bipotential gonad to form either an ovary or a testis in L. olivacea and probably among other species that manifest temperature-dependent sex determination. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Yongming; Lin, Xiuyun; Dong, Bo; Wang, Yingdian; Liu, Bao
2004-01-01
RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeat) fingerprinting on HpaII/MspI-digested genomic DNA of nine elite japonica rice cultivars implies inter-cultivar DNA methylation polymorphism. Using both DNA fragments isolated from RAPD or ISSR gels and selected low-copy sequences as probes, methylation-sensitive Southern blot analysis confirms the existence of extensive DNA methylation polymorphism in both genes and DNA repeats among the rice cultivars. The cultivar-specific methylation patterns are stably maintained, and can be used as reliable molecular markers. Transcriptional analysis of four selected sequences (RdRP, AC9, HSP90 and MMR) on leaves and roots from normal and 5-azacytidine-treated seedlings of three representative cultivars shows an association between the transcriptional activity of one of the genes, the mismatch repair (MMR) gene, and its CG methylation patterns.
Tang, Aifa; Huang, Yi; Li, Zesong; Wan, Shengqing; Mou, Lisha; Yin, Guangliang; Li, Ning; Xie, Jun; Xia, Yudong; Li, Xianxin; Luo, Liya; Zhang, Junwen; Chen, Shen; Wu, Song; Sun, Jihua; Sun, Xiaojuan; Jiang, Zhimao; Chen, Jing; Li, Yingrui; Wang, Jian; Wang, Jun; Cai, Zhiming; Gui, Yaoting
2016-01-01
Differential methylation of the homologous chromosomes, a well-known mechanism leading to genomic imprinting and X-chromosome inactivation, is widely reported at the non-imprinted regions on autosomes. To evaluate the transgenerational DNA methylation patterns in human, we analyzed the DNA methylomes of somatic and germ cells in a four-generation family. We found that allelic asymmetry of DNA methylation was pervasive at the non-imprinted loci and was likely regulated by cis-acting genetic variants. We also observed that the allelic methylation patterns for the vast majority of the cis-regulated loci were shared between the somatic and germ cells from the same individual. These results demonstrated the interaction between genetic and epigenetic variations and suggested the possibility of widespread sequence-dependent transmission of DNA methylation during spermatogenesis. PMID:26758766
Goodson, Jamie; Al-Azzawi, Haneen; Allain, Shannon Q.; Simon, Noah; Palasek, Stan; Miller, Daniel G.; Johnson, Winslow C.; Laird, Charles D.
2017-01-01
In storing and transmitting epigenetic information, organisms must balance the need to maintain information about past conditions with the capacity to respond to information in their current and future environments. Some of this information is encoded by DNA methylation, which can be transmitted with variable fidelity from parent to daughter strand. High fidelity confers strong pattern matching between the strands of individual DNA molecules and thus pattern stability over rounds of DNA replication; lower fidelity confers reduced pattern matching, and thus greater flexibility. Here, we present a new conceptual framework, Ratio of Concordance Preference (RCP), that uses double-stranded methylation data to quantify the flexibility and stability of the system that gave rise to a given set of patterns. We find that differentiated mammalian cells operate with high DNA methylation stability, consistent with earlier reports. Stem cells in culture and in embryos, in contrast, operate with reduced, albeit significant, methylation stability. We conclude that preference for concordant DNA methylation is a consistent mode of information transfer, and thus provides epigenetic stability across cell divisions, even in stem cells and those undergoing developmental transitions. Broader application of our RCP framework will permit comparison of epigenetic-information systems across cells, developmental stages, and organisms whose methylation machineries differ substantially or are not yet well understood. PMID:29107996
Essex, Marilyn J.; Boyce, W. Thomas; Hertzman, Clyde; Lam, Lucia L.; Armstrong, Jeffrey M.; Neumann, Sarah M.A.; Kobor, Michael S.
2011-01-01
Fifteen-year-old adolescents (N=109) in a longitudinal study of child development were recruited to examine differences in DNA methylation in relation to parent reports of adversity during the adolescents’ infancy and preschool periods. Microarray technology applied to 28,000 cytosine-guanine dinucleotide (CpG) sites within DNA derived from buccal epithelial cells showed differential methylation among adolescents whose parents reported high levels of stress during their children’s early lives. Maternal stressors in infancy and paternal stressors in the preschool years were most strongly predictive of differential methylation, and the patterning of such epigenetic marks varied by children’s gender. To the authors’ knowledge, this is the first report of prospective associations between adversities in early childhood and the epigenetic conformation of adolescents’ genomic DNA. PMID:21883162
Pelch, Katherine E; Tokar, Erik J; Merrick, B Alex; Waalkes, Michael P
2015-08-01
Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10μM Cd for 11weeks (CTPE) or 5μM iAs for 29weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1) were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (>25-fold) and S100P (>40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (>15-fold) and NTM (>1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. Published by Elsevier Inc.
Zhang, Yanfei; Fukui, Naoshi; Yahata, Mitsunori; Katsuragawa, Yozo; Tashiro, Toshiyuki; Ikegawa, Shiro; Lee, Ming Ta Michael
2016-09-30
Subchondral bone plays a key role in the development of osteoarthritis, however, epigenetics of subchondral bone has not been extensively studied. In this study, we examined the genome-wide DNA methylation profiles of subchondral bone from three regions on tibial plateau representing disease progression using HumanMethylation450 BeadChip to identify progression associated DNA methylation alterations. Significant differential methylated probes (DMPs) and differential methylated genes (DMGs) were identified in the intermediate and late stages and during the transition from intermediate to late stage of OA in the subchondral bone. Over half of the DMPs were hyper-methylated. Genes associated with OA and bone remodeling were identified. DMGs were enriched in morphogenesis and development of skeletal system, and HOX transcription factors. Comparison of DMGs identified in subchondral bone and site-matched cartilage indicated that DNA methylation changes occurred earlier in subchondral bone and identified different methylation patterns at the late stage of OA. However, shared DMPs, DMGs and common pathways that implicated the tissue reparation were also identified. Methylation is one key mechanism to regulate the crosstalk between cartilage and subchondral bone.
Zhang, Yanfei; Fukui, Naoshi; Yahata, Mitsunori; Katsuragawa, Yozo; Tashiro, Toshiyuki; Ikegawa, Shiro; Lee, Ming Ta Michael
2016-01-01
Subchondral bone plays a key role in the development of osteoarthritis, however, epigenetics of subchondral bone has not been extensively studied. In this study, we examined the genome-wide DNA methylation profiles of subchondral bone from three regions on tibial plateau representing disease progression using HumanMethylation450 BeadChip to identify progression associated DNA methylation alterations. Significant differential methylated probes (DMPs) and differential methylated genes (DMGs) were identified in the intermediate and late stages and during the transition from intermediate to late stage of OA in the subchondral bone. Over half of the DMPs were hyper-methylated. Genes associated with OA and bone remodeling were identified. DMGs were enriched in morphogenesis and development of skeletal system, and HOX transcription factors. Comparison of DMGs identified in subchondral bone and site-matched cartilage indicated that DNA methylation changes occurred earlier in subchondral bone and identified different methylation patterns at the late stage of OA. However, shared DMPs, DMGs and common pathways that implicated the tissue reparation were also identified. Methylation is one key mechanism to regulate the crosstalk between cartilage and subchondral bone. PMID:27686527
Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population
Schmitz, Robert J.; He, Yupeng; Valdés-López, Oswaldo; Khan, Saad M.; Joshi, Trupti; Urich, Mark A.; Nery, Joseph R.; Diers, Brian; Xu, Dong; Stacey, Gary; Ecker, Joseph R.
2013-01-01
Cytosine DNA methylation is one avenue for passing information through cell divisions. Here, we present epigenomic analyses of soybean recombinant inbred lines (RILs) and their parents. Identification of differentially methylated regions (DMRs) revealed that DMRs mostly cosegregated with the genotype from which they were derived, but examples of the uncoupling of genotype and epigenotype were identified. Linkage mapping of methylation states assessed from whole-genome bisulfite sequencing of 83 RILs uncovered widespread evidence for local methylQTL. This epigenomics approach provides a comprehensive study of the patterns and heritability of methylation variants in a complex genetic population over multiple generations, paving the way for understanding how methylation variants contribute to phenotypic variation. PMID:23739894
Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population.
Schmitz, Robert J; He, Yupeng; Valdés-López, Oswaldo; Khan, Saad M; Joshi, Trupti; Urich, Mark A; Nery, Joseph R; Diers, Brian; Xu, Dong; Stacey, Gary; Ecker, Joseph R
2013-10-01
Cytosine DNA methylation is one avenue for passing information through cell divisions. Here, we present epigenomic analyses of soybean recombinant inbred lines (RILs) and their parents. Identification of differentially methylated regions (DMRs) revealed that DMRs mostly cosegregated with the genotype from which they were derived, but examples of the uncoupling of genotype and epigenotype were identified. Linkage mapping of methylation states assessed from whole-genome bisulfite sequencing of 83 RILs uncovered widespread evidence for local methylQTL. This epigenomics approach provides a comprehensive study of the patterns and heritability of methylation variants in a complex genetic population over multiple generations, paving the way for understanding how methylation variants contribute to phenotypic variation.
Chen, A C H; Lee, Y L; Fong, S W; Wong, C C Y; Ng, E H Y; Yeung, W S B
2017-06-01
Exposure to maternal diabetes during fetal growth is a risk factor for the development of type II diabetes (T2D) in later life. Discovery of the mechanisms involved in this association should provide valuable background for therapeutic treatments. Early embryogenesis involves epigenetic changes including histone modifications. The bivalent histone methylation marks H3K4me3 and H3K27me3 are important for regulating key developmental genes during early fetal pancreas specification. We hypothesized that maternal hyperglycemia disrupted early pancreas development through changes in histone bivalency. A human embryonic stem cell line (VAL3) was used as the cell model for studying the effects of hyperglycemia upon differentiation into definitive endoderm (DE), an early stage of the pancreatic lineage. Hyperglycemic conditions significantly down-regulated the expression levels of DE markers SOX17, FOXA2, CXCR4 and EOMES during differentiation. This was associated with retention of the repressive histone methylation mark H3K27me3 on their promoters under hyperglycemic conditions. The disruption of histone methylation patterns was observed as early as the mesendoderm stage, with Wnt/β-catenin signaling being suppressed during hyperglycemia. Treatment with Wnt/β-catenin signaling activator CHIR-99021 restored the expression levels and chromatin methylation status of DE markers, even in a hyperglycemic environment. The disruption of DE development was also found in mouse embryos at day 7.5 post coitum from diabetic mothers. Furthermore, disruption of DE differentiation in VAL3 cells led to subsequent impairment in pancreatic progenitor formation. Thus, early exposure to hyperglycemic conditions hinders DE development with a possible relationship to the later impairment of pancreas specification.
Kanzleiter, Timo; Jähnert, Markus; Schulze, Gunnar; Selbig, Joachim; Hallahan, Nicole; Schwenk, Robert Wolfgang; Schürmann, Annette
2015-05-15
The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P < 0.05, meth diff >5%, coverage >10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training. Copyright © 2015 the American Physiological Society.
Zhou, Jia; Sears, Renee L; Xing, Xiaoyun; Zhang, Bo; Li, Daofeng; Rockweiler, Nicole B; Jang, Hyo Sik; Choudhary, Mayank N K; Lee, Hyung Joo; Lowdon, Rebecca F; Arand, Jason; Tabers, Brianne; Gu, C Charles; Cicero, Theodore J; Wang, Ting
2017-09-12
Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites.
Li, Yongsheng; Camarillo, Cynthia; Xu, Juan; Arana, Tania Bedard; Xiao, Yun; Zhao, Zheng; Chen, Hong; Ramirez, Mercedes; Zavala, Juan; Escamilla, Michael A.; Armas, Regina; Mendoza, Ricardo; Ontiveros, Alfonso; Nicolini, Humberto; Jerez Magaña, Alvaro Antonio; Rubin, Lewis P.; Li, Xia; Xu, Chun
2015-01-01
Schizophrenia (SZ) and bipolar disorder (BP) are complex genetic disorders. Their appearance is also likely informed by as yet only partially described epigenetic contributions. Using a sequencing-based method for genome-wide analysis, we quantitatively compared the blood DNA methylation landscapes in SZ and BP subjects to control, both in an understudied population, Hispanics along the US-Mexico border. Remarkably, we identified thousands of differentially methylated regions for SZ and BP preferentially located in promoters 3′-UTRs and 5′-UTRs of genes. Distinct patterns of aberrant methylation of promoter sequences were located surrounding transcription start sites. In these instances, aberrant methylation occurred in CpG islands (CGIs) as well as in flanking regions as well as in CGI sparse promoters. Pathway analysis of genes displaying these distinct aberrant promoter methylation patterns showed enhancement of epigenetic changes in numerous genes previously related to psychiatric disorders and neurodevelopment. Integration of gene expression data further suggests that in SZ aberrant promoter methylation is significantly associated with altered gene transcription. In particular, we found significant associations between (1) promoter CGIs hypermethylation with gene repression and (2) CGI 3′-shore hypomethylation with increased gene expression. Finally, we constructed a specific methylation analysis platform that facilitates viewing and comparing aberrant genome methylation in human neuropsychiatric disorders. PMID:25734057
Tissue-specific patterns of allelically-skewed DNA methylation
Marzi, Sarah J.; Meaburn, Emma L.; Dempster, Emma L.; Lunnon, Katie; Paya-Cano, Jose L.; Smith, Rebecca G.; Volta, Manuela; Troakes, Claire; Schalkwyk, Leonard C.; Mill, Jonathan
2016-01-01
ABSTRACT While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood. PMID:26786711
DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors.
Amatruda, James F; Ross, Julie A; Christensen, Brock; Fustino, Nicholas J; Chen, Kenneth S; Hooten, Anthony J; Nelson, Heather; Kuriger, Jacquelyn K; Rakheja, Dinesh; Frazier, A Lindsay; Poynter, Jenny N
2013-06-27
Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q < 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy.
Rathore, Mangal S; Jha, Bhavanath
2016-03-01
The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.
Ambrosone, Christine B.; Young, Allyson C.; Sucheston, Lara E.; Wang, Dan; Li, Yan; Liu, Song; Tang, Li; Hu, Quang; Freudenheim, Jo L.; Shields, Peter G.; Morrison, Carl D.; Demissie, Kitaw; Higgins, Michael J.
2014-01-01
American women of African ancestry (AA) are more likely than European-Americans (EA) to be diagnosed with aggressive, estrogen receptor (ER) negative breast tumors; mechanisms underlying these disparities are poorly understood. We conducted a genome wide (450K loci) methylation analysis to determine if there were differences in DNA methylation patterns between tumors from AA and EA women and if these differences were similar for both ER positive and ER negative breast cancer. Methylation levels at CpG loci within CpG islands (CGI)s and CGI-shores were significantly higher in tumors (n=138) than in reduction mammoplasty samples (n=124). In hierarchical cluster analysis, there was separation between tumor and normal samples, and in tumors, there was delineation by ER status, but not by ancestry. However, differential methylation analysis identified 157 CpG loci with a mean β value difference of at least 0.17 between races, with almost twice as many differences in ER-negative tumors compared to ER-positive cancers. This first genome-wide methylation study to address disparities indicates that there are likely differing etiologic pathways for the development of ER negative breast cancer between AA and EA women. Further investigation of the genes most differentially methylated by race in ER negative tumors can guide new approaches for cancer prevention and targeted therapies, and elucidate the biologic basis of breast cancer disparities. PMID:24368439
McKay, Jill A; Xie, Long; Harris, Sarah; Wong, Yi K; Ford, Dianne; Mathers, John C
2011-07-01
DNA methylation patterns are tissue specific and may influence tissue-specific gene regulation. Human studies investigating DNA methylation in relation to environmental factors primarily use blood-derived DNA as a surrogate for DNA from target tissues. It is therefore important to know if DNA methylation changes in blood in response to environmental changes reflect those in target tissues. Folate intake can influence DNA methylation, via altered methyl donor supply. Previously, manipulations of maternal folate intake during pregnancy altered the patterns of DNA methylation in offspring but, to our knowledge, the consequences for maternal DNA methylation are unknown. Given the increased requirement for folate during pregnancy, mothers may be susceptible to aberrant DNA methylation due to folate depletion. Female mice were fed folate-adequate (2 mg folic acid/kg diet) or folate-deplete (0.4 mg folic acid/kg diet) diets prior to mating and during pregnancy and lactation. Following weaning, dams were killed and DNA methylation was assessed by pyrosequencing® in blood, liver, and kidney at the Esr1, Igf2 differentially methylated region (DMR)1, Igf2 DMR2, Slc39a4CGI1, and Slc39a4CGI2 loci. We observed tissue-specific differences in methylation at all loci. Folate depletion reduced Igf2 DMR1 and Slc39a4CGI1 methylation across all tissues and altered Igf2 DMR2 methylation in a tissue-specific manner (p<0.05). Blood-derived DNA methylation measurements may not always reflect methylation within other tissues. Further measurements of blood-derived and tissue-specific methylation patterns are warranted to understand the complexity of tissue-specific responses to altered nutritional exposure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rager, Julia E.; Miller, Sloane; Tulenko, Samantha E.; Smeester, Lisa; Ray, Paul D.; Yosim, Andrew; Currier, Jenna M.; Ishida, María C.; González-Horta, Maria del Carmen; Sánchez-Ramírez, Blanca; Ballinas-Casarrubias, Lourdes; Gutiérrez-Torres, Daniela S.; Drobná, Zuzana; Del Razo, Luz M.; García-Vargas, Gonzalo G.; Kim, William Y.; Zhou, Yi-Hui; Wright, Fred A.; Stýblo, Miroslav; Fry, Rebecca C.
2016-01-01
There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to a myriad of adverse health effects, including cancer of the bladder. The present study set out to identify DNA methylation patterns associated with iAs and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic (As)-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total As (tAs) and As species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 As-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the As- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer. PMID:26039340
Sun, Yanyan; Zhang, Yanli; Wang, Ziyu; Song, Yang; Wang, Feng
2013-01-01
Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future. PMID:24204972
Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes
Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu
2014-01-01
It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342
Stadler, Florian; Kolb, Gabriele; Rubusch, Lothar; Baker, Stephen P; Jones, Edward G; Akbarian, Schahram
2005-07-01
Glutamatergic signaling is regulated, in part, through differential expression of NMDA and AMPA/KA channel subunits and G protein-coupled metabotropic receptors. In human brain, region-specific expression patterns of glutamate receptor genes are maintained over the course of decades, suggesting a role for molecular mechanisms involved in long-term regulation of transcription, including methylation of lysine residues at histone N-terminal tails. Using a native chromatin immunoprecipitation assay, we studied histone methylation marks at proximal promoters of 16 ionotropic and metabotropic glutamate receptor genes (GRIN1,2A-D; GRIA1,3,4; GRIK2,4,5; GRM1,3,4,6,7 ) in cerebellar cortex collected across a wide age range from midgestation to 90 years old. Levels of di- and trimethylated histone H3-lysine 4, which are associated with open chromatin and transcription, showed significant differences between promoters and a robust correlation with corresponding mRNA levels in immature and mature cerebellar cortex. In contrast, levels of trimethylated H3-lysine 27 and H4-lysine 20, two histone modifications defining silenced or condensed chromatin, did not correlate with transcription but were up-regulated overall in adult cerebellum. Furthermore, differential gene expression patterns in prefrontal and cerebellar cortex were reflected by similar differences in H3-lysine 4 methylation at promoters. Together, these findings suggest that histone lysine methylation at gene promoters is involved in developmental regulation and maintenance of region-specific expression patterns of ionotropic and metabotropic glutamate receptors. The association of a specific epigenetic mark, H3-(methyl)-lysine 4, with the molecular architecture of glutamatergic signaling in human brain has potential implications for schizophrenia and other disorders with altered glutamate receptor function.
Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendall, Matthew L.; Luong, Khai; Wetmore, Kelly M.
2013-08-30
We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns.more » However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.« less
DNA methylome signature in rheumatoid arthritis.
Nakano, Kazuhisa; Whitaker, John W; Boyle, David L; Wang, Wei; Firestein, Gary S
2013-01-01
Epigenetics can influence disease susceptibility and severity. While DNA methylation of individual genes has been explored in autoimmunity, no unbiased systematic analyses have been reported. Therefore, a genome-wide evaluation of DNA methylation loci in fibroblast-like synoviocytes (FLS) isolated from the site of disease in rheumatoid arthritis (RA) was performed. Genomic DNA was isolated from six RA and five osteoarthritis (OA) FLS lines and evaluated using the Illumina HumanMethylation450 chip. Cluster analysis of data was performed and corrected using Benjamini-Hochberg adjustment for multiple comparisons. Methylation was confirmed by pyrosequencing and gene expression was determined by qPCR. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. RA and control FLS segregated based on DNA methylation, with 1859 differentially methylated loci. Hypomethylated loci were identified in key genes relevant to RA, such as CHI3L1, CASP1, STAT3, MAP3K5, MEFV and WISP3. Hypermethylation was also observed, including TGFBR2 and FOXO1. Hypomethylation of individual genes was associated with increased gene expression. Grouped analysis identified 207 hypermethylated or hypomethylated genes with multiple differentially methylated loci, including COL1A1, MEFV and TNF. Hypomethylation was increased in multiple pathways related to cell migration, including focal adhesion, cell adhesion, transendothelial migration and extracellular matrix interactions. Confirmatory studies with OA and normal FLS also demonstrated segregation of RA from control FLS based on methylation pattern. Differentially methylated genes could alter FLS gene expression and contribute to the pathogenesis of RA. DNA methylation of critical genes suggests that RA FLS are imprinted and implicate epigenetic contributions to inflammatory arthritis.
Rönn, Tina; Volkov, Petr; Davegårdh, Cajsa; Dayeh, Tasnim; Hall, Elin; Olsson, Anders H.; Nilsson, Emma; Tornberg, Åsa; Dekker Nitert, Marloes; Eriksson, Karl-Fredrik; Jones, Helena A.; Groop, Leif; Ling, Charlotte
2013-01-01
Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism. PMID:23825961
Hassler, Melanie R; Pulverer, Walter; Lakshminarasimhan, Ranjani; Redl, Elisa; Hacker, Julia; Garland, Gavin D; Merkel, Olaf; Schiefer, Ana-Iris; Simonitsch-Klupp, Ingrid; Kenner, Lukas; Weisenberger, Daniel J; Weinhaeusel, Andreas; Turner, Suzanne D; Egger, Gerda
2016-10-04
Aberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+) and NPM-ALK-negative (ALK-) anaplastic large-cell lymphoma (ALCL). We find that ALK+ and ALK- ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
DNA methylation modulates H19 and IGF2 expression in porcine female eye
Wang, Dongxu; Wang, Guodong; Yang, Hao; Liu, Haibo; Li, Cuie; Li, Xiaolan; Lin, Chao; Song, Yuning; Li, Zhanjun; Liu, Dianfeng
2017-01-01
Abstract The sexually dimorphic expression of H19/IGF2 is evolutionarily conserved. To investigate whether the expression of H19/IGF2 in the female porcine eye is sex-dependent, gene expression and methylation status were evaluated using quantitative real-time PCR (qPCR) and bisulfite sequencing PCR (BSP). We hypothesized that H19/IGF2 might exhibit a different DNA methylation status in the female eye. In order to evaluate our hypothesis, parthenogenetic (PA) cells were used for analysis by qPCR and BSP. Our results showed that H19 and IGF2 were over-expressed in the female eye compared with the male eye (3-fold and 2-fold, respectively). We observed a normal monoallelic methylation pattern for H19 differentially methylated regions (DMRs). Compared with H19 DMRs, IGF2 DMRs showed a different methylation pattern in the eye. Taken together, these results suggest that elevated expression of H19/IGF2 is caused by a specific chromatin structure that is regulated by the DNA methylation status of IGF2 DMRs in the female eye. PMID:28266684
Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice.
Schraut, K G; Jakob, S B; Weidner, M T; Schmitt, A G; Scholz, C J; Strekalova, T; El Hajj, N; Eijssen, L M T; Domschke, K; Reif, A; Haaf, T; Ortega, G; Steinbusch, H W M; Lesch, K P; Van den Hove, D L
2014-10-21
The serotonin transporter gene (5-HTT/SLC6A4)-linked polymorphic region has been suggested to have a modulatory role in mediating effects of early-life stress exposure on psychopathology rendering carriers of the low-expression short (s)-variant more vulnerable to environmental adversity in later life. The underlying molecular mechanisms of this gene-by-environment interaction are not well understood, but epigenetic regulation including differential DNA methylation has been postulated to have a critical role. Recently, we used a maternal restraint stress paradigm of prenatal stress (PS) in 5-HTT-deficient mice and showed that the effects on behavior and gene expression were particularly marked in the hippocampus of female 5-Htt+/- offspring. Here, we examined to which extent these effects are mediated by differential methylation of DNA. For this purpose, we performed a genome-wide hippocampal DNA methylation screening using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip Mouse Promoter 1.0 R arrays. Using hippocampal DNA from the same mice as assessed before enabled us to correlate gene-specific DNA methylation, mRNA expression and behavior. We found that 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a subset of which showed overlap with the expression profiles of the corresponding transcripts. For example, a differentially methylated region in the gene encoding myelin basic protein (Mbp) was associated with its expression in a 5-Htt-, PS- and 5-Htt × PS-dependent manner. Subsequent fine-mapping of this Mbp locus linked the methylation status of two specific CpG sites to Mbp expression and anxiety-related behavior. In conclusion, hippocampal DNA methylation patterns and expression profiles of female prenatally stressed 5-Htt+/- mice suggest that distinct molecular mechanisms, some of which are promoter methylation-dependent, contribute to the behavioral effects of the 5-Htt genotype, PS exposure and their interaction.
Martin, Christiana; Cho, Young-Eun; Kim, Hyungsuk; Yun, Sijung; Kanefsky, Rebekah; Lee, Hyunhwa; Mysliwiec, Vincent; Cashion, Ann; Gill, Jessica
2018-05-01
Military personnel experience posttraumatic stress disorder (PTSD), which is associated with differential DNA methylation across the whole genome. However, the relationship between these DNA methylation patterns and clinically relevant increases in PTSD severity is not yet clearly understood. The purpose of this study was to identify differences in DNA methylation associated with PTSD symptoms and investigate DNA methylation changes related to increases in the severity of PTSD in military personnel. In this pilot study, a cross-sectional comparison was made between military personnel with PTSD (n = 8) and combat-matched controls without PTSD (n = 6). Symptom measures were obtained, and genome-wide DNA methylation was measured using methylated DNA immunoprecipitation (MeDIP-seq) from whole blood samples at baseline and 3 months later. A longitudinal comparison measured DNA methylation changes in military personnel with clinically relevant increases in PTSD symptoms between time points (PTSD onset) and compared methylation patterns to controls with no clinical changes in PTSD. In military personnel with elevated PTSD symptoms 3 months following baseline, 119 genes exhibited reduced methylation and 8 genes exhibited increased methylation. Genes with reduced methylation in the PTSD-onset group relate to the canonical pathways of netrin signaling, Wnt/Ca + pathway, and axonal guidance signaling. These gene pathways relate to neurological disorders, and the current findings suggest that these epigenetic changes potentially relate to PTSD symptomology. This study provides some novel insights into the role of epigenetic changes in PTSD symptoms and the progression of PTSD symptoms in military personnel.
Essex, Marilyn J; Boyce, W Thomas; Hertzman, Clyde; Lam, Lucia L; Armstrong, Jeffrey M; Neumann, Sarah M A; Kobor, Michael S
2013-01-01
Fifteen-year-old adolescents (N = 109) in a longitudinal study of child development were recruited to examine differences in DNA methylation in relation to parent reports of adversity during the adolescents' infancy and preschool periods. Microarray technology applied to 28,000 cytosine-guanine dinucleotide sites within DNA derived from buccal epithelial cells showed differential methylation among adolescents whose parents reported high levels of stress during their children's early lives. Maternal stressors in infancy and paternal stressors in the preschool years were most strongly predictive of differential methylation, and the patterning of such epigenetic marks varied by children's gender. To the authors' knowledge, this is the first report of prospective associations between adversities in early childhood and the epigenetic conformation of adolescents' genomic DNA. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.
Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis.
Kumar, Himanshu; Lund, Riikka; Laiho, Asta; Lundelin, Krista; Ley, Ruth E; Isolauri, Erika; Salminen, Seppo
2014-12-16
The core human gut microbiota contributes to the developmental origin of diseases by modifying metabolic pathways. To evaluate the predominant microbiota as an epigenetic modifier, we classified 8 pregnant women into two groups based on their dominant microbiota, i.e., Bacteroidetes, Firmicutes, and Proteobacteria. Deep sequencing of DNA methylomes revealed a clear association between bacterial predominance and epigenetic profiles. The genes with differentially methylated promoters in the group in which Firmicutes was dominant were linked to risk of disease, predominantly to cardiovascular disease and specifically to lipid metabolism, obesity, and the inflammatory response. This is one of the first studies that highlights the association of the predominant bacterial phyla in the gut with methylation patterns. Further longitudinal and in-depth studies targeting individual microbial species or metabolites are recommended to give us a deeper insight into the molecular mechanism of such epigenetic modifications. Epigenetics encompasses genomic modifications that are due to environmental factors and do not affect the nucleotide sequence. The gut microbiota has an important role in human metabolism and could be a significant environmental factor affecting our epigenome. To investigate the association of gut microbiota with epigenetic changes, we assessed pregnant women and selected the participants based on their predominant gut microbiota for a study on their postpartum methylation profile. Intriguingly, we found that blood DNA methylation patterns were associated with gut microbiota profiles. The gut microbiota profiles, with either Firmicutes or Bacteroidetes as a dominant group, correlated with differential methylation status of gene promoters functionally associated with cardiovascular diseases. Furthermore, differential methylation of gene promoters linked to lipid metabolism and obesity was observed. For the first time, we report here a position of the predominant gut microbiota in epigenetic profiling, suggesting one potential mechanism in obesity with comorbidities, if proven in further in-depth studies. Copyright © 2014 Kumar et al.
Ruzicka, W Brad; Subburaju, Sivan; Coyle, Joseph T; Benes, Francine M
2018-01-15
Recent studies describe distinct DNA methylomes among phenotypic subclasses of neurons in the human brain, but variation in DNA methylation between common neuronal phenotypes distinguished by their function within distinct neural circuits remains an unexplored concept. Studies able to resolve epigenetic profiles at the level of microcircuits are needed to illuminate chromatin dynamics in the regulation of specific neuronal populations and circuits mediating normal and abnormal behaviors. The Illumina HumanMethylation450 BeadChip was used to assess genome-wide DNA methylation in stratum oriens GABAergic interneurons sampled by laser-microdissection from two discrete microcircuits along the trisynaptic pathway in postmortem human hippocampus from eight control, eight schizophrenia, and eight bipolar disorder subjects. Data were analysed using the minfi Bioconductor package in R software version 3.3.2. We identified 11 highly significant differentially methylated regions associated with a group of genes with high construct-validity, including multiple zinc finger of the cerebellum gene family members and WNT signaling factors. Genomic locations of differentially methylated regions were highly similar between diagnostic categories, with a greater number of differentially methylated individual cytosine residues between circuit locations in bipolar disorder cases than in schizophrenia or control (42, 7, and 7 differentially methylated positions, respectively). These findings identify distinct DNA methylomes among phenotypically similar populations of GABAergic interneurons functioning within separate hippocampal subfields. These data compliment recent studies describing diverse epigenotypes among separate neuronal subclasses, extending this concept to distinct epigenotypes within similar neuronal phenotypes from separate microcircuits within the human brain. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pandey, Garima; Yadav, Chandra Bhan; Sahu, Pranav Pankaj; Muthamilarasan, Mehanathan; Prasad, Manoj
2017-05-01
Genome-wide methylation analysis of foxtail millet cultivars contrastingly differing in salinity tolerance revealed DNA demethylation events occurring in tolerant cultivar under salinity stress, eventually modulating the expression of stress-responsive genes. Reduced productivity and significant yield loss are the adverse effects of environmental conditions on physiological and biochemical pathways in crop plants. In this context, understanding the epigenetic machinery underlying the tolerance traits in a naturally stress tolerant crop is imperative. Foxtail millet (Setaria italica) is known for its better tolerance to abiotic stresses compared to other cereal crops. In the present study, methylation-sensitive amplified polymorphism (MSAP) technique was used to quantify the salt-induced methylation changes in two foxtail millet cultivars contrastingly differing in their tolerance levels to salt stress. The study highlighted that the DNA methylation level was significantly reduced in tolerant cultivar compared to sensitive cultivar. A total of 86 polymorphic MSAP fragments were identified, sequenced and functionally annotated. These fragments showed sequence similarity to several genes including ABC transporter, WRKY transcription factor, serine threonine-protein phosphatase, disease resistance, oxidoreductases, cell wall-related enzymes and retrotransposon and transposase like proteins, suggesting salt stress-induced methylation in these genes. Among these, four genes were chosen for expression profiling which showed differential expression pattern between both cultivars of foxtail millet. Altogether, the study infers that salinity stress induces genome-wide DNA demethylation, which in turn, modulates expression of corresponding genes.
Xu, Rui; Chen, Wenbin; Zhang, Zhifen; Qiu, Yang; Wang, Yong; Zhang, Bingchang; Lu, Wei
2018-05-30
Bone-Marrow Stromal Cells (BMSCs)-derived vascular endothelial cells (VECs) is regarded as an important therapeutic strategy for spinal cord injury, disc degeneration, cerebral ischemic disease and diabetes. The change in DNA methylation level is essential for stem cell differentiation. However, the DNA methylation related mechanisms underlying the endothelial differentiation of BMSCs are not well understood. In this study, DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC) significantly elevated the endothelial markers expression (CD31/PECAM1, CD105/ENG, eNOS and VE-cadherin), as well as promoted the capacity of angiogenesis on Matrigel. The result of Alexa 488-Ac-LDL uptake assay indicated that the differentiation ratio of BMSCs into VECs was 68.7% in 5-azaz-dC induced differentiation. And then we screened differentiation inducers with altered expression patterns and DNA methylation levels in four important families (VEGF, ANG, FGF and ETS). By integrating these data, five endothelial differentiation inducers (VEGFA, ANGPT2, FGF2, FGF9 and ETS1) which were directly upregulated by 5-aza-dC and five indirect factors (FGF1, FGF3, ETS2, ETV1 and ETV4) were identified. These data suggested that 5-aza-dC is an excellent chemical molecule for BMSCs differentiation into functional VECs and also provided essential clues for DNA methylation related signaling during 5-aza-dC induced endothelial differentiation of BMSCs. Copyright © 2018 Elsevier B.V. All rights reserved.
Walters, Kevin
2012-08-07
In this paper we use approximate Bayesian computation to estimate the parameters in an immortal model of colonic stem cell division. We base the inferences on the observed DNA methylation patterns of cells sampled from the human colon. Utilising DNA methylation patterns as a form of molecular clock is an emerging area of research and has been used in several studies investigating colonic stem cell turnover. There is much debate concerning the two competing models of stem cell turnover: the symmetric (immortal) and asymmetric models. Early simulation studies concluded that the observed methylation data were not consistent with the immortal model. A later modified version of the immortal model that included preferential strand segregation was subsequently shown to be consistent with the same methylation data. Most of this earlier work assumes site independent methylation models that do not take account of the known processivity of methyltransferases whilst other work does not take into account the methylation errors that occur in differentiated cells. This paper addresses both of these issues for the immortal model and demonstrates that approximate Bayesian computation provides accurate estimates of the parameters in this neighbour-dependent model of methylation error rates. The results indicate that if colonic stem cells divide asymmetrically then colon stem cell niches are maintained by more than 8 stem cells. Results also indicate the possibility of preferential strand segregation and provide clear evidence against a site-independent model for methylation errors. In addition, algebraic expressions for some of the summary statistics used in the approximate Bayesian computation (that allow for the additional variation arising from cell division in differentiated cells) are derived and their utility discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Giri, Anil K; Bharadwaj, Soham; Banerjee, Priyanka; Chakraborty, Shraddha; Parekatt, Vaisak; Rajashekar, Donaka; Tomar, Abhishek; Ravindran, Aarthi; Basu, Analabha; Tandon, Nikhil; Bharadwaj, Dwaipayan
2017-06-01
Phenotypic characteristics are known to vary substantially among different ethnicities around the globe. These variations are mediated by number of stochastic events and cannot be attributed to genetic architecture alone. DNA methylation is a well-established mechanism that sculpts our epigenome influencing phenotypic variation including disease manifestation. Since DNA methylation is an important determinant for health issues of a population, it demands a thorough investigation of the natural differences in genome wide DNA methylation patterns across different ethnic groups. This study is based on comparative analyses of methylome from five different ethnicities with major focus on Indian subjects. The current study uses hierarchical clustering approaches, principal component analysis and locus specific differential methylation analysis on Illumina 450K methylation data to compare methylome of different ethnic subjects. Our data indicates that the variations in DNA methylation patterns of Indians are less among themselves compared to other global population. It empirically correlated with dietary, cultural and demographical divergences across different ethnic groups. Our work further suggests that Indians included in this study, despite their genetic similarity with the Caucasian population, are in close proximity with Japanese in terms of their methylation signatures.
Zheng, Xiaoguo; Li, Zhenhua; Wang, Guishuan; Li, Zhengzheng; Liang, Ajuan; Wang, Hanshu; Dai, Yubing; Huang, Xingxu; Chen, Xuejin; Ma, Yuanwu; Sun, Fei
2017-01-01
DNA methylation is the major focus of studies on paternal epigenetic inheritance in mammals, but most previous studies about inheritable DNA methylation changes are passively induced by environmental factors. However, it is unclear whether the active changes mediated by variations in DNA methyltransferase activity are heritable. Here, we established human-derived DNMT3A (hDNMT3A) transgenic rats to study the effect of hDNMT3A overexpression on the DNA methylation pattern of rat sperm and to investigate whether this actively altered DNA methylation status is inheritable. Our results revealed that hDNMT3A was overexpressed in the testis of transgenic rats and induced genome-wide alterations in the DNA methylation pattern of rat sperm. Among 5438 reliable loci identified with 64 primer-pair combinations using a methylation-sensitive amplification polymorphism method, 28.01% showed altered amplified band types. Among these amplicons altered loci, 68.42% showed an altered DNA methylation status in the offspring of transgenic rats compared with wild-type rats. Further analysis based on loci which had identical DNA methylation status in all three biological replicates revealed that overexpression of hDNMT3A in paternal testis induced hypermethylation in sperm of both genotype-negative and genotype-positive offspring. Among the differentially methylated loci, 34.26% occurred in both positive and negative offspring of transgenic rats, indicating intergenerational inheritance of active DNA methylation changes in the absence of hDNM3A transmission. Furthermore, 75.07% of the inheritable loci were hyper-methylated while the remaining were hypomethylated. Distribution analysis revealed that the DNA methylation variations mainly occurred in introns and intergenic regions. Functional analysis revealed that genes related to differentially methylated loci were involved in a wide range of functions. Finally, this study demonstrated that active DNA methylation changes induced by hDNMT3A expression were intergenerationally inherited by offspring without transmission of the transgene, which provided evidence for the transmission of active endogenous-factors-induced epigenetic variations. PMID:29312436
Gim, Jeong-An; Hong, Chang Pyo; Kim, Dae-Soo; Moon, Jae-Woo; Choi, Yuri; Eo, Jungwoo; Kwon, Yun-Jeong; Lee, Ja-Rang; Jung, Yi-Deun; Bae, Jin-Han; Choi, Bong-Hwan; Ko, Junsu; Song, Sanghoon; Ahn, Kung; Ha, Hong-Seok; Yang, Young Mok; Lee, Hak-Kyo; Park, Kyung-Do; Do, Kyoung-Tag; Han, Kyudong; Yi, Joo Mi; Cha, Hee-Jae; Ayarpadikannan, Selvam; Cho, Byung-Wook; Bhak, Jong; Kim, Heui-Soo
2015-01-01
Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits. PMID:25666347
An investigation of child maltreatment and epigenetic mechanisms of mental and physical health risk
Cicchetti, Dante; Hetzel, Susan; Rogosch, Fred A.; Handley, Elizabeth D.; Toth, Sheree L.
2016-01-01
In the present investigation, differential methylation analyses of the whole genome were conducted among a sample of 548 school-aged low-income children (47.8% female, 67.7% Black, M age=9.40 years), 54.4% of whom had a history of child maltreatment. In the context of a summer research camp, DNA samples via saliva were obtained. Using GenomeStudio, Methylation Module and the Illumina Custom Model, differential methylation analyses revealed a pattern of greater methylation at low methylation sites (n=197 sites) and medium methylation sites (n=730 sites) and less methylation at high methylation sites (n=907 sites) among maltreated children. The mean difference in methylation between the maltreated and nonmaltreated children was 6.2%. The relative risk of maltreatment with known disease biomarkers was also investigated using GenoGo MetaCore Software. A large number of network objects previously associated with mental health, cancer, cardiovascular systems, and immune functioning were identified evidencing differential methylation among maltreated and nonmaltreated children. Site-specific analyses were also conducted for ALDH2, ANKK1, and NR3C1 and results highlight the importance of considering gender and the developmental timing of maltreatment. For ALDH2, results indicated that maltreated girls evidenced significantly lower methylation compared to nonmaltreated girls, and maltreated boys evidenced significantly higher methylation compared to nonmaltreated boys. Moreover, early onset-not recently maltreated boys evidenced significantly higher methylation at ALDH2 compared to nonmaltreated boys. Similarly, children with early onset-non recent maltreatment evidenced significantly higher methylation compared to nonmaltreated children at ANKK1. The site-specific results were not altered by controlling for genotypic variation of respective genes. The findings demonstrate increased risk for adverse physical and mental health outcomes associated with differences in methylation in maltreated children and indicate differences among maltreated children related to developmental timing of maltreatment and gender in genes involved in mental health functioning. PMID:27691979
Dimond, James L; Roberts, Steven B
2016-04-01
DNA methylation is an epigenetic mark that plays an inadequately understood role in gene regulation, particularly in nonmodel species. Because it can be influenced by the environment, DNA methylation may contribute to the ability of organisms to acclimatize and adapt to environmental change. We evaluated the distribution of gene body methylation in reef-building corals, a group of organisms facing significant environmental threats. Gene body methylation in six species of corals was inferred from in silico transcriptome analysis of CpG O/E, an estimate of germline DNA methylation that is highly correlated with patterns of methylation enrichment. Consistent with what has been documented in most other invertebrates, all corals exhibited bimodal distributions of germline methylation suggestive of distinct fractions of genes with high and low levels of methylation. The hypermethylated fractions were enriched with genes with housekeeping functions, while genes with inducible functions were highly represented in the hypomethylated fractions. High transcript abundance was associated with intermediate levels of methylation. In three of the coral species, we found that genes differentially expressed in response to thermal stress and ocean acidification exhibited significantly lower levels of methylation. These results support a link between gene body hypomethylation and transcriptional plasticity that may point to a role of DNA methylation in the response of corals to environmental change. © 2015 John Wiley & Sons Ltd.
Profile analysis and prediction of tissue-specific CpG island methylation classes
2009-01-01
Background The computational prediction of DNA methylation has become an important topic in the recent years due to its role in the epigenetic control of normal and cancer-related processes. While previous prediction approaches focused merely on differences between methylated and unmethylated DNA sequences, recent experimental results have shown the presence of much more complex patterns of methylation across tissues and time in the human genome. These patterns are only partially described by a binary model of DNA methylation. In this work we propose a novel approach, based on profile analysis of tissue-specific methylation that uncovers significant differences in the sequences of CpG islands (CGIs) that predispose them to a tissue- specific methylation pattern. Results We defined CGI methylation profiles that separate not only between constitutively methylated and unmethylated CGIs, but also identify CGIs showing a differential degree of methylation across tissues and cell-types or a lack of methylation exclusively in sperm. These profiles are clearly distinguished by a number of CGI attributes including their evolutionary conservation, their significance, as well as the evolutionary evidence of prior methylation. Additionally, we assess profile functionality with respect to the different compartments of protein coding genes and their possible use in the prediction of DNA methylation. Conclusion Our approach provides new insights into the biological features that determine if a CGI has a functional role in the epigenetic control of gene expression and the features associated with CGI methylation susceptibility. Moreover, we show that the ability to predict CGI methylation is based primarily on the quality of the biological information used and the relationships uncovered between different sources of knowledge. The strategy presented here is able to predict, besides the constitutively methylated and unmethylated classes, two more tissue specific methylation classes conserving the accuracy provided by leading binary methylation classification methods. PMID:19383127
DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors
Kneitz, Susanne; Weber, Dana; Fuchs, Joerg; Hedrich, Rainer; Deeken, Rosalia
2013-01-01
Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA–encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA–mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors. PMID:23408907
Gohlke, Jochen; Scholz, Claus-Juergen; Kneitz, Susanne; Weber, Dana; Fuchs, Joerg; Hedrich, Rainer; Deeken, Rosalia
2013-01-01
Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors.
Johnson, Michelle D; Dopierala, Justyna
2018-01-01
ABSTRACT DNA methylation is an important regulator of gene function. Fetal sex is associated with the risk of several specific pregnancy complications related to placental function. However, the association between fetal sex and placental DNA methylation remains poorly understood. We carried out whole-genome oxidative bisulfite sequencing in the placentas of two healthy female and two healthy male pregnancies generating an average genome depth of coverage of 25x. Most highly ranked differentially methylated regions (DMRs) were located on the X chromosome but we identified a 225 kb sex-specific DMR in the body of the CUB and Sushi Multiple Domains 1 (CSMD1) gene on chromosome 8. The sex-specific differential methylation pattern observed in this region was validated in additional placentas using in-solution target capture. In a new RNA-seq data set from 64 female and 67 male placentas, CSMD1 mRNA was 1.8-fold higher in male than in female placentas (P value = 8.5 × 10−7, Mann-Whitney test). Exon-level quantification of CSMD1 mRNA from these 131 placentas suggested a likely placenta-specific CSMD1 isoform not detected in the 21 somatic tissues analyzed. We show that the gene body of an autosomal gene, CSMD1, is differentially methylated in a sex- and placental-specific manner, displaying sex-specific differences in placental transcript abundance. PMID:29376485
Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa
2013-01-01
Background Cytosine DNA methylation (5mC) is an epigenetic modification that is important to genome stability and regulation of gene expression. Perturbations of 5mC have been implicated as a cause of phenotypic variation among plants regenerated through in vitro culture systems. However, the pattern of change in 5mC and its functional role with respect to gene expression, are poorly understood at the genome scale. A fuller understanding of how 5mC changes during in vitro manipulation may aid the development of methods for reducing or amplifying the mutagenic and epigenetic effects of in vitro culture and plant transformation. Results We investigated the in vitro methylome of the model tree species Populus trichocarpa in a system that mimics routine methods for regeneration and plant transformation in the genus Populus (poplar). Using methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq), we compared the methylomes of internode stem segments from micropropagated explants, dedifferentiated calli, and internodes from regenerated plants. We found that more than half (56%) of the methylated portion of the genome appeared to be differentially methylated among the three tissue types. Surprisingly, gene promoter methylation varied little among tissues, however, the percentage of body-methylated genes increased from 9% to 14% between explants and callus tissue, then decreased to 8% in regenerated internodes. Forty-five percent of differentially-methylated genes underwent transient methylation, becoming methylated in calli, and demethylated in regenerants. These genes were more frequent in chromosomal regions with higher gene density. Comparisons with an expression microarray dataset showed that genes methylated at both promoters and gene bodies had lower expression than genes that were unmethylated or only promoter-methylated in all three tissues. Four types of abundant transposable elements showed their highest levels of 5mC in regenerated internodes. Conclusions DNA methylation varies in a highly gene- and chromosome-differential manner during in vitro differentiation and regeneration. 5mC in redifferentiated tissues was not reset to that in original explants during the study period. Hypermethylation of gene bodies in dedifferentiated cells did not interfere with transcription, and may serve a protective role against activation of abundant transposable elements. PMID:23799904
Chong, Allen; Teo, Jing Xian; Ban, Kenneth H K
2016-05-10
Epigenetic changes, like DNA methylation, affect gene expression and in colorectal cancer (CRC), a distinct phenotype called the CpG island methylator phenotype ("CIMP") has significantly higher levels of DNA methylation at so-called "Type C loci" within the genome. We postulate that enhancer-gene pairs are coordinately controlled through DNA methylation in order to regulate the expression of key genes/biomarkers for a particular phenotype.Firstly, we found 24 experimentally-validated enhancers (VISTA enhancer browser) that contained statistically significant (FDR-adjusted q-value of <0.01) differentially methylated regions (DMRs) (1000bp) in a study of CIMP versus non-CIMP CRCs. Of these, the methylation of 2 enhancers, 1702 and 1944, were found to be very well correlated with the methylation of the genes Wnt3A and IGDCC3, respectively, in two separate and independent datasets.We show for the first time that there are indeed distinct and dynamic changes in the methylation pattern of specific enhancer-gene pairs in CRCs. Such a coordinated epigenetic event could be indicative of an interaction between (1) enhancer 1702 and Wnt3A and (2) enhancer 1944 and IGDCC3. Moreover, our study shows that the methylation patterns of these 2 enhancer-gene pairs can potentially be used as biomarkers to delineate CIMP from non-CIMP CRCs.
Xu, Yi-Hua; Manoharan, Herbert T; Pitot, Henry C
2007-09-01
The bisulfite genomic sequencing technique is one of the most widely used techniques to study sequence-specific DNA methylation because of its unambiguous ability to reveal DNA methylation status to the order of a single nucleotide. One characteristic feature of the bisulfite genomic sequencing technique is that a number of sample sequence files will be produced from a single DNA sample. The PCR products of bisulfite-treated DNA samples cannot be sequenced directly because they are heterogeneous in nature; therefore they should be cloned into suitable plasmids and then sequenced. This procedure generates an enormous number of sample DNA sequence files as well as adding extra bases belonging to the plasmids to the sequence, which will cause problems in the final sequence comparison. Finding the methylation status for each CpG in each sample sequence is not an easy job. As a result CpG PatternFinder was developed for this purpose. The main functions of the CpG PatternFinder are: (i) to analyze the reference sequence to obtain CpG and non-CpG-C residue position information. (ii) To tailor sample sequence files (delete insertions and mark deletions from the sample sequence files) based on a configuration of ClustalW multiple alignment. (iii) To align sample sequence files with a reference file to obtain bisulfite conversion efficiency and CpG methylation status. And, (iv) to produce graphics, highlighted aligned sequence text and a summary report which can be easily exported to Microsoft Office suite. CpG PatternFinder is designed to operate cooperatively with BioEdit, a freeware on the internet. It can handle up to 100 files of sample DNA sequences simultaneously, and the total CpG pattern analysis process can be finished in minutes. CpG PatternFinder is an ideal software tool for DNA methylation studies to determine the differential methylation pattern in a large number of individuals in a population. Previously we developed the CpG Analyzer program; CpG PatternFinder is our further effort to create software tools for DNA methylation studies.
Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility.
Urdinguio, Rocío G; Bayón, Gustavo F; Dmitrijeva, Marija; Toraño, Estela G; Bravo, Cristina; Fraga, Mario F; Bassas, Lluís; Larriba, Sara; Fernández, Agustín F
2015-05-01
Are there DNA methylation alterations in sperm that could explain the reduced biological fertility of male partners from couples with unexplained infertility? DNA methylation patterns, not only at specific loci but also at Alu Yb8 repetitive sequences, are altered in infertile individuals compared with fertile controls. Aberrant DNA methylation of sperm has been associated with human male infertility in patients demonstrating either deficiencies in the process of spermatogenesis or low semen quality. Case and control prospective study. This study compares 46 sperm samples obtained from 17 normospermic fertile men and 29 normospermic infertile patients. Illumina Infinium HD Human Methylation 450K arrays were used to identify genomic regions showing differences in sperm DNA methylation patterns between five fertile and seven infertile individuals. Additionally, global DNA methylation of sperm was measured using the Methylamp Global DNA Methylation Quantification Ultra kit (Epigentek) in 14 samples, and DNA methylation at several repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4) measured by bisulfite pyrosequencing in 44 sperm samples. A sperm-specific DNA methylation pattern was obtained by comparing the sperm methylomes with the DNA methylomes of differentiated somatic cells using data obtained from methylation arrays (Illumina 450 K) of blood, neural and glial cells deposited in public databases. In this study we conduct, for the first time, a genome-wide study to identify alterations of sperm DNA methylation in individuals with unexplained infertility that may account for the differences in their biological fertility compared with fertile individuals. We have identified 2752 CpGs showing aberrant DNA methylation patterns, and more importantly, these differentially methylated CpGs were significantly associated with CpG sites which are specifically methylated in sperm when compared with somatic cells. We also found statistically significant (P < 0.001) associations between DNA hypomethylation and regions corresponding to those which, in somatic cells, are enriched in the repressive histone mark H3K9me3, and between DNA hypermethylation and regions enriched in H3K4me1 and CTCF, suggesting that the relationship between chromatin context and aberrant DNA methylation of sperm in infertile men could be locus-dependent. Finally, we also show that DNA methylation patterns, not only at specific loci but also at several repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4), were lower in sperm than in somatic cells. Interestingly, sperm samples at Alu Yb8 repetitive sequences of infertile patients showed significantly lower DNA methylation levels than controls. Our results are descriptive and further studies would be needed to elucidate the functional effects of aberrant DNA methylation on male fertility. Overall, our data suggest that aberrant sperm DNA methylation might contribute to fertility impairment in couples with unexplained infertility and they provide a promising basis for future research. This work has been financially supported by Fundación Cientifica de la AECC (to R.G.U.); IUOPA (to G.F.B.); FICYT (to E.G.T.); the Spanish National Research Council (CSIC; 200820I172 to M.F.F.); Fundación Ramón Areces (to M.F.F); the Plan Nacional de I+D+I 2008-2011/2013-2016/FEDER (PI11/01728 to AF.F., PI12/01080 to M.F.F. and PI12/00361 to S.L.); the PN de I+D+I 2008-20011 and the Generalitat de Catalunya (2009SGR01490). A.F.F. is sponsored by ISCIII-Subdirección General de Evaluación y Fomento de la Investigación (CP11/00131). S.L. is sponsored by the Researchers Stabilization Program from the Spanish National Health System (CES09/020). The IUOPA is supported by the Obra Social Cajastur, Spain. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chen, Yun-Ching; Margolin, Gennady
2017-01-01
Recent evidence shows that mutations in several driver genes can cause aberrant methylation patterns, a hallmark of cancer. In light of these findings, we hypothesized that the landscapes of tumor genomes and epigenomes are tightly interconnected. We measured this relationship using principal component analyses and methylation-mutation associations applied at the nucleotide level and with respect to genome-wide trends. We found that a few mutated driver genes were associated with genome-wide patterns of aberrant hypomethylation or CpG island hypermethylation in specific cancer types. In addition, we identified associations between 737 mutated driver genes and site-specific methylation changes. Moreover, using these mutation-methylation associations, we were able to distinguish between two uterine and two thyroid cancer subtypes. The driver gene mutation–associated methylation differences between the thyroid cancer subtypes were linked to differential gene expression in JAK-STAT signaling, NADPH oxidation, and other cancer-related pathways. These results establish that driver gene mutations are associated with methylation alterations capable of shaping regulatory network functions. In addition, the methodology presented here can be used to subdivide tumors into more homogeneous subsets corresponding to underlying molecular characteristics, which could improve treatment efficacy. PMID:29125844
Bunker, Suresh Kumar; Dandapat, Jagneshwar; Sahoo, Sunil Kumar; Roy, Anita; Chainy, Gagan B N
2016-02-01
Persistent exposure of rats to 6-propyl-2-thiouracil (PTU) from birth resulted in decreases in plasma thyroid hormone (TH) levels and hepatic expression of catalase and CCAAT enhancer binding protein β (C/EBP-β). Catalase promoter region (-185 to +52) that contains binding sites for C/EBP-β showed an augmentation in the methylation level along with a change in methylation pattern of CpG islands in response to PTU treatment. PTU withdrawal on 30 days of birth restored TH levels and C/EBP-β to control rats in adulthood. Although catalase expression was restored to some extent in adult rats in response to PTU withdrawal, a permanent change in its promoter CpG methylation pattern was recorded. The results suggest that downregulation of adult hepatic catalase gene in response to persistent neonatal PTU exposure may not solely be attributed to thyroid-disrupting properties of PTU. It is possible that besides thyroid-disrupting behavior, PTU may impair expression of hepatic catalase by altering methylation pattern of its promoter. © 2015 Wiley Periodicals, Inc.
Hsieh, Tsung-Han; Liu, Yun-Ru; Chang, Ting-Yu; Liang, Muh-Lii; Chen, Hsin-Hung; Wang, Hsei-Wei; Yen, Yun; Wong, Tai-Tong
2018-03-27
Pediatric central nervous system germ cell tumors (CNSGCTs) are rare and heterogeneous neoplasms, which can be divided into germinomas and nongerminomatous germ cell tumors (NGGCTs). NGGCTs are further subdivided into mature teratomas and nongerminomatous malignant GCTs (NGMGCTs). Clinical outcomes suggest that NGMGCTs have poor prognosis and survival and that they require more extensive radiotherapy and adjuvant chemotherapy. However, the mechanisms underlying this difference are still unclear. DNA methylation alteration is generally acknowledged to cause therapeutic resistance in cancers. We hypothesized that the pediatric NGMGCTs exhibit a different genome-wide DNA methylation pattern, which is involved in the mechanism of its therapeutic resistance. We performed methylation and hydroxymethylation DNA immunoprecipitation sequencing, mRNA expression microarray, and small RNA sequencing (smRNA-seq) to determine methylation-regulated genes, including microRNAs (miRNAs). The expression levels of 97 genes and 8 miRNAs were correlated with promoter DNA methylation and hydroxymethylation status, such as the miR-199/-214 cluster, and treatment with DNA demethylating agent 5-aza-2'-deoxycytidine elevated its expression level. Furthermore, smRNA-seq analysis showed 27 novel miRNA candidates with differential expression between germinomas and NGMGCTs. Overexpresssion of miR-214-3p in NCCIT cells leads to reduced expression of the pro-apoptotic protein BCL2-like 11 and induces cisplatin resistance. We interrogated the differential DNA methylation patterns between germinomas and NGMGCTs and proposed a mechanism for chemoresistance in NGMGCTs. In addition, our sequencing data provide a roadmap for further pediatric CNSGCT research and potential targets for the development of new therapeutic strategies.
Epigenetic Signatures of Cigarette Smoking
Joehanes, Roby; Just, Allan C.; Marioni, Riccardo E.; Pilling, Luke C.; Reynolds, Lindsay M.; Mandaviya, Pooja R.; Guan, Weihua; Xu, Tao; Elks, Cathy E.; Aslibekyan, Stella; Moreno-Macias, Hortensia; Smith, Jennifer A.; Brody, Jennifer A.; Dhingra, Radhika; Yousefi, Paul; Pankow, James S.; Kunze, Sonja; Shah, Sonia; McRae, Allan F.; Lohman, Kurt; Sha, Jin; Absher, Devin M.; Ferrucci, Luigi; Zhao, Wei; Demerath, Ellen W.; Bressler, Jan; Grove, Megan L.; Huan, Tianxiao; Liu, Chunyu; Mendelson, Michael M.; Yao, Chen; Kiel, Douglas P.; Peters, Annette; Wang-Sattler, Rui; Visscher, Peter M.; Wray, Naomi R.; Starr, John M.; Ding, Jingzhong; Rodriguez, Carlos J.; Wareham, Nicholas J.; Irvin, Marguerite R.; Zhi, Degui; Barrdahl, Myrto; Vineis, Paolo; Ambatipudi, Srikant; Uitterlinden, André G.; Hofman, Albert; Schwartz, Joel; Colicino, Elena; Hou, Lifang; Vokonas, Pantel S.; Hernandez, Dena G.; Singleton, Andrew B.; Bandinelli, Stefania; Turner, Stephen T.; Ware, Erin B.; Smith, Alicia K.; Klengel, Torsten; Binder, Elisabeth B.; Psaty, Bruce M.; Taylor, Kent D.; Gharib, Sina A.; Swenson, Brenton R.; Liang, Liming; DeMeo, Dawn L.; O'Connor, George T.; Herceg, Zdenko; Ressler, Kerry J.; Conneely, Karen N.; Sotoodehnia, Nona; Kardia, Sharon L. R.; Melzer, David; Baccarelli, Andrea A.; van Meurs, Joyce B. J.; Romieu, Isabelle; Arnett, Donna K.; Ong, Ken K.; Liu, Yongmei; Waldenberger, Melanie; Deary, Ian J.; Fornage, Myriam; Levy, Daniel; London, Stephanie J.
2016-01-01
Background DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders. Methods and Results To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15,907 blood derived DNA samples from participants in 16 cohorts (including 2,433 current, 6,518 former, and 6,956 never smokers). Comparing current versus never smokers, 2,623 CpG sites (CpGs), annotated to 1,405 genes, were statistically significantly differentially methylated at Bonferroni threshold of p<1×10−7 (18,760 CpGs at False Discovery Rate (FDR)<0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant p<1×10−7 (2,623 CpGs at FDR<0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs. Conclusions Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biologic effects of smoking, and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke. PMID:27651444
Epigenetic Signatures of Cigarette Smoking.
Joehanes, Roby; Just, Allan C; Marioni, Riccardo E; Pilling, Luke C; Reynolds, Lindsay M; Mandaviya, Pooja R; Guan, Weihua; Xu, Tao; Elks, Cathy E; Aslibekyan, Stella; Moreno-Macias, Hortensia; Smith, Jennifer A; Brody, Jennifer A; Dhingra, Radhika; Yousefi, Paul; Pankow, James S; Kunze, Sonja; Shah, Sonia H; McRae, Allan F; Lohman, Kurt; Sha, Jin; Absher, Devin M; Ferrucci, Luigi; Zhao, Wei; Demerath, Ellen W; Bressler, Jan; Grove, Megan L; Huan, Tianxiao; Liu, Chunyu; Mendelson, Michael M; Yao, Chen; Kiel, Douglas P; Peters, Annette; Wang-Sattler, Rui; Visscher, Peter M; Wray, Naomi R; Starr, John M; Ding, Jingzhong; Rodriguez, Carlos J; Wareham, Nicholas J; Irvin, Marguerite R; Zhi, Degui; Barrdahl, Myrto; Vineis, Paolo; Ambatipudi, Srikant; Uitterlinden, André G; Hofman, Albert; Schwartz, Joel; Colicino, Elena; Hou, Lifang; Vokonas, Pantel S; Hernandez, Dena G; Singleton, Andrew B; Bandinelli, Stefania; Turner, Stephen T; Ware, Erin B; Smith, Alicia K; Klengel, Torsten; Binder, Elisabeth B; Psaty, Bruce M; Taylor, Kent D; Gharib, Sina A; Swenson, Brenton R; Liang, Liming; DeMeo, Dawn L; O'Connor, George T; Herceg, Zdenko; Ressler, Kerry J; Conneely, Karen N; Sotoodehnia, Nona; Kardia, Sharon L R; Melzer, David; Baccarelli, Andrea A; van Meurs, Joyce B J; Romieu, Isabelle; Arnett, Donna K; Ong, Ken K; Liu, Yongmei; Waldenberger, Melanie; Deary, Ian J; Fornage, Myriam; Levy, Daniel; London, Stephanie J
2016-10-01
DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders. To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15 907 blood-derived DNA samples from participants in 16 cohorts (including 2433 current, 6518 former, and 6956 never smokers). Comparing current versus never smokers, 2623 cytosine-phosphate-guanine sites (CpGs), annotated to 1405 genes, were statistically significantly differentially methylated at Bonferroni threshold of P<1×10 -7 (18 760 CpGs at false discovery rate <0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases, and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant P<1×10 -7 (2623 CpGs at false discovery rate <0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs. Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biological effects of smoking and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke. © 2016 American Heart Association, Inc.
Wu, Yu; Davison, Jerry; Qu, Xiaoyu; Morrissey, Colm; Storer, Barry; Brown, Lisha; Vessella, Robert; Nelson, Peter; Fang, Min
2016-04-02
To develop new methods to distinguish indolent from aggressive prostate cancers (PCa), we utilized comprehensive high-throughput array-based relative methylation (CHARM) assay to identify differentially methylated regions (DMRs) throughout the genome, including both CpG island (CGI) and non-CGI regions in PCa patients based on Gleason grade. Initially, 26 samples, including 8 each of low [Gleason score (GS) 6] and high (GS ≥7) grade PCa samples and 10 matched normal prostate tissues, were analyzed as a discovery cohort. We identified 3,567 DMRs between normal and cancer tissues, and 913 DMRs distinguishing low from high-grade cancers. Most of these DMRs were located at CGI shores. The top 5 candidate DMRs from the low vs. high Gleason comparison, including OPCML, ELAVL2, EXT1, IRX5, and FLRT2, were validated by pyrosequencing using the discovery cohort. OPCML and FLRT2 were further validated in an independent cohort consisting of 20 low-Gleason and 33 high-Gleason tissues. We then compared patients with biochemical recurrence (n=70) vs. those without (n=86) in a third cohort, and they showed no difference in methylation at these DMR loci. When GS 3+4 cases and GS 4+3 cases were compared, OPCML-DMR methylation showed a trend of lower methylation in the recurrence group (n=30) than in the no-recurrence (n=52) group. We conclude that whole-genome methylation profiling with CHARM revealed distinct patterns of differential DNA methylation between normal prostate and PCa tissues, as well as between different risk groups of PCa as defined by Gleason scores. A panel of selected DMRs may serve as novel surrogate biomarkers for Gleason score in PCa.
Feng, Sheng Jun; Liu, Xue Song; Tao, Hua; Tan, Shang Kun; Chu, Shan Shan; Oono, Youko; Zhang, Xian Duo; Chen, Jian; Yang, Zhi Min
2016-12-01
We report genome-wide single-base resolution maps of methylated cytosines and transcriptome change in Cd-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between Cd-exposed and Cd-free rice genomes. There are 2320 non-redundant differentially methylated regions detected in the genome. RNA sequencing revealed 2092 DNA methylation-modified genes differentially expressed under Cd exposure. More genes were found hypermethylated than those hypomethylated in CG, CHH and CHG (where H is A, C or T) contexts in upstream, gene body and downstream regions. Many of the genes were involved in stress response, metal transport and transcription factors. Most of the DNA methylation-modified genes were transcriptionally altered under Cd stress. A subset of loss of function mutants defective in DNA methylation and histone modification activities was used to identify transcript abundance of selected genes. Compared with wide type, mutation of MET1 and DRM2 resulted in general lower transcript levels of the genes under Cd stress. Transcripts of OsIRO2, OsPR1b and Os09g02214 in drm2 were significantly reduced. A commonly used DNA methylation inhibitor 5-azacytidine was employed to investigate whether DNA demethylation affected physiological consequences. 5-azacytidine provision decreased general DNA methylation levels of selected genes, but promoted growth of rice seedlings and Cd accumulation in rice plant. © 2016 John Wiley & Sons Ltd.
Trisomy 21 Alters DNA Methylation in Parent-of-Origin-Dependent and -Independent Manners
Alves da Silva, Antônio Francisco; Machado, Filipe Brum; Pavarino, Érika Cristina; Biselli-Périco, Joice Matos; Zampieri, Bruna Lancia; da Silva Francisco Junior, Ronaldo; Mozer Rodrigues, Pedro Thyago; Terra Machado, Douglas; Santos-Rebouças, Cíntia Barros; Gomes Fernandes, Maria; Chuva de Sousa Lopes, Susana Marina; Lopes Rios, Álvaro Fabricio
2016-01-01
The supernumerary chromosome 21 in Down syndrome differentially affects the methylation statuses at CpG dinucleotide sites and creates genome-wide transcriptional dysregulation of parental alleles, ultimately causing diverse pathologies. At present, it is unknown whether those effects are dependent or independent of the parental origin of the nondisjoined chromosome 21. Linkage analysis is a standard method for the determination of the parental origin of this aneuploidy, although it is inadequate in cases with deficiency of samples from the progenitors. Here, we assessed the reliability of the epigenetic 5mCpG imprints resulting in the maternally (oocyte)-derived allele methylation at a differentially methylated region (DMR) of the candidate imprinted WRB gene for asserting the parental origin of chromosome 21. We developed a methylation-sensitive restriction enzyme-specific PCR assay, based on the WRB DMR, across single nucleotide polymorphisms (SNPs) to examine the methylation statuses in the parental alleles. In genomic DNA from blood cells of either disomic or trisomic subjects, the maternal alleles were consistently methylated, while the paternal alleles were unmethylated. However, the supernumerary chromosome 21 did alter the methylation patterns at the RUNX1 (chromosome 21) and TMEM131 (chromosome 2) CpG sites in a parent-of-origin-independent manner. To evaluate the 5mCpG imprints, we conducted a computational comparative epigenomic analysis of transcriptome RNA sequencing (RNA-Seq) and histone modification expression patterns. We found allele fractions consistent with the transcriptional biallelic expression of WRB and ten neighboring genes, despite the similarities in the confluence of both a 17-histone modification activation backbone module and a 5-histone modification repressive module between the WRB DMR and the DMRs of six imprinted genes. We concluded that the maternally inherited 5mCpG imprints at the WRB DMR are uncoupled from the parental allele expression of WRB and ten neighboring genes in several tissues and that trisomy 21 alters DNA methylation in parent-of-origin-dependent and -independent manners. PMID:27100087
Mallik, Saurav; Sen, Sagnik; Maulik, Ujjwal
2016-07-15
Involvement of intrinsically disordered proteins (IDPs) with various dreadful diseases like cancer is an interesting research topic. In order to gain novel insights into the regulation of IDPs, in this article, we perform a transcriptomic analysis of mRNAs (genes) for transcripts encoding IDPs on a human multi-omics prostate carcinoma dataset having both gene expression and methylation data. In this regard, firstly the genes that consist of both the expression and methylation data, and that are corresponding to the cancer-related prostate-tissue-specific disordered proteins of MobiDb database, are selected. We apply standard t-test for determining differentially expressed genes as well as differentially methylated genes. A network having these genes and their targeter miRNAs from Diana Tarbase v7.0 database and corresponding Transcription Factors from TRANSFAC and ITFP databases, is then built. Thereafter, we perform literature search, and KEGG pathway and Gene Ontology analyses using DAVID database. Finally, we report several significant potential gene-markers (with the corresponding IDPs) that have inverse relationship between differential expression and methylation patterns, and that are hub genes of the TF-miRNA-gene network. Copyright © 2016 Elsevier B.V. All rights reserved.
Sha, A H; Lin, X H; Huang, J B; Zhang, D P
2005-07-01
DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. The rice cultivar Wase Aikoku 3 becomes resistant to the blight pathogen Xanthomonas oryzae pv. oryzae at the adult stage. Using methylation-sensitive amplified polymorphism (MSAP) analysis, we compared the patterns of cytosine methylation in seedlings and adult plants of the rice cultivar Wase Aikoku 3 that had been inoculated with the pathogen Xanthomonas oryzae pv. oryzae, subjected to mock inoculation or left untreated. In all, 2000 DNA fragments, each representing a recognition site cleaved by either or both of two isoschizomers, were amplified using 60 pairs of selective primers. A total of 380 sites were found to be methylated. Of these, 45 showed differential cytosine methylation among the seedlings and adult plants subjected to different treatments, and overall levels of methylation were higher in adult plants than in seedlings. All polymorphic fragments were sequenced, and six showed homology to genes that code for products of known function. Northern analysis of three fragments indicated that their expression varied with methylation pattern, with hypermethylation being correlated with repression of transcription, as expected. The results suggest that significant differences in cytosine methylation exist between seedlings and adult plants, and that hypermethylation or hypomethylation of specific genes may be involved in the development of adult plant resistance (APR) in rice plants.
Humphries, Adam; Cereser, Biancastella; Gay, Laura J.; Miller, Daniel S. J.; Das, Bibek; Gutteridge, Alice; Elia, George; Nye, Emma; Jeffery, Rosemary; Poulsom, Richard; Novelli, Marco R.; Rodriguez-Justo, Manuel; McDonald, Stuart A. C.; Wright, Nicholas A.; Graham, Trevor A.
2013-01-01
The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO−) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis. PMID:23766371
Humphries, Adam; Cereser, Biancastella; Gay, Laura J; Miller, Daniel S J; Das, Bibek; Gutteridge, Alice; Elia, George; Nye, Emma; Jeffery, Rosemary; Poulsom, Richard; Novelli, Marco R; Rodriguez-Justo, Manuel; McDonald, Stuart A C; Wright, Nicholas A; Graham, Trevor A
2013-07-02
The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO(-)) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelch, Katherine E.; Tokar, Erik J.; Merrick, B. Alex
Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10 μM Cd for 11 weeks (CTPE) or 5 μM iAs for 29 weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1)more » were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (> 25-fold) and S100P (> 40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (> 15-fold) and NTM (> 1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. - Highlights: • Cd and iAs are known human carcinogens, yet neither appears directly mutagenic. • Prior data suggest epigenetic modification plays a role in Cd or iAs induced cancer. • Altered methylation of four misregulated genes was found in Cd or iAs transformants. • The resulting altered gene expression may be relevant to cellular transformation.« less
Chatterjee, Aniruddha; Stockwell, Peter A.; Rodger, Euan J.; Duncan, Elizabeth J.; Parry, Matthew F.; Weeks, Robert J.; Morison, Ian M.
2015-01-01
The extent of variation in DNA methylation patterns in healthy individuals is not yet well documented. Identification of inter-individual epigenetic variation is important for understanding phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy individuals, we generated base-resolution DNA methylation maps to document inter-individual epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments (iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements compared to non-iVMFs, and were associated with genome regulation and chromatin function elements. Further, variably methylated genes were disproportionately associated with regulation of transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates that iVMF methylation at differentially expressed exons has a positive correlation and local effect on the inclusion of that exon in the mRNA transcript. PMID:26612583
S-adenosylmethionine levels regulate the Schwann cell DNA methylome
Varela-Rey, Marta; Iruarrizaga-Lejarreta, Marta; Lozano, Juan José; Aransay, Ana María; Fernandez, Agustín F.; Lavin, José Luis; Mósen-Ansorena, David; Berdasco, María; Turmaine, Marc; Luka, Zigmund; Wagner, Conrad; Lu, Shelly C.; Esteller, Manel; Mirsky, Rhona; Jessen, Kristján R.; Fraga, Mario F.; Martínez-Chantar, María L.; Mato, José M.; Woodhoo, Ashwin
2014-01-01
SUMMARY Axonal myelination is essential for rapid saltatory impulse conduction in the nervous system, and malformation or destruction of myelin sheaths leads to motor and sensory disabilities. DNA methylation is an essential epigenetic modification during mammalian development, yet its role in myelination remains obscure. Here, using high-resolution methylome maps, we show that DNA methylation could play a key gene regulatory role in peripheral nerve myelination and that S-adenosylmethionine (SAMe), the principal methyl donor in cytosine methylation, regulates the methylome dynamics during this process. Our studies also point to a possible role of SAMe in establishing the aberrant DNA methylation patterns in a mouse model of diabetic neuropathy, implicating SAMe in the pathogenesis of this disease. These critical observations establish a link between SAMe and DNA methylation status in a defined biological system, and provides a novel mechanism that could direct methylation changes during cellular differentiation and in diverse pathological situations. PMID:24607226
Genome-wide Mapping Reveals Conservation of Promoter DNA Methylation Following Chicken Domestication
Li, Qinghe; Wang, Yuanyuan; Hu, Xiaoxiang; Zhao, Yaofeng; Li, Ning
2015-01-01
It is well-known that environment influences DNA methylation, however, the extent of heritable DNA methylation variation following animal domestication remains largely unknown. Using meDIP-chip we mapped the promoter methylomes for 23,316 genes in muscle tissues of ancestral and domestic chickens. We systematically examined the variation of promoter DNA methylation in terms of different breeds, differentially expressed genes, SNPs and genes undergo genetic selection sweeps. While considerable changes in DNA sequence and gene expression programs were prevalent, we found that the inter-strain DNA methylation patterns were highly conserved in promoter region between the wild and domestic chicken breeds. Our data suggests a global preservation of DNA methylation between the wild and domestic chicken breeds in either a genome-wide or locus-specific scale in chick muscle tissues. PMID:25735894
Methylation-Dependent Activation of CDX1 through NF-κB
Rau, Tilman T.; Rogler, Anja; Frischauf, Myrjam; Jung, Andreas; Konturek, Peter C.; Dimmler, Arno; Faller, Gerhard; Sehnert, Bettina; El-Rifai, Wael; Hartmann, Arndt; Voll, Reinhard E.; Schneider-Stock, Regine
2013-01-01
The caudal homeobox factor 1 (CDX1) is an essential transcription factor for intestinal differentiation. Its aberrant expression in intestinal metaplasia of the upper gastrointestinal tract is a hallmark within the gastritis-metaplasia-carcinoma sequence. CDX1 expression is influenced by certain pathways, such as Wnt, Ras, or NF-κB signaling; however, these pathways alone cannot explain the transient expression of CDX1 in intestinal metaplasia or the molecular inactivation mechanism of its loss in cases of advanced gastric cancer. In this study, we investigated the epigenetic inactivation of CDX1 by promoter methylation, as well as the functional link of CDX1 promoter methylation to the inflammatory NF-κB signaling pathway. We identified methylation-dependent NF-κB binding to the CDX1 promoter and quantified it using competitive electrophoretic mobility shift assays and chromatin immunoprecipitation. A methylated CDX1 promoter was associated with closed chromatin structure, reduced NF-κB binding, and transcriptional silencing. Along the gastritis-metaplasia-carcinoma sequence, we observed a biphasic pattern of tumor necrosis factor-α (TNF-α) protein expression and an inverse biphasic pattern of CDX1 promoter methylation; both are highly consistent with CDX1 protein expression. The stages of hyper-, hypo-, and hyper-methylation patterns of the CDX1 promoter were inversely correlated with the NF-κB signaling activity along this sequence. In conclusion, these functionally interacting events drive CDX1 expression and contribute to intestinal metaplasia, epithelial dedifferentiation, and carcinogenesis in the human stomach. PMID:22749770
Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).
Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J
2014-01-01
DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic DNA digestion.
Perrier, Jean-Philippe; Sellem, Eli; Prézelin, Audrey; Gasselin, Maxime; Jouneau, Luc; Piumi, François; Al Adhami, Hala; Weber, Michaël; Fritz, Sébastien; Boichard, Didier; Le Danvic, Chrystelle; Schibler, Laurent; Jammes, Hélène; Kiefer, Hélène
2018-05-29
Spermatozoa have a remarkable epigenome in line with their degree of specialization, their unique nature and different requirements for successful fertilization. Accordingly, perturbations in the establishment of DNA methylation patterns during male germ cell differentiation have been associated with infertility in several species. While bull semen is widely used in artificial insemination, the literature describing DNA methylation in bull spermatozoa is still scarce. The purpose of this study was therefore to characterize the bull sperm methylome relative to both bovine somatic cells and the sperm of other mammals through a multiscale analysis. The quantification of DNA methylation at CCGG sites using luminometric methylation assay (LUMA) highlighted the undermethylation of bull sperm compared to the sperm of rams, stallions, mice, goats and men. Total blood cells displayed a similarly high level of methylation in bulls and rams, suggesting that undermethylation of the bovine genome was specific to sperm. Annotation of CCGG sites in different species revealed no striking bias in the distribution of genome features targeted by LUMA that could explain undermethylation of bull sperm. To map DNA methylation at a genome-wide scale, bull sperm was compared with bovine liver, fibroblasts and monocytes using reduced representation bisulfite sequencing (RRBS) and immunoprecipitation of methylated DNA followed by microarray hybridization (MeDIP-chip). These two methods exhibited differences in terms of genome coverage, and consistently, two independent sets of sequences differentially methylated in sperm and somatic cells were identified for RRBS and MeDIP-chip. Remarkably, in the two sets most of the differentially methylated sequences were hypomethylated in sperm. In agreement with previous studies in other species, the sequences that were specifically hypomethylated in bull sperm targeted processes relevant to the germline differentiation program (piRNA metabolism, meiosis, spermatogenesis) and sperm functions (cell adhesion, fertilization), as well as satellites and rDNA repeats. These results highlight the undermethylation of bull spermatozoa when compared with both bovine somatic cells and the sperm of other mammals, and raise questions regarding the dynamics of DNA methylation in bovine male germline. Whether sperm undermethylation has potential interactions with structural variation in the cattle genome may deserve further attention.
Ogino, Shuji; Odze, Robert D; Kawasaki, Takako; Brahmandam, Mohan; Kirkner, Gregory J; Laird, Peter W; Loda, Massimo; Fuchs, Charles S
2006-09-01
Extensive gene promoter methylation in colorectal carcinoma has been termed the CpG island methylator phenotype (CIMP). Previous studies on CIMP used primarily methylation-specific polymerase chain reaction (PCR), which, unfortunately, may detect low levels of methylation that has little or no biological significance. Utilizing quantitative real-time PCR (MethyLight), we measured DNA methylation in a panel of 5 CIMP-specific gene promoters (CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 459 colorectal carcinomas obtained from 2 large prospective cohort studies. CIMP was defined as tumors that showed methylation in >or=4/5 promoters. CIMP was significantly associated with the presence of mucinous or signet ring cell morphology, marked Crohn's-like lymphoid reaction, tumor infiltrating lymphocytes, marked peritumoral lymphocytic reaction, tumor necrosis, tumor cell sheeting, and poor differentiation. All these features have previously been associated with microsatellite instability (MSI). Therefore, we divided the 459 colorectal carcinomas into 6 subtypes, namely, MSI-high (MSI-H)/CIMP, MSI-H/non-CIMP, MSI-low (MSI-L)/CIMP, MSI-L/non-CIMP, microsatellite stable/CIMP, and micro satellite sstable/non-CIMP. Compared with MSI-H/non-CIMP, MSI-H/CIMP was associated with marked tumor infiltrating lymphocytes, tumor necrosis, sheeting, and poor differentiation (all P
Human body epigenome maps reveal noncanonical DNA methylation variation.
Schultz, Matthew D; He, Yupeng; Whitaker, John W; Hariharan, Manoj; Mukamel, Eran A; Leung, Danny; Rajagopal, Nisha; Nery, Joseph R; Urich, Mark A; Chen, Huaming; Lin, Shin; Lin, Yiing; Jung, Inkyung; Schmitt, Anthony D; Selvaraj, Siddarth; Ren, Bing; Sejnowski, Terrence J; Wang, Wei; Ecker, Joseph R
2015-07-09
Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual's cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals' phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.
Variation in Genomic Methylation in Natural Populations of Chinese White Poplar
Ma, Kaifeng; Song, Yuepeng; Yang, Xiaohui; Zhang, Zhiyi; Zhang, Deqiang
2013-01-01
Background It is thought that methylcytosine can be inherited through meiosis and mitosis, and that epigenetic variation may be under genetic control or correlation may be caused by neutral drift. However, DNA methylation also varies with tissue, developmental stage, and environmental factors. Eliminating these factors, we analyzed the levels and patterns, diversity and structure of genomic methylcytosine in the xylem of nine natural populations of Chinese white poplar. Principal Findings On average, the relative total methylation and non-methylation levels were approximately 26.567% and 42.708% (P<0.001), respectively. Also, the relative CNG methylation level was higher than the relative CG methylation level. The relative methylation/non-methylation levels were significantly different among the nine natural populations. Epigenetic diversity ranged from 0.811 (Gansu) to 1.211 (Shaanxi), and the coefficients of epigenetic differentiation (GST = 0.159) were assessed by Shannon’s diversity index. Co-inertia analysis indicated that methylation-sensitive polymorphism (MSP) and genomic methylation pattern (CG-CNG) profiles gave similar distributions. Using a between-group eigen analysis, we found that the Hebei and Shanxi populations were independent of each other, but the Henan population intersected with the other populations, to some degree. Conclusions Genome methylation in Populus tomentosa presented tissue-specific characteristics and the relative 5′-CCGG methylation level was higher in xylem than in leaves. Meanwhile, the genome methylation in the xylem shows great epigenetic variation and could be fixed and inherited though mitosis. Compared to genetic structure, data suggest that epigenetic and genetic variation do not completely match. PMID:23704963
DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.).
Zakrzewski, Falk; Schmidt, Martin; Van Lijsebettens, Mieke; Schmidt, Thomas
2017-06-01
The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome-wide cytosine methylation in the sugar beet genome was studied in leaves and leaf-derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome-wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Herrera, Carlos M; Medrano, Mónica; Bazaga, Pilar
2013-01-01
Despite the importance of assessing the stability of epigenetic variation in non-model organisms living in real-world scenarios, no studies have been conducted on the transgenerational persistence of epigenetic structure in wild plant populations. This gap in knowledge is hindering progress in the interpretation of natural epigenetic variation. By applying the methylation-sensitive amplified fragment length polymorphism (MSAP) technique to paired plant-pollen (i.e., sporophyte-male gametophyte) DNA samples, and then comparing methylation patterns and epigenetic population differentiation in sporophytes and their descendant gametophytes, we investigated transgenerational constancy of epigenetic structure in three populations of the perennial herb Helleborus foetidus (Ranunculaceae). Single-locus and multilocus analyses revealed extensive epigenetic differentiation between sporophyte populations. Locus-by-locus comparisons of methylation status in individual sporophytes and descendant gametophytes showed that ~75% of epigenetic markers persisted unchanged through gametogenesis. In spite of some epigenetic reorganization taking place during gametogenesis, multilocus epigenetic differentiation between sporophyte populations was preserved in the subsequent gametophyte stage. In addition to illustrating the efficacy of applying the MSAP technique to paired plant-pollen DNA samples to investigate epigenetic gametic inheritance in wild plants, this paper suggests that epigenetic differentiation between adult plant populations of H. foetidus is likely to persist across generations.
Herrera, Carlos M.; Medrano, Mónica; Bazaga, Pilar
2013-01-01
Despite the importance of assessing the stability of epigenetic variation in non-model organisms living in real-world scenarios, no studies have been conducted on the transgenerational persistence of epigenetic structure in wild plant populations. This gap in knowledge is hindering progress in the interpretation of natural epigenetic variation. By applying the methylation-sensitive amplified fragment length polymorphism (MSAP) technique to paired plant-pollen (i.e., sporophyte-male gametophyte) DNA samples, and then comparing methylation patterns and epigenetic population differentiation in sporophytes and their descendant gametophytes, we investigated transgenerational constancy of epigenetic structure in three populations of the perennial herb Helleborus foetidus (Ranunculaceae). Single-locus and multilocus analyses revealed extensive epigenetic differentiation between sporophyte populations. Locus-by-locus comparisons of methylation status in individual sporophytes and descendant gametophytes showed that ∼75% of epigenetic markers persisted unchanged through gametogenesis. In spite of some epigenetic reorganization taking place during gametogenesis, multilocus epigenetic differentiation between sporophyte populations was preserved in the subsequent gametophyte stage. In addition to illustrating the efficacy of applying the MSAP technique to paired plant-pollen DNA samples to investigate epigenetic gametic inheritance in wild plants, this paper suggests that epigenetic differentiation between adult plant populations of H. foetidus is likely to persist across generations. PMID:23936245
Yang, Si-Xia; Guo, Chao; Zhao, Xiu-Ting; Sun, Jing-Tao; Hong, Xiao-Yue
2017-02-19
The two-spotted spider mite, Tetranychus urticae Koch has two forms: green form and red form. Understanding the molecular basis of how these two forms established without divergent genetic background is an intriguing area. As a well-known epigenetic process, DNA methylation has particularly important roles in gene regulation and developmental variation across diverse organisms that do not alter genetic background. Here, to investigate whether DNA methylation could be associated with different phenotypic consequences in the two forms of T. urticae, we surveyed the genome-wide cytosine methylation status and expression level of DNA methyltransferase 3 (Tudnmt3) throughout their entire life cycle. Methylation-sensitive amplification polymorphism (MSAP) analyses of 585 loci revealed variable methylation patterns in the different developmental stages. In particular, principal coordinates analysis (PCoA) indicates a significant epigenetic differentiation between female adults of the two forms. The gene expression of Tudnmt3 was detected in all examined developmental stages, which was significantly different in the adult stage of the two forms. Together, our results reveal the epigenetic distance between the two forms of T. urticae, suggesting that DNA methylation might be implicated in different developmental demands, and contribute to different phenotypes in the adult stage of these two forms. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Dayeh, Tasnim; Volkov, Petr; Salö, Sofia; Hall, Elin; Nilsson, Emma; Olsson, Anders H.; Kirkpatrick, Clare L.; Wollheim, Claes B.; Eliasson, Lena; Rönn, Tina; Bacos, Karl; Ling, Charlotte
2014-01-01
Impaired insulin secretion is a hallmark of type 2 diabetes (T2D). Epigenetics may affect disease susceptibility. To describe the human methylome in pancreatic islets and determine the epigenetic basis of T2D, we analyzed DNA methylation of 479,927 CpG sites and the transcriptome in pancreatic islets from T2D and non-diabetic donors. We provide a detailed map of the global DNA methylation pattern in human islets, β- and α-cells. Genomic regions close to the transcription start site showed low degrees of methylation and regions further away from the transcription start site such as the gene body, 3′UTR and intergenic regions showed a higher degree of methylation. While CpG islands were hypomethylated, the surrounding 2 kb shores showed an intermediate degree of methylation, whereas regions further away (shelves and open sea) were hypermethylated in human islets, β- and α-cells. We identified 1,649 CpG sites and 853 genes, including TCF7L2, FTO and KCNQ1, with differential DNA methylation in T2D islets after correction for multiple testing. The majority of the differentially methylated CpG sites had an intermediate degree of methylation and were underrepresented in CpG islands (∼7%) and overrepresented in the open sea (∼60%). 102 of the differentially methylated genes, including CDKN1A, PDE7B, SEPT9 and EXOC3L2, were differentially expressed in T2D islets. Methylation of CDKN1A and PDE7B promoters in vitro suppressed their transcriptional activity. Functional analyses demonstrated that identified candidate genes affect pancreatic β- and α-cells as Exoc3l silencing reduced exocytosis and overexpression of Cdkn1a, Pde7b and Sept9 perturbed insulin and glucagon secretion in clonal β- and α-cells, respectively. Together, our data can serve as a reference methylome in human islets. We provide new target genes with altered DNA methylation and expression in human T2D islets that contribute to perturbed insulin and glucagon secretion. These results highlight the importance of epigenetics in the pathogenesis of T2D. PMID:24603685
Kaz, Andrew M; Wong, Chao-Jen; Varadan, Vinay; Willis, Joseph E; Chak, Amitabh; Grady, William M
2016-01-01
The risk of developing Barrett's esophagus (BE) and/or esophageal adenocarcinoma (EAC) is associated with specific demographic and behavioral factors, including gender, obesity/elevated body mass index (BMI), and tobacco use. Alterations in DNA methylation, an epigenetic modification that can affect gene expression and that can be influenced by environmental factors, is frequently present in both BE and EAC and is believed to play a role in the formation of BE and its progression to EAC. It is currently unknown whether obesity or tobacco smoking influences the risk of developing BE/EAC via the induction of alterations in DNA methylation. To investigate this possibility, we assessed the genome-wide methylation status of 81 esophageal tissues, including BE, dysplastic BE, and EAC epithelia using HumanMethylation450 BeadChips (Illumina). We found numerous differentially methylated loci in the esophagus tissues when comparing males to females, obese to lean individuals, and smokers to nonsmokers. Differences in DNA methylation between these groups were seen in a variety of functional genomic regions and both within and outside of CpG islands. Several cancer-related pathways were found to have differentially methylated genes between these comparison groups. Our findings suggest obesity and tobacco smoking may influence DNA methylation in the esophagus and raise the possibility that these risk factors affect the development of BE, dysplastic BE, and EAC through influencing the epigenetic status of specific loci that have a biologically plausible role in cancer formation.
Mayol, Gemma; Martín-Subero, José I.; Ríos, José; Queiros, Ana; Kulis, Marta; Suñol, Mariona; Esteller, Manel; Gómez, Soledad; Garcia, Idoia; de Torres, Carmen; Rodríguez, Eva; Galván, Patricia; Mora, Jaume; Lavarino, Cinzia
2012-01-01
Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3′ untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation. PMID:23144874
Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.
Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre
2012-01-01
Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.
Pervasive polymorphic imprinted methylation in the human placenta
Hanna, Courtney W.; Peñaherrera, Maria S.; Saadeh, Heba; Andrews, Simon; McFadden, Deborah E.; Kelsey, Gavin; Robinson, Wendy P.
2016-01-01
The maternal and paternal copies of the genome are both required for mammalian development, and this is primarily due to imprinted genes, those that are monoallelically expressed based on parent-of-origin. Typically, this pattern of expression is regulated by differentially methylated regions (DMRs) that are established in the germline and maintained after fertilization. There are a large number of germline DMRs that have not yet been associated with imprinting, and their function in development is unknown. In this study, we developed a genome-wide approach to identify novel imprinted DMRs in the human placenta and investigated the dynamics of these imprinted DMRs during development in somatic and extraembryonic tissues. DNA methylation was evaluated using the Illumina HumanMethylation450 array in 134 human tissue samples, publicly available reduced representation bisulfite sequencing in the human embryo and germ cells, and targeted bisulfite sequencing in term placentas. Forty-three known and 101 novel imprinted DMRs were identified in the human placenta by comparing methylation between diandric and digynic triploid conceptions in addition to female and male gametes. Seventy-two novel DMRs showed a pattern consistent with placental-specific imprinting, and this monoallelic methylation was entirely maternal in origin. Strikingly, these DMRs exhibited polymorphic imprinted methylation between placental samples. These data suggest that imprinting in human development is far more extensive and dynamic than previously reported and that the placenta preferentially maintains maternal germline-derived DNA methylation. PMID:26769960
Epigenetic repression of HOXB cluster in oral cancer cell lines.
Xavier, Flávia Caló Aquino; Destro, Maria Fernanda de Souza Setubal; Duarte, Carina Magalhães Esteves; Nunes, Fabio Daumas
2014-08-01
Aberrant DNA methylation is a fundamental transcriptional control mechanism in carcinogenesis. The expression of homeobox genes is usually controlled by an epigenetic mechanism, such as the methylation of CpG islands in the promoter region. The aim of this study was to describe the differential methylation pattern of HOX genes in oral squamous cell carcinoma (OSCC) cell lines and transcript status in a group of hypermethylated and hypomethylated genes. Quantitative analysis of DNA methylation was performed on two OSCC cell lines (SCC4 and SCC9) using a method denominated Human Homeobox Genes EpiTect Methyl qPCR Arrays, which allowed fast, precise methylation detection of 24 HOX specific genes without bisulfite conversion. Methylation greater than 50% was detected in HOXA11, HOXA6, HOXA7, HOXA9, HOXB1, HOXB2, HOXB3, HOXB4, HOXB5, HOXB6, HOXC8 and HOXD10. Both cell lines demonstrated similar hypermethylation status for eight HOX genes. A similar pattern of promoter hypermethylation and hypomethylation was demonstrated for the HOXB cluster and HOXA cluster, respectively. Moreover, the hypermethylation profile of the HOXB cluster, especially HOXB4, was correlated with decreased transcript expression, which was restored following treatment with 5-aza-2'-deoxycytidine. The homeobox methylation profile in OSCC cell lines is consistent with an epigenetic biomarker. Copyright © 2014 Elsevier Ltd. All rights reserved.
Busch, Robert; Qiu, Weiliang; Lasky-Su, Jessica; Morrow, Jarrett; Criner, Gerard; DeMeo, Dawn
2016-11-05
Chronic obstructive pulmonary disease (COPD) is the third-leading cause of death worldwide. Identifying COPD-associated DNA methylation marks in African-Americans may contribute to our understanding of racial disparities in COPD susceptibility. We determined differentially methylated genes and co-methylation network modules associated with COPD in African-Americans recruited during exacerbations of COPD and smoking controls from the Pennsylvania Study of Chronic Obstructive Pulmonary Exacerbations (PA-SCOPE) cohort. We assessed DNA methylation from whole blood samples in 362 African-American smokers in the PA-SCOPE cohort using the Illumina Infinium HumanMethylation27 BeadChip Array. Final analysis included 19302 CpG probes annotated to the nearest gene transcript after quality control. We tested methylation associations with COPD case-control status using mixed linear models. Weighted gene comethylation networks were constructed using weighted gene coexpression network analysis (WGCNA) and network modules were analyzed for association with COPD. There were five differentially methylated CpG probes significantly associated with COPD among African-Americans at an FDR less than 5 %, and seven additional probes that approached significance at an FDR less than 10 %. The top ranked gene association was MAML1, which has been shown to affect NOTCH-dependent angiogenesis in murine lung. Network modeling yielded the "yellow" and "blue" comethylation modules which were significantly associated with COPD (p-value 4 × 10 -10 and 4 × 10 -9 , respectively). The yellow module was enriched for gene sets related to inflammatory pathways known to be relevant to COPD. The blue module contained the top ranked genes in the concurrent differential methylation analysis (FXYD1/LGI4, gene significance p-value 1.2 × 10 -26 ; MAML1, p-value 2.0 × 10 -26 ; CD72, p-value 2.1 × 10 -25 ; and LPO, p-value 7.2 × 10 -25 ), and was significantly associated with lung development processes in Gene Ontology gene-set enrichment analysis. We identified 12 differentially methylated CpG sites associated with COPD that mapped to biologically plausible genes. Network module comethylation patterns have identified candidate genes that may be contributing to racial differences in COPD susceptibility and severity. COPD-associated comethylation modules contained genes previously associated with lung disease and inflammation and recapitulated known COPD-associated genes. The genes implicated by differential methylation and WGCNA analysis may provide mechanistic targets contributing to COPD susceptibility, exacerbations, and outcomes among African-Americans. Trial Registration: NCT00774176 , Registry: ClinicalTrials.gov, URL: www.clinicaltrials.gov , Date of Enrollment of First Participant: June 2004, Date Registered: 04 January 2008 (retrospectively registered).
2013-01-01
Background The spatial organization of the genome is being evaluated as a novel indicator of toxicity in conjunction with drug-induced global DNA hypomethylation and concurrent chromatin reorganization. 3D quantitative DNA methylation imaging (3D-qDMI) was applied as a cell-by-cell high-throughput approach to investigate this matter by assessing genome topology through represented immunofluorescent nuclear distribution patterns of 5-methylcytosine (MeC) and global DNA (4,6-diamidino-2-phenylindole = DAPI) in labeled nuclei. Methods Differential progression of global DNA hypomethylation was studied by comparatively dosing zebularine (ZEB) and 5-azacytidine (AZA). Treated and untreated (control) human prostate and liver cancer cells were subjected to confocal scanning microscopy and dedicated 3D image analysis for the following features: differential nuclear MeC/DAPI load and codistribution patterns, cell similarity based on these patterns, and corresponding differences in the topology of low-intensity MeC (LIM) and low in intensity DAPI (LID) sites. Results Both agents generated a high fraction of similar MeC phenotypes across applied concentrations. ZEB exerted similar effects at 10–100-fold higher drug concentrations than its AZA analogue: concentration-dependent progression of global cytosine demethylation, validated by measuring differential MeC levels in repeat sequences using MethyLight, and the concurrent increase in nuclear LIM densities correlated with cellular growth reduction and cytotoxicity. Conclusions 3D-qDMI demonstrated the capability of quantitating dose-dependent drug-induced spatial progression of DNA demethylation in cell nuclei, independent from interphase cell-cycle stages and in conjunction with cytotoxicity. The results support the notion of DNA methylation topology being considered as a potential indicator of causal impacts on chromatin distribution with a conceivable application in epigenetic drug toxicology. PMID:23394161
CpG island methylator phenotype in colorectal cancer
Toyota, Minoru; Ahuja, Nita; Ohe-Toyota, Mutsumi; Herman, James G.; Baylin, Stephen B.; Issa, Jean-Pierre J.
1999-01-01
Aberrant methylation of promoter region CpG islands is associated with transcriptional inactivation of tumor-suppressor genes in neoplasia. To understand global patterns of CpG island methylation in colorectal cancer, we have used a recently developed technique called methylated CpG island amplification to examine 30 newly cloned differentially methylated DNA sequences. Of these 30 clones, 19 (63%) were progressively methylated in an age-dependent manner in normal colon, 7 (23%) were methylated in a cancer-specific manner, and 4 (13%) were methylated only in cell lines. Thus, a majority of CpG islands methylated in colon cancer are also methylated in a subset of normal colonic cells during the process of aging. In contrast, methylation of the cancer-specific clones was found exclusively in a subset of colorectal cancers, which appear to display a CpG island methylator phenotype (CIMP). CIMP+ tumors also have a high incidence of p16 and THBS1 methylation, and they include the majority of sporadic colorectal cancers with microsatellite instability related to hMLH1 methylation. We thus define a pathway in colorectal cancer that appears to be responsible for the majority of sporadic tumors with mismatch repair deficiency. PMID:10411935
Function and Evolution of DNA Methylation in Nasonia vitripennis
Wang, Xu; Wheeler, David; Avery, Amanda; Rago, Alfredo; Choi, Jeong-Hyeon; Colbourne, John K.; Clark, Andrew G.; Werren, John H.
2013-01-01
The parasitoid wasp Nasonia vitripennis is an emerging genetic model for functional analysis of DNA methylation. Here, we characterize genome-wide methylation at a base-pair resolution, and compare these results to gene expression across five developmental stages and to methylation patterns reported in other insects. An accurate assessment of DNA methylation across the genome is accomplished using bisulfite sequencing of adult females from a highly inbred line. One-third of genes show extensive methylation over the gene body, yet methylated DNA is not found in non-coding regions and rarely in transposons. Methylated genes occur in small clusters across the genome. Methylation demarcates exon-intron boundaries, with elevated levels over exons, primarily in the 5′ regions of genes. It is also elevated near the sites of translational initiation and termination, with reduced levels in 5′ and 3′ UTRs. Methylated genes have higher median expression levels and lower expression variation across development stages than non-methylated genes. There is no difference in frequency of differential splicing between methylated and non-methylated genes, and as yet no established role for methylation in regulating alternative splicing in Nasonia. Phylogenetic comparisons indicate that many genes maintain methylation status across long evolutionary time scales. Nasonia methylated genes are more likely to be conserved in insects, but even those that are not conserved show broader expression across development than comparable non-methylated genes. Finally, examination of duplicated genes shows that those paralogs that have lost methylation in the Nasonia lineage following gene duplication evolve more rapidly, show decreased median expression levels, and increased specialization in expression across development. Methylation of Nasonia genes signals constitutive transcription across developmental stages, whereas non-methylated genes show more dynamic developmental expression patterns. We speculate that loss of methylation may result in increased developmental specialization in evolution and acquisition of methylation may lead to broader constitutive expression. PMID:24130511
Eckstein, Meredith; Rea, Matthew; Fondufe-Mittendorf, Yvonne N.
2017-01-01
Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-mesenchymal transition, morphologic changes to cells correlate with changes in chromatin structure and gene expression, ultimately driving this process. However, studies on the effects of inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact of epigenetic alterations in this process are limited. In this study we used high-resolution microarray analysis to measure the changes in DNA methylation in cells undergoing inorganic arsenic-induced epithelial-to-mesenchymal transition, and on the reversal of this process, after removal of the inorganic arsenic exposure. We found that cells exposed to chronic, low-dose inorganic arsenic exposure showed 30,530 sites were differentially methylated, and with inorganic arsenic withdrawal several differential methylated sites were reversed, albeit not completely. Furthermore, these changes in DNA methylation mainly correlated with changes in gene expression at most sites tested but not at all. This study suggests that DNA methylation changes on gene expression are not clear-cut and provide a platform to begin to uncover the relationship between DNA methylation and gene expression, specifically within the context of inorganic arsenic treatment. PMID:28336213
Buhule, Olive D; Minster, Ryan L; Hawley, Nicola L; Medvedovic, Mario; Sun, Guangyun; Viali, Satupaitea; Deka, Ranjan; McGarvey, Stephen T; Weeks, Daniel E
2014-01-01
Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One), samples from obese and lean subjects were examined on separate chips. In the second study (Sample Two), the samples were balanced on the chips by lean/obese status, age group, and census region. We used methylumi, watermelon, and limma R packages, as well as ComBat, to analyze the data. Principal component analysis and linear regression were, respectively, employed to identify the top principal components and to test for their association with the batches and lean/obese status. To identify differentially methylated positions (DMPs) between obese and lean males at each locus, we used a moderated t-test. Chip effects were effectively removed from Sample Two but not Sample One. In addition, dramatic differences were observed between the two sets of DMP results. After "removing" batch effects with ComBat, Sample One had 94,191 probes differentially methylated at a q-value threshold of 0.05 while Sample Two had zero differentially methylated probes. The disparate results from Sample One and Sample Two likely arise due to the confounding of lean/obese status with chip and row batch effects. Even the best possible statistical adjustments for batch effects may not completely remove them. Proper study design is vital for guarding against spurious findings due to such effects.
Buhule, Olive D.; Minster, Ryan L.; Hawley, Nicola L.; Medvedovic, Mario; Sun, Guangyun; Viali, Satupaitea; Deka, Ranjan; McGarvey, Stephen T.; Weeks, Daniel E.
2014-01-01
Background: Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Methods: Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One), samples from obese and lean subjects were examined on separate chips. In the second study (Sample Two), the samples were balanced on the chips by lean/obese status, age group, and census region. We used methylumi, watermelon, and limma R packages, as well as ComBat, to analyze the data. Principal component analysis and linear regression were, respectively, employed to identify the top principal components and to test for their association with the batches and lean/obese status. To identify differentially methylated positions (DMPs) between obese and lean males at each locus, we used a moderated t-test. Results: Chip effects were effectively removed from Sample Two but not Sample One. In addition, dramatic differences were observed between the two sets of DMP results. After “removing” batch effects with ComBat, Sample One had 94,191 probes differentially methylated at a q-value threshold of 0.05 while Sample Two had zero differentially methylated probes. The disparate results from Sample One and Sample Two likely arise due to the confounding of lean/obese status with chip and row batch effects. Conclusion: Even the best possible statistical adjustments for batch effects may not completely remove them. Proper study design is vital for guarding against spurious findings due to such effects. PMID:25352862
2014-01-01
Background Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. Methods The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Results Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. Conclusions This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis. PMID:24950993
Li, Shuxia; Zhu, Dongyi; Duan, Hongmei; Ren, Anran; Glintborg, Dorte; Andersen, Marianne; Skov, Vibe; Thomassen, Mads; Kruse, Torben; Tan, Qihua
2017-03-28
As a universally common endocrinopathy in women of reproductive age, the polycystic ovarian syndrome is characterized by composite clinical phenotypes reflecting the contributions of reproductive impact of ovarian dysfunction and metabolic abnormalities with widely varying symptoms resulting from interference of the genome with the environment through integrative biological mechanisms including epigenetics. We have performed a genome-wide DNA methylation analysis on polycystic ovarian syndrome and identified a substantial number of genomic sites differentially methylated in the whole blood of PCOS patients and healthy controls (52 sites, false discovery rate < 0.05 and corresponding p value < 5.68e-06), highly consistently replicating biological pathways extensively implicated in immunity and immunity-related inflammatory disorders (false discovery rate < 0.05) that were reportedly regulated in the DNA methylome from ovarian tissue under PCOS condition. Most importantly, our genome-wide profiling focusing on PCOS patients revealed a large number of DNA methylation sites and their enriched functional pathways significantly associated with diverse clinical features (levels of prolactin, estradiol, progesterone and menstrual cycle) that could serve as novel molecular basis of the clinical heterogeneity observed in PCOS women.
King, Leonora; Robins, Stephanie; Chen, Gang; Yerko, Volodymyr; Zhou, Yi; Nagy, Corina; Feeley, Nancy; Gold, Ian; Hayton, Barbara; Turecki, Gustavo; Zelkowitz, Phyllis
2017-11-01
The present study investigated the association of perinatal depression (PD) with differential methylation of 3 genomic regions among mother and child dyads: exon 3 within the oxytocin receptor (OXTR) gene and 2 intergenic regions (IGR) between the oxytocin (OXT) and vasopressin (AVP) genes. Maternal PD was assessed at 5 time-points during pregnancy and postpartum. Four groups were established based on Edinburgh Postnatal Depression Scale (EPDS) cut-off scores: no PD, prenatal or postpartum depressive symptoms only and persistent PD (depressive symptoms both prenatally and postpartum). Salivary DNA was collected from mothers and children at the final time-point, 2.9years postpartum. Mothers with persistent PD had significantly higher overall OXTR methylation than the other groups and this pattern extended to 16/22 individual CpG sites. For the IGR, only the region closer to the AVP gene (AVP IGR) showed significant differential methylation, with the persistent PD group displaying the lowest levels of methylation overall, but not for individual CpG sites. These results suggest that transient episodes of depression may not be associated with OXTR hypermethylation. Validation studies need to confirm the downstream biological effects of AVP IGR hypomethylation as it relates to persistent PD. Differential methylation of the OXTR and IGR regions was not observed among children exposed to maternal PD. The consequences of OXTR hypermethylation and AVP IGR hypomethylation found in mothers with persistent PDS may not only impact the OXT system, but may also compromise maternal behavior, potentially resulting in negative outcomes for the developing child. Copyright © 2017 Elsevier Inc. All rights reserved.
Dental Pulp Stem Cells Model Early Life and Imprinted DNA Methylation Patterns.
Dunaway, Keith; Goorha, Sarita; Matelski, Lauren; Urraca, Nora; Lein, Pamela J; Korf, Ian; Reiter, Lawrence T; LaSalle, Janine M
2017-04-01
Early embryonic stages of pluripotency are modeled for epigenomic studies primarily with human embryonic stem cells (ESC) or induced pluripotent stem cells (iPSCs). For analysis of DNA methylation however, ESCs and iPSCs do not accurately reflect the DNA methylation levels found in preimplantation embryos. Whole genome bisulfite sequencing (WGBS) approaches have revealed the presence of large partially methylated domains (PMDs) covering 30%-40% of the genome in oocytes, preimplantation embryos, and placenta. In contrast, ESCs and iPSCs show abnormally high levels of DNA methylation compared to inner cell mass (ICM) or placenta. Here we show that dental pulp stem cells (DPSCs), derived from baby teeth and cultured in serum-containing media, have PMDs and mimic the ICM and placental methylome more closely than iPSCs and ESCs. By principal component analysis, DPSC methylation patterns were more similar to two other neural stem cell types of human derivation (EPI-NCSC and LUHMES) and placenta than were iPSCs, ESCs or other human cell lines (SH-SY5Y, B lymphoblast, IMR90). To test the suitability of DPSCs in modeling epigenetic differences associated with disease, we compared methylation patterns of DPSCs derived from children with chromosome 15q11.2-q13.3 maternal duplication (Dup15q) to controls. Differential methylation region (DMR) analyses revealed the expected Dup15q hypermethylation at the imprinting control region, as well as hypomethylation over SNORD116, and novel DMRs over 147 genes, including several autism candidate genes. Together these data suggest that DPSCs are a useful model for epigenomic and functional studies of human neurodevelopmental disorders. Stem Cells 2017;35:981-988. © 2016 AlphaMed Press.
Howell, Kate Joanne; Kraiczy, Judith; Nayak, Komal M; Gasparetto, Marco; Ross, Alexander; Lee, Claire; Mak, Tim N; Koo, Bon-Kyoung; Kumar, Nitin; Lawley, Trevor; Sinha, Anupam; Rosenstiel, Philip; Heuschkel, Robert; Stegle, Oliver; Zilbauer, Matthias
2018-02-01
We analyzed DNA methylation patterns and transcriptomes of primary intestinal epithelial cells (IEC) of children newly diagnosed with inflammatory bowel diseases (IBD) to learn more about pathogenesis. We obtained mucosal biopsies (N = 236) collected from terminal ileum and ascending and sigmoid colons of children (median age 13 years) newly diagnosed with IBD (43 with Crohn's disease [CD], 23 with ulcerative colitis [UC]), and 30 children without IBD (controls). Patients were recruited and managed at a hospital in the United Kingdom from 2013 through 2016. We also obtained biopsies collected at later stages from a subset of patients. IECs were purified and analyzed for genome-wide DNA methylation patterns and gene expression profiles. Adjacent microbiota were isolated from biopsies and analyzed by 16S gene sequencing. We generated intestinal organoid cultures from a subset of samples and genome-wide DNA methylation analysis was performed. We found gut segment-specific differences in DNA methylation and transcription profiles of IECs from children with IBD vs controls; some were independent of mucosal inflammation. Changes in gut microbiota between IBD and control groups were not as large and were difficult to assess because of large amounts of intra-individual variation. Only IECs from patients with CD had changes in DNA methylation and transcription patterns in terminal ileum epithelium, compared with controls. Colon epithelium from patients with CD and from patients with ulcerative colitis had distinct changes in DNA methylation and transcription patterns, compared with controls. In IECs from patients with IBD, changes in DNA methylation, compared with controls, were stable over time and were partially retained in ex-vivo organoid cultures. Statistical analyses of epithelial cell profiles allowed us to distinguish children with CD or UC from controls; profiles correlated with disease outcome parameters, such as the requirement for treatment with biologic agents. We identified specific changes in DNA methylation and transcriptome patterns in IECs from pediatric patients with IBD compared with controls. These data indicate that IECs undergo changes during IBD development and could be involved in pathogenesis. Further analyses of primary IECs from patients with IBD could improve our understanding of the large variations in disease progression and outcomes. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Correlation between ZBED6 Gene Upstream CpG Island methylation and mRNA expression in cattle.
Huang, Yong-Zhen; Zhang, Zi-Jing; He, Hua; Cao, Xiu-Kai; Song, Cheng-Chuang; Liu, Kun-Peng; Lan, Xian-Yong; Lei, Chu-Zhao; Qi, Xing-Lei; Bai, Yue-Yu; Chen, Hong
2017-04-03
DNA methylation is essential for the regulation of gene expression and important roles in muscle development. To assess the extent of epigenetic modifications and gene expression on the differentially methylated region (DMR) in ZBED6, we simultaneously examined DNA methylation and expression in six tissues from two different developmental stages (fetal bovine and adult bovine). The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The result of quantitative real-time PCR (qPCR) analysis showed that ZBED6 has a broad tissue distribution and is highly expressed in adult bovine (P < 0.05 or P < 0.01). The DNA methylation level was significantly different in liver, lung and spleen between the two cattle groups (P < 0.05 or P < 0.01). The adult bovine group exhibited a significantly higher mRNA level and lower DNA methylation level than the fetal bovine group in liver, lung, and spleen. No significant association was detected between DNA methylation level and muscle, heart, and kidney at two different stages. In this study, the statistical analyses indicated that DNA methylation patterns are associated with mRNA level in some tissues, these results may be a useful parameter to investigate muscle developmental in cattle and as a model for studies in other species, potentially contributing to an improvement of growth performance selection in beef cattle breeding program.
Extensive epigenetic reprogramming during the life cycle of Marchantia polymorpha.
Schmid, Marc W; Giraldo-Fonseca, Alejandro; Rövekamp, Moritz; Smetanin, Dmitry; Bowman, John L; Grossniklaus, Ueli
2018-01-25
In plants, the existence and possible role of epigenetic reprogramming has been questioned because of the occurrence of stably inherited epialleles. Evidence suggests that epigenetic reprogramming does occur during land plant reproduction, but there is little consensus on the generality and extent of epigenetic reprogramming in plants. We studied DNA methylation dynamics during the life cycle of the liverwort Marchantia polymorpha. We isolated thalli and meristems from male and female gametophytes, archegonia, antherozoids, as well as sporophytes at early and late developmental stages, and compared their DNA methylation profiles. Of all cytosines tested for differential DNA methylation, 42% vary significantly in their methylation pattern throughout the life cycle. However, the differences are limited to few comparisons between specific stages of the life cycle and suggest four major epigenetic states specific to sporophytes, vegetative gametophytes, antherozoids, and archegonia. Further analyses indicated clear differences in the mechanisms underlying reprogramming in the gametophytic and sporophytic generations, which are paralleled by differences in the expression of genes involved in DNA methylation. Differentially methylated cytosines with a gain in methylation in antherozoids and archegonia are enriched in the CG and CHG contexts, as well as in gene bodies and gene flanking regions. In contrast, gain of DNA methylation during sporophyte development is mostly limited to the CHH context, LTR retrotransposons, DNA transposons, and repeats. We conclude that epigenetic reprogramming occurs at least twice during the life cycle of M. polymorpha and that the underlying mechanisms are likely different between the two events.
DNA methylation markers for diagnosis and prognosis of common cancers
Hao, Xiaoke; Luo, Huiyan; Krawczyk, Michal; Wei, Wei; Wang, Wenqiu; Wang, Juan; Flagg, Ken; Hou, Jiayi; Zhang, Heng; Yi, Shaohua; Jafari, Maryam; Lin, Danni; Chung, Christopher; Caughey, Bennett A.; Li, Gen; Dhar, Debanjan; Shi, William; Zheng, Lianghong; Hou, Rui; Zhu, Jie; Zhao, Liang; Fu, Xin; Zhang, Edward; Zhang, Charlotte; Zhu, Jian-Kang; Karin, Michael; Xu, Rui-Hua; Zhang, Kang
2017-01-01
The ability to identify a specific cancer using minimally invasive biopsy holds great promise for improving the diagnosis, treatment selection, and prediction of prognosis in cancer. Using whole-genome methylation data from The Cancer Genome Atlas (TCGA) and machine learning methods, we evaluated the utility of DNA methylation for differentiating tumor tissue and normal tissue for four common cancers (breast, colon, liver, and lung). We identified cancer markers in a training cohort of 1,619 tumor samples and 173 matched adjacent normal tissue samples. We replicated our findings in a separate TCGA cohort of 791 tumor samples and 93 matched adjacent normal tissue samples, as well as an independent Chinese cohort of 394 tumor samples and 324 matched adjacent normal tissue samples. The DNA methylation analysis could predict cancer versus normal tissue with more than 95% accuracy in these three cohorts, demonstrating accuracy comparable to typical diagnostic methods. This analysis also correctly identified 29 of 30 colorectal cancer metastases to the liver and 32 of 34 colorectal cancer metastases to the lung. We also found that methylation patterns can predict prognosis and survival. We correlated differential methylation of CpG sites predictive of cancer with expression of associated genes known to be important in cancer biology, showing decreased expression with increased methylation, as expected. We verified gene expression profiles in a mouse model of hepatocellular carcinoma. Taken together, these findings demonstrate the utility of methylation biomarkers for the molecular characterization of cancer, with implications for diagnosis and prognosis. PMID:28652331
Rodríguez-Miguel, Cristina; Moral, Raquel; Escrich, Raquel; Vela, Elena; Solanas, Montserrat; Escrich, Eduard
2015-01-01
Disruption of epigenetic patterns is a major change occurring in all types of cancers. Such alterations are characterized by global DNA hypomethylation, gene-promoter hypermethylation and aberrant histone modifications, and may be modified by environment. Nutritional factors, and especially dietary lipids, have a role in the etiology of breast cancer. Thus, we aimed to analyze the influence of different high fat diets on DNA methylation and histone modifications in the rat dimethylbenz(a)anthracene (DMBA)-induced breast cancer model. Female Sprague-Dawley rats were fed a low-fat, a high corn-oil or a high extra-virgin olive oil (EVOO) diet from weaning or from induction with DMBA. In mammary glands and tumors we analyzed global and gene specific (RASSF1A, TIMP3) DNA methylation by LUMA and bisulfite pyrosequencing assays, respectively. We also determined gene expression and enzymatic activity of DNA methyltransferases (DNMT1, DNMT3a and DNMT3b) and evaluated changes in histone modifications (H3K4me2, H3K27me3, H4K20me3 and H4K16ac) by western-blot. Our results showed variations along time in the global DNA methylation of the mammary gland displaying decreases at puberty and with aging. The olive oil-enriched diet, on the one hand, increased the levels of global DNA methylation in mammary gland and tumor, and on the other, changed histone modifications patterns. The corn oil-enriched diet increased DNA methyltransferase activity in both tissues, resulting in an increase in the promoter methylation of the tumor suppressor genes RASSF1A and TIMP3. These results suggest a differential effect of the high fat diets on epigenetic patterns with a relevant role in the neoplastic transformation, which could be one of the mechanisms of their differential promoter effect, clearly stimulating for the high corn-oil diet and with a weaker influence for the high EVOO diet, on breast cancer progression.
Zhang, Xiaoyang; Wang, Dongxu; Han, Yang; Duan, Feifei; Lv, Qinyan; Li, Zhanjun
2014-11-01
To determine the expression patterns of imprinted genes and their methylation status in aborted cloned porcine fetuses and placentas. RNA and DNA were prepared from fetuses and placentas that were produced by SCNT and controls from artificial insemination. The expression of 18 imprinted genes was determined by quantitative real-time PCR (q-PCR). Bisulfite sequencing PCR (BSP) was conducted to determine the methylation status of PRE-1 short interspersed repetitive element (SINE), satellite DNA and H19 differentially methylated region 3 (DMR3). The weight, imprinted gene expression and genome-wide DNA methylation patterns were compared between the mid-gestation aborted and normal control samples. The results showed hypermethylation of PRE-1 and satellite sequences, the aberrant expression of imprinted genes, and the hypomethylation of H19 DMR3 occurred in mid-gestation aborted fetuses and placentas. Cloned pigs generated by somatic cell nuclear transfer (SCNT) showed a greater ratio of early abortion during mid-gestation than did normal controls because of the incomplete epigenetic reprogramming of the donor cells. Altered expression of imprinted genes and the hypermethylation profile of the repetitive regions (PRE-1 and satellite DNA) may be associated with defective development and early abortion of cloned pigs, emphasizing the importance of epigenetics during pregnancy and implications thereof for patient-specific embryonic stem cells for human therapeutic cloning and improvement of human assisted reproduction.
Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees
Biergans, Stephanie D.; Giovanni Galizia, C.; Reinhard, Judith; Claudianos, Charles
2015-01-01
DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee. PMID:26531238
Vangeel, Elise Beau; Pishva, Ehsan; Hompes, Titia; van den Hove, Daniel; Lambrechts, Diether; Allegaert, Karel; Freson, Kathleen; Izzi, Benedetta; Claes, Stephan
2017-01-01
There is increasing evidence for the role of prenatal stress in shaping offspring DNA methylation and disease susceptibility. In the current study, we aimed to identify genes and pathways associated with pregnancy anxiety using a genome-wide DNA methylation approach. We selected 22 versus 23 newborns from our Prenatal Early Life Stress (PELS) cohort, exposed to the lowest or highest degree of maternal pregnancy anxiety, respectively. Cord blood genome-wide DNA methylation was assayed using the HumanMethylation450 BeadChip (HM450, n = 45) and candidate gene methylation using EpiTYPER ( n = 80). Cortisol levels were measured at 2, 4, and 12 months of age to test infant stress system (re)activity. Data showed ten differentially methylated regions (DMR) when comparing newborns exposed to low versus high pregnancy anxiety scores. We validated a top DMR in the GABA-B receptor subunit 1 gene ( GABBR1 ) revealing the association with pregnancy anxiety particularly in male newborns (most significant CpG Pearson R = 0.517, p = 0.002; average methylation Pearson R = 0.332, p = 0.039). Cord blood GABBR1 methylation was associated with infant cortisol levels in response to a routine vaccination at 4 months old. In conclusion, our results show that pregnancy anxiety is associated with differential DNA methylation patterns in newborns and that our candidate gene GABBR1 is associated with infant hypothalamic-pituitary-adrenal axis response to a stressor. Our findings reveal a potential role for GABBR1 methylation in association with stress and provide grounds for further research.
USDA-ARS?s Scientific Manuscript database
Four strains of Bibersteinia trehalosi have been sequenced and both their genomes and methylomes compared. Three of the strains, 188, 189 and 192, are very similar while strain 190 is significantly different in several aspects. Within these strains differential methylation patterns are observed an...
McCoy, Chelsea R.; Jackson, Nateka L.; Day, Jeremy; Clinton, Sarah M.
2016-01-01
Understanding biological mechanisms that shape vulnerability to emotional dysfunction is critical for elucidating the neurobiology of psychiatric illnesses like anxiety and depression. To elucidate molecular and epigenetic alterations in the brain that contribute to individual differences in emotionality, our laboratory utilized a rodent model of temperamental differences. Rats bred for low response to novelty (Low Responders, LRs) are inhibited in novel situations and display high anxiety, helplessness, and diminished sociability compared to High Novelty Responder (HR) rats. Our current transcriptome profiling experiment identified widespread gene expression differences in the amygdala of adult HR/LR rats; we hypothesize that HR/LR gene expression and downstream behavioral differences stem from distinct epigenetic (specifically DNA methylation) patterning in the HR/LR brain. Although we found similar levels of DNA methyltransferase proteins in the adult HR/LR amygdala, next-generation sequencing analysis of the methylome revealed 793 differentially methylated genomic sites between the groups. Most of the differentially methylated sites were hypermethylated in HR versus LR, so we next tested the hypothesis that enhancing DNA methylation in LRs would improve their anxiety/depression-like phenotype. We found that increasing DNA methylation in LRs (via increased dietary methyl donor content) improved their anxiety-like behavior and decreased their typically high levels of Forced Swim Test (FST) immobility; however, dietary methyl donor depletion exacerbated LRs’ high FST immobility. These data are generally consistent with findings in depressed patients showing that treatment with DNA methylation-promoting agents improves depressive symptoms, and highlight epigenetic mechanisms that may contribute to individual differences in risk for emotional dysfunction. PMID:27965039
Novakovic, Boris; Evain-Brion, Danièle; Murthi, Padma; Fournier, Thiery; Saffery, Richard
2017-06-01
Placental functioning relies on the appropriate differentiation of progenitor villous cytotrophoblasts (CTBs) into extravillous cytotrophoblasts (EVCTs), including invasive EVCTs, and the multinucleated syncytiotrophoblast (ST) layer. This is accompanied by a general move away from a proliferative, immature phenotype. Genome-scale expression studies have provided valuable insight into genes that are associated with the shift to both an invasive EVCT and ST phenotype, whereas genome-scale DNA methylation analysis has shown that differentiation to ST involves widespread methylation shifts, which are counteracted by low oxygen. In the current study, we sought to identify DNA methylation variation that is associated with transition from CTB to ST in vitro and from a noninvasive to invasive EVCT phenotype after culture on Matrigel. Of the several hundred differentially methylated regions that were identified in each comparison, the majority showed a loss of methylation with differentiation. This included a large differentially methylated region (DMR) in the gene body of death domain-associated protein 6 ( DAXX ), which lost methylation during both CTB syncytialization to ST and EVCT differentiation to invasive EVCT. Comparison to publicly available methylation array data identified the same DMR as among the most consistently differentially methylated genes in placental samples from preeclampsia pregnancies. Of interest, in vitro culture of CTB or ST in low oxygen increases methylation in the same region, which correlates with delayed differentiation. Analysis of combined epigenomics signatures confirmed DAXX DMR as a likely regulatory element, and direct gene expression analysis identified a positive association between methylation at this site and DAXX expression levels. The widespread dynamic nature of DAXX methylation in association with trophoblast differentiation and placenta-associated pathologies is consistent with an important role for this gene in proper placental development and function.-Novakovic, B., Evain-Brion, D., Murthi, P., Fournier, T., Saffery, R. Variable DAXX gene methylation is a common feature of placental trophoblast differentiation, preeclampsia, and response to hypoxia. © FASEB.
Winnowing DNA for Rare Sequences: Highly Specific Sequence and Methylation Based Enrichment
Thompson, Jason D.; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre
2012-01-01
Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue. PMID:22355378
DNA methylation changes at infertility genes in newborn twins conceived by in vitro fertilisation.
Castillo-Fernandez, Juan E; Loke, Yuk Jing; Bass-Stringer, Sebastian; Gao, Fei; Xia, Yudong; Wu, Honglong; Lu, Hanlin; Liu, Yuan; Wang, Jun; Spector, Tim D; Saffery, Richard; Craig, Jeffrey M; Bell, Jordana T
2017-03-24
The association of in vitro fertilisation (IVF) and DNA methylation has been studied predominantly at regulatory regions of imprinted genes and at just thousands of the ~28 million CpG sites in the human genome. We investigated the links between IVF and DNA methylation patterns in whole cord blood cells (n = 98) and cord blood mononuclear cells (n = 82) from newborn twins using genome-wide methylated DNA immunoprecipitation coupled with deep sequencing. At a false discovery rate (FDR) of 5%, we identified one significant whole blood DNA methylation change linked to conception via IVF, which was located ~3 kb upstream of TNP1, a gene previously linked to male infertility. The 46 most strongly associated signals (FDR of 25%) included a second region in a gene also previously linked to infertility, C9orf3, suggesting that our findings may in part capture the effect of parental subfertility. Using twin modelling, we observed that individual-specific environmental factors appear to be the main overall contributors of methylation variability at the FDR 25% IVF-associated differentially methylated regions, although evidence for methylation heritability was also obtained at several of these regions. We replicated previous findings of differential methylation associated with IVF at the H19/IGF2 region in cord blood mononuclear cells, and we validated the signal at C9orf3 in monozygotic twins. We also explored the impact of intracytoplasmic sperm injection on the FDR 25% signals for potential effects specific to male or female infertility factors. To our knowledge, this is the most comprehensive study of DNA methylation profiles at birth and IVF conception to date, and our results show evidence for epigenetic modifications that may in part reflect parental subfertility.
Fonteneau, M; Filliol, D; Anglard, P; Befort, K; Romieu, P; Zwiller, J
2017-03-01
DNA methylation is a major epigenetic process which regulates the accessibility of genes to the transcriptional machinery. In the present study, we investigated whether modifying the global DNA methylation pattern in the brain would alter cocaine intake by rats, using the cocaine self-administration test. The data indicate that treatment of rats with the DNA methyltransferase inhibitors 5-aza-2'-deoxycytidine (dAZA) and zebularine enhanced the reinforcing properties of cocaine. To obtain some insights about the underlying neurobiological mechanisms, a genome-wide methylation analysis was undertaken in the prefrontal cortex of rats self-administering cocaine and treated with or without dAZA. The study identified nearly 189 000 differentially methylated regions (DMRs), about half of them were located inside gene bodies, while only 9% of DMRs were found in the promoter regions of genes. About 99% of methylation changes occurred outside CpG islands. Gene expression studies confirmed the inverse correlation usually observed between increased methylation and transcriptional activation when methylation occurs in the gene promoter. This inverse correlation was not observed when methylation took place inside gene bodies. Using the literature-based Ingenuity Pathway Analysis, we explored how the differentially methylated genes were related. The analysis showed that increase in cocaine intake by rats in response to DNA methyltransferase inhibitors underlies plasticity mechanisms which mainly concern axonal growth and synaptogenesis as well as spine remodeling. Together with the Akt/PI3K pathway, the Rho-GTPase family was found to be involved in the plasticity underlying the effect of dAZA on the observed behavioral changes. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Song, Yuepeng; Ma, Kaifeng; Ci, Dong; Chen, Qingqing; Tian, Jiaxing; Zhang, Deqiang
2013-12-01
Dioecious plants have evolved sex-specific floral development mechanisms. However, the precise gene expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. Comparative transcriptome and physiological analysis allowed us to characterize sex-specific development of female and male flowers. Transcriptome analysis identified genes significantly differentially expressed between the sexes, including genes related to floral development, phytohormone synthesis and metabolism, and DNA methylation. Correlation analysis revealed a significant correlation between phytohormone signaling and gene expression, identifying specific phytohormone-responsive genes and their cis-regulatory elements. Two genes related to DNA methylation, METHYLTRANSFERASE1 (MET1) and DECREASED DNA METHYLATION 1 (DDM1), which are located in the sex determination region of Chromosome XIX, have differential expression between female and male flowers. A time-course analysis revealed that MET1 and DDM1 expression may produce different DNA methylation levels in female and male flowers. Understanding the interactions of phytohormone signaling, DNA methylation and target gene expression should lead to a better understanding of sexual differences in floral development. Thus, this study identifies a set of candidate genes for further studies of poplar sexual dimorphism and relates sex-specific floral development to physiological and epigenetic changes.
Uesugi, Noriyuki; Sugai, Tamotsu; Sugimoto, Ryo; Eizuka, Makoto; Fujita, Yasuko; Sato, Ayaka; Osakabe, Mitsumasa; Ishida, Kazuyuki; Koeda, Keisuke; Sasaki, Akira; Matsumoto, Takayuki
2017-10-01
The molecular alterations and pathological features of gastric papillary adenocarcinoma (GPA) remain unknown. We examined GPA samples and compared their molecular and pathological characteristics with those of gastric tubular adenocarcinoma (GTA). Additionally, we identified pathological and molecular features of GPA that vary with microsatellite stability. In the present study, samples from 63 GPA patients and 47 GTA patients were examined using a combination of polymerase chain reaction (PCR)-microsatellite assays and PCR-pyrosequencing in order to detect microsatellite instability (microsatellite instability, MSI; microsatellite stable, MSS), methylation status (low methylation, intermediate methylation and high methylation level), and chromosomal AI in multiple cancer-related loci. Additionally, the expression levels of TP53 and Her2 were evaluated using immunohistochemistry. GTA and GPA are statistically different in their frequency of pathological features, including mucinous, poorly differentiated and invasive micropapillary components. Clear genetic patterns differentiating GPA and GTA could not be identified with a hierarchical cluster analysis, but microsatellite stability was linked with TP53 and Her2 overexpression. Methylation status in GPA was also associated with the development of high microsatellite instability. However, no pathological differences were associated with microsatellite stability. We suggest that although molecular alterations in a subset of GPAs are closely associated with microsatellite stability, they play a minor role in GPA carcinogenesis. Copyright © 2017 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.
Endothelial glucocorticoid receptor promoter methylation according to dexamethasone sensitivity
Mata-Greenwood, Eugenia; Jackson, P Naomi; Pearce, William J; Zhang, Lubo
2016-01-01
We have previously shown that in vitro sensitivity to dexamethasone (DEX) stimulation in human endothelial cells is positively regulated by the glucocorticoid receptor (NR3C1, GR). The present study determined the role of differential GR transcriptional regulation in glucocorticoid sensitivity. We studied 25 human umbilical vein endothelial cells (HUVECs) that had been previously characterized as DEX-sensitive (n = 15), or resistant (n = 10). Real-time PCR analysis of GR 5′UTR mRNA isoforms showed that all HUVECs expressed isoforms 1B, 1C, 1D, 1F, and 1H, and isoforms 1B and 1C were predominantly expressed. DEX-resistant cells expressed higher basal levels of the 5′UTR mRNA isoforms 1C and 1D, but lower levels of the 5′UTR mRNA isoform 1F than DEX-sensitive cells. DEX treatment significantly decreased GRα and GR-1C mRNA isoform expression in DEX-resistant cells only. Reporter luciferase assays indicated that differential GR mRNA isoform expression was not due to differential promoter usage between DEX-sensitive and DEX-resistant cells. Analysis of promoter methylation, however, showed that DEX-sensitive cells have higher methylation levels of promoter 1D and lower methylation levels of promoter 1F than DEX-resistant cells. Treatment with 5-aza-2-deoxycytidine abolished the differential 5′UTR mRNA isoform expression between DEX-sensitive and DEX-resistant cells. Finally, both GRα overexpression and 5-aza-2-deoxycytidine treatment eliminated the differences between sensitivity groups to DEX-mediated downregulation of endothelial nitric oxide synthase (NOS3), and upregulation of plasminogen activator inhibitor 1 (SERPINE1). In sum, human endothelial GR 5′UTR mRNA expression is regulated by promoter methylation with DEX-sensitive and DEX-resistant cells having different GR promoter methylation patterns. PMID:26242202
Eckstein, Meredith; Rea, Matthew; Fondufe-Mittendorf, Yvonne N
2017-09-15
Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-mesenchymal transition, morphologic changes to cells correlate with changes in chromatin structure and gene expression, ultimately driving this process. However, studies on the effects of inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact of epigenetic alterations in this process are limited. In this study we used high-resolution microarray analysis to measure the changes in DNA methylation in cells undergoing inorganic arsenic-induced epithelial-to-mesenchymal transition, and on the reversal of this process, after removal of the inorganic arsenic exposure. We found that cells exposed to chronic, low-dose inorganic arsenic exposure showed 30,530 sites were differentially methylated, and with inorganic arsenic withdrawal several differential methylated sites were reversed, albeit not completely. Furthermore, these changes in DNA methylation mainly correlated with changes in gene expression at most sites tested but not at all. This study suggests that DNA methylation changes on gene expression are not clear-cut and provide a platform to begin to uncover the relationship between DNA methylation and gene expression, specifically within the context of inorganic arsenic treatment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Epigenetic Variability in the Genetically Uniform Forest Tree Species Pinus pinea L
Sáez-Laguna, Enrique; Guevara, María-Ángeles; Díaz, Luis-Manuel; Sánchez-Gómez, David; Collada, Carmen; Aranda, Ismael; Cervera, María-Teresa
2014-01-01
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees. PMID:25084460
Epigenetic variability in the genetically uniform forest tree species Pinus pinea L.
Sáez-Laguna, Enrique; Guevara, María-Ángeles; Díaz, Luis-Manuel; Sánchez-Gómez, David; Collada, Carmen; Aranda, Ismael; Cervera, María-Teresa
2014-01-01
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.
Villela, Darine; Ramalho, Rodrigo F; Silva, Aderbal R T; Brentani, Helena; Suemoto, Claudia K; Pasqualucci, Carlos Augusto; Grinberg, Lea T; Krepischi, Ana C V; Rosenberg, Carla
2016-01-01
This study investigated for the first time the genomewide DNA methylation changes of noncoding RNA genes in the temporal cortex samples from individuals with Alzheimer's disease (AD). The methylome of 10 AD individuals and 10 age-matched controls were obtained using Illumina 450 K methylation array. A total of 2,095 among the 15,258 interrogated noncoding RNA CpG sites presented differential methylation, 161 of which were associated with miRNA genes. In particular, 10 miRNA CpG sites that were found to be hypermethylated in AD compared to control brains represent transcripts that have been previously associated with the disease. This miRNA set is predicted to target 33 coding genes from the neuregulin receptor complex (ErbB) signaling pathway, which is required for the neurons myelination process. For 6 of these miRNA genes (MIR9-1, MIR9-3, MIR181C, MIR124-1, MIR146B, and MIR451), the hypermethylation pattern is in agreement with previous results from literature that shows downregulation of miR-9, miR-181c, miR-124, miR-146b, and miR-451 in the AD brain. Our data implicate dysregulation of miRNA methylation as contributor to the pathogenesis of AD.
Lintas, Carla; Sacco, Roberto; Persico, Antonio M
2016-01-01
Reelin plays a pivotal role in neurodevelopment and in post-natal synaptic plasticity and has been implicated in the pathogenesis of autism spectrum disorder (ASD). The reelin (RELN) gene expression is significantly decreased in ASD, both in the brain and peripherally. Methylation at the RELN gene promoter is largely triggered at puberty, and hypermethylation has been found in post-mortem brains of schizophrenic and bipolar patients. In this study, we assessed RELN gene methylation status in post-mortem temporocortical tissue samples (BA41/42 or 22) of six pairs of post-puberal individuals with ASD and typically developing subjects, matched for sex (male:female, M:F = 5:1), age, and post-mortem interval. ASD patients display a significantly higher number of methylated CpG islands and heavier methylation in the 5' region of the RELN gene promoter, spanning from -458 to -223 bp, whereas controls have more methylated CpG positions and greater extent of methylation at the 3' promoter region, spanning from -222 to +1 bp. The most upstream promoter region (-458 to -364 bp) is methylated only in ASD brains, while the most downstream region (-131 to +1 bp) is methylated exclusively in control brains. Within this general framework, three different methylation patterns are discernible, each correlated with different extents of reduction in reelin gene expression among ASD individuals compared to controls. The methylation pattern is different in ASD and control post-mortem brains. ASD-specific CpG positions, located in the most upstream gene promoter region, may exert a functional role potentially conferring ASD risk by blunting RELN gene expression.
Doi, Akiko; Park, In-Hyun; Wen, Bo; Murakami, Peter; Aryee, Martin J; Irizarry, Rafael; Herb, Brian; Ladd-Acosta, Christine; Rho, Junsung; Loewer, Sabine; Miller, Justine; Schlaeger, Thorsten; Daley, George Q; Feinberg, Andrew P
2010-01-01
Induced pluripotent stem (iPS) cells are derived by epigenetic reprogramming, but their DNA methylation patterns have not yet been analyzed on a genome-wide scale. Here, we find substantial hypermethylation and hypomethylation of cytosine-phosphate-guanine (CpG) island shores in nine human iPS cell lines as compared to their parental fibroblasts. The differentially methylated regions (DMRs) in the reprogrammed cells (denoted R-DMRs) were significantly enriched in tissue-specific (T-DMRs; 2.6-fold, P < 10−4) and cancer-specific DMRs (C-DMRs; 3.6-fold, P < 10−4). Notably, even though the iPS cells are derived from fibroblasts, their R-DMRs can distinguish between normal brain, liver and spleen cells and between colon cancer and normal colon cells. Thus, many DMRs are broadly involved in tissue differentiation, epigenetic reprogramming and cancer. We observed colocalization of hypomethylated R-DMRs with hypermethylated C-DMRs and bivalent chromatin marks, and colocalization of hypermethylated R-DMRs with hypomethylated C-DMRs and the absence of bivalent marks, suggesting two mechanisms for epigenetic reprogramming in iPS cells and cancer. PMID:19881528
Promoter methylation profile in gallbladder cancer.
Roa, Juan Carlos; Anabalón, Leonardo; Roa, Iván; Melo, Angélica; Araya, Juan Carlos; Tapia, Oscar; de Aretxabala, Xavier; Muñoz, Sergio; Schneider, Barbara
2006-03-01
Methylation in the promoter region of genes is an important mechanism of inactivation of tumor suppressor genes. Our objective was to analyze the methylation pattern of some of the genes involved in carcinogenesis of the gallbladder, examining the immunohistochemical expression of proteins, clinical features, and patient survival time. Twenty cases of gallbladder cancer were selected from the frozen tumor bank. The DNA extracted was analyzed by means of a methylation-specific polymerase chain reaction test for the CDKN2A (p16), MLH1, APC, FHIT, and CDH1 (E-cadherin) genes. Morphological and clinical data and follow-up information were obtained. All cases were in an advanced stage: histologically moderate or poorly differentiated tumors (95%). Methylation of the promoter area of genes was observed in 5%, 20%, 30%, 40%, and 65% of cases, and an altered immunohistochemical pattern (AIP) in 5%, 35%, 21%, 25%, and 66% for the MLH1, CDKN2A, FHIT, APC, and CDH1 genes, respectively. The Kappa concordance index between methylation of the promoter area and AIP for the MLH1 and CDH1 genes was very high (K > 0.75) and substantial for APC (K > 0.45). No correlation was found between survival time and the methylation of the genes studied. The high frequency of gene methylation (with the exception of MLH1) and the high agreement between AIP and methylation of the gene promoter area for the MLH1, APC, and CDH1 genes suggest that the inactivation of tumor suppressor genes and of the genes related to the control of cellular proliferation through this mechanism is involved in gallbladder carcinogenesis.
Genome-wide analysis of day/night DNA methylation differences in Populus nigra.
Ding, Chang-Jun; Liang, Li-Xiong; Diao, Shu; Su, Xiao-Hua; Zhang, Bing-Yu
2018-01-01
DNA methylation is an important mechanism of epigenetic modification. Methylation changes during stress responses and developmental processes have been well studied; however, their role in plant adaptation to the day/night cycle is poorly understood. In this study, we detected global methylation patterns in leaves of the black poplar Populus nigra 'N46' at 8:00 and 24:00 by methylated DNA immunoprecipitation sequencing (MeDIP-seq). We found 10,027 and 10,242 genes to be methylated in the 8:00 and 24:00 samples, respectively. The methylated genes appeared to be involved in multiple biological processes, molecular functions, and cellular components, suggesting important roles for DNA methylation in poplar cells. Comparing the 8:00 and 24:00 samples, only 440 differentially methylated regions (DMRs) overlapped with genic regions, including 193 hyper- and 247 hypo-methylated DMRs, and may influence the expression of 137 downstream genes. Most hyper-methylated genes were associated with transferase activity, kinase activity, and phosphotransferase activity, whereas most hypo-methylated genes were associated with protein binding, ATP binding, and adenyl ribonucleotide binding, suggesting that different biological processes were activated during the day and night. Our results indicated that methylated genes were prevalent in the poplar genome, but that only a few of these participated in diurnal gene expression regulation.
Naghitorabi, Mojgan; Mir Mohammad Sadeghi, Hamid; Mohammadi Asl, Javad; Rabbani, Mohammad; Jafarian-Dehkordi, Abbas
2017-01-01
Promoter methylation is one of the main epigenetic mechanisms that leads to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifically knock down the DNMTs at mRNA level. Also many studies have focused on transcriptional gene silencing in mammalian cells via siRNA mediated promoter methylation. The present study was designed to assess the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of Cadherin-1 (CDH1), Glutathione S-Transferase Pi 1(GSTP1), and DNMT3B genes in MDA-MB-453 cell line. MDA-MB-453 cells were transfected with siDNMT targeting DNMT3B promoter and harvested at 24 and 48 h post transfection to monitor gene silencing and promoter methylation respectively. DNMT3B expression was monitored by quantitative RT-PCR method. Promoter methylation was quantitatively evaluated using differential high resolution melting analysis. A non-significant 20% reduction in DNMT3B mRNA level was shown only after first transfection with siDNMT, which was not reproducible. Promoter methylation levels of DNMT3B, CDH1, and GSTP1 were detected at about 15%, 70% and 10% respectively, in the MDA-MB-453 cell line, with no significant change after transfection. Our results indicated that siDNMT sequence were not able to affect promoter methylation and silencing of DNMT3B in MDA-MB-453 cells. However, quantitation of methylation confirmed a hypermethylated phenotype at CDH1 and GSTP1 promoters as well as a differential methylation pattern at DNMT3B promoter in breast cancer.
Manoharan, Herbert; Babcock, Karlee; Pitot, Henry C
2004-09-01
Monoallelic expression of the imprinted H19 and insulin-like growth factor-2 (Igf2) genes depends on the hypomethylation of the maternal allele and hypermethylation of the paternal allele of the H19 upstream region. Previous studies from our laboratory on liver carcinogenesis in the F1 hybrid of Fischer 344 (F344) and Sprague-Dawley Alb SV40 T Ag transgenic rat (SD) strains revealed the biallelic expression of H19 in hepatomas. We undertook a comparative study of the DNA methylation status of the upstream region of H19 in fetal, adult, and neoplastic liver. Bisulfite DNA sequencing analysis of a 3.745-kb DNA segment extending from 2950 to 6695 bp of the H19 upstream region revealed marked variations in the methylation patterns in fetal, adult, and neoplastic liver. In the fetal liver, equal proportions of hyper- and hypomethylated strands revealed the differentially methylated status of the parental alleles, but in neoplastic liver a pronounced change in the pattern of methylation was observed with a distinct change to hypomethylation in the short segments between 2984 and 3301 bp, 6033-6123 bp, and 6518-6548 bp. These results indicated that methylation of all cytosines in this region may contribute to the imprinting status of the rat H19 gene. This phenomenon of differential methylation-related epigenetic alteration in the key cis-regulatory domains of the H19 promoter influences switching to biallelic expression in hepatocellular carcinogenesis. Similar to mouse and human, we showed that the zinc-finger CCTCC binding factor (CTCF) binds to the unmethylated CTCF binding site in the upstream region to influence monoallelic imprinted expression in fetal liver. CTCF does not appear to be rate limiting in fetal, normal, and neoplastic liver. 3' to the CTCF binding sites, another DNA region exhibits methylation of CpG's in both DNA strands in adult liver, retention of the imprint in fetal liver, and complete demethylation in neoplastic liver. In this region is also a putative binding site for a basic helix-loop-helix leucine-zipper transcription factor, TFEB. The differential CpG methylation seen in the adult that involves the TFEB binding site may explain the lack of expression of the H19 gene in adult normal liver. Furthermore, these findings demonstrate that the loss of imprinting of the H19 gene in hepatic neoplasms of the SD Alb SV40 T Ag transgenic rat is directly correlated with and probably the result of differential methylation of CpG dinucleotides in two distinct regions of the gene that are within 4 kb 5' of the transcription start site. Cytogenetic analysis of hepatocytes in the transgenic animal prior to the appearance of nodules or neoplasms indicates a role of such loss of imprinting in the very early period of neoplastic development, possibly the transition from the stage of promotion to that of progression. Copyright 2004 Wiley-Liss, Inc.
Solís, María-Teresa; El-Tantawy, Ahmed-Abdalla; Cano, Vanesa; Risueño, María C.; Testillano, Pilar S.
2015-01-01
Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare. This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs. PMID:26161085
Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera).
Galbraith, David A; Yang, Xingyu; Niño, Elina Lastro; Yi, Soojin; Grozinger, Christina
2015-03-01
Populations of honey bees are declining throughout the world, with US beekeepers losing 30% of their colonies each winter. Though multiple factors are driving these colony losses, it is increasingly clear that viruses play a major role. However, information about the molecular mechanisms mediating antiviral immunity in honey bees is surprisingly limited. Here, we examined the transcriptional and epigenetic (DNA methylation) responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV), a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20-24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05) in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1) changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections.
Martín-Subero, José I; Kreuz, Markus; Bibikova, Marina; Bentink, Stefan; Ammerpohl, Ole; Wickham-Garcia, Eliza; Rosolowski, Maciej; Richter, Julia; Lopez-Serra, Lidia; Ballestar, Esteban; Berger, Hilmar; Agirre, Xabier; Bernd, Heinz-Wolfram; Calvanese, Vincenzo; Cogliatti, Sergio B; Drexler, Hans G; Fan, Jian-Bing; Fraga, Mario F; Hansmann, Martin L; Hummel, Michael; Klapper, Wolfram; Korn, Bernhard; Küppers, Ralf; Macleod, Roderick A F; Möller, Peter; Ott, German; Pott, Christiane; Prosper, Felipe; Rosenwald, Andreas; Schwaenen, Carsten; Schübeler, Dirk; Seifert, Marc; Stürzenhofecker, Benjamin; Weber, Michael; Wessendorf, Swen; Loeffler, Markus; Trümper, Lorenz; Stein, Harald; Spang, Rainer; Esteller, Manel; Barker, David; Hasenclever, Dirk; Siebert, Reiner
2009-03-12
Lymphomas are assumed to originate at different stages of lymphocyte development through chromosomal aberrations. Thus, different lymphomas resemble lymphocytes at distinct differentiation stages and show characteristic morphologic, genetic, and transcriptional features. Here, we have performed a microarray-based DNA methylation profiling of 83 mature aggressive B-cell non-Hodgkin lymphomas (maB-NHLs) characterized for their morphologic, genetic, and transcriptional features, including molecular Burkitt lymphomas and diffuse large B-cell lymphomas. Hierarchic clustering indicated that methylation patterns in maB-NHLs were not strictly associated with morphologic, genetic, or transcriptional features. By supervised analyses, we identified 56 genes de novo methylated in all lymphoma subtypes studied and 22 methylated in a lymphoma subtype-specific manner. Remarkably, the group of genes de novo methylated in all lymphoma subtypes was significantly enriched for polycomb targets in embryonic stem cells. De novo methylated genes in all maB-NHLs studied were expressed at low levels in lymphomas and normal hematopoietic tissues but not in nonhematopoietic tissues. These findings, especially the enrichment for polycomb targets in stem cells, indicate that maB-NHLs with different morphologic, genetic, and transcriptional background share a similar stem cell-like epigenetic pattern. This suggests that maB-NHLs originate from cells with stem cell features or that stemness was acquired during lymphomagenesis by epigenetic remodeling.
DNA methylation dynamics during in vivo differentiation of blood and skin stem cells
Bock, Christoph; Beerman, Isabel; Lien, Wen-Hui; Smith, Zachary D.; Gu, Hongcang; Boyle, Patrick; Gnirke, Andreas; Fuchs, Elaine; Rossi, Derrick J.; Meissner, Alexander
2012-01-01
DNA methylation is a mechanism of epigenetic regulation that is common to all vertebrates. Functional studies underscore its relevance for tissue homeostasis, but the global dynamics of DNA methylation during in vivo differentiation remain underexplored. Here we report high-resolution DNA methylation maps of adult stem cell differentiation in mouse, focusing on 19 purified cell populations of the blood and skin lineages. DNA methylation changes were locus-specific and relatively modest in magnitude. They frequently overlapped with lineage-associated transcription factors and their binding sites, suggesting that DNA methylation may protect cells from aberrant transcription factor activation. DNA methylation and gene expression provided complementary information, and combining the two enabled us to infer the cellular differentiation hierarchy of the blood lineage directly from genomic data. In summary, these results demonstrate that in vivo differentiation of adult stem cells is associated with small but informative changes in the genomic distribution of DNA methylation. PMID:22841485
Geraghty, Aisling A; Sexton-Oates, Alexandra; O'Brien, Eileen C; Alberdi, Goiuri; Fransquet, Peter; Saffery, Richard; McAuliffe, Fionnuala M
2018-04-06
The epigenetic profile of the developing fetus is sensitive to environmental influence. Maternal diet has been shown to influence DNA methylation patterns in offspring, but research in humans is limited. We investigated the impact of a low glycaemic index dietary intervention during pregnancy on offspring DNA methylation patterns using a genome-wide methylation approach. Sixty neonates were selected from the ROLO (Randomised cOntrol trial of LOw glycaemic index diet to prevent macrosomia) study: 30 neonates from the low glycaemic index intervention arm and 30 from the control, whose mothers received no specific dietary advice. DNA methylation was investigated in 771,484 CpG sites in free DNA from cord blood serum. Principal component analysis and linear regression were carried out comparing the intervention and control groups. Gene clustering and pathway analysis were also explored. Widespread variation was identified in the newborns exposed to the dietary intervention, accounting for 11% of the total level of DNA methylation variation within the dataset. No association was found with maternal early-pregnancy body mass index (BMI), infant sex, or birthweight. Pathway analysis identified common influences of the intervention on gene clusters plausibly linked to pathways targeted by the intervention, including cardiac and immune functioning. Analysis in 60 additional samples from the ROLO study failed to replicate the original findings. Using a modest-sized discovery sample, we identified preliminary evidence of differential methylation in progeny of mothers exposed to a dietary intervention during pregnancy.
Effects of non-CpG site methylation on DNA thermal stability: a fluorescence study
Nardo, Luca; Lamperti, Marco; Salerno, Domenico; Cassina, Valeria; Missana, Natalia; Bondani, Maria; Tempestini, Alessia; Mantegazza, Francesco
2015-01-01
Cytosine methylation is a widespread epigenetic regulation mechanism. In healthy mature cells, methylation occurs at CpG dinucleotides within promoters, where it primarily silences gene expression by modifying the binding affinity of transcription factors to the promoters. Conversely, a recent study showed that in stem cells and cancer cell precursors, methylation also occurs at non-CpG pairs and involves introns and even gene bodies. The epigenetic role of such methylations and the molecular mechanisms by which they induce gene regulation remain elusive. The topology of both physiological and aberrant non-CpG methylation patterns still has to be detailed and could be revealed by using the differential stability of the duplexes formed between site-specific oligonucleotide probes and the corresponding methylated regions of genomic DNA. Here, we present a systematic study of the thermal stability of a DNA oligonucleotide sequence as a function of the number and position of non-CpG methylation sites. The melting temperatures were determined by monitoring the fluorescence of donor-acceptor dual-labelled oligonucleotides at various temperatures. An empirical model that estimates the methylation-induced variations in the standard values of hybridization entropy and enthalpy was developed. PMID:26354864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aluru, Neelakanteswar, E-mail: naluru@whoi.edu; Kuo, Elaine; Stanford University, 450 Serra Mall, Stanford, CA 94305
2015-04-15
DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNAmore » methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt3b genes are expressed early whereas dnmt3a are abundant later in development.« less
Ancestry Dependent DNA Methylation and Influence of Maternal Nutrition
Mozhui, Khyobeni; Smith, Alicia K.; Tylavsky, Frances A.
2015-01-01
There is extensive variation in DNA methylation between individuals and ethnic groups. These differences arise from a combination of genetic and non-genetic influences and potential modifiers include nutritional cues, early life experience, and social and physical environments. Here we compare genome-wide DNA methylation in neonatal cord blood from African American (AA; N = 112) and European American (EA; N = 91) participants of the CANDLE Study (Conditions Affecting Neurocognitive Development and Learning in Early Childhood). Our goal is to determine if there are replicable ancestry-specific methylation patterns that may implicate risk factors for diseases that have differential prevalence between populations. To identify the most robust ancestry-specific CpG sites, we replicate our results in lymphoblastoid cell lines from Yoruba African and CEPH European panels of HapMap. We also evaluate the influence of maternal nutrition—specifically, plasma levels of vitamin D and folate during pregnancy—on methylation in newborns. We define stable ancestry-dependent methylation of genes that include tumor suppressors and cell cycle regulators (e.g., APC, BRCA1, MCC). Overall, there is lower global methylation in African ancestral groups. Plasma levels of 25-hydroxy vitamin D are also considerably lower among AA mothers and about 60% of AA and 40% of EA mothers have concentrations below 20 ng/ml. Using a weighted correlation analysis, we define a network of CpG sites that is jointly modulated by ancestry and maternal vitamin D. Our results show that differences in DNA methylation patterns are remarkably stable and maternal micronutrients can exert an influence on the child epigenome. PMID:25742137
Genetic and epigenetic variation in Spartina alterniflora following the Deepwater Horizon oil spill.
Robertson, Marta; Schrey, Aaron; Shayter, Ashley; Moss, Christina J; Richards, Christina
2017-09-01
Catastrophic events offer unique opportunities to study rapid population response to stress in natural settings. In concert with genetic variation, epigenetic mechanisms may allow populations to persist through severe environmental challenges. In 2010, the Deepwater Horizon oil spill devastated large portions of the coastline along the Gulf of Mexico. However, the foundational salt marsh grass, Spartina alterniflora , showed high resilience to this strong environmental disturbance. Following the spill, we simultaneously examined the genetic and epigenetic structure of recovering populations of S. alterniflora to oil exposure. We quantified genetic and DNA methylation variation using amplified fragment length polymorphism and methylation sensitive fragment length polymorphism (MS-AFLP) to test the hypothesis that response to oil exposure in S. alterniflora resulted in genetically and epigenetically based population differentiation. We found high genetic and epigenetic variation within and among sites and found significant genetic differentiation between contaminated and uncontaminated sites, which may reflect nonrandom mortality in response to oil exposure. Additionally, despite a lack of genomewide patterns in DNA methylation between contaminated and uncontaminated sites, we found five MS-AFLP loci (12% of polymorphic MS-AFLP loci) that were correlated with oil exposure. Overall, our findings support genetically based differentiation correlated with exposure to the oil spill in this system, but also suggest a potential role for epigenetic mechanisms in population differentiation.
Zhao, Jingyao; Chen, Xufeng; Song, Guangrong; Zhang, Jiali; Liu, Haifeng; Liu, Xiaolong
2017-01-01
Hematopoietic stem cells (HSCs) are able to both self-renew and differentiate. However, how individual HSC makes the decision between self-renewal and differentiation remains largely unknown. Here we report that ablation of the key epigenetic regulator Uhrf1 in the hematopoietic system depletes the HSC pool, leading to hematopoietic failure and lethality. Uhrf1-deficient HSCs display normal survival and proliferation, yet undergo erythroid-biased differentiation at the expense of self-renewal capacity. Notably, Uhrf1 is required for the establishment of DNA methylation patterns of erythroid-specific genes during HSC division. The expression of these genes is enhanced in the absence of Uhrf1, which disrupts the HSC-division modes by promoting the symmetric differentiation and suppressing the symmetric self-renewal. Moreover, overexpression of one of the up-regulated genes, Gata1, in HSCs is sufficient to phenocopy Uhrf1-deficient HSCs, which show impaired HSC symmetric self-renewal and increased differentiation commitment. Taken together, our findings suggest that Uhrf1 controls the self-renewal versus differentiation of HSC through epigenetically regulating the cell-division modes, thus providing unique insights into the relationship among Uhrf1-mediated DNA methylation, cell-division mode, and HSC fate decision. PMID:27956603
IGF-II promoter methylation and ovarian cancer prognosis.
Beeghly, A C; Katsaros, D; Wiley, A L; Rigault de la Longrais, I A; Prescott, A T; Chen, H; Puopolo, M; Rutherford, T J; Yu, H
2007-10-01
The insulin-like growth factor-II (IGF-II) gene has four promoters that produce distinct transcripts which vary by tissue type and developmental stage. Dysregulation of normal promoter usage has been shown to occur in cancer; DNA methylation regulates promoter use. Thus, we sought to examine if DNA methylation varies among IGF-II promoters in ovarian cancer and if methylation patterns are related to clinical features of the disease. Tumor tissue, clinical data, and follow-up information were collected from 215 patients diagnosed with primary epithelial ovarian cancer. DNA extracted from tumor tissues was analyzed for IGF-II promoter methylation with seven methylation specific PCR (MSP) assays: three for promoter 2 (P2) and two assays each for promoters 3 and 4 (P3 and P4). Methylation was found to vary among the seven assays: 19.3% in P2A, 45.6% in P2B, 50.9% in P2C, 48.4% in P3A, 13.1% in P3B, 5.1% in P4A, and 6.1% in P4B. Methylation in any of the three P2 assays was associated with high tumor grade (P = 0.043), suboptimal debulking (P = 0.036), and disease progression [hazards ratio (HR) = 1.73, 95% confidence interval (CI) 1.09-2.74]. When comparing promoter methylation patterns, differential methylation of P2 and P3 was found to be associated with disease prognosis; patients with P3 but not P2 methylation were less likely to have disease progression (HR = 0.39, 95% CI 0.17-0.91) compared to patients with P2 but not P3 methylation. This study shows that methylation varies among three IGF-II promoters in ovarian cancer and that this variation seems to have biologic implications as it relates to clinical features and prognosis of the disease.
Booij, Linda; Casey, Kevin F; Antunes, Juliana M; Szyf, Moshe; Joober, Ridha; Israël, Mimi; Steiger, Howard
2015-11-01
Evidence associates anorexia nervosa (AN) with epigenetic alterations that could contribute to illness risk or entrenchment. We investigated the extent to which AN is associated with a distinct methylation profile compared to that seen in normal-eater women. Genome-wide methylation profiles, obtained using DNA from whole blood, were determined in 29 women currently ill with AN (10 with AN-restrictive type, 19 with AN-binge/purge type) and 15 normal-weight, normal-eater control women, using 450 K Illumina bead arrays. Regardless of type, AN patients showed higher and less-variable global methylation patterns than controls. False Discovery Rate corrected comparisons identified 14 probes that were hypermethylated in women with AN relative to levels obtained in normal-eater controls, representing genes thought to be associated with histone acetylation, RNA modification, cholesterol storage and lipid transport, and dopamine and glutamate signaling. Age of onset was significantly associated with differential methylation in gene pathways involved in development of the brain and spinal cord, while chronicity of illness was significantly linked to differential methylation in pathways involved with synaptogenesis, neurocognitive deficits, anxiety, altered social functioning, and bowel, kidney, liver and immune function. Although pre-existing differences cannot be ruled out, our findings are consistent with the idea of secondary alterations in methylation at genomic regions pertaining to social-emotional impairments and physical sequelae that are commonly seen in AN patients. Further investigation is needed to establish the clinical relevance of the affected genes in AN, and, importantly, reversibility of effects observed with nutritional rehabilitation and treatment. © 2015 Wiley Periodicals, Inc.
DNA methylation and childhood asthma in the inner city.
Yang, Ivana V; Pedersen, Brent S; Liu, Andrew; O'Connor, George T; Teach, Stephen J; Kattan, Meyer; Misiak, Rana Tawil; Gruchalla, Rebecca; Steinbach, Suzanne F; Szefler, Stanley J; Gill, Michelle A; Calatroni, Agustin; David, Gloria; Hennessy, Corinne E; Davidson, Elizabeth J; Zhang, Weiming; Gergen, Peter; Togias, Alkis; Busse, William W; Schwartz, David A
2015-07-01
Epigenetic marks are heritable, influenced by the environment, direct the maturation of T lymphocytes, and in mice enhance the development of allergic airway disease. Thus it is important to define epigenetic alterations in asthmatic populations. We hypothesize that epigenetic alterations in circulating PBMCs are associated with allergic asthma. We compared DNA methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy control subjects by using DNA and RNA from PBMCs. Results were validated in an independent population of asthmatic patients. Comparing asthmatic patients (n = 97) with control subjects (n = 97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthma, including IL13, RUNX3, and specific genes relevant to T lymphocytes (TIGIT). Among asthmatic patients, 11 differentially methylated regions were associated with higher serum IgE concentrations, and 16 were associated with percent predicted FEV1. Hypomethylated and hypermethylated regions were associated with increased and decreased gene expression, respectively (P < 6 × 10(-12) for asthma and P < .01 for IgE). We further explored the relationship between DNA methylation and gene expression using an integrative analysis and identified additional candidates relevant to asthma (IL4 and ST2). Methylation marks involved in T-cell maturation (RUNX3), TH2 immunity (IL4), and oxidative stress (catalase) were validated in an independent asthmatic cohort of children living in the inner city. Our results demonstrate that DNA methylation marks in specific gene loci are associated with asthma and suggest that epigenetic changes might play a role in establishing the immune phenotype associated with asthma. Published by Elsevier Inc.
Lysine Methylation of Nuclear Co-repressor Receptor Interacting Protein 140
Huq, MD Mostaqul; Ha, Sung Gil; Barcelona, Helene; Wei, Li-Na
2009-01-01
Receptor interacting protein 140 (RIP140) undergoes extensive posttranslational modifications (PTMs), including phosphorylation, acetylation, arginine methylation, and pyridoxylation. PTMs affect its sub-cellular distribution, protein-protein interaction, and biological activity in adipocyte differentiation. Arginine methylation on Arg240, Arg650, and Arg948 suppresses the repressive activity of RIP140. Here we find that endogenous RIP140 in differentiated 3T3-L1 cells is also modified by lysine methylation. Three lysine residues, Lys591, Lys653, and Lys757 are mapped as potential methylation sites by mass spectrometry. Site-directed mutagenesis study shows that lysine methylation enhances its gene repressive activity. Mutation of lysine methylation sites enhances arginine methylation, while mutation on arginine methylation sites has little effect on its lysine methylation, suggesting a relationship between lysine methylation and arginine methylation. Kinetic analysis of PTMs of endogenous RIP140 in differentiated 3T3-L1 cells demonstrates sequential modifications on RIP140, initiated from constitutive lysine methylation, followed by increased arginine methylation later in differentiation. This study reveals a potential hierarchy of modifications, at least for lysine and arginine methylation, which bi-directionally regulate the functionality of a non-histone protein. PMID:19216533
Yu, Yingjie; Yang, Xuejiao; Wang, Huaying; Shi, Fengxue; Liu, Ying; Liu, Jushan; Li, Linfeng; Wang, Deli; Liu, Bao
2013-01-01
Background Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Methodology/Principal Findings Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Conclusions/Significance Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by the affected plant populations to the changed environments. PMID:23418457
Epigenetic dysregulation of the dopamine system in diet-induced obesity.
Vucetic, Zivjena; Carlin, Jesse Lea; Totoki, Kathy; Reyes, Teresa M
2012-03-01
Chronic intake of high-fat (HF) diet is known to alter brain neurotransmitter systems that participate in the central regulation of food intake. Dopamine (DA) system changes in response to HF diet have been observed in the hypothalamus, important in the homeostatic control of food intake, as well as within the central reward circuitry [ventral tegmental area (VTA), nucleus accumbens (NAc), and pre-frontal cortex (PFC)], critical for coding the rewarding properties of palatable food and important in hedonically driven feeding behavior. Using a mouse model of diet-induced obesity (DIO), significant alterations in the expression of DA-related genes were documented in adult animals, and the general pattern of gene expression changes was opposite within the hypothalamus versus the reward circuitry (increased vs. decreased, respectively). Differential DNA methylation was identified within the promoter regions of tyrosine hydroxylase (TH) and dopamine transporter (DAT), and the pattern of this response was consistent with the pattern of gene expression. Behaviors consistent with increased hypothalamic DA and decreased reward circuitry DA were observed. These data identify differential DNA methylation as an epigenetic mechanism linking the chronic intake of HF diet with altered DA-related gene expression, and this response varies by brain region and DNA sequence. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee
2011-11-04
Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterationsmore » in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may contribute to the pathogenesis of AD.« less
Radhakrishnan, Srihari; Literman, Robert; Mizoguchi, Beatriz; Valenzuela, Nicole
2017-01-01
DNA methylation alters gene expression but not DNA sequence and mediates some cases of phenotypic plasticity. Temperature-dependent sex determination (TSD) epitomizes phenotypic plasticity where environmental temperature drives embryonic sexual fate, as occurs commonly in turtles. Importantly, the temperature-specific transcription of two genes underlying gonadal differentiation is known to be induced by differential methylation in TSD fish, turtle and alligator. Yet, how extensive is the link between DNA methylation and TSD remains unclear. Here we test for broad differences in genome-wide DNA methylation between male and female hatchling gonads of the TSD painted turtle Chrysemys picta using methyl DNA immunoprecipitation sequencing, to identify differentially methylated candidates for future study. We also examine the genome-wide nCpG distribution (which affects DNA methylation) in painted turtles and test for historic methylation in genes regulating vertebrate gonadogenesis. Turtle global methylation was consistent with other vertebrates (57% of the genome, 78% of all CpG dinucleotides). Numerous genes predicted to regulate turtle gonadogenesis exhibited sex-specific methylation and were proximal to methylated repeats. nCpG distribution predicted actual turtle DNA methylation and was bimodal in gene promoters (as other vertebrates) and introns (unlike other vertebrates). Differentially methylated genes, including regulators of sexual development, had lower nCpG content indicative of higher historic methylation. Ours is the first evidence suggesting that sexually dimorphic DNA methylation is pervasive in turtle gonads (perhaps mediated by repeat methylation) and that it targets numerous regulators of gonadal development, consistent with the hypothesis that it may regulate thermosensitive transcription in TSD vertebrates. However, further research during embryogenesis will help test this hypothesis and the alternative that instead, most differential methylation observed in hatchlings is the by-product of sexual differentiation and not its cause.
Ouko, Lillian A; Shantikumar, Katpaham; Knezovich, Jaysen; Haycock, Philip; Schnugh, Desmond J; Ramsay, Michèle
2009-09-01
Exposure to alcohol in utero is the main attributable cause of fetal alcohol spectrum disorders (FASD) which in its most severe form is characterized by irreversible behavioral and cognitive disability. Paternal preconception drinking is not considered to be a significant risk factor, even though animal studies have demonstrated that chronic paternal alcohol consumption has a detrimental effect on the physical and mental development of offspring even in the absence of in utero alcohol exposure. It has been documented that alcohol can reduce the levels and activity of DNA methyltransferases resulting in DNA hypomethylation and that reduced methyltransferase activity can cause activation of normally silenced genes. The aim of this study was to establish a link between alcohol use in men and hypomethylation of paternally imprinted loci in sperm DNA in genomic regions critical for embryonic development, thus providing a mechanism for paternal effects in the aetiology of FASD. Sperm DNA from male volunteers was bisulfite treated and the methylation patterns of 2 differentially methylated regions (DMRs), H19 and IG-DMR, analyzed following sequencing of individual clones. The methylation patterns were correlated with the alcohol consumption levels of the volunteer males. There was a pattern of increased demethylation with alcohol consumption at the 2 imprinted loci with a significant difference observed at the IG-DMR between the nondrinking and heavy alcohol consuming groups. Greater inter-individual variation in average methylation was observed at the H19 DMR and individual clones were more extensively demethylated than those of the IG-DMR. CpG site #4 in the IG-DMR was preferentially demethylated among all individuals and along with the H19 DMR CpG site #7 located within the CTCF binding site 6 showed significant demethylation in the alcohol consuming groups compared with the control group. This study demonstrates a correlation between chronic alcohol use and demethylation of normally hypermethylated imprinted regions in sperm DNA. We hypothesize that, should these epigenetic changes in imprinted genes be transmitted through fertilization, they would alter the critical gene expression dosages required for normal prenatal development resulting in offspring with features of FASD.
Rechache, Nesrin S; Wang, Yonghong; Stevenson, Holly S; Killian, J Keith; Edelman, Daniel C; Merino, Maria; Zhang, Lisa; Nilubol, Naris; Stratakis, Constantine A; Meltzer, Paul S; Kebebew, Electron
2012-06-01
It is not known whether there are any DNA methylation alterations in adrenocortical tumors. The objective of the study was to determine the methylation profile of normal adrenal cortex and benign and malignant adrenocortical tumors. Genome-wide methylation status of CpG regions were determined in normal (n = 19), benign (n = 48), primary malignant (n = 8), and metastatic malignant (n = 12) adrenocortical tissue samples. An integrated analysis of genome-wide methylation and mRNA expression in benign vs. malignant adrenocortical tissue samples was also performed. Methylation profiling revealed the following: 1) that methylation patterns were distinctly different and could distinguish normal, benign, primary malignant, and metastatic tissue samples; 2) that malignant samples have global hypomethylation; and 3) that the methylation of CpG regions are different in benign adrenocortical tumors by functional status. Normal compared with benign samples had the least amount of methylation differences, whereas normal compared with primary and metastatic adrenocortical carcinoma samples had the greatest variability in methylation (adjusted P ≤ 0.01). Of 215 down-regulated genes (≥2-fold, adjusted P ≤ 0.05) in malignant primary adrenocortical tumor samples, 52 of these genes were also hypermethylated. Malignant adrenocortical tumors are globally hypomethylated as compared with normal and benign tumors. Methylation profile differences may accurately distinguish between primary benign and malignant adrenocortical tumors. Several differentially methylated sites are associated with genes known to be dysregulated in malignant adrenocortical tumors.
DNA methylation in adult diffuse gliomas.
LeBlanc, Veronique G; Marra, Marco A
2016-11-01
Adult diffuse gliomas account for the majority of primary malignant brain tumours, and are in most cases lethal. Current therapies are often only marginally effective, and improved options will almost certainly benefit from further insight into the various processes contributing to gliomagenesis and pathology. While molecular characterization of these tumours classifies them on the basis of genetic alterations and chromosomal abnormalities, DNA methylation patterns are increasingly understood to play a role in glioma pathogenesis. Indeed, a subset of gliomas associated with improved survival is characterized by the glioma CpG island methylator phenotype (G-CIMP), which can be induced by the expression of mutant isocitrate dehydrogenase (IDH1/2). Aberrant methylation of particular genes or regulatory elements, within the context of G-CIMP-positive and/or negative tumours, has also been shown to be associated with differential survival. In this review, we provide an overview of the current knowledge regarding the role of DNA methylation in adult diffuse gliomas. In particular, we discuss IDH mutations and G-CIMP, MGMT promoter methylation, DNA methylation-mediated microRNA regulation and aberrant methylation of specific genes or groups of genes. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Variations in the Intragene Methylation Profiles Hallmark Induced Pluripotency
Druzhkov, Pavel; Zolotykh, Nikolay; Meyerov, Iosif; Alsaedi, Ahmed; Shutova, Maria; Ivanchenko, Mikhail; Zaikin, Alexey
2015-01-01
We demonstrate the potential of differentiating embryonic and induced pluripotent stem cells by the regularized linear and decision tree machine learning classification algorithms, based on a number of intragene methylation measures. The resulting average accuracy of classification has been proven to be above 95%, which overcomes the earlier achievements. We propose a constructive and transparent method of feature selection based on classifier accuracy. Enrichment analysis reveals statistically meaningful presence of stemness group and cancer discriminating genes among the selected best classifying features. These findings stimulate the further research on the functional consequences of these differences in methylation patterns. The presented approach can be broadly used to discriminate the cells of different phenotype or in different state by their methylation profiles, identify groups of genes constituting multifeature classifiers, and assess enrichment of these groups by the sets of genes with a functionality of interest. PMID:26618180
Wang, Xiao; Gu, Jinghua; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua
2017-01-15
The advent of high-throughput DNA methylation profiling techniques has enabled the possibility of accurate identification of differentially methylated genes for cancer research. The large number of measured loci facilitates whole genome methylation study, yet posing great challenges for differential methylation detection due to the high variability in tumor samples. We have developed a novel probabilistic approach, D: ifferential M: ethylation detection using a hierarchical B: ayesian model exploiting L: ocal D: ependency (DM-BLD), to detect differentially methylated genes based on a Bayesian framework. The DM-BLD approach features a joint model to capture both the local dependency of measured loci and the dependency of methylation change in samples. Specifically, the local dependency is modeled by Leroux conditional autoregressive structure; the dependency of methylation changes is modeled by a discrete Markov random field. A hierarchical Bayesian model is developed to fully take into account the local dependency for differential analysis, in which differential states are embedded as hidden variables. Simulation studies demonstrate that DM-BLD outperforms existing methods for differential methylation detection, particularly when the methylation change is moderate and the variability of methylation in samples is high. DM-BLD has been applied to breast cancer data to identify important methylated genes (such as polycomb target genes and genes involved in transcription factor activity) associated with breast cancer recurrence. A Matlab package of DM-BLD is available at http://www.cbil.ece.vt.edu/software.htm CONTACT: Xuan@vt.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Hoang, Michael; Kim, Jeffrey J.; Kim, Yiyoung; Tong, Elizabeth; Trammell, Benjamin; Liu, Yao; Shi, Songtao; Lee, Chang-Ryul; Hong, Christine; Wang, Cun-Yu; Kim, Yong
2016-01-01
Epigenetic changes, such as alteration of DNA methylation patterns, have been proposed as a molecular mechanism underlying the effect of alcohol on the maintenance of adult stem cells. We have performed genome-wide gene expression microarray and DNA methylome analysis to identify molecular alterations via DNA methylation changes associated with exposure of human dental pulp stem cells (DPSCs) to ethanol (EtOH). By combined analysis of the gene expression and DNA methylation, we have found a significant number of genes that are potentially regulated by EtOH-induced DNA methylation. As a focused approach, we have also performed a pathway-focused RT-PCR array analysis to examine potential molecular effects of EtOH on genes involved in epigenetic chromatin modification enzymes, fibroblastic markers, and stress and toxicity pathways in DPSCs. We have identified and verified that lysine specific demethylase 6B (KDM6B) was significantly dysregulated in DPSCs upon EtOH exposure. EtOH treatment during odontogenic/osteogenic differentiation of DPSCs suppressed the induction of KDM6B with alterations in the expression of differentiation markers. Knockdown of KDM6B resulted in a marked decrease in mineralization from implanted DPSCs in vivo. Furthermore, an ectopic expression of KDM6B in EtOH-treated DPSCs restored the expression of differentiation-related genes. Our study has demonstrated that EtOH-induced inhibition of KDM6B plays a role in the dysregulation of odontogenic/osteogenic differentiation in the DPSC model. This suggests a potential molecular mechanism for cellular insults of heavy alcohol consumption that can lead to decreased mineral deposition potentially associated with abnormalities in dental development and also osteopenia/osteoporosis, hallmark features of fetal alcohol spectrum disorders. PMID:27286573
Non-linear patterns in age-related DNA methylation may reflect CD4+ T cell differentiation
Johnson, Nicholas D.; Wiener, Howard W.; Smith, Alicia K.; Nishitani, Shota; Absher, Devin M.; Arnett, Donna K.; Aslibekyan, Stella; Conneely, Karen N.
2017-01-01
ABSTRACT DNA methylation (DNAm) is an important epigenetic process involved in the regulation of gene expression. While many studies have identified thousands of loci associated with age, few have differentiated between linear and non-linear DNAm trends with age. Non-linear trends could indicate early- or late-life gene regulatory processes. Using data from the Illumina 450K array on 336 human peripheral blood samples, we identified 21 CpG sites that associated with age (P<1.03E-7) and exhibited changing rates of DNAm change with age (P<1.94E-6). For 2 of these CpG sites (cg07955995 and cg22285878), DNAm increased with age at an increasing rate, indicating that differential DNAm was greatest among elderly individuals. We observed significant replication for both CpG sites (P<5.0E-8) in a second set of peripheral blood samples. In 8 of 9 additional data sets comprising samples of monocytes, T cell subtypes, and brain tissue, we observed a pattern directionally consistent with DNAm increasing with age at an increasing rate, which was nominally significant in the 3 largest data sets (4.3E-15
Fischer, Alexandra; Gaedicke, Sonja; Frank, Jan; Döring, Frank; Rimbach, Gerald
2010-10-01
The aim of the present study was to determine the effects of a 6-month dietary vitamin E (VE) deficiency on DNA methylation and gene expression in rat liver. Two enzymes, 5-α-steroid reductase type 1 (SRD5A1) and the regulatory subunit of γ-glutamylcysteinyl synthetase (GCLM), which are differentially expressed on the mRNA level, were analysed for promoter methylation in putative cytosine-phospho-guanine (CpG) island regions located at the 5' end using base-specific cleavage and matrix-assisted laser desorption ionisation time-of-flight MS. A twofold increase in the mRNA level of SRD5A1 gene and a twofold decrease in the mRNA level of GCLM gene in VE-deficient animals were not associated with different CpG methylation of the analysed promoter region. Furthermore, global DNA methylation was not significantly different in these two groups. Thus, the present results indicate that the VE-induced regulation of SRD5A1 and GCLM in rat liver is not directly mediated by changes in promoter DNA methylation.
Stress, burnout and depression: A systematic review on DNA methylation mechanisms.
Bakusic, Jelena; Schaufeli, Wilmar; Claes, Stephan; Godderis, Lode
2017-01-01
Despite that burnout presents a serious burden for modern society, there are no diagnostic criteria. Additional difficulty is the differential diagnosis with depression. Consequently, there is a need to dispose of a burnout biomarker. Epigenetic studies suggest that DNA methylation is a possible mediator linking individual response to stress and psychopathology and could be considered as a potential biomarker of stress-related mental disorders. Thus, the aim of this review is to provide an overview of DNA methylation mechanisms in stress, burnout and depression. In addition to state-of-the-art overview, the goal of this review is to provide a scientific base for burnout biomarker research. We performed a systematic literature search and identified 25 pertinent articles. Among these, 15 focused on depression, 7 on chronic stress and only 3 on work stress/burnout. Three epigenome-wide studies were identified and the majority of studies used the candidate-gene approach, assessing 12 different genes. The glucocorticoid receptor gene (NR3C1) displayed different methylation patterns in chronic stress and depression. The serotonin transporter gene (SLC6A4) methylation was similarly affected in stress, depression and burnout. Work-related stress and depressive symptoms were associated with different methylation patterns of the brain derived neurotrophic factor gene (BDNF) in the same human sample. The tyrosine hydroxylase (TH) methylation was correlated with work stress in a single study. Additional, thoroughly designed longitudinal studies are necessary for revealing the cause-effect relationship of work stress, epigenetics and burnout, including its overlap with depression. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, Chengzhe; Ai, Rizi; Wang, Mengchi; Firestein, Gary S.; Wang, Wei
2016-01-01
Motivation: DNA methylation signatures in rheumatoid arthritis (RA) have been identified in fibroblast-like synoviocytes (FLS) with Illumina HumanMethylation450 array. Since <2% of CpG sites are covered by the Illumina 450K array and whole genome bisulfite sequencing is still too expensive for many samples, computationally predicting DNA methylation levels based on 450K data would be valuable to discover more RA-related genes. Results: We developed a computational model that is trained on 14 tissues with both whole genome bisulfite sequencing and 450K array data. This model integrates information derived from the similarity of local methylation pattern between tissues, the methylation information of flanking CpG sites and the methylation tendency of flanking DNA sequences. The predicted and measured methylation values were highly correlated with a Pearson correlation coefficient of 0.9 in leave-one-tissue-out cross-validations. Importantly, the majority (76%) of the top 10% differentially methylated loci among the 14 tissues was correctly detected using the predicted methylation values. Applying this model to 450K data of RA, osteoarthritis and normal FLS, we successfully expanded the coverage of CpG sites 18.5-fold and accounts for about 30% of all the CpGs in the human genome. By integrative omics study, we identified genes and pathways tightly related to RA pathogenesis, among which 12 genes were supported by triple evidences, including 6 genes already known to perform specific roles in RA and 6 genes as new potential therapeutic targets. Availability and implementation: The source code, required data for prediction, and demo data for test are freely available at: http://wanglab.ucsd.edu/star/LR450K/. Contact: wei-wang@ucsd.edu or gfirestein@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26883487
Alivand, Mohammad Reza; Soheili, Zahra-Soheila; Pornour, Majid; Solali, Saeed; Sabouni, Farzaneh
2017-10-01
CpG methylation of DNA takes part in a specific epigenetic memory that plays crucial roles in the differentiation and abnormality of the cells. The methylation pattern aberration of genomes is affected in three ways, namely DNA methyltransferase (DNMT), ten-eleven translocation (TET), and methyl-binding domain (MBD) proteins. Of these, TET enzymes have recently been demonstrated to be master modifier enzymes in the DNA methylation process. Additionally, recent studies emphasize that not only epigenetic phenomena play a role in controlling hypoxia pathway, but the hypoxia condition also triggers hypomethylation of genomes that may help with the expression of hypoxia pathway genes. In this study, we suggested that TET1 and TET2 could play a role in the demethylation of genomes under chemical hypoxia conditions. Herein, the evaluating methylation status and mRNA expression of mentioned genes were utilized through real-time PCR and methylation-specific PCR (MSP), respectively. Our results showed that TET1 and TET2 genes were overexpressed (P < 0.05) under chemical hypoxia conditions in Retinal Pigment Epithelial (RPE) cells, whereas the promoter methylation status of them were hypomethylated in the same condition. Therefore, chemical hypoxia not only causes overexpression of TET1 and TET2 but also could gradually do promoter demethylation of same genes. This is the first study to show the relationship between epigenetics and the expression of mentioned genes related to hypoxia pathways. Furthermore, it seems that these associations in RPE cells are subjected to chemical hypoxia as a mechanism that could play a crucial role in methylation pattern changes of hypoxia-related diseases such as cancer and ischemia. J. Cell. Biochem. 118: 3193-3204, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Liao, Ai-Jun; Su, Qi; Wang, Xun; Zeng, Bin; Shi, Wei
2008-01-01
AIM: To isolate and analyze the DNA sequences which are methylated differentially between gastric cancer and normal gastric mucosa. METHODS: The differentially methylated DNA sequences between gastric cancer and normal gastric mucosa were isolated by methylation-sensitive representational difference analysis (MS-RDA). Similarities between the separated fragments and the human genomic DNA were analyzed with Basic Local Alignment Search Tool (BLAST). RESULTS: Three differentially methylated DNA sequences were obtained, two of which have been accepted by GenBank. The accession numbers are AY887106 and AY887107. AY887107 was highly similar to the 11th exon of LOC440683 (98%), 3’ end of LOC440887 (99%), and promoter and exon regions of DRD5 (94%). AY887106 was consistent (98%) with a CpG island in ribosomal RNA isolated from colorectal cancer by Minoru Toyota in 1999. CONCLUSION: The methylation degree is different between gastric cancer and normal gastric mucosa. The differentially methylated DNA sequences can be isolated effectively by MS-RDA. PMID:18322944
Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm
2015-01-01
Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.
Haklai, R; Kloog, Y
1990-01-01
Evidence is presented for specific enzymatic methylation of 21-23 kDa membrane proteins in intact neuroblastoma N1E 115 cells, which is increased in dimethylsulfoxide-induced differentiated cells. Methylation of these proteins has characteristics typical of enzymatic reactions in which base labile volatile methyl groups are incorporated into proteins, consistent with the formation of protein carboxyl methylesters. However, these methylesters of the 21-23 kDa proteins are relatively stable compared to other protein carboxyl methylesters. The 3-fold increase in methylated 21-23 kDa proteins in the differentiated cells suggest biological significance in differentiation of the cell membranes.
Zhao, Wei; Shi, Xiaozheng; Li, Jiangnan; Guo, Wei; Liu, Chengbai; Chen, Xia
2014-01-01
Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = -0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis.
Zhao, Wei; Shi, Xiaozheng; Li, Jiangnan; Guo, Wei; Liu, Chengbai; Chen, Xia
2014-01-01
Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = –0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis. PMID:25386983
Wei, Lei; Xu, Fei; Wang, Yuzhi; Cai, Zhongqiang; Yu, Wenchao; He, Cheng; Jiang, Qiuyun; Xu, Xiqiang; Guo, Wen; Wang, Xiaotong
2018-03-28
Left-right (L-R) asymmetry is controlled by gene regulation pathways for the L-R axis, and in vertebrates, the gene Pitx2 in TGF-β signaling pathway plays important roles in the asymmetrical formation of organs. However, less is known about the asymmetries of anatomically identical paired organs, as well as the transcriptional regulation mechanism of the gene Pitx in invertebrates. Here, we report the molecular biological differences between the left and right mantles of an invertebrate, the Pacific oyster Crassostrea gigas, and propose one possible mechanism underlying those differences. RNA sequencing (RNA-seq) analysis indicated that the paired organs showed different gene expression patterns, suggesting possible functional differences in shell formation, pheromone signaling, nerve conduction, the stress response, and other physiological processes. RNA-seq and real-time qPCR analysis indicated high right-side expression of the Pitx homolog (cgPitx) in oyster mantle, supporting a conserved role for Pitx in controlling asymmetry. Methylation-dependent restriction-site associated DNA sequencing (MethylRAD) identified a methylation site in the promoter region of cgPitx and showed significantly different methylation levels between the left and right mantles. This is the first report, to our knowledge, of such a difference in methylation in spiralians, and it was further confirmed in 18 other individuals by using a pyrosequencing assay. The miRNome analysis and the TGF-β receptor/Smad inhibition experiment further supported that several genes in TGF-β signaling pathway may be related with the L/R asymmetry of oyster mantles. These results suggested that the molecular differentiation of the oyster's paired left and right mantles is significant, TGF-β signaling pathway could be involved in establishing or maintaining the asymmetry, and the cgPitx gene as one of genes in this pathway; the different methylation levels in its promoter regions between L/R mantles was the one of possible mechanisms regulating the left-right functional differentiation.
Argos, Maria; Chen, Lin; Jasmine, Farzana; Tong, Lin; Pierce, Brandon L.; Roy, Shantanu; Paul-Brutus, Rachelle; Gamble, Mary V.; Harper, Kristin N.; Parvez, Faruque; Rahman, Mahfuzar; Rakibuz-Zaman, Muhammad; Slavkovich, Vesna; Baron, John A.; Graziano, Joseph H.; Kibriya, Muhammad G.
2014-01-01
Background: Inorganic arsenic is one of the most common naturally occurring contaminants found in the environment. Arsenic is associated with a number of health outcomes, with epigenetic modification suggested as a potential mechanism of toxicity. Objective: Among a sample of 400 adult participants, we evaluated the association between arsenic exposure, as measured by blood and urinary total arsenic concentrations, and epigenome-wide white blood cell DNA methylation. Methods: We used linear regression models to examine the associations between arsenic exposure and methylation at each CpG site, adjusted for sex, age, and batch. Differentially methylated loci were subsequently examined in relation to corresponding gene expression for functional evidence of gene regulation. Results: In adjusted analyses, we observed four differentially methylated CpG sites with urinary total arsenic concentration and three differentially methylated CpG sites with blood arsenic concentration, based on the Bonferroni-corrected significance threshold of p < 1 × 10–7. Methylation of PLA2G2C (probe cg04605617) was the most significantly associated locus in relation to both urinary (p = 3.40 × 10–11) and blood arsenic concentrations (p = 1.48 × 10–11). Three additional novel methylation loci—SQSTM1 (cg01225779), SLC4A4 (cg06121226), and IGH (cg13651690)—were also significantly associated with arsenic exposure. Further, there was evidence of methylation-related gene regulation based on gene expression for a subset of differentially methylated loci. Conclusions: We observed significant associations between arsenic exposure and gene-specific differential white blood cell DNA methylation, suggesting that epigenetic modifications may be an important pathway underlying arsenic toxicity. The specific differentially methylated loci identified may inform potential pathways for future interventions. Citation: Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, Paul-Brutus R, Gamble MV, Harper KN, Parvez F, Rahman M, Rakibuz-Zaman M, Slavkovich V, Baron JA, Graziano JH, Kibriya MG, Ahsan H. 2015. Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh. Environ Health Perspect 123:64–71; http://dx.doi.org/10.1289/ehp.1307884 PMID:25325195
O'Doherty, Alan M; McGettigan, Paul; Irwin, Rachelle E; Magee, David A; Gagne, Dominic; Fournier, Eric; Al-Naib, Abdullah; Sirard, Marc-André; Walsh, Colum P; Robert, Claude; Fair, Trudee
2018-06-05
Assisted reproductive technologies (ART) are widely used to treat fertility issues in humans and for the production of embryos in mammalian livestock. The use of these techniques, however, is not without consequence as they are often associated with inauspicious pre- and postnatal outcomes including premature birth, intrauterine growth restriction and increased incidence of epigenetic disorders in human and large offspring syndrome in cattle. Here, global DNA methylation profiles in the trophectoderm and embryonic discs of in vitro produced (IVP), superovulation-derived (SOV) and unstimulated, synchronised control day 17 bovine conceptuses (herein referred to as AI) were interrogated using the EmbryoGENE DNA Methylation Array (EDMA). Pyrosequencing was used to validate four loci identified as differentially methylated on the array and to assess the differentially methylated regions (DMRs) of six imprinted genes in these conceptuses. The impact of embryo-production induced DNA methylation aberrations was determined using Ingenuity Pathway Analysis, shedding light on the potential functional consequences of these differences. Of the total number of differentially methylated loci identified (3140) 77.3 and 22.7% were attributable to SOV and IVP, respectively. Differential methylation was most prominent at intragenic sequences within the trophectoderm of IVP and SOV-derived conceptuses, almost a third (30.8%) of the differentially methylated loci mapped to intragenic regions. Very few differentially methylated loci were detected in embryonic discs (ED); 0.16 and 4.9% of the differentially methylated loci were located in the ED of SOV-derived and IVP conceptuses, respectively. The overall effects of SOV and IVP on the direction of methylation changes were associated with increased methylation; 70.6% of the differentially methylated loci in SOV-derived conceptuses and 57.9% of the loci in IVP-derived conceptuses were more methylated compared to AI-conceptuses. Ontology analysis of probes associated with intragenic sequences suggests enrichment for terms associated with cancer, cell morphology and growth. By examining (1) the effects of superovulation and (2) the effects of an in vitro system (oocyte maturation, fertilisation and embryo culture) we have identified that the assisted reproduction process of superovulation alone has the largest impact on the DNA methylome of subsequent embryos.
Whole genome grey and white matter DNA methylation profiles in dorsolateral prefrontal cortex.
Sanchez-Mut, Jose Vicente; Heyn, Holger; Vidal, Enrique; Delgado-Morales, Raúl; Moran, Sebastian; Sayols, Sergi; Sandoval, Juan; Ferrer, Isidre; Esteller, Manel; Gräff, Johannes
2017-06-01
The brain's neocortex is anatomically organized into grey and white matter, which are mainly composed by neuronal and glial cells, respectively. The neocortex can be further divided in different Brodmann areas according to their cytoarchitectural organization, which are associated with distinct cortical functions. There is increasing evidence that brain development and function are governed by epigenetic processes, yet their contribution to the functional organization of the neocortex remains incompletely understood. Herein, we determined the DNA methylation patterns of grey and white matter of dorsolateral prefrontal cortex (Brodmann area 9), an important region for higher cognitive skills that is particularly affected in various neurological diseases. For avoiding interindividual differences, we analyzed white and grey matter from the same donor using whole genome bisulfite sequencing, and for validating their biological significance, we used Infinium HumanMethylation450 BeadChip and pyrosequencing in ten and twenty independent samples, respectively. The combination of these analysis indicated robust grey-white matter differences in DNA methylation. What is more, cell type-specific markers were enriched among the most differentially methylated genes. Interestingly, we also found an outstanding number of grey-white matter differentially methylated genes that have previously been associated with Alzheimer's, Parkinson's, and Huntington's disease, as well as Multiple and Amyotrophic lateral sclerosis. The data presented here thus constitute an important resource for future studies not only to gain insight into brain regional as well as grey and white matter differences, but also to unmask epigenetic alterations that might underlie neurological and neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.
Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue
Geybels, Milan S.; Zhao, Shanshan; Wong, Chao-Jen; Bibikova, Marina; Klotzle, Brandy; Wu, Michael; Ostrander, Elaine A.; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L.
2016-01-01
Background Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. Methods The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. Results In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value <0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for ten genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. Conclusions This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets. PMID:26383847
Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue.
Geybels, Milan S; Zhao, Shanshan; Wong, Chao-Jen; Bibikova, Marina; Klotzle, Brandy; Wu, Michael; Ostrander, Elaine A; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L
2015-12-01
Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value < 0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for 10 genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets. © 2015 Wiley Periodicals, Inc.
Oda, Masaaki; Kumaki, Yuichi; Shigeta, Masaki; Jakt, Lars Martin; Matsuoka, Chisa; Yamagiwa, Akiko; Niwa, Hitoshi; Okano, Masaki
2013-06-01
DNA methylation changes dynamically during development and is essential for embryogenesis in mammals. However, how DNA methylation affects developmental gene expression and cell differentiation remains elusive. During embryogenesis, many key transcription factors are used repeatedly, triggering different outcomes depending on the cell type and developmental stage. Here, we report that DNA methylation modulates transcription-factor output in the context of cell differentiation. Using a drug-inducible Gata4 system and a mouse embryonic stem (ES) cell model of mesoderm differentiation, we examined the cellular response to Gata4 in ES and mesoderm cells. The activation of Gata4 in ES cells is known to drive their differentiation to endoderm. We show that the differentiation of wild-type ES cells into mesoderm blocks their Gata4-induced endoderm differentiation, while mesoderm cells derived from ES cells that are deficient in the DNA methyltransferases Dnmt3a and Dnmt3b can retain their response to Gata4, allowing lineage conversion from mesoderm cells to endoderm. Transcriptome analysis of the cells' response to Gata4 over time revealed groups of endoderm and mesoderm developmental genes whose expression was induced by Gata4 only when DNA methylation was lost, suggesting that DNA methylation restricts the ability of these genes to respond to Gata4, rather than controlling their transcription per se. Gata4-binding-site profiles and DNA methylation analyses suggested that DNA methylation modulates the Gata4 response through diverse mechanisms. Our data indicate that epigenetic regulation by DNA methylation functions as a heritable safeguard to prevent transcription factors from activating inappropriate downstream genes, thereby contributing to the restriction of the differentiation potential of somatic cells.
Yu, Da-Hai; Ware, Carol; Waterland, Robert A.; Zhang, Jiexin; Chen, Miao-Hsueh; Gadkari, Manasi; Kunde-Ramamoorthy, Govindarajan; Nosavanh, Lagina M.
2013-01-01
During development, a small but significant number of CpG islands (CGIs) become methylated. The timing of developmentally programmed CGI methylation and associated mechanisms of transcriptional regulation during cellular differentiation, however, remain poorly characterized. Here, we used genome-wide DNA methylation microarrays to identify epigenetic changes during human embryonic stem cell (hESC) differentiation. We discovered a group of CGIs associated with developmental genes that gain methylation after hESCs differentiate. Conversely, erasure of methylation was observed at the identified CGIs during subsequent reprogramming to induced pluripotent stem cells (iPSCs), further supporting a functional role for the CGI methylation. Both global gene expression profiling and quantitative reverse transcription-PCR (RT-PCR) validation indicated opposing effects of CGI methylation in transcriptional regulation during differentiation, with promoter CGI methylation repressing and 3′ CGI methylation activating transcription. By studying diverse human tissues and mouse models, we further confirmed that developmentally programmed 3′ CGI methylation confers tissue- and cell-type-specific gene activation in vivo. Importantly, luciferase reporter assays provided evidence that 3′ CGI methylation regulates transcriptional activation via a CTCF-dependent enhancer-blocking mechanism. These findings expand the classic view of mammalian CGI methylation as a mechanism for transcriptional silencing and indicate a functional role for 3′ CGI methylation in developmental gene regulation. PMID:23459939
Methylation alterations are not a major cause of PTTG1 misregulation.
Hidalgo, Manuel; Galan, Jose Jorge; Sáez, Carmen; Ferrero, Eduardo; Castilla, Carolina; Ramirez-Lorca, Reposo; Pelaez, Pablo; Ruiz, Agustin; Japón, Miguel A; Royo, Jose Luis
2008-04-21
On its physiological cellular context, PTTG1 controls sister chromatid segregation during mitosis. Within its crosstalk to the cellular arrest machinery, relies a checkpoint of integrity for which gained the over name of securin. PTTG1 was found to promote malignant transformation in 3T3 fibroblasts, and further found to be overexpressed in different tumor types. More recently, PTTG1 has been also related to different processes such as DNA repair and found to trans-activate different cellular pathways involving c-myc, bax or p53, among others. PTTG1 over-expression has been correlated to a worse prognosis in thyroid, lung, colorectal cancer patients, and it can not be excluded that this effect may also occur in other tumor types. Despite the clinical relevance and the increasing molecular characterization of PTTG1, the reason for its up-regulation remains unclear. We analysed PTTG1 differential expression in PC-3, DU-145 and LNCaP tumor cell lines, cultured in the presence of the methyl-transferase inhibitor 5-Aza-2'-deoxycytidine. We also tested whether the CpG island mapping PTTG1 proximal promoter evidenced a differential methylation pattern in differentiated thyroid cancer biopsies concordant to their PTTG1 immunohistochemistry status. Finally, we performed whole-genome LOH studies using Affymetix 50 K microarray technology and FRET analysis to search for allelic imbalances comprising the PTTG1 locus. Our data suggest that neither methylation alterations nor LOH are involved in PTTG1 over-expression. These data, together with those previously reported, point towards a post-transcriptional level of misregulation associated to PTTG1 over-expression.
Zou, Dong; Sun, Shixiang; Li, Rujiao; Liu, Jiang; Zhang, Jing; Zhang, Zhang
2015-01-01
DNA methylation plays crucial roles during embryonic development. Here we present MethBank (http://dnamethylome.org), a DNA methylome programming database that integrates the genome-wide single-base nucleotide methylomes of gametes and early embryos in different model organisms. Unlike extant relevant databases, MethBank incorporates the whole-genome single-base-resolution methylomes of gametes and early embryos at multiple different developmental stages in zebrafish and mouse. MethBank allows users to retrieve methylation levels, differentially methylated regions, CpG islands, gene expression profiles and genetic polymorphisms for a specific gene or genomic region. Moreover, it offers a methylome browser that is capable of visualizing high-resolution DNA methylation profiles as well as other related data in an interactive manner and thus is of great helpfulness for users to investigate methylation patterns and changes of gametes and early embryos at different developmental stages. Ongoing efforts are focused on incorporation of methylomes and related data from other organisms. Together, MethBank features integration and visualization of high-resolution DNA methylation data as well as other related data, enabling identification of potential DNA methylation signatures in different developmental stages and accordingly providing an important resource for the epigenetic and developmental studies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
A genome-wide methylation study on obesity: differential variability and differential methylation.
Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Hidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling
2013-05-01
Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common complex disease. We analyzed genome-wide methylation profiles of over 470,000 CpGs in peripheral blood samples from 48 obese and 48 lean African-American youth aged 14-20 y old. A substantial number of differentially variable CpG sites (DVCs), using statistics based on variances, as well as a substantial number of differentially methylated CpG sites (DMCs), using statistics based on means, were identified. Similar to the findings in cancers, DVCs generally exhibited an outlier structure and were more variable in cases than in controls. By randomly splitting the current sample into a discovery and validation set, we observed that both the DVCs and DMCs identified from the first set could independently predict obesity status in the second set. Furthermore, both the genes harboring DMCs and the genes harboring DVCs showed significant enrichment of genes identified by genome-wide association studies on obesity and related diseases, such as hypertension, dyslipidemia, type 2 diabetes and certain types of cancers, supporting their roles in the etiology and pathogenesis of obesity. We generalized the recent finding on methylation variability in cancer research to obesity and demonstrated that differential variability is also an important feature of obesity-related methylation changes. Future studies on the epigenetics of obesity will benefit from both statistics based on means and statistics based on variances.
Anderson, Alison M.; Carter, Kim W.; Anderson, Denise; Wise, Michael J.
2012-01-01
Background Endocrine disruptor chemicals elicit adverse health effects by perturbing nuclear receptor signalling systems. It has been speculated that these compounds may also perturb epigenetic mechanisms and thus contribute to the early origin of adult onset disease. We hypothesised that histone methylation may be a component of the epigenome that is susceptible to perturbation. We used coexpression analysis of publicly available data to investigate the combinatorial actions of nuclear receptors and genes involved in histone methylation in normal testis and when faced with endocrine disruptor compounds. Methodology/Principal Findings The expression patterns of a set of genes were profiled across testis tissue in human, rat and mouse, plus control and exposed samples from four toxicity experiments in the rat. Our results indicate that histone methylation events are a more general component of nuclear receptor mediated transcriptional regulation in the testis than previously appreciated. Coexpression patterns support the role of a gatekeeper mechanism involving the histone methylation modifiers Kdm1, Prdm2, and Ehmt1 and indicate that this mechanism is a common determinant of transcriptional integrity for genes critical to diverse physiological endpoints relevant to endocrine disruption. Coexpression patterns following exposure to vinclozolin and dibutyl phthalate suggest that coactivity of the demethylase Kdm1 in particular warrants further investigation in relation to endocrine disruptor mode of action. Conclusions/Significance This study provides proof of concept that a bioinformatics approach that profiles genes related to a specific hypothesis across multiple biological settings can provide powerful insight into coregulatory activity that would be difficult to discern at an individual experiment level or by traditional differential expression analysis methods. PMID:22496781
Yin, L G; Zou, Z Q; Zhao, H Y; Zhang, C L; Shen, J G; Qi, L; Qi, M; Xue, Z Q
2014-01-01
Adenocarcinoma (ADC) and squamous cell carcinomas (SCC) are two subtypes of non-small cell lung carcinomas which are regarded as the leading cause of cancer-related malignancy worldwide. The aim of this study is to detect the differentially methylated loci (DMLs) and differentially methylated genes (DMGs) of these two tumor sets, and then to illustrate the different expression level of specific methylated genes. Using TCGA database and Illumina HumanMethylation 27 arrays, we first screened the DMGs and DMLs in tumor samples. Then, we explored the BiologicalProcess terms of hypermethylated and hypomethylated genes using Functional Gene Ontology (GO) catalogues. Hypermethylation intensively occurred in CpG-island, whereas hypomethylation was located in non-CpG-island. Most SCC and ADC hypermethylated genes involved GO function of DNA dependenit regulation of transcription, and hypomethylated genes mainly 'enriched in the term of immune responses. Additionally, the expression level of specific differentially methylated genesis distinctbetween ADC and SCC. It is concluded that ADC and SCC have different methylated status that might play an important role in carcinogenesis.
Wan, Emily S.; Qiu, Weiliang; Morrow, Jarrett; Beaty, Terri H.; Hetmanski, Jacqueline; Make, Barry J.; Lomas, David A.; Silverman, Edwin K.; DeMeo, Dawn L.
2015-01-01
Klinefelter syndrome (KS) (47 XXY) is a common sex-chromosome aneuploidy with an estimated prevalence of 1 in every 660 male births. Investigations into the associations between DNA methylation and the highly variable clinical manifestations of KS have largely focused on the supernumerary X chromosome; systematic investigations of the epigenome have been limited. We obtained genome-wide DNA methylation data from peripheral blood using the Illumina HumanMethylation450K platform in 5 KS (47 XXY), 102 male (46 XY), and 113 female (46 XX) control subjects participating in the chronic obstructive pulmonary disease (COPD) Gene Study. Empirical Bayes-mediated models were used to test for differential methylation by KS status. CpG sites with a false-discovery rate <0.05 from the first-generation HumanMethylation27K platform were further examined in an independent replication cohort of 2 KS subjects, 590 male, and 495 female controls drawn from the International COPD Genetics Network (ICGN). Differential methylation at sites throughout the genome were identified, including 86 CpG sites that were differentially methylated in KS subjects relative to both male and female controls. CpG sites annotated to the HEN1 methyltransferase homolog 1 (HENMT1), calcyclin-binding protein (CACYBP), and GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1) genes were among the “KS-specific” loci that were replicated in ICGN. We therefore conclude that site-specific differential methylation exists throughout the genome in KS. The functional impact and clinical relevance of these differentially methylated loci should be explored in future studies. PMID:25988574
Do, Catherine; Xing, Zhuo; Yu, Y Eugene; Tycko, Benjamin
2017-01-01
An important line of postgenomic research seeks to understand how genetic factors can influence epigenetic patterning. Here we review epigenetic effects of chromosomal aneuploidies, focusing on findings in Down syndrome (DS, trisomy 21). Recent work in human DS and mouse models has shown that the extra chromosome 21 acts in trans to produce epigenetic changes, including differential CpG methylation (DS-DM), in specific sets of downstream target genes, mostly on other chromosomes. Mechanistic hypotheses emerging from these data include roles of chromosome 21-linked methylation pathway genes (DNMT3L and others) and transcription factor genes (RUNX1, OLIG2, GABPA, ERG and ETS2) in shaping the patterns of DS-DM. The findings may have broader implications for trans-acting epigenetic effects of chromosomal and subchromosomal aneuploidies in other human developmental and neuropsychiatric disorders, and in cancers. PMID:27911079
Buscariollo, Daniela L; Fang, Xiefan; Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A; Wendler, Christopher C
2014-01-01
Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.
Keller, Thomas E; Han, Priscilla; Yi, Soojin V
2016-04-01
Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature.
Bacalini, Maria Giulia; Franceschi, Claudio; Gentilini, Davide; Ravaioli, Francesco; Zhou, Xiaoyuan; Remondini, Daniel; Pirazzini, Chiara; Giuliani, Cristina; Marasco, Elena; Gensous, Noémie; Di Blasio, Anna Maria; Ellis, Ewa; Gramignoli, Roberto; Castellani, Gastone; Capri, Miriam; Strom, Stephen; Nardini, Christine; Cescon, Matteo; Grazi, Gian Luca; Garagnani, Paolo
2018-03-15
The feasibility of liver transplantation from old healthy donors suggests that this organ is able to preserve its functionality during aging. To explore the biological basis of this phenomenon, we characterized the epigenetic profile of liver biopsies collected from 45 healthy liver donors ranging from 13 to 90 years old using the Infinium HumanMethylation450 BeadChip. The analysis indicates that a large remodeling in DNA methylation patterns occurs, with 8823 age-associated differentially methylated CpG probes. Notably, these age-associated changes tended to level off after the age of 60, as confirmed by Horvath's clock. Using stringent selection criteria we further identified a DNA methylation signature of aging liver including 75 genomic regions. We demonstrated that this signature is specific for liver compared to other tissues and that it is able to detect biological age-acceleration effects associated with obesity. Finally we combined DNA methylation measurements with available expression data. Although the intersection between the two omic characterizations was low, both approaches suggested a previously unappreciated role of epithelial-mesenchymal transition and Wnt signaling pathways in the aging of human liver.
DNA methylation assessment from human slow- and fast-twitch skeletal muscle fibers
Begue, Gwénaëlle; Raue, Ulrika; Jemiolo, Bozena
2017-01-01
A new application of the reduced representation bisulfite sequencing method was developed using low-DNA input to investigate the epigenetic profile of human slow- and fast-twitch skeletal muscle fibers. Successful library construction was completed with as little as 15 ng of DNA, and high-quality sequencing data were obtained with 32 ng of DNA. Analysis identified 143,160 differentially methylated CpG sites across 14,046 genes. In both fiber types, selected genes predominantly expressed in slow or fast fibers were hypomethylated, which was supported by the RNA-sequencing analysis. These are the first fiber type-specific methylation data from human skeletal muscle and provide a unique platform for future research. NEW & NOTEWORTHY This study validates a low-DNA input reduced representation bisulfite sequencing method for human muscle biopsy samples to investigate the methylation patterns at a fiber type-specific level. These are the first fiber type-specific methylation data reported from human skeletal muscle and thus provide initial insight into basal state differences in myosin heavy chain I and IIa muscle fibers among young, healthy men. PMID:28057818
Prediction of epigenetically regulated genes in breast cancer cell lines.
Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria E H; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram
2010-06-04
Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profiles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profiles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fixed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically significant negative correlation between methylation profiles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identified 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators.
Jaligot, E; Beulé, T; Baurens, F-C; Billotte, N; Rival, A
2004-02-01
The methylation-sensitive amplification polymorphism (MSAP) technique has been employed on somatic embryo-derived oil palms (Elaeis guineensis Jacq.) to identify methylation polymorphisms correlated with the "mantled" somaclonal variation. The variant phenotype displays an unstable feminization of male organs in both male and female flowers. Using MSAP, the methylation status of CCGG sites was compared in three normal versus three mantled regenerants sampled in clonal populations obtained through somatic embryogenesis from four genotypically distinct mother palms. Overall, 64 selective primer combinations were used and they have amplified 23 markers exhibiting a differential methylation pattern between the two phenotypes. Our results indicate that CCGG sites are poorly affected by the considerable decrease in global DNA methylation that has been previously associated with the mantled phenotype. Each of the 23 markers isolated in the present study could discriminate between the two phenotypes only when they were from the same genetic origin. This result hampers at the moment the direct use of MSAP markers for the early detection of variants, even though valuable information on putative target sequences will be obtained from a further characterization of these polymorphic markers.
Neiman, Daniel; Moss, Joshua; Hecht, Merav; Magenheim, Judith; Piyanzin, Sheina; Shapiro, A M James; de Koning, Eelco J P; Razin, Aharon; Cedar, Howard; Shemer, Ruth; Dor, Yuval
2017-12-19
DNA methylation at promoters is an important determinant of gene expression. Earlier studies suggested that the insulin gene promoter is uniquely unmethylated in insulin-expressing pancreatic β-cells, providing a classic example of this paradigm. Here we show that islet cells expressing insulin, glucagon, or somatostatin share a lack of methylation at the promoters of the insulin and glucagon genes. This is achieved by rapid demethylation of the insulin and glucagon gene promoters during differentiation of Neurogenin3 + embryonic endocrine progenitors, regardless of the specific endocrine cell-type chosen. Similar methylation dynamics were observed in transgenic mice containing a human insulin promoter fragment, pointing to the responsible cis element. Whole-methylome comparison of human α- and β-cells revealed generality of the findings: genes active in one cell type and silent in the other tend to share demethylated promoters, while methylation differences between α- and β-cells are concentrated in enhancers. These findings suggest an epigenetic basis for the observed plastic identity of islet cell types, and have implications for β-cell reprogramming in diabetes and diagnosis of β-cell death using methylation patterns of circulating DNA. Copyright © 2017 the Author(s). Published by PNAS.
Chatterjee, Aniruddha; Lagisz, Malgorzata; Rodger, Euan J; Zhen, Li; Stockwell, Peter A; Duncan, Elizabeth J; Horsfield, Julia A; Jeyakani, Justin; Mathavan, Sinnakaruppan; Ozaki, Yuichi; Nakagawa, Shinichi
2016-09-30
The sex drive hypothesis predicts that stronger selection on male traits has resulted in masculinization of the genome. Here we test whether such masculinizing effects can be detected at the level of the transcriptome and methylome in the adult zebrafish brain. Although methylation is globally similar, we identified 914 specific differentially methylated CpGs (DMCs) between males and females (435 were hypermethylated and 479 were hypomethylated in males compared to females). These DMCs were prevalent in gene body, intergenic regions and CpG island shores. We also discovered 15 distinct CpG clusters with striking sex-specific DNA methylation differences. In contrast, at transcriptome level, more female-biased genes than male-biased genes were expressed, giving little support for the male sex drive hypothesis. Our study provides genome-wide methylome and transcriptome assessment and sheds light on sex-specific epigenetic patterns and in zebrafish for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.
Aberrant methylation patterns affect the molecular pathogenesis of rheumatoid arthritis.
Lin, Yang; Luo, Zhengqiang
2017-05-01
This study aims to investigate DNA methylation signatures in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA), and to explore the relationship with transcription factors (TFs) that help to distinguish RA from osteoarthritis (OA). Microarray dataset of GSE46346, including six FLS samples from patients with RA and five FLS samples from patients with OA, was downloaded from the Gene Expression Omnibus database. RA and OA samples were screened for differentially methylated loci (DMLs). The corresponding differentially methylated genes (DMGs) were identified, followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analysis. A transcriptional regulatory network was built with TFs and their corresponding DMGs. Overall, 280 hypomethylated loci and 561 hypermethylated loci were screened. Genes containing hypermethylated loci were enriched in pathways in cancer, ECM-receptor interaction, focal adhesion and neurotrophin signaling pathways. Genes containing hypomethylated loci were enriched in the neurotrophin signaling pathway. Moreover, we found that CCCTC-binding factor (CTCF), Yin Yang 1 (YY1), v-myc avian myelocytomatosis viral oncogene homolog (c-MYC), and early growth response 1 (EGR1) were important TFs in the transcriptional regulatory network. Therefore, DMGs might participate in the neurotrophin signaling pathway, pathways in cancer, ECM-receptor interaction and focal adhesion pathways in RA. Furthermore, CTCF, c-MYC, YY1, and EGR1 may play important roles in RA through regulating DMGs. Copyright © 2017 Elsevier B.V. All rights reserved.
PPM1A Methylation Is Associated With Vascular Recurrence in Aspirin-Treated Patients.
Gallego-Fabrega, Cristina; Carrera, Caty; Reny, Jean-Luc; Fontana, Pierre; Slowik, Agnieszka; Pera, Joanna; Pezzini, Alessandro; Serrano-Heras, Gemma; Segura, Tomás; Bin Dukhyil, Abdul-Aziz A; Martí-Fàbregas, Joan; Muiño, Elena; Cullell, Natalia; Montaner, Joan; Krupinski, Jerzy; Fernandez-Cadenas, Israel
2016-07-01
Despite great efforts by pharmacogenetic studies, the causes of aspirin failure to prevent the recurrence of ischemic events remain unclear. Our aim was to study whether epigenetics could be associated with the risk of vascular recurrence in aspirin-treated stroke patients. We performed an epigenetic joint analysis study in 327 patients treated with aspirin. In the discovery stage, we performed a nested case-control study in 38 matched ischemic stroke patients in whom 450 000 methylation sites were analyzed. Nineteen patients presented vascular recurrence after stroke, and 19 matched patients did not present vascular recurrence during the first year of follow-up. In a second stage, 289 new patients were analyzed by EpiTYPER. The following 3 differentially methylated candidate CpG sites, were identified in the discovery stage and analyzed in the second stage: cg26039762 (P=9.69×10(-06), RAF1), cg04985020 (P=3.47×10(-03), PPM1A), and cg08419850 (P=3.47×10(-03), KCNQ1). Joint analysis identified an epigenome-wide association for cg04985020 (PPM1A; P=1.78×10(-07)), with vascular recurrence in patients treated with aspirin. The pattern of differential methylation in PPM1A is associated with vascular recurrence in aspirin-treated stroke patients. © 2016 American Heart Association, Inc.
Sarkar, Shreya; Alam, Neyaz; Mandal, Syam Sundar; Chatterjee, Kabita; Ghosh, Supratim; Roychoudhury, Susanta; Panda, Chinmay Kumar
2018-01-01
Head and neck squamous cell carcinoma (HNSCC) is a global disease and mortality burden, necessitating the elucidation of its molecular progression for effective disease management. The study aims to understand the molecular profile of three candidate cell cycle regulatory genes, RBSP3, LIMD1 and CDC25A in the basal/ parabasal versus spinous layer of normal oral epithelium and during head and neck tumorigenesis. Immunohistochemical expression and promoter methylation was used to determine the molecular signature in normal oral epithelium. The mechanism of alteration transmission of this profile during tumorigenesis was then explored through additional deletion and mutation in HPV/ tobacco etiological groups, followed byclinico-pathological correlation. In basal/parabasal layer, the molecular signature of the genes was low protein expression/ high promoter methylation of RBSP3, high expression/ low methylation of LIMD1 and high expression of CDC25A. Dysplastic epithelium maintained the signature of RBSP3 through high methylation/ additional deletion with loss of the signatures of LIMD1 and CDC25A via deletion/ additional methylation. Similarly, maintenance and / or loss of signature in invasive tumors was by recurrent deletion/ methylation. Thus, differential patterns of alteration of the genes might be pre-requisite for the development of dysplastic and invasive lesions. Etiological factors played a key role in promoting genetic alterations and determining prognosis. Tobacco negative HNSCC patients had significantly lower alterations of LIMD1 and CDC25A, along with better survival among tobacco negative/ HPV positive patients. Our data suggests the necessity for perturbation of normal molecular profile of RBSP3, LIMD1 and CDC25A in conjunction with etiological factors for head and neck tumorigenesis, implying their diagnostic and prognostic significance.
Kleb, Brittany; Estécio, Marcos R.H.; Zhang, Jiexin; Tzelepi, Vassiliki; Chung, Woonbok; Jelinek, Jaroslav; Navone, Nora M.; Tahir, Salahaldin; Marquez, Victor E.; Issa, Jean-Pierre; Maity, Sankar; Aparicio, Ana
2016-01-01
ABSTRACT Small cell prostate carcinoma (SCPC) morphology is rare at initial diagnosis but often emerges during prostate cancer progression and portends a dismal prognosis. It does not express androgen receptor (AR) or respond to hormonal therapies. Clinically applicable markers for its early detection and treatment with effective chemotherapy are needed. Our studies in patient tumor–derived xenografts (PDX) revealed that AR–negative SCPC (AR−SCPC) expresses neural development genes instead of the prostate luminal epithelial genes characteristic of AR–positive castration-resistant adenocarcinomas (AR+ADENO). We hypothesized that the differences in cellular lineage programs are reflected in distinct epigenetic profiles. To address this hypothesis, we compared the DNA methylation profiles of AR− and AR+ PDX using methylated CpG island amplification and microarray (MCAM) analysis and identified a set of differentially methylated promoters, validated in PDX and corresponding donor patient samples. We used the Illumina 450K platform to examine additional regions of the genome and the correlation between the DNA methylation profiles of the PDX and their corresponding patient tumors. Struck by the low frequency of AR promoter methylation in the AR−SCPC, we investigated this region's specific histone modification patterns by chromatin immunoprecipitation. We found that the AR promoter was enriched in silencing histone modifications (H3K27me3 and H3K9me2) and that EZH2 inhibition with 3-deazaneplanocin A (DZNep) resulted in AR expression and growth inhibition in AR−SCPC cell lines. We conclude that the epigenome of AR− is distinct from that of AR+ castration-resistant prostate carcinomas, and that the AR− phenotype can be reversed with epigenetic drugs. PMID:26890396
Kleb, Brittany; Estécio, Marcos R H; Zhang, Jiexin; Tzelepi, Vassiliki; Chung, Woonbok; Jelinek, Jaroslav; Navone, Nora M; Tahir, Salahaldin; Marquez, Victor E; Issa, Jean-Pierre; Maity, Sankar; Aparicio, Ana
2016-03-03
Small cell prostate carcinoma (SCPC) morphology is rare at initial diagnosis but often emerges during prostate cancer progression and portends a dismal prognosis. It does not express androgen receptor (AR) or respond to hormonal therapies. Clinically applicable markers for its early detection and treatment with effective chemotherapy are needed. Our studies in patient tumor-derived xenografts (PDX) revealed that AR-negative SCPC (AR(-)SCPC) expresses neural development genes instead of the prostate luminal epithelial genes characteristic of AR-positive castration-resistant adenocarcinomas (AR(+)ADENO). We hypothesized that the differences in cellular lineage programs are reflected in distinct epigenetic profiles. To address this hypothesis, we compared the DNA methylation profiles of AR(-) and AR(+) PDX using methylated CpG island amplification and microarray (MCAM) analysis and identified a set of differentially methylated promoters, validated in PDX and corresponding donor patient samples. We used the Illumina 450K platform to examine additional regions of the genome and the correlation between the DNA methylation profiles of the PDX and their corresponding patient tumors. Struck by the low frequency of AR promoter methylation in the AR(-)SCPC, we investigated this region's specific histone modification patterns by chromatin immunoprecipitation. We found that the AR promoter was enriched in silencing histone modifications (H3K27me3 and H3K9me2) and that EZH2 inhibition with 3-deazaneplanocin A (DZNep) resulted in AR expression and growth inhibition in AR(-)SCPC cell lines. We conclude that the epigenome of AR(-) is distinct from that of AR(+) castration-resistant prostate carcinomas, and that the AR(-) phenotype can be reversed with epigenetic drugs.
Examination of Global Methylation and Targeted Imprinted Genes in Prader-Willi Syndrome.
Manzardo, A M; Butler, M G
2016-01-01
Methylation changes observed in Prader-Willi syndrome (PWS) may impact global methylation as well as regional methylation status of imprinted genes on chromosome 15 (in cis) or other imprinted obesity-related genes on other chromosomes (in trans) leading to differential effects on gene expression impacting obesity phenotype unique to (PWS). Characterize the global methylation profiles and methylation status for select imprinted genes associated with obesity phenotype in a well-characterized imprinted, obesity-related syndrome (PWS) relative to a cohort of obese and non-obese individuals. Global methylation was assayed using two methodologies: 1) enriched LINE-1 repeat sequences by EpigenDx and 2) ELISA-based immunoassay method sensitive to genomic 5-methylcytosine by Epigentek. Target gene methylation patterns at selected candidate obesity gene loci were determined using methylation-specific PCR. Study participants were recruited as part of an ongoing research program on obesity-related genomics and Prader-Willi syndrome. Individuals with non-syndromic obesity (N=26), leanness (N=26) and PWS (N=39). A detailed characterization of the imprinting status of select target genes within the critical PWS 15q11-q13 genomic region showed enhanced cis but not trans methylation of imprinted genes. No significant differences in global methylation were found between non-syndromic obese, PWS or non-obese controls. None. Percentage methylation and the methylation index. The methylation abnormality in PWS due to errors of genomic imprinting effects both upstream and downstream effectors in the 15q11-q13 region showing enhanced cis but not trans methylation of imprinted genes. Obesity in our subject cohorts did not appear to impact global methylation levels using the described methodology.
Examination of Global Methylation and Targeted Imprinted Genes in Prader-Willi Syndrome
Manzardo, AM; Butler, MG
2016-01-01
Context Methylation changes observed in Prader-Willi syndrome (PWS) may impact global methylation as well as regional methylation status of imprinted genes on chromosome 15 (in cis) or other imprinted obesity-related genes on other chromosomes (in trans) leading to differential effects on gene expression impacting obesity phenotype unique to (PWS). Objective Characterize the global methylation profiles and methylation status for select imprinted genes associated with obesity phenotype in a well-characterized imprinted, obesity-related syndrome (PWS) relative to a cohort of obese and non-obese individuals. Design Global methylation was assayed using two methodologies: 1) enriched LINE-1 repeat sequences by EpigenDx and 2) ELISA-based immunoassay method sensitive to genomic 5-methylcytosine by Epigentek. Target gene methylation patterns at selected candidate obesity gene loci were determined using methylation-specific PCR. Setting Study participants were recruited as part of an ongoing research program on obesity-related genomics and Prader-Willi syndrome. Participants Individuals with non-syndromic obesity (N=26), leanness (N=26) and PWS (N=39). Results A detailed characterization of the imprinting status of select target genes within the critical PWS 15q11-q13 genomic region showed enhanced cis but not trans methylation of imprinted genes. No significant differences in global methylation were found between non-syndromic obese, PWS or non-obese controls. Intervention None. Main outcome measures Percentage methylation and the methylation index. Conclusion The methylation abnormality in PWS due to errors of genomic imprinting effects both upstream and downstream effectors in the 15q11-q13 region showing enhanced cis but not trans methylation of imprinted genes. Obesity in our subject cohorts did not appear to impact global methylation levels using the described methodology. PMID:28111641
Beltrami, Caroline Moraes; Dos Reis, Mariana Bisarro; Barros-Filho, Mateus Camargo; Marchi, Fabio Albuquerque; Kuasne, Hellen; Pinto, Clóvis Antônio Lopes; Ambatipudi, Srikant; Herceg, Zdenko; Kowalski, Luiz Paulo; Rogatto, Silvia Regina
2017-01-01
Papillary thyroid carcinoma (PTC) is a common endocrine neoplasm with a recent increase in incidence in many countries. Although PTC has been explored by gene expression and DNA methylation studies, the regulatory mechanisms of the methylation on the gene expression was poorly clarified. In this study, DNA methylation profile (Illumina HumanMethylation 450K) of 41 PTC paired with non-neoplastic adjacent tissues (NT) was carried out to identify and contribute to the elucidation of the role of novel genic and intergenic regions beyond those described in the promoter and CpG islands (CGI). An integrative and cross-validation analysis were performed aiming to identify molecular drivers and pathways that are PTC-related. The comparisons between PTC and NT revealed 4995 methylated probes (88% hypomethylated in PTC) and 1446 differentially expressed transcripts cross-validated by the The Cancer Genome Atlas data. The majority of these probes was found in non-promoters regions, distant from CGI and enriched by enhancers. The integrative analysis between gene expression and DNA methylation revealed 185 and 38 genes (mainly in the promoter and body regions, respectively) with negative and positive correlation, respectively. Genes showing negative correlation underlined FGF and retinoic acid signaling as critical canonical pathways disrupted by DNA methylation in PTC. BRAF mutation was detected in 68% (28 of 41) of the tumors, which presented a higher level of demethylation (95% hypomethylated probes) compared with BRAF wild-type tumors. A similar integrative analysis uncovered 40 of 254 differentially expressed genes, which are potentially regulated by DNA methylation in BRAF V600E-positive tumors. The methylation and expression pattern of six selected genes ( ERBB3 , FGF1 , FGFR2 , GABRB2 , HMGA2 , and RDH5 ) were confirmed as altered by pyrosequencing and RT-qPCR. DNA methylation loss in non-promoter, poor CGI and enhancer-enriched regions was a significant event in PTC, especially in tumors harboring BRAF V600E. In addition to the promoter region, gene body and 3'UTR methylation have also the potential to influence the gene expression levels (both, repressing and inducing). The integrative analysis revealed genes potentially regulated by DNA methylation pointing out potential drivers and biomarkers related to PTC development.
Schönberger, Brigitte; Chen, Xiaochao; Mager, Svenja; Ludewig, Uwe
2016-01-01
The propagation via clonal stem cuttings is a frequent practice in tree plantations. Despite their clonal origin, the trees establish differently according to weather, temperature and nutrient availability, as well as the presence of various stresses. Here, clonal Populus trichocarpa (cv. Muhle Larson) cuttings from different sites were transferred into a common, fully nutrient supplied environment. Despite identical underlying genetics, stem cuttings derived from sites with lower phosphorus availability established worse, independent of phosphorus (P) level after transplantation. Differential growth of material from the sites was reflected in differences in the whole genome DNA methylome. Methylation differences were sequence context-dependent, but differentially methylated regions (DMRs) were apparently unrelated to P nutrition genes. Despite the undisputed negative general correlation of DNA promoter methylation with gene repression, only few of the top-ranked DMRs resulted in differential gene expression in roots or shoots. However, differential methylation was associated with site-dependent, different total amounts of microRNAs (miRNAs), with few miRNAs sequences directly targeted by differential methylation. Interestingly, in roots and shoots, the miRNA amount was dependent on the previous habitat and changed in roots in a habitat-dependent way under phosphate starvation conditions. Differentially methylated miRNAs, together with their target genes, showed P-dependent expression profiles, indicating miRNA expression differences as a P-related epigenetic modification in poplar. Together with differences in DNA methylation, such epigenetic mechanisms may explain habitat or seasonal memory in perennials and site-dependent growth performances.
Salilew-Wondim, Dessie; Saeed-Zidane, Mohammed; Hoelker, Michael; Gebremedhn, Samuel; Poirier, Mikhaël; Pandey, Hari Om; Tholen, Ernst; Neuhoff, Christiane; Held, Eva; Besenfelder, Urban; Havlicek, Vita; Rings, Franca; Fournier, Eric; Gagné, Dominic; Sirard, Marc-André; Robert, Claude; Gad, Ahmed; Schellander, Karl; Tesfaye, Dawit
2018-06-01
Aberrant DNA methylation patterns of genes required for development are common in in vitro produced embryos. In this regard, we previously identified altered DNA methylation patterns of in vivo developed blastocysts from embryos which spent different stages of development in vitro, indicating carryover effects of suboptimal culture conditions on epigenetic signatures of preimplantation embryos. However, epigenetic responses of in vivo originated embryos to suboptimal culture conditions are not fully understood. Therefore, here we investigated DNA methylation patterns of in vivo derived bovine embryos subjected to in vitro culture condition before, during or after major embryonic genome activation (EGA). For this, in vivo produced 2-, 8- and 16-cell stage embryos were cultured in vitro until the blastocyst stage and blastocysts were used for genome-wide DNA methylation analysis. The 2- and 8-cell flushed embryo groups showed lower blastocyst rates compared to the 16-cell flush group. This was further accompanied by increased numbers of differentially methylated genomic regions (DMRs) in blastocysts of the 2- and 8-cell flush groups compared to the complete in vivo control ones. Moreover, 1623 genomic loci including imprinted genes were hypermethylated in blastocyst of 2-, 8- and 16-cell flushed groups, indicating the presence of genomic regions which are sensitive to the in vitro culture at any stage of embryonic development. Furthermore, hypermethylated genomic loci outnumbered hypomethylated ones in blastocysts of 2- and 16-cell flushed embryo groups, but the opposite occurred in the 8-cell group. Moreover, DMRs which were unique to blastocysts of the 2-cell flushed group and inversely correlated with corresponding mRNA expression levels were involved in plasma membrane lactate transport, amino acid transport and phosphorus metabolic processes, whereas DMRs which were specific to the 8-cell group and inversely correlated with corresponding mRNA expression levels were involved in several biological processes including regulation of fatty acids and steroid biosynthesis processes. In vivo embryos subjected to in vitro culture before and during major embryonic genome activation (EGA) are prone to changes in DNA methylation marks and exposure of in vivo embryos to in vitro culture during the time of EGA increased hypomethylated genomic loci in blastocysts.
CpG island methylation of TMS1/ASC and CASP8 genes in cervical cancer
2009-01-01
Background Gene silencing associated with aberrant methylation of promoter region CpG islands is an acquired epigenetic alteration that serves as an alternative to genetic defects in the inactivation of tumor suppressor and other genes in human cancers. Aims This study describes the methylation status of TMS1/ASC and CASP8 genes in cervical cancer. We also examined the prevalence of TMS1/ASC and CASP8 genes methylation in cervical cancer tissue and none - neo plastic samples in an effort to correlate with smoking habit and clinicopathological features. Method Target DNA was modified by sodium bisulfite, converting all unmethylated, but not methylated, cytosines to uracil, and subsequently amplified by Methylation Specific (MS) PCR with primers specific for methylated versus unmethylated DNA. The PCR product was detected by gel electrophoresis and combined with the clinical records of patients. Results The methylation pattern of the TMS1/ASC and CASP8 genes in specimens of cervical cancer and adjacent normal tissues were detected [5/80 (6.2%), 3/80 (3.75%)-2/80 (2.5%), 1/80 (1.2%) respectively]. No statistical differences were seen in the extent of differentiation, invasion, pathological type and smoking habit between the methylated and unmethylated tissues (P > 0.05). Conclusion The present study conclude that the frequency of TMS1/ASC and CASP8 genes methylation in cervical cancer are rare (< 6%), and have no any critical role in development of cervical cancer. PMID:19258216
Khulan, Batbayar; Cooper, Wendy N; Skinner, Benjamin M; Bauer, Julien; Owens, Stephen; Prentice, Andrew M; Belteki, Gusztav; Constancia, Miguel; Dunger, David; Affara, Nabeel A
2012-05-01
In addition to the genetic constitution inherited by an organism, the developmental trajectory and resulting mature phenotype are also determined by mechanisms acting during critical windows in early life that influence and establish stable patterns of gene expression. This is the crux of the developmental origins of health and disease hypothesis that suggests undernutrition during gestation and infancy predisposes to ill health in later life. The hypothesis that periconceptional maternal micronutrient supplementation might affect fetal genome-wide methylation within gene promoters was explored in cord blood samples from offspring of Gambian women enrolled into a unique randomized, double blind controlled trial. Significant changes in the epigenome in cord blood DNA samples were further explored in a subset of offspring at 9 months. Gender-specific changes related to periconceptional nutritional supplementation were identified in cord blood DNA samples, some of which showed persistent changes in infant blood DNA samples. Significant effects of periconceptional micronutrient supplementation were also observed in postnatal samples which were not evident in cord blood. In this Gambian population, the increased death rate of individuals born in nutritionally poor seasons has been related to infection and it is of interest that we identified differential methylation at genes associated with defence against infection and immune response. Although the sample size was relatively small, these pilot data suggest that periconceptional nutrition in humans is an important determinant of newborn whole genome methylation patterns but may also influence postnatal developmental patterns of gene promoter methylation linking early with disease risk.
Methylation alterations are not a major cause of PTTG1 missregulation
Hidalgo, Manuel; Galan, Jose Jorge; Sáez, Carmen; Ferrero, Eduardo; Castilla, Carolina; Ramirez-Lorca, Reposo; Pelaez, Pablo; Ruiz, Agustin; Japón, Miguel A; Royo, Jose Luis
2008-01-01
Background On its physiological cellular context, PTTG1 controls sister chromatid segregation during mitosis. Within its crosstalk to the cellular arrest machinery, relies a checkpoint of integrity for which gained the over name of securin. PTTG1 was found to promote malignant transformation in 3T3 fibroblasts, and further found to be overexpressed in different tumor types. More recently, PTTG1 has been also related to different processes such as DNA repair and found to trans-activate different cellular pathways involving c-myc, bax or p53, among others. PTTG1 over-expression has been correlated to a worse prognosis in thyroid, lung, colorectal cancer patients, and it can not be excluded that this effect may also occur in other tumor types. Despite the clinical relevance and the increasing molecular characterization of PTTG1, the reason for its up-regulation remains unclear. Method We analysed PTTG1 differential expression in PC-3, DU-145 and LNCaP tumor cell lines, cultured in the presence of the methyl-transferase inhibitor 5-Aza-2'-deoxycytidine. We also tested whether the CpG island mapping PTTG1 proximal promoter evidenced a differential methylation pattern in differentiated thyroid cancer biopsies concordant to their PTTG1 immunohistochemistry status. Finally, we performed whole-genome LOH studies using Affymetix 50 K microarray technology and FRET analysis to search for allelic imbalances comprising the PTTG1 locus. Conclusion Our data suggest that neither methylation alterations nor LOH are involved in PTTG1 over-expression. These data, together with those previously reported, point towards a post-transcriptional level of missregulation associated to PTTG1 over-expression. PMID:18426563
Hatt, Lotte; Aagaard, Mads M; Bach, Cathrine; Graakjaer, Jesper; Sommer, Steffen; Agerholm, Inge E; Kølvraa, Steen; Bojesen, Anders
2016-01-01
Methylation-based non-invasive prenatal testing of fetal aneuploidies is an alternative method that could possibly improve fetal aneuploidy diagnosis, especially for trisomy 13(T13) and trisomy 18(T18). Our aim was to study the methylation landscape in placenta DNA from trisomy 13, 18 and 21 pregnancies in an attempt to find trisomy-specific methylation differences better suited for non-invasive prenatal diagnosis. We have conducted high-resolution methylation specific bead chip microarray analyses assessing more than 450,000 CpGs analyzing placentas from 12 T21 pregnancies, 12 T18 pregnancies and 6 T13 pregnancies. We have compared the methylation landscape of the trisomic placentas to the methylation landscape from normal placental DNA and to maternal blood cell DNA. Comparing trisomic placentas to normal placentas we identified 217 and 219 differentially methylated CpGs for CVS T18 and CVS T13, respectively (delta β>0.2, FDR<0.05), but only three differentially methylated CpGs for T21. However, the methylation differences was only modest (delta β<0.4), making them less suitable as diagnostic markers. Gene ontology enrichment analysis revealed that the gene set connected to theT18 differentially methylated CpGs was highly enriched for GO terms related to"DNA binding" and "transcription factor binding" coupled to the RNA polymerase II transcription. In the gene set connected to the T13 differentially methylated CpGs we found no significant enrichments.
Hatt, Lotte; Aagaard, Mads M.; Bach, Cathrine; Graakjaer, Jesper; Sommer, Steffen; Agerholm, Inge E.; Bojesen, Anders
2016-01-01
Methylation-based non-invasive prenatal testing of fetal aneuploidies is an alternative method that could possibly improve fetal aneuploidy diagnosis, especially for trisomy 13(T13) and trisomy 18(T18). Our aim was to study the methylation landscape in placenta DNA from trisomy 13, 18 and 21 pregnancies in an attempt to find trisomy–specific methylation differences better suited for non-invasive prenatal diagnosis. We have conducted high-resolution methylation specific bead chip microarray analyses assessing more than 450,000 CpGs analyzing placentas from 12 T21 pregnancies, 12 T18 pregnancies and 6 T13 pregnancies. We have compared the methylation landscape of the trisomic placentas to the methylation landscape from normal placental DNA and to maternal blood cell DNA. Comparing trisomic placentas to normal placentas we identified 217 and 219 differentially methylated CpGs for CVS T18 and CVS T13, respectively (delta β>0.2, FDR<0.05), but only three differentially methylated CpGs for T21. However, the methylation differences was only modest (delta β<0.4), making them less suitable as diagnostic markers. Gene ontology enrichment analysis revealed that the gene set connected to theT18 differentially methylated CpGs was highly enriched for GO terms related to”DNA binding” and “transcription factor binding” coupled to the RNA polymerase II transcription. In the gene set connected to the T13 differentially methylated CpGs we found no significant enrichments. PMID:27490343
Corley, Michael J.; Dye, Christian; D’Antoni, Michelle L.; Byron, Mary Margaret; Yo, Kaahukane Leite-Ah; Lum-Jones, Annette; Nakamoto, Beau; Valcour, Victor; SahBandar, Ivo; Shikuma, Cecilia M.; Ndhlovu, Lishomwa C.; Maunakea, Alika K.
2016-01-01
Monocytes/macrophages contribute to the neuropathogenesis of HIV-related cognitive impairment (CI); however, considerable gaps in our understanding of the precise mechanisms driving this relationship remain. Furthermore, whether a distinct biological profile associated with HIV-related CI resides in immune cell populations remains unknown. Here, we profiled DNA methylomes and transcriptomes of monocytes derived from HIV-infected individuals with and without CI using genome-wide DNA methylation and gene expression profiling. We identified 1,032 CI-associated differentially methylated loci in monocytes. These loci related to gene networks linked to the central nervous system (CNS) and interactions with HIV. Most (70.6%) of these loci exhibited higher DNA methylation states in the CI group and were preferentially distributed over gene bodies and intergenic regions of the genome. CI-associated DNA methylation states at 12 CpG sites associated with neuropsychological testing performance scores. CI-associated DNA methylation also associated with gene expression differences including CNS genes CSRNP1 (P = 0.017), DISC1 (P = 0.012), and NR4A2 (P = 0.005); and a gene known to relate to HIV viremia, THBS1 (P = 0.003). This discovery cohort data unveils cell type-specific DNA methylation patterns related to HIV-associated CI and provide an immunoepigenetic DNA methylation “signature” potentially useful for corroborating clinical assessments, informing pathogenic mechanisms, and revealing new therapeutic targets against CI. PMID:27629381
Dosunmu, Remi; Alashwal, Hany; Zawia, Nasser H
2012-06-01
In this study, we assessed global gene expression patterns in adolescent mice exposed to lead (Pb) as infants and their aged siblings to identify reprogrammed genes. Global expression on postnatal day 20 and 700 was analyzed and genes that were down- and up-regulated (≥2 fold) were identified, clustered and analyzed for their relationship to DNA methylation. About 150 genes were differentially expressed in old age. In normal aging, we observed an up-regulation of genes related to the immune response, metal-binding, metabolism and transcription/transduction coupling. Prior exposure to Pb revealed a repression in these genes suggesting that disturbances in developmental stages of the brain compromise the ability to defend against age-related stressors, thus promoting the neurodegenerative process. Overexpression and repression of genes corresponded with their DNA methylation profile. Published by Elsevier Ireland Ltd.
Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication.
Haruta, Mayumi; Shimada, Midori; Nishiyama, Atsuya; Johmura, Yoshikazu; Le Tallec, Benoît; Debatisse, Michelle; Nakanishi, Makoto
2016-01-22
The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.
2013-01-01
Background CpG dinucleotide-rich genomic DNA regions, known as CpG islands (CGIs), can be methylated at their cytosine residues as an epigenetic mark that is stably inherited during cell mitosis. Differentially methylated regions (DMRs) are genomic regions showing different degrees of DNA methylation in multiple samples. In this study, we focused our attention on CGIs showing different DNA methylation between two culture replicas of the same cell line. Results We used methylation data of 35 cell lines from the Encyclopedia of DNA Elements (ENCODE) consortium to identify CpG islands that were differentially methylated between replicas of the same cell line and denoted them Inter Replicas Differentially Methylated CpG islands (IRDM-CGIs). We identified a group of IRDM-CGIs that was consistently shared by different cell lines, and denoted it common IRDM-CGIs. X chromosome CGIs were overrepresented among common IRDM-CGIs. Autosomal IRDM-CGIs were preferentially located in gene bodies and intergenic regions had a lower G + C content, a smaller mean length, and a reduced CpG percentage. Functional analysis of the genes associated with autosomal IRDM-CGIs showed that many of them are involved in DNA binding and development. Conclusions Our results show that several specific functional and structural features characterize common IRDM-CGIs. They may represent a specific subset of CGIs that are more prone to being differentially methylated for their intrinsic characteristics. PMID:24106769
Epigenetic Pattern on the Human Y Chromosome Is Evolutionarily Conserved
Meng, Hao; Agbagwa, Ikechukwu O.; Wang, Ling-Xiang; Wang, Yingzhi; Yan, Shi; Ren, Shancheng; Sun, Yinghao; Pei, Gang; Liu, Xin; Liu, Jiang; Jin, Li; Li, Hui; Sun, Yingli
2016-01-01
DNA methylation plays an important role for mammalian development. However, it is unclear whether the DNA methylation pattern is evolutionarily conserved. The Y chromosome serves as a powerful tool for the study of human evolution because it is transferred between males. In this study, based on deep-rooted pedigrees and the latest Y chromosome phylogenetic tree, we performed epigenetic pattern analysis of the Y chromosome from 72 donors. By comparing their respective DNA methylation level, we found that the DNA methylation pattern on the Y chromosome was stable among family members and haplogroups. Interestingly, two haplogroup-specific methylation sites were found, which were both genotype-dependent. Moreover, the African and Asian samples also had similar DNA methylation pattern with a remote divergence time. Our findings indicated that the DNA methylation pattern on the Y chromosome was conservative during human male history. PMID:26760298
Killian, J. Keith; Dorssers, Lambert C.J.; Trabert, Britton; Gillis, Ad J.M.; Cook, Michael B.; Wang, Yonghong; Waterfall, Joshua J.; Stevenson, Holly; Smith, William I.; Noyes, Natalia; Retnakumar, Parvathy; Stoop, J. Hans; Oosterhuis, J. Wolter; Meltzer, Paul S.; McGlynn, Katherine A.; Looijenga, Leendert H.J.
2016-01-01
Testicular germ cell tumors (TGCTs) share germline ancestry but diverge phenotypically and clinically as seminoma (SE) and nonseminoma (NSE), the latter including the pluripotent embryonal carcinoma (EC) and its differentiated derivatives, teratoma (TE), yolk sac tumor (YST), and choriocarcinoma. Epigenomes from TGCTs may illuminate reprogramming in both normal development and testicular tumorigenesis. Herein we investigate pure-histological forms of 130 TGCTs for conserved and subtype-specific DNA methylation, including analysis of relatedness to pluripotent stem cell (ESC, iPSC), primordial germ cell (PGC), and differentiated somatic references. Most generally, TGCTs conserve PGC-lineage erasure of maternal and paternal genomic imprints and DPPA3 (also known as STELLA); however, like ESCs, TGCTs show focal recurrent imprinted domain hypermethylation. In this setting of shared physiologic erasure, NSEs harbor a malignancy-associated hypermethylation core, akin to that of a diverse cancer compendium. Beyond these concordances, we found subtype epigenetic homology with pluripotent versus differentiated states. ECs demonstrate a striking convergence of both CpG and CpH (non-CpG) methylation with pluripotent states; the pluripotential methyl-CpH signature crosses species boundaries and is distinct from neuronal methyl-CpH. EC differentiation to TE and YST entails reprogramming toward the somatic state, with loss of methyl-CpH but de novo methylation of pluripotency loci such as NANOG. Extreme methyl-depletion among SE reflects the PGC methylation nadir. Adjacent to TGCTs, benign testis methylation profiles are determined by spermatogenetic proficiency measured by Johnsen score. In sum, TGCTs share collective entrapment in a PGC-like state of genomic-imprint and DPPA3 erasure, recurrent hypermethylation of cancer-associated targets, and subtype-dependent pluripotent, germline, or somatic methylation. PMID:27803193
Kuan, Pei Fen; Chiang, Derek Y
2012-09-01
DNA methylation has emerged as an important hallmark of epigenetics. Numerous platforms including tiling arrays and next generation sequencing, and experimental protocols are available for profiling DNA methylation. Similar to other tiling array data, DNA methylation data shares the characteristics of inherent correlation structure among nearby probes. However, unlike gene expression or protein DNA binding data, the varying CpG density which gives rise to CpG island, shore and shelf definition provides exogenous information in detecting differential methylation. This article aims to introduce a robust testing and probe ranking procedure based on a nonhomogeneous hidden Markov model that incorporates the above-mentioned features for detecting differential methylation. We revisit the seminal work of Sun and Cai (2009, Journal of the Royal Statistical Society: Series B (Statistical Methodology)71, 393-424) and propose modeling the nonnull using a nonparametric symmetric distribution in two-sided hypothesis testing. We show that this model improves probe ranking and is robust to model misspecification based on extensive simulation studies. We further illustrate that our proposed framework achieves good operating characteristics as compared to commonly used methods in real DNA methylation data that aims to detect differential methylation sites. © 2012, The International Biometric Society.
Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases
NASA Astrophysics Data System (ADS)
Maschietto, Mariana; Bastos, Laura Caroline; Tahira, Ana Carolina; Bastos, Elen Pereira; Euclydes, Veronica Luiza Vale; Brentani, Alexandra; Fink, Günther; de Baumont, Angelica; Felipe-Silva, Aloísio; Francisco, Rossana Pulcineli Vieira; Gouveia, Gisele; Grisi, Sandra Josefina Ferraz Ellero; Escobar, Ana Maria Ulhoa; Moreira-Filho, Carlos Alberto; Polanczyk, Guilherme Vanoni; Miguel, Euripedes Constantino; Brentani, Helena
2017-03-01
Sex differences in the prevalence of psychiatric disorders are well documented, with exposure to stress during gestation differentially impacting females and males. We explored sex-specific DNA methylation in the cord blood of 39 females and 32 males born at term and with appropriate weight at birth regarding their potential connection to psychiatric outcomes. Mothers were interviewed to gather information about environmental factors (gestational exposure) that could interfere with the methylation profiles in the newborns. Bisulphite converted DNA was hybridized to Illumina HumanMethylation450 BeadChips. Excluding XYS probes, there were 2,332 differentially methylated CpG sites (DMSs) between sexes, which were enriched within brain modules of co-methylated CpGs during brain development and also differentially methylated in the brains of boys and girls. Genes associated with the DMSs were enriched for neurodevelopmental disorders, particularly for CpG sites found differentially methylated in brain tissue between patients with schizophrenia and controls. Moreover, the DMS had an overlap of 890 (38%) CpG sites with a cohort submitted to toxic exposition during gestation. This study supports the evidences that sex differences in DNA methylation of autosomes act as a primary driver of sex differences that are found in psychiatric outcomes.
Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases
Maschietto, Mariana; Bastos, Laura Caroline; Tahira, Ana Carolina; Bastos, Elen Pereira; Euclydes, Veronica Luiza Vale; Brentani, Alexandra; Fink, Günther; de Baumont, Angelica; Felipe-Silva, Aloísio; Francisco, Rossana Pulcineli Vieira; Gouveia, Gisele; Grisi, Sandra Josefina Ferraz Ellero; Escobar, Ana Maria Ulhoa; Moreira-Filho, Carlos Alberto; Polanczyk, Guilherme Vanoni; Miguel, Euripedes Constantino; Brentani, Helena
2017-01-01
Sex differences in the prevalence of psychiatric disorders are well documented, with exposure to stress during gestation differentially impacting females and males. We explored sex-specific DNA methylation in the cord blood of 39 females and 32 males born at term and with appropriate weight at birth regarding their potential connection to psychiatric outcomes. Mothers were interviewed to gather information about environmental factors (gestational exposure) that could interfere with the methylation profiles in the newborns. Bisulphite converted DNA was hybridized to Illumina HumanMethylation450 BeadChips. Excluding XYS probes, there were 2,332 differentially methylated CpG sites (DMSs) between sexes, which were enriched within brain modules of co-methylated CpGs during brain development and also differentially methylated in the brains of boys and girls. Genes associated with the DMSs were enriched for neurodevelopmental disorders, particularly for CpG sites found differentially methylated in brain tissue between patients with schizophrenia and controls. Moreover, the DMS had an overlap of 890 (38%) CpG sites with a cohort submitted to toxic exposition during gestation. This study supports the evidences that sex differences in DNA methylation of autosomes act as a primary driver of sex differences that are found in psychiatric outcomes. PMID:28303968
Schönberger, Brigitte; Chen, Xiaochao; Mager, Svenja
2016-01-01
The propagation via clonal stem cuttings is a frequent practice in tree plantations. Despite their clonal origin, the trees establish differently according to weather, temperature and nutrient availability, as well as the presence of various stresses. Here, clonal Populus trichocarpa (cv. Muhle Larson) cuttings from different sites were transferred into a common, fully nutrient supplied environment. Despite identical underlying genetics, stem cuttings derived from sites with lower phosphorus availability established worse, independent of phosphorus (P) level after transplantation. Differential growth of material from the sites was reflected in differences in the whole genome DNA methylome. Methylation differences were sequence context-dependent, but differentially methylated regions (DMRs) were apparently unrelated to P nutrition genes. Despite the undisputed negative general correlation of DNA promoter methylation with gene repression, only few of the top-ranked DMRs resulted in differential gene expression in roots or shoots. However, differential methylation was associated with site-dependent, different total amounts of microRNAs (miRNAs), with few miRNAs sequences directly targeted by differential methylation. Interestingly, in roots and shoots, the miRNA amount was dependent on the previous habitat and changed in roots in a habitat-dependent way under phosphate starvation conditions. Differentially methylated miRNAs, together with their target genes, showed P-dependent expression profiles, indicating miRNA expression differences as a P-related epigenetic modification in poplar. Together with differences in DNA methylation, such epigenetic mechanisms may explain habitat or seasonal memory in perennials and site-dependent growth performances. PMID:27992519
Tao, Xuelian; Chen, Jianning; Jiang, Yanzhi; Wei, Yingying; Chen, Yan; Xu, Huaming; Zhu, Li; Tang, Guoqing; Li, Mingzhou; Jiang, Anan; Shuai, Surong; Bai, Lin; Liu, Haifeng; Ma, Jideng; Jin, Long; Wen, Anxiang; Wang, Qin; Zhu, Guangxiang; Xie, Meng; Wu, Jiayun; He, Tao; Huang, Chunyu; Gao, Xiang; Li, Xuewei
2017-04-28
N 6 -methyladenosine (m 6 A) is the most prevalent internal form of modification in messenger RNA in higher eukaryotes and potential regulatory functions of reversible m 6 A methylation on mRNA have been revealed by mapping of m 6 A methylomes in several species. m 6 A modification in active gene regulation manifests itself as altered methylation profiles in a tissue-specific manner or in response to changing cellular or species living environment. However, up to date, there has no data on m 6 A porcine transcriptome-wide map and its potential biological roles in adipose deposition and muscle growth. In this work, we used methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-Seq) technique to acquire the first ever m 6 A porcine transcriptome-wide map. Transcriptomes of muscle and adipose tissues from three different pig breeds, the wild boar, Landrace, and Rongchang pig, were used to generate these maps. Our findings show that there were 5,872 and 2,826 m 6 A peaks respectively, in the porcine muscle and adipose tissue transcriptomes. Stop codons, 3'-untranslated regions, and coding regions were found to be mainly enriched for m 6 A peaks. Gene ontology analysis revealed that common m 6 A peaks in nuclear genes are associated with transcriptional factors, suggestive of a relationship between m 6 A mRNA methylation and nuclear genome transcription. Some genes showed tissue- and breed-differential methylation, and have novel biological functions. We also found a relationship between the m 6 A methylation extent and the transcript level, suggesting a regulatory role for m 6 A in gene expression. This comprehensive map provides a solid basis for the determination of potential functional roles for RNA m 6 A modification in adipose deposition and muscle growth.
Methylation oligonucleotide microarray: a novel tool to analyze methylation patterns
NASA Astrophysics Data System (ADS)
Hou, Peng; Ji, Meiju; He, Nongyao; Lu, Zuhong
2003-04-01
A new technique to analyze methylation patterns in several adjacent CpG sites was developed and reported here. We selected a 336bp segment of the 5"-untranslated region and the first exon of the p16Ink4a gene, which include the most densely packed CpG fragment of the islands containing 32 CpG dinucleotides, as the investigated target. The probes that include all types of methylation patterns were designed to fabricate a DNA microarray to determine the methylation patterns of seven adjacent CpG dinucleotides sites. High accuracy and reproducibility were observed in several parallel experiments. The results led us to the conclusion that the methylation oligonucleotide microarray can be applied as a novel and powerful tool to map methylation patterns and changes in multiple CpG island loci in a variety of tumors.
Carén, Helena; Stricker, Stefan H.; Bulstrode, Harry; Gagrica, Sladjana; Johnstone, Ewan; Bartlett, Thomas E.; Feber, Andrew; Wilson, Gareth; Teschendorff, Andrew E.; Bertone, Paul; Beck, Stephan; Pollard, Steven M.
2015-01-01
Summary Glioblastoma (GBM) is an aggressive brain tumor whose growth is driven by stem cell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stem cells (GSCs) and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Here we find only a subset of GSC cultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy for GBM. PMID:26607953
Microarray-based DNA methylation study of Ewing's sarcoma of the bone.
Park, Hye-Rim; Jung, Woon-Won; Kim, Hyun-Sook; Park, Yong-Koo
2014-10-01
Alterations in DNA methylation patterns are a hallmark of malignancy. However, the majority of epigenetic studies of Ewing's sarcoma have focused on the analysis of only a few candidate genes. Comprehensive studies are thus lacking and are required. The aim of the present study was to identify novel methylation markers in Ewing's sarcoma using microarray analysis. The current study reports the microarray-based DNA methylation study of 1,505 CpG sites of 807 cancer-related genes from 69 Ewing's sarcoma samples. The Illumina GoldenGate Methylation Cancer Panel I microarray was used, and with the appropriate controls (n=14), a total of 92 hypermethylated genes were identified in the Ewing's sarcoma samples. The majority of the hypermethylated genes were associated with cell adhesion, cell regulation, development and signal transduction. The overall methylation mean values were compared between patients who survived and those that did not. The overall methylation mean was significantly higher in the patients who did not survive (0.25±0.03) than in those who did (0.22±0.05) (P=0.0322). However, the overall methylation mean was not found to significantly correlate with age, gender or tumor location. GDF10 , OSM , APC and HOXA11 were the most significant differentially-methylated genes, however, their methylation levels were not found to significantly correlate with the survival rate. The DNA methylation profile of Ewing's sarcoma was characterized and 92 genes that were significantly hypermethylated were detected. A trend towards a more aggressive behavior was identified in the methylated group. The results of this study indicated that methylation may be significant in the development of Ewing's sarcoma.
Microarray-based DNA methylation study of Ewing’s sarcoma of the bone
PARK, HYE-RIM; JUNG, WOON-WON; KIM, HYUN-SOOK; PARK, YONG-KOO
2014-01-01
Alterations in DNA methylation patterns are a hallmark of malignancy. However, the majority of epigenetic studies of Ewing’s sarcoma have focused on the analysis of only a few candidate genes. Comprehensive studies are thus lacking and are required. The aim of the present study was to identify novel methylation markers in Ewing’s sarcoma using microarray analysis. The current study reports the microarray-based DNA methylation study of 1,505 CpG sites of 807 cancer-related genes from 69 Ewing’s sarcoma samples. The Illumina GoldenGate Methylation Cancer Panel I microarray was used, and with the appropriate controls (n=14), a total of 92 hypermethylated genes were identified in the Ewing’s sarcoma samples. The majority of the hypermethylated genes were associated with cell adhesion, cell regulation, development and signal transduction. The overall methylation mean values were compared between patients who survived and those that did not. The overall methylation mean was significantly higher in the patients who did not survive (0.25±0.03) than in those who did (0.22±0.05) (P=0.0322). However, the overall methylation mean was not found to significantly correlate with age, gender or tumor location. GDF10, OSM, APC and HOXA11 were the most significant differentially-methylated genes, however, their methylation levels were not found to significantly correlate with the survival rate. The DNA methylation profile of Ewing’s sarcoma was characterized and 92 genes that were significantly hypermethylated were detected. A trend towards a more aggressive behavior was identified in the methylated group. The results of this study indicated that methylation may be significant in the development of Ewing’s sarcoma. PMID:25202378
Pardo, Michal; Kuperman, Yael; Levin, Liron; Rudich, Assaf; Haim, Yulia; Schauer, James J; Chen, Alon; Rudich, Yinon
2018-04-20
Obesity and exposure to particular matter (PM) have become two leading global threats to public health. However, the exact mechanisms and tissue-specificity of their health effects are largely unknown. Here we investigate whether a metabolic challenge (early nutritional obesity) synergistically interacts with an environmental challenge (PM exposure) to alter genes representing key response pathways, in a tissue-specific manner. Mice subjected to 7 weeks obesogenic nutrition were exposed every other day during the final week and a half to aqueous extracts of PM collected in the city of London (UK). The expression of 61 selected genes representing key response pathways were investigated in lung, liver, white and brown adipose tissues. Principal component analysis (PCA) revealed distinct patterns of expression changes between the 4 tissues, particularly in the lungs and the liver. Surprisingly, the lung responded to the nutrition challenge. The response of these organs to the PM challenge displayed opposite patterns for some key genes, in particular, those related to the Nrf2 pathway. While the contribution to the variance in gene expression changes in mice exposed to the combined challenge were largely similar among the tissues in PCA1, PCA2 exhibited predominant contribution of inflammatory and oxidative stress responses to the variance in the lungs, and a greater contribution of autophagy genes and MAP kinases in adipose tissues. Possible involvement of alterations in DNA methylation was demonstrated by cell-type-specific responses to a methylation inhibitor. Correspondingly, the DNA methyltransferase Dnmt3a2 increased in the lungs but decreased in the liver, demonstrating potential tissue-differential synergism between nutritional and PM exposure. The results suggest that urban PM, containing dissolved metals, interacts with obesogenic nutrition to regulate diverse response pathways including inflammation and oxidative stress, in a tissue-specific manner. Tissue-differential effects on DNA methylation may underlie tissue-specific responses to key stress-response genes such as catalase and Nrf2. Copyright © 2018 Elsevier Ltd. All rights reserved.
Environment, diet and CpG island methylation: epigenetic signals in gastrointestinal neoplasia.
Johnson, Ian T; Belshaw, Nigel J
2008-04-01
The epithelial surfaces of the mammalian alimentary tract are characterised by very high rates of cell proliferation and DNA synthesis, and in humans they are highly susceptible to cancer. The role of somatic mutations as drivers of carcinogenesis in the alimentary tract is well established, but the importance of gene silencing by epigenetic mechanisms is increasingly recognised. Methylation of CpG islands is an important component of the epigenetic code that regulates gene expression during development and normal cellular differentiation, and a number of genes are well known to become abnormally methylated during the development of tumours of the oesophagus, stomach and colorectum. Aberrant patterns of DNA methylation develop as a result of pathological processes such as chronic inflammation, and in response to various dietary factors, including imbalances in the supply of methyl donors, particularly folates, and exposure to DNA methyltransferase inhibitors, which include polyphenols and possibly isothiocyanates from plant foods. However the importance of these environmental interactions in human health and disease remains to be established. Recent moves to modify the exposure of human populations to folate, by mandatory supplementation of cereal foods, emphasise the importance of understanding the susceptibility of the human epigenome to dietary and other environmental effects.
Protein carboxyl methylation increases in parallel with differentiation of neuroblastoma cells.
Kloog, Y; Axelrod, J; Spector, I
1983-02-01
Cells of mouse neuroblastoma clone N1E-115 in the confluent phase of growth can catalyze the formation of endogenous protein carboxyl methyl esters, using a protein carboxyl methylase and membrane-bound methyl acceptor proteins. The enzyme is localized predominantly in the cytosol of the cells and has a molecular weight of about 20,000 daltons. Treatment of the cells with dimethylsulfoxide (DMSO) or hexamethylene-bisacetamide (HMBA), agents that induce morphological and electrophysiological differentiation, results in a marked increase in protein carboxyl methylase activity. Maximal levels are reached 6-7 days after exposure to the agents, a time course that closely parallels the development of electrical excitability mechanisms in these cells. Serum deprivation also causes neurite outgrowth but does not enhance electrical excitability or enzyme activity. The capacity of membrane-bound neuroblastoma protein(s) to be carboxyl methylated is increased by the differentiation procedures that have been examined. However, the increase in methyl acceptor proteins induced by DMSO or HMBA is the largest, and its time course parallels electrophysiological differentiation. In contrast, serum deprivation induced a small increase that reached maximal levels within 24 h. The data suggest that increased protein carboxyl methylation is a developmentally regulated property of neuroblastoma cells and that at least two groups of methyl acceptor proteins are induced during differentiation: a minor group related to morphological differentiation, and a major group that may be related to ionic permeability mechanisms of the excitable membrane.
msap: a tool for the statistical analysis of methylation-sensitive amplified polymorphism data.
Pérez-Figueroa, A
2013-05-01
In this study msap, an R package which analyses methylation-sensitive amplified polymorphism (MSAP or MS-AFLP) data is presented. The program provides a deep analysis of epigenetic variation starting from a binary data matrix indicating the banding pattern between the isoesquizomeric endonucleases HpaII and MspI, with differential sensitivity to cytosine methylation. After comparing the restriction fragments, the program determines if each fragment is susceptible to methylation (representative of epigenetic variation) or if there is no evidence of methylation (representative of genetic variation). The package provides, in a user-friendly command line interface, a pipeline of different analyses of the variation (genetic and epigenetic) among user-defined groups of samples, as well as the classification of the methylation occurrences in those groups. Statistical testing provides support to the analyses. A comprehensive report of the analyses and several useful plots could help researchers to assess the epigenetic and genetic variation in their MSAP experiments. msap is downloadable from CRAN (http://cran.r-project.org/) and its own webpage (http://msap.r-forge.R-project.org/). The package is intended to be easy to use even for those people unfamiliar with the R command line environment. Advanced users may take advantage of the available source code to adapt msap to more complex analyses. © 2013 Blackwell Publishing Ltd.
Singh, G; Singh, V; Wang, Zi-Xuan; Voisin, G; Lefebvre, F; Navenot, J-M; Evans, B; Verma, M; Anderson, D W; Schneider, J S
2018-06-15
Developmental lead (Pb) exposure results in persistent cognitive/behavioral impairments as well as an elevated risk for developing a variety of diseases in later life. Environmental exposures during development can result in a variety of epigenetic changes, including alterations in DNA methylation, that can influence gene expression patterns and affect the function and development of the nervous system. The present promoter-based methylation microarray profiling study explored the extent to which developmental Pb exposure may modify the methylome of a brain region, hippocampus, known to be sensitive to the effects of Pb exposure. Male and female Long Evans rats were exposed to 0 ppm, 150 ppm, 375 ppm, or 750 ppm Pb through perinatal exposures (gestation through lactation), early postnatal exposures (birth through weaning), or long-term postnatal exposures (birth through postnatal day 55). Results showed a significant contribution of sex to the hippocampal methylome and effects of Pb exposure level, with non-linear dose response effects on methylation. Surprisingly, the developmental period of exposure contributed only a small amount of variance to the overall data and gene ontology (GO) analysis revealed the largest number of overrepresented GO terms in the groups with the lowest level of exposure. The highest number of significant differentially methylated regions was found in females exposed to Pb at the lowest exposure level. Our data reinforce the significant effect that low level Pb exposure may have on gene-specific DNA methylation patterns in brain and that this occurs in a sex-dependent manner. Copyright © 2018 Elsevier B.V. All rights reserved.
Kaut, Oliver; Schmitt, Ina; Tost, Jörg; Busato, Florence; Liu, Yi; Hofmann, Per; Witt, Stephanie H; Rietschel, Marcella; Fröhlich, Holger; Wüllner, Ullrich
2017-01-01
Numerous studies have elucidated the genetics of Parkinson's disease; however, the aetiology of the majority of sporadic cases has not yet been resolved. We hypothesized that epigenetic variations could be associated with PD and evaluated the DNA methylation pattern in PD patients compared to brothers or twins without PD. The methylation of DNA from peripheral blood mononuclear cells of 62 discordant siblings including 24 monozygotic twins was characterized with Illumina DNA Methylation 450K bead arrays and subsequently validated in two independent cohorts: 221 PD vs. 227 healthy individuals (cohort 1) applying Illumina's VeraCode and 472 PD patients vs. 487 controls (cohort 2) using pyrosequencing. We choose a delta beta of >15 % and selected 62 differentially methylated CpGs in 51 genes from the discordant siblings. Among them, three displayed multiple CpGs per gene: microRNA 886 (MIR886, 10 CpGs), phosphodiesterase 4D (PDE4D, 2 CpGs) and tripartite motif-containing 34 (TRIM34, 2 CpGs). PDE4D was confirmed in both cohorts (p value 2.44e-05). In addition, for biomarker construction, we used the penalized logistic regression model, resulting in a signature of eight CpGs with an AUC of 0.77. Our findings suggest that a distinct level of PD susceptibility stems from individual, epigenetic modifications of specific genes. We identified a signature of CpGs in blood cells that could separate control from disease with a reasonable discriminatory power, holding promise for future epigenetically based biomarker development.
Smoke-related DNA methylation changes in the etiology of human disease.
Besingi, Welisane; Johansson, Asa
2014-05-01
Exposure to environmental and lifestyle factors, such as cigarette smoking, affect the epigenome and might mediate risk for diseases and cancers. We have performed a genome-wide DNA methylation study to determine the effect of smoke and snuff (smokeless tobacco) on DNA methylation. A total of 95 sites were differentially methylated [false discovery rate (FDR) q-values < 0.05] in smokers and a subset of the differentially methylated loci were also differentially expressed in smokers. We found no sites, neither any biological functions nor molecular processes enriched for smoke-less tobacco-related differential DNA methylation. This suggests that methylation changes are not caused by the basic components of the tobacco but from its burnt products. Instead, we see a clear enrichment (FDR q-value < 0.05) for genes, including CPOX, CDKN1A and PTK2, involved in response to arsenic-containing substance, which agrees with smoke containing small amounts of arsenic. A large number of biological functions and molecular processes with links to disease conditions are also enriched (FDR q-value < 0.05) for smoke-related DNA methylation changes. These include 'insulin receptor binding', and 'negative regulation of glucose import' which are associated with diabetes, 'positive regulation of interleukin-6-mediated signaling pathway', 'regulation of T-helper 2 cell differentiation', 'positive regulation of interleukin-13 production' which are associated with the immune system and 'sertoli cell fate commitment' which is important for male fertility. Since type 2 diabetes, repressed immune system and infertility have previously been associated with smoking, our results suggest that this might be mediated by DNA methylation changes.
Morales, Eva; Vilahur, Nadia; Salas, Lucas A; Motta, Valeria; Fernandez, Mariana F; Murcia, Mario; Llop, Sabrina; Tardon, Adonina; Fernandez-Tardon, Guillermo; Santa-Marina, Loreto; Gallastegui, Mara; Bollati, Valentina; Estivill, Xavier; Olea, Nicolas; Sunyer, Jordi; Bustamante, Mariona
2016-10-01
We conducted an epigenome-wide association study (EWAS) of DNA methylation in placenta in relation to maternal tobacco smoking during pregnancy and examined whether smoking-induced changes lead to low birthweight. DNA methylation in placenta was measured using the Illumina HumanMethylation450 BeadChip in 179 participants from the INfancia y Medio Ambiente (INMA) birth cohort. Methylation levels across 431 311 CpGs were tested for differential methylation between smokers and non-smokers in pregnancy. We took forward three top-ranking loci for further validation and replication by bisulfite pyrosequencing using data of 248 additional participants of the INMA cohort. We examined the association of methylation at smoking-associated loci with birthweight by applying a mediation analysis and a two-sample Mendelian randomization approach. Fifty CpGs were differentially methylated in placenta between smokers and non-smokers during pregnancy [false discovery rate (FDR) < 0.05]. We validated and replicated differential methylation at three top-ranking loci: cg27402634 located between LINC00086 and LEKR1, a gene previously related to birthweight in genome-wide association studies; cg20340720 (WBP1L); and cg25585967 and cg12294026 (TRIO). Dose-response relationships with maternal urine cotinine concentration during pregnancy were confirmed. Differential methylation at cg27402634 explained up to 36% of the lower birthweight in the offspring of smokers (Sobel P-value < 0.05). A two-sample Mendelian randomization analysis provided evidence that decreases in methylation levels at cg27402634 lead to decreases in birthweight. We identified novel loci differentially methylated in placenta in relation to maternal smoking during pregnancy. Adverse effects of maternal smoking on birthweight of the offspring may be mediated by alterations in the placental methylome. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Soubry, Adelheid; Schildkraut, Joellen M; Murtha, Amy; Wang, Frances; Huang, Zhiqing; Bernal, Autumn; Kurtzberg, Joanne; Jirtle, Randy L; Murphy, Susan K; Hoyo, Cathrine
2013-02-06
Data from epidemiological and animal model studies suggest that nutrition during pregnancy may affect the health status of subsequent generations. These transgenerational effects are now being explained by disruptions at the level of the epigenetic machinery. Besides in vitro environmental exposures, the possible impact on the reprogramming of methylation profiles at imprinted genes at a much earlier time point, such as during spermatogenesis or oogenesis, has not previously been considered. In this study, our aim was to determine associations between preconceptional obesity and DNA methylation profiles in the offspring, particularly at the differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene. We examined DNA from umbilical cord blood leukocytes from 79 newborns, born between July 2005 and November 2006 at Duke University Hospital, Durham, NC. Their mothers participated in the Newborn Epigenetics Study (NEST) during pregnancy. Parental characteristics were obtained via standardized questionnaires and medical records. DNA methylation patterns at two DMRs were analyzed by bisulfite pyrosequencing; one DMR upstream of IGF2 (IGF2 DMR), and one DMR upstream of the neighboring H19 gene (H19 DMR). Multiple regression models were used to determine potential associations between the offspring's DNA methylation patterns and parental obesity before conception. Obesity was defined as body mass index (BMI) ≥30 kg/m². Hypomethylation at the IGF2 DMR was associated with paternal obesity. Even after adjusting for several maternal and newborn characteristics, we observed a persistent inverse association between DNA methylation in the offspring and paternal obesity (β-coefficient was -5.28, P = 0.003). At the H19 DMR, no significant associations were detected between methylation patterns and paternal obesity. Our data suggest an increase in DNA methylation at the IGF2 and H19 DMRs among newborns from obese mothers, but a larger study is warranted to further explore the potential effects of maternal obesity or lifestyle on the offspring's epigenome. While our small sample size is limited, our data indicate a preconceptional impact of paternal obesity on the reprogramming of imprint marks during spermatogenesis. Given the biological importance of imprinting fidelity, our study provides evidence for transgenerational effects of paternal obesity that may influence the offspring's future health status.
2013-01-01
Background Data from epidemiological and animal model studies suggest that nutrition during pregnancy may affect the health status of subsequent generations. These transgenerational effects are now being explained by disruptions at the level of the epigenetic machinery. Besides in vitro environmental exposures, the possible impact on the reprogramming of methylation profiles at imprinted genes at a much earlier time point, such as during spermatogenesis or oogenesis, has not previously been considered. In this study, our aim was to determine associations between preconceptional obesity and DNA methylation profiles in the offspring, particularly at the differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene. Methods We examined DNA from umbilical cord blood leukocytes from 79 newborns, born between July 2005 and November 2006 at Duke University Hospital, Durham, NC. Their mothers participated in the Newborn Epigenetics Study (NEST) during pregnancy. Parental characteristics were obtained via standardized questionnaires and medical records. DNA methylation patterns at two DMRs were analyzed by bisulfite pyrosequencing; one DMR upstream of IGF2 (IGF2 DMR), and one DMR upstream of the neighboring H19 gene (H19 DMR). Multiple regression models were used to determine potential associations between the offspring's DNA methylation patterns and parental obesity before conception. Obesity was defined as body mass index (BMI) ≥30 kg/m2. Results Hypomethylation at the IGF2 DMR was associated with paternal obesity. Even after adjusting for several maternal and newborn characteristics, we observed a persistent inverse association between DNA methylation in the offspring and paternal obesity (β-coefficient was -5.28, P = 0.003). At the H19 DMR, no significant associations were detected between methylation patterns and paternal obesity. Our data suggest an increase in DNA methylation at the IGF2 and H19 DMRs among newborns from obese mothers, but a larger study is warranted to further explore the potential effects of maternal obesity or lifestyle on the offspring's epigenome. Conclusions While our small sample size is limited, our data indicate a preconceptional impact of paternal obesity on the reprogramming of imprint marks during spermatogenesis. Given the biological importance of imprinting fidelity, our study provides evidence for transgenerational effects of paternal obesity that may influence the offspring's future health status. PMID:23388414
Prediction of epigenetically regulated genes in breast cancer cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen
Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines,more » which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identifed 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators.« less
Hamada, Yoshimasa; Bando, Tetsuya; Nakamura, Taro; Ishimaru, Yoshiyasu; Mito, Taro; Noji, Sumihare; Tomioka, Kenji; Ohuchi, Hideyo
2015-09-01
Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)(RNAi) and was increased by Gb'Utx(RNAi). Regenerated Gb'E(z)(RNAi) cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'Utx(RNAi) cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)(RNAi) regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'Utx(RNAi) regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression. © 2015. Published by The Company of Biologists Ltd.
DRME: Count-based differential RNA methylation analysis at small sample size scenario.
Liu, Lian; Zhang, Shao-Wu; Gao, Fan; Zhang, Yixin; Huang, Yufei; Chen, Runsheng; Meng, Jia
2016-04-15
Differential methylation, which concerns difference in the degree of epigenetic regulation via methylation between two conditions, has been formulated as a beta or beta-binomial distribution to address the within-group biological variability in sequencing data. However, a beta or beta-binomial model is usually difficult to infer at small sample size scenario with discrete reads count in sequencing data. On the other hand, as an emerging research field, RNA methylation has drawn more and more attention recently, and the differential analysis of RNA methylation is significantly different from that of DNA methylation due to the impact of transcriptional regulation. We developed DRME to better address the differential RNA methylation problem. The proposed model can effectively describe within-group biological variability at small sample size scenario and handles the impact of transcriptional regulation on RNA methylation. We tested the newly developed DRME algorithm on simulated and 4 MeRIP-Seq case-control studies and compared it with Fisher's exact test. It is in principle widely applicable to several other RNA-related data types as well, including RNA Bisulfite sequencing and PAR-CLIP. The code together with an MeRIP-Seq dataset is available online (https://github.com/lzcyzm/DRME) for evaluation and reproduction of the figures shown in this article. Copyright © 2016 Elsevier Inc. All rights reserved.
Genome-wide analysis of DNA methylation in five tissues of sika deer (Cervus nippon).
Yang, Chun; Zhang, Yan; Liu, Wenyuan; Lu, Xiao; Li, Chunyi
2018-03-01
DNA methylation plays an important role in regulating gene expression during tissue development and differentiation in eukaryotes. In contrast to domestic animals, epigenetic studies have been seldom conducted in wild animals. In the present study, we conducted the genome-wide profiling of DNA methylation for five tissues of sika deer using the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique. Overall, a total of 104,131 fragments were amplified including 41,951 methylated fragments using 32 pairs of selected primers. The average incidence of DNA methylation was approximately 38.18% in muscle, 40.32% in heart, 41.86% in liver, 41.20% in lung, and 41.68% in kidney, respectively. Also, the significant differences of the DNA methylation levels were found between the different tissue types (P<0.05), which indicates that the differences of genome-wide DNA methylation levels may be related to gene expression during tissue development and differentiation. In addition, 37 tissue-specific differentially methylated regions (T-DMRs) were identified and recovered by MSAP in five tissues, and were further confirmed by Southern blot analysis. Our study presents the first look at the T-DMRs in sika deer and represents an initial step towards understanding of epigenetic regulatory mechanism underlying tissue development and differentiation in sika deer. Copyright © 2017. Published by Elsevier B.V.
An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai
2015-01-01
Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan–Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients. PMID:26691761
An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai
2015-12-22
Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan-Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients.
Huang, Yi-Wen; Roa, Juan C.; Goodfellow, Paul J.; Kizer, E. Lynette; Huang, Tim H. M.; Chen, Yidong
2013-01-01
Background DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Methodology/Principal Findings Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. Conclusions/Significance CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/. PMID:23630576
Gu, Fei; Doderer, Mark S; Huang, Yi-Wen; Roa, Juan C; Goodfellow, Paul J; Kizer, E Lynette; Huang, Tim H M; Chen, Yidong
2013-01-01
DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/.
Zhou, He; Ma, Tian-Yu; Zhang, Rui; Xu, Qi-Zheng; Shen, Fu; Qin, Yan-Jie; Xu, Wen; Wang, Yuan; Li, Ya-Juan
2016-01-01
In this study, we selected natural polyploidy loach (diploid, triploid and tetraploid) and hybrid F1 generation obverse cross (4 × 2) and inverse cross (2 × 4) by diploids and tetraploids as the research model. The MSAP (methylation-sensitive amplified polymorphism) reaction system was established by our laboratory to explore methylation levels and pattern diversification features at the whole genome level of the polyploidy loach. The results showed that the total methylation and full methylation rates decreased on increased ploidy individuals; moreover, the hemimethylation rate showed no consistent pattern. Compared with diploid loach, the methylation patterns of tetraploid sites changed 68.17%, and the methylation patterns of triploid sites changed 73.05%. The proportion of hypermethylation genes is significantly higher than the proportion of demethylation genes. The methylation level of reciprocal cross F1 generation is lower than the male diploid and higher than the female tetraploid. The hemimethylation and total methylation rate of the cross hybrid F1 generation is significantly higher than the orthogonal F1 generation (p < 0.01). After readjusting, the methylation pattern of genome DNA of reciprocal hybrids changed 69.59% and 72.83%, respectively. PMID:27556458
Berkley, Amy M; Hendricks, Deborah W; Simmons, Kalynn B; Fink, Pamela J
2013-06-15
Recent thymic emigrants (RTEs) are the youngest T cells in the lymphoid periphery and exhibit phenotypic and functional characteristics distinct from those of their more mature counterparts in the naive peripheral T cell pool. We show in this study that the Il2 and Il4 promoter regions of naive CD4(+) RTEs are characterized by site-specific hypermethylation compared with those of both mature naive (MN) T cells and the thymocyte precursors of RTEs. Thus, RTEs do not merely occupy a midpoint between the thymus and the mature T cell pool, but represent a distinct transitional T cell population. Furthermore, RTEs and MN T cells exhibit distinct CpG DNA methylation patterns both before and after activation. Compared with MN T cells, RTEs express higher levels of several enzymes that modify DNA methylation, and inhibiting methylation during culture allows RTEs to reach MN T cell levels of cytokine production. Collectively, these data suggest that the functional differences that distinguish RTEs from MN T cells are influenced by epigenetic mechanisms and provide clues to a mechanistic basis for postthymic maturation.
Learning and discrimination of cuticular hydrocarbons in a social insect
van Wilgenburg, Ellen; Felden, Antoine; Choe, Dong-Hwan; Sulc, Robert; Luo, Jun; Shea, Kenneth J.; Elgar, Mark A.; Tsutsui, Neil D.
2012-01-01
Social insect cuticular hydrocarbon (CHC) mixtures are among the most complex chemical cues known and are important in nest-mate, caste and species recognition. Despite our growing knowledge of the nature of these cues, we have very little insight into how social insects actually perceive and discriminate among these chemicals. In this study, we use the newly developed technique of differential olfactory conditioning to pure, custom-designed synthetic colony odours to analyse signal discrimination in Argentine ants, Linepithema humile. Our results show that tri-methyl alkanes are more easily learned than single-methyl or straight-chain alkanes. In addition, we reveal that Argentine ants can discriminate between hydrocarbons with different branching patterns and the same chain length, but not always between hydrocarbons with the same branching patterns but different chain length. Our data thus show that biochemical characteristics influence those compounds that ants can discriminate between, and which thus potentially play a role in chemical signalling and nest-mate recognition. PMID:21831880
Forn, Marta; Díez-Villanueva, Anna; Merlos-Suárez, Anna; Muñoz, Mar; Lois, Sergi; Carriò, Elvira; Jordà, Mireia; Bigas, Anna; Batlle, Eduard; Peinado, Miguel A.
2015-01-01
Mouse models of intestinal crypt cell differentiation and tumorigenesis have been used to characterize the molecular mechanisms underlying both processes. DNA methylation is a key epigenetic mark and plays an important role in cell identity and differentiation programs and cancer. To get insights into the dynamics of cell differentiation and malignant transformation we have compared the DNA methylation profiles along the mouse small intestine crypt and early stages of tumorigenesis. Genome-scale analysis of DNA methylation together with microarray gene expression have been applied to compare intestinal crypt stem cells (EphB2high), differentiated cells (EphB2negative), ApcMin/+ adenomas and the corresponding non-tumor adjacent tissue, together with small and large intestine samples and the colon cancer cell line CT26. Compared with late stages, small intestine crypt differentiation and early stages of tumorigenesis display few and relatively small changes in DNA methylation. Hypermethylated loci are largely shared by the two processes and affect the proximities of promoter and enhancer regions, with enrichment in genes associated with the intestinal stem cell signature and the PRC2 complex. The hypermethylation is progressive, with minute levels in differentiated cells, as compared with intestinal stem cells, and reaching full methylation in advanced stages. Hypomethylation shows different signatures in differentiation and cancer and is already present in the non-tumor tissue adjacent to the adenomas in ApcMin/+ mice, but at lower levels than advanced cancers. This study provides a reference framework to decipher the mechanisms driving mouse intestinal tumorigenesis and also the human counterpart. PMID:25933092
H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells
Fernández, Agustín F.; Bayón, Gustavo F.; Urdinguio, Rocío G.; Toraño, Estela G.; García, María G.; Carella, Antonella; Petrus-Reurer, Sandra; Ferrero, Cecilia; Martinez-Camblor, Pablo; Cubillo, Isabel; García-Castro, Javier; Delgado-Calle, Jesús; Pérez-Campo, Flor M.; Riancho, José A.; Bueno, Clara; Menéndez, Pablo; Mentink, Anouk; Mareschi, Katia; Claire, Fabian; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brescianini, Sonia; Moran, Sebastián; Esteller, Manel; Stolzing, Alexandra; de Boer, Jan; Nisticò, Lorenza; Stazi, Maria A.
2015-01-01
In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type–independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors. PMID:25271306
Patterns of Hybrid Loss of Imprinting Reveal Tissue- and Cluster-Specific Regulation
Wiley, Christopher D.; Matundan, Harry H.; Duselis, Amanda R.; Isaacs, Alison T.; Vrana, Paul B.
2008-01-01
Background Crosses between natural populations of two species of deer mice, Peromyscus maniculatus (BW), and P. polionotus (PO), produce parent-of-origin effects on growth and development. BW females mated to PO males (bw×po) produce growth-retarded but otherwise healthy offspring. In contrast, PO females mated to BW males (PO×BW) produce overgrown and severely defective offspring. The hybrid phenotypes are pronounced in the placenta and include PO×BW conceptuses which lack embryonic structures. Evidence to date links variation in control of genomic imprinting with the hybrid defects, particularly in the PO×BW offspring. Establishment of genomic imprinting is typically mediated by gametic DNA methylation at sites known as gDMRs. However, imprinted gene clusters vary in their regulation by gDMR sequences. Methodology/Principal Findings Here we further assess imprinted gene expression and DNA methylation at different cluster types in order to discern patterns. These data reveal PO×BW misexpression at the Kcnq1ot1 and Peg3 clusters, both of which lose ICR methylation in placental tissues. In contrast, some embryonic transcripts (Peg10, Kcnq1ot1) reactivated the silenced allele with little or no loss of DNA methylation. Hybrid brains also display different patterns of imprinting perturbations. Several cluster pairs thought to use analogous regulatory mechanisms are differentially affected in the hybrids. Conclusions/Significance These data reinforce the hypothesis that placental and somatic gene regulation differs significantly, as does that between imprinted gene clusters and between species. That such epigenetic regulatory variation exists in recently diverged species suggests a role in reproductive isolation, and that this variation is likely to be adaptive. PMID:18958286
DNA methyl transferases are differentially expressed in the human anterior eye segment.
Bonnin, Nicolas; Belville, Corinne; Chiambaretta, Frédéric; Sapin, Vincent; Blanchon, Loïc
2014-08-01
DNA methylation is an epigenetic mark involved in the control of genes expression. Abnormal epigenetic events have been reported in human pathologies but weakly documented in eye diseases. The purpose of this study was to establish DNMT mRNA and protein expression levels in the anterior eye segment tissues and their related (primary or immortalized) cell cultures as a first step towards future in vivo and in vitro methylomic studies. Total mRNA was extracted from human cornea, conjunctiva, anterior lens capsule, trabeculum and related cell cultures (cornea epithelial, trabecular meshwork, keratocytes for primary cells; and HCE, Chang, B-3 for immortalized cells). cDNA was quantified by real-time PCR using specific primers for DNMT1, 2, 3A, 3B and 3L. Immunolocalization assays were carried out on human cornea using specific primary antibodies for DNMT1, 2 and 3A, 3B and 3L. All DNMT transcripts were detected in human cornea, conjunctiva, anterior lens capsule, trabeculum and related cells but showed statistically different expression patterns between tissues and cells. DNMT2 protein presented a specific and singular expression pattern in corneal endothelium. This study produced the first inventory of the expression patterns of DNMTs in human adult anterior eye segment. Our research highlights that DNA methylation cannot be ruled out as a way to bring new insights into well-known ocular diseases. In addition, future DNA methylation studies using various cells as experimental models need to be conducted with attention to approach the results analysis from a global tissue perspective. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Liu, Zhi; Chen, Tian; Sun, Wenhua; Yuan, Zongyi; Yu, Mei; Chen, Guoqing; Guo, Weihua; Xiao, Jingang; Tian, Weidong
2016-01-01
Diabetes mellitus, characterized by abnormally high blood glucose levels, gives rise to impaired bone remodeling. In response to high glucose (HG), the attenuated osteogenic differentiation capacity of human periodontal ligament stem cells (hPDLSCs) is associated with the loss of alveolar bone. Recently, DNA methylation was reported to affect osteogenic differentiation of stem cells in pathological states. However, the intrinsic mechanism linking DNA methylation to osteogenic differentiation ability in the presence of HG is still unclear. In this study, we found that diabetic rats with increased DNA methylation levels in periodontal ligaments exhibited reduced bone mass and density. In vitro application of 5-aza-2′-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to decrease DNA methylation levels in hPDLSCs, rescued the osteogenic differentiation capacity of hPDLSCs under HG conditions. Moreover, we demonstrated that the canonical Wnt signaling pathway was activated during this process and, under HG circumstances, the 5-aza-dC-rescued osteogenic differentiation capacity was blocked by Dickkopf-1, an effective antagonist of the canonical Wnt signaling pathway. Taken together, these results demonstrate for the first time that suppression of DNA methylation is able to facilitate the osteogenic differentiation capacity of hPDLSCs exposed to HG, through activation of the canonical Wnt signaling pathway. PMID:27273319
Fu, J; Su, Y; Liu, Y; Zhang, X Y
2018-04-09
Objective: To compare the methylation profiles in tissues of oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC) with healthy tissues of oral mucosa, in order to identify the role of DNA methylation played in tumorigenesis. Methods: DNA samples extracted from tissues of 4 healthy oral mucosa, 4 OSCC and 4 OLK collected from patients of the Department of Oral Medicine, Capital Medical University School of Stomatology were examined and compared using Methylation 450 Bead Chip. The genes associated with differentially methylated CpG sites were selected for gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment. Results: Multiple differentially methylated CpG sites were identified by using the above mentioned assay. Hypermethylation constitutes 86.18% (23 290/27 025) of methylation changes in OLK and hypomethylation accounts for 13.82% (3 734/27 025) of methylation changes. Both hypermethylated and hypomethylated CpG sites were markedly increased in OSCC tissue compared with OLK tissue. The majority of differentially methylated CpG sites were located outside CpG islands, with approximately one-fourth in CpG shores flanking the islands, which were considered highly important for gene regulation and tumorigenesis. Pathway analysis revealed that differentially methylated CpG sites in both OLK and OSCC patients shared the same pathway enrichments, most of which were correlated with carcinogenesis and cancer progression (e.g., DNA repair, cell cycle, and apoptosis). Conclusions: In the present study, methylation-associated alterations affect almost all pathways in the cellular network in both OLK and OSCC. OLK and OSCC shared similar methylation changes whether in pathways or genes, indicating that epigenetically they might have the same molecular basis for disease progression.
van Doorn, Remco; Zoutman, Willem H; Dijkman, Remco; de Menezes, Renee X; Commandeur, Suzan; Mulder, Aat A; van der Velden, Pieter A; Vermeer, Maarten H; Willemze, Rein; Yan, Pearlly S; Huang, Tim H; Tensen, Cornelis P
2005-06-10
To analyze the occurrence of promoter hypermethylation in primary cutaneous T-cell lymphoma (CTCL) on a genome-wide scale, focusing on epigenetic alterations with pathogenetic significance. DNA isolated from biopsy specimens of 28 patients with CTCL, including aggressive CTCL entities (transformed mycosis fungoides and CD30-negative large T-cell lymphoma) and an indolent entity (CD30-positive large T-cell lymphoma), were investigated. For genome-wide DNA methylation screening, differential methylation hybridization using CpG island microarrays was applied, which allows simultaneous detection of the methylation status of 8640 CpG islands. Bisulfite sequence analysis was applied for confirmation and detection of hypermethylation of eight selected tumor suppressor genes. The DNA methylation patterns of CTCLs emerging from differential methylation hybridization analysis included 35 CpG islands hypermethylated in at least four of the 28 studied CTCL samples when compared with benign T-cell samples. Hypermethylation of the putative tumor suppressor genes BCL7a (in 48% of CTCL samples), PTPRG (27%), and thrombospondin 4 (52%) was confirmed and demonstrated to be associated with transcriptional downregulation. BCL7a was hypermethylated at a higher frequency in aggressive (64%) than in indolent (14%) CTCL entities. In addition, the promoters of the selected tumor suppressor genes p73 (48%), p16 (33%), CHFR (19%), p15 (10%), and TMS1 (10%) were hypermethylated in CTCL. Malignant T cells of patients with CTCL display widespread promoter hypermethylation associated with inactivation of several tumor suppressor genes involved in DNA repair, cell cycle, and apoptosis signaling pathways. In view of this, CTCL may be amenable to treatment with demethylating agents.
Ciampi de Andrade, Daniel; Maschietto, Mariana; Galhardoni, Ricardo; Gouveia, Gisele; Chile, Thais; Victorino Krepischi, Ana C; Dale, Camila S; Brunoni, André R; Parravano, Daniella C; Cueva Moscoso, Ana S; Raicher, Irina; Kaziyama, Helena H S; Teixeira, Manoel J; Brentani, Helena P
2017-08-01
To evaluate changes in DNA methylation profiles in patients with fibromyalgia (FM) compared to matched healthy controls (HCs). All individuals underwent full clinical and neurophysiological assessment by cortical excitability (CE) parameters measured by transcranial magnetic stimulation. DNA from the peripheral blood of patients with FM (n = 24) and HC (n = 24) were assessed using the Illumina-HumanMethylation450 BeadChips. We identified 1610 differentially methylated positions (DMPs) in patients with FM displaying a nonrandom distribution in regions of the genome. Sixty-nine percent of DMP in FM were hypomethylated compared to HC. Differentially methylated positions were enriched in 5 genomic regions (1p34; 6p21; 10q26; 17q25; 19q13). The functional characterization of 960 genes related to DMPs revealed an enrichment for MAPK signaling pathway (n = 18 genes), regulation of actin cytoskeleton (n = 15 genes), and focal adhesion (n = 13 genes). A gene-gene interaction network enrichment analysis revealed the participation of DNA repair pathways, mitochondria-related processes, and synaptic signaling. Even though DNA was extracted from peripheral blood, this set of genes was enriched for disorders such as schizophrenia, mood disorders, bulimia, hyperphagia, and obesity. Remarkably, the hierarchical clusterization based on the methylation levels of the 1610 DMPs showed an association with neurophysiological measurements of CE in FM and HC. Fibromyalgia has a hypomethylation DNA pattern, which is enriched in genes implicated in stress response and DNA repair/free radical clearance. These changes occurred parallel to changes in CE parameters. New epigenetic insights into the pathophysiology of FM may provide the basis for the development of biomarkers of this disorder.
McKay, Jill A; Adriaens, Michiel; Evelo, Chris T; Ford, Dianne; Mathers, John C
2016-09-01
Early-life exposures are critical in fetal programming and may influence function and health in later life. Adequate maternal folate consumption during pregnancy is essential for healthy fetal development and long-term offspring health. The mechanisms underlying fetal programming are poorly understood, but are likely to involve gene regulation. Epigenetic marks, including DNA methylation, regulate gene expression and are modifiable by folate supply. We observed transcriptional changes in fetal liver in response to maternal folate depletion and hypothesized that these changes are concomitant with altered gene promoter methylation. Female C57BL/6J mice were fed diets containing 2 or 0.4 mg folic acid/kg for 4 wk before mating and throughout pregnancy. At 17.5-day gestation, genome-wide gene expression and promoter methylation were measured by microarray analysis in male fetal livers. While 989 genes were differentially expressed, 333 promoters had altered methylation (247 hypermethylated, 86 hypomethylated) in response to maternal folate depletion. Only 16 genes had both expression and methylation changes. However, most methylation changes occurred in genomic regions neighboring expression changes. In response to maternal folate depletion, altered expression at the mRNA level was not associated with altered promoter methylation of the same gene in fetal liver. © 2016 The Authors. Molecular Nutrition & Food Research Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Wei; Yan, Wei; You, Gan; Bao, Zhaoshi; Wang, Yongzhi; Liu, Yanwei; You, Yongping; Jiang, Tao
2013-01-01
To date, the aberrations in the DNA methylation patterns that are associated with different prognoses of G-CIMP- primary GBMs remain to be elucidated. Here, DNA methylation profiling of primary GBM tissues from 13 long-term survivors (LTS; overall survival ⩾18months) and 20 short-term survivors (STS; overall survival ⩽9months) was performed. Then G-CIMP+ samples were excluded. The differentially expressed CpG loci were identified between residual 18 STS and 9 LTS G-CIMP- samples. Methylation levels of 11 CpG loci (10genes) were statistically significantly lower, and 43 CpG loci (40genes) were statistically significantly higher in the tumor tissues of LTS than those of STS G-CIMP- samples (P<0.01). Of the 43 CpG loci that were hypermethylated in LTS G-CIMP- samples, 3 CpG loci localized in the promoter of ALDH1A3. Furthermore, using an independent validation cohort containing 37 primary GBM samples without IDH1 mutation and MGMT promoter methylation, the hypermethylation status of ALDH1A3 promoter predicted a better prognosis with an accompanied low expression of ALDH1A3 protein. Taken together, our results defined prognosis-related methylation signatures systematically for the first time in G-CIMP- primary GBMs. ALDH1A3 promoter methylation conferred a favorable prognosis in G-CIMP- primary GBMs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Chung, Sharon A; Nititham, Joanne; Elboudwarej, Emon; Quach, Hong L; Taylor, Kimberly E; Barcellos, Lisa F; Criswell, Lindsey A
2015-01-01
Systemic lupus erythematosus (SLE) is characterized by the development of autoantibodies associated with specific clinical manifestations. Previous studies have shown an association between differential DNA methylation and SLE susceptibility, but have not investigated SLE-related autoantibodies. Our goal was to determine whether DNA methylation is associated with production of clinically relevant SLE-related autoantibodies, with an emphasis on the anti-dsDNA autoantibody. In this study, we characterized the methylation status of 467,314 CpG sites in 326 women with SLE. Using a discovery and replication study design, we identified and replicated significant associations between anti-dsDNA autoantibody production and the methylation status of 16 CpG sites (pdiscovery<1.07E-07 and preplication<0.0029) in 11 genes. Associations were further investigated using multivariable regression to adjust for estimated leukocyte cell proportions and population substructure. The adjusted mean DNA methylation difference between anti-dsDNA positive and negative cases ranged from 1.2% to 19%, and the adjusted odds ratio for anti-dsDNA autoantibody production comparing the lowest and highest methylation tertiles ranged from 6.8 to 18.2. Differential methylation for these CpG sites was also associated with anti-SSA, anti-Sm, and anti-RNP autoantibody production. Overall, associated CpG sites were hypomethylated in autoantibody positive compared to autoantibody negative cases. Differential methylation of CpG sites within the major histocompatibility region was not strongly associated with autoantibody production. Genes with differentially methylated CpG sites represent multiple biologic pathways, and have not been associated with autoantibody production in genetic association studies. In conclusion, hypomethylation of CpG sites within genes from different pathways is associated with anti-dsDNA, anti-SSA, anti-Sm, and anti-RNP production in SLE, and these associations are not explained by genetic variation. Thus, studies of epigenetic mechanisms such as DNA methylation represent a complementary method to genetic association studies to identify biologic pathways that may contribute to the clinical heterogeneity of autoimmune diseases.
Lambrot, R; Xu, C; Saint-Phar, S; Chountalos, G; Cohen, T; Paquet, M; Suderman, M; Hallett, M; Kimmins, S
2013-01-01
Epidemiological studies suggest that a father's diet can influence offspring health. A proposed mechanism for paternal transmission of environmental information is via the sperm epigenome. The epigenome includes heritable information such as DNA methylation. We hypothesize that the dietary supply of methyl donors will alter epigenetic reprogramming in sperm. Here we feed male mice either a folate-deficient or folate-sufficient diet throughout life. Paternal folate deficiency is associated with increased birth defects in the offspring, which include craniofacial and musculoskeletal malformations. Genome-wide DNA methylation analysis and the subsequent functional analysis identify differential methylation in sperm of genes implicated in development, chronic diseases such as cancer, diabetes, autism and schizophrenia. While >300 genes are differentially expressed in offspring placenta, only two correspond to genes with differential methylation in sperm. This model suggests epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that adequate paternal dietary folate is essential for offspring health.
Lambrot, R.; Xu, C.; Saint-Phar, S.; Chountalos, G.; Cohen, T.; Paquet, M.; Suderman, M.; Hallett, M.; Kimmins, S.
2013-01-01
Epidemiological studies suggest that a father’s diet can influence offspring health. A proposed mechanism for paternal transmission of environmental information is via the sperm epigenome. The epigenome includes heritable information such as DNA methylation. We hypothesize that the dietary supply of methyl donors will alter epigenetic reprogramming in sperm. Here we feed male mice either a folate-deficient or folate-sufficient diet throughout life. Paternal folate deficiency is associated with increased birth defects in the offspring, which include craniofacial and musculoskeletal malformations. Genome-wide DNA methylation analysis and the subsequent functional analysis identify differential methylation in sperm of genes implicated in development, chronic diseases such as cancer, diabetes, autism and schizophrenia. While >300 genes are differentially expressed in offspring placenta, only two correspond to genes with differential methylation in sperm. This model suggests epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that adequate paternal dietary folate is essential for offspring health. PMID:24326934
Transcription and chromatin determinants of de novo DNA methylation timing in oocytes.
Gahurova, Lenka; Tomizawa, Shin-Ichi; Smallwood, Sébastien A; Stewart-Morgan, Kathleen R; Saadeh, Heba; Kim, Jeesun; Andrews, Simon R; Chen, Taiping; Kelsey, Gavin
2017-01-01
Gametogenesis in mammals entails profound re-patterning of the epigenome. In the female germline, DNA methylation is acquired late in oogenesis from an essentially unmethylated baseline and is established largely as a consequence of transcription events. Molecular and functional studies have shown that imprinted genes become methylated at different times during oocyte growth; however, little is known about the kinetics of methylation gain genome wide and the reasons for asynchrony in methylation at imprinted loci. Given the predominant role of transcription, we sought to investigate whether transcription timing is rate limiting for de novo methylation and determines the asynchrony of methylation events. Therefore, we generated genome-wide methylation and transcriptome maps of size-selected, growing oocytes to capture the onset and progression of methylation. We find that most sequence elements, including most classes of transposable elements, acquire methylation at similar rates overall. However, methylation of CpG islands (CGIs) is delayed compared with the genome average and there are reproducible differences amongst CGIs in onset of methylation. Although more highly transcribed genes acquire methylation earlier, the major transitions in the oocyte transcriptome occur well before the de novo methylation phase, indicating that transcription is generally not rate limiting in conferring permissiveness to DNA methylation. Instead, CGI methylation timing negatively correlates with enrichment for histone 3 lysine 4 (H3K4) methylation and dependence on the H3K4 demethylases KDM1A and KDM1B, implicating chromatin remodelling as a major determinant of methylation timing. We also identified differential enrichment of transcription factor binding motifs in CGIs acquiring methylation early or late in oocyte growth. By combining these parameters into multiple regression models, we were able to account for about a fifth of the variation in methylation timing of CGIs. Finally, we show that establishment of non-CpG methylation, which is prevalent in fully grown oocytes, and methylation over non-transcribed regions, are later events in oogenesis. These results do not support a major role for transcriptional transitions in the time of onset of DNA methylation in the oocyte, but suggest a model in which sequences least dependent on chromatin remodelling are the earliest to become permissive for methylation.
Riyahi, Sepand; Vilatersana, Roser; Schrey, Aaron W; Ghorbani Node, Hassan; Aliabadian, Mansour; Senar, Juan Carlos
2017-11-01
Epigenetic modifications can respond rapidly to environmental changes and can shape phenotypic variation in accordance with environmental stimuli. One of the most studied epigenetic marks is DNA methylation. In the present study, we used the methylation-sensitive amplified polymorphism (MSAP) technique to investigate the natural variation in DNA methylation within and among subspecies of the house sparrow, Passer domesticus We focused on five subspecies from the Middle East because they show great variation in many ecological traits and because this region is the probable origin for the house sparrow's commensal relationship with humans. We analysed house sparrows from Spain as an outgroup. The level of variation in DNA methylation was similar among the five house sparrow subspecies from the Middle East despite high phenotypic and environmental variation, but the non-commensal subspecies was differentiated from the other four (commensal) Middle Eastern subspecies. Further, the European subspecies was differentiated from all other subspecies in DNA methylation. Our results indicate that variation in DNA methylation does not strictly follow subspecies designations. We detected a correlation between methylation level and some morphological traits, such as standardized bill length, and we suggest that part of the high morphological variation in the native populations of the house sparrow is influenced by differentially methylated regions in specific loci throughout the genome. We also detected 10 differentially methylated loci among subspecies and three loci that differentiated between commensal or non-commensal status. Therefore, the MSAP technique detected larger scale differences among the European and non-commensal subspecies, but did not detect finer scale differences among the other Middle Eastern subspecies. © 2017. Published by The Company of Biologists Ltd.
Laufer, Benjamin I; Chater-Diehl, Eric J; Kapalanga, Joachim; Singh, Shiva M
2017-05-01
Rodent models of Fetal Alcohol Spectrum Disorders (FASD) have revealed that prenatal alcohol exposure (PAE) results in differential DNA cytosine methylation in the developing brain. The resulting genome-wide methylation changes are enriched in genes with neurodevelopmental functions. The profile of differential methylation is dynamic and present in some form for life. The methylation changes are transmitted across subsequent mitotic divisions, where they are maintained and further modified over time. More recent follow up has identified a profile of the differential methylation in the buccal swabs of young children born with FASD. While distinct from the profile observed in brain tissue from rodent models, there are similarities. These include changes in genes belonging to a number of neurodevelopmental and behavioral pathways. Specifically, there is increased methylation at the clustered protocadherin genes and deregulation of genomically imprinted genes, even though no single gene is affected in all patients studied to date. These novel results suggest further development of a methylation based strategy could enable early and accurate diagnostics and therapeutics, which have remained a challenge in FASD research. There are two aspects of this challenge that must be addressed in the immediate future: First, the long-term differential methylomics observed in rodent models must be functionally confirmed. Second, the similarities in differential methylation must be further established in humans at a methylomic level and overcome a number of technical limitations. While a cure for FASD is challenging, there is an opportunity for the development of early diagnostics and attenuations towards a higher quality of life. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Amnion as a surrogate tissue reporter of the effects of maternal preeclampsia on the fetus.
Suzuki, Masako; Maekawa, Ryo; Patterson, Nicole E; Reynolds, David M; Calder, Brent R; Reznik, Sandra E; Heo, Hye J; Einstein, Francine Hughes; Greally, John M
2016-01-01
Preeclampsia, traditionally characterized by high blood pressure and proteinuria, is a common pregnancy complication, which affects 2-8 % of all pregnancies. Although children born to women with preeclampsia have a higher risk of hypertension in later life, the mechanism of this increased risk is unknown. DNA methylation is an epigenetic modification that has been studied as a mediator of cellular memory of adverse exposures in utero. Since each cell type in the body has a unique DNA profile, cell subtype composition is a major confounding factor in studies of tissues with heterogeneous cell types. The best way to avoid this confounding effect is by using purified cell types. However, using purified cell types in large cohort translational studies is difficult. The amnion, the inner layer of the fetal membranes of the placenta, is derived from the epiblast and consists of two cell types, which are easy to isolate from the delivered placenta. In this study, we demonstrate the value of using amnion samples for DNA methylation studies, revealing distinctive patterns between fetuses exposed to proteinuria or hypertension and fetuses from normal pregnancies. We performed a genome-wide DNA methylation analysis, HpaII tiny fragment Enrichment by Ligation-mediated PCR (HELP)-tagging, on 62 amnion samples from the placentas of uncomplicated, normal pregnancies and from those with complications of preeclampsia or hypertension. Using a regression model approach, we found 123, 85, and 99 loci with high-confidence hypertension-associated, proteinuria-associated, and hypertension- and proteinuria-associated DNA methylation changes, respectively. A gene ontology analysis showed DNA methylation changes to be selecting genes with different biological processes in exposure status. We also found that these differentially methylated regions overlap loci previously reported as differentially methylated regions in preeclampsia. Our findings support prior observations that preeclampsia is associated with changes of DNA methylation near genes that have previously been found to be dysregulated in preeclampsia. We propose that amniotic membranes represent a valuable surrogate fetal tissue on which to perform epigenome-wide association studies of adverse intrauterine conditions.
Schütte, B; El Hajj, N; Kuhtz, J; Nanda, I; Gromoll, J; Hahn, T; Dittrich, M; Schorsch, M; Müller, T; Haaf, T
2013-11-01
Aberrant sperm DNA methylation patterns, mainly in imprinted genes, have been associated with male subfertility and oligospermia. Here, we performed a genome-wide methylation analysis in sperm samples representing a wide range of semen parameters. Sperm DNA samples of 38 males attending a fertility centre were analysed with Illumina HumanMethylation27 BeadChips, which quantify methylation of >27 000 CpG sites in cis-regulatory regions of almost 15 000 genes. In an unsupervised analysis of methylation of all analysed sites, the patient samples clustered into a major and a minor group. The major group clustered with samples from normozoospermic healthy volunteers and, thus, may more closely resemble the normal situation. When correlating the clusters with semen and clinical parameters, the sperm counts were significantly different between groups with the minor group exhibiting sperm counts in the low normal range. A linear model identified almost 3000 CpGs with significant methylation differences between groups. Functional analysis revealed a broad gain of methylation in spermatogenesis-related genes and a loss of methylation in inflammation- and immune response-related genes. Quantitative bisulfite pyrosequencing validated differential methylation in three of five significant candidate genes on the array. Collectively, we identified a subgroup of sperm samples for assisted reproduction with sperm counts in the low normal range and broad methylation changes (affecting approximately 10% of analysed CpG sites) in specific pathways, most importantly spermatogenesis-related genes. We propose that epigenetic analysis can supplement traditional semen parameters and has the potential to provide new insights into the aetiology of male subfertility. © 2013 American Society of Andrology and European Academy of Andrology.
Lu, X K; Shu, N; Wang, J J; Chen, X G; Wang, D L; Wang, S; Fan, W L; Guo, X N; Guo, L X; Ye, W W
2017-06-29
Cytosine DNA methylation is a significant form of DNA modification closely associated with gene expression in eukaryotes, fungi, animals, and plants. Although the reference genomes of cotton (Gossypium hirsutum L.) have been publically available, the salinity-stress-induced DNA methylome alterations in cotton are not well understood. Here, we constructed a map of genome-wide DNA methylation characteristics of cotton leaves under salt stress using the methylated DNA immunoprecipitation sequencing method. The results showed that the methylation reads on chromosome 9 were most comparable with those on the other chromosomes, but the greatest changes occurred on chromosome 8 under salt stress. The DNA methylation pattern analysis indicated that a relatively higher methylation density was found in the upstream2k and downstream2k elements of the CDS region and CG-islands. Almost 94% of the reads belonged to LTR-gspsy and LTR-copia, and the number of methylation reads in LTR-gypsy was four times greater than that in LTR-copia in both control and stressed samples. The analysis of differentially methylated regions (DMRs) showed that the gene elements upstream2k, intron, and downstream2k were hypomethylated, but the CDS regions were hypermethylated. The GO (Gene Ontology) analysis suggested that the methylated genes were most enriched in cellular processes, metabolic processes, cell parts and catalytic activities, which might be closely correlated with response to NaCl stress. In this study, we completed a genomic DNA methylation profile and conducted a DMR analysis under salt stress, which provided valuable information for the better understanding of epigenetics in response to salt stress in cotton.
Yang, Jin-Lan; Liu, Li-Wang; Gong, Yi-Qin; Huang, Dan-Qiong; Wang, Feng; He, Ling-Li
2007-06-01
The level of cytosine methylation induced by cadmium in radish (Raphanus sativus L.) genome was analysed using the technique of methylation-sensitive amplified polymorphism (MSAP). The MSAP ratios in radish seedling exposed to cadmium chloride at the concentration of 50, 250 and 500 mg/L were 37%, 43% and 51%, respectively, and the control was 34%; the full methylation levels (C(m)CGG in double strands) were at 23%, 25% and 27%, respectively, while the control was 22%. The level of increase in MSAP and full methylation indicated that de novo methylation occurred in some 5'-CCGG sites under Cd stress. There was significant positive correlation between increase of total DNA methylation level and CdCl(2) concentration. Four types of MSAP patterns: de novo methylation, de-methylation, atypical pattern and no changes of methylation pattern were identified among CdCl(2) treatments and the control. DNA methylation alteration in plants treated with CdCl(2) was mainly through de novo methylation.
Colacino, Justin A.; Arthur, Anna E.; Dolinoy, Dana C.; Sartor, Maureen A.; Duffy, Sonia A.; Chepeha, Douglas B.; Bradford, Carol R.; Walline, Heather M.; McHugh, Jonathan B.; D'Silva, Nisha; Carey, Thomas E.; Wolf, Gregory T.; Taylor, Jeremy M.G.; Peterson, Karen E.; Rozek, Laura S.
2012-01-01
Diet is associated with cancer prognosis, including head and neck cancer (HNC), and has been hypothesized to influence epigenetic state by determining the availability of functional groups involved in the modification of DNA and histone proteins. The goal of this study was to describe the association between pretreatment diet and HNC tumor DNA methylation. Information on usual pretreatment food and nutrient intake was estimated via food frequency questionnaire (FFQ) on 49 HNC cases. Tumor DNA methylation patterns were assessed using the Illumina Goldengate Methylation Cancer Panel. First, a methylation score, the sum of individual hypermethylated tumor suppressor associated CpG sites, was calculated and associated with dietary intake of micronutrients involved in one-carbon metabolism and antioxidant activity, and food groups abundant in these nutrients. Second, gene specific analyses using linear modeling with empirical Bayesian variance estimation were conducted to identify if methylation at individual CpG sites was associated with diet. All models were controlled for age, sex, smoking, alcohol and HPV status. Individuals reporting in the highest quartile of folate, vitamin B12 and vitamin A intake, compared with those in the lowest quartile, showed significantly less tumor suppressor gene methylation, as did patients reporting the highest cruciferous vegetable intake. Gene specific analyses identified differential associations between DNA methylation and vitamin B12 and vitamin A intake when stratifying by HPV status. These preliminary results suggest that intake of folate, vitamin A and vitamin B12 may be associated with the tumor DNA methylation profile in HNC and enhance tumor suppression. PMID:22722388
Methylation Markers for Early Detection and Differentiation of Follicular Thyroid Cancer Subtypes
Stephen, Josena K.; Chen, Kang Mei; Merritt, Jason; Chitale, Dhananjay; Divine, George; Worsham, Maria J.
2016-01-01
Thyroid cancer has the fastest rising incidence rates and is the fifth most common cancer in women. There are four main types of which the papillary and follicular types together account for >90%, followed by medullary cancers (3%−5%) and anaplastic carcinomas (<3%). For individuals who present with early stage disease of papillary and follicular cancers, there are no accurate markers to predict whether they will develop metastatic or recurrent disease. Our immediate goal is to molecularly differentiate follicular cancer subtypes for enhanced classification. Promoter methylation status of genes with reported associations in thyroid cancer (CASP8, CDKN2A, DAPK1, ESR1, NIS, RASSF1 and TIMP3) were examined in a cohort of follicular thyroid cancers comprising of 26 Hurthle and 27 Classic subtypes utilizing quantitative methylation-specific PCR. RASSF1 was differentially methylated in Classic tumor tissue compared to Hurthle (p<0.001). Methylation of RASSF1 pointed to racial group differences between African Americans and Caucasian Americans (p=0.05). Extra thyroidal extension was found to be associated with DAPK1 (p=0.014) and ESR1 (p=0.036) methylation. Late stage disease was associated with older age (p<0.001) and methylation of DAPK1 (p=0.034) and ESR1 (p=0.035). The methylation status of RASSF1, DAPK1 and ESR1 suggests the utility of methylation markers to molecularly differentiate thyroid cancer subtypes for enhanced classification and early detection of thyroid cancer. PMID:27158284
Benton, Miles C; Johnstone, Alice; Eccles, David; Harmon, Brennan; Hayes, Mark T; Lea, Rod A; Griffiths, Lyn; Hoffman, Eric P; Stubbs, Richard S; Macartney-Coxson, Donia
2015-01-22
Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3' untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity.
Kamstra, Jorke H; Sales, Liana Bastos; Aleström, Peter; Legler, Juliette
2017-01-01
Exposure to environmental stressors during development may lead to latent and transgenerational adverse health effects. To understand the role of DNA methylation in these effects, we used zebrafish as a vertebrate model to investigate heritable changes in DNA methylation following chemical-induced stress during early development. We exposed zebrafish embryos to non-embryotoxic concentrations of the biologically active phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP, 30 µM) and the DNA methyltransferase 1 inhibitor 5-azacytidine (5AC, 10 µM). Direct, latent and transgenerational effects on DNA methylation were assessed using global, genome-wide and locus-specific DNA methylation analyses. Following direct exposure in zebrafish embryos from 0 to 6 days post-fertilization, genome-wide analysis revealed a multitude of differentially methylated regions, strongly enriched at conserved non-genic elements for both compounds. Pathways involved in adipogenesis were enriched with the putative obesogenic compound MEHP. Exposure to 5AC resulted in enrichment of pathways involved in embryonic development and transgenerational effects on larval body length. Locus-specific methylation analysis of 10 differentially methylated sites revealed six of these loci differentially methylated in sperm sampled from adult zebrafish exposed during development to 5AC, and in first and second generation larvae. With MEHP, consistent changes were found at 2 specific loci in first and second generation larvae. Our results suggest a functional role for DNA methylation on cis-regulatory conserved elements following developmental exposure to compounds. Effects on these regions are potentially transferred to subsequent generations.
Garner, Justine L; Niles, Kirsten M; McGraw, Serge; Yeh, Jonathan R; Cushnie, Duncan W; Hermo, Louis; Nagano, Makoto C; Trasler, Jacquetta M
2013-11-01
Little is known about the conditions contributing to the stability of DNA methylation patterns in male germ cells. Altered folate pathway enzyme activity and methyl donor supply are two clinically significant factors that can affect the methylation of DNA. 5,10-Methylenetetrahydrofolate reductase (MTHFR) is a key folate pathway enzyme involved in providing methyl groups from dietary folate for DNA methylation. Mice heterozygous for a targeted mutation in the Mthfr gene (Mthfr(+/-)) are a good model for humans homozygous for the MTHFR 677C>T polymorphism, which is found in 10% of the population and is associated with decreased MTHFR activity and infertility. High-dose folic acid is administered as an empirical treatment for male infertility. Here, we examined MTHFR expression in developing male germ cells and evaluated DNA methylation patterns and effects of a range of methionine concentrations in spermatogonia from Mthfr(+/-) as compared to wild-type, Mthfr(+/+) mice. MTHFR was expressed in prospermatogonia and spermatogonia at times of DNA methylation acquisition in the male germline; its expression was also found in early spermatocytes and Sertoli cells. DNA methylation patterns were similar at imprinted genes and intergenic sites across chromosome 9 in neonatal Mthfr(+/+) and Mthfr(+/-) spermatogonia. Using spermatogonia from Mthfr(+/+) and Mthfr(+/-) mice in the spermatogonial stem cell (SSC) culture system, we examined the stability of DNA methylation patterns and determined effects of low or high methionine concentrations. No differences were detected between early and late passages, suggesting that DNA methylation patterns are generally stable in culture. Twenty-fold normal concentrations of methionine resulted in an overall increase in the levels of DNA methylation across chromosome 9, suggesting that DNA methylation can be perturbed in culture. Mthfr(+/-) cells showed a significantly increased variance of DNA methylation at multiple loci across chromosome 9 compared to Mthfr(+/+) cells when cultured with 0.25- to 2-fold normal methionine concentrations. Taken together, our results indicate that DNA methylation patterns in undifferentiated spermatogonia, including SSCs, are relatively stable in culture over time under conditions of altered methionine and MTHFR levels.
Abnormal DNA methylation may contribute to the progression of osteosarcoma.
Chen, Xiao-Gang; Ma, Liang; Xu, Jia-Xin
2018-01-01
The identification of optimal methylation biomarkers to achieve maximum diagnostic ability remains a challenge. The present study aimed to elucidate the potential molecular mechanisms underlying osteosarcoma (OS) using DNA methylation analysis. Based on the GSE36002 dataset obtained from the Gene Expression Omnibus database, differentially methylated genes were extracted between patients with OS and controls using t‑tests. Subsequently, hierarchical clustering was performed to segregate the samples into two distinct clusters, OS and normal. Gene Ontology (GO) and pathway enrichment analyses for differentially methylated genes were performed using the Database for Annotation, Visualization and Integrated Discovery tool. A protein‑protein interaction (PPI) network was established, followed by hub gene identification. Using the cut‑off threshold of ≥0.2 average β‑value difference, 3,725 unique CpGs (2,862 genes) were identified to be differentially methylated between the OS and normal groups. Among these 2,862 genes, 510 genes were differentially hypermethylated and 2,352 were differentially hypomethylated. The differentially hypermethylated genes were primarily involved in 20 GO terms, and the top 3 terms were associated with potassium ion transport. For differentially hypomethylated genes, GO functions principally included passive transmembrane transporter activity, channel activity and metal ion transmembrane transporter activity. In addition, a total of 10 significant pathways were enriched by differentially hypomethylated genes; notably, neuroactive ligand‑receptor interaction was the most significant pathway. Based on a connectivity degree >90, 7 hub genes were selected from the PPI network, including neuromedin U (NMU; degree=103) and NMU receptor 1 (NMUR1; degree=103). Functional terms (potassium ion transport, transmembrane transporter activity, and neuroactive ligand‑receptor interaction) and hub genes (NMU and NMUR1) may serve as potential targets for the treatment and diagnosis of OS.
Joehanes, Roby; Liu, Chunyu; Aslibekyan, Stella; Demerath, Ellen W.; Guan, Weihua; Zhi, Degui; Willinger, Christine; Courchesne, Paul; Multhaup, Michael; Irvin, Marguerite R.; Schadt, Eric E.; Bressler, Jan; North, Kari; Sundström, Johan; Gustafsson, Stefan; Shah, Sonia; McRae, Allan F.; Harris, Sarah E.; Gibson, Jude; Redmond, Paul; Corley, Janie; Starr, John M.; Visscher, Peter M.; Wray, Naomi R.; Krauss, Ronald M.; Feinberg, Andrew; Fornage, Myriam; Pankow, James S.; Lind, Lars; Fox, Caroline; Ingelsson, Erik; Arnett, Donna K.; Boerwinkle, Eric; Liang, Liming; Levy, Daniel; Deary, Ian J.
2017-01-01
Background The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. Methods and Findings We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. Conclusions We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases. PMID:28095459
Altobelli, Gioia; Bogdarina, Irina G; Stupka, Elia; Clark, Adrian J L; Langley-Evans, Simon
2013-01-01
A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes and 1183 differentially methylated regions (FDR 5%). The functional analysis of differentially expressed genes indicated a significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions. Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover, these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures.
H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells.
Fernández, Agustín F; Bayón, Gustavo F; Urdinguio, Rocío G; Toraño, Estela G; García, María G; Carella, Antonella; Petrus-Reurer, Sandra; Ferrero, Cecilia; Martinez-Camblor, Pablo; Cubillo, Isabel; García-Castro, Javier; Delgado-Calle, Jesús; Pérez-Campo, Flor M; Riancho, José A; Bueno, Clara; Menéndez, Pablo; Mentink, Anouk; Mareschi, Katia; Claire, Fabian; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brescianini, Sonia; Moran, Sebastián; Esteller, Manel; Stolzing, Alexandra; de Boer, Jan; Nisticò, Lorenza; Stazi, Maria A; Fraga, Mario F
2015-01-01
In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors. © 2015 Fernández et al.; Published by Cold Spring Harbor Laboratory Press.
Hedman, Åsa K; Mendelson, Michael M; Marioni, Riccardo E; Gustafsson, Stefan; Joehanes, Roby; Irvin, Marguerite R; Zhi, Degui; Sandling, Johanna K; Yao, Chen; Liu, Chunyu; Liang, Liming; Huan, Tianxiao; McRae, Allan F; Demissie, Serkalem; Shah, Sonia; Starr, John M; Cupples, L Adrienne; Deloukas, Panos; Spector, Timothy D; Sundström, Johan; Krauss, Ronald M; Arnett, Donna K; Deary, Ian J; Lind, Lars; Levy, Daniel; Ingelsson, Erik
2017-01-01
Genome-wide association studies have identified loci influencing circulating lipid concentrations in humans; further information on novel contributing genes, pathways, and biology may be gained through studies of epigenetic modifications. To identify epigenetic changes associated with lipid concentrations, we assayed genome-wide DNA methylation at cytosine-guanine dinucleotides (CpGs) in whole blood from 2306 individuals from 2 population-based cohorts, with replication of findings in 2025 additional individuals. We identified 193 CpGs associated with lipid levels in the discovery stage ( P <1.08E-07) and replicated 33 (at Bonferroni-corrected P <0.05), including 25 novel CpGs not previously associated with lipids. Genes at lipid-associated CpGs were enriched in lipid and amino acid metabolism processes. A differentially methylated locus associated with triglycerides and high-density lipoprotein cholesterol (HDL-C; cg27243685; P =8.1E-26 and 9.3E-19) was associated with cis -expression of a reverse cholesterol transporter ( ABCG1; P =7.2E-28) and incident cardiovascular disease events (hazard ratio per SD increment, 1.38; 95% confidence interval, 1.15-1.66; P =0.0007). We found significant cis -methylation quantitative trait loci at 64% of the 193 CpGs with an enrichment of signals from genome-wide association studies of lipid levels ( P TC =0.004, P HDL-C =0.008 and P triglycerides =0.00003) and coronary heart disease ( P =0.0007). For example, genome-wide significant variants associated with low-density lipoprotein cholesterol and coronary heart disease at APOB were cis -methylation quantitative trait loci for a low-density lipoprotein cholesterol-related differentially methylated locus. We report novel associations of DNA methylation with lipid levels, describe epigenetic mechanisms related to previous genome-wide association studies discoveries, and provide evidence implicating epigenetic regulation of reverse cholesterol transport in blood in relation to occurrence of cardiovascular disease events. © 2017 The Authors.
Cheong, Ana; Zhang, Xiang; Cheung, Yuk-Yin; Tang, Wan-yee; Chen, Jing; Ye, Shu-Hua; Medvedovic, Mario; Leung, Yuet-Kin; Prins, Gail S.; Ho, Shuk-Mei
2016-01-01
ABSTRACT Developmental exposure to endocrine-disrupting chemicals (EDCs), 17β-estradiol-3-benzoate (EB) and bisphenol A (BPA), increases susceptibility to prostate cancer (PCa) in rodent models. Here, we used the methylated-CpG island recovery assay (MIRA)-assisted genomic tiling and CpG island arrays to identify treatment-associated methylome changes in the postnatal day (PND)90 dorsal prostate tissues of Sprague-Dawley rats neonatally (PND1, 3, and 5) treated with 25 µg/pup or 2,500 µg EB/kg body weight (BW) or 0.1 µg BPA/pup or 10 µg BPA/kg BW. We identified 111 EB-associated and 86 BPA-associated genes, with 20 in common, that have significant differentially methylated regions. Pathway analysis revealed cancer as the top common disease pathway. Bisulfite sequencing validated the differential methylation patterns observed by array analysis in 15 identified candidate genes. The methylation status of 7 (Pitx3, Wnt10b, Paqr4, Sox2, Chst14, Tpd52, Creb3l4) of these 15 genes exhibited an inverse correlation with gene expression in tissue samples. Cell-based assays, using 5-aza-cytidine-treated normal (NbE-1) and cancerous (AIT) rat prostate cells, added evidence of DNA methylation-mediated gene expression of 6 genes (exception: Paqr4). Functional connectivity of these genes was linked to embryonic stem cell pluripotency. Furthermore, clustering analyses using the dataset from The Cancer Genome Atlas revealed that expression of this set of 7 genes was associated with recurrence-free survival of PCa patients. In conclusion, our study reveals that gene-specific promoter methylation changes, resulting from early-life EDC exposure in the rat, may serve as predictive epigenetic biomarkers of PCa recurrence, and raises the possibility that such exposure may impact human disease. PMID:27415467
Cheong, Ana; Zhang, Xiang; Cheung, Yuk-Yin; Tang, Wan-Yee; Chen, Jing; Ye, Shu-Hua; Medvedovic, Mario; Leung, Yuet-Kin; Prins, Gail S; Ho, Shuk-Mei
2016-09-01
Developmental exposure to endocrine-disrupting chemicals (EDCs), 17β-estradiol-3-benzoate (EB) and bisphenol A (BPA), increases susceptibility to prostate cancer (PCa) in rodent models. Here, we used the methylated-CpG island recovery assay (MIRA)-assisted genomic tiling and CpG island arrays to identify treatment-associated methylome changes in the postnatal day (PND)90 dorsal prostate tissues of Sprague-Dawley rats neonatally (PND1, 3, and 5) treated with 25 µg/pup or 2,500 µg EB/kg body weight (BW) or 0.1 µg BPA/pup or 10 µg BPA/kg BW. We identified 111 EB-associated and 86 BPA-associated genes, with 20 in common, that have significant differentially methylated regions. Pathway analysis revealed cancer as the top common disease pathway. Bisulfite sequencing validated the differential methylation patterns observed by array analysis in 15 identified candidate genes. The methylation status of 7 (Pitx3, Wnt10b, Paqr4, Sox2, Chst14, Tpd52, Creb3l4) of these 15 genes exhibited an inverse correlation with gene expression in tissue samples. Cell-based assays, using 5-aza-cytidine-treated normal (NbE-1) and cancerous (AIT) rat prostate cells, added evidence of DNA methylation-mediated gene expression of 6 genes (exception: Paqr4). Functional connectivity of these genes was linked to embryonic stem cell pluripotency. Furthermore, clustering analyses using the dataset from The Cancer Genome Atlas revealed that expression of this set of 7 genes was associated with recurrence-free survival of PCa patients. In conclusion, our study reveals that gene-specific promoter methylation changes, resulting from early-life EDC exposure in the rat, may serve as predictive epigenetic biomarkers of PCa recurrence, and raises the possibility that such exposure may impact human disease.
Tajbakhsh, Jian; Stefanovski, Darko; Tang, George; Wawrowsky, Kolja; Liu, Naiyou; Fair, Jeffrey H
2015-03-15
Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a 10-day differentiation course in vitro: by means of confocal and super-resolution imaging together with 3D high-content analysis, an essential tool in single-cell screening. 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU/day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17: 0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, global DNA methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC(+)/5mC(-), 5hmC(+)/5mC(+), and 5hmC(-)/5mC(+) cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC(+)/5mC(+) cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably delineating chromatin domains in remodeling. We conclude that 1) 5mC emerges as the most differential marker in our model system. 2) However, the combined enrollment of the two DNA modifications provided higher-definition screening and lead to the identification of cell subpopulations based on differential 5hmC/5mC phenotypes corresponding to different 5hmC/5mC ratios. The results encourage: a) assessing the regenerative potential of early-endodermal cells enriched for the three DNA methylation/hydroxymethylation categories, and b) exploring the universality of this type of epigenetic phenotyping across other lineage-specific differentiations. Copyright © 2015 Elsevier Inc. All rights reserved.
Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.
2015-01-01
Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID:25552301
Pusalkar, Madhavi; Ghosh, Shreya; Jaggar, Minal; Husain, Basma Fatima Anwar; Galande, Sanjeev; Vaidya, Vidita A
2016-09-01
Electroconvulsive seizure treatment is a fast-acting antidepressant therapy that evokes rapid transcriptional, neurogenic, and behavioral changes. Epigenetic mechanisms contribute to altered gene regulation, which underlies the neurogenic and behavioral effects of electroconvulsive seizure. We hypothesized that electroconvulsive seizure may modulate the expression of epigenetic machinery, thus establishing potential alterations in the epigenetic landscape. We examined the influence of acute and chronic electroconvulsive seizure on the gene expression of histone modifiers, namely histone acetyltransferases, histone deacetylases, histone methyltransferases, and histone (lysine) demethylases as well as DNA modifying enzymes, including DNA methyltransferases, DNA demethylases, and methyl-CpG-binding proteins in the hippocampi of adult male Wistar rats using quantitative real time-PCR analysis. Further, we examined the influence of acute and chronic electroconvulsive seizure on global and residue-specific histone acetylation and methylation levels within the hippocampus, a brain region implicated in the cellular and behavioral effects of electroconvulsive seizure. Acute and chronic electroconvulsive seizure induced a primarily unique, and in certain cases bidirectional, regulation of histone and DNA modifiers, and methyl-CpG-binding proteins, with an overlapping pattern of gene regulation restricted to Sirt4, Mll3, Jmjd3, Gadd45b, Tet2, and Tet3. Global histone acetylation and methylation levels were predominantly unchanged, with the exception of a significant decline in H3K9 acetylation in the hippocampus following chronic electroconvulsive seizure. Electroconvulsive seizure treatment evokes the transcriptional regulation of several histone and DNA modifiers, and methyl-CpG-binding proteins within the hippocampus, with a predominantly distinct pattern of regulation induced by acute and chronic electroconvulsive seizure. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Pusalkar, Madhavi; Ghosh, Shreya; Jaggar, Minal; Husain, Basma Fatima Anwar; Galande, Sanjeev
2016-01-01
Background: Electroconvulsive seizure treatment is a fast-acting antidepressant therapy that evokes rapid transcriptional, neurogenic, and behavioral changes. Epigenetic mechanisms contribute to altered gene regulation, which underlies the neurogenic and behavioral effects of electroconvulsive seizure. We hypothesized that electroconvulsive seizure may modulate the expression of epigenetic machinery, thus establishing potential alterations in the epigenetic landscape. Methods: We examined the influence of acute and chronic electroconvulsive seizure on the gene expression of histone modifiers, namely histone acetyltransferases, histone deacetylases, histone methyltransferases, and histone (lysine) demethylases as well as DNA modifying enzymes, including DNA methyltransferases, DNA demethylases, and methyl-CpG-binding proteins in the hippocampi of adult male Wistar rats using quantitative real time-PCR analysis. Further, we examined the influence of acute and chronic electroconvulsive seizure on global and residue-specific histone acetylation and methylation levels within the hippocampus, a brain region implicated in the cellular and behavioral effects of electroconvulsive seizure. Results: Acute and chronic electroconvulsive seizure induced a primarily unique, and in certain cases bidirectional, regulation of histone and DNA modifiers, and methyl-CpG-binding proteins, with an overlapping pattern of gene regulation restricted to Sirt4, Mll3, Jmjd3, Gadd45b, Tet2, and Tet3. Global histone acetylation and methylation levels were predominantly unchanged, with the exception of a significant decline in H3K9 acetylation in the hippocampus following chronic electroconvulsive seizure. Conclusions: Electroconvulsive seizure treatment evokes the transcriptional regulation of several histone and DNA modifiers, and methyl-CpG-binding proteins within the hippocampus, with a predominantly distinct pattern of regulation induced by acute and chronic electroconvulsive seizure. PMID:27207907
Robust joint score tests in the application of DNA methylation data analysis.
Li, Xuan; Fu, Yuejiao; Wang, Xiaogang; Qiu, Weiliang
2018-05-18
Recently differential variability has been showed to be valuable in evaluating the association of DNA methylation to the risks of complex human diseases. The statistical tests based on both differential methylation level and differential variability can be more powerful than those based only on differential methylation level. Anh and Wang (2013) proposed a joint score test (AW) to simultaneously detect for differential methylation and differential variability. However, AW's method seems to be quite conservative and has not been fully compared with existing joint tests. We proposed three improved joint score tests, namely iAW.Lev, iAW.BF, and iAW.TM, and have made extensive comparisons with the joint likelihood ratio test (jointLRT), the Kolmogorov-Smirnov (KS) test, and the AW test. Systematic simulation studies showed that: 1) the three improved tests performed better (i.e., having larger power, while keeping nominal Type I error rates) than the other three tests for data with outliers and having different variances between cases and controls; 2) for data from normal distributions, the three improved tests had slightly lower power than jointLRT and AW. The analyses of two Illumina HumanMethylation27 data sets GSE37020 and GSE20080 and one Illumina Infinium MethylationEPIC data set GSE107080 demonstrated that three improved tests had higher true validation rates than those from jointLRT, KS, and AW. The three proposed joint score tests are robust against the violation of normality assumption and presence of outlying observations in comparison with other three existing tests. Among the three proposed tests, iAW.BF seems to be the most robust and effective one for all simulated scenarios and also in real data analyses.
USDA-ARS?s Scientific Manuscript database
CpH methylations are epigenetic markers enriched in stem cells which are lost during cell differentiation. DNMT3a and DNMT3b are de novo methyltransferases contributing to CpH methylations. MyoD is an important myogenic transcription factor necessary for the differentiation of myogenic precursor cel...
Rico, L; Ogaya, R; Barbeta, A; Peñuelas, J
2014-03-01
Rapid genetic changes in plants have been reported in response to current climate change. We assessed the capacity of trees in a natural forest to produce rapid acclimation responses based on epigenetic modifications. We analysed natural populations of Quercus ilex, the dominant tree species of Mediterranean forests, using the methylation-sensitive amplified polymorphism (MSAP) technique to assess patterns and levels of methylation in individuals from unstressed forest plots and from plots experimentally exposed to drought for 12 years at levels projected for the coming decades. The percentage of hypermethylated loci increased, and the percentage of fully methylated loci clearly decreased in plants exposed to drought. Multivariate analyses exploring the status of methylation at MSAP loci also showed clear differentiation depending on stress. The PCA scores for the MSAP profiles clearly separated the genetic from the epigenetic structure, and also significantly separated the samples within each group in response to drought. Changes in DNA methylation highlight the large capacity of plants to rapidly acclimate to changing environmental conditions, including trees with long life spans, and our results demonstrate those changes. These changes, although unable to prevent the decreased growth and higher mortality associated with this experimental drought, occurred together with a dampening in such decreases as the long-term treatment progressed. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Downing, Chris; Johnson, Thomas E; Larson, Colin; Leakey, Tatiana I; Siegfried, Rachel N; Rafferty, Tonya M; Cooney, Craig A
2010-01-01
C57BL/6J (B6) mice are susceptible to in utero growth retardation and a number of morphological malformations following prenatal alcohol exposure, while DBA/2J (D2) mice are relatively resistant. We have previously shown that genomic imprinting may play a role in differential sensitivity between B6 and D2 (Downing and Gilliam 1999). The best characterized mechanism mediating genomic imprinting is differential DNA methylation. In the present study we examined DNA methylation and gene expression, in both embryonic and placental tissue, at the mouse Igf2 locus following in utero ethanol exposure. We also examined the effects of a methyl-supplemented diet on methylation and ethanol teratogenesis. In embryos from susceptible B6 mice, we found small decreases in DNA methylation at four CpG sites in one of the differentially methylated regions of the Igf2 locus; only one of the four sites showed a statistically significant decrease. We observed no significant decreases in methylation in placentae. All Igf2 transcripts showed approximately 1.5 fold decreases following intrauterine alcohol exposure. Placing dams on a methyl-supplemented diet before pregnancy and throughout gestation brought methylation back up to control levels. Methyl-supplementation also resulted in lower prenatal mortality, greater prenatal growth, and decreased digit malformations; it dramatically reduced vertebral malformations. Thus, while prenatal alcohol had only small effects on DNA methylation at the Igf2 locus, placing dams on a methyl-supplemented diet partially ameliorated ethanol teratogenesis. PMID:20705422
Schroeder, Diane I.; Jayashankar, Kartika; Douglas, Kory C.; Thirkill, Twanda L.; York, Daniel; Dickinson, Pete J.; Williams, Lawrence E.; Samollow, Paul B.; Ross, Pablo J.; Bannasch, Danika L.; Douglas, Gordon C.; LaSalle, Janine M.
2015-01-01
Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857
Jiao, Zhe; Jiang, Zhimei; Wang, Jingtao; Xu, Hui; Zhang, Qiang; Liu, Shuang; Du, Ning; Zhang, Yuanyuan; Qiu, Hongbin
2017-01-01
Cerebral palsy (CP) is a severe type of brain disease affecting movement and posture. Although CP has strong genetic and environmental components, considerable differences in the methylome between monozygotic (MZ) twins discordant for CP implicates epigenetic contributors as well. In order to determine the differences in methylation in patients with CP without interference of the interindividual genomic variation, four pairs of MZ twins discordant for CP were profiled for DNA methylation changes using reduced representation bisulfite sequencing on the genomic-scale. Similar DNA methylation patterns were observed in all samples. However, MZ twins demonstrated higher correlations and closer evolutionary associations compared with the other samples, indicating a stable methylome of MZ twins. A total of 190 differentially methylated genes (DMGs) were identified using Student's t-test, of which 37 genes were hypermethylated in the CP group while the remainders were hypomethylated compared with control group. The identified DMGs were enriched in several cerebral abnormalities, including cerebral cortical atrophy and cerebral atrophy, suggesting that the occurrence of CP may be associated with the methylation alterations. The neighboring genes of DMGs in the protein-protein interaction network were enriched in numerous important functions in essential processes. The results of the present study identified important genes that may epigenetically contribute to the occurrence and development of CP in MZ twins, suggesting that the different prevalence of CP in identical twins may be associated with DNA methylation alterations. PMID:29039597
Crujeiras, A. B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F. I.; Navas-Carretero, S.; Carreira, M. C.; Gomez, A.; Hervas, D.; Monteiro, M. P.; Casanueva, F. F.; Esteller, M.; Martinez, J. A.
2017-01-01
The characterization of the epigenetic changes within the obesity-related adipose tissue will provide new insights to understand this metabolic disorder, but adipose tissue is not easy to sample in population-based studies. We aimed to evaluate the capacity of circulating leukocytes to reflect the adipose tissue-specific DNA methylation status of obesity susceptibility. DNA samples isolated from subcutaneous adipose tissue and circulating leukocytes were hybridized in the Infinium HumanMethylation 450 BeadChip. Data were compared between samples from obese (n = 45) and non-obese (n = 8–10) patients by Wilcoxon-rank test, unadjusted for cell type distributions. A global hypomethylation of the differentially methylated CpG sites (DMCpGs) was observed in the obese subcutaneous adipose tissue and leukocytes. The overlap analysis yielded a number of genes mapped by the common DMCpGs that were identified to reflect the obesity state in the leukocytes. Specifically, the methylation levels of FGFRL1, NCAPH2, PNKD and SMAD3 exhibited excellent and statistically significant efficiencies in the discrimination of obesity from non-obesity status (AUC > 0.80; p < 0.05) and a great correlation between both tissues. Therefore, the current study provided new and valuable DNA methylation biomarkers of obesity-related adipose tissue pathogenesis through peripheral blood analysis, an easily accessible and minimally invasive biological material instead of adipose tissue. PMID:28211912
missMethyl: an R package for analyzing data from Illumina's HumanMethylation450 platform.
Phipson, Belinda; Maksimovic, Jovana; Oshlack, Alicia
2016-01-15
DNA methylation is one of the most commonly studied epigenetic modifications due to its role in both disease and development. The Illumina HumanMethylation450 BeadChip is a cost-effective way to profile >450 000 CpGs across the human genome, making it a popular platform for profiling DNA methylation. Here we introduce missMethyl, an R package with a suite of tools for performing normalization, removal of unwanted variation in differential methylation analysis, differential variability testing and gene set analysis for the 450K array. missMethyl is an R package available from the Bioconductor project at www.bioconductor.org. alicia.oshlack@mcri.edu.au Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Eo, JungWoo; Lee, Hee-Eun; Nam, Gyu-Hwi; Kwon, Yun-Jeong; Choi, Yuri; Choi, Bong-Hwan; Huh, Jae-Won; Kim, Minkyu; Lee, Sang-Eun; Seo, Bohyun; Kim, Heui-Soo
2016-04-15
The monoamine oxidase A (MAOA) gene is an important candidate gene for human behavior that encodes an enzyme regulating the metabolism of key neurotransmitters. The regulatory mechanisms of the MAOA gene in dogs are yet to be elucidated. We measured MAOA gene transcription and analyzed the VNTR genotype and methylation status of the gene promoter region in different dog breeds to determine whether MAOA expression is correlated with the MAOA genotype or epigenetic modification in dogs. We found brain-specific expression of the MAOA gene and different transcription levels in different dog breeds including Beagle, Sapsaree, and German shepherd, and also a robust association of the DNA methylation of the gene promoter with mRNA levels. However, the 90 bp tandem repeats that we observed near the transcription start site were not variable, indicating no correlation with canine MAOA activity. These results show that differential DNA methylation in the MAOA promoter region may affect gene expression by modulating promoter activity. Moreover, the distinctive patterns of MAOA expression and DNA methylation may be involved in breed-specific or individual behavioral characteristics, such as aggression, because behavioral phenotypes are related to different physiological and neuroendocrine responses. Copyright © 2016 Elsevier B.V. All rights reserved.
Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics.
Farlik, Matthias; Sheffield, Nathan C; Nuzzo, Angelo; Datlinger, Paul; Schönegger, Andreas; Klughammer, Johanna; Bock, Christoph
2015-03-03
Methods for single-cell genome and transcriptome sequencing have contributed to our understanding of cellular heterogeneity, whereas methods for single-cell epigenomics are much less established. Here, we describe a whole-genome bisulfite sequencing (WGBS) assay that enables DNA methylation mapping in very small cell populations (μWGBS) and single cells (scWGBS). Our assay is optimized for profiling many samples at low coverage, and we describe a bioinformatic method that analyzes collections of single-cell methylomes to infer cell-state dynamics. Using these technological advances, we studied epigenomic cell-state dynamics in three in vitro models of cellular differentiation and pluripotency, where we observed characteristic patterns of epigenome remodeling and cell-to-cell heterogeneity. The described method enables single-cell analysis of DNA methylation in a broad range of biological systems, including embryonic development, stem cell differentiation, and cancer. It can also be used to establish composite methylomes that account for cell-to-cell heterogeneity in complex tissue samples. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Collaborations between CpG sites in DNA methylation
NASA Astrophysics Data System (ADS)
Song, You; Ren, Honglei; Lei, Jinzhi
2017-08-01
DNA methylation patterns have profound impacts on genome stability, gene expression and development. The molecular base of DNA methylation patterns has long been focused at single CpG sites level. Here, we construct a kinetic model of DNA methylation with collaborations between CpG sites, from which a correlation function was established based on experimental data. The function consists of three parts that suggest three possible sources of the correlation: movement of enzymes along DNA, collaboration between DNA methylation and nucleosome modification, and global enzyme concentrations within a cell. Moreover, the collaboration strength between DNA methylation and nucleosome modification is universal for mouse early embryo cells. The obtained correlation function provides insightful understanding for the mechanisms of inheritance of DNA methylation patterns.
Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe
2015-06-01
Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.
NASA Astrophysics Data System (ADS)
Shi, Yuan Yuan; Yan, Wei Yu; Huang, Zachary Y.; Wang, Zi Long; Wu, Xiao Bo; Zeng, Zhi Jiang
2013-02-01
The honey bee is a social insect characterized by caste differentiation, by which a young larva can develop into either a queen or a worker. Despite possessing the same genome, queen and workers display marked differences in reproductive capacity, physiology, and behavior. Recent studies have shown that DNA methylation plays important roles in caste differentiation. To further explore the roles of DNA methylation in this process, we analyzed DNA methylome profiles of both queen larvae (QL) and worker larvae (WL) of different ages (2, 4, and 6 day old), by using methylated DNA immunoprecipitation-sequencing (meDIP-seq) technique. The global DNA methylation levels varied between the larvae of two castes. DNA methylation increased from 2-day- to 4-day-old QL and then decreased in 6-day-old larvae. In WL, methylation levels increased with age. The methylcytosines in both larvae were enriched in introns, followed by coding sequence (CDS) regions, CpG islands, 2 kbp downstream and upstream of genes, and 5' and 3' untranslated regions (UTRs). The number of differentially methylated genes (DMGs) in 2-, 4-, and 6-day-old QL and WL was 725, 3,013, and 5,049, respectively. Compared to 4- and 6-day-old WL, a large number of genes in QL were downmethylated, which were involved in many processes including development, reproduction, and metabolic regulation. In addition, some DMGs were concerned with caste differentiation.
DMRfinder: efficiently identifying differentially methylated regions from MethylC-seq data.
Gaspar, John M; Hart, Ronald P
2017-11-29
DNA methylation is an epigenetic modification that is studied at a single-base resolution with bisulfite treatment followed by high-throughput sequencing. After alignment of the sequence reads to a reference genome, methylation counts are analyzed to determine genomic regions that are differentially methylated between two or more biological conditions. Even though a variety of software packages is available for different aspects of the bioinformatics analysis, they often produce results that are biased or require excessive computational requirements. DMRfinder is a novel computational pipeline that identifies differentially methylated regions efficiently. Following alignment, DMRfinder extracts methylation counts and performs a modified single-linkage clustering of methylation sites into genomic regions. It then compares methylation levels using beta-binomial hierarchical modeling and Wald tests. Among its innovative attributes are the analyses of novel methylation sites and methylation linkage, as well as the simultaneous statistical analysis of multiple sample groups. To demonstrate its efficiency, DMRfinder is benchmarked against other computational approaches using a large published dataset. Contrasting two replicates of the same sample yielded minimal genomic regions with DMRfinder, whereas two alternative software packages reported a substantial number of false positives. Further analyses of biological samples revealed fundamental differences between DMRfinder and another software package, despite the fact that they utilize the same underlying statistical basis. For each step, DMRfinder completed the analysis in a fraction of the time required by other software. Among the computational approaches for identifying differentially methylated regions from high-throughput bisulfite sequencing datasets, DMRfinder is the first that integrates all the post-alignment steps in a single package. Compared to other software, DMRfinder is extremely efficient and unbiased in this process. DMRfinder is free and open-source software, available on GitHub ( github.com/jsh58/DMRfinder ); it is written in Python and R, and is supported on Linux.
Epigenome-wide association study of smoking and DNA methylation in non-small cell lung neoplasms.
Freeman, Joshua R; Chu, Su; Hsu, Thomas; Huang, Yen-Tsung
2016-10-25
Tobacco smoke is a well-established lung cancer carcinogen. We hypothesize that epigenetic processes underlie carcinogenesis. The objective of this study is to examine the effects of smoke exposure on DNA methylation to search for novel susceptibility loci. We obtained epigenome-wide DNA methylation data from lung adenocarcinoma (LUAD) and lung squamous cell (LUSC) tissues in The Cancer Genome Atlas (TCGA). We performed a two-stage discovery (n = 326) and validation (n = 185) analysis to investigate the association of epigenetic DNA methylation level with cigarette smoking pack-years. We also externally validated our findings in an independent dataset. Linear model with least square estimator and spline regression were performed to examine the association between DNA methylation and smoking. We identified five CpG sites highly associated with pack-years of cigarette smoking. Smoking was negatively associated with methylation levels in cg25771041 (WWTR1, p = 3.6 × 10-9), cg16200496 (NFIX, p = 3.4 × 10-12), cg22515201 (PLA2G6, p = 1.0 × 10-9) and cg24823993 (NHP2L1, p = 5.1 × 10-8) and positively associated with the methylation level in cg11875268 (SMUG1, p = 4.3 × 10-8). The CpG-smoking association was stronger in LUSC than LUAD. Of the five loci, smoking explained the most variation in cg16200496 (R2 = 0.098 [both types] and 0.144 [LUSC]). We identified 5 novel CpG candidates that demonstrate differential methylation patterns associated with smoke exposure in lung neoplasms.
Human Endometrial DNA Methylome Is Cycle-Dependent and Is Associated With Gene Expression Regulation
Houshdaran, Sahar; Zelenko, Zara; Irwin, Juan C.
2014-01-01
Human endometrium undergoes major gene expression changes, resulting in altered cellular functions in response to cyclic variations in circulating estradiol and progesterone, largely mediated by transcription factors and nuclear receptors. In addition to classic modulators, epigenetic mechanisms regulate gene expression during development in response to environmental factors and in some diseases and have roles in steroid hormone action. Herein, we tested the hypothesis that DNA methylation plays a role in gene expression regulation in human endometrium in different hormonal milieux. High throughput, genome-wide DNA methylation profiling of endometrial samples in proliferative, early secretory, and midsecretory phases revealed dynamic DNA methylation patterns with segregation of proliferative from secretory phase samples by unsupervised cluster analysis of differentially methylated genes. Changes involved different frequencies of gain and loss of methylation within or outside CpG islands. Comparison of changes in transcriptomes and corresponding DNA methylomes from the same samples revealed association of DNA methylation and gene expression in a number of loci, some important in endometrial biology. Human endometrial stromal fibroblasts treated in vitro with estradiol and progesterone exhibited DNA methylation changes in several genes observed in proliferative and secretory phase tissues, respectively. Taken together, the data support the observation that epigenetic mechanisms are involved in gene expression regulation in human endometrium in different hormonal milieux, adding endometrium to a small number of normal adult tissues exhibiting dynamic DNA methylation. The data also raise the possibility that the interplay between steroid hormone and methylome dynamics regulates normal endometrial functions and, if abnormal, may result in endometrial dysfunction and associated disorders. PMID:24877562
Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters
Maunakea, Alika K.; Nagarajan, Raman P.; Bilenky, Mikhail; Ballinger, Tracy J.; D’Souza, Cletus; Fouse, Shaun D.; Johnson, Brett E.; Hong, Chibo; Nielsen, Cydney; Zhao, Yongjun; Turecki, Gustavo; Delaney, Allen; Varhol, Richard; Thiessen, Nina; Shchors, Ksenya; Heine, Vivi M.; Rowitch, David H.; Xing, Xiaoyun; Fiore, Chris; Schillebeeckx, Maximiliaan; Jones, Steven J.M.; Haussler, David; Marra, Marco A.; Hirst, Martin; Wang, Ting; Costello, Joseph F.
2014-01-01
While the methylation of DNA in 5′ promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear1–5. In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5′ CpG island (CGI) promoters, while a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences5–10. Tissue-specific intragenic methylation might reduce,3 or, paradoxically, enhance transcription elongation efficiency1,2,4,5. Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes11–15. To investigate the role of intragenic methylation, we generated a map of DNA methylation from human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were revealed to be in intragenic and intergenic regions, while less than 3% of CpG islands in 5′ promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters16. The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus17,18 and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies. PMID:20613842
Brant, Jason O; Riva, Alberto; Resnick, James L; Yang, Thomas P
2014-01-01
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ∼3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ∼2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5′ CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ∼750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain. PMID:25482058
Brant, Jason O; Riva, Alberto; Resnick, James L; Yang, Thomas P
2014-11-01
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ~3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ~2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5' CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ~750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain.
Sun, Ai-Jun; Gao, Hai-Bo; Liu, Gao; Ge, Heng-Fa; Ke, Zun-Ping; Li, Sen
2017-07-01
Colorectal cancer is the second most deadly malignancy in the United States. However, the currently screening options had their limitation. Novel biomarkers for colorectal cancer detections are necessary to reduce the mortality. The clinical information, mRNA expression levels and DNA methylation information of colorectal cancer were downloaded from TCGA. The patients were separated into training group and testing group based on their platforms for DNA methylation. Beta values of DNA methylation from tumor tissues and normal tissues were utilized to figure out the position that were differentially methylated. The expression levels of mRNA of thirteen genes, whose CpG islands were differentially methylated, were extracted from the RNA-Seq results from TCGA. The probabilities whether the mRNA was differentially expressed between tumor and normal samples were calculated using Student's t-test. Logistic regression and decision tree were built for cancer detection and their performances were evaluated by the area under the curve (AUC). Twenty-four genomic locations were differentially methylated, which could be mapped to eleven genes. Nine out of eleven genes had differentially expressed mRNA levels, which were used to build the model for cancer detection. The final detection models consisting of mRNA expression levels of these nine genes had great performances on both training group and testing group. The model that constructed in this study suggested MSX1 and DCLK1 might be used in colorectal cancer detection or as target of cancer therapies. J. Cell. Physiol. 232: 1879-1884, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Methylation Pattern of Radish (Raphanus sativus) Nuclear Ribosomal RNA Genes 1
Delseny, Michel; Laroche, Monique; Penon, Paul
1984-01-01
The methylation pattern of radish Raphanus sativus nuclear rDNA has been investigated using the Hpa II, Msp I, and Hha I restriction enzymes. The presence of numerous target sites for these enzymes has been shown using cloned rDNA fragments. A large fraction of the numerous rDNA units are heavily methylated, being completely resistant to Hpa II and Hpa I. However, specific sites are constantly available in another fraction of the units and are therefore unmethylated. The use of different probes allowed us to demonstrate that hypomethylated sites are present in different regions. Major hypomethylated Hha I sites have been mapped in the 5′ portion of 25S rRNA coding sequence. Among the hypomethylated fraction, different methylation patterns coexist. It has been possible to demonstrate that methylation patterns are specific for particular units. The Hha I pattern of rDNA in tissues of different developmental stages was analyzed. Evidence for possible tissue specific differences in the methylation pattern is reported. Images Fig. 2 Fig. 3 Fig. 5 PMID:16663896
Sayols-Baixeras, S; Subirana, I; Lluis-Ganella, C; Civeira, F; Roquer, J; Do, A N; Absher, D; Cenarro, A; Muñoz, D; Soriano-Tárraga, C; Jiménez-Conde, J; Ordovas, J M; Senti, M; Aslibekyan, S; Marrugat, J; Arnett, D K; Elosua, R
2016-10-15
Lipid traits (total, low-density and high-density lipoprotein cholesterol, and triglycerides) are risk factors for cardiovascular disease. DNA methylation is not only an inherited but also modifiable epigenetic mark that has been related to cardiovascular risk factors. Our aim was to identify loci showing differential DNA methylation related to serum lipid levels. Blood DNA methylation was assessed using the Illumina Human Methylation 450 BeadChip. A two-stage epigenome-wide association study was performed, with a discovery sample in the REGICOR study (n = 645) and validation in the Framingham Offspring Study (n = 2,542). Fourteen CpG sites located in nine genes (SREBF1, SREBF2, PHOSPHO1, SYNGAP1, ABCG1, CPT1A, MYLIP, TXNIP and SLC7A11) and 2 intergenic regions showed differential methylation in association with lipid traits. Six of these genes and 1 intergenic region were new discoveries showing differential methylation related to total cholesterol (SREBF2), HDL-cholesterol (PHOSPHO1, SYNGAP1 and an intergenic region in chromosome 2) and triglycerides (MYLIP, TXNIP and SLC7A11). These CpGs explained 0.7%, 9.5% and 18.9% of the variability of total cholesterol, HDL cholesterol and triglycerides in the Framingham Offspring Study, respectively. The expression of the genes SREBF2 and SREBF1 was inversely associated with methylation of their corresponding CpGs (P-value = 0.0042 and 0.0045, respectively) in participants of the GOLDN study (n = 98). In turn, SREBF1 expression was directly associated with HDL cholesterol (P-value = 0.0429). Genetic variants in SREBF1, PHOSPHO1, ABCG1 and CPT1A were also associated with lipid profile. Further research is warranted to functionally validate these new loci and assess the causality of new and established associations between these differentially methylated loci and lipid metabolism.
Henrich, Kai-Oliver; Bender, Sebastian; Saadati, Maral; Dreidax, Daniel; Gartlgruber, Moritz; Shao, Chunxuan; Herrmann, Carl; Wiesenfarth, Manuel; Parzonka, Martha; Wehrmann, Lea; Fischer, Matthias; Duffy, David J; Bell, Emma; Torkov, Alica; Schmezer, Peter; Plass, Christoph; Höfer, Thomas; Benner, Axel; Pfister, Stefan M; Westermann, Frank
2016-09-15
The broad clinical spectrum of neuroblastoma ranges from spontaneous regression to rapid progression despite intensive multimodal therapy. This diversity is not fully explained by known genetic aberrations, suggesting the possibility of epigenetic involvement in pathogenesis. In pursuit of this hypothesis, we took an integrative approach to analyze the methylomes, transcriptomes, and copy number variations in 105 cases of neuroblastoma, complemented by primary tumor- and cell line-derived global histone modification analyses and epigenetic drug treatment in vitro We found that DNA methylation patterns identify divergent patient subgroups with respect to survival and clinicobiologic variables, including amplified MYCN Transcriptome integration and histone modification-based definition of enhancer elements revealed intragenic enhancer methylation as a mechanism for high-risk-associated transcriptional deregulation. Furthermore, in high-risk neuroblastomas, we obtained evidence for cooperation between PRC2 activity and DNA methylation in blocking tumor-suppressive differentiation programs. Notably, these programs could be re-activated by combination treatments, which targeted both PRC2 and DNA methylation. Overall, our results illuminate how epigenetic deregulation contributes to neuroblastoma pathogenesis, with novel implications for its diagnosis and therapy. Cancer Res; 76(18); 5523-37. ©2016 AACR. ©2016 American Association for Cancer Research.
Shen, Hui; Fridley, Brooke L.; Song, Honglin; Lawrenson, Kate; Cunningham, Julie M.; Ramus, Susan J.; Cicek, Mine S.; Tyrer, Jonathan; Stram, Douglas; Larson, Melissa C.; Köbel, Martin; Ziogas, Argyrios; Zheng, Wei; Yang, Hannah P.; Wu, Anna H.; Wozniak, Eva L.; Woo, Yin Ling; Winterhoff, Boris; Wik, Elisabeth; Whittemore, Alice S.; Wentzensen, Nicolas; Weber, Rachel Palmieri; Vitonis, Allison F.; Vincent, Daniel; Vierkant, Robert A.; Vergote, Ignace; Van Den Berg, David; Van Altena, Anne M.; Tworoger, Shelley S.; Thompson, Pamela J.; Tessier, Daniel C.; Terry, Kathryn L.; Teo, Soo-Hwang; Templeman, Claire; Stram, Daniel O.; Southey, Melissa C.; Sieh, Weiva; Siddiqui, Nadeem; Shvetsov, Yurii B.; Shu, Xiao-Ou; Shridhar, Viji; Wang-Gohrke, Shan; Severi, Gianluca; Schwaab, Ira; Salvesen, Helga B.; Rzepecka, Iwona K.; Runnebaum, Ingo B.; Rossing, Mary Anne; Rodriguez-Rodriguez, Lorna; Risch, Harvey A.; Renner, Stefan P.; Poole, Elizabeth M.; Pike, Malcolm C.; Phelan, Catherine M.; Pelttari, Liisa M.; Pejovic, Tanja; Paul, James; Orlow, Irene; Omar, Siti Zawiah; Olson, Sara H.; Odunsi, Kunle; Nickels, Stefan; Nevanlinna, Heli; Ness, Roberta B.; Narod, Steven A.; Nakanishi, Toru; Moysich, Kirsten B.; Monteiro, Alvaro N.A.; Moes-Sosnowska, Joanna; Modugno, Francesmary; Menon, Usha; McLaughlin, John R.; McGuire, Valerie; Matsuo, Keitaro; Adenan, Noor Azmi Mat; Massuger, Leon F.A. G.; Lurie, Galina; Lundvall, Lene; Lubiński, Jan; Lissowska, Jolanta; Levine, Douglas A.; Leminen, Arto; Lee, Alice W.; Le, Nhu D.; Lambrechts, Sandrina; Lambrechts, Diether; Kupryjanczyk, Jolanta; Krakstad, Camilla; Konecny, Gottfried E.; Kjaer, Susanne Krüger; Kiemeney, Lambertus A.; Kelemen, Linda E.; Keeney, Gary L.; Karlan, Beth Y.; Karevan, Rod; Kalli, Kimberly R.; Kajiyama, Hiroaki; Ji, Bu-Tian; Jensen, Allan; Jakubowska, Anna; Iversen, Edwin; Hosono, Satoyo; Høgdall, Claus K.; Høgdall, Estrid; Hoatlin, Maureen; Hillemanns, Peter; Heitz, Florian; Hein, Rebecca; Harter, Philipp; Halle, Mari K.; Hall, Per; Gronwald, Jacek; Gore, Martin; Goodman, Marc T.; Giles, Graham G.; Gentry-Maharaj, Aleksandra; Garcia-Closas, Montserrat; Flanagan, James M.; Fasching, Peter A.; Ekici, Arif B.; Edwards, Robert; Eccles, Diana; Easton, Douglas F.; Dürst, Matthias; du Bois, Andreas; Dörk, Thilo; Doherty, Jennifer A.; Despierre, Evelyn; Dansonka-Mieszkowska, Agnieszka; Cybulski, Cezary; Cramer, Daniel W.; Cook, Linda S.; Chen, Xiaoqing; Charbonneau, Bridget; Chang-Claude, Jenny; Campbell, Ian; Butzow, Ralf; Bunker, Clareann H.; Brueggmann, Doerthe; Brown, Robert; Brooks-Wilson, Angela; Brinton, Louise A.; Bogdanova, Natalia; Block, Matthew S.; Benjamin, Elizabeth; Beesley, Jonathan; Beckmann, Matthias W.; Bandera, Elisa V.; Baglietto, Laura; Bacot, François; Armasu, Sebastian M.; Antonenkova, Natalia; Anton-Culver, Hoda; Aben, Katja K.; Liang, Dong; Wu, Xifeng; Lu, Karen; Hildebrandt, Michelle A.T.; Schildkraut, Joellen M.; Sellers, Thomas A.; Huntsman, David; Berchuck, Andrew; Chenevix-Trench, Georgia; Gayther, Simon A.; Pharoah, Paul D.P.; Laird, Peter W.; Goode, Ellen L.; Pearce, Celeste Leigh
2013-01-01
HNF1B is overexpressed in clear cell epithelial ovarian cancer, and we observed epigenetic silencing in serous epithelial ovarian cancer, leading us to hypothesize that variation in this gene differentially associates with epithelial ovarian cancer risk according to histological subtype. Here we comprehensively map variation in HNF1B with respect to epithelial ovarian cancer risk and analyse DNA methylation and expression profiles across histological subtypes. Different single-nucleotide polymorphisms associate with invasive serous (rs7405776 odds ratio (OR) = 1.13, P = 3.1 × 10−10) and clear cell (rs11651755 OR = 0.77, P = 1.6 × 10−8) epithelial ovarian cancer. Risk alleles for the serous subtype associate with higher HNF1B-promoter methylation in these tumours. Unmethylated, expressed HNF1B, primarily present in clear cell tumours, coincides with a CpG island methylator phenotype affecting numerous other promoters throughout the genome. Different variants in HNF1B associate with risk of serous and clear cell epithelial ovarian cancer; DNA methylation and expression patterns are also notably distinct between these subtypes. These findings underscore distinct mechanisms driving different epithelial ovarian cancer histological subtypes. PMID:23535649
Berkley, Amy M.; Hendricks, Deborah W.; Simmons, Kalynn B.; Fink, Pamela J.
2013-01-01
Recent thymic emigrants (RTEs) are the youngest T cells in the lymphoid periphery, and exhibit phenotypic and functional characteristics distinct from those of their more mature counterparts in the naïve peripheral T cell pool. We show here that the Il2 and Il4 promoter regions of naïve CD4+ RTEs are characterized by site-specific hypermethylation compared to those of both mature naïve (MN) T cells and the thymocyte precursors of RTEs. Thus, RTEs do not merely occupy a midpoint between the thymus and the mature T cell pool, but represent a distinct transitional T cell population. Furthermore, RTEs and MN T cells exhibit distinct CpG DNA methylation patterns both before and after activation. Compared to MN T cells, RTEs express higher levels of several enzymes that modify DNA methylation, and inhibiting methylation during culture allows RTEs to reach MN T cell levels of cytokine production. Collectively, these data suggest that the functional differences that distinguish RTEs from MN T cells are influenced by epigenetic mechanisms and provide clues to a mechanistic basis for post-thymic maturation. PMID:23686491
Falvo, James V.; Jasenosky, Luke D.; Kruidenier, Laurens; Goldfeld, Anne E.
2014-01-01
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal “tails” of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The “histone code” defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages. PMID:23683942
Genome-Wide Methylation Analyses in Glioblastoma Multiforme
Lai, Rose K.; Chen, Yanwen; Guan, Xiaowei; Nousome, Darryl; Sharma, Charu; Canoll, Peter; Bruce, Jeffrey; Sloan, Andrew E.; Cortes, Etty; Vonsattel, Jean-Paul; Su, Tao; Delgado-Cruzata, Lissette; Gurvich, Irina; Santella, Regina M.; Ostrom, Quinn; Lee, Annette; Gregersen, Peter; Barnholtz-Sloan, Jill
2014-01-01
Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal. PMID:24586730
Detection of regional DNA methylation using DNA-graphene affinity interactions.
Haque, Md Hakimul; Gopalan, Vinod; Yadav, Sharda; Islam, Md Nazmul; Eftekhari, Ehsan; Li, Qin; Carrascosa, Laura G; Nguyen, Nam-Trung; Lam, Alfred K; Shiddiky, Muhammad J A
2017-01-15
We report a new method for the detection of regional DNA methylation using base-dependent affinity interaction (i.e., adsorption) of DNA with graphene. Due to the strongest adsorption affinity of guanine bases towards graphene, bisulfite-treated guanine-enriched methylated DNA leads to a larger amount of the adsorbed DNA on the graphene-modified electrodes in comparison to the adenine-enriched unmethylated DNA. The level of the methylation is quantified by monitoring the differential pulse voltammetric current as a function of the adsorbed DNA. The assay is sensitive to distinguish methylated and unmethylated DNA sequences at single CpG resolution by differentiating changes in DNA methylation as low as 5%. Furthermore, this method has been used to detect methylation levels in a collection of DNA samples taken from oesophageal cancer tissues. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yihan; Zhang, Jingyu; Xiao, Xingjun; Liu, Hongbo; Wang, Fang; Li, Song; Wen, Yanhua; Wei, Yanjun; Su, Jianzhong; Zhang, Yunming; Zhang, Yan
2016-03-07
As one of the most widely studied epigenetic modifications, DNA methylation has an important influence on human traits and cancers. Dynamic variations in DNA methylation have been reported in malignant neoplasm and aging; however, the mechanisms remain poorly understood. By constructing an age-associated and cancer-related weighted network (ACWN) based on the correlation of the methylation level and the protein-protein interaction, we found that DNA methylation changes associated with age were closely related to the occurrence of cancer. Additional analysis of 102 module genes mined from the ACWN revealed discrimination based on two main patterns. One pattern involved methylation levels that increased with aging and were higher in cancer patients compared with normal controls (HH pattern). The other pattern involved methylation levels that decreased with aging and were lower in cancer compared with normal (LL pattern). Upon incorporation with gene expression levels, 25 genes were filtered based on negative regulation by DNA methylation. These genes were regarded as potential cancer risk markers that were influenced by age in the process of carcinogenesis. Our results will facilitate further studies regarding the impact of the epigenetic effects of aging on diseases and will aid in the development of tailored cancer preventive strategies.
Wang, Yihan; Zhang, Jingyu; Xiao, Xingjun; Liu, Hongbo; Wang, Fang; Li, Song; Wen, Yanhua; Wei, Yanjun; Su, Jianzhong; Zhang, Yunming; Zhang, Yan
2016-01-01
As one of the most widely studied epigenetic modifications, DNA methylation has an important influence on human traits and cancers. Dynamic variations in DNA methylation have been reported in malignant neoplasm and aging; however, the mechanisms remain poorly understood. By constructing an age-associated and cancer-related weighted network (ACWN) based on the correlation of the methylation level and the protein-protein interaction, we found that DNA methylation changes associated with age were closely related to the occurrence of cancer. Additional analysis of 102 module genes mined from the ACWN revealed discrimination based on two main patterns. One pattern involved methylation levels that increased with aging and were higher in cancer patients compared with normal controls (HH pattern). The other pattern involved methylation levels that decreased with aging and were lower in cancer compared with normal (LL pattern). Upon incorporation with gene expression levels, 25 genes were filtered based on negative regulation by DNA methylation. These genes were regarded as potential cancer risk markers that were influenced by age in the process of carcinogenesis. Our results will facilitate further studies regarding the impact of the epigenetic effects of aging on diseases and will aid in the development of tailored cancer preventive strategies. PMID:26949191
CAS-viewer: web-based tool for splicing-guided integrative analysis of multi-omics cancer data.
Han, Seonggyun; Kim, Dongwook; Kim, Youngjun; Choi, Kanghoon; Miller, Jason E; Kim, Dokyoon; Lee, Younghee
2018-04-20
The Cancer Genome Atlas (TCGA) project is a public resource that provides transcriptomic, DNA sequence, methylation, and clinical data for 33 cancer types. Transforming the large size and high complexity of TCGA cancer genome data into integrated knowledge can be useful to promote cancer research. Alternative splicing (AS) is a key regulatory mechanism of genes in human cancer development and in the interaction with epigenetic factors. Therefore, AS-guided integration of existing TCGA data sets will make it easier to gain insight into the genetic architecture of cancer risk and related outcomes. There are already existing tools analyzing and visualizing alternative mRNA splicing patterns for large-scale RNA-seq experiments. However, these existing web-based tools are limited to the analysis of individual TCGA data sets at a time, such as only transcriptomic information. We implemented CAS-viewer (integrative analysis of Cancer genome data based on Alternative Splicing), a web-based tool leveraging multi-cancer omics data from TCGA. It illustrates alternative mRNA splicing patterns along with methylation, miRNAs, and SNPs, and then provides an analysis tool to link differential transcript expression ratio to methylation, miRNA, and splicing regulatory elements for 33 cancer types. Moreover, one can analyze AS patterns with clinical data to identify potential transcripts associated with different survival outcome for each cancer. CAS-viewer is a web-based application for transcript isoform-driven integration of multi-omics data in multiple cancer types and will aid in the visualization and possible discovery of biomarkers for cancer by integrating multi-omics data from TCGA.
NASA Astrophysics Data System (ADS)
Zhao, Qian; Sun, Yeqing; Wang, Wei; Wen, Bin
Spaceflight represents a very complex environmental condition with highly ionizing radiations (HZE). To further investigate the incentives of ion effects in space environment, we performed on-ground simulated HZE particle radiations to rice seeds with different cumulative doses (0Gy, 0.01Gy, 0.02Gy, 0.1Gy, 0.2Gy, 1Gy , 2Gy, 5Gy, 20Gy ). Using Methylation-Sensitive Amplification Polymorphism (MSAP) analysis technology, differential polymorphism sites of DNA methylation of seedlings were analysed and acquired. The results showed that changes of methylation and demethylation on CCGG sites had taken place after irradiated treatments in all doses. It was noted that there was a stimulating effect in low-dose radiation ≤1 Gy. The minimum proportion of DNA methylation polymorphism level was 3.15% in 0.1Gy, whereas the maximum proportion was 9.87% in 2Gy, interestingly the proportion reduced with radiation doses increased, suggesting the dosage effects of radiation. We further found that the CG site tended to have a higher proportion of cytosine methylation alterations than CNG site in six of the eight dose groups. The results also indicated that different dose treatment groups showed various frequencies of methylation variation patterns: The type of CG hypermethylation was higher than CG hypormethylation in four low-dose groups (<≤2 Gy) ,whereas the result presented the opposite trends in all high-dose groups(>≥1 Gy). In addition, the type of CNG hypormethylation was obviously higher than the CNG hypermethylation in seven dose groups. This result indicated that the methylation variation patterns caused by radiation had site preferences. To investigate the mechanisms of sequences underlying alterations in DNA methylation after ion irradiation, we isolated, cloned and sequenced a subset of bands which showed obvious mutational bias. BLAST analysis indicated that many sequences showed significant homology to known function genes, most of which were related to resistance to environmental stresses such as cytochrome P450-like protein , RelA/SpoT Homologue 2 , 12-oxo-phytodienoic acid reductase. The epigenetic changing of rice in low- or high-dose radiation in this research might provide new insights for further understanding of radiation mechanism of space environment.
DNA methylation profiling of phyllodes and fibroadenoma tumours of the breast.
Huang, Katie T; Dobrovic, Alexander; Yan, Max; Karim, Rooshdiya Z; Lee, C Soon; Lakhani, Sunil R; Fox, Stephen B
2010-11-01
Phyllodes tumours and cellular fibroadenomas are both fibroepithelial tumours of the breast. Phyllodes tumours, unlike fibroadenomas, have the ability to recur and metastasise. Although these lesions can be distinguished by their stromal cellularity, mitotic index, presence or absence of stromal overgrowth and cellular atypia, there is overlap and not infrequently a definitive diagnosis cannot be made, particularly on biopsy. We sought to evaluate whether DNA promoter methylation profiling using selected genes known to be methylated in cancer would allow us to learn more about the biology of these tumours, and whether it could identify methylation markers that could differentiate phyllodes tumours from fibroadenomas and/or distinguish phyllodes tumours of different grades. Methylation-sensitive high resolution melting (MS-HRM) was used to screen promoter DNA methylation changes in 86 phyllodes tumours (15 benign, 28 borderline, 43 malignant) and 26 fibroadenomas. A panel of 11 genes (RASSF1A, TWIST1, APC, WIF1, MGMT, MAL, RARβ, CDKN2A, CDH1, TP73 and MLH1) was tested. Methylation status was correlated with histology and with clinicopathological parameters. Five of the gene promoters showed some methylation in a proportion of phyllodes tumours; RASSF1A, 45.3%; TWIST1, 10.7%; APC, 4.1%; WIF1, 2.9% and MGMT, 1.3%. Only two genes showed any methylation in fibroadenomas usually at background levels; RASSF1A, 53.8% and MGMT, 8.3%. No CDKN2A methylation was observed in either tumour type, contrary to previous reports. Overall, the methylation patterns differed little from that which might be seen in normal cells. However, significant levels of methylation of RASSF1A (24.4%) and TWIST1 (7.1%) was observed in some phyllodes tumours. Elevated RASSF1A and/or TWIST1 methylation was significantly associated with phyllodes tumours compared with fibroadenomas (P = 0.02), TWIST1 methylation correlated with increasing malignancy in phyllodes tumours (P < 0.001). In conclusion, assessment of methylation of RASSF1A and TWIST1 may aid in the diagnosis of phyllodes tumours. The absence of frequent methylation in fibroadenomas supports a non-neoplastic origin.
Huang, R C; Garratt, E S; Pan, H; Wu, Y; Davis, E A; Barton, S J; Burdge, G C; Godfrey, K M; Holbrook, J D; Lillycrop, K A
2015-01-01
Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value < 0.05). The top pathways enriched among the DMCpGs included developmental processes, immune system regulation, regulation of cell signaling, and small GTPase-mediated signal transduction. The associations between the methylation of selected DMCpGs with childhood obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P < 0.01), while obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 - 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 - 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.
Martino, David; Joo, Jihoon E; Sexton-Oates, Alexandra; Dang, Thanh; Allen, Katrina; Saffery, Richard; Prescott, Susan
2014-07-01
Food allergy is mediated by a combination of genetic and environmental risk factors, potentially mediated by epigenetic mechanisms. CD4+ T-cells are key drivers of the allergic response, and may therefore harbor epigenetic variation in association with the disease phenotype. Here we retrospectively examined genome-wide DNA methylation profiles (~450,000 CpGs) from CD4+ T-cells on a birth cohort of 12 children with IgE-mediated food allergy diagnosed at 12-months, and 12 non-allergic controls. DNA samples were available at two time points, birth and 12-months. control comparisons of CD4+ methylation profiles identified 179 differentially methylated probes (DMP) at 12-months and 136 DMP at birth (FDR-adjusted P value<0.05, delta β>0.1). Approximately 30% of DMPs were coincident with previously annotated SNPs. A total of 92 [corrected] allergy-associated non-SNP DMPs were present at birth when individuals were initially disease-free, potentially implicating these loci in the causal pathway. Pathway analysis of differentially methylated genes identified several MAP kinase signaling molecules. Mass spectrometry was used to validate 15 CpG sites at 3 candidate genes. Combined analysis of differential methylation with gene expression profiles revealed gene expression differences at some but not all allergy associated differentially methylated genes. Thus, dysregulation of DNA methylation at MAPK signaling-associated genes during early CD4+ T-cell development may contribute to suboptimal T-lymphocyte responses in early childhood associated with the development of food allergy.
Zhao, Jie-hong; Zhang, Ji-shun; Wang, Yi; Wang, Ren-gang; Wu, Chun; Fan, Long-jiang; Ren, Xue-liang
2011-11-01
DNA methylation plays an important role in the epigenetic regulation of gene expression during plant growth, development, and polyploidization. However, there is still no distinct evidence in tobacco regarding the distribution of the methylation pattern and whether it contributes to qualitative characteristics. We studied the levels and patterns of methylation polymorphism at CCGG sites in 48 accessions of allotetraploid flue-cured tobacco, Nicotiana tabacum, using a methylation-sensitive amplified polymorphism (MSAP) technique. The results showed that methylation existed at a high level among tobacco accessions, among which 49.3% sites were methylated and 69.9% allelic sites were polymorphic. A cluster analysis revealed distinct patterns of geography-specific groups. In addition, three polymorphic sites significantly related to tobacco mosaic virus (TMV) resistance were explored. This suggests that tobacco breeders should pay more attention to epigenetic traits.
Xu, Jiawei; Bao, Xiao; Peng, Zhaofeng; Wang, Linlin; Du, Linqing; Niu, Wenbin; Sun, Yingpu
2016-05-10
Polycystic ovary syndrome (PCOS) affects approximately 7% of the reproductive-age women. A growing body of evidence indicated that epigenetic mechanisms contributed to the development of PCOS. The role of DNA modification in human PCOS ovary granulosa cell is still unknown in PCOS progression. Global DNA methylation and hydroxymethylation were detected between PCOS' and controls' granulosa cell. Genome-wide DNA methylation was profiled to investigate the putative function of DNA methylaiton. Selected genes expressions were analyzed between PCOS' and controls' granulosa cell. Our results showed that the granulosa cell global DNA methylation of PCOS patients was significant higher than the controls'. The global DNA hydroxymethylation showed low level and no statistical difference between PCOS and control. 6936 differentially methylated CpG sites were identified between control and PCOS-obesity. 12245 differential methylated CpG sites were detected between control and PCOS-nonobesity group. 5202 methylated CpG sites were significantly differential between PCOS-obesity and PCOS-nonobesity group. Our results showed that DNA methylation not hydroxymethylation altered genome-wide in PCOS granulosa cell. The different methylation genes were enriched in development protein, transcription factor activity, alternative splicing, sequence-specific DNA binding and embryonic morphogenesis. YWHAQ, NCF2, DHRS9 and SCNA were up-regulation in PCOS-obesity patients with no significance different between control and PCOS-nonobesity patients, which may be activated by lower DNA methylaiton. Global and genome-wide DNA methylation alteration may contribute to different genes expression and PCOS clinical pathology.
Nilsson, Emil K; Boström, Adrian E; Mwinyi, Jessica; Schiöth, Helgi B
2016-06-01
Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applying a paired regression model that corrected for monocyte subpopulations. In addition, the correlations between the methylation of genes detected to be modulated by TSD and gene expression were examined in a separate, publicly available cohort of 10 healthy male donors (E-GEOD-49065). Sleep deprivation significantly affected the DNA methylation profile both independently and in dependency of shifts in monocyte composition. Our study detected differential methylation of 269 probes. Notably, one CpG site was located 69 bp upstream of ING5, which has been shown to be differentially expressed after sleep deprivation. Gene set enrichment analysis detected the Notch and Wnt signaling pathways to be enriched among the differentially methylated genes. These results provide evidence that total acute sleep deprivation alters the methylation profile in healthy human subjects. This is, to our knowledge, the first study that systematically investigated the impact of total acute sleep deprivation on genome-wide DNA methylation profiles in blood and related the epigenomic findings to the expression data.
Provençal, Nadine; Suderman, Matthew J.; Caramaschi, Doretta; Wang, Dongsha; Hallett, Michael; Vitaro, Frank
2013-01-01
Background Animal and human studies suggest that inflammation is associated with behavioral disorders including aggression. We have recently shown that physical aggression of boys during childhood is strongly associated with reduced plasma levels of cytokines IL-1α, IL-4, IL-6, IL-8 and IL-10, later in early adulthood. This study tests the hypothesis that there is an association between differential DNA methylation regions in cytokine genes in T cells and monocytes DNA in adult subjects and a trajectory of physical aggression from childhood to adolescence. Methodology/Principal Findings We compared the methylation profiles of the entire genomic loci encompassing the IL-1α, IL-6, IL-4, IL-10 and IL-8 and three of their regulatory transcription factors (TF) NFkB1, NFAT5 and STAT6 genes in adult males on a chronic physical aggression trajectory (CPA) and males with the same background who followed a normal physical aggression trajectory (control group) from childhood to adolescence. We used the method of methylated DNA immunoprecipitation with comprehensive cytokine gene loci and TF loci microarray hybridization, statistical analysis and false discovery rate correction. We found differentially methylated regions to associate with CPA in both the cytokine loci as well as in their transcription factors loci analyzed. Some of these differentially methylated regions were located in known regulatory regions whereas others, to our knowledge, were previously unknown as regulatory areas. However, using the ENCODE database, we were able to identify key regulatory elements in many of these regions that indicate that they might be involved in the regulation of cytokine expression. Conclusions We provide here the first evidence for an association between differential DNA methylation in cytokines and their regulators in T cells and monocytes and male physical aggression. PMID:23977113
The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming
2012-11-15
Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catecholmore » enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.« less
Lakowski, Ted M; Szeitz, András; Pak, Magnolia L; Thomas, Dylan; Vhuiyan, Mynol I; Kotthaus, Joscha; Clement, Bernd; Frankel, Adam
2013-03-27
Protein arginine methylation is one of the epigenetic modifications to proteins that is studied in yeast and is known to be involved in a number of human diseases. All eukaryotes produce Nη-monomethylarginine (ηMMA), asymmetric Nη1, Nη1-dimethylarginine (aDMA), and most produce symmetric Nη1, Nη2-dimethylarginine (sDMA) on proteins, but only yeast produce Nδ-monomethylarginine (δMMA). It has proven difficult to differentiate among all of these methylarginines using mass spectrometry. Accordingly, we demonstrated that the two forms of MMA have indistinguishable primary product ion spectra. However, the secondary product ion spectra of δMMA and ηMMA exhibited distinct patterns of ions. Using incorporation of deuterated methyl-groups in yeast, we determined which secondary product ions were methylated and their structures. Utilizing distinct secondary product ions, a triple quadrupole multiple reaction monitoring cubed (MRM(3)) assay was developed to measure δMMA, ηMMA, sDMA and aDMA derived from hydrolyzed protein. As a proof-of-concept, δMMA and ηMMA were measured using the MRM(3) method in wild type and mutant strains of Saccharomyces cerevisiae and compared to the total MMA measured using an existing assay. The MRM(3) assay represents the only method to directly quantify δMMA and the only method to simultaneously quantify all yeast methylarginines. Copyright © 2013 Elsevier B.V. All rights reserved.
Yan, Yuanwei; Bejoy, Julie; Xia, Junfei; Guan, Jingjiao; Zhou, Yi; Li, Yan
2016-09-15
Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells/tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capacity of signaling factors that regulate 3-D neural tissue patterning in vitro and differential responses of the resulting neural populations to various biomolecules have not yet been fully understood. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog (SHH) signaling, this study generated different 3-D neuronal cultures that were mainly comprised of either cortical glutamatergic neurons or motor neurons. Abundant glutamatergic neurons were observed following the treatment with an antagonist of SHH signaling, cyclopamine, while Islet-1 and HB9-expressing motor neurons were enriched by an SHH agonist, purmorphamine. In neurons derived with different neural patterning factors, whole-cell patch clamp recordings showed similar voltage-gated Na(+)/K(+) currents, depolarization-evoked action potentials and spontaneous excitatory post-synaptic currents. Moreover, these different neuronal populations exhibited differential responses to three classes of biomolecules, including (1) matrix metalloproteinase inhibitors that affect extracellular matrix remodeling; (2) N-methyl-d-aspartate that induces general neurotoxicity; and (3) amyloid β (1-42) oligomers that cause neuronal subtype-specific neurotoxicity. This study should advance our understanding of hiPSC self-organization and neural tissue development and provide a transformative approach to establish 3-D models for neurological disease modeling and drug discovery. Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells, tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capability of sonic hedgehog-related small molecules to tune different neuronal subtypes in 3-D differentiation from hiPSCs and the differential cellular responses of region-specific neuronal subtypes to various biomolecules have not been fully investigated. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog signaling, this study provides knowledge on the differential susceptibility of region-specific neuronal subtypes derived from hiPSCs to different biomolecules in extracellular matrix remodeling and neurotoxicity. The findings are significant for understanding 3-D neural patterning of hiPSCs for the applications in brain organoid formation, neurological disease modeling, and drug discovery. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Al-Quraishy, Saleh; Dkhil, Mohamed A; Abdel-Baki, Abdel Azeem S; Delic, Denis; Santourlidis, Simeon; Wunderlich, Frank
2013-11-01
Epigenetic reprogramming of host genes via DNA methylation is increasingly recognized as critical for the outcome of diverse infectious diseases, but information for malaria is not yet available. Here, we investigate the effect of blood-stage malaria of Plasmodium chabaudi on the DNA methylation status of host gene promoters on a genome-wide scale using methylated DNA immunoprecipitation and Nimblegen microarrays containing 2,000 bp oligonucleotide features that were split into -1,500 to -500 bp Ups promoters and -500 to +500 bp Cor promoters, relative to the transcription site, for evaluation of differential DNA methylation. Gene expression was analyzed by Agilent and Affymetrix microarray technology. Challenging of female C57BL/6 mice with 10(6) P. chabaudi-infected erythrocytes resulted in a self-healing outcome of infections with peak parasitemia on day 8 p.i. These infections induced organ-specific modifications of DNA methylation of gene promoters. Among the 17,354 features on Nimblegen arrays, only seven gene promoters were identified to be hypermethylated in the spleen, whereas the liver exhibited 109 hyper- and 67 hypomethylated promoters at peak parasitemia in comparison with non-infected mice. Among the identified genes with differentially methylated Cor-promoters, only the 7 genes Pigr, Ncf1, Klkb1, Emr1, Ndufb11, and Tlr6 in the liver and Apol6 in the spleen were detected to have significantly changed their expression. Remarkably, the Cor promoter of the toll-like receptor Tlr6 became hypomethylated and Tlr6 expression increased by 3.4-fold during infection. Concomitantly, the Ups promoter of the Tlr1 was hypermethylated, but Tlr1 expression also increased by 11.3-fold. TLR6 and TLR1 are known as auxillary receptors to form heterodimers with TLR2 in plasma membranes of macrophages, which recognize different pathogen-associated molecular patterns (PAMPs), as, e.g., intact 3-acyl and sn-2-lyso-acyl glycosylphosphatidylinositols of P. falciparum, respectively. Our data suggest therefore that malaria-induced epigenetic fine-tuning of Tlr6 and Tlr1 through DNA methylation of their gene promoters in the liver is critically important for initial recognition of PAMPs and, thus, for the final self-healing outcome of blood-stage infections with P. chabaudi malaria.
Zhou, Shiyong; Liu, Pengfei; Zhang, Huilai
2017-01-01
Acute myeloid leukemia (AML) is a frequently occurring malignant disease of the blood and may result from a variety of genetic disorders. The present study aimed to identify the underlying mechanisms associated with the therapeutic effects of decitabine and cytarabine on AML, using microarray analysis. The microarray datasets GSE40442 and GSE40870 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and differentially methylated sites were identified in AML cells treated with decitabine compared with those treated with cytarabine via the Linear Models for Microarray Data package, following data pre-processing. Gene Ontology (GO) analysis of DEGs was performed using the Database for Annotation, Visualization and Integrated Analysis Discovery. Genes corresponding to the differentially methylated sites were obtained using the annotation package of the methylation microarray platform. The overlapping genes were identified, which exhibited the opposite variation trend between gene expression and DNA methylation. Important transcription factor (TF)-gene pairs were screened out, and a regulated network subsequently constructed. A total of 190 DEGs and 540 differentially methylated sites were identified in AML cells treated with decitabine compared with those treated with cytarabine. A total of 36 GO terms of DEGs were enriched, including nucleosomes, protein-DNA complexes and the nucleosome assembly. The 540 differentially methylated sites were located on 240 genes, including the acid-repeat containing protein (ACRC) gene that was additionally differentially expressed. In addition, 60 TF pairs and overlapped methylated sites, and 140 TF-pairs and DEGs were screened out. The regulated network included 68 nodes and 140 TF-gene pairs. The present study identified various genes including ACRC and proliferating cell nuclear antigen, in addition to various TFs, including TATA-box binding protein associated factor 1 and CCCTC-binding factor, which may be potential therapeutic targets of AML. PMID:28498449
Zhou, Shiyong; Liu, Pengfei; Zhang, Huilai
2017-07-01
Acute myeloid leukemia (AML) is a frequently occurring malignant disease of the blood and may result from a variety of genetic disorders. The present study aimed to identify the underlying mechanisms associated with the therapeutic effects of decitabine and cytarabine on AML, using microarray analysis. The microarray datasets GSE40442 and GSE40870 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and differentially methylated sites were identified in AML cells treated with decitabine compared with those treated with cytarabine via the Linear Models for Microarray Data package, following data pre‑processing. Gene Ontology (GO) analysis of DEGs was performed using the Database for Annotation, Visualization and Integrated Analysis Discovery. Genes corresponding to the differentially methylated sites were obtained using the annotation package of the methylation microarray platform. The overlapping genes were identified, which exhibited the opposite variation trend between gene expression and DNA methylation. Important transcription factor (TF)‑gene pairs were screened out, and a regulated network subsequently constructed. A total of 190 DEGs and 540 differentially methylated sites were identified in AML cells treated with decitabine compared with those treated with cytarabine. A total of 36 GO terms of DEGs were enriched, including nucleosomes, protein‑DNA complexes and the nucleosome assembly. The 540 differentially methylated sites were located on 240 genes, including the acid‑repeat containing protein (ACRC) gene that was additionally differentially expressed. In addition, 60 TF pairs and overlapped methylated sites, and 140 TF‑pairs and DEGs were screened out. The regulated network included 68 nodes and 140 TF‑gene pairs. The present study identified various genes including ACRC and proliferating cell nuclear antigen, in addition to various TFs, including TATA‑box binding protein associated factor 1 and CCCTC‑binding factor, which may be potential therapeutic targets of AML.
Huh, Iksoo; Wu, Xin; Park, Taesung; Yi, Soojin V
2017-07-21
DNA methylation is one of the most extensively studied epigenetic modifications of genomic DNA. In recent years, sequencing of bisulfite-converted DNA, particularly via next-generation sequencing technologies, has become a widely popular method to study DNA methylation. This method can be readily applied to a variety of species, dramatically expanding the scope of DNA methylation studies beyond the traditionally studied human and mouse systems. In parallel to the increasing wealth of genomic methylation profiles, many statistical tools have been developed to detect differentially methylated loci (DMLs) or differentially methylated regions (DMRs) between biological conditions. We discuss and summarize several key properties of currently available tools to detect DMLs and DMRs from sequencing of bisulfite-converted DNA. However, the majority of the statistical tools developed for DML/DMR analyses have been validated using only mammalian data sets, and less priority has been placed on the analyses of invertebrate or plant DNA methylation data. We demonstrate that genomic methylation profiles of non-mammalian species are often highly distinct from those of mammalian species using examples of honey bees and humans. We then discuss how such differences in data properties may affect statistical analyses. Based on these differences, we provide three specific recommendations to improve the power and accuracy of DML and DMR analyses of invertebrate data when using currently available statistical tools. These considerations should facilitate systematic and robust analyses of DNA methylation from diverse species, thus advancing our understanding of DNA methylation. © The Author 2017. Published by Oxford University Press.
del Real, Alvaro; Pérez-Campo, Flor M.; Fernández, Agustín F.; Sañudo, Carolina; Ibarbia, Carmen G.; Pérez-Núñez, María I.; Criekinge, Wim Van; Braspenning, Maarten; Alonso, María A.; Fraga, Mario F.
2017-01-01
ABSTRACT Insufficient activity of the bone-forming osteoblasts leads to low bone mass and predisposes to fragility fractures. The functional capacity of human mesenchymal stem cells (hMSCs), the precursors of osteoblasts, may be compromised in elderly individuals, in relation with the epigenetic changes associated with aging. However, the role of hMSCs in the pathogenesis of osteoporosis is still unclear. Therefore, we aimed to characterize the genome-wide methylation and gene expression signatures and the differentiation capacity of hMSCs from patients with hip fractures. We obtained hMSCs from the femoral heads of women undergoing hip replacement due to hip fractures and controls with hip osteoarthritis. DNA methylation was explored with the Infinium 450K bead array. Transcriptome analysis was done by RNA sequencing. The genomic analyses revealed that most differentially methylated loci were situated in genomic regions with enhancer activity, distant from gene bodies and promoters. These regions were associated with differentially expressed genes enriched in pathways related to hMSC growth and osteoblast differentiation. hMSCs from patients with fractures showed enhanced proliferation and upregulation of the osteogenic drivers RUNX2/OSX. Also, they showed some signs of accelerated methylation aging. When cultured in osteogenic medium, hMSCs from patients with fractures showed an impaired differentiation capacity, with reduced alkaline phosphatase activity and poor accumulation of a mineralized matrix. Our results point to 2 areas of potential interest for discovering new therapeutic targets for low bone mass disorders and bone regeneration: the mechanisms stimulating MSCs proliferation after fracture and those impairing their terminal differentiation. PMID:27982725
Covelo-Soto, Lara; Saura, María; Morán, Paloma
2015-07-01
Lampreys represent one of the most ancient vertebrate lineages enclosing a special interest for genetic and epigenetic studies. The sea lamprey (Petromyzon marinus) is an anadromous species that experiences metamorphosis all the way up to the adult stage. Although representing a gradual process, metamorphosis in this species involves dramatic conversions with regard to physiological together with structural body changes preparing individuals for a marine and parasitic life; in consequence, multiple gene expression modifications are expected. The implications of thyroid hormones and HOX gene expression changes have previously been reported in this species and also in other vertebrate species. Nonetheless, information lacks on how these genes are regulated in lampreys. We here report about the existence of methylation pattern differences between the adult and the larvae sea lamprey life cycle stages making use of the Methylation-Sensitive Amplified Polymorphism (MSAP) technique. Differentially methylated fragment sequencing allowed to establish homologous identities with HOX genes involved in morphogenesis, along with genes related to the water balance and to the osmotic homoeostasis, all associated to a marine environment adaptation. These results provide evidences revealing that DNA methylation plays a role in the epigenetic regulation of the P. marinus post-natal development representing a starting point for future studies. To the best of our knowledge, this is the first study which detects DNA methylation changes associated with metamorphosis in lampreys. Copyright © 2015 Elsevier Inc. All rights reserved.
Dellett, Margaret; O’Hagan, Kathleen Ann; Colyer, Hilary Ann Alexandra; Mills, Ken I.
2010-01-01
Around 80% of acute myeloid leukemia (AML) patients achieve a complete remission, however many will relapse and ultimately die of their disease. The association between karyotype and prognosis has been studied extensively and identified patient cohorts as having favourable [e.g. t(8; 21), inv (16)/t(16; 16), t(15; 17)], intermediate [e.g. cytogenetically normal (NK-AML)] or adverse risk [e.g. complex karyotypes]. Previous studies have shown that gene expression profiling signatures can classify the sub-types of AML, although few reports have shown a similar feature by using methylation markers. The global methylation patterns in 19 diagnostic AML samples were investigated using the Methylated CpG Island Amplification Microarray (MCAM) method and CpG island microarrays containing 12,000 CpG sites. The first analysis, comparing favourable and intermediate cytogenetic risk groups, revealed significantly differentially methylated CpG sites (594 CpG islands) between the two subgroups. Mutations in the NPM1 gene occur at a high frequency (40%) within the NK-AML subgroup and are associated with a more favourable prognosis in these patients. A second analysis comparing the NPM1 mutant and wild-type research study subjects again identified distinct methylation profiles between these two subgroups. Network and pathway analysis revealed possible molecular mechanisms associated with the different risk and/or mutation sub-groups. This may result in a better classification of the risk groups, improved monitoring targets, or the identification of novel molecular therapies. PMID:24179384
Li, Zhiguang; Dai, Hongzheng; Martos, Suzanne N; Xu, Beisi; Gao, Yang; Li, Teng; Zhu, Guangjing; Schones, Dustin E; Wang, Zhibin
2015-06-02
DNA methylation patterns are initiated by de novo DNA methyltransferases DNMT3a/3b adding methyl groups to CG dinucleotides in the hypomethylated genome of early embryos. These patterns are faithfully maintained by DNMT1 during DNA replication to ensure epigenetic inheritance across generations. However, this two-step model is based on limited data. We generated base-resolution DNA methylomes for a series of DNMT knockout embryonic stem cells, with deep coverage at highly repetitive elements. We show that DNMT1 and DNMT3a/3b activities work complementarily and simultaneously to establish symmetric CG methylation and CHH (H = A, T or C) methylation. DNMT3a/3b can add methyl groups to daughter strands after each cycle of DNA replication. We also observe an unexpected division of labor between DNMT1 and DNMT3a/3b in suppressing retrotransposon long terminal repeats and long interspersed elements, respectively. Our data suggest that mammalian cells use a specific CG density threshold to predetermine methylation levels in wild-type cells and the magnitude of methylation reduction in DNMT knockout cells. Only genes with low CG density can be induced or, surprisingly, suppressed in the hypomethylated genome. Lastly, we do not find any association between gene body methylation and transcriptional activity. We show the concerted actions of DNMT enzymes in the establishment and maintenance of methylation patterns. The finding of distinct roles of DNMT1-dependent and -independent methylation patterns in genome stability and regulation of transcription provides new insights for understanding germ cell development, neuronal diversity, and transgenerational epigenetic inheritance and will help to develop next-generation DNMT inhibitors.
Phenotype-specific CpG island methylation events in a murine model of prostate cancer.
Camoriano, Marta; Kinney, Shannon R Morey; Moser, Michael T; Foster, Barbara A; Mohler, James L; Trump, Donald L; Karpf, Adam R; Smiraglia, Dominic J
2008-06-01
Aberrant DNA methylation plays a significant role in nearly all human cancers and may contribute to disease progression to advanced phenotypes. Study of advanced prostate cancer phenotypes in the human disease is hampered by limited availability of tissues. We therefore took advantage of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model to study whether three different phenotypes of TRAMP tumors (PRIM, late-stage primary tumors; AIP, androgen-independent primary tumors; and MET, metastases) displayed specific patterns of CpG island hypermethylation using Restriction Landmark Genomic Scanning. Each tumor phenotype displayed numerous hypermethylation events, with the most homogeneous methylation pattern in AIP and the most heterogeneous pattern in MET. Several loci displayed a phenotype-specific methylation pattern; the most striking pattern being loci methylated at high frequency in PRIM and AIP but rarely in MET. Examination of the mRNA expression of three genes, BC058385, Goosecoid, and Neurexin 2, which exhibited nonpromoter methylation, revealed increased expression associated with downstream methylation. Only methylated samples showed mRNA expression, in which tumor phenotype was a key factor determining the level of expression. The CpG island in the human orthologue of BC058385 was methylated in human AIP but not in primary androgen-stimulated prostate cancer or benign prostate. The clinical data show a proof-of-principle that the TRAMP model can be used to identify targets of aberrant CpG island methylation relevant to human disease. In conclusion, phenotype-specific hypermethylation events were associated with the overexpression of different genes and may provide new markers of prostate tumorigenesis.
Identification of differentially methylated sites with weak methylation effect
USDA-ARS?s Scientific Manuscript database
DNA methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect dif...
Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar
2016-01-01
Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association between chilling and methylation changes was observed, which suggested that chilling acquisition during dormancy in apple is likely to affect the epigenetic regulation through DNA methylation.
Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar
2016-01-01
Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association between chilling and methylation changes was observed, which suggested that chilling acquisition during dormancy in apple is likely to affect the epigenetic regulation through DNA methylation. PMID:26901339
Chen, Yung-Che; Chen, Ting-Wen; Su, Mao-Chang; Chen, Chung-Jen; Chen, Kuang-Den; Liou, Chia-Wei; Tang, Petrus; Wang, Ting-Ya; Chang, Jen-Chieh; Wang, Chin-Chou; Lin, Hsin-Ching; Chin, Chien-Hung; Huang, Kuo-Tung; Lin, Meng-Chih; Hsiao, Chang-Chun
2016-04-01
We hypothesized that DNA methylation patterns may contribute to disease severity or the development of hypertension and excessive daytime sleepiness (EDS) in patients with obstructive sleep apnea (OSA). Illumina's (San Diego, CA, USA) DNA methylation 27-K assay was used to identify differentially methylated loci (DML). DNA methylation levels were validated by pyrosequencing. A discovery cohort of 15 patients with OSA and 6 healthy subjects, and a validation cohort of 72 patients with sleep disordered breathing (SDB). Microarray analysis identified 636 DMLs in patients with OSA versus healthy subjects, and 327 DMLs in patients with OSA and hypertension versus those without hypertension. In the validation cohort, no significant difference in DNA methylation levels of six selected genes was found between the primary snoring subjects and OSA patients (primary outcome). However, a secondary outcome analysis showed that interleukin-1 receptor 2 (IL1R2) promoter methylation (-114 cytosine followed by guanine dinucleotide sequence [CpG] site) was decreased and IL1R2 protein levels were increased in the patients with SDB with an oxygen desaturation index > 30. Androgen receptor (AR) promoter methylation (-531 CpG site) and AR protein levels were both increased in the patients with SDB with an oxygen desaturation index > 30. Natriuretic peptide receptor 2 (NPR2) promoter methylation (-608/-618 CpG sites) were decreased, whereas levels of both NPR2 and serum C type natriuretic peptide protein were increased in the SDB patients with EDS. Speckled protein 140 (SP140) promoter methylation (-194 CpG site) was increased, and SP140 protein levels were decreased in the patients with SDB and EDS. IL1R2 hypomethylation and AR hypermethylation may constitute an important determinant of disease severity, whereas NPR2 hypomethylation and SP140 hypermethylation may provide a biomarker for vulnerability to EDS in OSA. A commentary on this article appears in this issue on page 723. © 2016 Associated Professional Sleep Societies, LLC.
What triggers differential DNA methylation of genes and TEs: contribution of body methylation?
Inagaki, S; Kakutani, T
2012-01-01
Transposable elements (TEs) are epigenetically silenced with extensive DNA methylation. The silent epigenetic marks should, however, be excluded from active genes. By genetic approaches, we study mechanisms to remove the heterochromatin marks from transcribed genes. Based on our observations on control of TE transcription, we propose a possible trigger for the TE-specific accumulation of DNA methylation. A critical difference between TEs and genes could be their responses to the DNA methylation in the internal part of transcribed regions. When their internal region is methylated, genes are still transcribed, but TEs could be silenced, which may reflect the obligatory position of every critical cis-acting element within the TE itself. This initial difference of TEs and genes will be amplified by positive feedback loops to stabilize active or silent states. Thus, the mechanisms to accumulate heterochromatin marks within transcribed regions could provide a trigger to induce differential DNA methylation between genes and TEs.
Guevara, María Ángeles; de María, Nuria; Sáez-Laguna, Enrique; Vélez, María Dolores; Cervera, María Teresa; Cabezas, José Antonio
2017-01-01
Different molecular techniques have been developed to study either the global level of methylated cytosines or methylation at specific gene sequences. One of them is the methylation-sensitive amplified polymorphism technique (MSAP) which is a modification of amplified fragment length polymorphism (AFLP). It has been used to study methylation of anonymous CCGG sequences in different fungi, plants, and animal species. The main variation of this technique resides on the use of isoschizomers with different methylation sensitivity (such as HpaII and MspI) as a frequent-cutter restriction enzyme. For each sample, MSAP analysis is performed using both EcoRI/HpaII- and EcoRI/MspI-digested samples. A comparative analysis between EcoRI/HpaII and EcoRI/MspI fragment patterns allows the identification of two types of polymorphisms: (1) methylation-insensitive polymorphisms that show common EcoRI/HpaII and EcoRI/MspI patterns but are detected as polymorphic amplified fragments among samples and (2) methylation-sensitive polymorphisms which are associated with the amplified fragments that differ in their presence or absence or in their intensity between EcoRI/HpaII and EcoRI/MspI patterns. This chapter describes a detailed protocol of this technique and discusses the modifications that can be applied to adjust the technology to different species of interest.
Eichten, Steven R; Springer, Nathan M
2015-01-01
DNA methylation is a chromatin modification that is sometimes associated with epigenetic regulation of gene expression. As DNA methylation can be reversible at some loci, it is possible that methylation patterns may change within an organism that is subjected to environmental stress. In order to assess the effects of abiotic stress on DNA methylation patterns in maize (Zea mays), seeding plants were subjected to heat, cold, and UV stress treatments. Tissue was later collected from individual adult plants that had been subjected to stress or control treatments and used to perform DNA methylation profiling to determine whether there were consistent changes in DNA methylation triggered by specific stress treatments. DNA methylation profiling was performed by immunoprecipitation of methylated DNA followed by microarray hybridization to allow for quantitative estimates of DNA methylation abundance throughout the low-copy portion of the maize genome. By comparing the DNA methylation profiles of each individual plant to the average of the control plants it was possible to identify regions of the genome with variable DNA methylation. However, we did not find evidence of consistent DNA methylation changes resulting from the stress treatments used in this study. Instead, the data suggest that there is a low-rate of stochastic variation that is present in both control and stressed plants.
Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes
Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.
2014-01-01
Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728
Paradis, Francois; Wood, Katie M; Swanson, Kendall C; Miller, Stephen P; McBride, Brian W; Fitzsimmons, Carolyn
2017-08-18
Manipulating maternal nutrition during specific periods of gestation can result in re-programming of fetal and post-natal development. In this experiment we investigated how a feed restriction of 85% compared with 140% of total metabolizable energy requirements, fed to cows during mid-to-late gestation, influences phenotypic development of fetuses and mRNA expression of growth (Insulin-Like Growth Factor family and Insulin Receptor (INSR)), myogenic (Myogenic Differentiation 1 (MYOD1), Myogenin (MYOG), Myocyte Enhancer Factor 2A (MEF2A), Serum Response Factor (SRF)) and adipogenic (Peroxisome Proliferator Activated Receptor Gamma (PPARG)) genes in fetal longissimus dorsi (LD) and semitendinosus (ST) muscle. DNA methylation of imprinted genes, Insulin Like Growth Factor 2 (IGF2) and Insulin Like Growth Factor 2 Receptor (IGF2R), and micro RNA (miRNA) expression, were also examined as potential consequences of poor maternal nutrition, but also potential regulators of altered gene expression patterns. While the nutrient restriction impacted dam body weight, no differences were observed in phenotypic fetal measurements (weight, crown-rump length, or thorax circumference). Interestingly, LD and ST muscles responded differently to the differential pre-natal nutrient levels. While LD muscle of restricted fetal calves had greater mRNA abundances for Insulin Like Growth Factor 1 and its receptor (IGF1 and IGF1R), IGF2R, INSR, MYOD1, MYOG, and PPARG, no significant differences were observed for gene expression in ST muscle. Similarly, feed restriction had a greater impact on the methylation level of IGF2 Differentially Methylated Region 2 (DMR2) in LD muscle as compared to ST muscle between treatment groups. A negative correlation existed between IGF2 mRNA expression and IGF2 DMR2 methylation level in both LD and ST muscles. Differential expression of miRNAs 1 and 133a were also detected in LD muscle. Our data suggests that a nutrient restriction of 85% as compared to 140% of total metabolizable energy requirements during the 2nd half of gestation can alter the expression of growth, myogenic and adipogenic genes in fetal muscle without apparent differences in fetal phenotype. It also appears that the impact of feed restriction varies between muscles suggesting a priority for nutrient partitioning depending on muscle function and/or fiber composition. Differences in the methylation level in IGF2, a well-known imprinted gene, as well as differences in miRNA expression, may be functional mechanisms that precede the differences in gene expression observed, and could lead to trans-generational epigenetic programming.
Effects of bisphosphonate treatment on DNA methylation in osteonecrosis of the jaw.
Polidoro, Silvia; Broccoletti, Roberto; Campanella, Gianluca; Di Gaetano, Cornelia; Menegatti, Elisa; Scoletta, Matteo; Lerda, Ennio; Matullo, Giuseppe; Vineis, Paolo; Berardi, Daniela; Scully, Crispian; Arduino, Paolo G
2013-10-09
Bisphosphonates are used in the treatment of hypocalcaemia, mainly in cancer and osteoporosis. Some patients experience adverse events, such as BP-related osteonecrosis of the jaw (BRONJ). DNA methylation plays a key role in gene regulation in many tissues, but its involvement in bone homeostasis is not well characterized, and no information is available regarding altered methylation in BRONJ. Using the Illumina Infinium HumanMethylation27 BeadChip assay, we performed an epigenome-wide association study in peripheral blood samples from 68 patients treated with nitrogenous BP, including 35 with BRONJ. Analysis of the estimated cumulative BP exposure distribution indicated that the exposure of the case group to BP was slightly higher than that of the control group; more severely affected cases (i.e., with BRONJ in both mandible and maxilla) were significantly more exposed to BP than were those with BRONJ only in the mandible or maxilla (one-sided Wilcoxon rank sum test, p=0.002). Logistic regression analysis confirmed the positive association between cumulative bisphosphonates exposure and risk of BRONJ (OR 1.015 per mg of cumulative exposure, 95% CI 1.004-1.032, p=0.036). Although no statistically significant differences were observed between case and control groups, methylation levels of probes mapping on three genes, ERCC8, LEPREL1 and SDC2, were strongly associated with cumulative BP exposure levels (p<1.31E-007). Enrichment analysis, combining differentially methylated genes with genes involved in the mevalonate pathway, showed that BP treatment can affect the methylation pattern of genes involved in extracellular matrix organization and inflammatory responses, leading to more frequent adverse effects such as BRONJ. Differences in DNA methylation induced by BP treatment could be involved in the pathogenesis of the bone lesion. Copyright © 2013 Elsevier B.V. All rights reserved.
Methylation Landscape of Human Breast Cancer Cells in Response to Dietary Compound Resveratrol
Medina-Aguilar, Rubiceli; Pérez-Plasencia, Carlos; Marchat, Laurence A.; Gariglio, Patricio; García Mena, Jaime; Rodríguez Cuevas, Sergio; Ruíz-García, Erika; Astudillo-de la Vega, Horacio; Hernández Juárez, Jennifer; Flores-Pérez, Ali; López-Camarillo, César
2016-01-01
Aberrant DNA methylation is a frequent epigenetic alteration in cancer cells that has emerged as a pivotal mechanism for tumorigenesis. Accordingly, novel therapies targeting the epigenome are being explored with the aim to restore normal DNA methylation patterns on oncogenes and tumor suppressor genes. A limited number of studies indicate that dietary compound resveratrol modulates DNA methylation of several cancer-related genes; however a complete view of changes in methylome by resveratrol has not been reported yet. In this study we performed a genome-wide survey of DNA methylation signatures in triple negative breast cancer cells exposed to resveratrol. Our data showed that resveratrol treatment for 24 h and 48 h decreased gene promoter hypermethylation and increased DNA hypomethylation. Of 2476 hypermethylated genes in control cells, 1,459 and 1,547 were differentially hypomethylated after 24 h and 48 h, respectively. Remarkably, resveratrol did not induce widespread non-specific DNA hyper- or hypomethylation as changes in methylation were found in only 12.5% of 27,728 CpG loci. Moreover, resveratrol restores the hypomethylated and hypermethylated status of key tumor suppressor genes and oncogenes, respectively. Importantly, the integrative analysis of methylome and transcriptome profiles in response to resveratrol showed that methylation alterations were concordant with changes in mRNA expression. Our findings reveal for the first time the impact of resveratrol on the methylome of breast cancer cells and identify novel potential targets for epigenetic therapy. We propose that resveratrol may be considered as a dietary epidrug as it may exert its anti-tumor activities by modifying the methylation status of cancer -related genes which deserves further in vivo characterization. PMID:27355345
Longitudinal study of DNA methylation during the first 5 years of life.
Urdinguio, Rocio G; Torró, María Isabel; Bayón, Gustavo F; Álvarez-Pitti, Julio; Fernández, Agustín F; Redon, Pau; Fraga, Mario F; Lurbe, Empar
2016-06-03
Early life epigenetic programming influences adult health outcomes. Moreover, DNA methylation levels have been found to change more rapidly during the first years of life. Our aim was the identification and characterization of the CpG sites that are modified with time during the first years of life. We hypothesize that these DNA methylation changes would lead to the detection of genes that might be epigenetically modulated by environmental factors during early childhood and which, if disturbed, might contribute to susceptibility to diseases later in life. The study of the DNA methylation pattern of 485577 CpG sites was performed on 30 blood samples from 15 subjects, collected both at birth and at 5 years old, using Illumina(®) Infinium 450 k array. To identify differentially methylated CpG (dmCpG) sites, the methylation status of each probe was examined using linear models and the Empirical Bayes Moderated t test implemented in the limma package of R/Bioconductor. Surogate variable analysis was used to account for batch effects. DNA methylation levels significantly changed from birth to 5 years of age in 6641 CpG sites. Of these, 36.79 % were hypermethylated and were associated with genes related mainly to developmental ontology terms, while 63.21 % were hypomethylated probes and associated with genes related to immune function. Our results suggest that DNA methylation alterations with age during the first years of life might play a significant role in development and the regulation of leukocyte-specific functions. This supports the idea that blood leukocytes experience genome remodeling related to their interaction with environmental factors, underlining the importance of environmental exposures during the first years of life and suggesting that new strategies should be take into consideration for disease prevention.
Sakaki, Mizuho; Ebihara, Yukiko; Okamura, Kohji; Nakabayashi, Kazuhiko; Igarashi, Arisa; Matsumoto, Kenji; Hata, Kenichiro; Kobayashi, Yoshiro
2017-01-01
Cellular senescence is classified into two groups: replicative and premature senescence. Gene expression and epigenetic changes are reported to differ between these two groups and cell types. Normal human diploid fibroblast TIG-3 cells have often been used in cellular senescence research; however, their epigenetic profiles are still not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed the gene expression and DNA methylation profiles of three types of senescent cells, namely, replicatively senescent, ras-induced senescent (RIS), and non-permissive temperature-induced senescent SVts8 cells, using gene expression and DNA methylation microarrays. The expression of genes involved in the cell cycle and immune response was commonly either down- or up-regulated in the three types of senescent cells, respectively. The altered DNA methylation patterns were observed in replicatively senescent cells, but not in prematurely senescent cells. Interestingly, hypomethylated CpG sites detected on non-CpG island regions (“open sea”) were enriched in immune response-related genes that had non-CpG island promoters. The integrated analysis of gene expression and methylation in replicatively senescent cells demonstrated that differentially expressed 867 genes, including cell cycle- and immune response-related genes, were associated with DNA methylation changes in CpG sites close to the transcription start sites (TSSs). Furthermore, several miRNAs regulated in part through DNA methylation were found to affect the expression of their targeted genes. Taken together, these results indicate that the epigenetic changes of DNA methylation regulate the expression of a certain portion of genes and partly contribute to the introduction and establishment of replicative senescence. PMID:28158250
Zhao, Jie-hong; Zhang, Ji-shun; Wang, Yi; Wang, Ren-gang; Wu, Chun; Fan, Long-jiang; Ren, Xue-liang
2011-01-01
DNA methylation plays an important role in the epigenetic regulation of gene expression during plant growth, development, and polyploidization. However, there is still no distinct evidence in tobacco regarding the distribution of the methylation pattern and whether it contributes to qualitative characteristics. We studied the levels and patterns of methylation polymorphism at CCGG sites in 48 accessions of allotetraploid flue-cured tobacco, Nicotiana tabacum, using a methylation-sensitive amplified polymorphism (MSAP) technique. The results showed that methylation existed at a high level among tobacco accessions, among which 49.3% sites were methylated and 69.9% allelic sites were polymorphic. A cluster analysis revealed distinct patterns of geography-specific groups. In addition, three polymorphic sites significantly related to tobacco mosaic virus (TMV) resistance were explored. This suggests that tobacco breeders should pay more attention to epigenetic traits. PMID:22042659
DNA methylation patterns in ulcerative colitis-associated cancer: a systematic review.
Emmett, Ruth A; Davidson, Katherine L; Gould, Nicholas J; Arasaradnam, Ramesh P
2017-07-01
Evidence points to the role of DNA methylation in ulcerative colitis (UC)-associated cancer (UCC), the most serious complication of ulcerative colitis. A better understanding of the etiology of UCC may facilitate the development of new therapeutic targets and help to identify biomarkers of the disease risk. A search was performed in three databases following PRISMA protocol. DNA methylation in UCC was compared with sporadic colorectal cancer (SCRC), and individual genes differently methylated in UCC identified. While there were some similarities in the methylation patterns of UCC compared with SCRC, generally lower levels of hypermethylation in promoter regions of individual genes was evident in UCC. Certain individual genes are, however, highly methylated in colitis-associated cancer: RUNX3, MINT1, MYOD and p16 exon1 and the promoter regions of EYA4 and ESR. Patterns of DNA methylation differ between UCC and SCRC. Seven genes appear to be promising putative biomarkers.
How-Kit, Alexandre; Dejeux, Emelyne; Dousset, Bertrand; Renault, Victor; Baudry, Marion; Terris, Benoit; Tost, Jörg
2015-01-01
Most studies have considered gastroenteropancreatic neuroendocrine tumors (GEP-NETs) as a homogenous group of samples or distinguish only gastrointestinal from pancreatic endocrine tumors. This article investigates if DNA methylation patterns could distinguish subtypes of GEP-NETs. The DNA methylation level of 807 cancer-related genes was investigated in insulinomas, gastrinomas, non-functioning pancreatic endocrine tumors and small intestine endocrine tumors. DNA methylation patterns were found to be tumor type specific for each of the pancreatic tumor subtypes and identified two distinct methylation-based groups in small intestine endocrine tumors. Differences of DNA methylation levels were validated by pyrosequencing for 20 candidate genes and correlated with differences at the transcriptional level for four candidate genes. The heterogeneity of DNA methylation patterns in the different subtypes of gastroenteropancreatic neuroendocrine tumors suggests different underlying pathways and, therefore, these tumors should be considered as distinct entities in molecular and clinical studies.
Huang, Yong-Zhen; Sun, Jia-Jie; Zhang, Liang-Zhi; Li, Cong-Jun; Womack, James E.; Li, Zhuan-Jian; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong
2014-01-01
DNA methylation is a key epigenetic modification in mammals and plays important roles in muscle development. We sampled longissimus dorsi muscle (LDM) from a well-known elite native breed of Chinese Qinchuan cattle living within the same environment but displaying distinct skeletal muscle at the fetal and adult stages. We generated and provided a genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA for fetal and adult muscle studies. Integration analysis revealed a total of 77 and 1,054 negatively correlated genes with methylation in the promoter and gene body regions, respectively, in both the fetal and adult bovine libraries. Furthermore, we identified expression patterns of high-read genes that exhibit a negative correlation between methylation and expression from nine different tissues at multiple developmental stages of bovine muscle-related tissue or organs. In addition, we validated the MeDIP-Seq results by bisulfite sequencing PCR (BSP) in some of the differentially methylated promoters. Together, these results provide valuable data for future biomedical research and genomic and epigenomic studies of bovine skeletal muscle that may help uncover the molecular basis underlying economically valuable traits in cattle. This comprehensive map also provides a solid basis for exploring the epigenetic mechanisms of muscle growth and development. PMID:25306978
Dietary vitamin A impacts DNA methylation patterns of adipogenesis-related genes in suckling rats.
Arreguín, A; Ribot, J; Mušinović, H; von Lintig, J; Palou, A; Bonet, M L
2018-05-11
We previously showed that vitamin A supplementation in early life impacts white adipose tissue (WAT) biology. We here studied the vitamin's effects on DNA methylation of genes crucial for WAT cell development, determination and metabolism. CpG promoter methylation and mRNA expression of Pparg, Zfp423, Pcna, and Rbp4 was compared in inguinal WAT of 21-day-old rats supplemented during the suckling period with vehicle (controls) or an emulsion of vitamin A as retinyl ester (RE) or β-carotene (BC). The methylation profile of promoters was affected by vitamin A supplementation with pronounced differences between the RE and BC groups. In the RE group, hypermethylation of the Rbp4 (at multiple CpGs) and the Pparg2 (at a specific CpG) promoters and hypomethylation of the Pcna promoter (at multiple CpGs) was observed, together with inverse changes in gene expression levels. In the BC group, hypomethylation of the Rbp4 and hypermethylation of the Pcna promoter at distinct CpGs was observed, with no effects on gene expression. In both supplemention groups, hypomethylation and increased expression was found for Zfp423. Thus, modest vitamin A supplementation in early postnatal life impacts methylation marks in developing WAT. Differential epigenetic effects of RE and BC in early life may affect adipose tissue programming activity. Copyright © 2018 Elsevier Inc. All rights reserved.
Hill, Katherine E; Kelly, Andrew D; Kuijjer, Marieke L; Barry, William; Rattani, Ahmed; Garbutt, Cassandra C; Kissick, Haydn; Janeway, Katherine; Perez-Atayde, Antonio; Goldsmith, Jeffrey; Gebhardt, Mark C; Arredouani, Mohamed S; Cote, Greg; Hornicek, Francis; Choy, Edwin; Duan, Zhenfeng; Quackenbush, John; Haibe-Kains, Benjamin; Spentzos, Dimitrios
2017-05-15
A microRNA (miRNA) collection on the imprinted 14q32 MEG3 region has been associated with outcome in osteosarcoma. We assessed the clinical utility of this miRNA set and their association with methylation status. We integrated coding and non-coding RNA data from three independent annotated clinical osteosarcoma cohorts (n = 65, n = 27, and n = 25) and miRNA and methylation data from one in vitro (19 cell lines) and one clinical (NCI Therapeutically Applicable Research to Generate Effective Treatments (TARGET) osteosarcoma dataset, n = 80) dataset. We used time-dependent receiver operating characteristic (tdROC) analysis to evaluate the clinical value of candidate miRNA profiles and machine learning approaches to compare the coding and non-coding transcriptional programs of high- and low-risk osteosarcoma tumors and high- versus low-aggressiveness cell lines. In the cell line and TARGET datasets, we also studied the methylation patterns of the MEG3 imprinting control region on 14q32 and their association with miRNA expression and tumor aggressiveness. In the tdROC analysis, miRNA sets on 14q32 showed strong discriminatory power for recurrence and survival in the three clinical datasets. High- or low-risk tumor classification was robust to using different microRNA sets or classification methods. Machine learning approaches showed that genome-wide miRNA profiles and miRNA regulatory networks were quite different between the two outcome groups and mRNA profiles categorized the samples in a manner concordant with the miRNAs, suggesting potential molecular subtypes. Further, miRNA expression patterns were reproducible in comparing high-aggressiveness versus low-aggressiveness cell lines. Methylation patterns in the MEG3 differentially methylated region (DMR) also distinguished high-aggressiveness from low-aggressiveness cell lines and were associated with expression of several 14q32 miRNAs in both the cell lines and the large TARGET clinical dataset. Within the limits of available CpG array coverage, we observed a potential methylation-sensitive regulation of the non-coding RNA cluster by CTCF, a known enhancer-blocking factor. Loss of imprinting/methylation changes in the 14q32 non-coding region defines reproducible previously unrecognized osteosarcoma subtypes with distinct transcriptional programs and biologic and clinical behavior. Future studies will define the precise relationship between 14q32 imprinting, non-coding RNA expression, genomic enhancer binding, and tumor aggressiveness, with possible therapeutic implications for both early- and advanced-stage patients.
Sasheva, Pavlina; Grossniklaus, Ueli
2017-01-01
Over the last years, it has become increasingly clear that environmental influences can affect the epigenomic landscape and that some epigenetic variants can have heritable, phenotypic effects. While there are a variety of methods to perform genome-wide analyses of DNA methylation in model organisms, this is still a challenging task for non-model organisms without a reference genome. Differentially methylated region-representational difference analysis (DMR-RDA) is a sensitive and powerful PCR-based technique that isolates DNA fragments that are differentially methylated between two otherwise identical genomes. The technique does not require special equipment and is independent of prior knowledge about the genome. It is even applicable to genomes that have high complexity and a large size, being the method of choice for the analysis of plant non-model systems.
Epigenomics and bolting tolerance in sugar beet genotypes.
Hébrard, Claire; Peterson, Daniel G; Willems, Glenda; Delaunay, Alain; Jesson, Béline; Lefèbvre, Marc; Barnes, Steve; Maury, Stéphane
2016-01-01
In sugar beet (Beta vulgaris altissima), bolting tolerance is an essential agronomic trait reflecting the bolting response of genotypes after vernalization. Genes involved in induction of sugar beet bolting have now been identified, and evidence suggests that epigenetic factors are involved in their control. Indeed, the time course and amplitude of DNA methylation variations in the shoot apical meristem have been shown to be critical in inducing sugar beet bolting, and a few functional targets of DNA methylation during vernalization have been identified. However, molecular mechanisms controlling bolting tolerance levels among genotypes are still poorly understood. Here, gene expression and DNA methylation profiles were compared in shoot apical meristems of three bolting-resistant and three bolting-sensitive genotypes after vernalization. Using Cot fractionation followed by 454 sequencing of the isolated low-copy DNA, 6231 contigs were obtained that were used along with public sugar beet DNA sequences to design custom Agilent microarrays for expression (56k) and methylation (244k) analyses. A total of 169 differentially expressed genes and 111 differentially methylated regions were identified between resistant and sensitive vernalized genotypes. Fourteen sequences were both differentially expressed and differentially methylated, with a negative correlation between their methylation and expression levels. Genes involved in cold perception, phytohormone signalling, and flowering induction were over-represented and collectively represent an integrative gene network from environmental perception to bolting induction. Altogether, the data suggest that the genotype-dependent control of DNA methylation and expression of an integrative gene network participate in bolting tolerance in sugar beet, opening up perspectives for crop improvement. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Basu, Baidehi; Chakraborty, Joyeeta; Chandra, Aditi; Katarkar, Atul; Baldevbhai, Jadav Ritesh Kumar; Dhar Chowdhury, Debjit; Ray, Jay Gopal; Chaudhuri, Keya; Chatterjee, Raghunath
2017-01-01
Oral squamous cell carcinoma (OSCC) is one of the common malignancies in Southeast Asia. Epigenetic changes, mainly the altered DNA methylation, have been implicated in many cancers. Considering the varied environmental and genotoxic exposures among the Indian population, we conducted a genome-wide DNA methylation study on paired tumor and adjacent normal tissues of ten well-differentiated OSCC patients and validated in an additional 53 well-differentiated OSCC and adjacent normal samples. Genome-wide DNA methylation analysis identified several novel differentially methylated regions associated with OSCC. Hypermethylation is primarily enriched in the CpG-rich regions, while hypomethylation is mainly in the open sea. Distinct epigenetic drifts for hypo- and hypermethylation across CpG islands suggested independent mechanisms of hypo- and hypermethylation in OSCC development. Aberrant DNA methylation in the promoter regions are concomitant with gene expression. Hypomethylation of immune genes reflect the lymphocyte infiltration into the tumor microenvironment. Comparison of methylome data with 312 TCGA HNSCC samples identified a unique set of hypomethylated promoters among the OSCC patients in India. Pathway analysis of unique hypomethylated promoters indicated that the OSCC patients in India induce an anti-tumor T cell response, with mobilization of T lymphocytes in the neoplastic environment. Survival analysis of these epigenetically regulated immune genes suggested their prominent role in OSCC progression. Our study identified a unique set of hypomethylated regions, enriched in the promoters of immune response genes, and indicated the presence of a strong immune component in the tumor microenvironment. These methylation changes may serve as potential molecular markers to define risk and to monitor the prognosis of OSCC patients in India.
Kelly, Richard D. W.; Mahmud, Arsalan; McKenzie, Matthew; Trounce, Ian A.; St John, Justin C.
2012-01-01
DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization. PMID:22941637
MethBank 3.0: a database of DNA methylomes across a variety of species.
Li, Rujiao; Liang, Fang; Li, Mengwei; Zou, Dong; Sun, Shixiang; Zhao, Yongbing; Zhao, Wenming; Bao, Yiming; Xiao, Jingfa; Zhang, Zhang
2018-01-04
MethBank (http://bigd.big.ac.cn/methbank) is a database that integrates high-quality DNA methylomes across a variety of species and provides an interactive browser for visualization of methylation data. Here, we present an updated implementation of MethBank (version 3.0) by incorporating more DNA methylomes from multiple species and equipping with more enhanced functionalities for data annotation and more friendly web interfaces for data presentation, search and visualization. MethBank 3.0 features large-scale integration of high-quality methylomes, involving 34 consensus reference methylomes derived from a large number of human samples, 336 single-base resolution methylomes from different developmental stages and/or tissues of five plants, and 18 single-base resolution methylomes from gametes and early embryos at multiple stages of two animals. Additionally, it is enhanced by improving the functionalities for data annotation, which accordingly enables systematic identification of methylation sites closely associated with age, sites with constant methylation levels across different ages, differentially methylated promoters, age-specific differentially methylated cytosines/regions, and methylated CpG islands. Moreover, MethBank provides tools to estimate human methylation age online and to identify differentially methylated promoters, respectively. Taken together, MethBank is upgraded with significant improvements and advances over the previous version, which is of great help for deciphering DNA methylation regulatory mechanisms for epigenetic studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
[Corn plant DNA methylation pattern changes upon fractional UV-C irradiation].
Kravets, A P; Sokolova, D A; Vengzhen, G S; Grodzinskiĭ, D M
2013-01-01
Relationship of changes of methylation pattern of functionally different parts of DNA and chromosomal aberration yield was studied at the conditions of the fractionating of UV-C irradiation. Combination of restriction analysis (Hpall, MspI, MboI enzymes) with the subsequent raising of PCR (internal transcribed space ITS1, 1TS4 and inter simple sequence repeat - ISSR, 14b primers) was used. The got results testify to the changes in methylation pattern of satellite and transcription active part of DNA atan irradiation in the mode of fractionating and depending on fraction time ranges. The role of the methylation DNA pattern change in development of radiation damage and induction of organism protective reactions was discussed.
Martin, Elizabeth; Smeester, Lisa; Bommarito, Paige A; Grace, Matthew R; Boggess, Kim; Kuban, Karl; Karagas, Margaret R; Marsit, Carmen J; O'Shea, T Michael; Fry, Rebecca C
2017-03-01
Sex-based differences in response to adverse prenatal environments and infant outcomes have been observed, yet the underlying mechanisms for this are unclear. The placental epigenome may be a driver of these differences. Placental DNA methylation was assessed at more than 480,000 CpG sites from male and female infants enrolled in the extremely low gestational age newborns cohort (ELGAN) and validated in a separate US-based cohort. The impact of gestational age on placental DNA methylation was further examined using the New Hampshire Birth Cohort Study for a total of n = 467 placentas. A total of n = 2745 CpG sites, representing n = 587 genes, were identified as differentially methylated (p < 1 × 10 -7 ). The majority (n = 582 or 99%) of these were conserved among the New Hampshire Birth Cohort. The identified genes encode proteins related to immune function, growth/transcription factor signaling and transport across cell membranes. These data highlight sex-dependent epigenetic patterning in the placenta and provide insight into differences in infant outcomes and responses to the perinatal environment.
Paramutation-like features of multiple natural epialleles in tomato.
Gouil, Quentin; Baulcombe, David C
2018-03-20
Freakish and rare or the tip of the iceberg? Both phrases have been used to refer to paramutation, an epigenetic drive that contravenes Mendel's first law of segregation. Although its underlying mechanisms are beginning to unravel, its understanding relies only on a few examples that may involve transgenes or artificially generated epialleles. By using DNA methylation of introgression lines as an indication of past paramutation, we reveal that the paramutation-like properties of the H06 locus in hybrids of Solanum lycopersicum and a range of tomato relatives and cultivars depend on the timing of sRNA production and conform to an RNA-directed mechanism. In addition, by scanning the methylomes of tomato introgression lines for shared regions of differential methylation that are absent in the S. lycopersicum parent, we identify thousands of candidate regions for paramutation-like behaviour. The methylation patterns for a subset of these regions segregate with non Mendelian ratios, consistent with secondary paramutation-like interactions to variable extents depending on the locus. Together these results demonstrate that paramutation-like epigenetic interactions are common for natural epialleles in tomato, but vary in timing and penetrance.
Epigenetics and obesity: the devil is in the details.
Franks, Paul W; Ling, Charlotte
2010-12-21
Obesity is a complex disease with multiple well-defined risk factors. Nevertheless, susceptibility to obesity and its sequelae within obesogenic environments varies greatly from one person to the next, suggesting a role for gene × environment interactions in the etiology of the disorder. Epigenetic regulation of the human genome provides a putative mechanism by which specific environmental exposures convey risk for obesity and other human diseases and is one possible mechanism that underlies the gene × environment/treatment interactions observed in epidemiological studies and clinical trials. A study published in BMC Medicine this month by Wang et al. reports on an examination of DNA methylation in peripheral blood leukocytes of lean and obese adolescents, comparing methylation patterns between the two groups. The authors identified two genes that were differentially methylated, both of which have roles in immune function. Here we overview the findings from this study in the context of those emerging from other recent genetic and epigenetic studies, discuss the strengths and weaknesses of the study and speculate on the future of epigenetics in chronic disease research.
Holm, Karolina; Staaf, Johan; Lauss, Martin; Aine, Mattias; Lindgren, David; Bendahl, Pär-Ola; Vallon-Christersson, Johan; Barkardottir, Rosa Bjork; Höglund, Mattias; Borg, Åke; Jönsson, Göran; Ringnér, Markus
2016-02-29
Aberrant DNA methylation is frequently observed in breast cancer. However, the relationship between methylation patterns and the heterogeneity of breast cancer has not been comprehensively characterized. Whole-genome DNA methylation analysis using Illumina Infinium HumanMethylation450 BeadChip arrays was performed on 188 human breast tumors. Unsupervised bootstrap consensus clustering was performed to identify DNA methylation epigenetic subgroups (epitypes). The Cancer Genome Atlas data, including methylation profiles of 669 human breast tumors, was used for validation. The identified epitypes were characterized by integration with publicly available genome-wide data, including gene expression levels, DNA copy numbers, whole-exome sequencing data, and chromatin states. We identified seven breast cancer epitypes. One epitype was distinctly associated with basal-like tumors and with BRCA1 mutations, one epitype contained a subset of ERBB2-amplified tumors characterized by multiple additional amplifications and the most complex genomes, and one epitype displayed a methylation profile similar to normal epithelial cells. Luminal tumors were stratified into the remaining four epitypes, with differences in promoter hypermethylation, global hypomethylation, proliferative rates, and genomic instability. Specific hyper- and hypomethylation across the basal-like epitype was rare. However, we observed that the candidate genomic instability drivers BRCA1 and HORMAD1 displayed aberrant methylation linked to gene expression levels in some basal-like tumors. Hypomethylation in luminal tumors was associated with DNA repeats and subtelomeric regions. We observed two dominant patterns of aberrant methylation in breast cancer. One pattern, constitutively methylated in both basal-like and luminal breast cancer, was linked to genes with promoters in a Polycomb-repressed state in normal epithelial cells and displayed no correlation with gene expression levels. The second pattern correlated with gene expression levels and was associated with methylation in luminal tumors and genes with active promoters in normal epithelial cells. Our results suggest that hypermethylation patterns across basal-like breast cancer may have limited influence on tumor progression and instead reflect the repressed chromatin state of the tissue of origin. On the contrary, hypermethylation patterns specific to luminal breast cancer influence gene expression, may contribute to tumor progression, and may present an actionable epigenetic alteration in a subset of luminal breast cancers.
Differential DNA methylation and transcription profiles in date palm roots exposed to salinity
Al-Harrasi, Ibtisam; Al-Yahyai, Rashid
2018-01-01
As a salt-adaptive plant, the date palm (Phoenix dactylifera L.) requires a suitable mechanism to adapt to the stress of saline soils. There is growing evidence that DNA methylation plays an important role in regulating gene expression in response to abiotic stresses, including salinity. Thus, the present study sought to examine the differential methylation status that occurs in the date palm genome when plants are exposed to salinity, and to identify salinity responsive genes that are regulated by DNA methylation. To achieve these, whole-genome bisulfite sequencing (WGBS) was employed and mRNA was sequenced from salinity-treated and untreated roots. The WGBS analysis included 324,987,795 and 317,056,091 total reads of the control and the salinity-treated samples, respectively. The analysis covered about 81% of the total genomic DNA with about 40% of mapping efficiency of the sequenced reads and an average read depth of 17-fold coverage per DNA strand, and with a bisulfite conversion rate of around 99%. The level of methylation within the differentially methylated regions (DMRs) was significantly (p < 0.05, FDR ≤ 0.05) increased in response to salinity specifically at the mCHG and mCHH sequence contexts. Consistently, the mass spectrometry and the enzyme-linked immunosorbent assay (ELISA) showed that there was a significant (p < 0.05) increase in the global DNA methylation in response to salinity. mRNA sequencing revealed the presence of 6,405 differentially regulated genes with a significant value (p < 0.001, FDR ≤ 0.05) in response to salinity. Integration of high-resolution methylome and transcriptome analyses revealed a negative correlation between mCG methylation located within the promoters and the gene expression, while a positive correlation was noticed between mCHG/mCHH methylation rations and gene expression specifically when plants grew under control conditions. Therefore, the methylome and transcriptome relationships vary based on the methylated sequence context, the methylated region within the gene, the protein-coding ability of the gene, and the salinity treatment. These results provide insights into interplay among DNA methylation and gene expression, and highlight the effect of salinity on the nature of this relationship, which may involve other genetic and epigenetic players under salt stress conditions. The results obtained from this project provide the first draft map of the differential methylome and transcriptome of date palm when exposed to an abiotic stress. PMID:29352281
Differential DNA methylation and transcription profiles in date palm roots exposed to salinity.
Al-Harrasi, Ibtisam; Al-Yahyai, Rashid; Yaish, Mahmoud W
2018-01-01
As a salt-adaptive plant, the date palm (Phoenix dactylifera L.) requires a suitable mechanism to adapt to the stress of saline soils. There is growing evidence that DNA methylation plays an important role in regulating gene expression in response to abiotic stresses, including salinity. Thus, the present study sought to examine the differential methylation status that occurs in the date palm genome when plants are exposed to salinity, and to identify salinity responsive genes that are regulated by DNA methylation. To achieve these, whole-genome bisulfite sequencing (WGBS) was employed and mRNA was sequenced from salinity-treated and untreated roots. The WGBS analysis included 324,987,795 and 317,056,091 total reads of the control and the salinity-treated samples, respectively. The analysis covered about 81% of the total genomic DNA with about 40% of mapping efficiency of the sequenced reads and an average read depth of 17-fold coverage per DNA strand, and with a bisulfite conversion rate of around 99%. The level of methylation within the differentially methylated regions (DMRs) was significantly (p < 0.05, FDR ≤ 0.05) increased in response to salinity specifically at the mCHG and mCHH sequence contexts. Consistently, the mass spectrometry and the enzyme-linked immunosorbent assay (ELISA) showed that there was a significant (p < 0.05) increase in the global DNA methylation in response to salinity. mRNA sequencing revealed the presence of 6,405 differentially regulated genes with a significant value (p < 0.001, FDR ≤ 0.05) in response to salinity. Integration of high-resolution methylome and transcriptome analyses revealed a negative correlation between mCG methylation located within the promoters and the gene expression, while a positive correlation was noticed between mCHG/mCHH methylation rations and gene expression specifically when plants grew under control conditions. Therefore, the methylome and transcriptome relationships vary based on the methylated sequence context, the methylated region within the gene, the protein-coding ability of the gene, and the salinity treatment. These results provide insights into interplay among DNA methylation and gene expression, and highlight the effect of salinity on the nature of this relationship, which may involve other genetic and epigenetic players under salt stress conditions. The results obtained from this project provide the first draft map of the differential methylome and transcriptome of date palm when exposed to an abiotic stress.
Differential regulation of genomic imprinting by TET proteins in embryonic stem cells.
Liu, Lizhi; Mao, Shi-Qing; Ray, Chelsea; Zhang, Yu; Bell, Fong T; Ng, Sheau-Fang; Xu, Guo-Liang; Li, Xiajun
2015-09-01
TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Metzger, David C H; Schulte, Patricia M
2017-10-11
Epigenetic mechanisms such as changes in DNA methylation have the potential to affect the resilience of species to climate change, but little is known about the response of the methylome to changes in environmental temperature in animals. Using reduced representation bisulfite sequencing, we assessed the effects of development temperature and adult acclimation temperature on DNA methylation levels in threespine stickleback ( Gasterosteus aculeatus ). Across all treatments, we identified 2130 differentially methylated cytosines distributed across the genome. Both increases and decreases in temperature during development and with thermal acclimation in adults increased global DNA methylation levels. Approximately 25% of the differentially methylated regions (DMRs) responded to both developmental temperature and adult thermal acclimation, and 50 DMRs were common to all treatments, demonstrating a core response of the epigenome to thermal change at multiple time scales. We also identified differentially methylated loci that were specific to a particular developmental or adult thermal response, which could facilitate the accumulation of epigenetic variation between natural populations that experience different thermal regimes. These data demonstrate that thermal history can have long-lasting effects on the epigenome, highlighting the role of epigenetic modifications in the response to temperature change across multiple time scales. © 2017 The Author(s).
Senut, Marie-Claude; Zhang, Yanhua; Liu, Fangchao; Sen, Arko; Ruden, Douglas M.; Mao, Guangzhao
2016-01-01
This study explores the use of human embryonic stem cells (hESCs) for assessing nanotoxicology, specifically, the effect of gold nanoparticles (AuNPs) of different core sizes (1.5 nm, 4 nm, and 14 nm) on the viability, pluripotency, neuronal differentiation, and DNA methylation of hESCs. The hESCs exposed to 1.5 nm thiolate-capped AuNPs exhibited loss of cohesiveness and detachment suggesting ongoing cell death at concentrations as low as 0.1 µg/mL. The cells exposed to 1.5 nm AuNPs at this concentration did not form embryoid bodies but rather disintegrated into single cells within 48 hours. Cell death caused by 1.5 nm AuNPs also occurred in hESC-derived neural progenitor cells. None of the other nanoparticles exhibited toxic effects on the hESCs at concentrations as high as 10 µg/mL during a 19 day neural differentiation period. Thiolate-capped 4 nm AuNPs at 10 µg/mL caused a dramatic decrease in global DNA methylation (5mC) and a corresponding increase in global DNA hydroxymethylation (5hmC) of the hESC’s DNA in only 24 hours. This work identifies a type of AuNPs highly toxic to hESCs and demonstrates the potential of hESCs in predicting nanotoxicity and characterizing their ability to alter the DNA methylation and hydroxymethylation patterns in the cells. PMID:26676601
Yamashita, Michiko; Inoue, Kazuki; Saeki, Noritaka; Ideta-Otsuka, Maky; Yanagihara, Yuta; Sawada, Yuichiro; Sakakibara, Iori; Lee, Jiwon; Ichikawa, Koichi; Kamei, Yoshiaki; Iimura, Tadahiro; Igarashi, Katsuhide; Takada, Yasutsugu; Imai, Yuuki
2018-01-08
Transcriptional regulation can be tightly orchestrated by epigenetic regulators. Among these, ubiquitin-like with PHD and RING finger domains 1 (Uhrf1) is reported to have diverse epigenetic functions, including regulation of DNA methylation. However, the physiological functions of Uhrf1 in skeletal tissues remain unclear. Here, we show that limb mesenchymal cell-specific Uhrf1 conditional knockout mice ( Uhrf1 Δ Limb/ Δ Limb ) exhibit remarkably shortened long bones that have morphological deformities due to dysregulated chondrocyte differentiation and proliferation. RNA-seq performed on primary cultured chondrocytes obtained from Uhrf1 Δ Limb/ Δ Limb mice showed abnormal chondrocyte differentiation. In addition, integrative analyses using RNA-seq and MBD-seq revealed that Uhrf1 deficiency decreased genome-wide DNA methylation and increased gene expression through reduced DNA methylation in the promoter regions of 28 genes, including Hspb1 , which is reported to be an IL1-related gene and to affect chondrocyte differentiation. Hspb1 knockdown in cKO chondrocytes can normalize abnormal expression of genes involved in chondrocyte differentiation, such as Mmp13 These results indicate that Uhrf1 governs cell type-specific transcriptional regulation by controlling the genome-wide DNA methylation status and regulating consequent cell differentiation and skeletal maturation. © 2018. Published by The Company of Biologists Ltd.
Differential Activation of AP-1 in Human Bladder Epithelial Cells by Inorganic and Methylated Arsenicals
Zuzana Drobna, Ilona Jaspers, David J. Thomas, and Miroslav Styblo
ABSTRACT
Epidemiological studies have linked chronic ingestion of drinking water contai...
DNA methylation-based reclassification of olfactory neuroblastoma.
Capper, David; Engel, Nils W; Stichel, Damian; Lechner, Matt; Glöss, Stefanie; Schmid, Simone; Koelsche, Christian; Schrimpf, Daniel; Niesen, Judith; Wefers, Annika K; Jones, David T W; Sill, Martin; Weigert, Oliver; Ligon, Keith L; Olar, Adriana; Koch, Arend; Forster, Martin; Moran, Sebastian; Tirado, Oscar M; Sáinz-Japeado, Miguel; Mora, Jaume; Esteller, Manel; Alonso, Javier; Del Muro, Xavier Garcia; Paulus, Werner; Felsberg, Jörg; Reifenberger, Guido; Glatzel, Markus; Frank, Stephan; Monoranu, Camelia M; Lund, Valerie J; von Deimling, Andreas; Pfister, Stefan; Buslei, Rolf; Ribbat-Idel, Julika; Perner, Sven; Gudziol, Volker; Meinhardt, Matthias; Schüller, Ulrich
2018-05-05
Olfactory neuroblastoma/esthesioneuroblastoma (ONB) is an uncommon neuroectodermal neoplasm thought to arise from the olfactory epithelium. Little is known about its molecular pathogenesis. For this study, a retrospective cohort of n = 66 tumor samples with the institutional diagnosis of ONB was analyzed by immunohistochemistry, genome-wide DNA methylation profiling, copy number analysis, and in a subset, next-generation panel sequencing of 560 tumor-associated genes. DNA methylation profiles were compared to those of relevant differential diagnoses of ONB. Unsupervised hierarchical clustering analysis of DNA methylation data revealed four subgroups among institutionally diagnosed ONB. The largest group (n = 42, 64%, Core ONB) presented with classical ONB histology and no overlap with other classes upon methylation profiling-based t-distributed stochastic neighbor embedding (t-SNE) analysis. A second DNA methylation group (n = 7, 11%) with CpG island methylator phenotype (CIMP) consisted of cases with strong expression of cytokeratin, no or scarce chromogranin A expression and IDH2 hotspot mutation in all cases. T-SNE analysis clustered these cases together with sinonasal carcinoma with IDH2 mutation. Four cases (6%) formed a small group characterized by an overall high level of DNA methylation, but without CIMP. The fourth group consisted of 13 cases that had heterogeneous DNA methylation profiles and strong cytokeratin expression in most cases. In t-SNE analysis, these cases mostly grouped among sinonasal adenocarcinoma, squamous cell carcinoma, and undifferentiated carcinoma. Copy number analysis indicated highly recurrent chromosomal changes among Core ONB with a high frequency of combined loss of chromosome 1-4, 8-10, and 12. NGS sequencing did not reveal highly recurrent mutations in ONB, with the only recurrently mutated genes being TP53 and DNMT3A. In conclusion, we demonstrate that institutionally diagnosed ONB are a heterogeneous group of tumors. Expression of cytokeratin, chromogranin A, the mutational status of IDH2 as well as DNA methylation patterns may greatly aid in the precise classification of ONB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suriguga,; Li, Xiao-Fei; Li, Yang
2013-12-15
Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependentmore » increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.« less
Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng
2016-07-01
Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.
Joules, R; Doyle, O M; Schwarz, A J; O'Daly, O G; Brammer, M; Williams, S C; Mehta, M A
2015-11-01
Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been studied in relation to the glutamate hypothesis of schizophrenia and increases dissociation, positive and negative symptom ratings. Ketamine effects brain function through changes in brain activity; these activity patterns can be modulated by pre-treatment of compounds known to attenuate the effects of ketamine on glutamate release. Ketamine also has marked effects on brain connectivity; we predicted that these changes would also be modulated by compounds known to attenuate glutamate release. Here, we perform task-free pharmacological magnetic resonance imaging (phMRI) to investigate the functional connectivity effects of ketamine in the brain and the potential modulation of these effects by pre-treatment of the compounds lamotrigine and risperidone, compounds hypothesised to differentially modulate glutamate release. Connectivity patterns were assessed by combining windowing, graph theory and multivariate Gaussian process classification. We demonstrate that ketamine has a robust effect on the functional connectivity of the human brain compared to saline (87.5 % accuracy). Ketamine produced a shift from a cortically centred, to a subcortically centred pattern of connections. This effect is strongly modulated by pre-treatment with risperidone (81.25 %) but not lamotrigine (43.75 %). Based on the differential effect of these compounds on ketamine response, we suggest the observed connectivity effects are primarily due to NMDAR blockade rather than downstream glutamatergic effects. The connectivity changes contrast with amplitude of response for which no differential effect between pre-treatments was detected, highlighting the necessity of these techniques in forming an informed view of the mechanistic effects of pharmacological compounds in the human brain.
Reduced representation bisulphite sequencing of the cattle genome reveals DNA methylation patterns
USDA-ARS?s Scientific Manuscript database
Using reduced representation bisulphite sequencing (RRBS), we obtained the first single-base-resolution maps of bovine DNA methylation in ten somatic tissues. In total, we observed 1,868,049 cytosines in the CG-enriched regions. Similar to the methylation patterns in other species, the CG context wa...
Lou, Jianlin; Wang, Yu; Chen, Junqiang; Ju, Li; Yu, Min; Jiang, Zhaoqiang; Feng, Lingfang; Jin, Lingzhi; Zhang, Xing
2015-10-01
Several previous studies highlighted the potential epigenetic effects of Cr(VI), especially DNA methylation. However, few studies have compared the effects of Cr(VI) on DNA methylation profiles between soluble and particulate chromate in vitro. Accordingly, Illumina Infinium Human Methylation 450K BeadChip array was used to analyze DNA methylation profiles of human B lymphoblastoid cells exposed to potassium dichromate or lead chromate, and the cell viability was also studied. Array based DNA methylation analysis showed that the impacts of Cr(VI) on DNA methylation were limited, only about 40 differentially methylated CpG sites, with an overlap of 15CpG sites, were induced by both potassium dichromate and lead chromate. The results of mRNA expression showed that after Cr(VI) treatment, mRNA expression changes of four genes (TBL1Y, FZD5, IKZF2, and KIAA1949) were consistent with their DNA methylation alteration, but DNA methylation changes of other six genes did not correlate with mRNA expression. In conclusion, both of soluble and particulate Cr(VI) could induce a small amount of differentially methylated sites in human B lymphoblastoid cells, and the correlations between DNA methylation changes and mRNA expression varied between different genes. Copyright © 2015 Elsevier B.V. All rights reserved.
Huang, Yajuan; Wen, Haishen; Zhang, Meizhao; Hu, Nan; Si, Yufeng; Li, Siping; He, Feng
2018-05-01
Many genes related to muscle growth modulate myoblast proliferation and differentiation and promote muscle hypertrophy. MyoD is a myogenic determinant that contributes to myoblast determination, and insulin-like growth factor 1 (IGF-I) interacts with MyoD to regulate muscle hypertrophy and muscle mass. In this study, we aimed to assess DNA methylation and mRNA expression patterns of MyoD and IGF-I during different developmental stages of Japanese flounder, and to examine the relationship between MyoD and IGF-I gene. DNA and RNA were extracted from muscles, and DNA methylation of MyoD and IGF-I promoter and exons was detected by bisulfite sequencing. The relative expression of MyoD and IGF-I was measured by quantitative polymerase chain reaction. IGF-I was measured by radioimmunoassay. Interestingly, the lowest expression of MyoD and IGF-I emerged at larva stage, and the mRNA expression was negatively associated with methylation. We hypothesized that many skeletal muscle were required to complete metamorphosis; thus, the expression levels of MyoD and IGF-I genes increased from larva stage and then decreased. The relative expression levels of MyoD and IGF-I exhibited similar patterns, suggesting that MyoD and IGF-I regulated muscle growth through combined effects. Changes in the concentrations of IGF-I hormone were similar to those of IGF-I gene expression. Our results the mechanism through which MyoD and IGF-I regulate muscle development and demonstrated that MyoD interacted with IGF-I to regulate muscle growth during different developmental stages. Copyright © 2018 Elsevier Inc. All rights reserved.
Sánchez-Vega, Francisco; Gotea, Valer; Petrykowska, Hanna M; Margolin, Gennady; Krivak, Thomas C; DeLoia, Julie A; Bell, Daphne W; Elnitski, Laura
2013-01-01
The study of aberrant DNA methylation in cancer holds the key to the discovery of novel biological markers for diagnostics and can help to delineate important mechanisms of disease. We have identified 12 loci that are differentially methylated in serous ovarian cancers and endometrioid ovarian and endometrial cancers with respect to normal control samples. The strongest signal showed hypermethylation in tumors at a CpG island within the ZNF154 promoter. We show that hypermethylation of this locus is recurrent across solid human epithelial tumor samples for 15 of 16 distinct cancer types from TCGA. Furthermore, ZNF154 hypermethylation is strikingly present across a diverse panel of ENCODE cell lines, but only in those derived from tumor cells. By extending our analysis from the Illumina 27K Infinium platform to the 450K platform, to sequencing of PCR amplicons from bisulfite treated DNA, we demonstrate that hypermethylation extends across the breadth of the ZNF154 CpG island. We have also identified recurrent hypomethylation in two genomic regions associated with CASP8 and VHL. These three genes exhibit significant negative correlation between methylation and gene expression across many cancer types, as well as patterns of DNaseI hypersensitivity and histone marks that reflect different chromatin accessibility in cancer vs. normal cell lines. Our findings emphasize hypermethylation of ZNF154 as a biological marker of relevance for tumor identification. Epigenetic modifications affecting the promoters of ZNF154, CASP8, and VHL are shared across a vast array of tumor types and may therefore be important for understanding the genomic landscape of cancer. PMID:24149212
Sánchez-Vega, Francisco; Gotea, Valer; Petrykowska, Hanna M; Margolin, Gennady; Krivak, Thomas C; DeLoia, Julie A; Bell, Daphne W; Elnitski, Laura
2013-12-01
The study of aberrant DNA methylation in cancer holds the key to the discovery of novel biological markers for diagnostics and can help to delineate important mechanisms of disease. We have identified 12 loci that are differentially methylated in serous ovarian cancers and endometrioid ovarian and endometrial cancers with respect to normal control samples. The strongest signal showed hypermethylation in tumors at a CpG island within the ZNF154 promoter. We show that hypermethylation of this locus is recurrent across solid human epithelial tumor samples for 15 of 16 distinct cancer types from TCGA. Furthermore, ZNF154 hypermethylation is strikingly present across a diverse panel of ENCODE cell lines, but only in those derived from tumor cells. By extending our analysis from the Illumina 27K Infinium platform to the 450K platform, to sequencing of PCR amplicons from bisulfite treated DNA, we demonstrate that hypermethylation extends across the breadth of the ZNF154 CpG island. We have also identified recurrent hypomethylation in two genomic regions associated with CASP8 and VHL. These three genes exhibit significant negative correlation between methylation and gene expression across many cancer types, as well as patterns of DNaseI hypersensitivity and histone marks that reflect different chromatin accessibility in cancer vs. normal cell lines. Our findings emphasize hypermethylation of ZNF154 as a biological marker of relevance for tumor identification. Epigenetic modifications affecting the promoters of ZNF154, CASP8, and VHL are shared across a vast array of tumor types and may therefore be important for understanding the genomic landscape of cancer.
Hosoki, Kana; Ogata, Tsutomu; Kagami, Masayo; Tanaka, Touju; Saitoh, Shinji
2008-08-01
Maternal uniparental disomy for chromosome 14 (upd(14)mat) causes clinically discernible features such as pre- and/or postnatal growth failure, hypotonia, obesity, small hands, and early onset of puberty. The monoallelic expression patterns at the 14q32.2 imprinted region are tightly related to methylation status of the DLK1-MEG3 intergenic differential methylation region (DMR) and the MEG3-DMR that are severely hypermethylated after paternal transmission and grossly hypomethylated after maternal transmission. We examined this imprinted region in a 2 2/12-year-old Japanese patient who was born with a normal birth size (length, +0.2 SD; weight, -0.5 SD) and showed postnatal growth failure (height, -3.1 SD; weight, -3.4 SD), hypotonia, frontal bossing, micrognathia, and small hands. Methylation analysis, genotyping analysis, and deletion analysis were performed with blood samples of the patient and the parents, showing that the DMRs of this patient were grossly hypomethylated in the absence of upd(14)mat and deletion of the DMRs. The results indicate the occurrence of an epimutation (hypomethylation) affecting the normally methylated DMRs of paternal origin, and imply that epimutations should be examined in patients with upd(14)mat-like phenotype.
Methylation of miR-145a-5p promoter mediates adipocytes differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Jingjing; Cheng, Xiao; Shen, Linyuan
MicroRNAs (miRNAs, miR) play important roles in adipocyte development. Recent studies showed that the expression of several miRNAs is closely related with promoter methylation. However, it is not known whether miRNA mediates adipocytes differentiation by means of DNA methylation. Here, we showed that miR-145a-5p was poorly expressed in adipose tissue from mice fed a high fat diet (HFD). Overexpression or inhibition of miR-145a-5p was unfavorable or beneficial, respectively, for adipogenesis, and these effects were achieved by regulating adipocyte-specific genes involved in lipogenic transcription, fatty acid synthesis, and fatty acid transportation. Particularly, we first suggested that miR-145a-5p mimics or inhibitors promotedmore » or repressed adipocytes proliferation by regulating p53 and p21, which act as cell cycle regulating factors. Surprisingly, the miR-145a-5p-repressed adipocyte differentiation was enhanced or rescued when cells treated with 5-Aza-dC were transfected with miR-145a-5p mimics or inhibitors, respectively. These data indicated that, as a new mean to positively regulate adipocyte proliferation, the process of miR-145a-5p-inhibited adipogenesis may be regulated by DNA methylation. -- Highlights: •MiR-145a-5p promotes adipocytes proliferation. •MiR-145a-5p is negatively correlated with obesity. •MiR-145a-5p mediates adipocytes differentiation via regulating pathway related adipocytes differentiation. MiR-145a-5p mediating adipocytes differentiation was regulated by DNA methylation.« less
Song, Xiaowen; Huang, Fei; Liu, Juanjuan; Li, Chengjun; Gao, Shanshan; Wu, Wei; Zhai, Mengfan; Yu, Xiaojuan; Xiong, Wenfeng; Xie, Jia
2017-01-01
Abstract Cytosine DNA methylation is a vital epigenetic regulator of eukaryotic development. Whether this epigenetic modification occurs in Tribolium castaneum has been controversial, its distribution pattern and functions have not been established. Here, using bisulphite sequencing (BS-Seq), we confirmed the existence of DNA methylation and described the methylation profiles of the four life stages of T. castaneum. In the T. castaneum genome, both symmetrical CpG and non-CpG methylcytosines were observed. Symmetrical CpG methylation, which was catalysed by DNMT1 and occupied a small part in T. castaneum methylome, was primarily enriched in gene bodies and was positively correlated with gene expression levels. Asymmetrical non-CpG methylation, which was predominant in the methylome, was strongly concentrated in intergenic regions and introns but absent from exons. Gene body methylation was negatively correlated with gene expression levels. The distribution pattern and functions of this type of methylation were similar only to the methylome of Drosophila melanogaster, which further supports the existence of a novel methyltransferase in the two species responsible for this type of methylation. This first life-cycle methylome of T. castaneum reveals a novel and unique methylation pattern, which will contribute to the further understanding of the variety and functions of DNA methylation in eukaryotes. PMID:28449092
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajbakhsh, Jian, E-mail: tajbakhshj@cshs.org; Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
2015-03-15
Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a 10-day differentiation course in vitro: by means of confocal and super-resolution imaging together with 3D high-content analysis, an essential tool in single-cell screening. In summary: 1) Wemore » did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU/day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17: 0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, global DNA methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC{sup +}/5mC{sup −}, 5hmC{sup +}/5mC{sup +}, and 5hmC{sup −}/5mC{sup +} cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC{sup +}/5mC{sup +} cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably delineating chromatin domains in remodeling. We conclude that 1) 5mC emerges as the most differential marker in our model system. 2) However, the combined enrollment of the two DNA modifications provided higher-definition screening and lead to the identification of cell subpopulations based on differential 5hmC/5mC phenotypes corresponding to different 5hmC/5mC ratios. The results encourage: a) assessing the regenerative potential of early-endodermal cells enriched for the three DNA methylation/hydroxymethylation categories, and b) exploring the universality of this type of epigenetic phenotyping across other lineage-specific differentiations. - Highlights: • First reported single-molecule super-resolution 3D-visualization of 5mC/5hmC sites in cells. • Identification of cells with differential 5mC/5hmC nuclear codistribution phenotypes. • Application of principle component and robust regression analyses for evaluation of 3D high-content-screening data. • Global 5mC constitutes a highly differential spatiotemporal in situ marker in early endodermal cell differentiation.« less
Evolution of DNA Methylation across Insects
Vogel, Kevin J.; Moore, Allen J.; Schmitz, Robert J.
2017-01-01
DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. PMID:28025279
Dnmt1 regulates the myogenic lineage specification of muscle stem cells.
Liu, Renjing; Kim, Kun-Yong; Jung, Yong-Wook; Park, In-Hyun
2016-10-18
DNA methylation is an important epigenetic mark that regulates gene expression. Dnmt1 plays an important role in maintaining DNA methylation patterns on daughter DNA strands. Studies have shed light into the functional role of Dnmt1 regulation in the hematopoietic and epidermal systems. Here we show that Dnmt1 is required for myogenesis. Loss of Dnmt1 results in reduced expression of myogenic genes and defects in myogenic differentiation. We have utilized a conditional knockout mouse approach to examine the functional consequences of Dnmt1 depletion specifically in the developing muscle. These mice were born runted, with smaller body weights, and reduced ability to form myotubes in vitro. We show that expression of Id-1, a negative regulator of myogenesis, is enhanced in Dnmt1-deficient cultures, leading to enhanced transdifferentiation of myoblasts toward the osteogenic lineage. Thus, these studies demonstrate that Dnmt1 influences cellular identity and determines lineage fidelity.
Dnmt1 regulates the myogenic lineage specification of muscle stem cells
Liu, Renjing; Kim, Kun-Yong; Jung, Yong-Wook; Park, In-Hyun
2016-01-01
DNA methylation is an important epigenetic mark that regulates gene expression. Dnmt1 plays an important role in maintaining DNA methylation patterns on daughter DNA strands. Studies have shed light into the functional role of Dnmt1 regulation in the hematopoietic and epidermal systems. Here we show that Dnmt1 is required for myogenesis. Loss of Dnmt1 results in reduced expression of myogenic genes and defects in myogenic differentiation. We have utilized a conditional knockout mouse approach to examine the functional consequences of Dnmt1 depletion specifically in the developing muscle. These mice were born runted, with smaller body weights, and reduced ability to form myotubes in vitro. We show that expression of Id-1, a negative regulator of myogenesis, is enhanced in Dnmt1-deficient cultures, leading to enhanced transdifferentiation of myoblasts toward the osteogenic lineage. Thus, these studies demonstrate that Dnmt1 influences cellular identity and determines lineage fidelity. PMID:27752090
Saeliw, Thanit; Tangsuwansri, Chayanin; Thongkorn, Surangrat; Chonchaiya, Weerasak; Suphapeetiporn, Kanya; Mutirangura, Apiwat; Tencomnao, Tewin; Hu, Valerie W; Sarachana, Tewarit
2018-01-01
Alu elements are a group of repetitive elements that can influence gene expression through CpG residues and transcription factor binding. Altered gene expression and methylation profiles have been reported in various tissues and cell lines from individuals with autism spectrum disorder (ASD). However, the role of Alu elements in ASD remains unclear. We thus investigated whether Alu elements are associated with altered gene expression profiles in ASD. We obtained five blood-based gene expression profiles from the Gene Expression Omnibus database and human Alu-inserted gene lists from the TranspoGene database. Differentially expressed genes (DEGs) in ASD were identified from each study and overlapped with the human Alu-inserted genes. The biological functions and networks of Alu-inserted DEGs were then predicted by Ingenuity Pathway Analysis (IPA). A combined bisulfite restriction analysis of lymphoblastoid cell lines (LCLs) derived from 36 ASD and 20 sex- and age-matched unaffected individuals was performed to assess the global DNA methylation levels within Alu elements, and the Alu expression levels were determined by quantitative RT-PCR. In ASD blood or blood-derived cells, 320 Alu-inserted genes were reproducibly differentially expressed. Biological function and pathway analysis showed that these genes were significantly associated with neurodevelopmental disorders and neurological functions involved in ASD etiology. Interestingly, estrogen receptor and androgen signaling pathways implicated in the sex bias of ASD, as well as IL-6 signaling and neuroinflammation signaling pathways, were also highlighted. Alu methylation was not significantly different between the ASD and sex- and age-matched control groups. However, significantly altered Alu methylation patterns were observed in ASD cases sub-grouped based on Autism Diagnostic Interview-Revised scores compared with matched controls. Quantitative RT-PCR analysis of Alu expression also showed significant differences between ASD subgroups. Interestingly, Alu expression was correlated with methylation status in one phenotypic ASD subgroup. Alu methylation and expression were altered in LCLs from ASD subgroups. Our findings highlight the association of Alu elements with gene dysregulation in ASD blood samples and warrant further investigation. Moreover, the classification of ASD individuals into subgroups based on phenotypes may be beneficial and could provide insights into the still unknown etiology and the underlying mechanisms of ASD.
X-chromosome dosage as a modulator of pluripotency, signalling and differentiation?
Schulz, Edda G
2017-11-05
Already during early embryogenesis, before sex-specific hormone production is initiated, sex differences in embryonic development have been observed in several mammalian species. Typically, female embryos develop more slowly than their male siblings. A similar phenotype has recently been described in differentiating murine embryonic stem cells, where a double dose of the X-chromosome halts differentiation until dosage-compensation has been achieved through X-chromosome inactivation. On the molecular level, several processes associated with early differentiation of embryonic stem cells have been found to be affected by X-chromosome dosage, such as the transcriptional state of the pluripotency network, the activity pattern of several signal transduction pathways and global levels of DNA-methylation. This review provides an overview of the sex differences described in embryonic stem cells from mice and discusses a series of X-linked genes that are associated with pluripotency, signalling and differentiation and their potential involvement in mediating the observed X-dosage-dependent effects.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Author(s).
Stage 4S neuroblastoma tumors show a characteristic DNA methylation portrait.
Decock, Anneleen; Ongenaert, Maté; De Wilde, Bram; Brichard, Bénédicte; Noguera, Rosa; Speleman, Frank; Vandesompele, Jo
2016-09-06
Stage 4S neuroblastoma (NB) is a special type of NB found in infants with metastases at diagnosis and is associated with an excellent outcome due to its remarkable capacity to undergo spontaneous regression. As genomics have not been able to explain this intriguing clinical presentation, we here aimed at profiling the DNA methylome of stage 4S NB to better understand this phenomenon. To this purpose, differential methylation analyses between International Neuroblastoma Staging System (INSS) stage 4S, stage 4 and stage 1/2 were performed, using methyl-CpG-binding domain (MBD) sequencing data of 14 stage 4S, 14 stage 4, and 13 stage 1/2 primary NB tumors (all MYCN non-amplified in order not to confound results). Stage 4S-specific hyper- and hypo-methylated promoters were determined and further characterized for genomic localization and function by cytogenetic band enrichment, gene set enrichment, transcription factor target enrichment and differential RNA expression analyses. We show that specific chromosomal locations are enriched for stage 4S differentially methylated promoters and that stage 4S tumors show characteristic hypermethylation of subtelomeres. Furthermore, genes involved in important oncogenic pathways, in neural crest development and differentiation, and in epigenetic processes are differentially methylated and expressed in stage 4S tumors. Based on these findings, we describe new biological mechanisms possibly contributing to the stage 4S-specific tumor biology and spontaneous regression. In conclusion, this study is the first to describe the highly characteristic stage 4S DNA methylome. These findings will open new avenues to further unravel the NB pathology in general and stage 4S disease specifically.
Regulation of DNA methylation patterns by CK2-mediated phosphorylation of Dnmt3a.
Deplus, Rachel; Blanchon, Loïc; Rajavelu, Arumugam; Boukaba, Abdelhalim; Defrance, Matthieu; Luciani, Judith; Rothé, Françoise; Dedeurwaerder, Sarah; Denis, Hélène; Brinkman, Arie B; Simmer, Femke; Müller, Fabian; Bertin, Benjamin; Berdasco, Maria; Putmans, Pascale; Calonne, Emilie; Litchfield, David W; de Launoit, Yvan; Jurkowski, Tomasz P; Stunnenberg, Hendrik G; Bock, Christoph; Sotiriou, Christos; Fraga, Mario F; Esteller, Manel; Jeltsch, Albert; Fuks, François
2014-08-07
DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Genome-wide DNA Methylation Profiling of CpG Islands in Hypospadias
Choudhry, Shweta; Deshpande, Archana; Qiao, Liang; Beckman, Kenneth; Sen, Saunak; Baskin, Laurence S.
2013-01-01
Purpose Hypospadias is one of the most frequent genital malformations in the male newborn, and results from abnormal penile and urethral development. The etiology of hypospadias remains largely unknown despite intensive investigations. Fetal androgens have a crucial role in genital differentiation. Recent studies have suggested that molecular mechanisms that underlie the effects of androgens on the fetus may involve disruption of epigenetic programming of gene expression during development. We assessed whether epigenetic modification of DNA methylation is associated with hypospadias in a case-control study of 12 hypospadias and 8 control subjects. Materials and Methods Genome-wide DNA methylation profiling was performed on the study subjects using the Illumina Infinium® HumanMethylation450 Bead-Chip, which enables the direct investigation of methylation status of more than 485,000 individual CpG sites throughout the genome. The methylation level at each CpG site was compared between cases and controls using the t test and logistic regression. Results We identified 14 CpG sites that were associated with hypospadias with p <0.00001. These CpG sites were in or near the SCARB1, MYBPH, SORBS1, LAMA4, HOXD11, MYO1D, EGFL7, C10orf41, LMAN1L and SULF1 genes. Two CpG sites in SCARB1 and MYBPH genes remained statistically significant after correction for multiple testing (p = 2.61×10−09, pcorrected = 0.008; p = 3.06×10−08, pcorrected = 0.02, respectively). Conclusions To our knowledge this is the first study to investigate hypospadias using a unique and novel epigenetic approach. Our findings suggest DNA methylation patterns are useful in identifying new genes such as SCARB1 and MYBPH that may be involved in the etiology of hypospadias. PMID:22906644
mRNA N6-methyladenosine methylation of postnatal liver development in pig.
He, Shen; Wang, Hong; Liu, Rui; He, Mengnan; Che, Tiandong; Jin, Long; Deng, Lamei; Tian, Shilin; Li, Yan; Lu, Hongfeng; Li, Xuewei; Jiang, Zhi; Li, Diyan; Li, Mingzhou
2017-01-01
N6-methyladenosine (m6A) is a ubiquitous reversible epigenetic RNA modification that plays an important role in the regulation of post-transcriptional protein coding gene expression. Liver is a vital organ and plays a major role in metabolism with numerous functions. Information concerning the dynamic patterns of mRNA m6A methylation during postnatal development of liver has been long overdue and elucidation of this information will benefit for further deciphering a multitude of functional outcomes of mRNA m6A methylation. Here, we profile transcriptome-wide m6A in porcine liver at three developmental stages: newborn (0 day), suckling (21 days) and adult (2 years). About 33% of transcribed genes were modified by m6A, with 1.33 to 1.42 m6A peaks per modified gene. m6A was distributed predominantly around stop codons. The consensus motif sequence RRm6ACH was observed in 78.90% of m6A peaks. A negative correlation (average Pearson's r = -0.45, P < 10-16) was found between levels of m6A methylation and gene expression. Functional enrichment analysis of genes consistently modified by m6A methylation at all three stages showed genes relevant to important functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. Genes with higher m6A methylation and lower expression levels at any particular stage were associated with the biological processes required for or unique to that stage. We suggest that differential m6A methylation may be important for the regulation of nutrient metabolism in porcine liver.
Stouder, Christelle; Paoloni-Giacobino, Ariane
2010-02-01
Endocrine-disrupting chemicals (EDCs), among which is the antiandrogen vinclozolin (VCZ), have been reported to affect the male reproductive system. In this study, VCZ was administered to pregnant mice at the time of embryo sex determination, and its possible effects on the differentially methylated domains (DMDs) of two paternally (H19 and Gtl2) and three maternally (Peg1, Snrpn, and Peg3) imprinted genes were tested in the male offspring. The CpGs methylation status within the five gene DMDs was analyzed in the sperm, tail, liver, and skeletal muscle DNAs by pyrosequencing. In the sperm of controls, the percentages of methylated CpGs were close to the theoretical values of 100 and 0% in paternally or maternally imprinted genes respectively. VCZ decreased the percentages of methylated CpGs of H19 and Gtl2 (respective values 83.1 and 91.5%) and increased those of Peg1, Snrpn, and Peg3 (respective values 11.3, 18.3, and 11.2%). The effects of VCZ were transgenerational, but they disappeared gradually from F1 to F3. The mean sperm concentration of the VCZ-administered female offspring was only 56% of that of the controls in the F1 offspring, and it was back to normal values in the F2 and F3 offspring. In the somatic cells of controls, the percentages of methylated CpGs were close to the theoretical value of 50% and, surprisingly, VCZ altered the methylation of Peg3. We propose that the deleterious effects of VCZ on the male reproductive system are mediated by imprinting defects in the sperm. The reported effects of EDCs on human male spermatogenesis might be mediated by analogous imprinting alterations.
DNA-Methylation Patterns in Trisomy 21 Using Cells from Monozygotic Twins
Sailani, M. Reza; Santoni, Federico A.; Letourneau, Audrey; Borel, Christelle; Makrythanasis, Periklis; Hibaoui, Youssef; Popadin, Konstantin; Bonilla, Ximena; Guipponi, Michel; Gehrig, Corinne; Vannier, Anne; Carre-Pigeon, Frederique; Feki, Anis; Nizetic, Dean; Antonarakis, Stylianos E.
2015-01-01
DNA methylation is essential in mammalian development. We have hypothesized that methylation differences induced by trisomy 21 (T21) contribute to the phenotypic characteristics and heterogeneity in Down syndrome (DS). In order to determine the methylation differences in T21 without interference of the interindividual genomic variation, we have used fetal skin fibroblasts from monozygotic (MZ) twins discordant for T21. We also used skin fibroblasts from MZ twins concordant for T21, normal MZ twins without T21, and unrelated normal and T21 individuals. Reduced Representation Bisulfite Sequencing (RRBS) revealed 35 differentially methylated promoter regions (DMRs) (Absolute methylation differences = 25%, FDR < 0.001) in MZ twins discordant for T21 that have also been observed in comparison between unrelated normal and T21 individuals. The identified DMRs are enriched for genes involved in embryonic organ morphogenesis (FDR = 1.60 e -03) and include genes of the HOXB and HOXD clusters. These DMRs are maintained in iPS cells generated from this twin pair and are correlated with the gene expression changes. We have also observed an increase in DNA methylation level in the T21 methylome compared to the normal euploid methylome. This observation is concordant with the up regulation of DNA methyltransferase enzymes (DNMT3B and DNMT3L) and down regulation of DNA demethylation enzymes (TET2 and TET3) observed in the iPSC of the T21 versus normal twin. Altogether, the results of this study highlight the epigenetic effects of the extra chromosome 21 in T21 on loci outside of this chromosome that are relevant to DS associated phenotypes. PMID:26317209
Murphy, T M; Crawford, B; Dempster, E L; Hannon, E; Burrage, J; Turecki, G; Kaminsky, Z; Mill, J
2017-01-03
Major depressive disorder (MDD) represents a major social and economic health issue and constitutes a major risk factor for suicide. The molecular pathology of suicidal depression remains poorly understood, although it has been hypothesised that regulatory genomic processes are involved in the pathology of both MDD and suicidality. In this study, genome-wide patterns of DNA methylation were assessed in depressed suicide completers (n=20) and compared with non-psychiatric, sudden-death controls (n=20) using tissue from two cortical brain regions (Brodmann Area 11 (BA11) and Brodmann Area 25 (BA25)). Analyses focused on identifying differentially methylated regions (DMRs) associated with suicidal depression and epigenetic variation were explored in the context of polygenic risk scores for major depression and suicide. Weighted gene co-methylation network analysis was used to identify modules of co-methylated loci associated with depressed suicide completers and polygenic burden for MDD and suicide attempt. We identified a DMR upstream of the PSORS1C3 gene, subsequently validated using bisulfite pyrosequencing and replicated in a second set of suicide samples, which is characterised by significant hypomethylation in both cortical brain regions in MDD suicide cases. We also identified discrete modules of co-methylated loci associated with polygenic risk burden for suicide attempt, but not major depression. Suicide-associated co-methylation modules were enriched among gene networks implicating biological processes relevant to depression and suicidality, including nervous system development and mitochondria function. Our data suggest that there are coordinated changes in DNA methylation associated with suicide that may offer novel insights into the molecular pathology associated with depressed suicide completers.
Murphy, T M; Crawford, B; Dempster, E L; Hannon, E; Burrage, J; Turecki, G; Kaminsky, Z; Mill, J
2017-01-01
Major depressive disorder (MDD) represents a major social and economic health issue and constitutes a major risk factor for suicide. The molecular pathology of suicidal depression remains poorly understood, although it has been hypothesised that regulatory genomic processes are involved in the pathology of both MDD and suicidality. In this study, genome-wide patterns of DNA methylation were assessed in depressed suicide completers (n=20) and compared with non-psychiatric, sudden-death controls (n=20) using tissue from two cortical brain regions (Brodmann Area 11 (BA11) and Brodmann Area 25 (BA25)). Analyses focused on identifying differentially methylated regions (DMRs) associated with suicidal depression and epigenetic variation were explored in the context of polygenic risk scores for major depression and suicide. Weighted gene co-methylation network analysis was used to identify modules of co-methylated loci associated with depressed suicide completers and polygenic burden for MDD and suicide attempt. We identified a DMR upstream of the PSORS1C3 gene, subsequently validated using bisulfite pyrosequencing and replicated in a second set of suicide samples, which is characterised by significant hypomethylation in both cortical brain regions in MDD suicide cases. We also identified discrete modules of co-methylated loci associated with polygenic risk burden for suicide attempt, but not major depression. Suicide-associated co-methylation modules were enriched among gene networks implicating biological processes relevant to depression and suicidality, including nervous system development and mitochondria function. Our data suggest that there are coordinated changes in DNA methylation associated with suicide that may offer novel insights into the molecular pathology associated with depressed suicide completers. PMID:28045465
Zhang, Yun; Baheti, Saurabh; Sun, Zhifu
2018-05-01
High-throughput bisulfite methylation sequencing such as reduced representation bisulfite sequencing (RRBS), Agilent SureSelect Human Methyl-Seq (Methyl-seq) or whole-genome bisulfite sequencing is commonly used for base resolution methylome research. These data are represented either by the ratio of methylated cytosine versus total coverage at a CpG site or numbers of methylated and unmethylated cytosines. Multiple statistical methods can be used to detect differentially methylated CpGs (DMCs) between conditions, and these methods are often the base for the next step of differentially methylated region identification. The ratio data have a flexibility of fitting to many linear models, but the raw count data take consideration of coverage information. There is an array of options in each datatype for DMC detection; however, it is not clear which is an optimal statistical method. In this study, we systematically evaluated four statistic methods on methylation ratio data and four methods on count-based data and compared their performances with regard to type I error control, sensitivity and specificity of DMC detection and computational resource demands using real RRBS data along with simulation. Our results show that the ratio-based tests are generally more conservative (less sensitive) than the count-based tests. However, some count-based methods have high false-positive rates and should be avoided. The beta-binomial model gives a good balance between sensitivity and specificity and is preferred method. Selection of methods in different settings, signal versus noise and sample size estimation are also discussed.
Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla
2016-08-02
The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.
Differentially Methylated DNA Sequences Associated with Exposure to Arsenite in Cultures of Human Cells Identified by Methylation-Sensitive-Primed PCR
Arsenic, a known human carcinogen, is converted to methylated derivatives by a methyltransferase (Mtase) and its biotra...
DNA Methylation as a Biomarker for Preeclampsia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Cindy M.; Ralph, Jody L.; Wright, Michelle L.
Background: Preeclampsia contributes significantly to pregnancy-associated morbidity and mortality as well as future risk of cardiovascular disease in mother and offspring, and preeclampsia in offspring. The lack of reliable methods for early detection limits the opportunities for prevention, diagnosis, and timely treatment. Purpose: The purpose of this study was to explore distinct DNA methylation patterns associated with preeclampsia in both maternal cells and fetal-derived tissue that represent potential biomarkers to predict future preeclampsia and inheritance in children. Method: A convenience sample of nulliparous women (N = 55) in the first trimester of pregnancy was recruited for this prospective study. Genome-widemore » DNA methylation was quantified in first-trimester maternal peripheral white blood cells and placental chorionic tissue from normotensive women and those with preeclampsia (n = 6/group). Results: Late-onset preeclampsia developed in 12.7% of women. Significant differences in DNA methylation were identified in 207 individual linked cytosine and guanine (CpG) sites in maternal white blood cells collected in the first trimester (132 sites with gain and 75 sites with loss of methylation), which were common to approximately 75% of the differentially methylated CpG sites identified in chorionic tissue of fetal origin. Conclusion: This study is the first to identify maternal epigenetic targets and common targets in fetal-derived tissue that represent putative biomarkers for early detection and heritable risk of preeclampsia. Findings may pave the way for diagnosis of preeclampsia prior to its clinical presentation and acute damaging effects, and the potential for prevention of the detrimental long-term sequelae.« less
Modification of N6-methyladenosine RNA methylation on heat shock protein expression.
Yu, Jiayao; Li, Yi; Wang, Tian; Zhong, Xiang
2018-01-01
This study was conducted to investigate effect of N6-methyladenosine (m6A) RNA methylation on Heat shock proteins (HSPs) and dissect the profile of HSP RNA methylation. The results showed that m6A methyltransferases METTL3 mRNA was decreased in responses to heat shock stress in HepG2 cells, but m6A-specific binding protein YTHDF2 mRNA was upregulated in a manner similar to HSP70 induction. Immunofluorescence staining showed that the majority of YTHDF2 was present in the cytosol, however, nearly all YTHDF2 translocated from the cytosol into the nucleus after heat shock. METTL3 knockdown significantly changed HSP70, HSP60, and HSP27 mRNA expression in HepG2 cells using siRNA, however, mRNA lifetime was not impacted. Silence of YTHDF2 using siRNA did not change expression of HSP70, but significantly increased HSP90, HSP60, and HSPB1 mRNA expression. In addition, m6A-seq revealed that HSP m6A methylation peaks are mainly enriched on exons and around stop codons, and shows a unique distribution profile in the 5'UTR and 3'UTR. Knockdown of METTL3 changed the methylation patterns of HSPs transcript. In conclusion, m6A RNA methylation regulates HSP gene expression. Differential expression of HSPs modulated by m6A may depend on the m6A site and abundance of the target gene. This finding provides insights into new regulatory mechanisms of HSPs in normal and stress situations.
Peffers, Mandy Jayne; Goljanek-Whysall, Katarzyna; Collins, John; Fang, Yongxiang; Rushton, Michael; Loughlin, John; Proctor, Carole; Clegg, Peter David
2016-01-01
Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based regenerative medicine and tissue engineering. Epigenetic mechanisms, like DNA methylation, contribute to the changes in gene expression in ageing. However there was a lack of sufficient knowledge of the role that differential methylation plays during chondrogenic, osteogenic and tenogenic differentiation from ageing MSCs. This study undertook genome level determination of the effects of DNA methylation on expression in engineered tissues from chronologically aged MSCs. We compiled unique DNA methylation signatures from chondrogenic, osteogenic, and tenogenic engineered tissues derived from young; n = 4 (21.8 years ± 2.4 SD) and old; n = 4 (65.5 years±8.3SD) human MSCs donors using the Illumina HumanMethylation 450 Beadchip arrays and compared these to gene expression by RNA sequencing. Unique and common signatures of global DNA methylation were identified. There were 201, 67 and 32 chondrogenic, osteogenic and tenogenic age-related DE protein-coding genes respectively. Findings inferred the nature of the transcript networks was predominantly for ‘cell death and survival’, ‘cell morphology’, and ‘cell growth and proliferation’. Further studies are required to validate if this gene expression effect translates to cell events. Alternative splicing (AS) was dysregulated in ageing with 119, 21 and 9 differential splicing events identified in chondrogenic, osteogenic and tenogenic respectively, and enrichment in genes associated principally with metabolic processes. Gene ontology analysis of differentially methylated loci indicated age-related enrichment for all engineered tissue types in ‘skeletal system morphogenesis’, ‘regulation of cell proliferation’ and ‘regulation of transcription’ suggesting that dynamic epigenetic modifications may occur in genes associated with shared and distinct pathways dependent upon engineered tissue type. An altered phenotype in engineered tissues was observed with ageing at numerous levels. These changes represent novel insights into the ageing process, with implications for stem cell therapies in older patients. In addition we have identified a number of tissue-dependant pathways, which warrant further studies. PMID:27533049
Chamberlain, Michael Dean; Wells, Laura A.; Lisovsky, Alexandra; Guo, Hongbo; Isserlin, Ruth; Talior-Volodarsky, Ilana; Mahou, Redouan; Emili, Andrew; Sefton, Michael V.
2015-01-01
An unbiased phosphoproteomic method was used to identify biomaterial-associated changes in the phosphorylation patterns of macrophage-like cells. The phosphorylation differences between differentiated THP1 (dTHP1) cells treated for 10, 20, or 30 min with a vascular regenerative methacrylic acid (MAA) copolymer or a control methyl methacrylate (MM) copolymer were determined by MS. There were 1,470 peptides (corresponding to 729 proteins) that were differentially phosphorylated in dTHP1 cells treated with the two materials with a greater cellular response to MAA treatment. In addition to identifying pathways (such as integrin signaling and cytoskeletal arrangement) that are well known to change with cell–material interaction, previously unidentified pathways, such as apoptosis and mRNA splicing, were also discovered. PMID:26261332
Li, Yongsheng; Xu, Juan; Chen, Hong; Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia
2013-01-01
DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.
Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia
2013-01-01
Background DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. Results In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. Conclusions We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms. PMID:23776563
Identification of differentially expressed genes in childhood asthma.
Zhang, Nian-Zhen; Chen, Xiu-Juan; Mu, Yu-Hua; Wang, Hewen
2018-05-01
Asthma has been the most common chronic disease in children that places a major burden for affected people and their families.An integrated analysis of microarrays studies was performed to identify differentially expressed genes (DEGs) in childhood asthma compared with normal control. We also obtained the differentially methylated genes (DMGs) in childhood asthma according to GEO. The genes that were both differentially expressed and differentially methylated were identified. Functional annotation and protein-protein interaction network construction were performed to interpret biological functions of DEGs. We performed q-RT-PCR to verify the expression of selected DEGs.One DNA methylation and 3 gene expression datasets were obtained. Four hundred forty-one DEGs and 1209 DMGs in childhood asthma were identified. Among which, 16 genes were both differentially expressed and differentially methylated in childhood asthma. Natural killer cell mediated cytotoxicity pathway, Jak-STAT signaling pathway, and Wnt signaling pathway were 3 significantly enriched pathways in childhood asthma according to our KEGG enrichment analysis. The PPI network of top 20 up- and downregulated DEGs consisted of 822 nodes and 904 edges and 2 hub proteins (UBQLN4 and MID2) were identified. The expression of 8 DEGs (GZMB, FGFBP2, CLC, TBX21, ALOX15, IL12RB2, UBQLN4) was verified by qRT-PCR and only the expression of GZMB and FGFBP2 was inconsistent with our integrated analysis.Our finding was helpful to elucidate the underlying mechanism of childhood asthma and develop new potential diagnostic biomarker and provide clues for drug design.
Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Sokuza, Yui; Mori, Chiharu; Nishikawa, Tomoki; Honoki, Kanya; Tsujiuchi, Toshifumi
2007-09-01
The authors investigated the DNA methylation patterns of the E-cadherin, Connexin 26 (Cx26), Rassf1a and c-fos genes in the early phase of rat hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined (CDAA) diet. Six-week-old F344 male rats were continuously fed with the CDAA diet, and three animals were then killed at each of 4 and 8 days and 3 weeks. Genomic DNA was extracted from livers for assessment of methylation status in the 5' upstream regions of E-cadherin, Cx26, Rassf1a and c-fos genes by bisulfite sequencing, compared with normal livers. The livers of rats fed the CDAA diet for 4 and 8 days and 3 weeks were methylated in E-cadherin, Cx26 and Rassf1a genes, while normal livers were all unmethylated. In contrast, normal livers were highly methylated in c-fos gene. Although the livers at 4 days were weakly methylated, those at 8 days and 3 weeks were markedly unmethylated. Methylation patterns of CpG sites in E-cadherin, Cx26 and Rassf1a were sparse and the methylation was not associated with gene repression. These results indicate that gene-specific DNA methylation patterns were found in livers of rats after short-term feeding of the CDAA diet, suggesting gene-specific hypermethylation might be involved in the early phase of rat hepatocarcinogenesis induced by the CDAA diet.
Fernández-Bayón, Gustavo; Morales-Sánchez, Paula; Sanz, Lourdes; Turienzo, Estrella; González, Juan José; Martinez-Faedo, Ceferino; Suarez-Gutiérrez, Lorena; Ares, Jessica; Díaz-Naya, Lucia; Martin-Nieto, Alicia; Fernández-Morera, Juan L.; Fraga, Mario F.
2017-01-01
Aims/Hypothesis Failure in glucose response to insulin is a common pathology associated with obesity. In this study, we analyzed the genome wide DNA methylation profile of visceral adipose tissue (VAT) samples in a population of individuals with obesity and assessed whether differential methylation profiles are associated with the presence of type 2 diabetes (T2D). Methods More than 485,000 CpG genome sites from VAT samples from women with obesity undergoing gastric bypass (n = 18), and classified as suffering from type 2 diabetes (T2D) or not (no type 2 diabetes, NT2D), were analyzed using DNA methylation arrays. Results We found significant differential methylation between T2D and NT2D samples in 24 CpGs that map with sixteen genes, one of which, HOOK2, demonstrated a significant correlation between differentially hypermethylated regions on the gene body and the presence of type 2 diabetes. This was validated by pyrosequencing in a population of 91 samples from both males and females with obesity. Furthermore, when these results were analyzed by gender, female T2D samples were found hypermethylated at the cg04657146-region and the cg 11738485-region of HOOK2 gene, whilst, interestingly, male samples were found hypomethylated in this latter region. Conclusion The differential methylation profile of the HOOK2 gene in individuals with T2D and obesity might be related to the attendant T2D, but further studies are required to identify the potential role of HOOK2 gene in T2D disease. The finding of gender differences in T2D methylation of HOOK2 also warrants further investigation. PMID:29228058
Dou, Lingling; Jia, Xiaoyun; Wei, Hengling; Fan, Shuli; Wang, Hantao; Guo, Yaning; Duan, Shan; Pang, Chaoyou; Yu, Shuxun
2017-01-01
DNA methylation is an important epigenetic modification regulating gene expression, genomic imprinting, transposon silencing and chromatin structure in plants and plays an important role in leaf senescence. However, the DNA methylation pattern during Gossypium hirsutum L. cotyledon senescence is poorly understood. In this study, global DNA methylation patterns were compared between two cotyledon development stages, young (J1) and senescence (J2), using methylated DNA immunoprecipitation (MeDIP-Seq). Methylated cytosine occurred mostly in repeat elements, especially LTR/Gypsy in both J1 and J2. When comparing J1 against J2, there were 1222 down-methylated genes and 623 up-methylated genes. Methylated genes were significantly enriched in carbohydrate metabolism, biosynthesis of other secondary metabolites and amino acid metabolism pathways. The global DNA methylation level decreased from J1 to J2, especially in gene promoters, transcriptional termination regions and regions around CpG islands. We further investigated the expression patterns of 9 DNA methyltransferase-associated genes and 2 DNA demethyltransferase-associated genes from young to senescent cotyledons, which were down-regulated during cotyledon development. In this paper, we first reported that senescent cotton cotyledons exhibited lower DNA methylation levels, primarily due to decreased DNA methyltransferase activity and which also play important role in regulating secondary metabolite process. PMID:28715427
Song, Xiaowen; Huang, Fei; Liu, Juanjuan; Li, Chengjun; Gao, Shanshan; Wu, Wei; Zhai, Mengfan; Yu, Xiaojuan; Xiong, Wenfeng; Xie, Jia; Li, Bin
2017-10-01
Cytosine DNA methylation is a vital epigenetic regulator of eukaryotic development. Whether this epigenetic modification occurs in Tribolium castaneum has been controversial, its distribution pattern and functions have not been established. Here, using bisulphite sequencing (BS-Seq), we confirmed the existence of DNA methylation and described the methylation profiles of the four life stages of T. castaneum. In the T. castaneum genome, both symmetrical CpG and non-CpG methylcytosines were observed. Symmetrical CpG methylation, which was catalysed by DNMT1 and occupied a small part in T. castaneum methylome, was primarily enriched in gene bodies and was positively correlated with gene expression levels. Asymmetrical non-CpG methylation, which was predominant in the methylome, was strongly concentrated in intergenic regions and introns but absent from exons. Gene body methylation was negatively correlated with gene expression levels. The distribution pattern and functions of this type of methylation were similar only to the methylome of Drosophila melanogaster, which further supports the existence of a novel methyltransferase in the two species responsible for this type of methylation. This first life-cycle methylome of T. castaneum reveals a novel and unique methylation pattern, which will contribute to the further understanding of the variety and functions of DNA methylation in eukaryotes. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
MMASS: an optimized array-based method for assessing CpG island methylation.
Ibrahim, Ashraf E K; Thorne, Natalie P; Baird, Katie; Barbosa-Morais, Nuno L; Tavaré, Simon; Collins, V Peter; Wyllie, Andrew H; Arends, Mark J; Brenton, James D
2006-01-01
We describe an optimized microarray method for identifying genome-wide CpG island methylation called microarray-based methylation assessment of single samples (MMASS) which directly compares methylated to unmethylated sequences within a single sample. To improve previous methods we used bioinformatic analysis to predict an optimized combination of methylation-sensitive enzymes that had the highest utility for CpG-island probes and different methods to produce unmethylated representations of test DNA for more sensitive detection of differential methylation by hybridization. Subtraction or methylation-dependent digestion with McrBC was used with optimized (MMASS-v2) or previously described (MMASS-v1, MMASS-sub) methylation-sensitive enzyme combinations and compared with a published McrBC method. Comparison was performed using DNA from the cell line HCT116. We show that the distribution of methylation microarray data is inherently skewed and requires exogenous spiked controls for normalization and that analysis of digestion of methylated and unmethylated control sequences together with linear fit models of replicate data showed superior statistical power for the MMASS-v2 method. Comparison with previous methylation data for HCT116 and validation of CpG islands from PXMP4, SFRP2, DCC, RARB and TSEN2 confirmed the accuracy of MMASS-v2 results. The MMASS-v2 method offers improved sensitivity and statistical power for high-throughput microarray identification of differential methylation.
Cadmium exposure and the epigenome
Sanders, Alison P; Smeester, Lisa; Rojas, Daniel; DeBussycher, Tristan; Wu, Michael C; Wright, Fred A; Zhou, Yi-Hui; Laine, Jessica E; Rager, Julia E; Swamy, Geeta K; Ashley-Koch, Allison; Lynn Miranda, Marie; Fry, Rebecca C
2014-01-01
Cadmium (Cd) is prevalent in the environment yet understudied as a developmental toxicant. Cd partially crosses the placental barrier from mother to fetus and is linked to detrimental effects in newborns. Here we examine the relationship between levels of Cd during pregnancy and 5-methylcytosine (5mC) levels in leukocyte DNA collected from 17 mother-newborn pairs. The methylation of cytosines is an epigenetic mechanism known to impact transcriptional signaling and influence health endpoints. A methylated cytosine-guanine (CpG) island recovery assay was used to assess over 4.6 million sites spanning 16,421 CpG islands. Exposure to Cd was classified for each mother-newborn pair according to maternal blood levels and compared with levels of cotinine. Subsets of genes were identified that showed altered DNA methylation levels in their promoter regions in fetal DNA associated with levels of Cd (n = 61), cotinine (n = 366), or both (n = 30). Likewise, in maternal DNA, differentially methylated genes were identified that were associated with Cd (n = 92) or cotinine (n = 134) levels. While the gene sets were largely distinct between maternal and fetal DNA, functional similarities at the biological pathway level were identified including an enrichment of genes that encode for proteins that control transcriptional regulation and apoptosis. Furthermore, conserved DNA motifs with sequence similarity to specific transcription factor binding sites were identified within the CpG islands of the gene sets. This study provides evidence for distinct patterns of DNA methylation or “footprints” in fetal and maternal DNA associated with exposure to Cd. PMID:24169490
Xu, Ning; Kwon, Soonil; Abbott, David H; Geller, David H; Dumesic, Daniel A; Azziz, Ricardo; Guo, Xiuqing; Goodarzi, Mark O
2011-01-01
The pathogenesis of polycystic ovary syndrome (PCOS) is poorly understood. PCOS-like phenotypes are produced by prenatal androgenization (PA) of female rhesus monkeys. We hypothesize that perturbation of the epigenome, through altered DNA methylation, is one of the mechanisms whereby PA reprograms monkeys to develop PCOS. Infant and adult visceral adipose tissues (VAT) harvested from 15 PA and 10 control monkeys were studied. Bisulfite treated samples were subjected to genome-wide CpG methylation analysis, designed to simultaneously measure methylation levels at 27,578 CpG sites. Analysis was carried out using Bayesian Classification with Singular Value Decomposition (BCSVD), testing all probes simultaneously in a single test. Stringent criteria were then applied to filter out invalid probes due to sequence dissimilarities between human probes and monkey DNA, and then mapped to the rhesus genome. This yielded differentially methylated loci between PA and control monkeys, 163 in infant VAT, and 325 in adult VAT (BCSVD P<0.05). Among these two sets of genes, we identified several significant pathways, including the antiproliferative role of TOB in T cell signaling and transforming growth factor-β (TGF-β) signaling. Our results suggest PA may modify DNA methylation patterns in both infant and adult VAT. This pilot study suggests that excess fetal androgen exposure in female nonhuman primates may predispose to PCOS via alteration of the epigenome, providing a novel avenue to understand PCOS in humans.
Liu, Tongkun; Li, Ying; Duan, Weike; Huang, Feiyi
2017-01-01
Abstract Epigenetic modifications are implicated in plant adaptations to abiotic stresses. Exposure of plants to one stress can induce resistance to other stresses, a process termed cross-adaptation, which is not well understood. In this study, we aimed to unravel the epigenetic basis of elevated heat-tolerance in cold-acclimated Brassica rapa by conducting a genome-wide DNA methylation analysis of leaves from control (CK) and cold-acclimated (CA) plants. We found that both methylation and demethylation occurred during cold acclimation. Two significantly altered pathways, malate dehydrogenase activity and carbon fixation, and 1562 differentially methylated genes, including BramMDH1, BraKAT2, BraSHM4, and Bra4CL2, were identified in CA plants. Genetic validation and treatment of B. rapa with 5-aza-2-deoxycytidine (Aza) suggested that promoter demethylation of four candidate genes increased their transcriptional activities. Physiological analysis suggested that elevated heat-tolerance and high growth rate were closely related to increases in organic acids and photosynthesis, respectively. Functional analyses demonstrated that the candidate gene BramMDH1 (mMDH: mitochondrial malate dehydrogenase) directly enhances organic acids and photosynthesis to increase heat-tolerance and growth rate in Arabidopsis. However, Aza-treated B. rapa, which also has elevated BramMDH1 levels, did not exhibit enhanced heat-tolerance. We therefore suggest that DNA demethylation alone is not sufficient to increase heat-tolerance. This study demonstrates that altered DNA methylation contributes to cross-adaptation. PMID:28158841
Daneshpour, Maryam; Moradi, Leila Syed; Izadi, Pantea; Omidfar, Kobra
2016-03-15
The alterations in DNA methylation pattern have been identified as one of the most frequent molecular phenomenon in human cancers. The RASSF1A tumor suppressor gene was shown to be often inactivated by hypermethylation of its promoter region. In the present study, a novel chip format sandwich electrochemical genosensor has been developed for the analysis of gene-specific methylation using Fe3O4/N-trimethyl chitosan/gold (Fe3O4/TMC/Au) nanocomposite as tracing tag to label DNA probe and polythiophene (PT) as immobilization platform of sensing element. However, no attempt has yet been made to conjugate DNA probe to Fe3O4/TMC/Au nanocomposite as electrochemical label for strip-based genosensing. Cyclic voltammetric (CV) analysis indicated that modification procedure was well performed. Differential pulse voltammetry (DPV) was employed for quantitative assessment of RASSF1A DNA promoter methylation. The electrochemical measurements accomplished using non-specific DNA fragments mixed with samples, revealed the high specificity and selectivity in methylation analysis by means of this DNA nanobiosensor. With the linear range of concentration from 1 × 10(-14)M to 5 × 10(-9)M and the detection limit of 2 × 10(-15)M, this new strategy has shown such a promising application to be used for universal analysis of any DNA sequence. Copyright © 2015 Elsevier B.V. All rights reserved.
Nakamura, Ryohei; Uno, Ayako; Kumagai, Masahiko; Fukushima, Hiroto S.; Morishita, Shinichi; Takeda, Hiroyuki
2017-01-01
The heavily methylated vertebrate genomes are punctuated by stretches of poorly methylated DNA sequences that usually mark gene regulatory regions. It is known that the methylation state of these regions confers transcriptional control over their associated genes. Given its governance on the transcriptome, cellular functions and identity, genome-wide DNA methylation pattern is tightly regulated and evidently predefined. However, how is the methylation pattern determined in vivo remains enigmatic. Based on in silico and in vitro evidence, recent studies proposed that the regional hypomethylated state is primarily determined by local DNA sequence, e.g., high CpG density and presence of specific transcription factor binding sites. Nonetheless, the dependency of DNA methylation on nucleotide sequence has not been carefully validated in vertebrates in vivo. Herein, with the use of medaka (Oryzias latipes) as a model, the sequence dependency of DNA methylation was intensively tested in vivo. Our statistical modeling confirmed the strong statistical association between nucleotide sequence pattern and methylation state in the medaka genome. However, by manipulating the methylation state of a number of genomic sequences and reintegrating them into medaka embryos, we demonstrated that artificially conferred DNA methylation states were predominantly and robustly maintained in vivo, regardless of their sequences and endogenous states. This feature was also observed in the medaka transgene that had passed across generations. Thus, despite the observed statistical association, nucleotide sequence was unable to autonomously determine its own methylation state in medaka in vivo. Our results apparently argue against the notion of the governance on the DNA methylation by nucleotide sequence, but instead suggest the involvement of other epigenetic factors in defining and maintaining the DNA methylation landscape. Further investigation in other vertebrate models in vivo will be needed for the generalization of our observations made in medaka. PMID:29267279
Evolution of DNA Methylation across Insects.
Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J
2017-03-01
DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Sze, Christie C; Cao, Kaixiang; Collings, Clayton K; Marshall, Stacy A; Rendleman, Emily J; Ozark, Patrick A; Chen, Fei Xavier; Morgan, Marc A; Wang, Lu; Shilatifard, Ali
2017-09-01
Of the six members of the COMPASS (complex of proteins associated with Set1) family of histone H3 Lys4 (H3K4) methyltransferases identified in mammals, Set1A has been shown to be essential for early embryonic development and the maintenance of embryonic stem cell (ESC) self-renewal. Like its familial relatives, Set1A possesses a catalytic SET domain responsible for histone H3K4 methylation. Whether H3K4 methylation by Set1A/COMPASS is required for ESC maintenance and during differentiation has not yet been addressed. Here, we generated ESCs harboring the deletion of the SET domain of Set1A (Set1A ΔSET ); surprisingly, the Set1A SET domain is dispensable for ESC proliferation and self-renewal. The removal of the Set1A SET domain does not diminish bulk H3K4 methylation in ESCs; instead, only a subset of genomic loci exhibited reduction in H3K4me3 in Set1A ΔSET cells, suggesting a role for Set1A independent of its catalytic domain in ESC self-renewal. However, Set1A ΔSET ESCs are unable to undergo normal differentiation, indicating the importance of Set1A-dependent H3K4 methylation during differentiation. Our data also indicate that during differentiation, Set1A but not Mll2 functions as the H3K4 methylase on bivalent genes and is required for their expression, supporting a model for transcriptional switch between Mll2 and Set1A during the self-renewing-to-differentiation transition. Together, our study implicates a critical role for Set1A catalytic methyltransferase activity in regulating ESC differentiation but not self-renewal and suggests the existence of context-specific H3K4 methylation that regulates transcriptional outputs during ESC pluripotency. © 2017 Sze et al.; Published by Cold Spring Harbor Laboratory Press.
DNA Methylation and Cancer Diagnosis
Delpu, Yannick; Cordelier, Pierre; Cho, William C.; Torrisani, Jérôme
2013-01-01
DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results. PMID:23873296
Tumor purity and differential methylation in cancer epigenomics.
Wang, Fayou; Zhang, Naiqian; Wang, Jun; Wu, Hao; Zheng, Xiaoqi
2016-11-01
DNA methylation is an epigenetic modification of DNA molecule that plays a vital role in gene expression regulation. It is not only involved in many basic biological processes, but also considered an important factor for tumorigenesis and other human diseases. Study of DNA methylation has been an active field in cancer epigenomics research. With the advances of high-throughput technologies and the accumulation of enormous amount of data, method development for analyzing these data has gained tremendous interests in the fields of computational biology and bioinformatics. In this review, we systematically summarize the recent developments of computational methods and software tools in high-throughput methylation data analysis with focus on two aspects: differential methylation analysis and tumor purity estimation in cancer studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C
2017-10-15
Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.
Schrey, A.; Ragsdale, A.; Griffith, S. C.
2018-01-01
Invasive populations are often associated with low levels of genetic diversity owing to population bottlenecks at the initial stages of invasion. Despite this, the ability of invasive species to adapt rapidly in response to novel environments is well documented. Epigenetic mechanisms have recently been proposed to facilitate the success of invasive species by compensating for reduced levels of genetic variation. Here, we use methylation sensitive-amplification fragment length polymorphism and microsatellite analyses to compare levels of epigenetic and genetic diversity and differentiation across 15 sites in the introduced Australian house sparrow population. We find patterns of epigenetic and genetic differentiation that are consistent with historical descriptions of three distinct, introductions events. However unlike genetic differentiation, epigenetic differentiation was higher among sample sites than among invasion clusters, suggesting that patterns of epigenetic variation are more strongly influenced by local environmental stimuli or sequential founder events than the initial diversity in the introduction population. Interestingly, we fail to detect correlations between pairwise site comparisons of epigenetic and genetic differentiation, suggesting that some of the observed epigenetic variation has arisen independently of genetic variation. We also fail to detect the potentially compensatory relationship between epigenetic and genetic diversity that has been detected in a more recent house sparrow invasion in Africa. We discuss the potential for this relationship to be obscured by recovered genetic diversity in more established populations, and highlight the importance of incorporating introduction history into population-wide epigenetic analyses. PMID:29765671
Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins.
Peaucelle, Alexis; Louvet, Romain; Johansen, Jorunn N; Höfte, Herman; Laufs, Patrick; Pelloux, Jérome; Mouille, Grégory
2008-12-23
Plant organs are produced from meristems in a characteristic pattern. This pattern, referred to as phyllotaxis, is thought to be generated by local gradients of an information molecule, auxin. Some studies propose a key role for the mechanical properties of the cell walls in the control of organ outgrowth. A major cell-wall component is the linear alpha-1-4-linked D-GalAp pectic polysaccharide homogalacturonan (HG), which plays a key role in cell-to-cell cohesion. HG is deposited in the cell wall in a highly (70%-80%) methyl-esterified form and is subsequently de-methyl-esterified by pectin methyl-esterases (PME, EC 3.1.1.11). PME activity is itself regulated by endogenous PME inhibitor (PMEI) proteins. PME action modulates cell-wall-matrix properties and plays a role in the control of cell growth. Here, we show that the formation of flower primordia in the Arabidopsis shoot apical meristem is accompanied by the de-methyl-esterification of pectic polysaccharides in the cell walls. In addition, experimental perturbation of the methyl-esterification status of pectins within the meristem dramatically alters the phyllotactic pattern. These results demonstrate that regulated de-methyl-esterification of pectins is a key event in the outgrowth of primordia and possibly also in phyllotactic patterning.
Methylation pattern of fish lymphocystis disease virus DNA.
Wagner, H; Simon, D; Werner, E; Gelderblom, H; Darai, C; Flügel, R M
1985-03-01
The content and distribution of 5-methylcytosine in DNA from fish lymphocystis disease virus was analyzed by high-pressure liquid chromatography, nearest-neighbor analysis, and with restriction endonucleases. We found that 22% of all C residues were methylated, including methylation of the following dinucleotide sequences: CpG to 75%, CpC to ca. 1%, and CpA to 2 to 5%. Comparison of relative digestion of viral DNA with MspI and HpaII indicated that CCGG sequences were almost completely methylated at the inner C. The degree of methylation of GCGC was much lower. The methylation pattern of fish lymphocystis disease virus DNA differed from that of the host cell DNA.
Methylation pattern of fish lymphocystis disease virus DNA.
Wagner, H; Simon, D; Werner, E; Gelderblom, H; Darai, C; Flügel, R M
1985-01-01
The content and distribution of 5-methylcytosine in DNA from fish lymphocystis disease virus was analyzed by high-pressure liquid chromatography, nearest-neighbor analysis, and with restriction endonucleases. We found that 22% of all C residues were methylated, including methylation of the following dinucleotide sequences: CpG to 75%, CpC to ca. 1%, and CpA to 2 to 5%. Comparison of relative digestion of viral DNA with MspI and HpaII indicated that CCGG sequences were almost completely methylated at the inner C. The degree of methylation of GCGC was much lower. The methylation pattern of fish lymphocystis disease virus DNA differed from that of the host cell DNA. Images PMID:3973962
Arabinogalactan proteins and pectin distribution during female gametogenesis in Quercus suber L.
Lopes, Ana Lúcia; Costa, Mário Luís; Sobral, Rómulo; Costa, Maria Manuela; Amorim, Maria Isabel; Coimbra, Sílvia
2016-01-01
Background and Aims Quercus suber L. (cork oak) is one of the most important monoecious tree species in semi-arid regions of Southern Europe, with a high ecological value and economic potential. However, as a result of its long reproductive cycle, complex reproductive biology and recalcitrant seeds, conventional breeding is demanding. In its complex reproductive biology, little is known about the most important changes that occur during female gametogenesis. Arabinogalactan proteins (AGPs) and pectins are the main components of plant cell walls and have been reported to perform common functions in cell differentiation and organogenesis of reproductive plant structures. AGPs have been shown to serve as important molecules in several steps of the reproductive process in plants, working as signalling molecules, associated with the sporophyte–gametophyte transition, and pectins have been implicated in pollen–pistil interactions before double fertilization. In this study, the distribution of AGP and pectin epitopes was assessed during female gametogenesis. Methods Immunofluorescence labelling of female flower cells was performed with a set of monoclonal antibodies (mAbs) directed to the carbohydrate moiety of AGPs (JIM8 and JIM13) and pectic homogalacturonans (HGs) (mAbs JIM5 and JIM7). Key Results The selective labelling obtained with AGP and pectin mAbs JIM8, JIM13, JIM5 and JIM7 during Q. suber female gametogenesis shows that AGPs and pectic HG can work as markers for mapping gametophytic cell differentiation in this species. Pectic HG showed different distribution patterns, depending on their levels of methyl esterification. Methyl-esterified HGs showed a uniform distribution in the overall female flower cells before fertilization and a more specific pattern after fertilization. A low methyl-ester pectin distribution pattern during the different developmental stages appears to be related to the pathway that pollen tubes follow to reach the embryo sac. AGPs showed a more sparse distribution in early stages of development, but specific labelling is shown in the synergids and their filiform apparatus. Conclusions The labelling obtained with anti-AGP and anti-pectin mAbs in Q. suber female flower cells showed a dynamic distribution of AGPs and pectic HGs, which may render these molecules useful molecular markers during female gametogenesis. Changes occurring during development will be determined in order to help describe cork oak ovule structural properties before and after fertilization, providing new insight to better understand Q. suber female gametogenesis. PMID:26994101
Epigenomics of Development in Populus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Steve; Freitag, Michael; Mockler, Todd
2013-01-10
We conducted research to determine the role of epigenetic modifications during tree development using poplar (Populus trichocarpa), a model woody feedstock species. Using methylated DNA immunoprecipitation (MeDIP) or chromatin immunoprecipitation (ChIP), followed by high-throughput sequencing, we are analyzed DNA and histone methylation patterns in the P. trichocarpa genome in relation to four biological processes: bud dormancy and release, mature organ maintenance, in vitro organogenesis, and methylation suppression. Our project is now completed. We have 1) produced 22 transgenic events for a gene involved in DNA methylation suppression and studied its phenotypic consequences; 2) completed sequencing of methylated DNA from elevenmore » target tissues in wildtype P. trichocarpa; 3) updated our customized poplar genome browser using the open-source software tools (2.13) and (V2.2) of the P. trichocarpa genome; 4) produced summary data for genome methylation in P. trichocarpa, including distribution of methylation across chromosomes and in and around genes; 5) employed bioinformatic and statistical methods to analyze differences in methylation patterns among tissue types; and 6) used bisulfite sequencing of selected target genes to confirm bioinformatics and sequencing results, and gain a higher-resolution view of methylation at selected genes 7) compared methylation patterns to expression using available microarray data. Our main findings of biological significance are the identification of extensive regions of the genome that display developmental variation in DNA methylation; highly distinctive gene-associated methylation profiles in reproductive tissues, particularly male catkins; a strong whole genome/all tissue inverse association of methylation at gene bodies and promoters with gene expression; a lack of evidence that tissue specificity of gene expression is associated with gene methylation; and evidence that genome methylation is a significant impediment to tissue dedifferentiation and redifferentiation in vitro.« less
Abraham, Emilie; Rousseaux, Sophie; Agier, Lydiane; Giorgis-Allemand, Lise; Tost, Jörg; Galineau, Julien; Hulin, Agnès; Siroux, Valérie; Vaiman, Daniel; Charles, Marie-Aline; Heude, Barbara; Forhan, Anne; Schwartz, Joel; Chuffart, Florent; Bourova-Flin, Ekaterina; Khochbin, Saadi; Slama, Rémy; Lepeule, Johanna
2018-06-19
Air pollution exposure represents a major health threat to the developing foetus. DNA methylation is one of the most well-known molecular determinants of the epigenetic status of cells. Blood DNA methylation has been proven sensitive to air pollutants, but the molecular impact of air pollution on new-borns has so far received little attention. We investigated whether nitrogen dioxide (NO 2 ), particulate matter (PM 10 ), temperature and humidity during pregnancy are associated with differences in placental DNA methylation levels. Whole-genome DNA-methylation was measured using the Illumina's Infinium HumanMethylation450 BeadChip in the placenta of 668 newborns from the EDEN cohort. We designed an original strategy using a priori biological information to focus on candidate genes with a specific expression pattern in placenta (active or silent) combined with an agnostic epigenome-wide association study (EWAS). We used robust linear regression to identify CpGs and differentially methylated regions (DMR) associated with each exposure during short- and long-term time-windows. The candidate genes approach identified nine CpGs mapping to 9 genes associated with prenatal NO 2 and PM 10 exposure [false discovery rate (FDR) p < 0.05]. Among these, the methylation level of 2 CpGs located in ADORA2B remained significantly associated with NO 2 exposure during the 2nd trimester and whole pregnancy in the EWAS (FDR p < 0.05). EWAS further revealed associations between the environmental exposures under study and variations of DNA methylation of 4 other CpGs. We further identified 27 DMRs significantly (FDR p < 0.05) associated with air pollutants exposure and 13 DMRs with meteorological conditions. The methylation of ADORA2B, a gene whose expression was previously associated with hypoxia and pre-eclampsia, was consistently found here sensitive to atmospheric pollutants. In addition, air pollutants were associated to DMRs pointing towards genes previously implicated in preeclampsia, hypertensive and metabolic disorders. These findings demonstrate that air pollutants exposure at levels commonly experienced in the European population are associated with placental gene methylation and provide some mechanistic insight into some of the reported effects of air pollutants on preeclampsia. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fu, Sheng-Jie; Wang, Hui; Feng, Li-Na; Sun, Yi; Yang, Wen-Xiang; Liu, Da-Qun
2009-03-01
Intrinsic DNA methylation pattern is an integral component of the epigenetic network in many eukaryotes. DNA methylation plays an important role in regulating gene expression in eukaryotes. Biological stress in plant provides an inherent epigenetic driving force of evolution. Study of DNA methylation patterns arising from biological stress will help us fully understand the epigenetic regulation of gene expression and DNA methylation of biological functions. The wheat near-isogenic lines TcLr19 and TcLr41 were resistant to races THTT and TKTJ, respectively, and Thatcher is compatible in the interaction with Puccinia triticina THTT and TKTJ, respectively. By means of methylation-sensitive amplified polymorphism (MSAP) analysis, the patterns of cytosine methylation in TcLr19, TcLr41, and Thatcher inoculated with P. triticina THTT and TKTJ were compared with those of the untreated samples. All the DNA fragments, each representing a recognition site cleaved by each or both of isoschizomers, were amplified using 60 pairs of selective primers. The results indicated that there was no significant difference between the challenged and unchallenged plants at DNA methylation level. However, epigenetic difference between the near-isogenic line for wheat leaf rust resistance gene Lr41 and Thatcher was present.
Stenzig, Justus; Schneeberger, Yvonne; Löser, Alexandra; Peters, Barbara S; Schaefer, Andreas; Zhao, Rong-Rong; Ng, Shi Ling; Höppner, Grit; Geertz, Birgit; Hirt, Marc N; Tan, Wilson; Wong, Eleanor; Reichenspurner, Hermann; Foo, Roger S-Y; Eschenhagen, Thomas
2018-07-01
Heart failure is associated with altered gene expression and DNA methylation. De novo DNA methylation is associated with gene silencing, but its role in cardiac pathology remains incompletely understood. We hypothesized that inhibition of DNA methyltransferases (DNMT) might prevent the deregulation of gene expression and the deterioration of cardiac function under pressure overload (PO). To test this hypothesis, we evaluated a DNMT inhibitor in PO in rats and analysed DNA methylation in cardiomyocytes. Young male Wistar rats were subjected to PO by transverse aortic constriction (TAC) or to sham surgery. Rats from both groups received solvent or 12.5 mg/kg body weight of the non-nucleosidic DNMT inhibitor RG108, initiated on the day of the intervention. After 4 weeks, we analysed cardiac function by MRI, fibrosis with Sirius Red staining, gene expression by RNA sequencing and qPCR, and DNA methylation by reduced representation bisulphite sequencing (RRBS). RG108 attenuated the ~70% increase in heart weight/body weight ratio of TAC over sham to 47% over sham, partially rescued reduced contractility, diminished the fibrotic response and the downregulation of a set of genes including Atp2a2 (SERCA2a) and Adrb1 (beta1-adrenoceptor). RG108 was associated with significantly lower global DNA methylation in cardiomyocytes by ~2%. The differentially methylated pathways were "cardiac hypertrophy", "cell death" and "xenobiotic metabolism signalling". Among these, "cardiac hypertrophy" was associated with significant methylation differences in the group comparison sham vs. TAC, but not significant between sham+RG108 and TAC+RG108 treatment, suggesting that RG108 partially prevented differential methylation. However, when comparing TAC and TAC+RG108, the pathway cardiac hypertrophy was not significantly differentially methylated. DNMT inhibitor treatment is associated with attenuation of cardiac hypertrophy and moderate changes in cardiomyocyte DNA methylation. The potential mechanistic link between these two effects and the role of non-myocytes need further clarification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bure, Irina; Braun, Alexander; Kayser, Claudia; Geddert, Helene; Schaefer, Inga-Marie; Cameron, Silke; Ghadimi, Michael B; Ströbel, Philipp; Werner, Martin; Hartmann, Arndt; Wiemann, Stefan; Agaimy, Abbas; Haller, Florian; Moskalev, Evgeny A
2017-12-01
The anatomic site-dependent expression of hematopoietic progenitor cell antigen CD34 is a feature of gastrointestinal stromal tumours (GISTs). The basis for the differential CD34 expression is only incompletely understood. This study aimed at understanding the regulation of CD34 in GISTs and clarification of its site-dependent expression. Two sample sets of primary GISTs were interrogated including 52 fresh-frozen and 134 paraffin-embedded and formalin-fixed specimens. DNA methylation analysis was performed by HumanMethylation450 BeadChip array in three cell lines derived from gastric and intestinal GISTs, and differentially methylated CpG sites were established upstream of CD34. The methylation degree was further quantified by pyrosequencing, and inverse correlation with CD34 mRNA and protein abundance was revealed. The gene's expression could be activated upon induction of DNA hypomethylation with 5-aza-2'-deoxycytidine in GIST-T1 cells. In patient samples, a strong inverse correlation of DNA methylation degree with immunohistochemically evaluated CD34 expression was documented. Both CD34 expression and DNA methylation levels were specific to the tumours' anatomic location and mutation status. A constant decrease in methylation levels was observed ranging from almost 100% hypermethylation in intestinal GISTs from duodenum to hypomethylation in rectum. CD34 was heavily methylated in gastric PDGFRA-mutant GISTs in comparison to hypomethylated KIT-mutant counterparts. Next to CD34 hypermethylation, miR-665 was predicted and experimentally confirmed to target CD34 mRNA in GIST-T1 cells. Our results suggest that CD34 expression in GISTs may undergo a complex control by DNA methylation and miR-665. Differential methylation and expression of CD34 in GISTs along the gastrointestinal tract axis and in tumours that harbour different gain-of-function mutations suggest the origin from different cell populations in the gastrointestinal tract. © 2017 UICC.
DNA methylation of miRNA coding sequences putatively associated with childhood obesity.
Mansego, M L; Garcia-Lacarte, M; Milagro, F I; Marti, A; Martinez, J A
2017-02-01
Epigenetic mechanisms may be involved in obesity onset and its consequences. The aim of the present study was to evaluate whether DNA methylation status in microRNA (miRNA) coding regions is associated with childhood obesity. DNA isolated from white blood cells of 24 children (identification sample: 12 obese and 12 non-obese) from the Grupo Navarro de Obesidad Infantil study was hybridized in a 450 K methylation microarray. Several CpGs whose DNA methylation levels were statistically different between obese and non-obese were validated by MassArray® in 95 children (validation sample) from the same study. Microarray analysis identified 16 differentially methylated CpGs between both groups (6 hypermethylated and 10 hypomethylated). DNA methylation levels in miR-1203, miR-412 and miR-216A coding regions significantly correlated with body mass index standard deviation score (BMI-SDS) and explained up to 40% of the variation of BMI-SDS. The network analysis identified 19 well-defined obesity-relevant biological pathways from the KEGG database. MassArray® validation identified three regions located in or near miR-1203, miR-412 and miR-216A coding regions differentially methylated between obese and non-obese children. The current work identified three CpG sites located in coding regions of three miRNAs (miR-1203, miR-412 and miR-216A) that were differentially methylated between obese and non-obese children, suggesting a role of miRNA epigenetic regulation in childhood obesity. © 2016 World Obesity Federation.
Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus)
Lea, Amanda J.; Altmann, Jeanne; Alberts, Susan C.; Tung, Jenny
2015-01-01
Variation in resource availability commonly exerts strong effects on fitness-related traits in wild animals. However, we know little about the molecular mechanisms that mediate these effects, or about their persistence over time. To address these questions, we profiled genome-wide whole blood DNA methylation levels in two sets of wild baboons: (i) ‘wild-feeding’ baboons that foraged naturally in a savanna environment and (ii) ‘Lodge’ baboons that had ready access to spatially concentrated human food scraps, resulting in high feeding efficiency and low daily travel distances. We identified 1,014 sites (0.20% of sites tested) that were differentially methylated between wild-feeding and Lodge baboons, providing the first evidence that resource availability shapes the epigenome in a wild mammal. Differentially methylated sites tended to occur in contiguous stretches (i.e., in differentially methylated regions or DMRs), in promoters and enhancers, and near metabolism-related genes, supporting their functional importance in gene regulation. In agreement, reporter assay experiments confirmed that methylation at the largest identified DMR, located in the promoter of a key glycolysis-related gene, was sufficient to causally drive changes in gene expression. Intriguingly, all dispersing males carried a consistent epigenetic signature of their membership in a wild-feeding group, regardless of whether males dispersed into or out of this group as adults. Together, our findings support a role for DNA methylation in mediating ecological effects on phenotypic traits in the wild, and emphasize the dynamic environmental sensitivity of DNA methylation levels across the life course. PMID:26508127
Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun
2016-01-01
The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.
Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun
2016-01-01
The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment. PMID:27380174
Epigenomic Analysis of Multi-lineage Differentiation of Human Embryonic Stem Cells
Xie, Wei; Schultz, Matthew D.; Lister, Ryan; Hou, Zhonggang; Rajagopal, Nisha; Ray, Pradipta; Whitaker, John W.; Tian, Shulan; Hawkins, R. David; Leung, Danny; Yang, Hongbo; Wang, Tao; Lee, Ah Young; Swanson, Scott A.; Zhang, Jiuchun; Zhu, Yun; Kim, Audrey; Nery, Joseph R.; Urich, Mark A.; Kuan, Samantha; Yen, Chia-an; Klugman, Sarit; Yu, Pengzhi; Suknuntha, Kran; Propson, Nicholas E.; Chen, Huaming; Edsall, Lee E.; Wagner, Ulrich; Li, Yan; Ye, Zhen; Kulkarni, Ashwinikumar; Xuan, Zhenyu; Chung, Wen-Yu; Chi, Neil C.; Antosiewicz-Bourget, Jessica E.; Slukvin, Igor; Stewart, Ron; Zhang, Michael Q.; Wang, Wei; Thomson, James A.; Ecker, Joseph R.; Ren, Bing
2013-01-01
SUMMARY Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells, and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in non-expressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation. PMID:23664764
Mounir, Zineb; Korn, Joshua M; Westerling, Thomas; Lin, Fallon; Kirby, Christina A; Schirle, Markus; McAllister, Gregg; Hoffman, Greg; Ramadan, Nadire; Hartung, Anke; Feng, Yan; Kipp, David Randal; Quinn, Christopher; Fodor, Michelle; Baird, Jason; Schoumacher, Marie; Meyer, Ronald; Deeds, James; Buchwalter, Gilles; Stams, Travis; Keen, Nicholas; Sellers, William R; Brown, Myles; Pagliarini, Raymond A
2016-05-16
The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and transcription of genes expressed in differentiated prostate epithelium. The AR-inhibitory function of PRMT5 is restricted to TMPRSS2:ERG-positive prostate cancer cells. Mutation of this methylation site on AR results in a transcriptionally hyperactive AR, suggesting that the proliferative effects of ERG and PRMT5 are mediated through attenuating AR's ability to induce genes normally involved in lineage differentiation. This provides a rationale for targeting PRMT5 in TMPRSS2:ERG positive prostate cancers. Moreover, methylation of AR at arginine 761 highlights a mechanism for how the ERG oncogene may coax AR towards inducing proliferation versus differentiation.
Ikegami, Kohta; Ohgane, Jun; Tanaka, Satoshi; Yagi, Shintaro; Shiota, Kunio
2009-01-01
Genes constitute only a small proportion of the mammalian genome, the majority of which is composed of non-genic repetitive elements including interspersed repeats and satellites. A unique feature of the mammalian genome is that there are numerous tissue-dependent, differentially methylated regions (T-DMRs) in the non-repetitive sequences, which include genes and their regulatory elements. The epigenetic status of T-DMRs varies from that of repetitive elements and constitutes the DNA methylation profile genome-wide. Since the DNA methylation profile is specific to each cell and tissue type, much like a fingerprint, it can be used as a means of identification. The formation of DNA methylation profiles is the basis for cell differentiation and development in mammals. The epigenetic status of each T-DMR is regulated by the interplay between DNA methyltransferases, histone modification enzymes, histone subtypes, non-histone nuclear proteins and non-coding RNAs. In this review, we will discuss how these epigenetic factors cooperate to establish cell- and tissue-specific DNA methylation profiles.
The Control Region of Mitochondrial DNA Shows an Unusual CpG and Non-CpG Methylation Pattern
Bellizzi, Dina; D'Aquila, Patrizia; Scafone, Teresa; Giordano, Marco; Riso, Vincenzo; Riccio, Andrea; Passarino, Giuseppe
2013-01-01
DNA methylation is a common epigenetic modification of the mammalian genome. Conflicting data regarding the possible presence of methylated cytosines within mitochondrial DNA (mtDNA) have been reported. To clarify this point, we analysed the methylation status of mtDNA control region (D-loop) on human and murine DNA samples from blood and cultured cells by bisulphite sequencing and methylated/hydroxymethylated DNA immunoprecipitation assays. We found methylated and hydroxymethylated cytosines in the L-strand of all samples analysed. MtDNA methylation particularly occurs within non-C-phosphate-G (non-CpG) nucleotides, mainly in the promoter region of the heavy strand and in conserved sequence blocks, suggesting its involvement in regulating mtDNA replication and/or transcription. We observed DNA methyltransferases within the mitochondria, but the inactivation of Dnmt1, Dnmt3a, and Dnmt3b in mouse embryonic stem (ES) cells results in a reduction of the CpG methylation, while the non-CpG methylation shows to be not affected. This suggests that D-loop epigenetic modification is only partially established by these enzymes. Our data show that DNA methylation occurs in the mtDNA control region of mammals, not only at symmetrical CpG dinucleotides, typical of nuclear genome, but in a peculiar non-CpG pattern previously reported for plants and fungi. The molecular mechanisms responsible for this pattern remain an open question. PMID:23804556
Su, Chang; Wang, Chao; He, Lin; Yang, Chuanping; Wang, Yucheng
2014-01-01
DNA methylation plays a critical role in the regulation of gene expression. Most studies of DNA methylation have been performed in herbaceous plants, and little is known about the methylation patterns in tree genomes. In the present study, we generated a map of methylated cytosines at single base pair resolution for Betula platyphylla (white birch) by bisulfite sequencing combined with transcriptomics to analyze DNA methylation and its effects on gene expression. We obtained a detailed view of the function of DNA methylation sequence composition and distribution in the genome of B. platyphylla. There are 34,460 genes in the whole genome of birch, and 31,297 genes are methylated. Conservatively, we estimated that 14.29% of genomic cytosines are methylcytosines in birch. Among the methylation sites, the CHH context accounts for 48.86%, and is the largest proportion. Combined transcriptome and methylation analysis showed that the genes with moderate methylation levels had higher expression levels than genes with high and low methylation. In addition, methylated genes are highly enriched for the GO subcategories of binding activities, catalytic activities, cellular processes, response to stimulus and cell death, suggesting that methylation mediates these pathways in birch trees. PMID:25514241
Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems
Schuyler, Ronald P.; Merkel, Angelika; Raineri, Emanuele; Altucci, Lucia; Vellenga, Edo; Martens, Joost H.A.; Pourfarzad, Farzin; Kuijpers, Taco W.; Burden, Frances; Farrow, Samantha; Downes, Kate; Ouwehand, Willem H.; Clarke, Laura; Datta, Avik; Lowy, Ernesto; Flicek, Paul; Frontini, Mattia; Stunnenberg, Hendrik G.; Martín-Subero, José I.; Gut, Ivo; Heath, Simon
2018-01-01
Summary DNA methylation and the localization and post-translational modification of nucleosomes are interdependent factors that contribute to the generation of distinct phenotypes from genetically identical cells. With 112 whole-genome bisulfite sequencing datasets from the BLUEPRINT Epigenome Project, we analyzed the global development of DNA methylation patterns during lineage commitment and maturation of a range of immune system effector cells and the cancers that arise from them. We show clear trends in methylation patterns that are distinct in the innate and adaptive arms of the human immune system, both globally and in relation to consistently positioned nucleosomes. Most notable are a progressive loss of methylation in developing lymphocytes and the consistent occurrence of non-CG methylation in specific cell types. Cancer samples from the two lineages are further polarized, suggesting the involvement of distinct lineage-specific epigenetic mechanisms. We anticipate broad utility for this resource as a basis for further comparative epigenetic analyses. PMID:27851971