Demmerle, Justin; Koch, Adam J.; Holaska, James M.
2016-01-01
The spatial organization of chromatin is critical in establishing cell-type dependent gene expression programs. The inner nuclear membrane protein emerin has been implicated in regulating global chromatin architecture. We show emerin associates with genomic loci of muscle differentiation promoting factors in murine myogenic progenitors, including Myf5 and MyoD. Prior to their transcriptional activation Myf5 and MyoD loci localized to the nuclear lamina in proliferating progenitors and moved to the nucleoplasm upon transcriptional activation during differentiation. The Pax7 locus, which is transcribed in proliferating progenitors, localized to the nucleoplasm and Pax7 moved to the nuclear lamina upon repression during differentiation. Localization of Myf5, MyoD, and Pax7 to the nuclear lamina and proper temporal expression of these genes required emerin and HDAC3. Interestingly, activation of HDAC3 catalytic activity rescued both Myf5 localization to the nuclear lamina and its expression. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear lamina by activating the catalytic activity of HDAC3 to regulate the coordinated spatiotemporal expression of myogenic differentiation genes. PMID:24062260
Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun
All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition,more » the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.« less
Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumrejkanchanakij, Piyamas; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330; Eto, Kazuhiro
2006-02-03
The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, amore » process that was inhibited by p16{sup INK4a}, a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.« less
Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells.
Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki
2006-02-03
The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16(INK4a), a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.
Furue, Masutake; Takemura, Masaki; Nishio, Kiichiroet; Sato, Yuki; Nagata, Shoko; Kan, Nagisa; Suenaga, Asako; Furue, Kazuhisa; Yoshida, Maiko; Konishi, Sawako; Tsuji, Gaku
2016-11-01
The immunohistological localization of peroxisome proliferator-activated receptor a (PPARa) and PPAR g was examined in 28 pilosebaceous units in 10 paraffin-embedded normal human skin specimens. Rabbit polyclonal antibody against human PPARa and monoclonal antibody against human PPARg were used as specific primary antibodies. The nuclear and cytoplasmic expression of PPARa was detected in basal to differentiated sebocytes. In contrast, the expression of PPARg was confined to nuclei of suprabasal to early-differentiated sebocytes. The nuclear PPARg expression was present only occasionally in the basal sebocytes. These results suggest that PPARa and PPARg are integral parts of sebocyte differentiation in human sebaceous glands.
Neuronal differentiation modulates the dystrophin Dp71d binding to the nuclear matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Munoz, Rafael; Villarreal-Silva, Marcela; Gonzalez-Ramirez, Ricardo
The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrixmore » observed in the undifferentiated cells is replaced by intense fluorescent foci localized in Center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation.« less
Canterini, Sonia; Bosco, Adriana; Carletti, Valentina; Fuso, Andrea; Curci, Armando; Mangia, Franco; Fiorenza, Maria Teresa
2012-03-01
We previously demonstrated that TSC22D4, a protein encoded by the TGF-β1-activated gene Tsc22d4 (Thg-1pit) and highly expressed in postnatal and adult mouse cerebellum with multiple post-translationally modified protein forms, moves to nucleus when in vitro differentiated cerebellum granule neurons (CGNs) are committed to apoptosis by hyperpolarizing KCl concentrations in the culture medium. We have now studied TSC22D4 cytoplasmic/nuclear localization in CGNs and Purkinje cells: (1) during CGN differentiation/maturation in vivo, (2) during CGN differentiation in vitro, and (3) by in vitro culturing ex vivo cerebellum slices under conditions favoring/inhibiting CGN/Purkinje cell differentiation. We show that TSC22D4 displays both nuclear and cytoplasmic localizations in undifferentiated, early postnatal cerebellum CGNs, irrespectively of CGN proliferation/migration from external to internal granule cell layer, and that it specifically accumulates in the somatodendritic and synaptic compartments when CGNs mature, as indicated by TSC22D4 abundance at the level of adult cerebellum glomeruli and apparent lack in CGN nuclei. These features were also observed in cerebellum slices cultured in vitro under conditions favoring/inhibiting CGN/Purkinje cell differentiation. In vitro TSC22D4 silencing with siRNAs blocked CGN differentiation and inhibited neurite elongation in N1E-115 neuroblastoma cells, pinpointing the relevance of this protein to CGN differentiation.
Xie, J; Briggs, J A; Morris, S W; Olson, M O; Kinney, M C; Briggs, R C
1997-10-01
The myeloid cell nuclear differentiation antigen (MNDA) is a nuclear protein expressed specifically in developing cells of the human myelomonocytic lineage, including the end-stage monocytes/macrophages and granulocytes. Nuclear localization, lineage- and stage-specific expression, association with chromatin, and regulation by interferon alpha indicate that this protein is involved in regulating gene expression uniquely associated with the differentiation process and/or function of the monocyte/macrophage. MNDA does not bind specific DNA sequences, but rather a set of nuclear proteins that includes nucleolin (C23). Both in vitro binding assays and co-immunoprecipitation were used to demonstrate that MNDA also binds protein B23 (nucleophosmin/NPM). Three reciprocal chromosome translocations found in certain cases of leukemia/lymphoma involve fusions with the NPM/B23 gene, t(5;17) NPM-RARalpha, t(2;5) NPM-ALK, and the t(3;5) NPM-MLF1. In the current study, MNDA was not able to bind the NPM-ALK chimera originating from the t(2;5) and containing residues 1-117 of NPM. However, MNDA did bind the NPM-MLF1 product of the t(3;5) that contains the N-terminal 175 residues of NPM. The additional 58 amino acids (amino acids 117-175) of the NPM sequence that are contained in the product of the NPM-MLF1 fusion gene relative to the product of the NPM-ALK fusion appear responsible for MNDA binding. This additional NPM sequence contains a nuclear localization signal and clusters of acidic residues believed to bind nuclear localization signals of other proteins. Whereas NPM and nucleolin are primarily localized within the nucleolus, MNDA is distributed throughout the nucleus including the nucleolus, suggesting that additional interactions define overall MNDA localization.
Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization.
Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D
2013-08-02
The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes.
Serotype-specific Differences in Dengue Virus Non-structural Protein 5 Nuclear Localization*
Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D.
2013-01-01
The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes. PMID:23770669
Nuclear Lipids in the Nervous System: What they do in Health and Disease.
Garcia-Gil, Mercedes; Albi, Elisabetta
2017-02-01
In the last 20 years it has been widely demonstrated that cell nucleus contains neutral and polar lipids localized in nuclear membranes, nucleoli, nuclear matrix and chromatin. Nuclear lipids may show specific organization forming nuclear lipid microdomains and have both structural and functional roles. Depending on their localization, nuclear lipids play different roles such as the regulation of nuclear membrane and nuclear matrix fluidity but they also can act as platforms for vitamin and hormone function, for active chromatin anchoring, and for the regulation of gene expression, DNA duplication and transcription. Crosstalk among different kinds of lipid signalling pathways influence the physiopathology of numerous cell types. In neural cells the nuclear lipids are involved in cell proliferation, differentiation, inflammation, migration and apoptosis. Abnormal metabolism of nuclear lipids might be closely associated with tumorigenesis and neurodegenerative diseases such as Alzheimer disease and Parkinson disease among others.
NASA Astrophysics Data System (ADS)
Panorchan, Porntula; Wirtz, Denis; Tseng, Yiider
2004-10-01
Lamin B1 filaments organize into a thin dense meshwork underlying the nucleoplasmic side of the nuclear envelope. Recent experiments in vivo suggest that lamin B1 plays a key structural role in the nuclear envelope, but the intrinsic mechanical properties of lamin B1 networks remain unknown. To assess the potential mechanical contribution of lamin B1 in maintaining the integrity and providing structural support to the nucleus, we measured the micromechanical properties and examined the ultrastructural distribution of lamin B1 networks in vitro using particle tracking methods and differential interference contrast (DIC) microscopy. We exploit various surface chemistries of the probe microspheres (carboxylated, polyethylene glycol-coated, and amine-modified) to differentiate lamin-rich from lamin-poor regions and to rigorously extract local viscoelastic moduli from the mean-squared displacements of noninteracting particles. Our results show that human lamin B1 can, even in the absence of auxiliary proteins, form stiff and yet extremely porous networks that are well suited to provide structural strength to the nuclear lamina. Combining DIC microscopy and particle tracking allows us to relate directly the local organization of a material to its local mechanical properties, a general methodology that can be extended to living cells.
Lelievre, Sophie; Bissell, Mina
2001-01-01
The localization of nuclear apparatus proteins (NUMA) is used to identify tumor cells and different stages in the tumor progression and differentiation processes. There is a characteristic organization of NuMA in tumor cells and in phenotypically normal cells. NuMA distribution patterns are significantly less diffuse in proliferating non-malignant cells compared to malignant cells. The technique encompasses cell immunostaining using a NuMA specific antibody, and microscopic analysis of NuMA distribution within each nucleus.
Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu
2003-03-01
VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region.
Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu
2003-01-01
VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region. PMID:12588991
Hall, Megan P.; Huang, Sui; Black, Douglas L.
2004-01-01
We have examined the subcellular localization of the KH-type splicing regulatory protein (KSRP). KSRP is a multidomain RNA-binding protein implicated in a variety of cellular processes, including splicing in the nucleus and mRNA localization in the cytoplasm. We find that KSRP is primarily nuclear with a localization pattern that most closely resembles that of polypyrimidine tract binding protein (PTB). Colocalization experiments of KSRP with PTB in a mouse neuroblastoma cell line determined that both proteins are present in the perinucleolar compartment (PNC), as well as in other nuclear enrichments. In contrast, HeLa cells do not show prominent KSRP staining in the PNC, even though PTB labeling identified the PNC in these cells. Because both PTB and KSRP interact with the c-src transcript to affect N1 exon splicing, we examined the localization of the c-src pre-mRNA by fluorescence in situ hybridization. The src transcript is present in specific foci within the nucleus that are presumably sites of src transcription but are not generally perinucleolar. In normally cultured neuroblastoma cells, these src RNA foci contain PTB, but little KSRP. However, upon induced neuronal differentiation of these cells, KSRP occurs in the same foci with src RNA. PTB localization remains unaffected. This differentiation-induced localization of KSRP with src RNA correlates with an increase in src exon N1 inclusion. These results indicate that PTB and KSRP do indeed interact with the c-src transcript in vivo, and that these associations change with the differentiated state of the cell. PMID:14657238
Hepatocellular carcinoma with neuroendocrine differentiation: a case report.
Lu, Jiajie G; Farukhi, M Aabid; Mayeda, Donna; French, Samuel W
2017-10-01
Hepatocellular carcinoma with neuroendocrine differentiation, where tumor cells stain for both hepatocellular and neuroendocrine markers, is extremely rare. We report a case of a 65-year-old man who presented with a 14-cm rapidly growing mass in the right lobe of his liver with local extension into the gallbladder and portal vein. Serum AFP was 4625ng/mL. Liver biopsy showed a poorly differentiated neoplasm with cells showing nuclear pleomorphism, high nuclear/cytoplasmic ratio, and numerous mitoses. The tumor cells stain for AFP, glutamine synthase, arginase, and glypican-3. The same tumor regions also stain positively for synaptophysin, chromogranin, and CD56. Given this histological pattern, this tumor was ultimately diagnosed as hepatocellular carcinoma with neuroendocrine differentiation. Published by Elsevier Inc.
A Role for Caenorhabditis elegans Importin IMA-2 in Germ Line and Embryonic Mitosis
Geles, Kenneth G.; Johnson, Jeffrey J.; Jong, Sena; Adam, Stephen A.
2002-01-01
The importin α family of nuclear-cytoplasmic transport factors mediates the nuclear localization of proteins containing classical nuclear localization signals. Metazoan animals express multiple importin α proteins, suggesting their possible roles in cell differentiation and development. Adult Caenorhabditis elegans hermaphrodites express three importin α proteins, IMA-1, IMA-2, and IMA-3, each with a distinct expression and localization pattern. IMA-2 was expressed exclusively in germ line cells from the early embryonic through adult stages. The protein has a dynamic pattern of localization dependent on the stage of the cell cycle. In interphase germ cells and embryonic cells, IMA-2 is cytoplasmic and nuclear envelope associated, whereas in developing oocytes, the protein is cytoplasmic and intranuclear. During mitosis in germ line cells and embryos, IMA-2 surrounded the condensed chromosomes but was not directly associated with the mitotic spindle. The timing of IMA-2 nuclear localization suggested that the protein surrounded the chromosomes after fenestration of the nuclear envelope in prometaphase. Depletion of IMA-2 by RNA-mediated gene interference (RNAi) resulted in embryonic lethality and a terminal aneuploid phenotype. ima-2(RNAi) embryos have severe defects in nuclear envelope formation, accumulating nucleoporins and lamin in the cytoplasm. We conclude that IMA-2 is required for proper chromosome dynamics in germ line and early embryonic mitosis and is involved in nuclear envelope assembly at the conclusion of mitosis. PMID:12221121
Ahmad, Shakil; Moriconi, Federico; Naz, Naila; Sultan, Sadaf; Sheikh, Nadeem; Ramadori, Giuliano; Malik, Ihtzaz Ahmed
2013-01-01
Ferritin L (FTL) and Ferritin H (FTH) subunits are responsible for intercellular iron storage. We previously reported increasing amounts of liver cytoplasmic and nuclear iron content during acute phase response (APR). Aim of the present study is to demonstrate intracellular localization of ferritin subunits in liver compared with extra hepatic organs of rat under physiological and acute phase conditions. Rats were administered turpentine-oil (TO) intramuscularly to induce a sterile abscess (acute-phase-model) and sacrificed at different time points. Immunohistochemistry was performed utilizing horse-reddish-peroxidise conjugated secondary antibody on 4μm thick section. Liver cytoplasmic and nuclear protein were used for Western blot analysis. By means of immunohistology, FTL was detected in cytoplasm while a strong nuclear positivity for FTH was evident in the liver. Similarly, in heart, spleen and brain FTL was detected mainly in the cytoplasm while FTH demonstrated intense nuclear and a weak cytoplasmic expression. Western blot analysis of cytoplasmic and nuclear fractions from liver, heart, spleen and brain further confirmed mainly cytoplasmic expression of FTL in contrast to the nuclear and cytoplasmic expression of FTH. The data presented demonstrate the differential localization of FTL and FTH within hepatic and extra hepatic organs being FTL predominantly in the cytoplasm while FTH predominantly in nucleus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harnicarova, Andrea; Kozubek, Stanislav; Pachernik, Jiri
2006-12-10
Using sequential RNA-DNA fluorescence in situ hybridization, the nuclear arrangement of both the active and inactive c-myc gene as well as its transcription was investigated in colon cancer HT-29 cells induced to differentiate into enterocytes. Cytogenetic studies revealed the presence of two chromosomes 8 in HT-29 cells, of which the one containing c-myc gene amplicons was substantially larger and easily distinguished from the normal chromosome. This observation enabled detection of both activity and nuclear localization of c-myc genes in single cells and in individual chromosome territories. Similar transcriptional activity of the c-myc gene was observed in both the normal andmore » derivative chromosome 8 territories showing no influence of the amplification on the c-myc gene expression. Our experiments demonstrate strikingly specific nuclear and territorial arrangements of active genes as compared with inactive ones: on the periphery of their territories facing to the very central region of the cell nucleus. Nuclear arrangement of c-myc genes and transcripts was conserved during cell differentiation and, therefore, independent of the level of differentiation-specific c-myc gene expression. However, after the induction of differentiation, a more internal territorial location was found for the single copy c-myc gene of normal chromosome 8, while amplicons conserved their territorial topography.« less
Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V
2012-03-01
Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehmood, Rashid; Yasuhara, Noriko; Oe, Souichi
The transition from undifferentiated pluripotent cells to terminally differentiated neurons is coordinated by a repertoire of transcription factors. NeuroD1 is a type II basic helix loop helix (bHLH) transcription factor that plays critical roles in neuronal differentiation and maintenance in the central nervous system. Its dimerization with E47, a type I bHLH transcription factor, leads to the transcriptional regulation of target genes. Mounting evidence suggests that regulating the localization of transcription factors contributes to the regulation of their activity during development as defects in their localization underlie a variety of developmental disorders. In this study, we attempted to understand themore » nuclear import mannerisms of NeuroD1 and E47. We found that the nuclear import of NeuroD1 and E47 is energy-dependent and involves the Ran-mediated pathway. Herein, we demonstrate that NeuroD1 and E47 can dimerize inside the cytoplasm before their nuclear import. Moreover, this dimerization promotes nuclear import as the nuclear accumulation of NeuroD1 was enhanced in the presence of E47 in an in vitro nuclear import assay, and NLS-deficient NeuroD1 was successfully imported into the nucleus upon E47 overexpression. NeuroD1 also had a similar effect on the nuclear accumulation of NLS-deficient E47. These findings suggest a novel role for dimerization that may promote, at least partially, the nuclear import of transcription factors allowing them to function efficiently in the nucleus.« less
Isolation with differentiation followed by expansion with admixture in the tunicate Pyura chilensis
2013-01-01
Background Pyura chilensis, a tunicate commercially exploited as food resource in Chile, is subject to management strategies, including restocking. The goal of this study was to examine the genetic structure of P. chilensis using information from a mitochondrial gene (Cytochrome Oxidase I, COI) and a nuclear gene (Elongation 1 alpha, EF1a), to characterize the geographic distribution of genetic diversity and differentiation, and to identify the main processes that have shaped it. We analyzed 268 and 208 sequences of COI and EF1a, respectively, from samples of eight local populations covering ca. 1800 km. Results For Pyura chilensis, partial sequences of the gene COI revealed three highly supported haplogroups that diverged 260000 to 470000 years ago. Two haplogroups currently are widely distributed and sympatric, while one is dominant only in Los Molinos (LM, 39°50′S). The two widespread COI haplogroups underwent a geographic expansion during an interglacial period of the Late Pleistocene ca. 100000 years ago. The nuclear gene was less divergent and did not resolve the COI haplogroups. Bayesian clustering of the nuclear gene’s SNPs revealed that individuals from the two widespread COI haplogroups were mostly assigned to two of the three detected clusters and had a marked degree of admixture. The third cluster predominated in LM and showed low admixture. Haplotypic diversity of both genes was very high, there was no isolation by distance, and most localities were genetically undifferentiated; only LM was consistently differentiated with both genes analyzed. Conclusions Pyura chilensis has less genetic structure than expected given its life history, which could be a consequence of dispersal on ship hulls. The only differentiated local population analyzed was LM. Coincidentally, it is the one furthest away from main maritime routes along the coast of Chile. The use of mitochondrial and nuclear markers allowed detection of divergent mitochondrial haplogroups in P. chilensis, two of which revealed nuclear admixture. The genetic structure of P. chilensis has likely been shaped by Pleistocene’s climatic effect on sea level leading to population contraction with isolation, followed by geographic range expansions with concomitant secondary contact and admixture. PMID:24238017
NASA Astrophysics Data System (ADS)
Weatherford, Charles; Gebremedhin, Daniel
2016-03-01
A new and efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step size choice for each element that is based on a Taylor series expansion. The method is applied to solve for the eigenpairs of the one-dimensional soft-coulomb potential and the hard-coulomb limit is studied. The method is then used to calculate a numerical solution of the Kohn-Sham differential equation within the local density approximation is presented and is applied to the helium atom. Supported by the National Nuclear Security Agency, the Nuclear Regulatory Commission, and the Defense Threat Reduction Agency.
Ichikawa-Tomikawa, Naoki; Sugimoto, Kotaro; Satohisa, Seiro; Nishiura, Keisuke; Chiba, Hideki
2011-01-01
Tight junctions are intercellular junctions localized at the most apical end of the lateral plasma membrane. They consist of four kinds of transmembrane proteins (occludin, claudins, junctional adhesion molecules, and tricellulin) and huge numbers of scaffolding proteins and contribute to the paracellular barrier and fence function. The mutation and deletion of these proteins impair the functions of tight junctions and cause various human diseases. In this paper, we provide an overview of recent studies on transmembrane proteins of tight junctions and highlight the functional significance of tight junctions, extracellular matrix, and nuclear receptors in epithelial differentiation. PMID:22162632
Karyopherin alpha 1 regulates satellite cell proliferation and survival by modulating nuclear import
Choo, Hyo-Jung; Cutler, Alicia; Rother, Franziska; Bader, Michael; Pavlath, Grace K.
2016-01-01
Satellite cells are stem cells with an essential role in skeletal muscle repair. Precise regulation of gene expression is critical for proper satellite cell quiescence, proliferation, differentiation and self -renewal. Nuclear proteins required for gene expression are dependent on the nucleocytoplasmic transport machinery to access to nucleus, however little is known about regulation of nuclear transport in satellite cells. The best characterized nuclear import pathway is classical nuclear import which depends on a classical nuclear localization signal (cNLS) in a cargo protein and the heterodimeric import receptors, karyopherin alpha (KPNA) and beta (KPNB). Multiple KPNA1 paralogs exist and can differ in importing specific cNLS proteins required for cell differentiation and function. We show that transcripts for six Kpna paralogs underwent distinct changes in mouse satellite cells during muscle regeneration accompanied by changes in cNLS proteins in nuclei. Depletion of KPNA1, the most dramatically altered KPNA, caused satellite cells in uninjured muscle to prematurely activate, proliferate and undergo apoptosis leading to satellite cell exhaustion with age. Increased proliferation of satellite cells led to enhanced muscle regeneration at early stages of regeneration. In addition, we observed impaired nuclear localization of two key KPNA1 cargo proteins: p27, a cyclin-dependent kinase inhibitor associated with cell cycle control and lymphoid enhancer factor 1, a critical co-transcription factor for β-catenin. These results indicate that regulated nuclear import of proteins by KPNA1 is critical for satellite cell proliferation and survival and establish classical nuclear import as a novel regulatory mechanism for controlling satellite cell fate. PMID:27434733
Yamada, Kana; Noguchi, Chisato; Kamitori, Kazuyo; Dong, Youyi; Hirata, Yuko; Hossain, Mohammad A; Tsukamoto, Ikuko; Tokuda, Masaaki; Yamaguchi, Fuminori
2012-02-01
Oxidative stress modulates the osteoclast differentiation via redox systems, and thioredoxin 1 (Trx) promotes the osteoclast formation by regulating the activity of transcription factors. The function of Trx is known to be regulated by its binding partner, thioredoxin-interacting protein (TXNIP). We previously reported that the expression of TXNIP gene is strongly induced by a rare sugar D-allose. In this study, we tested the hypothesis that D-allose could inhibit the osteoclast differentiation by regulating the Trx function. We used a murine Raw264 cell line that differentiates to the osteoclast by the receptor activator of nuclear factor-κB ligand (RANKL) treatment. The effect of sugars was evaluated by tartrate-resistant acid phosphatase staining. The expression and localization of TXNIP and Trx protein were examined by Western blotting and immunohistochemisty. The activity of the nuclear factor-κB, nuclear factor of activated T cells, and activator protein 1 transcription factors was measured by the luciferase reporter assay. The addition of D-allose (25 mmol/L) inhibited the osteoclast differentiation down to 9.53% ± 1.27% of a receptor activator of nuclear factor-κB ligand-only treatment. During the osteoclast differentiation, a significant increase of TNXIP was observed by D-allose treatment. The immunohistochemical analysis showed that both Trx and TXNIP existed in the nucleus in preosteoclasts and osteoclasts. Overexpression of TXNIP by plasmid transfection also inhibited the osteoclast formation, indicating the functional importance of TXNIP for the osteoclast differentiation. Transcriptional activity of the activator protein 1, nuclear factor-κB, and nuclear factor of activated T cells, known to be modulated by Trx, were inhibited by D-allose. In conclusion, our data indicate that D-allose is a strong inhibitor of the osteoclast differentiation, and this effect could be caused by TXNIP induction and a resulting inhibition of the Trx function. Copyright © 2012 Elsevier Inc. All rights reserved.
Rønning, Sissel B; Carlson, Cathrine R; Stang, Espen; Kolset, Svein O; Hollung, Kristin; Pedersen, Mona E
2015-01-01
The cell surface proteoglycan syndecan-4 has been reported to be crucial for muscle differentiation, but the molecular mechanisms still remain to be fully understood. During in vitro differentiation of bovine muscle cells immunocytochemical analyses showed strong labelling of syndecan-4 intracellularly, in close proximity with Golgi structures, in membranes of intracellular vesicles and finally, in the nuclear area including the nuclear envelope. Chase experiments showed that syndecan-4 was internalized from the plasma membrane during this process. Furthermore, when syndecan-4 was knocked down by siRNA more myotubes were formed, and the expression of myogenic transcription factors, β1-integrin and actin was influenced. However, when bovine muscle cells were treated with a cell-penetrating peptide containing the cytoplasmic region of syndecan-4, myoblast fusion and thus myotube formation was blocked, both in normal cells and in syndecan-4 knock down cells. Altogether this suggests that the cytoplasmic domain of syndecan-4 is important in regulation of myogenesis. The internalization of syndecan-4 from the plasma membrane during muscle differentiation and the nuclear localization of syndecan-4 in differentiated muscle cells may be part of this regulation, and is a novel aspect of syndecan biology which merits further studies.
Organization of nuclear architecture during adipocyte differentiation
Charó, Nancy L.; Rodríguez Ceschan, María I.; Galigniana, Natalia M.; Toneatto, Judith; Piwien-Pilipuk, Graciela
2016-01-01
ABSTRACT Obesity is a serious health problem worldwide since it is a major risk factor for chronic diseases such as type II diabetes. Obesity is the result of hyperplasia (associated with increased adipogenesis) and hypertrophy (associated with decreased adipogenesis) of the adipose tissue. Therefore, understanding the molecular mechanisms underlying the process of adipocyte differentiation is relevant to delineate new therapeutic strategies for treatment of obesity. As in all differentiation processes, temporal patterns of transcription are exquisitely controlled, allowing the acquisition and maintenance of the adipocyte phenotype. The genome is spatially organized; therefore decoding local features of the chromatin language alone does not suffice to understand how cell type-specific gene expression patterns are generated. Elucidating how nuclear architecture is built during the process of adipogenesis is thus an indispensable step to gain insight in how gene expression is regulated to achieve the adipocyte phenotype. Here we will summarize the recent advances in our understanding of the organization of nuclear architecture as progenitor cells differentiate in adipocytes, and the questions that still remained to be answered. PMID:27416359
MIRK/DYRK1B MEDIATES SURVIVAL DURING THE DIFFERENTIATION OF C2C12 MYOBLASTS 1
Mercer, Stephen E.; Ewton, Daina Z.; Deng, Xiaobing; Lim, Seunghwan; Mazur, Thomas R.; Friedman, Eileen
2005-01-01
The kinase Mirk/dyrk1B is essential for the differentiation of C2C12 myoblasts. Mirk reinforces the G0/G1 arrest state in which differentiation occurs by directly phosphorylating and stabilizing p27kip1 and destabilizing cyclin D1. We now demonstrate that Mirk is anti-apoptotic in myoblasts. Knockdown of endogenous Mirk by RNA interference activated caspase 3 and decreased myoblast survival by 75%, while transient overexpression of Mirk increased cell survival. Mirk exerts its anti-apoptotic effects during muscle differentiation at least in part through effects on the cell cycle inhibitor and pro-survival molecule p21cip1. Overexpression and RNA interference experiments demonstrated that Mirk phosphorylates p21 within its nuclear localization domain at Ser153 causing a portion of the typically nuclear p21 to localize in the cytoplasm. Phosphomimetic GFP-p21-S153D was pancellular in both cycling C2C12 myoblasts and NIH3T3 cells. Endogenous Mirk in myotubes, and overexpressed Mirk in NIH3T3 cells were able to cause the pancellular localization of wild-type GFP-p21, but not the non-phosphorylatable mutant GFP-p21-S153A. Translocation to the cytoplasm enables p21 to block apoptosis through inhibitory interaction with pro-apoptotic molecules. Phosphomimetic p21-S153D was more effective than wild-type p21 in blocking the activation of caspase 3. Transient expression of p21-S153D also increased myoblast viability in colony forming assays, while the p21-S153A mutant had no effect. This Mirk-dependent change in p21 intracellular localization is a natural part of myoblast differentiation. Endogenous p21 localized exclusively to the nuclei of proliferating myoblasts, but was also found in the cytoplasm of post-mitotic multinucleated myotubes and adult human skeletal myofibers. PMID:15851482
Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos).
Momigliano, P; Harcourt, R; Robbins, W D; Jaiteh, V; Mahardika, G N; Sembiring, A; Stow, A
2017-09-01
With overfishing reducing the abundance of marine predators in multiple marine ecosystems, knowledge of genetic structure and local adaptation may provide valuable information to assist sustainable management. Despite recent technological advances, most studies on sharks have used small sets of neutral markers to describe their genetic structure. We used 5517 nuclear single-nucleotide polymorphisms (SNPs) and a mitochondrial DNA (mtDNA) gene to characterize patterns of genetic structure and detect signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Using samples from Australia, Indonesia and oceanic reefs in the Indian Ocean, we established that large oceanic distances represent barriers to gene flow, whereas genetic differentiation on continental shelves follows an isolation by distance model. In Australia and Indonesia differentiation at nuclear SNPs was weak, with coral reefs acting as stepping stones maintaining connectivity across large distances. Differentiation of mtDNA was stronger, and more pronounced in females, suggesting sex-biased dispersal. Four independent tests identified a set of loci putatively under selection, indicating that grey reef sharks in eastern Australia are likely under different selective pressures to those in western Australia and Indonesia. Genetic distances averaged across all loci were uncorrelated with genetic distances calculated from outlier loci, supporting the conclusion that different processes underpin genetic divergence in these two data sets. This pattern of heterogeneous genomic differentiation, suggestive of local adaptation, has implications for the conservation of grey reef sharks; furthermore, it highlights that marine species showing little genetic differentiation at neutral loci may exhibit patterns of cryptic genetic structure driven by local selection.
Uckun, Fatih M.; Ma, Hong; Zhang, Jian; Ozer, Zahide; Dovat, Sinisa; Mao, Cheney; Ishkhanian, Rita; Goodman, Patricia; Qazi, Sanjive
2012-01-01
Ikaros is a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis through transcriptional regulation of the earliest stages of lymphocyte ontogeny and differentiation. Functional deficiency of Ikaros has been implicated in the pathogenesis of acute lymphoblastic leukemia, the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros activity is considered of paramount importance, but the operative molecular mechanisms responsible for its regulation remain largely unknown. Here we provide multifaceted genetic and biochemical evidence for a previously unknown function of spleen tyrosine kinase (SYK) as a partner and posttranslational regulator of Ikaros. We demonstrate that SYK phoshorylates Ikaros at unique C-terminal serine phosphorylation sites S358 and S361, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Mechanistically, we establish that SYK-induced Ikaros activation is essential for its nuclear localization and optimal transcription factor function. PMID:23071339
The nuclear lamina as a gene-silencing hub.
Shevelyov, Yuri Y; Nurminsky, Dmitry I
2012-01-01
There is accumulating evidence that the nuclear periphery is a transcriptionally repressive compartment. A surprisingly large fraction of the genome is either in transient or permanent contact with nuclear envelope, where the majority of genes are maintained in a silent state, waiting to be awakened during cell differentiation. The integrity of the nuclear lamina and the histone deacetylase activity appear to be essential for gene repression at the nuclear periphery. However, the molecular mechanisms of silencing, as well as the events that lead to the activation of lamina-tethered genes, require further elucidation. This review summarizes recent advances in understanding of the mechanisms that link nuclear architecture, local chromatin structure, and gene regulation.
Zhu, Jun; Koken, Marcel H. M.; Quignon, Frédérique; Chelbi-Alix, Mounira K.; Degos, Laurent; Wang, Zhen Yi; Chen, Zhu; de Thé, Hugues
1997-01-01
Acute promyelocytic leukemia (APL) is associated with the t(15;17) translocation, which generates a PML/RARα fusion protein between PML, a growth suppressor localized on nuclear matrix-associated bodies, and RARα, a nuclear receptor for retinoic acid (RA). PML/RARα was proposed to block myeloid differentiation through inhibition of nuclear receptor response, as does a dominant negative RARα mutant. In addition, in APL cells, PML/RARα displaces PML and other nuclear body (NB) antigens onto nuclear microspeckles, likely resulting in the loss of PML and/or NB functions. RA leads to clinical remissions through induction of terminal differentiation, for which the respective contributions of RARα (or PML/RARα) activation, PML/RARα degradation, and restoration of NB antigens localization are poorly determined. Arsenic trioxide also leads to remissions in APL patients, presumably through induction of apoptosis. We demonstrate that in non-APL cells, arsenic recruits the nucleoplasmic form of several NB antigens onto NB, but induces the degradation of PML only, identifying a powerful tool to approach NB function. In APL cells, arsenic targets PML and PML/RARα onto NB and induces their degradation. Thus, RA and arsenic target RARα and PML, respectively, but both induce the degradation of the PML/RARα fusion protein, which should contribute to their therapeutic effects. The difference in the cellular events triggered by these two agents likely stems from RA-induced transcriptional activation and arsenic effects on NB proteins. PMID:9108090
Ragoczy, Tobias; Bender, M.A.; Telling, Agnes; Byron, Rachel; Groudine, Mark
2006-01-01
We have examined the relationship between nuclear localization and transcriptional activity of the endogenous murine β-globin locus during erythroid differentiation. Murine fetal liver cells were separated into distinct erythroid maturation stages by fluorescence-activated cell sorting, and the nuclear position of the locus was determined at each stage. We find that the β-globin locus progressively moves away from the nuclear periphery with increasing maturation. Contrary to the prevailing notion that the nuclear periphery is a repressive compartment in mammalian cells, βmajor-globin expression begins at the nuclear periphery prior to relocalization. However, relocation of the locus to the nuclear interior with maturation is accompanied by an increase in βmajor-globin transcription. The distribution of nuclear polymerase II (Pol II) foci also changes with erythroid differentiation: Transcription factories decrease in number and contract toward the nuclear interior. Moreover, both efficient relocalization of the β-globin locus from the periphery and its association with hyperphosphorylated Pol II transcription factories require the locus control region (LCR). These results suggest that the LCR-dependent association of the β-globin locus with transcriptionally engaged Pol II foci provides the driving force for relocalization of the locus toward the nuclear interior during erythroid maturation. PMID:16705039
Ogunrinde, Adenike; Pereira, Robyn D; Beaton, Natalie; Lam, D Hung; Whetstone, Christiane; Hill, Ceredwyn E
The channel-kinase TRPM7 is important for the survival, proliferation, and differentiation, of many cell types. Both plasma membrane channel activity and kinase function are implicated in these roles. Channel activity is greater in less differentiated hepatoma cells compared with non-dividing, terminally differentiated adult hepatocytes, suggesting differences in protein expression and/or localization. We used electrophysiological and immunofluorescence approaches to establish whether hepatocellular differentiation is associated with altered TRPM7 expression. Mean outward current decreased by 44% in WIF-B hepatoma cells incubated with the established hepatic differentiating factors oncostatin M/dexamethasone for 1-8 days. Pre-incubation with pyridone 6, a pan-JAK inhibitor, blocked the current reduction. An antibody targeted to the C-terminus of TRPM7 labelled the cytoplasm in WIF-B cells and intact rat liver. Significant label also localized to the nuclear envelope (NE), with relatively more detected in adult hepatocytes compared with WIF-B cells. Hepatoma cells also exhibited nucleoplasmic labelling with intense signal in the nucleolus. The endogenous labelling pattern closely resembles that of HEK293T cells heterologously expressing a TRPM7 kinase construct containing a putative nucleolar localization sequence. These results suggest that TRPM7 form and distribution between the plasma membrane and nucleus, rather than expression, is altered in parallel with differentiation status in rat hepatic cells. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Tumor and infection localization in AIDS patients: Ga-67 and Tl-201 findings.
Turoglu, H T; Akisik, M F; Naddaf, S Y; Omar, W S; Kempf, J S; Abdel-Dayem, H M
1998-07-01
Examples of Ga-67 and Tl-201 scans in AIDS patients performed at St. Vincent's Hospital and Medical Center of New York are presented. Use of these methods is the adopted approach at this institution in AIDS patients for localizing sites of tumor or infection involvement. A Ga-67 scan is the most common nuclear medicine examination performed on AIDS patients. Sequential Tl-201 and Ga-67 scans have a role in differentiating Kaposi's sarcoma from malignant lymphoma and opportunistic infections. For intracranial lesions, Tc-99m MIBI or Tl-201-201-201-201 chloride can differentiate malignant from benign inflammatory lesions.
Alarcon, Vernadeth B; Marikawa, Yusuke
2018-01-01
In placental mammalian development, the first cell differentiation produces two distinct lineages that emerge according to their position within the embryo: the trophectoderm (TE, placenta precursor) differentiates in the surface, while the inner cell mass (ICM, fetal body precursor) forms inside. Here, we discuss how such position-dependent lineage specifications are regulated by the RHOA subfamily of small GTPases and RHO-associated coiled-coil kinases (ROCK). Recent studies in mouse show that activities of RHO/ROCK are required to promote TE differentiation and to concomitantly suppress ICM formation. RHO/ROCK operate through the HIPPO signaling pathway, whose cell position-specific modulation is central to establishing unique gene expression profiles that confer cell fate. In particular, activities of RHO/ROCK are essential in outside cells to promote nuclear localization of transcriptional co-activators YAP/TAZ, the downstream effectors of HIPPO signaling. Nuclear localization of YAP/TAZ depends on the formation of apicobasal polarity in outside cells, which requires activities of RHO/ROCK. We propose models of how RHO/ROCK regulate lineage specification and lay out challenges for future investigations to deepen our understanding of the roles of RHO/ROCK in preimplantation development. Finally, as RHO/ROCK may be inhibited by certain pharmacological agents, we discuss their potential impact on human preimplantation development in relation to fertility preservation in women.
Huber, Robert J; O'Day, Danton H
2011-08-01
The Dictyostelium discoideum homolog of mammalian cyclin dependent kinase 5 (Cdk5) has previously been shown to be required for optimal growth and differentiation in this model organism, however, the subcellular localization of the protein has not previously been studied. In this study, immunolocalizations and a GFP fusion construct localized Cdk5 predominantly to the nucleus of vegetative cells. Western blots showed that Cdk5 was present in both nuclear and non-nuclear fractions, suggesting a functional role in both cellular locales. During the early stages of mitosis, Cdk5 gradually moved from a punctate nucleoplasmic distribution to localize adjacent to the inner nuclear envelope. During anaphase and telophase, Cdk5 localized to the cytoplasm and was not detected in the nucleoplasm. Cdk5 returned to the nucleus during cytokinesis. Proteolytic activity has been shown to be a critical regulator of the cell cycle. Immunoprecipitations coupled with immunolocalizations identified puromycin-sensitive aminopeptidase A (PsaA) as a potential Cdk5 binding partner in Dictyostelium. Immunoprecipitations also identified two phosphotyrosine proteins (35 and 18 kDa) that may interact with Cdk5 in vivo. Together, this work provides new insight into the localization of Cdk5, its function during cell division, and its binding to a proteolytic enzyme in Dictyostelium.
NASA Astrophysics Data System (ADS)
Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr
2018-03-01
Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of
NASA Astrophysics Data System (ADS)
Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Layek, S.; Hossain, Z.
2013-12-01
In this paper, we report the time differential perturbed angular distribution measurements of 54Fe on a polycrystalline EuFe2As2 and Eu0.5K0.5Fe2As2. The hyperfine field and nuclear spin-relaxation rate are strongly temperature dependent in the paramagnetic state suggesting strong spin fluctuation in the parent compound. The local susceptibility show Curie-Weiss-like temperature dependence and Korringa-like relaxation in the tetragonal phase indicating the presence of local moment. In the orthorhombic phase, the hyperfine field behavior suggesting quasi two-dimensional magnetic ordering. The experimental results are in a good agreement with first-principle calculations based on density functional theory.
Poloz, Yekaterina; Catalano, Andrew
2012-01-01
Bestatin methyl ester (BME) is an inhibitor of Zn2+-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have used Dictyostelium as a model organism to study the effects of BME. Only two Zn2+-binding aminopeptidases have been identified in Dictyostelium to date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development of Dictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaAΔNLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation in Dictyostelium likely through inhibition of PsaA. PMID:22345351
Kolb, Jasmine; Anders-Maurer, Marie; Müller, Tanja; Hau, Ann-Christin; Grebbin, Britta Moyo; Kallenborn-Gerhardt, Wiebke; Behrends, Christian; Schulte, Dorothea
2018-04-10
Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Butler, Miriam S; Yang, Xing; Ricciardelli, Carmela; Liang, Xiaoyan; Norman, Robert J; Tilley, Wayne D; Hickey, Theresa E
2013-06-01
To evaluate the expression and function of small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA), an androgen receptor (AR) molecular chaperone, in human ovarian tissues. Examine the effect of SGTA on AR subcellular localization in granulosa tumor cells (KGN) and SGTA expression in ovarian tissues. University-based research laboratory. Archived tissues from premenopausal women and granulosa cells from infertile women receiving assisted reproduction. None. AR subcellular localization and SGTA protein or mRNA levels. SGTA and AR proteins were expressed in the cytoplasm of KGN cells and exposure to androgen stimulated AR nuclear localization. SGTA protein knockdown increased AR nuclear localization at low (0-0.1 nmol/L) but not high (1-10 nmol/L) concentrations of androgen hormone. In ovarian tissues, SGTA was localized to the cytoplasm of granulosa cells at all stages of folliculogenesis and in thecal cells of antral follicles. SGTA protein levels were similar when comparing primordial and primary follicles within core biopsies (n = 40) from women with and without polycystic ovary syndrome (PCOS). Likewise, SGTA mRNA levels were not significantly different in granulosa cells from preovulatory follicles after hyperstimulation of women with and without PCOS. SGTA is present in human ovaries and has the potential to modulate AR signalling, but it may not be differentially expressed in PCOS. Copyright © 2013 American Society for Reproductive Medicine. All rights reserved.
Wang, Yan; Morkin, Melina I.; Fernandez, Stephanie G.; Mlacker, Gregory M.; Shechter, Jesse M.; Liu, Xiongfei; Patel, Karan H.; Lapins, Allison; Yang, Steven; Dombrowski, Susan M.
2014-01-01
The failure of the CNS neurons to regenerate axons after injury or stroke is a major clinical problem. Transcriptional regulators like Set-β are well positioned to regulate intrinsic axon regeneration capacity, which declines developmentally in maturing CNS neurons. Set-β also functions at cellular membranes and its subcellular localization is disrupted in Alzheimer's disease, but many of its biological mechanisms have not been explored in neurons. We found that Set-β was upregulated postnatally in CNS neurons, and was primarily localized to the nucleus but was also detected in the cytoplasm and adjacent to the plasma membrane. Remarkably, nuclear Set-β suppressed, whereas Set-β localized to cytoplasmic membranes promoted neurite growth in rodent retinal ganglion cells and hippocampal neurons. Mimicking serine 9 phosphorylation, as found in Alzheimer's disease brains, delayed nuclear import and furthermore blocked the ability of nuclear Set-β to suppress neurite growth. We also present data on gene regulation and protein binding partner recruitment by Set-β in primary neurons, raising the hypothesis that nuclear Set-β may preferentially regulate gene expression whereas Set-β at cytoplasmic membranes may regulate unique cofactors, including PP2A, which we show also regulates axon growth in vitro. Finally, increasing recruitment of Set-β to cellular membranes promoted adult rat optic nerve axon regeneration after injury in vivo. Thus, Set-β differentially regulates axon growth and regeneration depending on subcellular localization and phosphorylation. PMID:24849368
Nyakaana, S; Arctander, P
1999-07-01
A drastic decline has occurred in the size of the Uganda elephant population in the last 40 years, exacerbated by two main factors; an increase in the size of the human population and poaching for ivory. One of the attendant consequences of such a decline is a reduction in the amount of genetic diversity in the surviving populations due to increased effects of random genetic drift. Information about the amount of genetic variation within and between the remaining populations is vital for their future conservation and management. The genetic structure of the African elephant in Uganda was examined using nucleotide variation of mitochondrial control region sequences and four nuclear microsatellite loci in 72 individuals from three localities. Eleven mitochondrial DNA (mtDNA) haplotypes were observed, nine of which were geographically localized. We found significant genetic differentiation between the three populations at the mitochondrial locus while three out of the four microsatellite loci differentiated KV and QE, one locus differentiated KV and MF and no loci differentiated MF and QE. Expected heterozygosity at the four loci varied between 0.51 and 0.84 while nucleotide diversity at the mitochondrial locus was 1.4%. Incongruent patterns of genetic variation within and between populations were revealed by the two genetic systems, and we have explained these in terms of the differences in the effective population sizes of the two genomes and male-biased gene flow between populations.
Tarabra, Elena; An Lee, Ting-Wen; Zammit, Victor A; Vatish, Manu; Yamada, Eijiro; Pessin, Jeffrey E; Bastie, Claire C
2017-10-17
Diet-induced obesity is associated with increased adipose tissue activated macrophages. Yet, how macrophages integrate fatty acid (FA) signals remains unclear. We previously demonstrated that Fyn deficiency ( fynKO ) protects against high fat diet-induced adipose tissue macrophage accumulation. Herein, we show that inflammatory markers and reactive oxygen species are not induced in fynKO bone marrow-derived macrophages exposed to the saturated FA palmitate, suggesting that Fyn regulates macrophage function in response to FA signals. Palmitate activates Fyn and re-localizes Fyn into the nucleus of RAW264.7, J774 and wild-type bone marrow-derived macrophages. Similarly, Fyn activity is increased in cells of adipose tissue stromal vascular fraction of high fat-fed control mice, with Fyn protein being located in the nucleus of these cells. We demonstrate that Fyn modulates palmitate-dependent oxidative stress in macrophages. Moreover, Fyn catalytic activity is necessary for its nuclear re-localization and downstream effects, as Fyn pharmacological inhibition abolishes palmitate-induced Fyn nuclear redistribution and palmitate-dependent increase of oxidative stress markers. Importantly, mono-or polyunsaturated FAs do not activate Fyn, and fail to re-localize Fyn to the nucleus. Together these data demonstrate that macrophages integrate nutritional FA signals via a differential activation of Fyn that distinguishes, at least partly, the effects of saturated versus unsaturated fats.
Slave boson theory of orbital differentiation with crystal field effects: Application to UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu
We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. Furthermore, we apply our theory to the archetypical nuclear fuel UO 2 and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ 8 and extended Γ 7 electrons.
Slave boson theory of orbital differentiation with crystal field effects: Application to UO 2
Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; ...
2017-03-23
We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. Furthermore, we apply our theory to the archetypical nuclear fuel UO 2 and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ 8 and extended Γ 7 electrons.
Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO_{2}.
Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; Dobrosavljević, Vladimir; Kotliar, Gabriel
2017-03-24
We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. We apply our theory to the archetypical nuclear fuel UO_{2} and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ_{8} and extended Γ_{7} electrons.
Binding of Y-P30 to Syndecan 2/3 Regulates the Nuclear Localization of CASK
Landgraf, Peter; Mikhaylova, Marina; Macharadze, Tamar; Borutzki, Corinna; Zenclussen, Ana-Claudia; Wahle, Petra; Kreutz, Michael R.
2014-01-01
The survival promoting peptide Y-P30 has documented neuroprotective effects as well as cell survival and neurite outgrowth promoting activity in vitro and in vivo. Previous work has shown that multimerization of the peptide with pleiotrophin (PTN) and subsequent binding to syndecan (SDC) -2 and -3 is involved in its neuritogenic effects. In this study we show that Y-P30 application regulates the nuclear localization of the SDC binding partner Calcium/calmodulin-dependent serine kinase (CASK) in neuronal primary cultures during development. In early development at day in vitro (DIV) 8 when mainly SDC-3 is expressed supplementation of the culture medium with Y-P30 reduces nuclear CASK levels whereas it has the opposite effect at DIV 18 when SDC-2 is the dominant isoform. In the nucleus CASK regulates gene expression via its association with the T-box transcription factor T-brain-1 (Tbr-1) and we indeed found that gene expression of downstream targets of this complex, like the GluN2B NMDA-receptor, exhibits a corresponding down- or up-regulation at the mRNA level. The differential effect of Y-P30 on the nuclear localization of CASK correlates with its ability to induce shedding of the ectodomain of SDC-2 but not -3. shRNA knockdown of SDC-2 at DIV 18 and SDC-3 at DIV 8 completely abolished the effect of Y-P30 supplementation on nuclear CASK levels. During early development a protein knockdown of SDC-3 also attenuated the effect of Y-P30 on axon outgrowth. Taken together these data suggest that Y-P30 can control the nuclear localization of CASK in a SDC-dependent manner. PMID:24498267
pPKCδ activates SC35 splicing factor during H9c2 myoblastic differentiation.
Zara, Susi; Falconi, Mirella; Rapino, Monica; Zago, Michela; Orsini, Giovanna; Mazzotti, Giovanni; Cataldi, Amelia; Teti, Gabriella
2011-01-01
Although Protein Kinase C (PKC) isoforms' role in the neonatal and adult cardiac tissue development and ageing has been widely described "in vivo", the interaction of such enzymes with specific nuclear substrates needs to be investigated. The aim of our research has been the study of the expression, localization and interaction with the splicing factor SC35 of PKC isoforms (α, δ, ε, ζ) and their potential role in modulating the transcription machinery. H9c2 cells induced to myoblast differentiation in the presence of 1% Horse Serum (HS) have represented our experimental model. The expression of PKC isoforms, their distribution and interaction with SC35 have been evaluated by western blotting, co-immunoprecipitation and double gold immunolabeling for transmission and scanning electron microscopy. Our results show PKCδ as the most expressed isoform in differentiated cells. Surprisingly, the distribution of PKCδ and SC35 does not show any significant modification between 10%FBS and 1%HS treated samples and no co-localization is observed. Moreover the interaction between the phosphorylated form of PKCδ (pPKCδ) and SC35 increases, is distributed and co-localizes within the nucleus of differentiated H9c2. These data represent reasonable evidence of pPKCδ mediated SC35 splicing factor activation, suggesting its direct effect on transcription via interaction with the transcription machinery. Furthermore, this co-localization represents a crucial event resulting in downstream changes in transcription of components which determine the morphological modifications related to cardiomyoblast differentiated phenotype.
Pérez-Munive, Clara; Blumenthal, Sonal S D; de la Espina, Susana Moreno Díaz
2012-01-01
Plant cells have a well organized nucleus and nuclear matrix, but lack orthologues of the main structural components of the metazoan nuclear matrix. Although data is limited, most plant nuclear structural proteins are coiled-coil proteins, such as the NIFs (nuclear intermediate filaments) in Pisum sativum that cross-react with anti-intermediate filament and anti-lamin antibodies, form filaments 6-12 nm in diameter in vitro, and may play the role of lamins. We have investigated the conservation and features of NIFs in a monocot species, Allium cepa, and compared them with onion lamin-like proteins. Polyclonal antisera against the pea 65 kDa NIF were used in 1D and 2D Western blots, ICM (imunofluorescence confocal microscopy) and IEM (immunoelectron microscopy). Their presence in the nuclear matrix was analysed by differential extraction of nuclei, and their association with structural spectrin-like proteins by co-immunoprecipitation and co-localization in ICM. NIF is a conserved structural component of the nucleus and its matrix in monocots with Mr and pI values similar to those of pea 65 kDa NIF, which localized to the nuclear envelope, perichromatin domains and foci, and to the nuclear matrix, interacting directly with structural nuclear spectrin-like proteins. Its similarities with some of the proteins described as onion lamin-like proteins suggest that they are highly related or perhaps the same proteins.
Toneatto, Judith; Guber, Sergio; Charó, Nancy L.; Susperreguy, Sebastián; Schwartz, Jessica; Galigniana, Mario D.; Piwien-Pilipuk, Graciela
2013-01-01
Summary Glucocorticoids play an important role in adipogenesis through the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90•Hsp70 and one high molecular weight immunophilin, either FKBP51 or FKBP52. When 3T3-L1 preadipocytes are induced to differentiate, FKBP51 expression progressively increases, whereas FKBP52 decreases, and Hsp90, Hsp70, p23 and Cyp40 remain unchanged. Interestingly, FKBP51 rapidly translocates from mitochondria to the nucleus where it is retained upon its interaction with chromatin and the nuclear matrix. FKBP51 nuclear localization is transient, and after 48 hours it cycles back to mitochondria. Importantly, this dynamic FKBP51 mitochondrial–nuclear shuttling depends on PKA signaling, because its inhibition by PKI or knockdown of PKA-cα by siRNA, prevented FKBP51 nuclear translocation induced by IBMX. In addition, the electrophoretic pattern of migration of FKBP51 is altered by treatment of cells with PKI or knockdown of PKA-cα, suggesting that FKBP51 is a PKA substrate. In preadipocytes, FKBP51 colocalizes with PKA-cα in mitochondria. When adipogenesis is triggered, PKA-cα also moves to the nucleus colocalizing with FKBP51 mainly in the nuclear lamina. Moreover, FKBP51 and GR interaction increases when preadipocytes are induced to differentiate. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced FKBP51 nuclear translocation, but not by a specific activator of EPAC. FKBP51 knockdown facilitates adipogenesis, whereas ectopic expression of FKBP51 blocks adipogenesis. These findings indicate that the dynamic mitochondrial–nuclear shuttling of FKBP51 regulated by PKA may be key in fine-tuning the transcriptional control of GR target genes required for the acquisition of adipocyte phenotype. PMID:24101724
BAG3 is involved in neuronal differentiation and migration.
Santoro, Antonietta; Nicolin, Vanessa; Florenzano, Fulvio; Rosati, Alessandra; Capunzo, Mario; Nori, Stefania L
2017-05-01
Bcl2-associated athanogene 3 (BAG3) protein belongs to the family of co-chaperones interacting with several heat shock proteins. It plays a key role in protein quality control and mediates the clearance of misfolded proteins. Little is known about the expression and cellular localization of BAG3 during nervous system development and differentiation. Therefore, we analyze the subcellular distribution and expression of BAG3 in nerve-growth-factor-induced neurite outgrowth in PC12 cells and in developing and adult cortex of mouse brain. In differentiated PC12 cells, BAG3 was localized mainly in the neuritic domain rather than the cell body, whereas in control cells, it appeared to be confined to the cytoplasm near the nuclear membrane. Interestingly, the change of BAG3 localization during neuronal differentiation was associated only with a slight increase in total BAG3 expression. These data were coroborated by transmission electron microscopy showing that BAG3 was confined mainly within large dense-core vesicles of the axon in differentiated PC12 cells. In mouse developing cortex, BAG3 appeared to be intensely expressed in cellular processes of migrating cells, whereas in adult brain, a diffuse expression of low to medium intensity was detected in neuronal cell bodies. These findings suggest that BAG3 expression is required for neuronal differentiation and migration and that its role is linked to a change in its distribution pattern rather than to an increase in its protein expression levels.
High content analysis of differentiation and cell death in human adipocytes.
Doan-Xuan, Quang Minh; Sarvari, Anitta K; Fischer-Posovszky, Pamela; Wabitsch, Martin; Balajthy, Zoltan; Fesus, Laszlo; Bacso, Zsolt
2013-10-01
Understanding adipocyte biology and its homeostasis is in the focus of current obesity research. We aimed to introduce a high-content analysis procedure for directly visualizing and quantifying adipogenesis and adipoapoptosis by laser scanning cytometry (LSC) in a large population of cell. Slide-based image cytometry and image processing algorithms were used and optimized for high-throughput analysis of differentiating cells and apoptotic processes in cell culture at high confluence. Both preadipocytes and adipocytes were simultaneously scrutinized for lipid accumulation, texture properties, nuclear condensation, and DNA fragmentation. Adipocyte commitment was found after incubation in adipogenic medium for 3 days identified by lipid droplet formation and increased light absorption, while terminal differentiation of adipocytes occurred throughout day 9-14 with characteristic nuclear shrinkage, eccentric nuclei localization, chromatin condensation, and massive lipid deposition. Preadipocytes were shown to be more prone to tumor necrosis factor alpha (TNFα)-induced apoptosis compared to mature adipocytes. Importantly, spontaneous DNA fragmentation was observed at early stage when adipocyte commitment occurs. This DNA damage was independent from either spontaneous or induced apoptosis and probably was part of the differentiation program. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.
Effect of TCEA3 on the differentiation of bovine skeletal muscle satellite cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yue; Tong, Hui-Li; Li, Shu-Feng
Bovine muscle-derived satellite cells (MDSCs) are important for animal growth. In this study, the effect of transcription elongation factor A3 (TCEA3) on bovine MDSC differentiation was investigated. Western blotting, immunofluorescence assays, and cytoplasmic and nuclear protein isolation and purification techniques were used to determine the expression pattern and protein localization of TCEA3 in bovine MDSCs during in vitro differentiation. TCEA3 expression was upregulated using the CRISPR/Cas9 technique to study its effects on MDSC differentiation in vitro. TCEA3 expression gradually increased during the in vitro differentiation of bovine MDSCs and peaked on the 5th day of differentiation. TCEA3 was mainly localized in the cytoplasmmore » of bovine MDSCs, and its expression was not detected in the nucleus. The level of TCEA3 was relatively higher in myotubes at a higher degree of differentiation than during early differentiation. After transfection with a TCEA3-activating plasmid vector (TCEA3 overexpression) for 24 h, the myotube fusion rate, number of myotubes, and expression levels of the muscle differentiation-related loci myogenin (MYOG) and myosin heavy chain 3 (MYH3) increased significantly during the in vitro differentiation of bovine MDSCs. After transfection with a TCEA3-inhibiting plasmid vector for 24 h, the myotube fusion rate, number of myotubes, and expression levels of MYOG and MYH3 decreased significantly. Our results indicated, for the first time, that TCEA3 promotes the differentiation of bovine MDSCs and have implications for meat production and animal rearing. - Highlights: • Muscle-derived satellite cell differentiation is promoted by TCEA3. • TCEA3 protein was localized in the cytoplasm, but not nuclei of bovine MDSCs. • TCEA3 levels increased as myotube differentiation increased. • TCEA3 affected myotube fusion, myotube counts, and MYOG and MYH3 levels.« less
Tarabra, Elena; An Lee, Ting-Wen; Zammit, Victor A.; Vatish, Manu; Yamada, Eijiro; Pessin, Jeffrey E.; Bastie, Claire C.
2017-01-01
Diet-induced obesity is associated with increased adipose tissue activated macrophages. Yet, how macrophages integrate fatty acid (FA) signals remains unclear. We previously demonstrated that Fyn deficiency (fynKO) protects against high fat diet-induced adipose tissue macrophage accumulation. Herein, we show that inflammatory markers and reactive oxygen species are not induced in fynKO bone marrow-derived macrophages exposed to the saturated FA palmitate, suggesting that Fyn regulates macrophage function in response to FA signals. Palmitate activates Fyn and re-localizes Fyn into the nucleus of RAW264.7, J774 and wild-type bone marrow-derived macrophages. Similarly, Fyn activity is increased in cells of adipose tissue stromal vascular fraction of high fat-fed control mice, with Fyn protein being located in the nucleus of these cells. We demonstrate that Fyn modulates palmitate-dependent oxidative stress in macrophages. Moreover, Fyn catalytic activity is necessary for its nuclear re-localization and downstream effects, as Fyn pharmacological inhibition abolishes palmitate-induced Fyn nuclear redistribution and palmitate-dependent increase of oxidative stress markers. Importantly, mono-or polyunsaturated FAs do not activate Fyn, and fail to re-localize Fyn to the nucleus. Together these data demonstrate that macrophages integrate nutritional FA signals via a differential activation of Fyn that distinguishes, at least partly, the effects of saturated versus unsaturated fats. PMID:29156823
Chen, Yu; Yu, Hongshi; Pask, Andrew J; Shaw, Geoff; Renfree, Marilyn B
2017-01-01
Sex determination and sexual differentiation pathways are highly conserved between marsupials and eutherians. There are 2 different pathways of prostaglandin D2 (PGD2) synthesis: prostaglandin D synthase (PTGDS) and haematopoietic prostaglandin D synthase (HPGDS). PGD2 regulates the subcellular localization of SOX9 during gonadal sexual differentiation. To investigate the function of PGD2 in the tammar gonad, we cultured undifferentiated male gonads in the presence of the HPGDS inhibitor HQL-79 and female gonads with exogenous PGD2 to mimic activation of the PTGDS-PGD2 pathway. Tammar PTGDS and HPGDS have only 50% similarity with mouse and human orthologues, but functional domains are conserved. The expression of SOX9 was unchanged by the treatments in cultured gonads, but its subcellular localization was markedly affected. SOX9 remained cytoplasmic in the Sertoli cells of testes treated with HQL-79. Treated testes developed a thickened ovary-like surface epithelium. In contrast, SOX9 became nuclear in the granulosa cells of developing ovaries treated with PGD2 and the surface epithelium was thin, as in testes. These results demonstrate that PGD2 regulates the subcellular localization of SOX9 and subsequent gonadal development in the developing marsupial gonads, as it does in mice, and that it must have been an ancestral mechanism. © 2017 S. Karger AG, Basel.
Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.
Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi
2012-03-28
Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.
Nuclear fusion during yeast mating occurs by a three-step pathway.
Melloy, Patricia; Shen, Shu; White, Erin; McIntosh, J Richard; Rose, Mark D
2007-11-19
In Saccharomyces cerevisiae, mating culminates in nuclear fusion to produce a diploid zygote. Two models for nuclear fusion have been proposed: a one-step model in which the outer and inner nuclear membranes and the spindle pole bodies (SPBs) fuse simultaneously and a three-step model in which the three events occur separately. To differentiate between these models, we used electron tomography and time-lapse light microscopy of early stage wild-type zygotes. We observe two distinct SPBs in approximately 80% of zygotes that contain fused nuclei, whereas we only see fused or partially fused SPBs in zygotes in which the site of nuclear envelope (NE) fusion is already dilated. This demonstrates that SPB fusion occurs after NE fusion. Time-lapse microscopy of zygotes containing fluorescent protein tags that localize to either the NE lumen or the nucleoplasm demonstrates that outer membrane fusion precedes inner membrane fusion. We conclude that nuclear fusion occurs by a three-step pathway.
Kircher, Stefan; Wellmer, Frank; Nick, Peter; Rügner, Alexander; Schäfer, Eberhard; Harter, Klaus
1999-01-01
In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor (CPRF) family from parsley (Petroselinum crispum). Here, we demonstrate that these CPRFs, which belong to the basic- region leucine-zipper (bZIP) domain-containing transcription factors, are differentially distributed within parsley cells, indicating different regulatory functions within the regulatory networks of the plant cell. In particular, we show by cell fractionation and immunolocalization approaches that CPRF2 is transported from the cytosol into the nucleus upon irradiation due to action of phytochrome photoreceptors. Two NH2-terminal domains responsible for cytoplasmic localization of CPRF2 in the dark were characterized by deletion analysis using a set of CPRF2-green fluorescent protein (GFP) gene fusion constructs transiently expressed in parsley protoplasts. We suggest that light-induced nuclear import of CPRF2 is an essential step in phytochrome signal transduction. PMID:9922448
Birdsong and the neural production of steroids
Remage-Healey, Luke; London, Sarah E.; Schinger, Barney A.
2009-01-01
The forebrain circuits involved in singing and audition (the ‘song system’) in songbirds exhibit a remarkable capacity to synthesize and respond to steroid hormones. This review considers how local brain steroid production impacts the development, sexual differentiation, and activity of song system circuitry. The songbird forebrain contains all of the enzymes necessary for the de novo synthesis of steroids - including neuroestrogens - from cholesterol. Steroid production enzymes are found in neuronal cell bodies, but they are also expressed in pre-synaptic terminals in the song system, indicating a novel mode of brain steroid delivery to local circuits. The song system expresses nuclear hormone receptors, consistent with local action of brain-derived steroids. Local steroid production also occurs in brain regions that do not express nuclear hormone receptors, suggesting a non-classical mode-of-action. Recent evidence indicates that local steroid levels can change rapidly within the forebrain, in a manner similar to traditional neuromodulators. Lastly, we consider growing evidence for modulatory interactions between brain-derived steroids and neurotransmitter/neuropeptide networks within the song system. Songbirds have therefore emerged as a rich and powerful model system to explore the neural and neurochemical regulation of social behavior. PMID:19589382
Immunohistochemical analysis of S6K1 and S6K2 localization in human breast tumors.
Filonenko, Valeriy V; Tytarenko, Ruslana; Azatjan, Sergey K; Savinska, Lilya O; Gaydar, Yuriy A; Gout, Ivan T; Usenko, Vasiliy S; Lyzogubov, Valeriy V
2004-12-01
To perform an immunohistochemical analysis of human breast adenomas and adenocarcinomas as well as normal breast tissues in respect of S6 ribosomal protein kinase (S6K) expression and localization in normal and transformed cells. The expression level and localization of S6K have been detected in formalin fixed, paraffin embedded sections of normal human breast tissues, adenomas and adenocarcinomas with different grade of differentiation. Immunohistochemical detection of S6K1 and S6K2 in normal human breast tissues and breast tumors were performed using specific monoclonal and polyclonal antibodies against S6K1 and S6K2 with following semiquantitative analysis. The increase of S6K content in the cytoplasm of epithelial cells in benign and malignant tumors has been detected. Nuclear accumulation of S6K1 and to a greater extend S6K2 have been found in breast adenocarcinomas. About 80% of breast adenocarcinomas cases revealed S6K2 nuclear staining comparing to normal tissues. In 31% of cases more then 50% of cancer cells had strong nuclear staining. Accumulation of S6K1 in the nucleus of neoplastic cells has been demonstrated in 25% of cases. Nuclear localization of S6K in the epithelial cells in normal breast tissues has not been detected. Immunohistochemical analysis of S6K1 and S6K2 expression in normal human breast tissues, benign and malignant breast tumors clearly indicates that both kinases are overexpressed in breast tumors. Semiquantitative analysis of peculiarities of S6K localization in normal tissues and tumors revealed that nucleoplasmic accumulation of S6K (especially S6K2) is a distinguishing feature of cancer cells.
NASA Astrophysics Data System (ADS)
Myers, S. C.; Ford, S. R.; Mellors, R. J.; Ichinose, G.
2017-12-01
We use constraints on the location of the January 6, 2016 DPRK announced nuclear test (2016_01) and differential travel times for Pn, Pg, and teleseismic P-waves to estimate the absolute locations of the 6 announced DPRK nuclear tests, as well as other nearby events. Absolute location constraints are based on the fit of commercial InSAR-derived ground displacement and predictions of elastic displacement from an isotropic source including topographic effects. Results show that the announced tests in January and September of 2016 are under the crest of highest local topography (Mt. Mantap), while the 2009 and 2013 events are south of the topographic crest at a similar contour in local topography. The first announced test in 2006 was located near the crest of a separate topographic high approximately 2.75 km east of the 2016_01 test. The September 3, 2017 event is approximately between the two 2016 tests, under the crest of the mountain ridge. Constraints from seismic data put the events within 1 km of the surface and depths may be inferred, with caution, by differencing the elevation of tunnel entrances and the topographic surface and accounting for the rise in a tunnel elevation from the entrance to facilitate drainage. Depths for the 2006_10, 2009_05, 2013_02, 2016_01, 2016_09, and 2017_09 tests are estimated to be 500 m, 530 m, 530 m, 740 m, 750 m, and 750 m, respectively. Other nearby events are considerably lower in magnitude, resulting in location estimates that are not as well constrained as the announced nuclear tests. Analysis of all events provides a bulletin of events that may occur in the future. Prepared by LLNL under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shim, Ki Shuk; Department of Neonatology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna; Rosner, Margit
Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could representmore » a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status.« less
The SMN Protein is a Key Regulator of Nuclear Architecture in Differentiating Neuroblastoma Cells
Clelland, Allyson K; Kinnear, Nicholas P; Oram, Lisa; Burza, Julie; Sleeman, Judith E
2009-01-01
The cell nucleus contains two closely related structures, Cajal bodies (CBs) and gems. CBs are the first site of accumulation of newly assembled splicing snRNPs (small nuclear ribonucleoproteins) following their import into the nucleus, before they form their steady-state localization in nuclear splicing speckles. Gems are the nuclear site of accumulation of survival motor neurons (SMNs), an insufficiency of which leads to the inherited neurodegenerative condition, spinal muscular atrophy (SMA). SMN is required in the cytoplasm for the addition of core, Sm, proteins to new snRNPs and is believed to accompany snRNPs to the CB. In most cell lines, gems are indistinguishable from CBs, although the structures are often separate in vivo. The relationship between CBs and gems is not fully understood, but there is evidence that symmetrical dimethylation of arginine residues in the CB protein coilin brings them together in HeLa cells. During neuronal differentiation of the human neuroblastoma cell line SH-SY5Y, CBs and gems increase their colocalization, mimicking changes seen during foetal development. This does not result from alterations in the methylation of coilin, but from increased levels of SMN. Expression of exogenous SMN results in an increased efficiency of snRNP transport to nuclear speckles. This suggests different mechanisms are present in different cell types and in vivo that may be significant for the tissue-specific pathology of SMA. PMID:19735367
Phylogeography of the Lutzomyia gomezi (Diptera: Phlebotominae) on the Panama Isthmus
2014-01-01
Background Lutzomyia gomezi (Nitzulescu, 1931) is one of the main Leishmania (Vianna) panamensis vectors in Panama, and despite its medical significance, there are no population genetic studies regarding this species. In this study, we used the sequences of the mitochondrial gene cytochrome b/start of NADH1 and the nuclear elongation gene α-1 in order to analyze genetic variation and phylogeographic structure of the Lu. gomezi populations. Methods A total of 86 Lu. gomezi individuals were captured in 38 locations where cutaneous leishmaniasis occurred. DNA was extracted with phenol/chloroform methods and amplification of genes was performed using PCR primers for mitochondrial and nuclear markers. Results We found a total of 37 and 26 haplotypes of mitochondrial and nuclear genes, high haplotype diversity (h) for all three populations were detected with both molecular markers. Nucleotide diversity (π) was estimated to be high for all three populations with the mitochondrial marker, which was opposite to the estimate with the nuclear marker. In the AMOVA Φst recorded moderate (mitochondrial) and small (nuclear) population structure with statistical significance among populations. The analysis of the fixation index (Fst) used to measure the differentiation of populations showed that with the exception of the population located in the region of Bocas del Toro, the other populations presented with minor genetic differentiation. The median-Joining network of the mitochondrial marker reveled three clusters and recorded four haplotypes exclusively of localities sampled from Western Panama, demonstrating strong divergence. We found demographic population expansion with Fu´s Fs neutrality test. In the analysis mismatch distribution was observed as a bimodal curve. Conclusion Lu. gomezi is a species with higher genetic pool or variability and mild population structure, due to possible capacity migration and local adaptation to environmental changes or colonization potential. Thus, knowledge of the genetic population and evolutionary history is useful to understand the implications of different population genetic structures for cutaneous leishmaniasis epidemiology. PMID:24398187
Nuclear Mechanics and Stem Cell Differentiation.
Mao, Xinjian; Gavara, Nuria; Song, Guanbin
2015-12-01
Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.
Toneatto, Judith; Charó, Nancy L; Susperreguy, Sebastián; Piwien-Pilipuk, Graciela
2013-01-01
Glucocorticoids play an important role in adipogenesis via the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90-Hsp70 and a high molecular weight immunophilin FKBP51 or FKBP52. We have found that FKBP51 level of expression progressively increases, FKBP52 decreases, whereas Hsp90, Hsp70, and p23 remain unchanged when 3T3-L1 preadipocytes differentiate. Interestingly, FKBP51 translocates from mitochondria to the nucleus at the onset of adipogenesis. FKBP51 transiently concentrates in the nuclear lamina, at a time that this nuclear compartment undergoes its reorganization. FKBP51 nuclear localization is transient, after 48 h it cycles back to mitochondria. We found that the dynamic FKBP51 mitochondrial-nuclear shuttling is regulated by glucocorticoids and mainly on cAMP-PKA signaling since PKA inhibition by myristoilated-PKI, abrogated FKBP51 nuclear translocation induced by 3-isobutyl-1-methylxanthine (IBMX). It has been reported that PKA interacts with GR in a ligand dependent manner potentiating its transcriptional capacity. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced nuclear translocation of FKBP51, therefore PKA may exert a dual role in the control of GR. In summary, the presence of FKBP51 in the nucleus may be critical for GR transcriptional control, and possibly for the control of other transcription factors that are not members of the nuclear receptor family but are regulated by PKA signaling pathway, when transcription has to be strictly controlled to succeed in the acquisition of the adipocyte phenotype.
Soni, Shivani; Bala, Shashi; Kumar, Ajay; Hanspal, Manjit
2007-01-01
Erythroblast macrophage protein (Emp) mediates the attachment of erythroid cells to macrophages and is required for normal differentiation of both cell lineages. In erythroid cells, Emp is believed to be involved in nuclear extrusion, however, its role in macrophage differentiation is unknown. Information on the changes in the expression level and subcellular distribution of Emp in differentiating macrophages is essential for understanding the function of Emp. Macrophages of varying maturity were examined by immunofluorescence microscopy and biochemical methods. Our data show that Emp is expressed in all stages of maturation, but its localization pattern changes dramatically during maturation: in immature macrophages, a substantial fraction of Emp is associated with the nuclear matrix, whereas in more mature cells, Emp is expressed largely at cell surface. Pulse-chase experiments show that nascent Emp migrates intracellularly from the cytoplasm to the plasma membrane more efficiently in mature macrophages than in immature cells. Incubation of erythroid cells with macrophages in culture shows that erythroid cells attach to mature macrophages but not to immature macrophage precursors. Together, our data show that the temporal and spatial expression of Emp correlates with its role in erythroblastic island formation and suggest that Emp may be involved in multiple cellular functions.
Soni, Shivani; Bala, Shashi; Kumar, Ajay; Hanspal, Manjit
2007-01-01
Erythroblast macrophage protein (Emp), mediates the attachment of erythroid cells to macrophages, and is required for normal differentiation of both cell lineages. In erythroid cells Emp is believed to be involved in nuclear extrusion however, its role in macrophage differentiation is unknown. Information on the changes in the expression level and subcellular distribution of Emp in differentiating macrophages is essential for understanding the function of Emp. Macrophages of varying maturity were examined by immunofluorescence microscopy and biochemical methods. Our data shows that Emp is expressed in all stages of maturation, but its localization pattern changes dramatically during maturation: in immature macrophages, a substantial fraction of Emp is associated with the nuclear matrix, whereas in more mature cells, Emp is expressed largely at cell surface. Pulse-chase experiments show that nascent Emp migrates intracellularly from the cytoplasm to the plasma membrane more efficiently in mature macrophages than in immature cells. Incubation of erythroid cells with macrophages in culture show that erythroid cells attach to mature macrophages but not to immature macrophage precursors. Together, our data shows that the temporal and spatial expression of Emp correlates with its role in erythroblastic island formation, and suggests that Emp may be involved in multiple cellular functions. PMID:17071116
Port, Sarah A; Mendes, Adélia; Valkova, Christina; Spillner, Christiane; Fahrenkrog, Birthe; Kaether, Christoph; Kehlenbach, Ralph H
2016-10-28
Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A) + RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A) + RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Port, Sarah A.; Mendes, Adélia; Valkova, Christina; Spillner, Christiane; Fahrenkrog, Birthe; Kaether, Christoph; Kehlenbach, Ralph H.
2016-01-01
Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A)+ RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A)+ RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors. PMID:27613868
Localization of the Norrie disease gene mRNA by in situ hybridization.
Hartzer, M K; Cheng, M; Liu, X; Shastry, B S
1999-07-15
Norrie disease is a rare X-linked recessive neurodevelopmental disorder. The affected males manifest congenital blindness, which is often associated with hearing loss, mental retardation and psychiatric problems. Genetic linkage studies have localized the gene to the short arm of the X-chromosome and the gene has been isolated recently. The encoded protein is a member of the superfamily of growth factors containing a cystine knot motif and may be involved in cell adhesion and neurodevelopment. Molecular genetic analysis revealed a large number of missense, nonsense, deletion, and splice-site mutations among Norrie patients. In order to further determine the role of the Norrie disease gene, we studied the distribution pattern of its mRNA in the retina and in brain by in situ hybridization. The results show abundant hybridization signals in outer nuclear, inner nuclear, and ganglion cell layers of the retina in all three species (mice, rabbit, and human) examined. There was no significant expression in the vitreous body, lens, and rod outer segment. High expression levels were also observed in the cerebellar granular layer, hippocampus, olfactory bulb, cortex, and epithelium of the rabbit brain. These data suggest that the Norrie disease gene could play a critical role in the differentiation or maintenance of the differentiated state of the retina.
Bach2 is involved in neuronal differentiation of N1E-115 neuroblastoma cells.
Shim, Ki Shuk; Rosner, Margit; Freilinger, Angelika; Lubec, Gert; Hengstschläger, Markus
2006-07-15
Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could represent a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status.
Imai, Kaoru S; Satoh, Nori; Satou, Yutaka
2002-04-01
In early Ciona savignyi embryos, nuclear localization of beta-catenin is the first step of endodermal cell specification, and triggers the activation of various target genes. A cDNA for Cs-FGF4/6/9, a gene activated downstream of beta-catenin signaling, was isolated and shown to encode an FGF protein with features of both FGF4/6 and FGF9/20. The early embryonic expression of Cs-FGF4/6/9 was transient and the transcript was seen in endodermal cells at the 16- and 32-cell stages, in notochord and muscle cells at the 64-cell stage, and in nerve cord and muscle cells at the 110-cell stage; the gene was then expressed again in cells of the nervous system after neurulation. When the gene function was suppressed with a specific antisense morpholino oligo, the differentiation of mesenchyme cells was completely blocked, and the fate of presumptive mesenchyme cells appeared to change into that of muscle cells. The inhibition of mesenchyme differentiation was abrogated by coinjection of the morpholino oligo and synthetic Cs-FGF4/6/9 mRNA. Downregulation of beta-catenin nuclear localization resulted in the absence of mesenchyme cell differentiation due to failure of the formation of signal-producing endodermal cells. Injection of synthetic Cs-FGF4/6/9 mRNA in beta-catenin-downregulated embryos evoked mesenchyme cell differentiation. These results strongly suggest that Cs-FGF4/6/9 produced by endodermal cells acts an inductive signal for the differentiation of mesenchyme cells. On the other hand, the role of Cs-FGF4/6/9 in the induction of notochord cells is partial; the initial process of the induction was inhibited by Cs-FGF4/6/9 morpholino oligo, but notochord-specific genes were expressed later to form a partial notochord.
Wierk, Jannika Katharina; Langbehn, Annette; Kamper, Maria; Richter, Stefanie; Burda, Paul-Christian; Heussler, Volker Theo; Deschermeier, Christina
2013-01-01
Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite’s nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization. PMID:23544094
Ivanova, Iordanka A; Vespa, Alisa; Dagnino, Lina
2007-09-01
E2F1 is a transcription factor central for cell survival, proliferation, and repair following genomic insult. Depending on the cell type and conditions, E2F1 can induce apoptosis in transformed cells, behaving as a tumour suppressor, or impart growth advantages favouring tumour formation. The pleiotropic functions of E2F1 are a likely consequence of its ability to transcriptionally control a wide variety of target genes, and require tight regulation of its activity at multiple levels. Although sequestration of proteins to particular cellular compartments is a well-established regulatory mechanism, virtually nothing is known about its contribution to modulation of E2F1 target gene expression. We have examined the subcellular trafficking of E2F1 and, contrary to the widely held notion that this factor is constitutively nuclear, we now demonstrate that it is subjected to continuous nucleocytoplasmic shuttling. We have also defined two nuclear localization domains and a nuclear export region, which mediates CRM1-dependent transit out of the nucleus. The predominant subcellular location of E2F1 is likely determined by the balance between the activity of nuclear import and export domains, and can be modulated by differentiation stimuli in epidermal cells. Thus, we have identified a hitherto unrecognized mechanism to control E2F1 function through modulation of its subcellular localization.
Nuclear Function of Smad7 Promotes Myogenesis▿
Miyake, Tetsuaki; Alli, Nezeka S.; McDermott, John C.
2010-01-01
In the “canonical” view of transforming growth factor β (TGF-β) signaling, Smad7 plays an inhibitory role. While Smad7 represses Smad3 activation by TGF-β, it does not reverse the inhibitory effect of TGF-β on myogenesis, suggesting a different function in myogenic cells. We previously reported a promyogenic role of Smad7 mediated by an interaction with MyoD. Based on this association, we hypothesized a possible nuclear function of Smad7 independent of its role at the level of the receptor. We therefore engineered a chimera of Smad7 with a nuclear localization signal (NLS), which serves to prevent and therefore bypass binding to the TGF-β receptor while concomitantly constitutively localizing Smad7 to the nucleus. This Smad7-NLS did not repress Smad3 activation by TGF-β but did retain its ability to enhance myogenic gene activation and phenotypic myogenesis, indicating that the nuclear, receptor-independent function of Smad7 is sufficient to promote myogenesis. Furthermore, Smad7 physically interacts with MyoD and antagonizes the repressive effects of active MEK on MyoD. Reporter and myogenic conversion assays indicate a pivotal regulation of MyoD transcriptional properties by the balance between Smad7 and active MEK. Thus, Smad7 has a nuclear coactivator function that is independent of TGF-β signaling and necessary to promote myogenic differentiation. PMID:19995910
Ziat, Esma; Mamchaoui, Kamel; Beuvin, Maud; Nelson, Isabelle; Azibani, Feriel; Spuler, Simone; Bonne, Gisèle; Bertrand, Anne T
2016-11-29
Emery-Dreifuss muscular dystrophy (EDMD) is associated with mutations in EMD and LMNA genes, encoding for the nuclear envelope proteins emerin and lamin A/C, indicating that EDMD is a nuclear envelope disease. We recently reported mutations in FHL1 gene in X-linked EDMD. FHL1 encodes FHL1A, and the two minor isoforms FHL1B and FHL1C. So far, none have been described at the nuclear envelope. To gain insight into the pathophysiology of EDMD, we focused our attention on the poorly characterized FHL1B isoform. The amount and the localisation of FHL1B were evaluated in control and diseased human primary myoblasts using immunofluorescence and western blotting. We found that in addition to a cytoplasmic localization, this isoform strongly accumulated at the nuclear envelope of primary human myoblasts, like but independently of lamin A/C and emerin. During myoblast differentiation, we observed a major reduction of FHL1B protein expression, especially in the nucleus. Interestingly, we found elevated FHL1B expression level in myoblasts from an FHL1-related EDMD patient where the FHL1 mutation only affects FHL1A, as well as in myoblasts from an LMNA-related EDMD patient. Altogether, the specific localization of FHL1B and its modulation in disease-patient's myoblasts confirmed FHL1-related EDMD as a nuclear envelope disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jokilehto, Terhi; Turku Graduate School of Biomedical Sciences, Turku; Hoegel, Heidi
2010-04-15
Cellular oxygen tension is sensed by a family of prolyl hydroxylases (PHD1-3) that regulate the degradation of hypoxia-inducible factors (HIF-1{alpha} and -2{alpha}). The PHD2 isoform is considered as the main downregulator of HIF in normoxia. Our previous results have shown that nuclear translocation of PHD2 associates with poorly differentiated tumor phenotype implying that nuclear PHD2 expression is advantageous for tumor growth. Here we show that a pool of PHD2 is shuttled between the nucleus and the cytoplasm. In line with this, accumulation of wild type PHD2 in the nucleus was detected in human colon adenocarcinomas and in cultured carcinoma cells.more » The PHD2 isoforms showing high nuclear expression increased anchorage-independent carcinoma cell growth. However, retention of PHD2 in the cytoplasm inhibited the anchorage-independent cell growth. A region that inhibits the nuclear localization of PHD2 was identified and the deletion of the region promoted anchorage-independent growth of carcinoma cells. Finally, the cytoplasmic PHD2, as compared with the nuclear PHD2, less efficiently downregulated HIF expression. Forced HIF-1{alpha} or -2{alpha} expression decreased and attenuation of HIF expression increased the anchorage-independent cell growth. However, hydroxylase-inactivating mutations in PHD2 had no effect on cell growth. The data imply that nuclear PHD2 localization promotes malignant cancer phenotype.« less
Differential effects of phthalates on the testis and the liver.
Bhattacharya, Nandini; Dufour, Jannette M; Vo, My-Nuong; Okita, Janice; Okita, Richard; Kim, Kwan Hee
2005-03-01
Phthalates have been shown to elicit contrasting effects on the testis and the liver, causing testicular degeneration and promoting abnormal hepatocyte proliferation and carcinogenesis. In the present study, we compared the effects of phthalates on testicular and liver cells to better understand the mechanisms by which phthalates cause testicular degeneration. In vivo treatment of rats with di-(2-ethylhexyl) phthalate (DEHP) caused a threefold increase of germ cell apoptosis in the testis, whereas apoptosis was not changed significantly in livers from the same animals. Western blot analyses revealed that peroxisome proliferator-activated receptor (PPAR) alpha is equally abundant in the liver and the testis, whereas PPAR gamma and retinoic acid receptor (RAR) alpha are expressed more in the testis. To determine whether the principal metabolite of DEHP, mono-(2-ethylhexyl) phthalate (MEHP), or a strong peroxisome proliferator, 4-chloro-6(2,3-xylindino)-2-pyrimidinylthioacetic acid (Wy-14,643), have a differential effect in Sertoli and liver cells by altering the function of RAR alpha and PPARs, their nuclear trafficking patterns were compared in Sertoli and liver cells after treatment. Both MEHP and Wy-14,643 increased the nuclear localization of PPAR alpha and PPAR gamma in Sertoli cells, but they decreased the nuclear localization of RAR alpha, as previously shown. Both PPAR alpha and PPAR gamma were in the nucleus and cytoplasm of liver cells, but RAR alpha was predominant in the cytoplasm, regardless of the treatment. At the molecular level, MEHP and Wy-14,643 reduced the amount of phosphorylated mitogen-activated protein kinase (activated MAPK) in Sertoli cells. In comparison, both MEHP and Wy-14,643 increased phosphorylated MAPK in liver cells. These results suggest that phthalates may cause contrasting effects on the testis and the liver by differential activation of the MAPK pathway, RAR alpha, PPAR alpha, and PPAR gamma in these organs.
Moura, Andre E; Kenny, John G; Chaudhuri, Roy; Hughes, Margaret A; J Welch, Andreanna; Reisinger, Ryan R; de Bruyn, P J Nico; Dahlheim, Marilyn E; Hall, Neil; Hoelzel, A Rus
2014-11-01
The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift. © 2014 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Moura, Andre E; Kenny, John G; Chaudhuri, Roy; Hughes, Margaret A; J Welch, Andreanna; Reisinger, Ryan R; de Bruyn, P J Nico; Dahlheim, Marilyn E; Hall, Neil; Hoelzel, A Rus
2014-01-01
The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift. PMID:25244680
Ugarte, Fernando; Sousae, Rebekah; Cinquin, Bertrand; ...
2015-10-17
Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem cells (HSCs), and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increasedmore » cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Lastly, our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ugarte, Fernando; Sousae, Rebekah; Cinquin, Bertrand
Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem cells (HSCs), and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increasedmore » cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Lastly, our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation.« less
Wang, Ya-Xuan; Gao, Ying-Lian; Liu, Jin-Xing; Kong, Xiang-Zhen; Li, Hai-Jun
2017-09-01
Identifying differentially expressed genes from the thousands of genes is a challenging task. Robust principal component analysis (RPCA) is an efficient method in the identification of differentially expressed genes. RPCA method uses nuclear norm to approximate the rank function. However, theoretical studies showed that the nuclear norm minimizes all singular values, so it may not be the best solution to approximate the rank function. The truncated nuclear norm is defined as the sum of some smaller singular values, which may achieve a better approximation of the rank function than nuclear norm. In this paper, a novel method is proposed by replacing nuclear norm of RPCA with the truncated nuclear norm, which is named robust principal component analysis regularized by truncated nuclear norm (TRPCA). The method decomposes the observation matrix of genomic data into a low-rank matrix and a sparse matrix. Because the significant genes can be considered as sparse signals, the differentially expressed genes are viewed as the sparse perturbation signals. Thus, the differentially expressed genes can be identified according to the sparse matrix. The experimental results on The Cancer Genome Atlas data illustrate that the TRPCA method outperforms other state-of-the-art methods in the identification of differentially expressed genes.
Ishida, Yasuko; Gugala, Natalie A; Georgiadis, Nicholas J; Roca, Alfred L
2018-05-01
The past processes that have shaped geographic patterns of genetic diversity may be difficult to infer from current patterns. However, in species with sex differences in dispersal, differing phylogeographic patterns between mitochondrial (mt) and nuclear (nu) DNA may provide contrasting insights into past events. Forest elephants ( Loxodonta cyclotis ) were impacted by climate and habitat change during the Pleistocene, which likely shaped phylogeographic patterns in mitochondrial (mt) DNA that have persisted due to limited female dispersal. By contrast, the nuclear (nu) DNA phylogeography of forest elephants in Central Africa has not been determined. We therefore examined the population structure of Central African forest elephants by genotyping 94 individuals from six localities at 21 microsatellite loci. Between forest elephants in western and eastern Congolian forests, there was only modest genetic differentiation, a pattern highly discordant with that of mtDNA. Nuclear genetic patterns are consistent with isolation by distance. Alternatively, male-mediated gene flow may have reduced the previous regional differentiation in Central Africa suggested by mtDNA patterns, which likely reflect forest fragmentation during the Pleistocene. In species like elephants, male-mediated gene flow erases the nuclear genetic signatures of past climate and habitat changes, but these continue to persist as patterns in mtDNA because females do not disperse. Conservation implications of these results are discussed.
Iyer, Lakshmi Rani; Singh, Nishant; Verma, Anil Kumar; Paul, Jaishree
2014-01-01
Entamoeba histolytica infections are endemic in the Indian subcontinent. Five to eight percent of urban population residing under poor sanitary conditions suffers from Entamoeba infections. Metronidazole is the most widely prescribed drug used for amoebiasis. In order to understand the impact of metronidazole stress on the parasite, we evaluated the expression of two antioxidant enzymes, peroxiredoxin and FeSOD, in Entamoeba histolytica isolates during metronidazole stress. The results reveal that, under metronidazole stress, the mRNA expression levels of these enzymes did not undergo any significant change. Interestingly, immunolocalization studies with antibodies targeting peroxiredoxin indicate differential localization of the protein in the cell during metronidazole stress. In normal conditions, all the Entamoeba isolates exhibit presence of peroxiredoxin in the nucleus as well as in the membrane; however with metronidazole stress the protein localized mostly to the membrane. The change in the localization pattern was more pronounced when the cells were subjected to short term metronidazole stress compared to cells adapted to metronidazole. The protein localization to the cell membrane could be the stress response mechanism in these isolates. Colocalization pattern of peroxiredoxin with CaBp1, a cytosolic protein, revealed that the membrane and nuclear localization was specific to peroxiredoxin during metronidazole stress. PMID:25013795
Tate, Jennifer J.; Rai, Rajendra; Cooper, Terrance G.
2015-01-01
A leucine, leucyl-tRNA synthetase–dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This component is highly sensitive to the function of the rare glutamine tRNACUG, which cannot be replaced by the predominant glutamine tRNACAA. Our observations also demonstrate distinct mechanistic differences between the responses of Gln3 and Gat1 to rapamycin inhibition of TorC1 and nitrogen starvation. PMID:25527290
Hossain, Md Munir; Tesfaye, Dawit; Salilew-Wondim, Dessie; Held, Eva; Pröll, Maren J; Rings, Franca; Kirfel, Gregor; Looft, Christian; Tholen, Ernst; Uddin, Jasim; Schellander, Karl; Hoelker, Michael
2014-01-18
Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer.
2014-01-01
Background Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. Results This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. Conclusion These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer. PMID:24438674
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wenqing; Beilhartz, Greg; Roy, Yvette
2010-04-15
1,25 Dihydroxyvitamin D{sub 3} (1,25D{sub 3}) primes NB4 promyelocytic leukemia cells to differentiate along the monocyte/macrophage lineage through a non-genomic mechanism. Here we show that NB4 cells express high levels of the recently identified membrane receptor for 1,25D{sub 3}, which is a distinct gene product from the classical nuclear vitamin D receptor. This 57 kDa protein, named 1,25D{sub 3}-MARRS (Membrane Activated Rapid Response to Steroids)/ERp57/PIA3 appears to associate in a complex with the transcription factor, nuclear factor kappa B (NF{kappa}B). In unstimulated cells, 1,25D{sub 3}-MARRS can be co-immunoprecipitated with antibodies directed at NF{kappa}B, and NF{kappa}B is co-precipitated when antibodies againstmore » 1,25D{sub 3}-MARRS or ERp57 are used. Confocal microscopy and subcellular fractionation studies demonstrate that both 1,25D{sub 3}-MARRS and NF{kappa}B begin translocating to the nucleus within minutes of co-stimulation with 1,25D{sub 3} and phorbol ester. The predominant nuclear localization of both proteins precedes the expression of the monocyte/macrophage phenotype and suggests that this event may be critical to the differentiation pathway. This suggests a role for 1,25D{sub 3}-MARRS in the nucleus as a regulator of gene expression. Here it may also regulate the activity of NF{kappa}B and other factors with which it may be interacting.« less
Relativistic fluid dynamics with spin
NASA Astrophysics Data System (ADS)
Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico
2018-04-01
Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Lim, Min; Ahn, Jiyeon; Youn Yi, Jae
Fibrosis is one of the most serious side effects in cancer patients undergoing radio-/ chemo-therapy, especially of the lung, pancreas or kidney. Based on our previous finding that galectin-1 (Gal-1) was significantly increased during radiation-induced lung fibrosis in areas of pulmonary fibrosis, we herein clarified the roles and action mechanisms of Gal-1 during fibrosis. Our results revealed that treatment with TGF-β1 induced the differentiation of fibroblast cell lines (NIH3T3 and IMR-90) to myofibroblasts, as evidenced by increased expression of the fibrotic markers smooth muscle actin-alpha (α-SMA), fibronectin, and collagen (Col-1). We also observed marked and time-dependent increases in the expressionmore » level and nuclear accumulation of Gal-1. The TGF-β1-induced increases in Gal-1, α-SMA and Col-1 were decreased by inhibitors of PI3-kinase and p38 MAPK, but not ERK. Gal-1 knockdown using shRNA decreased the phosphorylation and nuclear retention of Smad2, preventing the differentiation of fibroblasts. Gal-1 interacted with Smad2 and phosphorylated Smad2, which may accelerate fibrotic processes. In addition, up-regulation of Gal-1 expression was demonstrated in a bleomycin (BLM)-induced mouse model of lung fibrosis in vivo. Together, our results indicate that Gal-1 may promote the TGF-β1-induced differentiation of fibroblasts by sustaining nuclear localization of Smad2, and could be a potential target for the treatment of pulmonary fibrotic diseases. - Highlights: • Galectin-1 (Gal-1) promotes TGF-β-induced fibroblast differentiation via activation of PI3-kinase and p38 MAPK. • Gal-1 binds to Smad2 and phosphorylated Smad2. • GAl-1 may be a new therapeutic target for attenuating lung fibrotic process.« less
Burns, Mercedes; Hedin, Marshal; Tsurusaki, Nobuo
2018-01-01
Naturally occurring population variation in reproductive mode presents an opportunity for researchers to test hypotheses regarding the evolution of sex. Asexual reproduction frequently assumes a geographical pattern, in which parthenogenesis-dominated populations are more broadly dispersed than their sexual conspecifics. We evaluate the geographical distribution of genomic signatures associated with parthenogenesis using nuclear and mitochondrial DNA sequence data from two Japanese harvestman sister taxa, Leiobunum manubriatum and Leiobunum globosum . Asexual reproduction is putatively facultative in these species, and female-biased localities are common in habitat margins. Past karyotypic and current cytometric work indicates L. globosum is entirely tetraploid, while L. manubriatum may be either diploid or tetraploid. We estimated species phylogeny, genetic differentiation, diversity, and mitonuclear discordance in females collected across the species range in order to identify range expansion toward marginal habitat, potential for hybrid origin, and persistence of asexual lineages. Our results point to northward expansion of a tetraploid ancestor of L. manubriatum and L. globosum , coupled with support for greater male gene flow in southern L. manubriatum localities. Specimens from localities in the Tohoku and Hokkaido regions were indistinct, particularly those of L. globosum , potentially due to little mitochondrial differentiation or haplotypic variation. Although L. manubriatum overlaps with L. globosum across its entire range, L. globosum was reconstructed as monophyletic with strong support using mtDNA, and marginal support with nuclear loci. Ultimately, we find evidence for continued sexual reproduction in both species and describe opportunities to clarify the rate and mechanism of parthenogenesis.
Stachecka, Joanna; Walczak, Agnieszka; Kociucka, Beata; Ruszczycki, Błażej; Wilczyński, Grzegorz; Szczerbal, Izabela
2018-02-01
Differentiation of progenitor cells into adipocytes is accompanied by remarkable changes in cell morphology, cytoskeletal organization, and gene expression profile. Mature adipocytes are filled with a large lipid droplet and the nucleus tends to move to the cell periphery. It was hypothesized that the differentiation process is also associated with changes of nuclear organization. The aim of this study was to determine the number and distribution of selected components of nuclear architecture during porcine in vitro adipogenesis. The pig is an important animal model sharing many similarities to humans at the anatomical, physiological, and genetic levels and has been recognized as a good model for human obesity. Thus, understanding how cellular structures important for fundamental nuclear processes may be altered during adipocyte differentiation is of great importance. Mesenchymal stem cells (MSCs) were derived from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) and were cultured for 7 days in the adipogenic medium. A variable differentiation potential of these cell populations towards adipogenic lineage was observed, and for further study, a comparative characteristic of the nuclear organization in BM-MSCs and AD-MSCs was performed. Nuclear substructures were visualized by indirect immunofluorescence (nucleoli, nuclear speckles, PML bodies, lamins, and HP1α) or fluorescence in situ hybridization (telomeres) on fixed cells at 0, 3, 5, and 7 days of differentiation. Comprehensive characterization of these structures, in terms of their number, size, dynamics, and arrangement in three-dimensional space of the nucleus, was performed. It was found that during differentiation of porcine MSCs into adipocytes, changes of nuclear organization occurred and concerned: (1) the nuclear size and shape; (2) reduced lamin A/C expression; and (3) reorganization of chromocenters. Other elements of nuclear architecture such as nucleoli, SC-35 nuclear speckles, and telomeres showed no significant changes when compared to undifferentiated and mature fat cells. In addition, the presence of a low number of PML bodies was characteristic of the studied porcine mesenchymal stem cell adipogenesis system. It has been shown that the arrangement of selected components of nuclear architecture was very similar in MSCs derived from different sources, whereas adipocyte differentiation involves nuclear reorganization. This study adds new data on nuclear organization during adipogenesis using the pig as a model organism.
Forging the link between nuclear reactions and nuclear structure.
Mahzoon, M H; Charity, R J; Dickhoff, W H; Dussan, H; Waldecker, S J
2014-04-25
A comprehensive description of all single-particle properties associated with the nucleus Ca40 is generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials yields equivalent elastic differential cross sections as compared to local versions but changes the absorption profile as a function of angular momentum suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential to allow for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e'p) and (p, 2p) reactions are correctly incorporated, including the energy distribution of about 10% high-momentum nucleons, as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide a substantial contribution to the energy of the ground state, indicating a residual attractive contribution from higher-body interactions for Ca40 of about 0.64 MeV/A.
Samartzis, Eleftherios P; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick
2014-01-01
The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be needed to assess whether the expression status of GPER in breast carcinomas should be routinely observed by clinicians, for instance, before implementing endocrine breast cancer treatment.
Samartzis, Eleftherios P.; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick
2014-01-01
Introduction The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. Methods The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. Results A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Conclusion Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be needed to assess whether the expression status of GPER in breast carcinomas should be routinely observed by clinicians, for instance, before implementing endocrine breast cancer treatment. PMID:24421881
Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling.
Putker, Marrit; Vos, Harmjan R; van Dorenmalen, Kim; de Ruiter, Hesther; Duran, Ana G; Snel, Berend; Burgering, Boudewijn M T; Vermeulen, Michiel; Dansen, Tobias B
2015-01-01
Reduction-oxidation (redox) signaling, the translation of an oxidative intracellular environment into a cellular response, is mediated by the reversible oxidation of specific cysteine thiols. The latter can result in disulfide formation between protein hetero- or homodimers that alter protein function until the local cellular redox environment has returned to the basal state. We have previously shown that this mechanism promotes the nuclear localization and activity of the Forkhead Box O4 (FOXO4) transcription factor. In this study, we sought to investigate whether redox signaling differentially controls the human FOXO3 and FOXO4 paralogs. We present evidence that FOXO3 and FOXO4 have acquired paralog-specific cysteines throughout vertebrate evolution. Using a proteome-wide screen, we identified previously unknown redox-dependent FOXO3 interaction partners. The nuclear import receptors Importin-7 (IPO7) and Importin-8 (IPO8) form a disulfide-dependent heterodimer with FOXO3, which is required for its reactive oxygen species-induced nuclear translocation. FOXO4 does not interact with IPO7 or IPO8. IPO7 and IPO8 control the nuclear import of FOXO3, but not FOXO4, in a redox-sensitive and disulfide-dependent manner. Our findings suggest that evolutionary acquisition of cysteines has contributed to regulatory divergence of FOXO paralogs, and that phylogenetic analysis can aid in the identification of cysteines involved in redox signaling.
Yu, Jiang Hong; Nakajima, Ayako; Nakajima, Hiroshi; Diller, Lisa R; Bloch, Kenneth D; Bloch, Donald B
2004-02-01
Neuroblastoma is the most common solid tumor of infancy and is believed to result from impaired differentiation of neuronal crest embryonal cells. The promyelocytic leukemia protein (PML)-nuclear body is a cellular structure that is disrupted during the pathogenesis of acute promyelocytic leukemia, a disease characterized by impaired myeloid cell differentiation. During the course of studies to examine the composition and function of PML-nuclear bodies, we observed that the human neuroblastoma cell line SH-SY5Y lacked these structures and that the absence of PML-nuclear bodies was a feature of N- and I-type, but not S-type, neuroblastoma cell lines. Induction of neuroblastoma cell differentiation with 5-bromo-2'deoxyuridine, all-trans-retinoic acid, or IFN-gamma induced PML-nuclear body formation. PML-nuclear bodies were not detected in tissue sections prepared from undifferentiated neuroblastomas but were present in neuroblasts in differentiating tumors. Expression of PML in neuroblastoma cells restored PML-nuclear bodies, enhanced responsiveness to all-trans-retinoic acid, and induced cellular differentiation. Pharmacological therapies that increase PML expression may prove to be important components of combined modalities for the treatment of neuroblastoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambier, Linda; Pomies, Pascal, E-mail: pascal.pomies@crbm.cnrs.fr
2011-06-17
Highlights: {yields} The cytoskeleton-associated protein, smALP, is expressed in differentiated skeletal muscle. {yields} smALP is translocated from the cytoplasm to the nucleus of C2C12 myoblasts upon induction of myogenesis. {yields} The differentiation-dependent nuclear translocation of smALP occurs in parallel with the nuclear accumulation of myogenin. {yields} The LIM domain of smALP is essential for the nuclear accumulation of the protein. {yields} smALP might act in the nucleus to control some critical aspect of the muscle differentiation process. -- Abstract: The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletalmore » muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein.« less
Liu, Ling; Liu, Xu; Ren, Xudong; Tian, Yue; Chen, Zhenyu; Xu, Xiangjie; Du, Yanhua; Jiang, Cizhong; Fang, Yujiang; Liu, Zhongliang; Fan, Beibei; Zhang, Quanbin; Jin, Guohua; Yang, Xiao; Zhang, Xiaoqing
2016-01-01
The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events. PMID:26905010
Liu, Ling; Liu, Xu; Ren, Xudong; Tian, Yue; Chen, Zhenyu; Xu, Xiangjie; Du, Yanhua; Jiang, Cizhong; Fang, Yujiang; Liu, Zhongliang; Fan, Beibei; Zhang, Quanbin; Jin, Guohua; Yang, Xiao; Zhang, Xiaoqing
2016-02-24
The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events.
Cytoplasmic YY1 Is Associated with Increased Smooth Muscle-Specific Gene Expression
Favot, Laure; Hall, Susan M.; Haworth, Sheila G.; Kemp, Paul R.
2005-01-01
Immediately after birth the adluminal vascular SMCs of the pulmonary elastic arteries undergo transient actin cytoskeletal remodeling as well as cellular de-differentiation and proliferation. Vascular smooth muscle phenotype is regulated by serum response factor, which is itself regulated in part by the negative regulator YY1. We therefore studied the subcellular localization of YY1 in arteries of normal newborn piglets and piglets affected by neonatal pulmonary hypertension. We found that YY1 localization changed during development and that expression of γ-smooth muscle actin correlated with expression of cytoplasmic rather than nuclear YY1. Analysis of the regulation of YY1 localization in vitro demonstrated that polymerized γ-actin sequestered EGFP-YY1 in the cytoplasm and that YY1 activation of c-myc promoter activity was inhibited by LIM kinase, which increases actin polymerization. Consistent with these data siRNA-mediated down-regulation of YY1 in C2C12 cells increased SM22-α expression and inhibited cell proliferation. Thus, actin polymerization controls subcellular YY1 localization, which contributes to vascular SMC proliferation and differentiation in normal pulmonary artery development. In the absence of actin depolymerization, YY1 does not relocate to the nucleus, and this lack of relocation may contribute to the pathobiology of pulmonary hypertension. PMID:16314465
Feng, Wei; Liu, Hongrui; Luo, Tingting; Liu, Di; Du, Juan; Sun, Jing; Wang, Wei; Han, Xiuchun; Yang, Kaiyun; Guo, Jie; Amizuka, Norio; Li, Minqi
2017-01-27
Interleukin (IL)-6 is known to indirectly enhance osteoclast formation by promoting receptor activator of nuclear factor kappa-B ligand (RANKL) production by osteoblastic/stromal cells. However, little is known about the direct effect of IL-6 on osteoclastogenesis. Here, we determined the direct effects of IL-6 and its soluble receptor (sIL-6R) on RANKL-induced osteoclast formation by osteoclast precursors in vitro. We found IL-6/sIL-6R significantly promoted and suppressed osteoclast differentiation induced by low- (10 ng/ml) and high-level (50 ng/ml) RANKL, respectively. Using a bone resorption pit formation assay, expression of osteoclastic marker genes and transcription factors confirmed differential regulation of RANKL-induced osteoclastogenesis by IL-6/sIL-6R. Intracellular signaling transduction analysis revealed IL-6/sIL-6R specifically upregulated and downregulated the phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), ERK (extracellular signal-regulated kinase) and JNK (c-Jun N-terminal kinase) induced by low- and high level RANKL, respectively. Taken together, our findings demonstrate that IL-6/sIL-6R differentially regulate RANKL-induced osteoclast differentiation and activity through modulation of NF-κB, ERK and JNK signaling pathways. Thus, IL-6 likely plays a dual role in osteoclastogenesis either as a pro-resorption factor or as a protector of bone, depending on the level of RANKL within the local microenvironment.
Real-Time Maps of Fluid Flow Fields in Porous Biomaterials
Mack, Julia J.; Youssef, Khalid; Noel, Onika D.V.; Lake, Michael P.; Wu, Ashley; Iruela-Arispe, M. Luisa; Bouchard, Louis-S.
2013-01-01
Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, noninvasive measures of local hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were further used to derive pressure, shear and fluid permeability fields. Finally, remodeling of collagen gels in response to precise fluid flow parameters was correlated with structural changes. It is anticipated that accurate flow maps within 3D matrices will be a critical step towards understanding cell behavior in response to controlled flow dynamics. PMID:23245922
Ikezaki, Yuka; Suyama, Yoshihisa; Middleton, Beth A; Tsumura, Yoshihiko; Teshima, Kousuke; Tachida, Hidenori; Kusumi, Junko
2016-11-01
Studies of natural genetic variation can elucidate the genetic basis of phenotypic variation and the past population structure of species. Our study species, Taxodium distichum, is a unique conifer that inhabits the flood plains and swamps of North America. Morphological and ecological differences in two varieties, T. distichum var. distichum (bald cypress) and T. distichum var. imbricarium (pond cypress), are well known, but little is known about the level of genetic differentiation between the varieties and the demographic history of local populations. We analyzed nucleotide polymorphisms at 47 nuclear loci from 96 individuals collected from the Mississippi River Alluvial Valley (MRAV), and Gulf Coastal populations in Texas, Louisiana, and Florida using high-throughput DNA sequencing. Standard population genetic statistics were calculated, and demographic parameters were estimated using a composite-likelihood approach. Taxodium distichum in North America can be divided into at least three genetic groups, bald cypress in the MRAV and Texas, bald cypress in Florida, and pond cypress in Florida. The levels of genetic differentiation among the groups were low but significant. Several loci showed the signatures of positive selection, which might be responsible for local adaptation or varietal differentiation. Bald cypress was genetically differentiated into two geographical groups, and the boundary was located between the MRAV and Florida. This differentiation could be explained by population expansion from east to west. Despite the overlap of the two varieties' ranges, they were genetically differentiated in Florida. The estimated demographic parameters suggested that pond cypress split from bald cypress during the late Miocene. © 2016 Botanical Society of America.
Marchand, Benoît; Arsenault, Dominique; Raymond-Fleury, Alexandre; Boisvert, François-Michel; Boucher, Marie-Josée
2015-01-01
Glycogen synthase kinase-3 (GSK3) are ubiquitously expressed serine-threonine kinases involved in a plethora of functions ranging from the control of glycogen metabolism to transcriptional regulation. We recently demonstrated that GSK3 inhibition triggers JNK-cJUN-dependent apoptosis in human pancreatic cancer cells. However, the comprehensive picture of downstream GSK3-regulated pathways/functions remains elusive. Herein, counterbalancing the death signals, we show that GSK3 inhibition induces prosurvival signals through increased activity of the autophagy/lysosomal network. Our data also reveal a contribution of GSK3 in the regulation of the master transcriptional regulator of autophagy and lysosomal biogenesis, transcription factor EB (TFEB) in pancreatic cancer cells. Similarly to mammalian target of rapamycin (mTOR) inhibition, GSK3 inhibitors promote TFEB nuclear localization and leads to TFEB dephosphorylation through endogenous serine/threonine phosphatase action. However, GSK3 and mTOR inhibition impinge differently and independently on TFEB phosphorylation suggesting that TFEB is regulated by a panel of kinases and/or phosphatases. Despite their differential impact on TFEB phosphorylation, both GSK3 and mTOR inhibitors promote 14-3-3 dissociation and TFEB nuclear localization. Quantitative mass spectrometry analyses further reveal an increased association of TFEB with nuclear proteins upon GSK3 and mTOR inhibition suggesting a positive impact on TFEB transcriptional function. Finally, a predominant nuclear localization of TFEB is unveiled in fully fed pancreatic cancer cells, whereas a reduction in TFEB expression significantly impairs their capacity for growth in an anchorage-independent manner. In addition, TFEB-restricted cells are more sensitive to apoptosis upon GSK3 inhibition. Altogether, our data uncover new functions under the control of GSK3 in pancreatic cancer cells in addition to providing key insight into TFEB regulation. PMID:25561726
Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A
2015-05-19
The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2-3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2-3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. © 2015 Authors.
Tao, Ling; Park, Jong-Yung; Lambert, Joshua D
2015-02-01
We have previously reported that the green tea catechin, (-)-epigallocatechin-3-gallate (EGCG), can induce oxidative stress in oral cancer cells but exerts antioxidant effects in normal cells. Here, we report that these differential prooxidative effects are associated with sirtuin 3 (SIRT3), an important mitochondrial redox modulator. EGCG rapidly induced mitochondria-localized reactive oxygen species in human oral squamous carcinoma cells (SCC-25, SCC-9) and premalignant leukoplakia cells (MSK-Leuk1), but not in normal human gingival fibroblast cells (HGF-1). EGCG suppressed SIRT3 mRNA and protein expression, as well as, SIRT3 activity in SCC-25 cells, whereas it increased SIRT3 activity in HGF-1 cells. EGCG selectively decreased the nuclear localization of the estrogen-related receptor α (ERRα), the transcription factor regulating SIRT3 expression, in SCC-25 cells. This indicates that EGCG may regulate SIRT3 transcription in oral cancer cells via ERRα. EGCG also differentially modulated the mRNA expressions of SIRT3-associated downstream targets including glutathione peroxidase 1 and superoxide dismutase 2 in normal and oral cancer cells. SIRT3 represents a novel potential target through which EGCG exerts differential prooxidant effects in cancer and normal cells. Our results provide new biomarkers to be further explored in animal studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The concept of physical surface in nuclear matter
NASA Astrophysics Data System (ADS)
Mazilu, Nicolae; Agop, Maricel
2015-02-01
The main point of a physical definition of surface forces in the matter in general, especially in the nuclear matter, is that the curvature of surfaces and its variation should be physically defined. The forces are therefore just the vehicles of introducing physics. The problem of mathematical definition of a surface in term of the curvature parameters thus naturally occurs. The present work addresses this problem in terms of the asymptotic directions of a surface in a point. A physical meaning of these parameters is given, first in terms of inertial forces, then in terms of a differential theory of colors, whereby the space of curvature parameters is identified with the color space. The work concludes with an image of the evolution of a local portion of a surface.
Zhang, Hailong; Hou, Yixuan; Xu, Liyun; Zeng, Zongyue; Wen, Siyang; Du, Yan-E; Sun, Kexin; Yin, Jiali; Lang, Lei; Tang, Xiaoli; Liu, Manran
2016-04-01
The nuclear localization of Drosha is critical for its function as a microRNA maturation regulator. Dephosphorylation of Drosha at serine 300 and serine 302 disrupts its nuclear localization, and aberrant distribution of Drosha has been detected in some tumors. The purpose of the present study was to assess cytoplasmic/nuclear Drosha expression in gastric cancer carcinogenesis and progression. Drosha expression and its subcellular location was investigated by immunohistochemical staining of a set of tissue microarrays composed of normal adjacent tissues (374), chronic gastritis (137), precancerous lesions (94), and gastric adenocarcinoma (829) samples, and in gastric cancer cell lines with varying differentiation by immunofluorescence and western blot assay. Gradual loss of cytoplasmic Drosha was accompanied by tumor progression in both gastric cancer tissues and cell lines, and was inversely associated with tumor volume (P = 0.002), tumor grade (P < 0.001), tumor stage (P = 0.018), and distant metastasis (P = 0.026). Aberrant high levels of cytoplasmic Drosha were apparent in intestinal metaplasia and dysplasia tissues. The levels of nuclear Drosha were sharply decreased in chronic gastritis and maintained through precancerous lesions to gastric cancer. High levels of cytoplasmic Drosha predicted longer survival (LR = 7.088, P = 0.008) in gastric cancer patients. Our data provide novel insights into gastric cancer that cytoplasmic Drosha potentially plays a role in preventing carcinogenesis and tumor progression, and may be an independent predictor of patient outcome.
Dennison, Siobhan; McAlpin, Steve; Chapple, David G.; Stow, Adam J.
2015-01-01
Knowledge of genetic structure and patterns of connectivity is valuable for implementation of effective conservation management. The arid zone of Australia contains a rich biodiversity, however this has come under threat due to activities such as altered fire regimes, grazing and the introduction of feral herbivores and predators. Suitable habitats for many species can be separated by vast distances, and despite an apparent lack of current geographical barriers to dispersal, habitat specialisation, which is exhibited by many desert species, may limit connectivity throughout this expansive region. We characterised the genetic structure and differentiation of the great desert skink (Liopholis kintorei), which has a patchy, but widespread distribution in the western region of the Australian arid zone. As a species of cultural importance to local Aboriginal groups and nationally listed as Vulnerable, it is a conservation priority for numerous land managers in central Australia. Analysis of mitochondrial ND4 sequence data and ten nuclear microsatellite loci across six sampling localities through the distribution of L. kintorei revealed considerable differentiation among sites, with mitochondrial FST and microsatellite F′ST ranging from 0.047-0.938 and 0.257-0.440, respectively. The extent of differentiation suggests three main regions that should be managed separately, in particular the southeastern locality of Uluru. Current genetic delineation of these regions should be maintained if future intervention such as translocation or captive breeding is to be undertaken. PMID:26061141
NASA Astrophysics Data System (ADS)
Zhang, Haibin; Johnson, Shannon B.; Flores, Vanessa R.; Vrijenhoek, Robert C.
2015-11-01
We describe a broad zone of intergradation between genetically differentiated, northern and southern lineages of the hydrothermal vent tubeworm, Tevnia jerichonana. DNA sequences from four genes, nuclear HSP and ATPsα and mitochondrial COI and Cytb were examined in samples from eastern Pacific vent localities between 13°N and 38°S latitude. Allelic frequencies at these loci exhibited concordant latitudinal clines, and genetic differentiation (pairwise ΦST's) increased with geographical distances between sample localities. Though this pattern of differentiation suggested isolation-by-distance (IBD), it appeared to result from hierarchical population structure. Genotypic assignment tests identified two population clusters comprised of samples from the northern East Pacific Rise (NEPR: 9-13°N) and an extension of the Pacific-Antarctic Ridge (PAR: 31-32°S) with a zone of intergradation along the southern East Pacific Rise (SEPR: 7-17°S). The overall degrees of DNA sequence divergence between the NEPR and PAR populations were slight and not indicative of lengthy isolation. Bayesian assignment methods suggested that the SEPR populations constitute intergrades that connect the NEPR and PAR populations. Though it typically is difficult to distinguish between primary and secondary intergradation, our results were consistent with parallel studies of vent-restricted species that suggest a high degree of demographic instability along the superfast-spreading SEPR axis. Frequent local extinctions and immigration from NEPR and PAR refugia probably shaped the observed pattern of intergradation.
Zhou, Jie; Wang, Shan; Qi, Qi; Yang, Xiaoyue; Zhu, Endong; Yuan, Hairui; Li, Xuemei; Liu, Ying; Li, Xiaoxia; Wang, Baoli
2017-05-01
Nuclear factor I-C (NFIC) has recently been identified as an important player in osteogenesis and bone homeostasis in vivo However, the molecular mechanisms involved have yet to be defined. In the current study, Nfic expression was altered in primary marrow stromal cells and established progenitor lines after adipogenic and osteogenic treatment. Overexpression of Nfic in stromal cells ST2, mesenchymal cells C3H10T1/2, and primary marrow stromal cells inhibited adipogenic differentiation, whereas it promoted osteogenic differentiation. Conversely, silencing of endogenous Nfic in the cell lines enhanced adipogenic differentiation, whereas it blocked osteogenic differentiation. Mechanism investigations revealed that Nfic overexpression promoted nuclear translocation of β-catenin and increased nuclear protein levels of β-catenin and transcription factor 7-like 2 (TCF7L2). Promoter studies and the chromatin immunoprecipitation (ChIP) assay revealed that NFIC directly binds to the promoter of low-density lipoprotein receptor-related protein 5 (Lrp5) and thereafter transactivates the promoter. Finally, inactivation of canonical Wnt signaling in ST2 attenuated the inhibition of adipogenic differentiation and stimulation of osteogenic differentiation by NFIC. Our study suggests that NFIC balances adipogenic and osteogenic differentiation from progenitor cells through controlling canonical Wnt signaling and highlights the potential of NFIC as a target for new therapies to control metabolic disorders like osteoporosis and obesity.-Zhou, J., Wang, S., Qi, Q., Yang, X., Zhu, E., Yuan, H., Li, X., Liu, Y., Li, X., Wang, B. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling. © FASEB.
Peng, ChiehFu Jeff; Wikramanayake, Athula H.
2013-01-01
Pattern formation along the animal-vegetal (AV) axis in sea urchin embryos is initiated when canonical Wnt (cWnt) signaling is activated in vegetal blastomeres. The mechanisms that restrict cWnt signaling to vegetal blastomeres are not well understood, but there is increasing evidence that the egg’s vegetal cortex plays a critical role in this process by mediating localized “activation” of Disheveled (Dsh). To investigate how Dsh activity is regulated along the AV axis, sea urchin-specific Dsh antibodies were used to examine expression, subcellular localization, and post-translational modification of Dsh during development. Dsh is broadly expressed during early sea urchin development, but immunolocalization studies revealed that this protein is enriched in a punctate pattern in a novel vegetal cortical domain (VCD) in the egg. Vegetal blastomeres inherit this VCD during embryogenesis, and at the 60-cell stage Dsh puncta are seen in all cells that display nuclear β-catenin. Analysis of Dsh post-translational modification using two-dimensional Western blot analysis revealed that compared to Dsh pools in the bulk cytoplasm, this protein is differentially modified in the VCD and in the 16-cell stage micromeres that partially inherit this domain. Dsh localization to the VCD is not directly affected by disruption of microfilaments and microtubules, but unexpectedly, microfilament disruption led to degradation of all the Dsh pools in unfertilized eggs over a period of incubation suggesting that microfilament integrity is required for maintaining Dsh stability. These results demonstrate that a pool of differentially modified Dsh in the VCD is selectively inherited by the vegetal blastomeres that activate cWnt signaling in early embryos, and suggests that this domain functions as a scaffold for localized Dsh activation. Localized cWnt activation regulates AV axis patterning in many metazoan embryos. Hence, it is possible that the VCD is an evolutionarily conserved cytoarchitectural domain that specifies the AV axis in metazoan ova. PMID:24236196
MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; He, Xijing; Wei, Wenzhi
Osteoblast differentiation is a vital process in maintaining bone homeostasis in which various transcriptional factors, signaling molecules, and microRNAs (miRNAs) are involved. Recently, signal transducer and activator of transcription 1 (STAT1) has been found to play an important role in regulating osteoblast differentiation. Here, we identified that STAT1 expression was regulated by miR-194. Using mouse bone mesenchymal stem cells (BMSCs), we found that miR-194 expression was significantly increased following osteoblast differentiation induction. Overexpression of miR-194 by lentivirus-mediated gene transfer markedly increased osteoblast differentiation, whereas inhibition of miR-194 significantly suppressed osteoblast differentiation of BMSCs. Using a dual-luciferase reporter assay, a directmore » interaction between miR-194 and the 3′-untranslated region (UTR) of STAT1 was confirmed. Additionally, miR-194 regulated mRNA and protein expression of STAT1 in BMSCs. Further analysis showed that miR-194 overexpression promoted the nuclear translocation of runt-related transcription factor 2 (Runx2), which is critical for osteoblast differentiation. In contrast, inhibition of miR-194 blocked the nuclear translocation of Runx2. Moreover, overexpression of STAT1 significantly blocked Runx2 nuclear translocation and osteoblast differentiation mediated by miR-194 overexpression. Taken together, our data suggest that miR-194 regulates osteoblast differentiation through modulating STAT1-mediated Runx2 nuclear translocation. - Highlights: • Overexpression of miR-194 significantly increased osteoblast differentiation. • miR-194 directly targeted the 3′- UTR of STAT1. • miR-194 regulated the expression of STAT1. • Overexpression of miR-194 promoted the nuclear translocation of Runx2.« less
Kap121p-Mediated Nuclear Import Is Required for Mating and Cellular Differentiation in Yeast
Leslie, Deena M.; Grill, Brock; Rout, Michael P.; Wozniak, Richard W.; Aitchison, John D.
2002-01-01
To further our understanding of how the nucleocytoplasmic transport machinery interfaces with its cargoes and how this affects cellular physiology, we investigated the molecular mechanisms of phenotypes associated with mutations in karyopherin Kap121p. Two previously unreported phenotypes of kap121 cells were observed: defects in mating and in the transition from the normal yeast form to the pseudohyphal, invasive form. In parallel, we searched for Kap121p cargoes by using Kap121p as a probe in overlay assays of yeast nuclear proteins. One of the major interacting proteins identified by this procedure was Ste12p, a transcription factor central to both the mating response and the pseudohyphal transition. We therefore investigated whether defects in these differentiation processes were due to an inability to import Ste12p. Both immunopurification and in vitro binding studies demonstrated that Ste12p interacted specifically with Kap121p in a Ran-GTP-sensitive manner and that Ste12p was mislocalized to the cytoplasm by inactivation of Kap121p in a temperature-sensitive mutant. The Kap121p-specific nuclear localization signal (NLS) of Ste12p was determined to reside within a C-terminal region of Ste12p. Furthermore, by overexpression of STE12 or expression of a STE12-cNLS fusion in kap121 cells, the invasive-growth defect and the mating defect were both suppressed. Together these data demonstrate that Ste12p is imported into nuclei by Kap121p and that mating and differentiation defects associated with kap121 mutants are primarily attributable to the mislocalization of Ste12p. PMID:11909949
Resonance Parameter Adjustment Based on Integral Experiments
Sobes, Vladimir; Leal, Luiz; Arbanas, Goran; ...
2016-06-02
Our project seeks to allow coupling of differential and integral data evaluation in a continuous-energy framework and to use the generalized linear least-squares (GLLS) methodology in the TSURFER module of the SCALE code package to update the parameters of a resolved resonance region evaluation. We recognize that the GLLS methodology in TSURFER is identical to the mathematical description of a Bayesian update in SAMMY, the SAMINT code was created to use the mathematical machinery of SAMMY to update resolved resonance parameters based on integral data. Traditionally, SAMMY used differential experimental data to adjust nuclear data parameters. Integral experimental data, suchmore » as in the International Criticality Safety Benchmark Experiments Project, remain a tool for validation of completed nuclear data evaluations. SAMINT extracts information from integral benchmarks to aid the nuclear data evaluation process. Later, integral data can be used to resolve any remaining ambiguity between differential data sets, highlight troublesome energy regions, determine key nuclear data parameters for integral benchmark calculations, and improve the nuclear data covariance matrix evaluation. Moreover, SAMINT is not intended to bias nuclear data toward specific integral experiments but should be used to supplement the evaluation of differential experimental data. Using GLLS ensures proper weight is given to the differential data.« less
Chromatin Insulators: A Role in Nuclear Organization and Gene Expression
Yang, Jingping; Corces, Victor G.
2011-01-01
Chromatin insulators are DNA-protein complexes with broad functions in nuclear biology. Based on the ability of insulator proteins to interact with each other, it was originally thought that insulators form loops that could constitute functional domains of co-regulated gene expression. Nevertheless, data from genome-wide localization studies indicate that insulator proteins can be present in intergenic regions as well as at the 5′, introns or 3′ of genes, suggesting a broader role in chromosome biology. Cells have developed mechanisms to control insulator activity by recruiting specialized proteins or by covalent modification of core components. Recent results suggest that insulators mediate intra- and inter-chromosomal interactions to affect transcription, imprinting and recombination. It is possible that these interactions set up cell-specific blueprints of nuclear organization that may contribute to the establishment of different patterns of gene expression during cell differentiation. As a consequence, disruption of insulator activity could result in the development of cancer or other disease states. PMID:21704228
Ikezaki, Yuka; Suyama, Yoshihisa; Middleton, Beth A.; Tsumura, Yoshihiko; Teshima, Kousuke; Tachida, Hidenori; Kusumi, Junko
2016-01-01
PREMISE OF THE STUDY: Studies of natural genetic variation can elucidate the genetic basis of phenotypic variation and the past population structure of species. Our study species, Taxodium distichum, is a unique conifer that inhabits the flood plains and swamps of North America. Morphological and ecological differences in two varieties, T. distichum var. distichum (bald cypress) and T. distichum var. imbricarium (pond cypress), are well known, but little is known about the level of genetic differentiation between the varieties and the demographic history of local populations.METHODS: We analyzed nucleotide polymorphisms at 47 nuclear loci from 96 individuals collected from the Mississippi River Alluvial Valley (MRAV), and Gulf Coastal populations in Texas, Louisiana, and Florida using high-throughput DNA sequencing. Standard population genetic statistics were calculated, and demographic parameters were estimated using a composite-likelihood approach.KEY RESULTS: Taxodium distichum in North America can be divided into at least three genetic groups, bald cypress in the MRAV and Texas, bald cypress in Florida, and pond cypress in Florida. The levels of genetic differentiation among the groups were low but significant. Several loci showed the signatures of positive selection, which might be responsible for local adaptation or varietal differentiation.CONCLUSIONS: Bald cypress was genetically differentiated into two geographical groups, and the boundary was located between the MRAV and Florida. This differentiation could be explained by population expansion from east to west. Despite the overlap of the two varieties’ ranges, they were genetically differentiated in Florida. The estimated demographic parameters suggested that pond cypress split from bald cypress during the late Miocene.
NASA Astrophysics Data System (ADS)
Sugawara, Shin-Etsu; Shiroyama, Hideaki
This paper shows a comparative analysis between France and Japan on the way of the local governments' involvement in nuclear safety governance through some interviews. In France, a law came into force that requires related local governments to establish "Commision Locale d'Information" (CLI), which means the local governments officially involve in nuclear regulatory activity. Meanwhile, in Japan, related local governments substantially involve in the operation of nuclear facilities through the "safety agreements" in spite of the lack of legal authority. As a result of comparative analysis, we can point out some institutional input from French cases as follows: to clarify the local governments' roles in the nuclear regulation system, to establish the official channels of communication among nuclear utilities, national regulatory authorities and local governments, and to stipulate explicitly the transparency as a purpose of safety regulation.
2014-01-01
Background A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion. Conclusions 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi. PMID:25057298
Shorbagi, Sadek; Brown, Ian R
2016-11-01
Heat shock proteins (Hsps) are cellular repair agents that counter the effects of protein misfolding that is a characteristic feature of neurodegenerative diseases. HSPA1A (Hsp70-1) is a widely studied member of the HSPA (Hsp70) family. The little-studied HSPA6 (Hsp70B') is present in the human genome and absent in mouse and rat; hence, it is missing in current animal models of neurodegenerative diseases. Differentiated human neuronal SH-SY5Y cells were employed to compare the dynamics of the association of YFP-tagged HSPA6 and HSPA1A with stress-sensitive cytoplasmic and nuclear structures. Following thermal stress, live-imaging confocal microscopy and Fluorescence Recovery After Photobleaching (FRAP) demonstrated that HSPA6 displayed a prolonged and more dynamic association, compared to HSPA1A, with centrioles that play critical roles in neuronal polarity and migration. HSPA6 and HSPA1A also targeted nuclear speckles, rich in RNA splicing factors, and the granular component of the nucleolus that is involved in rRNA processing and ribosomal subunit assembly. HSPA6 and HSPA1A displayed similar FRAP kinetics in their interaction with nuclear speckles and the nucleolus. Subsequently, during the recovery from neuronal stress, HSPA6, but not HSPA1A, localized with the periphery of nuclear speckles (perispeckles) that have been characterized as transcription sites. The stress-induced association of HSPA6 with perispeckles displayed the greatest dynamism compared to the interaction of HSPA6 or HSPA1A with other stress-sensitive cytoplasmic and nuclear structures. This suggests involvement of HSPA6 in transcriptional recovery of human neurons from cellular stress that is not apparent for HSPA1A.
Lee, David A.
2017-01-01
ABSTRACT Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response. PMID:28152338
Thorpe, Stephen D; Lee, David A
2017-05-04
Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response.
Nuclear-Recoil Differential Cross Sections for the Two Photon Double Ionization of Helium
NASA Astrophysics Data System (ADS)
Abdel Naby, Shahin; Ciappina, M. F.; Lee, T. G.; Pindzola, M. S.; Colgan, J.
2013-05-01
In support of the reaction microscope measurements at the free-electron laser facility at Hamburg (FLASH), we use the time-dependent close-coupling method (TDCC) to calculate fully differential nuclear-recoil cross sections for the two-photon double ionization of He at photon energy of 44 eV. The total cross section for the double ionization is in good agreement with previous calculations. The nuclear-recoil distribution is in good agreement with the experimental measurements. In contrast to the single-photon double ionization, maximum nuclear recoil triple differential cross section is obtained at small nuclear momenta. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.
Transduction of NeuroD2 protein induced neural cell differentiation.
Noda, Tomohide; Kawamura, Ryuzo; Funabashi, Hisakage; Mie, Masayasu; Kobatake, Eiry
2006-11-01
NeuroD2, one of the neurospecific basic helix-loop-helix transcription factors, has the ability to induce neural differentiation in undifferentiated cells. In this paper, we show that transduction of NeuroD2 protein induced mouse neuroblastoma cell line N1E-115 into neural differentiation. NeuroD2 has two basic-rich domains, one is nuclear localization signal (NLS) and the other is basic region of basic helix-loop-helix (basic). We constructed some mutants of NeuroD2, ND2(Delta100-115) (lack of NLS), ND2(Delta123-134) (lack of basic) and ND2(Delta100-134) (lack of both NLS and basic) for transduction experiments. Using these proteins, we have shown that NLS region of NeuroD2 plays a role of protein transduction. Continuous addition of NeuroD2 protein resulted in N1E-115 cells adopting neural morphology after 4 days and Tau mRNA expression was increased. These results suggest that neural differentiation can be induced by direct addition of NeuroD2 protein.
Conacci-Sorrell, Maralice; Ngouenet, Celine; Eisenman, Robert N
2010-08-06
The Myc oncoprotein family comprises transcription factors that control multiple cellular functions and are widely involved in oncogenesis. Here we report the identification of Myc-nick, a cytoplasmic form of Myc generated by calpain-dependent proteolysis at lysine 298 of full-length Myc. Myc-nick retains conserved Myc box regions but lacks nuclear localization signals and the bHLHZ domain essential for heterodimerization with Max and DNA binding. Myc-nick induces alpha-tubulin acetylation and altered cell morphology by recruiting histone acetyltransferase GCN5 to microtubules. During muscle differentiation, while the levels of full-length Myc diminish, Myc-nick and acetylated alpha-tubulin levels are increased. Ectopic expression of Myc-nick accelerates myoblast fusion, triggers the expression of myogenic markers, and permits Myc-deficient fibroblasts to transdifferentiate in response to MyoD. We propose that the cleavage of Myc by calpain abrogates the transcriptional inhibition of differentiation by full-length Myc and generates Myc-nick, a driver of cytoplasmic reorganization and differentiation. Copyright 2010 Elsevier Inc. All rights reserved.
He, Zhongshi; Sun, Min; Ke, Yuan; Lin, Rongjie; Xiao, Youde; Zhou, Shuliang; Zhao, Hong; Wang, Yan; Zhou, Fuxiang; Zhou, Yunfeng
2017-04-25
Although papillary renal cell carcinoma (PRCC) accounts for 10%-15% of renal cell carcinoma (RCC), no predictive molecular biomarker is currently applicable to guiding disease stage of PRCC patients. The mRNASeq data of PRCC and adjacent normal tissue in The Cancer Genome Atlas was analyzed to identify 1148 differentially expressed genes, on which weighted gene co-expression network analysis was performed. Then 11 co-expressed gene modules were identified. The highest association was found between blue module and pathological stage (r = 0.45) by Pearson's correlation analysis. Functional enrichment analysis revealed that biological processes of blue module focused on nuclear division, cell cycle phase, and spindle (all P < 1e-10). All 40 hub genes in blue module can distinguish localized (pathological stage I, II) from non-localized (pathological stage III, IV) PRCC (P < 0.01). A good molecular biomarker for pathological stage of RCC must be a prognostic gene in clinical practice. Survival analysis was performed to reversely validate if hub genes were associated with pathological stage. Survival analysis unveiled that all hub genes were associated with patient prognosis (P < 0.01).The validation cohort GSE2748 verified that 30 hub genes can differentiate localized from non-localized PRCC (P < 0.01), and 18 hub genes are prognosis-associated (P < 0.01).ROC curve indicated that the 17 hub genes exhibited excellent diagnostic efficiency for localized and non-localized PRCC (AUC > 0.7). These hub genes may serve as a biomarker and help to distinguish different pathological stages for PRCC patients.
Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka, E-mail: kinjo@sci.hokudai.ac.jp
2015-07-31
Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesismore » takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.« less
Withaferin A Associated Differential Regulation of Inflammatory Cytokines.
Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev
2018-01-01
A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases.
Withaferin A Associated Differential Regulation of Inflammatory Cytokines
Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev
2018-01-01
A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases. PMID:29479354
Identification of novel nuclear localization signals of Drosophila myeloid leukemia factor.
Sugano, Wakana; Yamaguchi, Masamitsu
2007-01-01
Myeloid leukemia factor 1 (MLF1) was first identified as part of a leukemic fusion protein produced by a chromosomal translocation, and MLF family proteins are present in many animals. In mammalian cells, MLF1 has been described as mainly cytoplasmic, but in Drosophila, one of the dMLF isoforms (dMLFA) localized mainly in the nucleus while the other isoform (dMLFB), that appears to be produced by the alternative splicing, displays both nuclear and cytoplasmic localization. To investigate the difference in subcellular localization between MLF family members, we examined the subcellular localization of deletion mutants of dMLFA isoform. The analyses showed that the C-terminal 40 amino acid region of dMLFA is necessary and sufficient for nuclear localization. Based on amino acid sequences, we hypothesized that two nuclear localization signals (NLSs) are present within the region. Site-directed mutagenesis of critical residues within the two putative NLSs leads to loss of nuclear localization, suggesting that both NLS motifs are necessary for nuclear localization.
Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.
Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan
2017-10-19
Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.
Tsiarli, Maria A.; Monaghan, A. Paula; DeFranco, Donald B.
2013-01-01
Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expression of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain has not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation. PMID:23751362
Tsiarli, Maria A; Paula Monaghan, A; Defranco, Donald B
2013-07-26
Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expressions of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain have not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation. Copyright © 2013 Elsevier B.V. All rights reserved.
Puglisi, Rossella; Maccari, Irene; Pipolo, Simona; Conrad, Marcus; Mangia, Franco; Boitani, Carla
2012-04-01
The nuclear isoform of the selenoprotein Phospholipid Hydroperoxide Glutathione Peroxidase (nGPx4) is expressed in haploid male germ cells, contains several cysteines and is able to oxidize protein thiols, besides glutathione. In this study we have investigated the subnuclear localization of this isoform in isolated mouse male germ cells at different steps of maturation. Immunoblotting and confocal microscopy analyses of subnuclear fractions showed that nGPx4 is localized to the nuclear matrix together with well known markers of this subnuclear compartment like lamin B and topoisomerase IIβ at all stages of germ cell differentiation. The peculiar nGPx4 distribution was confirmed by both biochemical and morphological analyses of COS-1 cells overexpressing Flag-tagged nGPx4. To test the functional role of nGPx4 in the process of chromatin assembly, sperm isolated from the caput and the cauda epididymides of wild-type (WT) and genetically deficient in nGPx4 (nGPx4-KO) mice were analyzed in an in vitro chromatin decondensation assay. Results showed that sperm from nGPx4-KO mice were more prone to decondense than those from WT mice at all stages of epididymal maturation, providing conclusive evidence that nGPx4 is required for a correct sperm chromatin compaction. We next addressed the issue of whether the lack of nGPx4 impacts on early events occurring at fertilization. Indeed, in vitro fertilization experiments showed an acceleration of sperm chromatin dispersion in oocytes fertilized by nGpx4-KO sperm compared with control. Overall these data indicate that the absence of nGPx4 leads to sperm nuclear matrix/chromatin instability that may negatively affect the embryo development. Copyright © 2011 Wiley Periodicals, Inc.
Tessé, Sophie; Storlazzi, Aurora; Kleckner, Nancy; Gargano, Silvana; Zickler, Denise
2003-10-28
Ski8p is implicated in degradation of non-poly(A) and double-stranded RNA, and in meiotic DNA recombination. We have identified the Sordaria macrospora SKI8 gene. Ski8p is cytoplasmically localized in all vegetative and sexual cycle cells, and is nuclear localized, specifically in early-mid-meiotic prophase, in temporal correlation with Spo11p, the meiotic double-strand break (DSB) transesterase. Localizations of Ski8p and Spo11p are mutually interdependent. ski8 mutants exhibit defects in vegetative growth, entry into the sexual program, and sporulation. Diverse meiotic defects, also seen in spo11 mutants, are diagnostic of DSB absence, and they are restored by exogenous DSBs. These results suggest that Ski8p promotes meiotic DSB formation by acting directly within meiotic prophase chromosomes. Mutant phenotypes also divide meiotic homolog juxtaposition into three successive, mechanistically distinct steps; recognition, presynaptic alignment, and synapsis, which are distinguished by their differential dependence on DSBs.
Tessé, Sophie; Storlazzi, Aurora; Kleckner, Nancy; Gargano, Silvana; Zickler, Denise
2003-01-01
Ski8p is implicated in degradation of non-poly(A) and double-stranded RNA, and in meiotic DNA recombination. We have identified the Sordaria macrospora SKI8 gene. Ski8p is cytoplasmically localized in all vegetative and sexual cycle cells, and is nuclear localized, specifically in early-mid-meiotic prophase, in temporal correlation with Spo11p, the meiotic double-strand break (DSB) transesterase. Localizations of Ski8p and Spo11p are mutually interdependent. ski8 mutants exhibit defects in vegetative growth, entry into the sexual program, and sporulation. Diverse meiotic defects, also seen in spo11 mutants, are diagnostic of DSB absence, and they are restored by exogenous DSBs. These results suggest that Ski8p promotes meiotic DSB formation by acting directly within meiotic prophase chromosomes. Mutant phenotypes also divide meiotic homolog juxtaposition into three successive, mechanistically distinct steps; recognition, presynaptic alignment, and synapsis, which are distinguished by their differential dependence on DSBs. PMID:14563920
The formation of argpyrimidine, a methylglyoxal-arginine adduct, in the nucleus of neural cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakadate, Yusuke; Uchida, Koji; Shikata, Keiji
2009-01-09
Methylglyoxal (MG) is an endogenous metabolite in glycolysis and forms stable adducts primarily with arginine residues of intracellular proteins. The biological role of this modification in cell function is not known. In the present study, we found that a MG-detoxification enzyme glyoxalase I (GLO1) is mainly expressed in the ventricular zone (VZ) at embryonic day 16 which neural stem and progenitor cells localize. Moreover, immunohistochemical analysis revealed that argpyrimidine, a major MG-arginine adduct, is predominantly produced in cortical plate neurons not VZ during cerebral cortex development and is exclusively located in the nucleus. Immunoblotting experiment showed that the formation ofmore » argpyrimidine occurs on some nuclear proteins of cortical neurons. To our knowledge, this is first report of the argpyrimidine formation in the nucleus of neuron. These findings suggest that GLO1, which is dominantly expressed in the embryonic VZ, reduces the intracellular level of MG and suppresses the formation of argpyrimidine in neural stem and progenitor cells. Argpyrimidine may contribute to the neural differentiation and/or the maintenance of the differentiated state via the modification of nuclear proteins.« less
Tkach, Vasyl V; Lisitsyna, Olga I; Crossley, Janna L; Binh, Tran Thi; Bush, Sarah E
2013-05-01
The genus Pseudoacanthocephalus Petrochenko, 1958 currently includes 14 species of acanthocephalans parasitic in amphibians and reptiles worldwide. This work describes two new species of Pseudoacanthocephalus from amphibians and reptiles collected in several localities on Luzon Island, Philippines. Pseudoacanthocephalus nickoli n. sp. was found in two species of frogs, Rana luzonensis Boulenger and Rana similis (Günther), and Pseudoacanthocephalus smalesi n. sp. was found in a scincid lizard, Sphenomorphus abdictus Brown & Alcala. Differential diagnoses of the two new species of Pseudoacanthocephalus from their congeners are provided. Comparative analysis of nuclear ribosomal rRNA sequences encompassing the 3' end of 18S nuclear rDNA gene, internal transcribed spacer region (ITS1+5.8S+ITS2), and 5' end of the 28S gene strongly corroborated the morphological evidence and demonstrated significant differences between the two new species as well as between these species and closely related species from continental China and Vietnam. No intraspecific sequence variability was detected among different individuals representing each of the examined species. This is the first report of Pseudoacanthocephalus in the Philippines. A key to known species of Pseudoacanthocephalus is provided.
Foster, K. Wade; Liu, Zhaoli; Nail, Clinton D.; Li, Xingnan; Fitzgerald, Thomas J.; Bailey, Sarah K.; Frost, Andra R.; Louro, Iuri D.; Townes, Tim M.; Paterson, Andrew J.; Kudlow, Jeffrey E.; Lobo-Ruppert, Susan M.; Ruppert, J. Michael
2006-01-01
KLF4/GKLF normally functions in differentiating epithelial cells, but also acts as a transforming oncogene in vitro. To examine the role of this zinc finger protein in skin, we expressed the wild-type human allele from inducible and constitutive promoters. When induced in basal keratinocytes KLF4 rapidly abolished the distinctive properties of basal and parabasal epithelial cells. KLF4 caused a transitory apoptotic response and the skin progressed through phases of hyperplasia and dysplasia. By 6 weeks, lesions exhibited nuclear KLF4 and other morphologic and molecular similarities to squamous cell carcinoma in situ. p53 determined the patch size sufficient to establish lesions, as induction in a mosaic pattern produced skin lesions only when p53 was deficient. Compared with p53 wild-type animals, p53 hemizygous animals had early onset of lesions and a pronounced fibrovascular response that included outgrowth of subcutaneous sarcoma. A KLF4-estrogen receptor fusion protein showed tamoxifen-dependent nuclear localization and conditional transformation in vitro. The results suggest that KLF4 can function in the nucleus to induce squamous epithelial dysplasia, and indicate roles for p53 and epithelial-mesenchymal signaling in these early neoplastic lesions. PMID:15674344
Foster, K Wade; Liu, Zhaoli; Nail, Clinton D; Li, Xingnan; Fitzgerald, Thomas J; Bailey, Sarah K; Frost, Andra R; Louro, Iuri D; Townes, Tim M; Paterson, Andrew J; Kudlow, Jeffrey E; Lobo-Ruppert, Susan M; Ruppert, J Michael
2005-02-24
KLF4/GKLF normally functions in differentiating epithelial cells, but also acts as a transforming oncogene in vitro. To examine the role of this zinc finger protein in skin, we expressed the wild-type human allele from inducible and constitutive promoters. When induced in basal keratinocytes, KLF4 rapidly abolished the distinctive properties of basal and parabasal epithelial cells. KLF4 caused a transitory apoptotic response and the skin progressed through phases of hyperplasia and dysplasia. By 6 weeks, lesions exhibited nuclear KLF4 and other morphologic and molecular similarities to squamous cell carcinoma in situ. p53 determined the patch size sufficient to establish lesions, as induction in a mosaic pattern produced skin lesions only when p53 was deficient. Compared with p53 wild-type animals, p53 hemizygous animals had early onset of lesions and a pronounced fibrovascular response that included outgrowth of subcutaneous sarcoma. A KLF4-estrogen receptor fusion protein showed tamoxifen-dependent nuclear localization and conditional transformation in vitro. The results suggest that KLF4 can function in the nucleus to induce squamous epithelial dysplasia, and indicate roles for p53 and epithelial-mesenchymal signaling in these early neoplastic lesions.
Lange, Alexander W.; Sridharan, Anusha; Xu, Yan; Stripp, Barry R.; Perl, Anne-Karina; Whitsett, Jeffrey A.
2015-01-01
The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. PMID:25480985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tan; Taylor, Jackson; Jiang, Yang
The voltage-gated calcium channel (Ca{sub v}) β{sub 1a} subunit (Ca{sub v}β{sub 1a}) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Ca{sub v}β{sub 1a} subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo andmore » in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Ca{sub v}β{sub 1a} NH{sub 2}-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Ca{sub v}β{sub 1a}/YFP shows that TnT3 facilitates Ca{sub v}β{sub 1a} nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Ca{sub v}β{sub 1a} is a gene transcription regulator. • Here, we show that TnT3 interacts with Ca{sub v}β{sub 1a}. • We mapped TnT3 and Ca{sub v}β{sub 1a} interaction domain. • TnT3 facilitates Ca{sub v}β{sub 1a} nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation.« less
Pariset, Lorraine; Mariotti, Marco; Gargani, Maria; Joost, Stephane; Negrini, Riccardo; Perez, Trinidad; Bruford, Michael; Ajmone Marsan, Paolo; Valentini, Alessio
2011-01-01
We employed mtDNA and nuclear SNPs to investigate the genetic diversity of sheep breeds of three countries of the Mediterranean basin: Albania, Greece, and Italy. In total, 154 unique mtDNA haplotypes were detected by means of D-loop sequence analysis. The major nucleotide diversity was observed in Albania. We identified haplogroups, A, B, and C in Albanian and Greek samples, while Italian individuals clustered in groups A and B. In general, the data show a pattern reflecting old migrations that occurred in postneolithic and historical times. PCA analysis on SNP data differentiated breeds with good correspondence to geographical locations. This could reflect geographical isolation, selection operated by local sheep farmers, and different flock management and breed admixture that occurred in the last centuries. PMID:22125424
Myosin-1C uses a novel phosphoinositide-dependent pathway for nuclear localization.
Nevzorov, Ilja; Sidorenko, Ekaterina; Wang, Weihuan; Zhao, Hongxia; Vartiainen, Maria K
2018-02-01
Accurate control of macromolecule transport between nucleus and cytoplasm underlines several essential biological processes, including gene expression. According to the canonical model, nuclear import of soluble proteins is based on nuclear localization signals and transport factors. We challenge this view by showing that nuclear localization of the actin-dependent motor protein Myosin-1C (Myo1C) resembles the diffusion-retention mechanism utilized by inner nuclear membrane proteins. We show that Myo1C constantly shuttles in and out of the nucleus and that its nuclear localization does not require soluble factors, but is dependent on phosphoinositide binding. Nuclear import of Myo1C is preceded by its interaction with the endoplasmic reticulum, and phosphoinositide binding is specifically required for nuclear import, but not nuclear retention, of Myo1C. Our results therefore demonstrate, for the first time, that membrane association and binding to nuclear partners is sufficient to drive nuclear localization of also soluble proteins, opening new perspectives to evolution of cellular protein sorting mechanisms. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
NASA Astrophysics Data System (ADS)
Ma, Wen-Long; Liu, Ren-Bao
2016-08-01
Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.
Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko
Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, butmore » F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.« less
Yoon, J. Cliff; Chickering, Troy W.; Rosen, Evan D.; Dussault, Barry; Qin, Yubin; Soukas, Alexander; Friedman, Jeffrey M.; Holmes, William E.; Spiegelman, Bruce M.
2000-01-01
The nuclear receptor peroxisome proliferator-activated receptor γ regulates adipose differentiation and systemic insulin signaling via ligand-dependent transcriptional activation of target genes. However, the identities of the biologically relevant target genes are largely unknown. Here we describe the isolation and characterization of a novel target gene induced by PPARγ ligands, termed PGAR (for PPARγ angiopoietin related), which encodes a novel member of the angiopoietin family of secreted proteins. The transcriptional induction of PGAR follows a rapid time course typical of immediate-early genes and occurs in the absence of protein synthesis. The expression of PGAR is predominantly localized to adipose tissues and placenta and is consistently elevated in genetic models of obesity. Hormone-dependent adipocyte differentiation coincides with a dramatic early induction of the PGAR transcript. Alterations in nutrition and leptin administration are found to modulate the PGAR expression in vivo. Taken together, these data suggest a possible role for PGAR in the regulation of systemic lipid metabolism or glucose homeostasis. PMID:10866690
The Role of the Nuclear Envelope Protein MAN1 in Mesenchymal Stem Cell Differentiation.
Bermeo, Sandra; Al-Saedi, Ahmed; Kassem, Moustapha; Vidal, Christopher; Duque, Gustavo
2017-12-01
Mutations in MAN1, a protein of the nuclear envelope, cause bone phenotypes characterized by hyperostosis. The mechanism of this pro-osteogenic phenotype remains unknown. We increased and decreased MAN1 expression in mesenchymal stem cells (MSC) upon which standard osteogenic and adipogenic differentiation were performed. MAN1 knockdown increased osteogenesis and mineralization. In contrast, osteogenesis remained stable upon MAN1 overexpression. Regarding a mechanism, we found that low levels of MAN1 facilitated the nuclear accumulation of regulatory smads and smads-related complexes, with a concurrently high expression of nuclear β-Catenin. In addition, we found adipogenesis to be decreased in both conditions, although predominantly affected by MAN1 overexpression. Finally, lamin A, a protein of the nuclear envelope that regulates MSC differentiation, was unaffected by changes in MAN1. In conclusion, our studies demonstrated that lower levels of MAN1 in differentiating MSC are associated with higher osteogenesis and lower adipogenesis. High levels of MAN1 only affected adipogenesis. These effects could have an important role in the understanding of the role of the proteins of the nuclear envelope in bone formation. J. Cell. Biochem. 118: 4425-4435, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Zheng, Qun; Schaefer, Anneliese M.; Nonet, Michael L.
2011-01-01
Little is known about transcriptional control of neurite branching or presynaptic differentiation, events that occur relatively late in neuronal development. Using the Caenorhabditis elegans mechanosensory circuit as an in vivo model, we show that SAM-10, an ortholog of mammalian single-stranded DNA-binding protein (SSDP), functions cell-autonomously in the nucleus to regulate synaptic differentiation, as well as positioning of, a single neurite branch. PLM mechanosensory neurons in sam-10 mutants exhibit abnormal placement of the neurite branch point, and defective synaptogenesis, characterized by an overextended synaptic varicosity, underdeveloped synaptic morphology and disrupted colocalization of active zone and synaptic vesicles. SAM-10 functions coordinately with Lim domain-binding protein 1 (LDB-1), demonstrated by our observations that: (1) mutations in either gene show similar defects in PLM neurons; and (2) LDB-1 is required for SAM-10 nuclear localization. SAM-10 regulates PLM synaptic differentiation by suppressing transcription of prk-2, which encodes an ortholog of the mammalian Pim kinase family. PRK-2-mediated activities of SAM-10 are specifically involved in PLM synaptic differentiation, but not other sam-10 phenotypes such as neurite branching. Thus, these data reveal a novel transcriptional signaling pathway that regulates neuronal specification of neurite branching and presynaptic differentiation. PMID:21115607
Zheng, Qun; Schaefer, Anneliese M; Nonet, Michael L
2011-01-01
Little is known about transcriptional control of neurite branching or presynaptic differentiation, events that occur relatively late in neuronal development. Using the Caenorhabditis elegans mechanosensory circuit as an in vivo model, we show that SAM-10, an ortholog of mammalian single-stranded DNA-binding protein (SSDP), functions cell-autonomously in the nucleus to regulate synaptic differentiation, as well as positioning of, a single neurite branch. PLM mechanosensory neurons in sam-10 mutants exhibit abnormal placement of the neurite branch point, and defective synaptogenesis, characterized by an overextended synaptic varicosity, underdeveloped synaptic morphology and disrupted colocalization of active zone and synaptic vesicles. SAM-10 functions coordinately with Lim domain-binding protein 1 (LDB-1), demonstrated by our observations that: (1) mutations in either gene show similar defects in PLM neurons; and (2) LDB-1 is required for SAM-10 nuclear localization. SAM-10 regulates PLM synaptic differentiation by suppressing transcription of prk-2, which encodes an ortholog of the mammalian Pim kinase family. PRK-2-mediated activities of SAM-10 are specifically involved in PLM synaptic differentiation, but not other sam-10 phenotypes such as neurite branching. Thus, these data reveal a novel transcriptional signaling pathway that regulates neuronal specification of neurite branching and presynaptic differentiation.
Regulation of Mesenchymal Stem Cell Differentiation by Nanopatterning of Bulk Metallic Glass.
Loye, Ayomiposi M; Kinser, Emily R; Bensouda, Sabrine; Shayan, Mahdis; Davis, Rose; Wang, Rui; Chen, Zheng; Schwarz, Udo D; Schroers, Jan; Kyriakides, Themis R
2018-06-08
Mesenchymal stem cell (MSC) differentiation is regulated by surface modification including texturing, which is applied to materials to enhance tissue integration. Here, we used Pt 57.5 Cu 14.7 Ni 5.3 P 22.5 bulk metallic glass (Pt-BMG) with nanopatterned surfaces achieved by thermoplastic forming to influence differentiation of human MSCs. Pt-BMGs are a unique class of amorphous metals with high strength, elasticity, corrosion resistance, and an unusual plastic-like processability. It was found that flat and nanopattened Pt-BMGs induced osteogenic and adipogenic differentiation, respectively. In addition, osteogenic differentiation on flat BMG exceeded that observed on medical grade titanium and was associated with increased formation of focal adhesions and YAP nuclear localization. In contrast, cells on nanopatterned BMGs exhibited rounded morphology, formed less focal adhesions and had mostly cytoplasmic YAP. These changes were preserved on nanopatterns made of nanorods with increased stiffness due to shorter aspect ratios, suggesting that MSC differentiation was primarily influenced by topography. These observations indicate that both elemental composition and nanotopography can modulate biochemical cues and influence MSCs. Moreover, the processability and highly tunable nature of Pt-BMGs enables the creation of a wide range of surface topographies that can be reproducibly and systematically studied, leading to the development of implants capable of engineering MSC functions.
Meuleman, Wouter; Peric-Hupkes, Daan; Kind, Jop; Beaudry, Jean-Bernard; Pagie, Ludo; Kellis, Manolis; Reinders, Marcel; Wessels, Lodewyk; van Steensel, Bas
2013-02-01
In metazoans, the nuclear lamina is thought to play an important role in the spatial organization of interphase chromosomes, by providing anchoring sites for large genomic segments named lamina-associated domains (LADs). Some of these LADs are cell-type specific, while many others appear constitutively associated with the lamina. Constitutive LADs (cLADs) may contribute to a basal chromosome architecture. By comparison of mouse and human lamina interaction maps, we find that the sizes and genomic positions of cLADs are strongly conserved. Moreover, cLADs are depleted of synteny breakpoints, pointing to evolutionary selective pressure to keep cLADs intact. Paradoxically, the overall sequence conservation is low for cLADs. Instead, cLADs are universally characterized by long stretches of DNA of high A/T content. Cell-type specific LADs also tend to adhere to this "A/T rule" in embryonic stem cells, but not in differentiated cells. This suggests that the A/T rule represents a default positioning mechanism that is locally overruled during lineage commitment. Analysis of paralogs suggests that during evolution changes in A/T content have driven the relocation of genes to and from the nuclear lamina, in tight association with changes in expression level. Taken together, these results reveal that the spatial organization of mammalian genomes is highly conserved and tightly linked to local nucleotide composition.
Helledie, Torben; Jørgensen, Claus; Antonius, Marianne; Krogsdam, Ann M; Kratchmarova, Irina; Kristiansen, Karsten; Mandrup, Susanne
2002-10-01
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that are activated by a number of fatty acids and fatty acid derivatives. By contrast, we have recently shown that acyl-CoA esters display PPAR antagonistic properties in vitro. We have also shown that the adipocyte lipid binding protein (ALBP), the keratinocyte lipid binding protein (KLBP) and the acyl-CoA binding protein (ACBP) exhibit a prominent nuclear localization in differentiating 3T3-L1 adipocytes. Similarly, ectopic expression of these proteins in CV-1 cells resulted in a primarily nuclear localization. We therefore speculated that FABPs and ACBP might regulate the availability of PPAR agonists and antagonists by affecting not only their esterification in the cytoplasm but also their transport to and availability in the nucleus. We show here that coexpression of ALBP or ACBP exerts a negative effect on ligand-dependent PPAR transactivation, when tetradecylthioacetic (TTA) is used as ligand but not when the thiazolidinedione BRL49653 is used as ligand. The results presented here do not support the hypothesis that ALBP facilitates the transport of the fatty acid-type ligands to the nucleus, rather ALBP appears to sequester or increase the turn-over of the agonist. Similarly, our results are in keeping with a model in which ACBP increase the metabolism of these ligands.
Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly.
Pasion, S G; Forsburg, S L
1999-12-01
The minichromosome maintenance (MCM) proteins MCM2-MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear.
Nuclear Localization of Schizosaccharomyces pombe Mcm2/Cdc19p Requires MCM Complex Assembly
Pasion, Sally G.; Forsburg, Susan L.
1999-01-01
The minichromosome maintenance (MCM) proteins MCM2–MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear. PMID:10588642
Johansson, Bente Berg; Fjeld, Karianne; Solheim, Marie Holm; Shirakawa, Jun; Zhang, Enming; Keindl, Magdalena; Hu, Jiang; Lindqvist, Andreas; Døskeland, Anne; Mellgren, Gunnar; Flatmark, Torgeir; Njølstad, Pål Rasmus; Kulkarni, Rohit N; Wierup, Nils; Aukrust, Ingvild; Bjørkhaug, Lise
2017-10-15
The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal ( 30 LKKVMRR 36 ) in the human enzyme. Substituting the residues KK 31,32 and RR 35,36 with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell. Copyright © 2017 Elsevier B.V. All rights reserved.
Sureda-Gómez, Miquel; Martín-Durán, José M; Adell, Teresa
2016-11-15
The β-catenin-dependent Wnt pathway exerts multiple context-dependent roles in embryonic and adult tissues. In planarians, β-catenin-1 is thought to specify posterior identities through the generation of an anteroposterior gradient. However, the existence of such a gradient has not been directly demonstrated. Here, we use a specific polyclonal antibody to demonstrate that nuclear β-CATENIN-1 exists as an anteroposterior gradient from the pre-pharyngeal region to the tail of the planarian Schmidtea polychroa High levels in the posterior region steadily decrease towards the pre-pharyngeal region but then increase again in the head region. During regeneration, β-CATENIN-1 is nuclearized in both anterior and posterior blastemas, but the canonical WNT1 ligand only influences posterior nuclearization. Additionally, β-catenin-1 is required for proper anterior morphogenesis, consistent with the high levels of nuclear β-CATENIN-1 observed in this region. We further demonstrate that β-CATENIN-1 is abundant in developing and differentiated organs, and is particularly required for the specification of the germline. Altogether, our findings provide the first direct evidence of an anteroposterior nuclear β-CATENIN-1 gradient in adult planarians and uncover novel, context-dependent roles for β-catenin-1 during anterior regeneration and organogenesis. © 2016. Published by The Company of Biologists Ltd.
Bernardes, Natalia E; Takeda, Agnes A S; Dreyer, Thiago R; Freitas, Fernanda Z; Bertolini, Maria Célia; Fontes, Marcos R M
2015-01-01
Neurospora crassa is a filamentous fungus that has been extensively studied as a model organism for eukaryotic biology, providing fundamental insights into cellular processes such as cell signaling, growth and differentiation. To advance in the study of this multicellular organism, an understanding of the specific mechanisms for protein transport into the cell nucleus is essential. Importin-α (Imp-α) is the receptor for cargo proteins that contain specific nuclear localization signals (NLSs) that play a key role in the classical nuclear import pathway. Structures of Imp-α from different organisms (yeast, rice, mouse, and human) have been determined, revealing that this receptor possesses a conserved structural scaffold. However, recent studies have demonstrated that the Impα mechanism of action may vary significantly for different organisms or for different isoforms from the same organism. Therefore, structural, functional, and biophysical characterization of different Impα proteins is necessary to understand the selectivity of nuclear transport. Here, we determined the first crystal structure of an Impα from a filamentous fungus which is also the highest resolution Impα structure already solved to date (1.75 Å). In addition, we performed calorimetric analysis to determine the affinity and thermodynamic parameters of the interaction between Imp-α and the classical SV40 NLS peptide. The comparison of these data with previous studies on Impα proteins led us to demonstrate that N. crassa Imp-α possess specific features that are distinct from mammalian Imp-α but exhibit important similarities to rice Imp-α, particularly at the minor NLS binding site.
Targeting SMN to Cajal bodies and nuclear gems during neuritogenesis
Navascues, Joaquin; Berciano, Maria T.; Tucker, Karen E.
2006-01-01
Neurite outgrowth is a central feature of neuronal differentiation. PC12 cells are a good model system for studying the peripheral nervous system and the outgrowth of neurites. In addition to the dramatic changes observed in the cytoplasm, neuronal differentiation is also accompanied by striking changes in nuclear morphology. The large and sustained increase in nuclear transcription during neuronal differentiation requires synthesis of a large number of factors involved in pre-mRNA processing. We show that the number and composition of the nuclear subdomains called Cajal bodies and gems changes during the course of N-ras-induced neuritogenesis in the PC12-derived cell line UR61. The Cajal bodies found in undifferentiated cells are largely devoid of the survival of motor neurons (SMN) protein product. As cells shift to a differentiated state, SMN is not only globally upregulated, but is progressively recruited to Cajal bodies. Additional SMN foci (also known as Gemini bodies, gems) can also be detected. Using dual-immunogold labeling electron microscopy and mouse embryonic fibroblasts lacking the coilin protein, we show that gems clearly represent a distinct category of nuclear body. PMID:15164213
Saporita, Anthony J.; Ai, Junkui; Wang, Zhou
2010-01-01
BACKGROUND Androgen receptor (AR) is the key molecule in androgen-refractory prostate cancer. Despite androgen ablative conditions, AR remains active and is necessary for the growth of androgen-refractory prostate cancer cells. Nuclear localization of AR is a prerequisite for its transcriptional activation. We examined AR localization in androgen-dependent and androgen-refractory prostate cancer cells. METHODS AND RESULTS We demonstrate increased nuclear localization of a GFP-tagged AR in the absence of hormone in androgen-refractory C4-2 cells compared to parental androgen-sensitive human prostate cancer LNCaP cells. Analysis of AR mutants impaired in ligand-binding indicates that the nuclear localization of AR in C4-2 cells is truly androgen-independent. The hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), inhibits basal PSA expression and disrupts the ligand-independent nuclear localization of AR at doses much lower than required to inhibit androgen-induced nuclear import. CONCLUSIONS Hsp90 is a key regulator of ligand-independent nuclear localization and activation of AR in androgen-refractory prostate cancer cells. PMID:17221841
Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Lan; Department of Pharmaceutical Sciences, Jilin University, Changchun 130021; Paul, Pritha
2013-05-31
Highlights: •GRP-R signaling differentially regulated the expression of p21 and p27. •Silencing GRP/GRP-R downregulated p21, while p27 expression was upregulated. •Inhibition of GRP/GRP-R signaling enhanced PTEN expression, correlative to the increased expression of p27. •PTEN and p27 co-localized in cytoplasm and silencing PTEN decreased p27 expression. -- Abstract: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated thatmore » GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma.« less
De Luca, Daniele; Cennamo, Paola; Del Guacchio, Emanuele; Di Novella, Riccardo; Caputo, Paolo
2018-02-01
Since its introduction from Central-South America to Italy almost 500 years ago, the common bean (Phaseolus vulgaris L.) was largely cultivated across the peninsula in hundreds of different landraces. However, globalisation and technological modernisation of agricultural practices in the last decades promoted the cultivation of few varieties at the expense of traditional and local agro-ecotypes, which have been confined to local markets or have completely disappeared. The aim of this study was to evaluate the genetic diversity and differentiation in 12 common bean landraces once largely cultivated in the Cilento region (Campania region, southern Italy), and now the object of a recovery program to save them from extinction. The analysis conducted using 13 nuclear microsatellite loci in 140 individuals revealed a high degree of homozygosity within each landrace and a strong genetic differentiation that was reflected in the success in assigning individuals to the source landrace. On the contrary, internal transcribed spacers 1 and 2, analysed in one individual per landrace, were highly similar among common bean landraces but allowed the identification of a cowpea variety (Vigna unguiculata Walp.), a crop largely cultivated in the Old World before the arrival of common bean from Americas. In conclusion, our study highlighted that conservation of landraces is important not only for the cultural and socio-economic value that they have for local communities, but also because the time and conditions in which they have been selected have led to that genetic distinctiveness that is at the basis of many potential agronomical applications and dietary benefits.
Umemoto, Tomoe; Fujiki, Yukio
2012-07-01
Peroxisome proliferator-activated receptors (PPARs) play important roles in diverse biological processes including metabolisms of sugars and lipids and differentiation of cells such as adipocytes. PPARs are transcription factors belonging to the ligand-dependent hormone receptor group. To function as transcription factors, PPARs translocate into nucleus where they associate with transcription apparatus. However, mechanisms underlying nuclear transport of PPARs remain enigmatic. We show here that PPARα and PPARγ dynamically shuttle between nucleus and cytoplasm, although they constitutively and predominantly appear in nucleus. With a series of truncation mutants, we identify that PPAR nuclear transport is mediated by at least two nuclear localization signals (NLSs) in DNA-binding domain (DBD)-hinge and activation function 1 (AF1) regions and their respective receptors including importinα/β, importin 7, and an unidentified receptor. PPARs also harbor two nuclear export signals in DBD and ligand-binding domain regions that are recognized by distinct export receptors, calreticulin and CRM1. Moreover, we show that nuclear-cytoplasmic shuttling of PPARs is regulated by respective PPAR ligands and Ca2+ concentration. Taken together, we suggest that the multiple pathways for the nuclear-cytoplasmic transport of PPARs regulate the biological functions of PPARs in response to external signals. © 2012 The Authors Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
The ZO-1–associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density
Balda, Maria S.; Garrett, Michelle D.; Matter, Karl
2003-01-01
Epithelial tight junctions regulate paracellular permeability, restrict apical/basolateral intramembrane diffusion of lipids, and have been proposed to participate in the control of epithelial cell proliferation and differentiation. Previously, we have identified ZO-1–associated nucleic acid binding proteins (ZONAB), a Y-box transcription factor whose nuclear localization and transcriptional activity is regulated by the tight junction–associated candidate tumor suppressor ZO-1. Now, we found that reduction of ZONAB expression using an antisense approach or by RNA interference strongly reduced proliferation of MDCK cells. Transfection of wild-type or ZONAB-binding fragments of ZO-1 reduced proliferation as well as nuclear ZONAB pools, indicating that promotion of proliferation by ZONAB requires its nuclear accumulation. Overexpression of ZONAB resulted in increased cell density in mature monolayers, and depletion of ZONAB or overexpression of ZO-1 reduced cell density. ZONAB was found to associate with cell division kinase (CDK) 4, and reduction of nuclear ZONAB levels resulted in reduced nuclear CDK4. Thus, our data indicate that tight junctions can regulate epithelial cell proliferation and cell density via a ZONAB/ZO-1–based pathway. Although this regulatory process may also involve regulation of transcription by ZONAB, our data suggest that one mechanism by which ZONAB and ZO-1 influence proliferation is by regulating the nuclear accumulation of CDK4. PMID:12566432
Bonnelye, Edith; Saltel, Frédéric; Chabadel, Anne; Zirngibl, Ralph A; Aubin, Jane E; Jurdic, Pierre
2010-01-01
The orphan nuclear receptor, estrogen receptor-related receptor α (ERRα) is expressed in osteoblasts and osteoclasts (OCs) and has been proposed to be a modulator of estrogen signaling. To determine the role of ERRα in OC biology, we knocked down ERRα activity by transient transfection of an siRNA directed against ERRα in the RAW264.7 monocyte–macrophage cell line that differentiates into OCs in the presence of receptor activator of nuclear factor κB-ligands and macrophage colony-stimulating factor. In parallel, stable RAW cell lines expressing a dominant-negative form of ERRα and green fluorescent protein (RAW-GFP-ERRαΔAF2) were used. Expression of OC markers was assessed by real-time PCR, and adhesion and transmigration tests were performed. Actin cytoskeletal organization was visualized using confocal microscopy. We found that RAW264.7 cells expressing siRNA directed against ERRα and RAW-GFP-ERRαΔAF2 OCs displayed abnormal spreading, and decreased osteopontin and β3 integrin subunit expression compared with the corresponding control cells. Decreased adhesion and the absence of podosome belts concomitant with abnormal localization of c-src were also observed in RAW-GFP-ERRαΔAF2-derived OCs. In addition, RAW-GFP-ERRαΔAF2-derived OCs failed to transmigrate through osteoblast cell layers. Our data show that the impairment of ERRα function does not alter OC precursor proliferation and differentiation but does alter the adhesion/spreading and migration capacities of mature OCs. PMID:20841427
Anderson, Fenja; Rother, Franziska; Rudolph, Kathrin; Prank, Ute; Binz, Anne; Hügel, Stefanie; Hartmann, Enno; Bader, Michael; Bauerfeind, Rudolf; Sodeik, Beate
2018-01-01
Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. PMID:29304174
Evidence of an enhanced nuclear radius of the α -halo state via α +12C inelastic scattering
NASA Astrophysics Data System (ADS)
Ito, Makoto
2018-04-01
Evidence of the enhanced nuclear radius in the Hoyle rotational state, 22+, is derived from the differential cross sections in α +12C inelastic scattering. The prominent shrinkage is observed in the differential cross section of the 22+ state in comparison to the yrast 21+ state, and this shrinkage is the first evidence of the enhanced nuclear radius which originates from the 3 α structure in the 22+ state. A diffraction formula, that is, Blair's phase rule, is applied to the differential cross sections, and the present analysis predicts an enhancement of 0.6 to 1.0 fm in the nuclear radius of the 22+ state in comparison to the radius of the yrast 21+, which is considered to have a normal nuclear radius. Constraint on the recent ab initio calculation for 3 α states in 12C is also discussed.
Gehrmann, Thies; Pelkmans, Jordi F; Ohm, Robin A; Vos, Aurin M; Sonnenberg, Anton S M; Baars, Johan J P; Wösten, Han A B; Reinders, Marcel J T; Abeel, Thomas
2018-04-24
Many fungi are polykaryotic, containing multiple nuclei per cell. In the case of heterokaryons, there are different nuclear types within a single cell. It is unknown what the different nuclear types contribute in terms of mRNA expression levels in fungal heterokaryons. Each cell of the mushroom Agaricus bisporus contains two to 25 nuclei of two nuclear types originating from two parental strains. Using RNA-sequencing data, we assess the differential mRNA contribution of individual nuclear types and its functional impact. We studied differential expression between genes of the two nuclear types, P1 and P2, throughout mushroom development in various tissue types. P1 and P2 produced specific mRNA profiles that changed through mushroom development. Differential regulation occurred at the gene level, rather than at the locus, chromosomal, or nuclear level. P1 dominated mRNA production throughout development, and P2 showed more differentially up-regulated genes in important functional groups. In the vegetative mycelium, P2 up-regulated almost threefold more metabolism genes and carbohydrate active enzymes (cazymes) than P1, suggesting phenotypic differences in growth. We identified widespread transcriptomic variation between the nuclear types of A. bisporus Our method enables studying nucleus-specific expression, which likely influences the phenotype of a fungus in a polykaryotic stage. Our findings have a wider impact to better understand gene regulation in fungi in a heterokaryotic state. This work provides insight into the transcriptomic variation introduced by genomic nuclear separation. Copyright © 2018 the Author(s). Published by PNAS.
Viscuso, Renata; Federico, Concetta; Saccone, Salvatore; Bonaccorsi, Bianca; Vitale, Danilo G M
2016-02-01
A study by fluorescence microscopy has been carried out on male gametes from testicular follicles, seminal vesicles, spermatophores, and seminal receptacles of the bush-cricket Tylopsis liliifolia, focusing the attention on localization and movements of F-actin and α-tubulin during sperm differentiation, since data in this respect are lacking in the Orthoptera. F-actin and α-tubulin positivity was detected in the testicular follicles, in particular at the bridges connecting spermatids of a same clone and around their nucleus, during the first differentiation stages. During the following differentiation stages in the testes, F-actin was found at one of the spermatid poles and then, during nucleus elongation, at the whole acrosomal region. A peculiar F-actin-positivity was found at the flagellum, more markedly immediately posterior to the nucleus, at the basal body region of the gametes from the testicular follicles and from the other examined districts. Other interesting data from our investigations concerns the α-tubulin displacements during the differentiation stages of the spermatid and a constant absence of α-tubulin-positivity where the centrioles are located. No positivity was also found for both α-tubulin and nuclear markers at the anterior region of the gamete, where the acrosomal wings are localized. Our results, compared with what is so far known in literature for the insects, lead us to assert that microfilaments and microtubules undergo gradual displacements, markedly in the testicular follicles, during the morphogenesis of the male gamete of T. liliifolia aimed to its organization and motility and probably also to its interaction with the female gamete. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiang; Kamemura, Kazuo, E-mail: k_kamemura@nagahama-i-bio.ac.jp
2014-07-18
Highlights: • The majority of EWS localizes stably in the cytosol in 3T3-L1 preadipocytes. • Adipogenic stimuli induce the nuclear localization of EWS. • Adipogenesis promotes O-GlcNAcylation of EWS. • O-GlcNAcylation stimulates the recruitment of EWS to the nuclear periphery. - Abstract: Although the Ewing sarcoma (EWS) proto-oncoprotein is found in the nucleus and cytosol and is associated with the cell membrane, the regulatory mechanisms of its subcellular localization are still unclear. Here we found that adipogenic stimuli induce the nuclear localization of EWS in 3T3-L1 cells. Tyrosine phosphorylation in the C-terminal PY-nuclear localization signal of EWS was negative throughoutmore » adipogenesis. Instead, an adipogenesis-dependent increase in O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of EWS was observed. Pharmacological inactivation of O-GlcNAcase in preadipocytes promoted perinuclear localization of EWS. Our findings suggest that the nuclear localization of EWS is partly regulated by the glycosylation.« less
Turner, Trudy R.; Coetzer, Willem G.; Schmitt, Christopher A.; Lorenz, Joseph G.; Freimer, Nelson B.; Grobler, J. Paul
2015-01-01
Objectives Vervet monkeys are common in most tree-rich areas of South Africa, but their absence from grassland and semi-desert areas of the country suggest potentially restricted and mosaic local population patterns that may have relevance to local phenotype patterns and selection. A portion of the mtDNA control region was sequenced to study patterns of genetic differentiation. Materials and Methods DNA was extracted and mtDNA sequences were obtained from 101 vervet monkeys at 15 localities which represent both an extensive (widely across the distribution range) and intensive (more than one troop at most of the localities) sampling strategy. Analyses utilized Arlequin 3.1, MEGA 6, BEAST v1.5.2 and Network V3.6.1 Results The dataset contained 26 distinct haplotypes, with six populations fixed for single haplotypes. Pairwise P-distance among population pairs showed significant differentiation among most population pairs, but with non-significant differences among populations within some regions. Populations were grouped into three broad clusters in a maximum likelihood phylogenetic tree and a haplotype network. These clusters correspond to (i) north-western, northern and north-eastern parts of the distribution range as well as the northern coastal belt; (ii) central areas of the country; and (iii) southern part of the Indian Ocean coastal belt, and adjacent inland areas. Discussion Apparent patterns of genetic structure correspond to current and past distribution of suitable habitat, geographic barriers to gene flow, geographic distance and female philopatry. However, further work on nuclear markers and other genomic data is necessary to confirm these results. PMID:26265297
Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm
Wang, C-H; Zheng, X-M; Xu, Q; Yuan, X-P; Huang, L; Zhou, H-F; Wei, X-H; Ge, S
2014-01-01
Despite extensive studies on cultivated rice, the genetic structure and subdivision of this crop remain unclear at both global and local scales. Using 84 nuclear simple sequence repeat markers, we genotyped a panel of 153 global rice cultivars covering all previously recognized groups and 826 cultivars representing the diversity of Chinese rice germplasm. On the basis of model-based grouping, neighbour-joining tree and principal coordinate analysis, we confirmed the widely accepted five major groups of rice cultivars (indica, aus, aromatic, temperate japonica and tropical japonica), and demonstrated that rayada rice was unique in genealogy and should be treated as a new (the sixth) major group of rice germplasm. With reference to the global classification of rice cultivars, we identified three major groups (indica, temperate japonica and tropical japonica) in Chinese rice germplasm and showed that Chinese temperate japonica contained higher diversity than that of global samples, whereas Chinese indica and tropical japonica maintained slightly lower diversity than that present in the global samples. Particularly, we observed that all seasonal, drought-tolerant and endosperm types occurred within each of three major groups of Chinese cultivars, which does not support previous claims that seasonal differentiation exists in Indica and drought-tolerant differentiation is present in Japonica. It is most likely that differentiation of cultivar types arose multiple times stemming from artificial selection for adaptation to local environments. PMID:24326293
Facile rhenium-peptide conjugate synthesis using a one-pot derived Re(CO)3 reagent.
Chanawanno, Kullapa; Kondeti, Vinay; Caporoso, Joel; Paruchuri, Sailaja; Leeper, Thomas C; Herrick, Richard S; Ziegler, Christopher J
2016-03-21
We have synthesized two Re(CO)3-modified lysine complexes (1 and 2), where the metal is attached to the amino acid at the Nε position, via a one-pot Schiff base formation reaction. These compounds can be used in the solid phase synthesis of peptides, and to date we have produced four conjugate systems incorporating neurotensin, bombesin, leutenizing hormone releasing hormone, and a nuclear localization sequence. We observed uptake into human umbilical vascular endothelial cells as well as differential uptake depending on peptide sequence identity, as characterized by fluorescence and rhenium elemental analysis.
ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee
2013-08-01
Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalizedmore » to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.« less
Murugananthkumar, R; Akhila, M V; Rajakumar, A; Mamta, S K; Sudhakumari, C C; Senthilkumaran, B
2016-12-01
Testicular receptor 2 (TR2; also known as Nr2c1) is one of the first orphan nuclear receptors identified and known to regulate various physiological process with or without any ligand. In this study, we report the cloning of full length nr2c1 and its expression analysis during gonadal development, seasonal testicular cycle and after human chorionic gonadotropin (hCG) induction. In addition, in situ hybridization (ISH) was performed to localize nr2c1 transcripts in adult testis and whole catfish (1day post hatch). Tissue distribution and gonadal ontogeny studies revealed high expression of nr2c1 in developing and adult testis. Early embryonic stage-wise expression of nr2c1 seems to emphasize its importance in cellular differentiation and development. Substantial expression of nr2c1 during pre-spawning phase and localization of nr2c1 transcripts in sperm/spermatids were observed. Significant upregulation after hCG induction indicate that nr2c1 is under the regulation of gonadotropins. Whole mount ISH analysis displayed nr2c1 expression in notochord indicating its role in normal vertebrate development. Taken together, our findings suggest that nr2c1 may have a plausible role in the testicular and embryonic development of catfish. Copyright © 2015. Published by Elsevier Inc.
From cutting-edge pointwise cross-section to groupwise reaction rate: A primer
NASA Astrophysics Data System (ADS)
Sublet, Jean-Christophe; Fleming, Michael; Gilbert, Mark R.
2017-09-01
The nuclear research and development community has a history of using both integral and differential experiments to support accurate lattice-reactor, nuclear reactor criticality and shielding simulations, as well as verification and validation efforts of cross sections and emitted particle spectra. An important aspect to this type of analysis is the proper consideration of the contribution of the neutron spectrum in its entirety, with correct propagation of uncertainties and standard deviations derived from Monte Carlo simulations, to the local and total uncertainty in the simulated reactions rates (RRs), which usually only apply to one application at a time. This paper identifies deficiencies in the traditional treatment, and discusses correct handling of the RR uncertainty quantification and propagation, including details of the cross section components in the RR uncertainty estimates, which are verified for relevant applications. The methodology that rigorously captures the spectral shift and cross section contributions to the uncertainty in the RR are discussed with quantified examples that demonstrate the importance of the proper treatment of the spectrum profile and cross section contributions to the uncertainty in the RR and subsequent response functions. The recently developed inventory code FISPACT-II, when connected to the processed nuclear data libraries TENDL-2015, ENDF/B-VII.1, JENDL-4.0u or JEFF-3.2, forms an enhanced multi-physics platform providing a wide variety of advanced simulation methods for modelling activation, transmutation, burnup protocols and simulating radiation damage sources terms. The system has extended cutting-edge nuclear data forms, uncertainty quantification and propagation methods, which have been the subject of recent integral and differential, fission, fusion and accelerators validation efforts. The simulation system is used to accurately and predictively probe, understand and underpin a modern and sustainable understanding of the nuclear physics that is so important for many areas of science and technology; advanced fission and fuel systems, magnetic and inertial confinement fusion, high energy, accelerator physics, medical application, isotope production, earth exploration, astrophysics and homeland security.
Local dynamic nuclear polarization using quantum point contacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wald, K.R.; Kouwenhoven, L.P.; McEuen, P.L.
1994-08-15
We have used quantum point contacts (QPCs) to locally create and probe dynamic nuclear polarization (DNP) in GaAs heterostructures in the quantum Hall regime. DNP is created via scattering between spin-polarized Landau level electrons and the Ga and As nuclear spins, and it leads to hysteresis in the dc transport characteristics. The nuclear origin of this hysteresis is demonstrated by nuclear magnetic resonance (NMR). Our results show that QPCs can be used to create and probe local nuclear spin populations, opening up new possibilities for mesoscopic NMR experiments.
Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X
2017-10-01
The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.
Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.
Shen, Shu; Tobery, Cynthia E; Rose, Mark D
2009-05-01
Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.
Nuclear surface diffuseness revealed in nucleon-nucleus diffraction
NASA Astrophysics Data System (ADS)
Hatakeyama, S.; Horiuchi, W.; Kohama, A.
2018-05-01
The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.
Brown, Nicola J M; Ramalho, Michal; Pedersen, Eva W; Moravcsik, Eva; Solomon, Ellen; Grimwade, David
2009-01-01
The promyelocytic leukemia gene (PML) encodes a protein which localizes to PML-nuclear bodies (NBs), sub-nuclear multi-protein structures, which have been implicated in diverse biological functions such as apoptosis, cell proliferation and senescence. However, the exact biochemical and molecular basis of PML function up until now has not been defined. Strikingly, over a decade ago, PML-NBs were found to be disrupted in acute promyelocytic leukemia (APL) in which PML is fused to the gene encoding retinoic acid receptor alpha (RARA) due to the t(15;17) chromosomal translocation, generating the PML-RARA chimeric protein. The treatment of APL patients with all-transretinoic acid (ATRA) and arsenic trioxide which target the PML-RARA oncoprotein results in clinical remission, associated with blast cell differentiation and reformation of the PML NBs, thus linking NB integrity with disease status. This review focuses on the current theories for molecular and biochemical functions of the PML-NBs, which would imply a role in the pathogenesis of APL, whilst also discussing the intriguing possibility that their disruption may not be in itself a significant oncogenic event.
Hearst, Scoty M; Gilder, Andrew S; Negi, Sandeep S; Davis, Misty D; George, Eric M; Whittom, Angela A; Toyota, Cory G; Husedzinovic, Alma; Gruss, Oliver J; Hebert, Michael D
2009-06-01
Cajal bodies (CBs) are nuclear structures that are thought to have diverse functions, including small nuclear ribonucleoprotein (snRNP) biogenesis. The phosphorylation status of coilin, the CB marker protein, might impact CB formation. We hypothesize that primary cells, which lack CBs, contain different phosphoisoforms of coilin compared with that found in transformed cells, which have CBs. Localization, self-association and fluorescence recovery after photobleaching (FRAP) studies on coilin phosphomutants all suggest this modification impacts the function of coilin and may thus contribute towards CB formation. Two-dimensional gel electrophoresis demonstrates that coilin is hyperphosphorylated in primary cells compared with transformed cells. mRNA levels of the nuclear phosphatase PPM1G are significantly reduced in primary cells and expression of PPM1G in primary cells induces CBs. Additionally, PPM1G can dephosphorylate coilin in vitro. Surprisingly, however, expression of green fluorescent protein alone is sufficient to form CBs in primary cells. Taken together, our data support a model whereby coilin is the target of an uncharacterized signal transduction cascade that responds to the increased transcription and snRNP demands found in transformed cells.
Lange, Alexander W; Sridharan, Anusha; Xu, Yan; Stripp, Barry R; Perl, Anne-Karina; Whitsett, Jeffrey A
2015-02-01
The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
YAP1 Is a Driver of Myofibroblast Differentiation in Normal and Diseased Fibroblasts.
Piersma, Bram; de Rond, Saskia; Werker, Paul M N; Boo, Stellar; Hinz, Boris; van Beuge, Marike M; Bank, Ruud A
2015-12-01
Dupuytren disease is a fibrotic disorder characterized by contraction of myofibroblast-rich cords and nodules in the hands. The Hippo member Yes-associated protein 1 (YAP1) is activated by tissue stiffness and the profibrotic transforming growth factor-β1, but its role in cell fibrogenesis is yet unclear. We hypothesized that YAP1 regulates the differentiation of dermal fibroblasts into highly contractile myofibroblasts and that YAP1 governs the maintenance of a myofibroblast phenotype in primary Dupuytren cells. Knockdown of YAP1 in transforming growth factor-β1-stimulated dermal fibroblasts decreased the formation of contractile smooth muscle α-actin stress fibers and the deposition of collagen type I, which are hallmark features of myofibroblasts. Translating our findings to a clinically relevant model, we found that YAP1 deficiency in Dupuytren disease myofibroblasts resulted in decreased expression of ACTA2, COL1A1, and CCN2 mRNA, but this did not result in decreased protein levels. YAP1-deficient Dupuytren myofibroblasts showed decreased contraction of a collagen hydrogel. Finally, we showed that YAP1 levels and nuclear localization were elevated in affected Dupuytren disease tissue compared with matched control tissue and partly co-localized with smooth muscle α-actin-positive cells. In conclusion, our data show that YAP1 is a regulator of myofibroblast differentiation and contributes to the maintenance of a synthetic and contractile phenotype, in both transforming growth factor-β1-induced myofibroblast differentiation and primary Dupuytren myofibroblasts. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Varley, Claire Lucy; Stahlschmidt, Jens; Smith, Barbara; Stower, Michael; Southgate, Jennifer
2004-05-01
We observed that in urothelium, both cornifying and noncornifying forms of squamous metaplasia are accompanied by changes in the localization of the nuclear hormone receptors, peroxisome proliferator activated receptor gamma (PPAR-gamma) and retinoid X receptor (RXR-alpha). To obtain objective evidence for a role for PPAR-gamma-mediated signaling in urothelial differentiation, we examined expression of the cytokeratin isotypes CK13, CK20, and CK14 as indicators of transitional, terminal transitional, and squamous differentiation, respectively, in cultures of normal human urothelial cells. In control culture conditions, normal human urothelial cells showed evidence of squamous differentiation (CK14+, CK13-, CK20-). Treatment with the high-affinity PPAR-gamma agonist, troglitazone (TZ), resulted in gain of CK13 and loss of CK14 protein expression. The effect of TZ was significantly augmented when the autocrine-stimulated epidermal growth factor receptor pathway was inhibited and this resulted in induction of CK20 expression. The RXR-specific inhibitors PA452, HX531, and HX603 inhibited the TZ-induced CK13 expression, supporting a role for RXR in the induction of CK13 expression. Thus, signaling through PPAR-gamma can mediate transitional differentiation of urothelial cells and this is modulated by growth regulatory programs.
Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening.
Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z; Wickrema, Amittha; Yang, Jing; Ji, Peng
2016-03-07
Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step toward chromatin condensation during erythropoiesis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Nuclear condensation during mouse erythropoiesis requires caspase-3-mediated nuclear opening
Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z.; Wickrema, Amittha; Yang, Jing; Ji, Peng
2016-01-01
SUMMARY Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step towards chromatin condensation during erythropoiesis in mice. PMID:26954545
Bateman, Nicholas W; Shoji, Yutaka; Conrads, Kelly A; Stroop, Kevin D; Hamilton, Chad A; Darcy, Kathleen M; Maxwell, George L; Risinger, John I; Conrads, Thomas P
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Nicholas W.; The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD; Shoji, Yutaka
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. - Highlights: • We have identified a bipartitemore » nuclear localization sequence (NLS) in ARID1A. • Confirmation of the NLS was performed using GFP constructs. • NLS mutant ARID1A exhibits greater stability than wild-type ARID1A.« less
Discrimination between NL1- and NL2-Mediated Nuclear Localization of the Glucocorticoid Receptor
Savory, Joanne G. A.; Hsu, Brian; Laquian, Ian R.; Giffin, Ward; Reich, Terry; Haché, Robert J. G.; Lefebvre, Yvonne A.
1999-01-01
Glucocorticoid receptor (GR) cycles between a free liganded form that is localized to the nucleus and a heat shock protein (hsp)-immunophilin-complexed, unliganded form that is usually localized to the cytoplasm but that can also be nuclear. In addition, rapid nucleocytoplasmic exchange or shuttling of the receptor underlies its localization. Nuclear import of liganded GR is mediated through a well-characterized sequence, NL1, adjacent to the receptor DNA binding domain and a second, uncharacterized motif, NL2, that overlaps with the ligand binding domain. In this study we report that rapid nuclear import (half-life [t1/2] of 4 to 6 min) of agonist- and antagonist-treated GR and the localization of unliganded, hsp-associated GRs to the nucleus in G0 are mediated through NL1 and correlate with the binding of GR to pendulin/importin α. By contrast, NL2-mediated nuclear transfer of GR occurred more slowly (t1/2 = 45 min to 1 h), was agonist specific, and appeared to be independent of binding to importin α. Together, these results suggest that NL2 mediates the nuclear import of GR through an alternative nuclear import pathway. Nuclear export of GR was inhibited by leptomycin B, suggesting that the transfer of GR to the cytoplasm is mediated through the CRM1-dependent pathway. Inhibition of GR nuclear export by leptomycin B enhanced the nuclear localization of both unliganded, wild-type GR and hormone-treated NL1− GR. These results highlight that the subcellular localization of both liganded and unliganded GRs is determined, at least in part, by a flexible equilibrium between the rates of nuclear import and export. PMID:9891038
Arachidonate 15-Lipoxygenase 2 as an Endogenous Inhibitor of Prostate Cancer Development
2006-03-01
dehydrogenase; NHP, normal human prostate epithelial cells; PCa, prostate cancer; NLS, nuclear localization signal; PPAR -, peroxisome proliferator...cloned, i.e., 15-LOX2sv-a/b/c, are mostly excluded from the nucleus. A potential bi-partite nuclear localization signal (NLS...only partially involved in the nuclear import of 15-LOX2. To elucidate the relationship between nuclear localization , enzymatic activity, and tumor
Properties of field functionals and characterization of local functionals
NASA Astrophysics Data System (ADS)
Brouder, Christian; Dang, Nguyen Viet; Laurent-Gengoux, Camille; Rejzner, Kasia
2018-02-01
Functionals (i.e., functions of functions) are widely used in quantum field theory and solid-state physics. In this paper, functionals are given a rigorous mathematical framework and their main properties are described. The choice of the proper space of test functions (smooth functions) and of the relevant concept of differential (Bastiani differential) are discussed. The relation between the multiple derivatives of a functional and the corresponding distributions is described in detail. It is proved that, in a neighborhood of every test function, the support of a smooth functional is uniformly compactly supported and the order of the corresponding distribution is uniformly bounded. Relying on a recent work by Dabrowski, several spaces of functionals are furnished with a complete and nuclear topology. In view of physical applications, it is shown that most formal manipulations can be given a rigorous meaning. A new concept of local functionals is proposed and two characterizations of them are given: the first one uses the additivity (or Hammerstein) property, the second one is a variant of Peetre's theorem. Finally, the first step of a cohomological approach to quantum field theory is carried out by proving a global Poincaré lemma and defining multi-vector fields and graded functionals within our framework.
Genomic Pangea: coordinate gene regulation and cell-specific chromosomal topologies.
Laster, Kyle; Kosak, Steven T
2010-06-01
The eukaryotic nucleus is functionally organized. Gene loci, for example, often reveal altered localization patterns according to their developmental regulation. Whole chromosomes also demonstrate non-random nuclear positions, correlated with inherent characteristics such as gene density or size. Given that hundreds to thousands of genes are coordinately regulated in any given cell type, interest has grown in whether chromosomes may be specifically localized according to gene regulation. A synthesis of the evidence for preferential chromosomal organization suggests that, beyond basic characteristics, chromosomes can assume positions functionally related to gene expression. Moreover, analysis of total chromosome organization during cellular differentiation indicates that unique chromosome topologies, albeit probabilistic, in effect define a cell lineage. Future work with new techniques, including the advanced forms of the chromosome conformation capture (3C), and the development of next-generation whole-genome imaging approaches, will help to refine our view of chromosomal organization. We suggest that genomic organization during cellular differentiation should be viewed as a dynamic process, with gene expression patterns leading to chromosome associations that feed back on themselves, leading to the self-organization of the genome according to coordinate gene regulation. Copyright 2010 Elsevier Ltd. All rights reserved.
Reorganization of the nuclear lamina and cytoskeleton in adipogenesis.
Verstraeten, Valerie L R M; Renes, Johan; Ramaekers, Frans C S; Kamps, Miriam; Kuijpers, Helma J; Verheyen, Fons; Wabitsch, Martin; Steijlen, Peter M; van Steensel, Maurice A M; Broers, Jos L V
2011-03-01
A thorough understanding of fat cell biology is necessary to counter the epidemic of obesity. Although molecular pathways governing adipogenesis are well delineated, the structure of the nuclear lamina and nuclear-cytoskeleton junction in this process are not. The identification of the 'linker of nucleus and cytoskeleton' (LINC) complex made us consider a role for the nuclear lamina in adipose conversion. We herein focused on the structure of the nuclear lamina and its coupling to the vimentin network, which forms a cage-like structure surrounding individual lipid droplets in mature adipocytes. Analysis of a mouse and human model system for fat cell differentiation showed fragmentation of the nuclear lamina and subsequent loss of lamins A, C, B1 and emerin at the nuclear rim, which coincides with reorganization of the nesprin-3/plectin/vimentin complex into a network lining lipid droplets. Upon 18 days of fat cell differentiation, the fraction of adipocytes expressing lamins A, C and B1 at the nuclear rim increased, though overall lamin A/C protein levels were low. Lamin B2 remained at the nuclear rim throughout fat cell differentiation. Light and electron microscopy of a subcutaneous adipose tissue specimen showed striking indentations of the nucleus by lipid droplets, suggestive for an increased plasticity of the nucleus due to profound reorganization of the cellular infrastructure. This dynamic reorganization of the nuclear lamina in adipogenesis is an important finding that may open up new venues for research in and treatment of obesity and nuclear lamina-associated lipodystrophy.
Coexistence of the social types: genetic population structure in the ant Formica exsecta.
Seppä, Perttu; Gyllenstrand, Niclas; Corander, Jukka; Pamilo, Pekka
2004-11-01
The ant Formica exsecta has two types of colonies that exist in sympatry but usually as separate subpopulations: colonies with simple social organization and single queens (M type) or colonial networks with multiple queens (P type). We used both nuclear (DNA microsatellites) and mitochondrial markers to study the transition between the social types, and the contribution of males and females in gene flow within and between the types. Our results showed that the social types had different spatial genetic structures. The M subpopulations formed a fairly uniform population, whereas the P subpopulations were, on average, more differentiated from each other than from the nearby M subpopulations and could have been locally established from the M-type colonies, followed by philopatric behavior and restricted emigration of females. Thus, the relationship between the two social types resembles that of source (M type) and sink (P type) populations. The comparison of mitochondrial (phiST) and nuclear (FST) differentiation indicates that the dispersal rate of males is four to five times larger than that of females both among the P-type subpopulations and between the social types. Our results suggest that evolution toward complex social organization can have an important effect on genetic population structure through changes in dispersal behavior associated with different sociogenetic organizations.
Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S
1999-03-05
Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.
2010-01-01
Background Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations to physico-chemical stressors may directly affect the survival probability in divergent habitat types. PMID:20731863
Plath, Martin; Hermann, Bernd; Schröder, Christiane; Riesch, Rüdiger; Tobler, Michael; García de León, Francisco J; Schlupp, Ingo; Tiedemann, Ralph
2010-08-23
Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations to physico-chemical stressors may directly affect the survival probability in divergent habitat types.
Characterization of karyopherins in androgen receptor intracellular trafficking in the yeast model
Nguyen, Minh M; Harmon, Robert M; Wang, Zhou
2014-01-01
Background: Mechanisms regulating androgen receptor (AR) subcellular localization represent an essential component of AR signaling. Karyopherins are a family of nucleocytoplasmic trafficking factors. In this paper, we used the yeast model to study the effects of karyopherins on the subcellular localization of the AR. Methods: Yeast mutants deficient in different nuclear transport factors were transformed with various AR based, GFP tagged constructs and their localization was monitored using microscopy. Results: We showed that yeast can mediate androgen-induced AR nuclear localization and that in addition to the import factor, Importinα/β, this process required the import karyopherin Sxm1. We also showed that a previously identified nuclear export sequence (NESAR) in the ligand binding domain of AR does not appear to rely on karyopherins for cytoplasmic localization. Conclusions: These results suggest that while AR nuclear import relies on karyopherin activity, AR nuclear export and/or cytoplasmic localization may require other undefined mechanisms. PMID:25031696
Zang, Aiping; Xu, Xiaojie; Neill, Steven; Cai, Weiming
2010-01-01
Nucleo-cytoplasmic partitioning of regulatory proteins is increasingly being recognized as a major control mechanism for the regulation of signalling in plants. Ras-related nuclear protein (Ran) GTPase is required for regulating transport of proteins and RNA across the nuclear envelope and also has roles in mitotic spindle assembly and nuclear envelope (NE) assembly. However, thus far little is known of any Ran functions in the signalling pathways in plants in response to changing environmental stimuli. The OsRAN2 gene, which has high homology (77% at the amino acid level) with its human counterpart, was isolated here. Subcellular localization results showed that OsRan2 is mainly localized in the nucleus, with some in the cytoplasm. Transcription of OsRAN2 was reduced by salt, osmotic, and exogenous abscisic acid (ABA) treatments, as determined by real-time PCR. Overexpression of OsRAN2 in rice resulted in enhanced sensitivity to salinity, osmotic stress, and ABA. Seedlings of transgenic Arabidopsis thaliana plants overexpressing OsRAN2 were overly sensitive to salinity stress and exogenous ABA treatment. Furthermore, three ABA- or stress-responsive genes, AtNCED3, AtPLC1, and AtMYB2, encoding a key enzyme in ABA synthesis, a phospholipase C homologue, and a putative transcriptional factor, respectively, were shown to have differentially induced expression under salinity and ABA treatments in transgenic and wild-type Arabidopsis plants. OsRAN2 overexpression in tobacco epidermal leaf cells disturbed the nuclear import of a maize (Zea mays L.) leaf colour transcription factor (Lc). In addition, gene-silenced rice plants generated via RNA interference (RNAi) displayed pleiotropic developmental abnormalities and were male sterile. PMID:20018899
Rogers, Jason V; Rose, Mark D
2014-12-02
During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p's functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. Copyright © 2015 Rogers and Rose.
Rogers, Jason V.; Rose, Mark D.
2014-01-01
During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide–sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p’s functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. PMID:25467943
Clément, Florencia; Martin, Ayelen; Venara, Marcela; de Luján Calcagno, Maria; Mathó, Cecilia; Maglio, Silvana; Lombardi, Mercedes García; Bergadá, Ignacio; Pennisi, Patricia A
2018-06-01
Nuclear localization of insulin-like growth factor receptor type 1 (IGF-1R) has been described as adverse prognostic factor in some cancers. We studied the expression and localization of IGF-1R in paediatric patients with gliomas, as well as its association with World Health Organization (WHO) grading and survival. We conducted a single cohort, prospective study of paediatric patients with gliomas. Samples were taken at the time of the initial surgery; IGF-1R expression and localization were characterized by immunohistochemistry (IHC), subcellular fractionation and western blotting. Tumours (47/53) showed positive staining for IGF-1R by IHC. IGF-1R nuclear labelling was observed in 10/47 cases. IGF-1R staining was mostly non-nuclear in low-grade tumours, while IGF-1R nuclear labelling was predominant in high-grade gliomas (p = 0.0001). Survival was significantly longer in patients with gliomas having non-nuclear IGF-1R localization than in patients with nuclear IGF-1R tumours (p = 0.016). In gliomas, IGF-1R nuclear localization was significantly associated with both high-grade tumours and increased risk of death. Based on a prospective design, we provide evidence of a potential usefulness of intracellular localization of IGF-1R as prognostic factor in paediatric patients with gliomas.
Hozumi, Shunya; Aoki, Shun; Kikuchi, Yutaka
2017-11-01
Asymmetric nuclear positioning is observed during animal development, but its regulation and significance in cell differentiation remain poorly understood. Using zebrafish blastulae, we provide evidence that nuclear movement towards the yolk syncytial layer, which comprises extraembryonic tissue, occurs in the first cells fated to differentiate into the endoderm. Nodal signaling is essential for nuclear movement, whereas nuclear envelope proteins are involved in movement through microtubule formation. Positioning of the microtubule-organizing center, which is proposed to be crucial for nuclear movement, is regulated by Nodal signaling and nuclear envelope proteins. The non-Smad JNK signaling pathway, which is downstream of Nodal signaling, regulates nuclear movement independently of the Smad pathway, and this nuclear movement is associated with Smad signal transduction toward the nucleus. Our study provides insight into the function of nuclear movement in Smad signaling toward the nucleus, and could be applied to the control of TGFβ signaling. © 2017. Published by The Company of Biologists Ltd.
Mesenchymal stem cell therapy for cutaneous radiation syndrome.
Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi
2010-06-01
Systemic and local radiation injuries caused by nuclear power reactor accidents, therapeutic irradiation, or nuclear terrorism should be prevented or properly treated in order to improve wound management and save lives. Currently, regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with a local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells and adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and were tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who were suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. In the experiments, the hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. In vivo, 4 Gy rat whole body irradiation demonstrated that sustained marrow stromal (mesenchymal stem) cells survived in the bone marrow. Immediate artificial dermis application impregnated with cells and the cytokine over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angiogenesis, architected dermal reconstitution, and less inflammatory epidermal recovery. Detailed understanding of underlying diseases and rational reconstructive procedures brings about good outcomes for difficult irradiated wound healing. Adipose-derived stem cells are also implicated in the limited local injuries for short cell harvesting and processing time in the same subject.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanza, Daniel C.F.; Trindade, Daniel M.; Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP
2008-06-10
FEZ1 (Fasciculation and elongation protein zeta 1) is an ortholog of the Caenorhabditis elegans protein UNC-76, involved in neuronal development and axon outgrowth, in that worm. Mammalian FEZ1 has already been reported to cooperate with PKC-zeta in the differentiation and polarization of PC12 neuronal cells. Furthermore, FEZ1 is associated with kinesin 1 and JIP1 to form a cargo-complex responsible for microtubule based transport of mitochondria along axons. FEZ1 can also be classified as a hub protein, since it was reported to interact with over 40 different proteins in yeast two-hybrid screens, including at least nine nuclear proteins. Here, we transientlymore » over-expressed GFP-FEZ1full in human HEK293 and HeLa cells in order to study the sub-cellular localization of GFP-FEZ1. We observed that over 40% of transiently transfected cells at 3 days post-transfection develop multi-lobulated nuclei, which are also called flower-like nuclei. We further demonstrated that GFP-FEZ1 localizes either to the cytoplasm or the nuclear fraction, and that the appearance of the flower-like nuclei depends on intact microtubule function. Finally, we show that FEZ1 co-localizes with both, {alpha}- and especially with {gamma}-tubulin, which localizes as a centrosome like structure at the center of the multiple lobules. In summary, our data suggest that FEZ1 has an important centrosomal function and supply new mechanistic insights to the formation of flower-like nuclei, which are a phenotypical hallmark of human leukemia cells.« less
NASA Astrophysics Data System (ADS)
Madigan, Ann-Marie; Halle, Andrew; Moody, Mackenzie; McCourt, Michael; Nixon, Chris; Wernke, Heather
2018-02-01
In some galaxies, the stars orbiting the supermassive black hole take the form of an eccentric nuclear disk, in which every star is on a coherent, apsidally aligned orbit. The most famous example of an eccentric nuclear disk is the double nucleus of Andromeda, and there is strong evidence for many more in the local universe. Despite their apparent ubiquity, however, a dynamical explanation for their longevity has remained a mystery: differential precession should wipe out large-scale apsidal-alignment on a short timescale. Here we identify a new dynamical mechanism which stabilizes eccentric nuclear disks, and explain for the first time the negative eccentricity gradient seen in the Andromeda nucleus. The stabilizing mechanism drives oscillations of the eccentricity vectors of individual orbits, both in direction (about the mean body of the disk) and in magnitude. Combined with the negative eccentricity gradient, the eccentricity oscillations push some stars near the inner edge of the disk extremely close to the black hole, potentially leading to tidal disruption events (TDEs). Order of magnitude calculations predict extremely high rates in recently formed eccentric nuclear disks (∼0.1–1 {{yr}}-1 {{gal}}-1). Unless the stellar disks are replenished, these rates should decrease with time as the disk depletes in mass. If eccentric nuclear disks form during gas-rich major mergers, this may explain the preferential occurrence of TDEs in recently merged and post-merger (E+A/K+A) galaxies.
Kashima, Makoto; Agata, Kiyokazu; Shibata, Norito
2018-06-01
Nuclear PIWIs together with their guide RNAs (piRNAs) epigenetically silence various genes including transposons in many organisms. In planarians, the nuclear piwi family gene, DjpiwiB is specifically transcribed in adult pluripotent stem cells (adult PSC, neoblast), but not in differentiated cells. However, the protein accumulates in the nuclei of both neoblasts and their descendant differentiated cells. Interestingly, PIWI(DjPiwiB)-piRNA complexes are indispensable for the repression of transposable genes at the onset of differentiation from neoblasts. Here, we conducted a comparative transcriptome analysis between control and DjpiwiB(RNAi) animals to identify non-transposable target genes of the DjPiwiB-piRNA complexes. Using bioinformatic analyses and RNAi we demonstrate that DjPiwiB-piRNA complexes are required for the proper expression of Djmcm2 and Djhistone h4 in neoblasts and that DjPiwiB-piRNA complexes regulate the transient expression of Djcalu during neoblast differentiation. Thus, DjPiwiB-piRNA complexes regulate the correct expression patterns during neoblast self-renewal and differentiation. © 2018 Japanese Society of Developmental Biologists.
Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostlund, Cecilia; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Guan, Tinglu
2009-11-13
Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients withmore » FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.« less
2013-01-01
Background Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. Methods We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. Results We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. Conclusions Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product. PMID:23663560
Goal Direction and Effectiveness, Emotional Maturity, and Nuclear Family Functioning
ERIC Educational Resources Information Center
Klever, Phillip
2009-01-01
Differentiation of self, a cornerstone concept in Bowen theory, has a profound influence over time on the functioning of the individual and his or her family unit. This 5-year longitudinal study tested this hypothesis with 50 developing nuclear families. The dimensions of differentiation of self that were examined were goal direction and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muha, Villo; Zagyva, Imre; Venkei, Zsolt
2009-04-03
Two dUTPase isoforms (23 kDa and 21 kDa) are present in the fruitfly with the sole difference of an N-terminal extension. In Drosophila embryo, both isoforms are detected inside the nucleus. Here, we investigated the function of the N-terminal segment using eYFP-dUTPase constructs. In Schneider 2 cells, only the 23 kDa construct showed nuclear localization arguing that it may contain a nuclear localization signal (NLS). Sequence comparisons identified a lysine-rich nonapeptide with similarity to the human c-myc NLS. In Drosophila embryos during nuclear cleavages, the 23 kDa isoform showed the expected localization shifts. Contrariwise, although the 21 kDa isoform wasmore » excluded from the nuclei during interphase, it was shifted to the nucleus during prophase and forthcoming mitotic steps. The observed dynamic localization character showed strict timing to the nuclear cleavage phases and explained how both isoforms can be present within the nuclear microenvironment, although at different stages of cell cycle.« less
Rašić, Gordana; Schama, Renata; Powell, Rosanna; Maciel-de Freitas, Rafael; Endersby-Harshman, Nancy M; Filipović, Igor; Sylvestre, Gabriel; Máspero, Renato C; Hoffmann, Ary A
2015-01-01
Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction-site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio. PMID:26495042
Alefantis, Timothy; Flaig, Katherine E; Wigdahl, Brian; Jain, Pooja
2007-05-01
Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 transcriptional transactivator protein Tax plays an integral role in virus replication and disease progression. Traditionally, Tax is described as a nuclear protein where it performs its primary role as a transcriptional transactivator. However, recent studies have clearly shown that Tax can also be localized to the cytoplasm where it has been shown to interact with a number of host transcription factors most notably NF-kappaB, constitutive expression of which is directly related to the T cell transforming properties of Tax in ATL patients. The presence of a functional nuclear export signal (NES) within Tax and the secretion of full-length Tax have also been demonstrated previously. Additionally, release of Tax from HTLV-1-infected cells and the presence of cell-free Tax was demonstrated in the CSF of HAM/TSP patients suggesting that the progression to HAM/TSP might be mediated by the ability of Tax to function as an extracellular cytokine. Therefore, in both ATL and HAM/TSP Tax nuclear export and nucleocytoplasmic shuttling may play a critical role, the mechanism of which remains unknown. In this study, we have demonstrated that the calcium binding protein calreticulin interacts with Tax by co-immunoprecipitation. This interaction was found to localize to a region at or near the nuclear membrane. In addition, differential expression of calreticulin was demonstrated in various cell types that correlated with their ability to retain cytoplasmic Tax, particularly in astrocytes. Finally, a comparison of a number of HTLV-1-infected T cell lines to non-infected T cells revealed higher expression of calreticulin in infected cells implicating a direct role for this protein in HTLV-1 infection.
Danchenko, Maksym; Skultety, Ludovit; Rashydov, Namik M; Berezhna, Valentyna V; Mátel, L'ubomír; Salaj, Terézia; Pret'ová, Anna; Hajduch, Martin
2009-06-01
The explosion in one of the four reactors of the Chernobyl Nuclear Power Plant (CNPP, Chernobyl) caused the worst nuclear environmental disaster ever seen. Currently, 23 years after the accident, the soil in the close vicinity of CNPP is still significantly contaminated with long-living radioisotopes, such as (137)Cs. Despite this contamination, the plants growing in Chernobyl area were able to adapt to the radioactivity, and survive. The aim of this study was to investigate plant adaptation mechanisms toward permanently increased level of radiation using a quantitative high-throughput proteomics approach. Soybeans of a local variety (Soniachna) were sown in contaminated and control fields in the Chernobyl region. Mature seeds were harvested and the extracted proteins were subjected to two-dimensional gel electrophoresis (2-DE). In total, 9.2% of 698 quantified protein spots on 2-D gel were found to be differentially expressed with a p-value = 0.05. All differentially expressed spots were excised from the 2-D gels and analyzed by tandem mass spectrometry. Identified differentially expressed proteins were categorized into six main metabolic classes. Most abundant functional classes were associated with protein destination and storage followed by disease and defense. On the basis of the identity of these proteins, a working model for plant adaptation toward radio-contaminated Chernobyl soil conditions was proposed. Our results suggest that adaptation toward heavy metal stress, protection against radiation damage, and mobilization of seed storage proteins are involved in plant adaptation mechanism to radioactivity in the Chernobyl region.
Quantitative analysis in spontaneous canine anal sac gland adenomas and carcinomas.
Simeonov, Radostin; Simeonova, Galina
2008-12-01
Stained cytological specimens from 7 canine anal sac gland adenomas and 11 canine anal sac gland carcinomas were analyzed by computer-assisted nuclear morphometry. In each case, the nuclei of at least 100 neoplastic cells were measured, and the mean nuclear area (MNA), mean nuclear perimeter (MNP), mean nuclear diameter (MND) and nuclear roundness (NR) were calculated. The study aimed to evaluate (1) the possibility of using nuclear cytomorphometry as an auxiliary diagnostic method to differentiate between canine anal sac gland adenomas and adenocarcinomas, and (2) the prognostic value of nuclear morphometry in canine anal sac gland adenocarcinomas. The results indicated that (1) MNA, MNP, MND and NR could be used as effective auxiliary tools for differential diagnosis between canine anal sac gland adenomas and adenocarcinomas, and (2) MNA, MNP and MND are reliable prognostic indicators for canine anal sac gland adenocarcinomas.
Donor cell differentiation, reprogramming, and cloning efficiency: elusive or illusive correlation?
Oback, B; Wells, D N
2007-05-01
Compared to other assisted reproductive technologies, mammalian nuclear transfer (NT) cloning is inefficient in generating viable offspring. It has been postulated that nuclear reprogramming and cloning efficiency can be increased by choosing less differentiated cell types as nuclear donors. This hypothesis is mainly supported by comparative mouse cloning experiments using early blastomeres, embryonic stem (ES) cells, and terminally differentiated somatic donor cells. We have re-evaluated these comparisons, taking into account different NT procedures, the use of donor cells from different genetic backgrounds, sex, cell cycle stages, and the lack of robust statistical significance when post-blastocyst development is compared. We argue that while the reprogrammability of early blastomeres appears to be much higher than that of somatic cells, it has so far not been conclusively determined whether differentiation status affects cloning efficiency within somatic donor cell lineages. Copyright (c) 2006 Wiley-Liss, Inc.
Quantitative morphology in canine cutaneous soft tissue sarcomas.
Simeonov, R; Ananiev, J; Gulubova, M
2015-12-01
Stained cytological specimens from 24 dogs with spontaneous soft tissue sarcomas [fibrosarcoma (n = 8), liposarcoma (n = 8) and haemangiopericytoma (n = 8)], and 24 dogs with reactive connective tissue lesions [granulation tissue (n = 12) and dermal fibrosis (n = 12)] were analysed by computer-assisted nuclear morphometry. The studied morphometric parameters were: mean nuclear area (MNA; µm(2)), mean nuclear perimeter (MNP; µm), mean nuclear diameter (MND mean; µm), minimum nuclear diameter (Dmin; µm) and maximum nuclear diameter (Dmax; µm). The study aimed to evaluate (1) possibility for quantitative differentiation of soft tissue sarcomas from reactive connective tissue lesions and (2) by using cytomorphometry, to differentiate the various histopathological soft tissue sarcomas subtypes in dogs. The mean values of all nuclear cytomorphometric parameters (except for Dmax) were statistically significantly higher in reactive connective tissue processes than in soft tissue sarcomas. At the same time, however, there were no considerable differences among the different sarcoma subtypes. The results demonstrated that the quantitative differentiation of reactive connective tissue processes from soft tissue sarcomas in dogs is possible, but the same was not true for the different canine soft tissue sarcoma subtypes. Further investigations on this topic are necessary for thorough explication of the role of quantitative morphology in the diagnostics of mesenchymal neoplasms and tumour-like fibrous lesions in dogs. © 2014 John Wiley & Sons Ltd.
Hughes, Maria L. R.; Liu, Bonan; Halls, Michelle L.; Wagstaff, Kylie M.; Patil, Rahul; Velkov, Tony; Jans, David A.; Bunnett, Nigel W.; Scanlon, Martin J.; Porter, Christopher J. H.
2015-01-01
Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner. PMID:25847235
Hughes, Maria L R; Liu, Bonan; Halls, Michelle L; Wagstaff, Kylie M; Patil, Rahul; Velkov, Tony; Jans, David A; Bunnett, Nigel W; Scanlon, Martin J; Porter, Christopher J H
2015-05-29
Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo
2014-03-01
Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prouillac, Caroline, E-mail: c.prouillac@vetagro-sup.fr; Koraichi, Farah; Videmann, Bernadette
2012-03-15
Zearalenone (ZEN) is a non-steroid estrogen mycotoxin produced by numerous strains of Fusarium which commonly contaminate cereals. After oral administration, ZEN is reduced via intestinal and hepatic metabolism to α- and β-zearalenol (αZEL and βZEL). These reduced metabolites possess estrogenic properties, αZEL showing the highest affinity for ERs. ZEN and reduced metabolites cause hormonal effects in animals, such as abnormalities in the development of the reproductive tract and mammary gland in female offspring, suggesting a fetal exposure to these contaminants. In our previous work, we have suggested the potential impact of ZEN on placental cells considering this organ as amore » potential target of xenobiotics. In this work, we first compared the in vitro effects of αZEL and βΖΕL on cell differentiation to their parental molecule on human trophoblast (BeWo cells). Secondly, we investigated their molecular mechanisms of action by investigating the expression of main differentiation biomarkers and the implication of nuclear receptor by docking prediction. Conversely to ZEN, reduced metabolites did not induce trophoblast differentiation. They also induced significant changes in ABC transporter expression by potential interaction with nuclear receptors (LXR, PXR, PR) that could modify the transport function of placental cells. Finally, the mechanism of ZEN differentiation induction seemed not to involve nuclear receptor commonly involved in the differentiation process (PPARγ). Our results demonstrated that in spite of structure similarities between ZEN, αZEL and βZEL, toxicological effects and toxicity mechanisms were significantly different for the three molecules. -- Highlights: ► ZEN and metabolites have differential effect on trophoblast differentiation. ► ZEN and metabolites have differential effect on ABC transporter expression. ► ZEN and metabolites effects involved nuclear receptors interaction.« less
Properties of Localized Protons in Neutron Star Matter at Finite Temperatures
NASA Astrophysics Data System (ADS)
Szmaglinski, A.; Kubis, S.; Wójcik, W.
2014-02-01
We study properties of the proton component of neutron star matter for realistic nuclear models. Vanishing of the nuclear symmetry energy implies proton-neutron separation in dense nuclear matter. Protons which form admixture tend to be localized in potential wells. Here, we extend the description of proton localization to finite temperatures. It appears that the protons are still localized at temperatures typical for hot neutron stars. That fact has important astrophysical consequences. Moreover, the temperature inclusion leads to unexpected results for the behavior of the proton localized state.
Characterization of a nuclear localization signal in the foot-and-mouth disease virus polymerase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Aparicio, Maria Teresa; Rosas, Maria Flora; Sobrino, Francisco, E-mail: fsobrino@cbm.uam.es
2013-09-15
We have experimentally tested whether the MRKTKLAPT sequence in FMDV 3D protein (residues 16 to 24) can act as a nuclear localization signal (NLS). Mutants with substitutions in two basic residues within this sequence, K18E and K20E, were generated. A decreased nuclear localization was observed in transiently expressed 3D and its precursor 3CD, suggesting a role of K18 and K20 in nuclear targeting. Fusion of MRKTKLAPT to the green fluorescence protein (GFP) increased the nuclear localization of GFP, which was not observed when GFP was fused to the 3D mutated sequences. These results indicate that the sequence MRKTKLAPT can bemore » functionally considered as a NLS. When introduced in a FMDV full length RNA replacements K18E and K20E led to production of revertant viruses that replaced the acidic residues introduced (E) by K, suggesting that the presence of lysins at positions 18 and 20 of 3D is essential for virus multiplication. - Highlights: • The FMDV 3D polymerase contains a nuclear localization signal. • Replacements K18E and K20E decrease nuclear localization of 3D and its precursor 3CD. • Fusion of the MRKTKLAPT 3D motif to GFP increases the nuclear localization of GFP. • Replacements K18E and K20E abolish the ability of MRKTKLAPT to relocate GFP. • RNAs harboring replacements K18E and K20E lead to recovery of revertant FMDVs.« less
Trubiani, Oriana; Guarnieri, Simone; Diomede, Francesca; Mariggiò, Maria A; Merciaro, Ilaria; Morabito, Caterina; Cavalcanti, Marcos F X B; Cocco, Lucio; Ramazzotti, Giulia
2016-11-01
Stem cells isolated from human adult tissue niche represent a promising source for neural differentiation. Human Periodontal Ligament Stem Cells (hPDLSCs) originating from the neural crest are particularly suitable for induction of neural commitment. In this study, under xeno-free culture conditions, in undifferentiated hPDLSCs and in hPDLSCs induced to neuronal differentiation by basic Fibroblast Growth Factor, the level of some neural markers have been analyzed. The hPDLSCs spontaneously express Nestin, a neural progenitor marker. In these cells, the neurogenic process induced to rearrange the cytoskeleton, form neurospheres and express higher levels of Nestin and Tyrosine Hydroxylase, indicating neural induction. Protein Kinase C (PKC) is highly expressed in neural tissue and has a key role in neuronal functions. In particular the Ca(2+) and diacylglycerol-dependent activation of PKCα isozyme is involved in the regulation of neuronal differentiation. Another main component of the pathways controlling neuronal differentiation is the Growth Associated Protein-43 (GAP-43), whose activity is strictly regulated by PKC. The aim of this study is to investigate the role of PKCα/GAP-43 nuclear signal transduction pathway during neuronal commitment of hPDLSCs. During hPDLSCs neurogenic commitment the levels of p-PKC and p-GAP-43 increased both in cytoplasmic and nuclear compartment. PKCα nuclear translocation induced GAP-43 movement to the cytoplasm, where it is known to regulate growth cone dynamics and neuronal differentiation. Moreover, the degree of cytosolic Ca(2+) mobilization appeared to be more pronounced in differentiated hPDLSCs than in undifferentiated cells. This study provides evidences of a new PKCα/GAP-43 nuclear signalling pathway that controls neuronal differentiation in hPDLSCs, leading the way to a potential use of these cells in cell-based therapy in neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Social and Population Structure in the Ant Cataglyphis emmae
Jowers, Michael J.; Leniaud, Laurianne; Cerdá, Xim; Alasaad, Samer; Caut, Stephane; Amor, Fernando; Aron, Serge; Boulay, Raphaël R.
2013-01-01
Dispersal has consequences not only for individual fitness, but also for population dynamics, population genetics and species distribution. Social Hymenoptera show two contrasting colony reproductive strategies, dependent and independent colony foundation modes, and these are often associated to the population structures derived from inter and intra-population gene flow processes conditioned by alternative dispersal strategies. Here we employ microsatellite and mitochondrial markers to investigate the population and social genetic structure and dispersal patterns in the ant Cataglyphis emmae at both, local and regional scales. We find that C. emmae is monogynous and polyandrous. Lack of detection of any population viscosity and population structure with nuclear markers at the local scale suggests efficient dispersal, in agreement with a lack of inbreeding. Contrasting demographic differences before and during the mating seasons suggest that C. emmae workers raise sexuals in peripheric nest chambers to reduce intracolonial conflicts. The high genetic differentiation recovered from the mtDNA haplotypes, together with the significant correlation of such to geographic distance, and presence of new nuclear alleles between areas (valleys) suggest long-term historical isolation between these regions, indicative of limited dispersal at the regional scale. Our findings on the ecological, social and population structure of this species increases our understanding of the patterns and processes involved under independent colony foundation. PMID:24039827
Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei
2018-02-15
The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.
Protein Sub-Nuclear Localization Prediction Using SVM and Pfam Domain Information
Kumar, Ravindra; Jain, Sohni; Kumari, Bandana; Kumar, Manish
2014-01-01
The nucleus is the largest and the highly organized organelle of eukaryotic cells. Within nucleus exist a number of pseudo-compartments, which are not separated by any membrane, yet each of them contains only a specific set of proteins. Understanding protein sub-nuclear localization can hence be an important step towards understanding biological functions of the nucleus. Here we have described a method, SubNucPred developed by us for predicting the sub-nuclear localization of proteins. This method predicts protein localization for 10 different sub-nuclear locations sequentially by combining presence or absence of unique Pfam domain and amino acid composition based SVM model. The prediction accuracy during leave-one-out cross-validation for centromeric proteins was 85.05%, for chromosomal proteins 76.85%, for nuclear speckle proteins 81.27%, for nucleolar proteins 81.79%, for nuclear envelope proteins 79.37%, for nuclear matrix proteins 77.78%, for nucleoplasm proteins 76.98%, for nuclear pore complex proteins 88.89%, for PML body proteins 75.40% and for telomeric proteins it was 83.33%. Comparison with other reported methods showed that SubNucPred performs better than existing methods. A web-server for predicting protein sub-nuclear localization named SubNucPred has been established at http://14.139.227.92/mkumar/subnucpred/. Standalone version of SubNucPred can also be downloaded from the web-server. PMID:24897370
NASA Astrophysics Data System (ADS)
Rajput, Mayank; Vala, Sudhirsinh; Srinivasan, R.; Abhangi, M.; Subhash, P. V.; Pandey, B.; Rao, C. V. S.; Bora, D.
2018-01-01
Chromium is an important alloying element of stainless steel (SS) and SS is the main constituent of structural material proposed for fusion reactors. Energy and double differential cross section data will be required to estimate nuclear responses in the materials used in fusion reactors. There are no experimental data of energy and double differential cross section, available for neutron induced reactions on natural chromium at 14 MeV neutron energy. In this study, energy and double differential cross section data of (n,p) and (n,α) reactions for all the stable isotopes of chromium have been estimated, using appropriate nuclear models in TALYS code. The cross section data of stable isotopes are later converted into the energy and double differential cross section data of natural Cr using the isotopic abundance. The contribution from compound, pre-equilibrium and direct nuclear reaction to total reaction have also been calculated for 52,50Cr(n,p) and 52Cr(n,α). The calculation of energy differential cross section shows that most of emitted protons and alpha particles are of 3 and 8 MeV respectively. The calculated data is compared with the data from EXFOR data library and is found to be in good agreement.
Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra
2014-01-01
ABSTRACT Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. IMPORTANCE Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid protein (VP1) of porcine parvovirus. The major protein (VP2) nuclear localization was shown to depend on a complex structural motif. This motif can be used as a strategy by the virus to avoid transport of incorrectly folded proteins and to selectively import assembled trimers into the nucleus. Structural nuclear localization motifs can also be important for nuclear proteins without a classic basic amino acid stretch, including multimeric cellular proteins. PMID:25078698
Transplantation and differentiation of donor cells in the cloned pigs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, Arata; Tomii, Ryo; Kano, Koichiro
2006-06-02
The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigsmore » without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal.« less
Yoo, Jiyun; Jeong, Moon-Jin; Kwon, Byoung-Mog; Hur, Man-Wook; Park, Young-Mee; Han, Mi Young
2002-04-05
Dynamin I is a key molecule required for the recycling of synaptic vesicles in neurons, and it has been known that dynamin I gene expression is induced during neuronal differentiation. Our previous studies established that neuronal restriction of dynamin I gene expression is controlled by Sp1 and nuclear factor-kappaB-like element-1. Here, using a series of deletion constructs and site-directed mutation, we found that transcription of dynamin I gene during neuronal differentiation of N1E-115 cells is controlled primarily by the Sp1 element located between -13 to -4 bp of the dynamin I promoter. Gel shift analysis demonstrated that in addition to Sp1, Sp3 could interact with this Sp1 element. The requirement for Sp family transcription factors in dynamin I gene expression was confirmed by using mithramycin, an inhibitor of Sp1/Sp3 binding. Mithramycin repressed dynamin I gene expression and resulted in blocking of neuronal differentiation of N1E-115 cells. The localization of the dynamin I protein was also restricted in the peripheral region of the nucleus by the mithramycin treatment. Thus, all of our results suggest that induction of dynamin I gene expression during N1E-115 cell differentiation is modulated by Sp1/Sp3 interactions with the dynamin I promoter, and its expression is important for neuronal differentiation of the N1E-115 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuan, Man I; O’Dowd, John M.; Fortunato, Elizabeth
Our electron microscopy study (Kuan et al., 2016) found HCMV nuclear capsid egress was significantly reduced in p53 knockout cells (p53KOs), correlating with inhibited formation of infoldings of the inner nuclear membrane (IINMs). Molecular examination of these phenomena has found p53KOs expressed UL97 and phosphorylated lamins, however the lamina failed to remodel. The nuclear egress complex (NEC) protein UL50 was expressed in almost all cells. UL50 re-localized to the inner nuclear membrane (INM) in ~90% of wt cells, but only ~35% of p53KOs. UL53 expression was significantly reduced in p53KOs, and cells lacking UL50 nuclear staining, expressed no UL53. Re-introductionmore » of p53 into p53KOs largely recovered UL53 positivity and UL50 nuclear re-localization. Nuclear rim located UL50/53 puncta, which co-localized with the major capsid protein, were largely absent in p53KOs. We believe these puncta were IINMs. In the absence of p53, UL53 expression was inhibited, disrupting formation of the NEC/IINMs, and reducing functional virion secretion. -- Highlights: •Phosphorylated nuclear lamins were inefficiently remodeled in p53KO cells. •p53KO cells expressed UL50, but it was not efficiently targeted to the nuclear rim. •UL53 was not expressed in the large majority of p53KO cells. •Cells failing to express UL53 did not localize UL50 to the nucleus. •NEC puncta/infoldings of the inner nuclear membrane were scarce in p53KO cells.« less
Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication.
Chen, Tingting; Dong, Zhanqi; Hu, Nan; Hu, Zhigang; Dong, Feifan; Jiang, Yaming; Li, Jun; Chen, Peng; Lu, Cheng; Pan, Minhui
2017-06-15
Baculovirus LEF-11 is a small nuclear protein that is involved in viral late gene transcription and DNA replication. However, the characteristics of its nuclear localization signal and its impact on viral DNA replication are unknown. In the present study, systemic bioinformatics analysis showed that the baculovirus LEF-11 contains monopartite and bipartite classical nuclear localization signal sequences (cNLSs), which were also detected in a few alphabaculovirus species. Localization of representative LEF-11 proteins of four baculovirus genera indicated that the nuclear localization characteristics of baculovirus LEF-11 coincided with the predicted results. Moreover, Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 could be transported into the nucleus during viral infection in the absence of a cNLSs. Further investigations demonstrated that the NLS of BmNPV LEF-11 is important for viral DNA replication. The findings of the present study indicate that the characteristics of the baculovirus LEF-11 protein and the NLS is essential to virus DNA replication and nuclear transport mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Hearst, Scoty M.; Gilder, Andrew S.; Negi, Sandeep S.; Davis, Misty D.; George, Eric M.; Whittom, Angela A.; Toyota, Cory G.; Husedzinovic, Alma; Gruss, Oliver J.; Hebert, Michael D.
2009-01-01
Summary Cajal bodies (CBs) are nuclear structures that are thought to have diverse functions, including small nuclear ribonucleoprotein (snRNP) biogenesis. The phosphorylation status of coilin, the CB marker protein, might impact CB formation. We hypothesize that primary cells, which lack CBs, contain different phosphoisoforms of coilin compared with that found in transformed cells, which have CBs. Localization, self-association and fluorescence recovery after photobleaching (FRAP) studies on coilin phosphomutants all suggest this modification impacts the function of coilin and may thus contribute towards CB formation. Two-dimensional gel electrophoresis demonstrates that coilin is hyperphosphorylated in primary cells compared with transformed cells. mRNA levels of the nuclear phosphatase PPM1G are significantly reduced in primary cells and expression of PPM1G in primary cells induces CBs. Additionally, PPM1G can dephosphorylate coilin in vitro. Surprisingly, however, expression of green fluorescent protein alone is sufficient to form CBs in primary cells. Taken together, our data support a model whereby coilin is the target of an uncharacterized signal transduction cascade that responds to the increased transcription and snRNP demands found in transformed cells. PMID:19435804
Motor neuron differentiation of iPSCs obtained from peripheral blood of a mutant TARDBP ALS patient.
Bossolasco, Patrizia; Sassone, Francesca; Gumina, Valentina; Peverelli, Silvia; Garzo, Maria; Silani, Vincenzo
2018-05-17
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease, mainly affecting the motor neurons (MNs) and without effective therapy. Drug screening is hampered by the lack of satisfactory experimental and pre-clinical models. Induced pluripotent stem cells (iPSCs) could help to define disease mechanisms and therapeutic strategies as they could be differentiated into MNs, otherwise inaccessible from living humans. In this study, given the seminal role of TDP-43 in ALS pathophysiology, MNs were obtained from peripheral blood mononuclear cells-derived iPSCs of an ALS patient carrying a p.A382T TARDBP mutation and a healthy donor. Venous samples were preferred to fibroblasts for their ease of collection and no requirement for time consuming extended cultures before experimentation. iPSCs were characterized for expression of specific markers, spontaneously differentiated into primary germ layers and, finally, into MNs. No differences were observed between the mutated ALS patient and the control MNs with most of the cells displaying a nuclear localization of the TDP-43 protein. In conclusion, we here demonstrated for the first time that human TARDBP mutated MNs can be successfully obtained exploiting the reprogramming and differentiation ability of peripheral blood cells, an easily accessible source from any patient. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arai, Rumi; En, Atsuki; Ukekawa, Ryo
2016-05-13
5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.
Immunological and biochemical evidence for nuclear localization of annexin in peas
NASA Technical Reports Server (NTRS)
Clark, G. B.; Dauwalder, M.; Roux, S. J.
1998-01-01
Immunofluorescent localization of annexins using an anti-pea annexin polyclonal antibody (anti-p35) in pea (Pisum sativum) leaf and stem epidermal peels showed staining of the nuclei and the cell periphery. Nuclear staining was also seen in cell teases prepared from pea plumules. The amount of nuclear stain was reduced both by fixation time and by dehydration and organic solvent treatment. Observation with confocal microscopy demonstrated that the anti-p35 stain was diffusely distributed throughout the nuclear structure. Immunoblots of purified nuclei, nuclear envelope matrix, nucleolar, and chromatin fractions showed a cross-reactive protein band of 35 kDa. These data are the first to show annexins localized in plant cell nuclei where they may play a role in nuclear function.
Hsu, Hong-Ming; Lee, Yu; Indra, Dharmu; Wei, Shu-Yi; Liu, Hsing-Wei; Chang, Lung-Chun; Chen, Chinpan; Ong, Shiou-Jeng
2012-01-01
In Trichomonas vaginalis, a novel nuclear localization signal spanning the folded R2R3 DNA-binding domain of a Myb2 protein was previously identified. To study whether a similar signal is used for nuclear translocation by other Myb proteins, nuclear translocation of Myb3 was examined in this report. When overexpressed, hemagglutinin-tagged Myb3 was localized to nuclei of transfected cells, with a cellular distribution similar to that of endogenous Myb3. Fusion to a bacterial tetracycline repressor, R2R3, of Myb3 that spans amino acids (aa) 48 to 156 was insufficient for nuclear translocation of the fusion protein, unless its C terminus was extended to aa 167. The conserved isoleucine in helix 2 of R2R3, which is important for Myb2's structural integrity in maintaining DNA-binding activity and nuclear translocation, was also vital for the former activity of Myb3, but less crucial for the latter. Sequential nuclear influx and efflux of Myb3, which require further extension of the nuclear localization signal to aa 180, were immediately induced after iron repletion. Sequence elements that regulate nuclear translocation with cytoplasmic retention, nuclear influx, and nuclear efflux were identified within the C-terminal tail. These results suggest that the R2R3 DNA-binding domain also serves as a common module for the nuclear translocation of both Myb2 and Myb3, but there are intrinsic differences between the two nuclear localization signals. PMID:23042127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuchi, Mikoto; Wanotayan, Rujira; Liu, Sicheng
2015-06-12
XRCC4 and DNA Ligase IV (LIG4) cooperate to join two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). However, it is not fully understood how these proteins are localized to the nucleus. Here we created XRCC4{sup K271R} mutant, as Lys271 lies within the putative nuclear localization signal (NLS), and XRCC4{sup K210R} mutant, as Lys210 was reported to undergo SUMOylation, implicated in the nuclear localization of XRCC4. Wild-type and mutated XRCC4 with EGFP tag were introduced into HeLa cell, in which endogenous XRCC4 had been knocked down using siRNA directed to 3′-untranslated region,more » and tested for the nuclear localization function by fluorescence microscopy. XRCC4{sup K271R} was defective in the nuclear localization of itself and LIG4, whereas XRCC4{sup K210R} was competent for the nuclear localization with LIG4. To examine DSB repair function, wild-type and mutated XRCC4 were introduced into XRCC4-deficient M10. M10-XRCC4{sup K271R}, but not M10-XRCC4{sup K210R}, showed significantly reduced surviving fraction after 2 Gy γ-ray irradiation as compared to M10-XRCC4{sup WT}. The number of γ-H2AX foci remaining 2 h after 2 Gy γ-ray irradiation was significantly greater in M10-XRCC4{sup K271R} than in M10-XRCC4{sup WT}, whereas it was only marginally increased in M10-XRCC4{sup K210R} as compared to M10-XRCC4{sup WT}. The present results collectively indicated that Lys271, but not Lys210, of XRCC4 is required for the nuclear localization of XRCC4 and LIG4 and that the nuclear localizing ability is essential for DSB repair function of XRCC4. - Highlights: • XRCC4{sup K271R} is defective in the nuclear localization of itself and LIG4. • XRCC4{sup K210R} is competent for the nuclear localization of itself and LIG4. • XRCC4{sup K271R} is deficient in DSB repair function. • XRCC4{sup K210R} is mostly normal in DSB repair function.« less
Le Gros, Mark A.; Clowney, E. Josephine; Magklara, Angeliki; ...
2016-11-15
The realization that nuclear distribution of DNA, RNA, and proteins differs between cell types and developmental stages suggests that nuclear organization serves regulatory functions. Understanding the logic of nuclear architecture and how it contributes to differentiation and cell fate commitment remains challenging. Here, we use soft X-ray tomography (SXT) to image chromatin organization, distribution, and biophysical properties during neurogenesis in vivo. Our analyses reveal that chromatin with similar biophysical properties forms an elaborate connected network throughout the entire nucleus. Although this interconnectivity is present in every developmental stage, differentiation proceeds with concomitant increase in chromatin compaction and re-distribution of condensed chromatinmore » toward the nuclear core. HP1β, but not nucleosome spacing or phasing, regulates chromatin rearrangements because it governs both the compaction of chromatin and its interactions with the nuclear envelope. Our experiments introduce SXT as a powerful imaging technology for nuclear architecture.« less
Role of the nuclear envelope in the pathogenesis of age-related bone loss and osteoporosis
Vidal, Christopher; Bermeo, Sandra; Fatkin, Diane; Duque, Gustavo
2012-01-01
The nuclear envelope is the most important border in the eukaryotic cell. The role of the nuclear envelope in cell differentiation and function is determined by a constant interaction between the elements of the nuclear envelope and the transcriptional regulators involved in signal transcription pathways. Among those components of the nuclear envelope, there is a growing evidence that changes in the expression of A-type lamins, which are essential components of the nuclear lamina, are associated with age-related changes in bone affecting the capacity of differentiation of mesenchymal stem cells into osteoblasts, favoring adipogenesis and affecting the function and survival of the osteocytes. Overall, as A-type lamins are considered as the 'guardians of the soma', these proteins are also essential for the integrity and quality of the bone and pivotal for the longevity of the musculoskeletal system. PMID:23951459
Malli, Theodora; Buxhofer-Ausch, Veronika; Rammer, Melanie; Erdel, Martin; Kranewitter, Wolfgang; Rumpold, Holger; Marschon, Renate; Deutschbauer, Sabine; Simonitsch-Klupp, Ingrid; Valent, Peter; Muellner-Ammer, Kirsten; Sebesta, Christian; Birkner, Thomas; Webersinke, Gerald
2016-01-01
Myeloid and lymphoid neoplasms with fibroblast growth factor receptor 1 (FGFR1) abnormalities, also known as 8p11 myeloproliferative syndrome (EMS), represent rare and aggressive disorders, associated with chromosomal aberrations that lead to the fusion of FGFR1 to different partner genes. We report on a third patient with a fusion of the translocated promoter region (TPR) gene, a component of the nuclear pore complex, to FGFR1 due to a novel ins(1;8)(q25;p11p23). The fact that this fusion is a rare but recurrent event in EMS prompted us to examine the localization and transforming potential of the chimeric protein. TPR-FGFR1 localizes in the cytoplasm, although the nuclear pore localization signal of TPR is retained in the fusion protein. Furthermore, TPR-FGFR1 enables cytokine-independent survival, proliferation, and granulocytic differentiation of the interleukin-3 dependent myeloid progenitor cell line 32Dcl3, reflecting the chronic phase of EMS characterized by myeloid hyperplasia. 32Dcl3 cells transformed with the TPR-FGFR1 fusion and treated with increasing concentrations of the tyrosine kinase inhibitors ponatinib (AP24534) and infigratinib (NVP-BGJ398) displayed reduced survival and proliferation with IC50 values of 49.8 and 7.7 nM, respectively. Ponatinib, a multitargeted tyrosine kinase inhibitor, is already shown to be effective against several FGFR1-fusion kinases. Infigratinib, tested only against FGFR1OP2-FGFR1 to date, is also efficient against TPR-FGFR1. Taking its high specificity for FGFRs into account, infigratinib could be beneficial for EMS patients and should be further investigated for the treatment of myeloproliferative neoplasms with FGFR1 abnormalities. © 2015 Wiley Periodicals, Inc.
Alefantis, Timothy; Barmak, Kate; Harhaj, Edward W; Grant, Christian; Wigdahl, Brian
2003-06-13
Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. The HTLV-I transactivator protein Tax plays an integral role in the etiology of adult T cell leukemia, as expression of Tax in T lymphocytes has been shown to result in immortalization. In addition, Tax is known to interface with numerous transcription factor families, including activating transcription factor/cAMP response element-binding protein and nuclear factor-kappaB, requiring Tax to localize to both the nucleus and cytoplasm. In this report, the nucleocytoplasmic localization of Tax was examined in Jurkat, HeLa, and U-87 MG cells. The results reported herein indicate that Tax contains a leucine-rich nuclear export signal (NES) that, when fused to green fluorescent protein (GFP), can direct nuclear export via the CRM-1 pathway, as determined by leptomycin B inhibition of nuclear export. However, cytoplasmic localization of full-length Tax was not altered by treatment with leptomycin B, suggesting that native Tax utilizes another nuclear export pathway. Additional support for the presence of a functional NES has also been shown because the NES mutant Tax(L200A)-GFP localized to the nuclear membrane in the majority of U-87 MG cells. Evidence has also been provided suggesting that the Tax NES likely exists as a conditionally masked signal because the truncation mutant TaxDelta214-GFP localized constitutively to the cytoplasm. These results suggest that Tax localization may be directed by specific changes in Tax conformation or by specific interactions with cellular proteins leading to changes in the availability of the Tax NES and nuclear localization signal.
Cytoplasmic p21Cip1/WAF1 regulates neurite remodeling by inhibiting Rho-kinase activity
Tanaka, Hiroyuki; Yamashita, Toshihide; Asada, Minoru; Mizutani, Shuki; Yoshikawa, Hideki; Tohyama, Masaya
2002-01-01
p21Cip1/WAF1 has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21Cip1/WAF1 is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21Cip1/WAF1 lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21Cip1/WAF1 forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21Cip1/WAF1 is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21Cip1/WAF1 may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions. PMID:12119358
Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity.
Tanaka, Hiroyuki; Yamashita, Toshihide; Asada, Minoru; Mizutani, Shuki; Yoshikawa, Hideki; Tohyama, Masaya
2002-07-22
p21(Cip1/WAF1) has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21(Cip1/WAF1) is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21(Cip1/WAF1) lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21(Cip1/WAF1) forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21(Cip1/WAF1) is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21(Cip1/WAF1) may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions.
Stroma Targeting Nuclear Imaging and Radiopharmaceuticals
Shetty, Dinesh; Jeong, Jae-Min; Shim, Hyunsuk
2012-01-01
Malignant transformation of tumor accompanies profound changes in the normal neighboring tissue, called tumor stroma. The tumor stroma provides an environment favoring local tumor growth, invasion, and metastatic spreading. Nuclear imaging (PET/SPECT) measures biochemical and physiologic functions in the human body. In oncology, PET/SPECT is particularly useful for differentiating tumors from postsurgical changes or radiation necrosis, distinguishing benign from malignant lesions, identifying the optimal site for biopsy, staging cancers, and monitoring the response to therapy. Indeed, PET/SPECT is a powerful, proven diagnostic imaging modality that displays information unobtainable through other anatomical imaging, such as CT or MRI. When combined with coregistered CT data, [18F]fluorodeoxyglucose ([18F]FDG)-PET is particularly useful. However, [18F]FDG is not a target-specific PET tracer. This paper will review the tumor microenvironment targeting oncologic imaging such as angiogenesis, invasion, hypoxia, growth, and homing, and also therapeutic radiopharmaceuticals to provide a roadmap for additional applications of tumor imaging and therapy. PMID:22685650
Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.
Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine
2009-06-17
P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.
Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro
2014-01-01
Background Recent studies suggest that ovarian germ line stem cells replenish oocyte-pool in adult stage, and challenge the central doctrine of ‘fixed germ cell pool’ in mammalian reproductive biology. Two distinct populations of spherical stem cells with high nucleo-cytoplasmic ratio have been recently identified in the adult mammalian ovary surface epithelium (OSE) including nuclear OCT-4A positive very small embryonic-like (VSELs) and cytoplasmic OCT-4 expressing ovarian germ stem cells (OGSCs). Three weeks culture of scraped OSE cells results in spontaneous differentiation of the stem cells into oocyte-like, parthenote-like, embryoid body-like structures and also embryonic stem cell-like colonies whereas epithelial cells attach and transform into a bed of mesenchymal cells. Present study was undertaken, to further characterize ovarian stem cells and to comprehend better the process of spontaneous differentiation of ovarian stem cells into oocyte-like structures in vitro. Methods Ovarian stem cells were enriched by immunomagnetic sorting using SSEA-4 as a cell surface marker and were further characterized. Stem cells and clusters of OGSCs (reminiscent of germ cell nests in fetal ovaries), were characterized by immuno-localization for stem and germ cell specific markers and spontaneous differentiation in OSE cultures was studied by live cell imaging. Results Differential expression of markers specific for pluripotent VSELs (nuclear OCT-4A, SSEA-4, CD133), OGSCs (cytoplasmic OCT-4) primordial germ cells (FRAGILIS, STELLA, VASA) and germ cells (DAZL, GDF-9, SCP-3) were studied. Within one week of culture, stem cells became bigger in size, developed abundant cytoplasm, differentiated into germ cells, revealed presence of Balbiani body-like structure (mitochondrial cloud) and exhibited characteristic cytoplasmic streaming. Conclusions Presence of germ cell nests, Balbiani body-like structures and cytoplasmic streaming extensively described during fetal ovary development, are indeed well recapitulated during in vitro oogenesis in adult OSE cultures along with characteristic expression of stem/germ cell/oocyte markers. Further studies are required to assess the genetic integrity of in vitro derived oocytes before harnessing their clinical potential. Advance in our knowledge about germ cell differentiation from stem cells will enable researchers to design better in vitro strategies which in turn may have relevance to reproductive biology and regenerative medicine. PMID:24568237
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myre, Michael A.; O'Day, Danton H.
2005-06-24
Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD ({sup 171}EDVSRFIKGKLLQKQQKIYKDLERF{sup 195}) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patchesmore » at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues {sup 48}KKSYQDPEIIAHSRPRK{sup 64} that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to {sup 48}EF{sup 49} abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the {sup 48}EF{sup 49} construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium.« less
Liao, Zhiming; Wang, Shihua; Boileau, Thomas W-M; Erdman, John W; Clinton, Steven K
2005-07-01
Characterization of molecular events during N-methyl-N-nitrosourea (MNU)-induced rat prostate carcinogenesis enhances the utility of this model for the preclinical assessment of preventive strategies. Androgen independence is typical of advanced human prostate cancer and may occur through multiple mechanisms including the loss of androgen receptor (AR) expression and the activation of alternative signaling pathways. We examined the interrelationships between AR and p-AKT expression by immunohistochemical staining during MNU-androgen-induced prostate carcinogenesis in male Wistar-Unilever rats. Histone nuclear staining and image analysis was employed to assess parallel changes in chromatin and nuclear structure. The percentage of AR positive nuclei decreased (P < 0.01) as carcinogenesis progressed: hyperplasia (92%), atypical hyperplasia (92%), well-differentiated adenocarcinoma (57%), moderately-differentiated adenocarcinoma (19%), and poorly-differentiated adenocarcinoma (10%). Conversely, p-AKT staining increased significantly during carcinogenesis. Sparse staining was observed in normal tissues (0.2% of epithelial area) and hyperplastic lesions (0.1%), while expression increased significantly (P < 0.001) in atypical hyperplasia (7.6%), well-differentiated adenocarcinoma (16.7%), moderately-differentiated adenocarcinoma (19.6%), and poorly-differentiated adenocarcinoma (17.4%). In parallel, nuclear morphometry revealed increased nuclear size, greater irregularity, and lower DNA compactness as cancers became more poorly differentiated. In the MNU model, the progressive evolution of dominant tumor cell populations showing an increase in p-AKT in parallel with a decline in AR staining suggests that activation of AKT signaling may be one of several mechanisms contributing to androgen insensitivity during prostate cancer progression. Our observations mimic findings suggested by human studies and support the relevance of the MNU model in preclinical studies of preventive strategies. (c) 2005 Wiley-Liss, Inc.
Carbone, Michele; Shimizu, David; Napolitano, Andrea; Tanji, Mika; Pass, Harvey I.; Yang, Haining; Pastorino, Sandra
2016-01-01
The differential diagnosis between pleural malignant mesothelioma (MM) and lung cancer is often challenging. Immunohistochemical (IHC) stains used to distinguish these malignancies include markers that are most often positive in MM and less frequently positive in carcinomas, and vice versa. However, in about 10–20% of the cases, the IHC results can be confusing and inconclusive, and novel markers are sought to increase the diagnostic accuracy. We stained 45 non-small cell lung cancer samples (32 adenocarcinomas and 13 squamous cell carcinomas) with a monoclonal antibody for BRCA1-associated protein 1 (BAP1) and also with an IHC panel we routinely use to help differentiate MM from carcinomas, which include, calretinin, Wilms Tumor 1, cytokeratin 5, podoplanin D2-40, pankeratin CAM5.2, thyroid transcription factor 1, Napsin-A, and p63. Nuclear BAP1 expression was also analyzed in 35 MM biopsies. All 45 non-small cell lung cancer biopsies stained positive for nuclear BAP1, whereas 22/35 (63%) MM biopsies lacked nuclear BAP1 staining, consistent with previous data. Lack of BAP1 nuclear staining was associated with MM (two-tailed Fisher's Exact Test, P = 5.4 × 10−11). Focal BAP1 staining was observed in a subset of samples, suggesting polyclonality. Diagnostic accuracy of other classical IHC markers was in agreement with previous studies. Our study indicated that absence of nuclear BAP1 stain helps differentiate MM from lung carcinomas. We suggest that BAP1 staining should be added to the IHC panel that is currently used to distinguish these malignancies. PMID:27447750
Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Tomoyuki; Sato, Yuko; Watanabe, Daisuke
2010-03-15
To clarify whether mutations in the large T gene encoded by Merkel cell polyomavirus affect the expression and function of large T antigen in Merkel cell carcinoma cases, we investigated the expression of large T antigen in vitro and in vivo. Immunohistochemistry using a rabbit polyclonal antibody revealed that large T antigen was expressed in the nuclei of Merkel cell carcinoma cells with Merkel cell polyomavirus infection. Deletion mutant analyses identified an Arg-Lys-Arg-Lys sequence (amino acids 277-280) as a nuclear localization signal in large T antigen. Sequence analyses revealed that there were no mutations in the nuclear localization signal inmore » any of the eleven Merkel cell polyomavirus strains examined. Furthermore, stop codons were not observed in the upstream of the nuclear localization signal in any of the Merkel cell carcinoma cases examined. These data suggest that the nuclear localization signal is highly conserved and functional in Merkel cell carcinoma cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.
2015-03-01
The second crystal structure of a parasite protein preferentially enriched in the brain cyst of T. gondii has been solved at 2.75 Å resolution. Bradyzoite enolase 1 is reported to have differential functions as a glycolytic enzyme and a transcriptional regulator in bradyzoites. In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2)more » in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.« less
Chu, Chien-Hsin; Chang, Lung-Chun; Hsu, Hong-Ming; Wei, Shu-Yi; Liu, Hsing-Wei; Lee, Yu; Kuo, Chung-Chi; Indra, Dharmu; Chen, Chinpan; Ong, Shiou-Jeng; Tai, Jung-Hsiang
2011-01-01
Nuclear proteins usually contain specific peptide sequences, referred to as nuclear localization signals (NLSs), for nuclear import. These signals remain unexplored in the protozoan pathogen, Trichomonas vaginalis. The nuclear import of a Myb2 transcription factor was studied here using immunodetection of a hemagglutinin-tagged Myb2 overexpressed in the parasite. The tagged Myb2 was localized to the nucleus as punctate signals. With mutations of its polybasic sequences, 48KKQK51 and 61KR62, Myb2 was localized to the nucleus, but the signal was diffusive. When fused to a C-terminal non-nuclear protein, the Myb2 sequence spanning amino acid (aa) residues 48 to 143, which is embedded within the R2R3 DNA-binding domain (aa 40 to 156), was essential and sufficient for efficient nuclear import of a bacterial tetracycline repressor (TetR), and yet the transport efficiency was reduced with an additional fusion of a firefly luciferase to TetR, while classical NLSs from the simian virus 40 T-antigen had no function in this assay system. Myb2 nuclear import and DNA-binding activity were substantially perturbed with mutation of a conserved isoleucine (I74) in helix 2 to proline that altered secondary structure and ternary folding of the R2R3 domain. Disruption of DNA-binding activity alone by point mutation of a lysine residue, K51, preceding the structural domain had little effect on Myb2 nuclear localization, suggesting that nuclear translocation of Myb2, which requires an ordered structural domain, is independent of its DNA binding activity. These findings provide useful information for testing whether myriad Mybs in the parasite use a common module to regulate nuclear import. PMID:22021237
Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj
2017-01-01
Background: Breast cancer has emerged as a leading site of cancer among women in India. Fine needle aspiration cytology (FNAC) has been routinely applied in assessment of breast lesions. Cytological evaluation in breast lesions is subjective with a “gray zone” of 6.9–20%. Quantitative evaluation of nuclear size, shape, texture, and density parameters by morphometry can be of diagnostic help in breast tumor. Aims: To apply nuclear morphometry on cytological breast aspirates and assess its role in differentiating between benign and malignant breast lesions with derivation of suitable cut-off values between the two groups. Settings and Designs: The present study was a descriptive cross-sectional hospital-based study of nuclear morphometric parameters of benign and malignant cases. Materials and Methods: The study included 50 benign breast disease (BBD), 8 atypical ductal hyperplasia (ADH), and 64 carcinoma cases. Image analysis was performed on Papanicolaou-stained FNAC slides by Nikon Imaging Software (NIS)–Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Results: Nuclear morphometry could differentiate between benign and malignant aspirates with a gradually increasing nuclear size parameters from BBD to ADH to carcinoma. Cut-off values of 31.93 μm2, 6.325 μm, 5.865 μm, 7.855 μm, and 21.55 μm for mean nuclear area, equivalent diameter, minimum feret, maximum ferret, and perimeter, respectively, were derived between benign and malignant cases, which could correctly classify 7 out of 8 ADH cases. Conclusion: Nuclear morphometry is a highly objective tool that could be used to supplement FNAC in differentiating benign from malignant lesions, with an important role in cases with diagnostic dilemma. PMID:28182052
Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj
2017-01-01
Breast cancer has emerged as a leading site of cancer among women in India. Fine needle aspiration cytology (FNAC) has been routinely applied in assessment of breast lesions. Cytological evaluation in breast lesions is subjective with a "gray zone" of 6.9-20%. Quantitative evaluation of nuclear size, shape, texture, and density parameters by morphometry can be of diagnostic help in breast tumor. To apply nuclear morphometry on cytological breast aspirates and assess its role in differentiating between benign and malignant breast lesions with derivation of suitable cut-off values between the two groups. The present study was a descriptive cross-sectional hospital-based study of nuclear morphometric parameters of benign and malignant cases. The study included 50 benign breast disease (BBD), 8 atypical ductal hyperplasia (ADH), and 64 carcinoma cases. Image analysis was performed on Papanicolaou-stained FNAC slides by Nikon Imaging Software (NIS)-Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Nuclear morphometry could differentiate between benign and malignant aspirates with a gradually increasing nuclear size parameters from BBD to ADH to carcinoma. Cut-off values of 31.93 μm 2 , 6.325 μm, 5.865 μm, 7.855 μm, and 21.55 μm for mean nuclear area, equivalent diameter, minimum feret, maximum ferret, and perimeter, respectively, were derived between benign and malignant cases, which could correctly classify 7 out of 8 ADH cases. Nuclear morphometry is a highly objective tool that could be used to supplement FNAC in differentiating benign from malignant lesions, with an important role in cases with diagnostic dilemma.
Nuclear import of human MLH1, PMS2, and MutLalpha: redundancy is the key.
Leong, Vivian; Lorenowicz, Jessica; Kozij, Natalie; Guarné, Alba
2009-08-01
DNA mismatch repair maintains genomic stability by correcting errors that have escaped polymerase proofreading. Defects on mismatch repair genes lead to an increased mutation rate, microsatellite instability and predisposition to human non-polyposis colorectal cancer (HNPCC). Human MutLalpha is a heterodimer formed by the interaction of MLH1 and PMS2 that coordinates a series of key events in mismatch repair. It has been proposed that nuclear import of MutLalpha may be the first regulatory step on the activation of the mismatch repair pathway. Using confocal microscopy and mismatch repair deficient cells, we have identified the sequence determinants that drive nuclear import of human MLH1, PMS2, and MutLalpha. Transient transfection of the individual proteins reveals that MLH1 has a bipartite and PMS2 has a single monopartite nuclear localization signal. Although dimerization is not required for nuclear localization, the MutLalpha heterodimer is imported more efficiently than the MLH1 or PMS2 monomers. Interestingly, the bipartite localization signal of MLH1 can direct import of MutLalpha even when PMS2 encompasses a mutated localization signal. Hence we conclude that the presence of redundant nuclear localization signals guarantees nuclear transport of MutLalpha and, consequently, efficient mismatch repair.
Beamer, B A; Negri, C; Yen, C J; Gavrilova, O; Rumberger, J M; Durcan, M J; Yarnall, D P; Hawkins, A L; Griffin, C A; Burns, D K; Roth, J; Reitman, M; Shuldiner, A R
1997-04-28
We determined the chromosomal localization and partial genomic structure of the coding region of the human PPAR gamma gene (hPPAR gamma), a nuclear receptor important for adipocyte differentiation and function. Sequence analysis and long PCR of human genomic DNA with primers that span putative introns revealed that intron positions and sizes of hPPAR gamma are similar to those previously determined for the mouse PPAR gamma gene[13]. Fluorescent in situ hybridization localized hPPAR gamma to chromosome 3, band 3p25. Radiation hybrid mapping with two independent primer pairs was consistent with hPPAR gamma being within 1.5 Mb of marker D3S1263 on 3p25-p24.2. These sequences of the intron/exon junctions of the 6 coding exons shared by hPPAR gamma 1 and hPPAR gamma 2 will facilitate screening for possible mutations. Furthermore, D3S1263 is a suitable polymorphic marker for linkage analysis to evaluate PPAR gamma's potential contribution to genetic susceptibility to obesity, lipoatrophy, insulin resistance, and diabetes.
Chen, Yi; Pirisi, Lucia; Creek, Kim E.
2013-01-01
We compared the levels of the Ski oncoprotein, an inhibitor of transforming growth factor-beta (TGF-β) signaling, in normal human keratinocytes (HKc), HPV16 immortalized HKc (HKc/HPV16), and differentiation resistant HKc/HPV16 (HKc/DR) in the absence and presence of TGF-β. Steady-state Ski protein levels increased in HKc/HPV16 and even further in HKc/DR, compared to HKc. TGF-β treatment of HKc, HKc/HPV16, and HKc/DR dramatically decreased Ski. TGF-β-induced Ski degradation was delayed in HKc/DR. Ski and phospho-Ski protein levels are cell cycle dependent with maximal Ski expression and localization to centrosomes and mitotic spindles during G2/M. ShRNA knock down of Ski in HKc/DR inhibited cell proliferation. More intense nuclear and cytoplasmic Ski staining and altered Ski localization were found in cervical cancer samples compared to adjacent normal tissue in a cervical cancer tissue array. Overall, these studies demonstrate altered Ski protein levels, degradation and localization in HPV16-transformed human keratinocytes and in cervical cancer. PMID:23809940
Role of cyclophilins in somatolactogenic action.
Rycyzyn, M A; Clevenger, C V
2000-01-01
Prolactin (PRL) and growth hormone (GH) are members of the somatolactogenic hormone family, the pleiotropic actions of which are necessary for vertebrate growth and mammary differentiation. The basis for the specific function of these hormones has remained uncertain; however, their action is associated with internalization and translocation into the nucleus. A yeast two-hybrid screen identified an interaction between PRL and cyclophilin B (CypB), a peptidyl prolyl isomerase (PPI) found in the endoplasmic reticulum (ER), extracellular space, and nucleus. The interaction between CypB and PRL/GH was confirmed in vitro and in vivo through the use of recombinant proteins and coimmunoprecipitation studies. The exogenous addition of CypB potentiated the proliferation of PRL- and GH-dependent cell lines 18- and 40-fold, respectively. The potentiation of PRL action by CypB was accompanied by a dramatic increase in the nuclear retrotranslocation of PRL. Immunogold electron microscopy has revealed this retrotransport to occur via a vesicular pathway. A CypB mutant, termed CypB-NT, was generated that lacked the putative wild-type N-terminal nuclear localization sequence. Although CypB-NT demonstrated levels of PRL binding and PPI activity equivalent to wild-type CypB, it was incapable of mediating the nuclear retrotranslocation of PRL or enhancing PRL-driven proliferation. These studies reveal CypB as an important chaperone facilitating the nuclear retrotransport and action of the somatolactogenic hormone family.
Leong Pock Tsy, Jean-Michel; Lumaret, Roselyne; Flaven-Noguier, Elodie; Sauve, Mathieu; Dubois, Marie-Pierre; Danthu, Pascal
2013-12-01
Adansonia comprises nine species, six of which are endemic to Madagascar. Genetic relationships between the Malagasy species remain unresolved due to conflicting results between nuclear and plastid DNA variation. Morphologically intermediate individuals between distinct species have been identified, indicative of interspecific hybridization. In this paper, microsatellite data are used to identify potential cases of hybridization and to provide insights into the evolutionary history of the genus on Madagascar. Eleven microsatellites amplified with new primers developed for Adansonia rubrostipa were used to analyse 672 individuals collected at 27 sites for the six Malagasy species and morphologically intermediate individuals. Rates of individual admixture were examined using three Bayesian clustering programs, STRUCTURE, BAPS and NewHybrids, with no a priori species assignment. Population differentiation was coherent, with recognized species boundaries. In the four Malagasy species of section Longitubae, 8·0, 9·0 and 9·5 % of individuals with mixed genotypes were identified by BAPS, NewHybrids and STRUCTURE, respectively. At sites with sympatric populations of A. rubrostipa and A. za, NewHybrids indicated these individuals to be F2 and, predominantly, backcrosses with both parental species. In northern Madagascar, two populations of trees combining A. za and A. perrieri morphology and microsatellite alleles were identified in the current absence of the parental species. The clear genetic differentiation observed between the six species may reflect their adaptation to different assortments of climate regimes and habitats during the colonization of the island. Microsatellite variation reveals that hybridization probably occurred in secondary contact between species of section Longitubae. This type of hybridization may also have been involved in the differentiation of a local new stabilized entity showing specific microsatellite alleles and morphological characters, suggesting a potential role of hybridization in the recent history of diversification on Madagascar.
Chromatin states and nuclear organization in development--a view from the nuclear lamina.
Mattout, Anna; Cabianca, Daphne S; Gasser, Susan M
2015-08-25
The spatial distribution of chromatin domains in interphase nuclei changes dramatically during development in multicellular organisms. A crucial question is whether nuclear organization is a cause or a result of differentiation. Genetic perturbation of lamina-heterochromatin interactions is helping to reveal the cross-talk between chromatin states and nuclear organization.
Pilot, M; Dahlheim, M E; Hoelzel, A R
2010-01-01
In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.
NASA Astrophysics Data System (ADS)
Jayachandra Babu, M.; Sandeep, N.; Ali, M. E.; Nuhait, Abdullah O.
The boundary layer flow across a slendering stretching sheet has gotten awesome consideration due to its inexhaustible pragmatic applications in nuclear reactor technology, acoustical components, chemical and manufacturing procedures, for example, polymer extrusion, and machine design. By keeping this in view, we analyzed the two-dimensional MHD flow across a slendering stretching sheet within the sight of variable viscosity and viscous dissipation. The sheet is thought to be convectively warmed. Convective boundary conditions through heat and mass are employed. Similarity transformations used to change over the administering nonlinear partial differential equations as a group of nonlinear ordinary differential equations. Runge-Kutta based shooting technique is utilized to solve the converted equations. Numerical estimations of the physical parameters involved in the problem are calculated for the friction factor, local Nusselt and Sherwood numbers. Viscosity variation parameter and chemical reaction parameter shows the opposite impact to each other on the concentration profile. Heat and mass transfer Biot numbers are helpful to enhance the temperature and concentration respectively.
Brinegar, Amy E; Xia, Zheng; Loehr, James Anthony; Li, Wei; Rodney, George Gerald
2017-01-01
Postnatal development of skeletal muscle is a highly dynamic period of tissue remodeling. Here, we used RNA-seq to identify transcriptome changes from late embryonic to adult mouse muscle and demonstrate that alternative splicing developmental transitions impact muscle physiology. The first 2 weeks after birth are particularly dynamic for differential gene expression and alternative splicing transitions, and calcium-handling functions are significantly enriched among genes that undergo alternative splicing. We focused on the postnatal splicing transitions of the three calcineurin A genes, calcium-dependent phosphatases that regulate multiple aspects of muscle biology. Redirected splicing of calcineurin A to the fetal isoforms in adult muscle and in differentiated C2C12 slows the timing of muscle relaxation, promotes nuclear localization of calcineurin target Nfatc3, and/or affects expression of Nfatc transcription targets. The results demonstrate a previously unknown specificity of calcineurin isoforms as well as the broader impact of alternative splicing during muscle postnatal development. PMID:28826478
Khurana, Simran; Warburton, Alix
2017-01-01
We have shown previously that Sp100 (a component of the ND10 nuclear body) represses transcription, replication and establishment of incoming human papillomavirus (HPV) DNA in the early stages of infection. In this follow up study, we show that Sp100 does not substantially regulate viral infection in the maintenance phase, however at late stages of infection Sp100 interacts with amplifying viral genomes to repress viral processes. We find that Sp100 localizes to HPV16 replication foci generated in primary keratinocytes, to HPV31 replication foci that form in differentiated cells, and to HPV16 replication foci in CIN 1 cervical biopsies. To analyze this further, Sp100 was down regulated by siRNA treatment of differentiating HPV31 containing cells and levels of viral transcription and replication were assessed. This revealed that Sp100 represses viral transcription and replication in differentiated cells. Analysis of Sp100 binding to viral chromatin showed that Sp100 bound across the viral genome, and that binding increased at late stages of infection. Therefore, Sp100 represses the HPV life cycle at both early and late stages of infection. PMID:28968443
Identification of multiple nuclear localization signals in murine Elf3, an ETS transcription factor.
Do, Hyun-Jin; Song, Hyuk; Yang, Heung-Mo; Kim, Dong-Ku; Kim, Nam-Hyung; Kim, Jin-Hoi; Cha, Kwang-Yul; Chung, Hyung-Min; Kim, Jae-Hwan
2006-03-20
We investigated nuclear localization signal (NLS) determinants within the AT-hook and ETS DNA-binding domains of murine Elf3 (mElf3), a member of the subfamily of epithelium-specific ETS transcription factors. Deletion mutants containing the AT-hook, ETS domain or both localized strictly in the nucleus, suggesting that these individual domains contain independent NLS motif(s). Within the AT-hook domain, four basic residues (244KRKR247) were critical for strong NLS activity, and two potent bipartite NLS motifs (236-252 and 249-267) were sufficient for nuclear import of mElf3, although less efficient than the full domain. In addition, one stretch of basic residues (318KKK320) within the ETS domain appears to be essential for mElf3 nuclear localization. Taken together, mElf3 contains multiple NLS motifs, which may function cooperatively to effect efficient nuclear transport.
Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment?
Adkison, Milo D.
1995-01-01
Morphological, behavioral, and life-history differences between Pacific salmon (Oncorhynchus spp.) populations are commonly thought to reflect local adaptation, and it is likewise common to assume that salmon populations separated by small distances are locally adapted. Two alternatives to local adaptation exist: random genetic differentiation owing to genetic drift and founder events, and genetic homogeneity among populations, in which differences reflect differential trait expression in differing environments. Population genetics theory and simulations suggest that both alternatives are possible. With selectively neutral alleles, genetic drift can result in random differentiation despite many strays per generation. Even weak selection can prevent genetic drift in stable populations; however, founder effects can result in random differentiation despite selective pressures. Overlapping generations reduce the potential for random differentiation. Genetic homogeneity can occur despite differences in selective regimes when straying rates are high. In sum, localized differences in selection should not always result in local adaptation. Local adaptation is favored when population sizes are large and stable, selection is consistent over large areas, selective diffeentials are large, and straying rates are neither too high nor too low. Consideration of alternatives to local adaptation would improve both biological research and salmon conservation efforts.
Stumpf, W E; Koike, N; Hayakawa, N; Tokuda, K; Nishimiya, K; Tsuchiya, Y; Hirate, J; Okazaki, A; Kumaki, K
1994-09-01
Target cells for 3H-labeled 1 alpha, 25(OH)2 vitamin D3 [1,25(OH)2D3, vitamin D] and its analog 3H-labeled 22-oxa-1 alpha, 25(OH)2 vitamin D3 (OCT) have been identified during endochondral and intramembranous ossification in developing, undecalcified, unembedded bone, using thaw-mount autoradiography. Two-day-old neonatal rats were injected with [3H]1,25(OH)2D3 or [3H]OCT; after 2 h leg, spine, and head were frozen and sectioned. In the epiphyseal-metaphyseal region specific nuclear concentrations of [3H]1,25(OH)2D3 and [3H]OCT were observed in identical cell populations, being low in cells of the articular and resting zone, intermediate in the proliferating zone, and highest in hypertrophic chondrocytes and in osteoblasts and precursor cells. In the primary spongiosa intertrabecular spaces there were a large number of cells with nuclear labeling--probably osteoblasts and precursor cells. In contrast, in the secondary spongiosa intertrabecular spaces, apparent blood-forming cells were mostly unlabeled. Osteoblasts along bone spicules and compact bone in long bones, vertebrae, and head also showed strong nuclear labeling, as did cells of the periosteum. These data suggest that 1,25(OH)2D3 and OCT regulate development, differentiation, and activities of chondrocytes and osteoblasts, including differentiation of resting chondrocytes into proliferating and hypertrophic chondrocytes that involve "chondroclastic" enlargement of lacunae and "trans-differentiation" of surviving hypertrophic chondrocytes; differentiation of stroma cells into osteoblasts; and in periosteum and other regions of intramembranous ossification differentiation of precursor cells and osteoblasts. Nuclear receptor binding and their selective and hierarchical distribution during cell differentiation appear to correspond to multiple genomic effects toward growth, regeneration and repair. The findings indicate a physiological significance and therapeutic potential of 1,25(OH)2D3 and in particular of its less hypercalcemic analog OCT.
Mapping the nuclear localization signal in the matrix protein of potato yellow dwarf virus.
Anderson, Gavin; Jang, Chanyong; Wang, Renyuan; Goodin, Michael
2018-05-01
The ability of the matrix (M) protein of potato yellow dwarf virus (PYDV) to remodel nuclear membranes is controlled by a di-leucine motif located at residues 223 and 224 of its primary structure. This function can be uncoupled from that of its nuclear localization signal (NLS), which is controlled primarily by lysine and arginine residues immediately downstream of the LL motif. In planta localization of green fluorescent protein fusions, bimolecular fluorescence complementation assays with nuclear import receptor importin-α1 and yeast-based nuclear import assays provided three independent experimental approaches to validate the authenticity of the M-NLS. The carboxy terminus of M is predicted to contain a nuclear export signal, which is belived to be functional, given the ability of M to bind the Arabidopsis nuclear export receptor 1 (XPO1). The nuclear shuttle activity of M has implications for the cell-to-cell movement of PYDV nucleocapsids, based upon its interaction with the N and Y proteins.
Álvarez-Varas, R; González-Acuña, D; Vianna, J A
2015-09-01
The Neotropical ecoregion has been an important place of avian diversification where dispersal and allopatric events coupled with periods of active orogeny and climate change (Late Pliocene-Pleistocene) have shaped the biogeography of the region. In the Neotropics, avian population structure has been sculpted not only by geographical barriers, but also by non-allopatric factors such as natural selection and local adaptation. We analyzed the genetic variation of six co-distributed Phrygilus species from the Central Andes, based on mitochondrial and nuclear markers in conjunction with morphological differentiation. We examined if Phrygilus species share patterns of population structure and historical demography, and reviewed the intraspecific taxonomy in part of their geographic range. Our results showed different phylogeographic patterns between species, even among those belonging to the same phylogenetic clade. P. alaudinus, P. atriceps, and P. unicolor showed genetic differentiation mediated by allopatric mechanisms in response to specific geographic barriers; P. gayi showed sympatric lineages in northern Chile, while P. plebejus and P. fruticeti showed a single genetic group. We found no relationship between geographic range size and genetic structure. Additionally, a signature of expansion was found in three species related to the expansion of paleolakes in the Altiplano region and the drying phase of the Atacama Desert. Morphological analysis showed congruence with molecular data and intraspecific taxonomy in most species. While we detected genetic and phenotypic patterns that could be related to natural selection and local adaptation, our results indicate that allopatric events acted as a major factor in the population differentiation of Phrygilus species. Copyright © 2015 Elsevier Inc. All rights reserved.
The expression analysis of Sfrs10 and Celf4 during mouse retinal development
Karunakaran, Devi Krishna Priya; Congdon, Sean; Guerrette, Thomas; Banday, Abdul Rouf; Lemoine, Christopher; Chhaya, Nisarg; Kanadia, Rahul
2013-01-01
Processing of mRNAs including, alternative splicing (AS), mRNA transport and translation regulation are crucial to eukaryotic gene expression. For example, >90% of the gene in the human genome are known to undergo alternative splicing thereby expanding the proteome production capacity of a limited number of genes. Similarly, mRNA export and translation regulation plays a vital role in regulating protein production. Thus, it is important to understand how these RNA binding proteins including alternative splicing factors (ASFs) and mRNA transport and translation factors regulate these processes. Here we report the expression of an ASF, Serine-arginine rich splicing factor 10 (Sfrs10) and a mRNA translation regulation factor, CUGBP, elav like family member 4 (Celf4) in the developing mouse retina. Sfrs10 was expressed throughout postnatal (P) retinal development and was observed progressively in newly differentiating neurons. Immunofluorescence (IF) showed Sfrs10 in retinal ganglion cells (RGCs) at P0, followed by amacrine and bipolar cells, and at P8 it was enriched in red/green cone photoreceptor cells. By P22, Sfrs10 was observed in rod photoreceptors in a peri-nuclear pattern. Like Sfrs10, Celf4 was also observed in the developing retina, but with two distinct retinal isoforms. In situ hybridization (ISH) showed progressive expression of Celf4 in differentiating neurons, which was confirmed by IF that showed a dynamic shift in Celf4 localization. Early in development Celf4 expression was restricted to the nuclei of newly differentiating RGCs and later (E16 onwards) it was observed in the initial segments of RGC axons. Later, during postnatal development, Celf4 was observed in amacrine and bipolar cells, but here it was predominantly cytoplasmic and enriched in the two synaptic layers. Specifically, at P14, Celf4 was observed in the synaptic boutons of rod bipolar cells marked by Pkc-α. Thus, Celf4 might be regulating AS early in development besides its known role of regulating mRNA localization/translation. In all, our data suggests an important role for AS and mRNA localization/translation in retinal neuron differentiation. PMID:23932931
Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina.
Gonzalez, Yanira; Saito, Akira; Sazer, Shelley
2012-01-01
In animal cells the nuclear lamina, which consists of lamins and lamin-associated proteins, serves several functions: it provides a structural scaffold for the nuclear envelope and tethers proteins and heterochromatin to the nuclear periphery. In yeast, proteins and large heterochromatic domains including telomeres are also peripherally localized, but there is no evidence that yeast have lamins or a fibrous nuclear envelope scaffold. Nonetheless, we found that the Lem2 and Man1 proteins of the fission yeast Schizosaccharomyces pombe, evolutionarily distant relatives of the Lap2/Emerin/Man1 (LEM) sub-family of animal cell lamin-associated proteins, perform fundamental functions of the animal cell lamina. These integral inner nuclear membrane localized proteins, with nuclear localized DNA binding Helix-Extension-Helix (HEH) domains, impact nuclear envelope structure and integrity, are essential for the enrichment of telomeres at the nuclear periphery and by means of their HEH domains anchor chromatin, most likely transcriptionally repressed heterochromatin, to the nuclear periphery. These data indicate that the core functions of the nuclear lamina are conserved between fungi and animal cells and can be performed in fission yeast, without lamins or other intermediate filament proteins.
NASA Astrophysics Data System (ADS)
Cruz-Roa, Angel; Xu, Jun; Madabhushi, Anant
2015-01-01
Nuclear architecture or the spatial arrangement of individual cancer nuclei on histopathology images has been shown to be associated with different grades and differential risk for a number of solid tumors such as breast, prostate, and oropharyngeal. Graph-based representations of individual nuclei (nuclei representing the graph nodes) allows for mining of quantitative metrics to describe tumor morphology. These graph features can be broadly categorized into global and local depending on the type of graph construction method. While a number of local graph (e.g. Cell Cluster Graphs) and global graph (e.g. Voronoi, Delaunay Triangulation, Minimum Spanning Tree) features have been shown to associated with cancer grade, risk, and outcome for different cancer types, the sensitivity of the preceding segmentation algorithms in identifying individual nuclei can have a significant bearing on the discriminability of the resultant features. This therefore begs the question as to which features while being discriminative of cancer grade and aggressiveness are also the most resilient to the segmentation errors. These properties are particularly desirable in the context of digital pathology images, where the method of slide preparation, staining, and type of nuclear segmentation algorithm employed can all dramatically affect the quality of the nuclear graphs and corresponding features. In this paper we evaluated the trade off between discriminability and stability of both global and local graph-based features in conjunction with a few different segmentation algorithms and in the context of two different histopathology image datasets of breast cancer from whole-slide images (WSI) and tissue microarrays (TMA). Specifically in this paper we investigate a few different performance measures including stability, discriminability and stability vs discriminability trade off, all of which are based on p-values from the Kruskal-Wallis one-way analysis of variance for local and global graph features. Apart from identifying the set of local and global features that satisfied the trade off between stability and discriminability, our most interesting finding was that a simple segmentation method was sufficient to identify the most discriminant features for invasive tumour detection in TMAs, whereas for tumour grading in WSI, the graph based features were more sensitive to the accuracy of the segmentation algorithm employed.
Paciorkowski, Alex R; Weisenberg, Judy; Kelley, Joshua B; Spencer, Adam; Tuttle, Emily; Ghoneim, Dalia; Thio, Liu Lin; Christian, Susan L; Dobyns, William B; Paschal, Bryce M
2014-05-01
Nuclear import receptors of the KPNA family recognize the nuclear localization signal in proteins and together with importin-β mediate translocation into the nucleus. Accordingly, KPNA family members have a highly conserved architecture with domains that contact the nuclear localization signal and bind to importin-β. Here, we describe autosomal recessive mutations in KPNA7 found by whole exome sequencing in a sibling pair with severe developmental disability, infantile spasms, subsequent intractable epilepsy consistent with Lennox-Gastaut syndrome, partial agenesis of the corpus callosum, and cerebellar vermis hypoplasia. The mutations mapped to exon 7 in KPNA7 result in two amino-acid substitutions, Pro339Ala and Glu344Gln. On the basis of the crystal structure of the paralog KPNA2 bound to a bipartite nuclear localization signal from the retinoblastoma protein, the amino-acid substitutions in the affected subjects were predicted to occur within the seventh armadillo repeat that forms one of the two nuclear localization signal-binding sites in KPNA family members. Glu344 is conserved in all seven KPNA proteins, and we found that the Glu354Gln mutation in KPNA2 is sufficient to reduce binding to the retinoblastoma nuclear localization signal to approximately one-half that of wild-type protein. Our data show that compound heterozygous mutations in KPNA7 are associated with a human neurodevelopmental disease, and provide the first example of a human disease associated with mutation of a nuclear transport receptor.
Paciorkowski, Alex R; Weisenberg, Judy; Kelley, Joshua B; Spencer, Adam; Tuttle, Emily; Ghoneim, Dalia; Thio, Liu Lin; Christian, Susan L; Dobyns, William B; Paschal, Bryce M
2014-01-01
Nuclear import receptors of the KPNA family recognize the nuclear localization signal in proteins and together with importin-β mediate translocation into the nucleus. Accordingly, KPNA family members have a highly conserved architecture with domains that contact the nuclear localization signal and bind to importin-β. Here, we describe autosomal recessive mutations in KPNA7 found by whole exome sequencing in a sibling pair with severe developmental disability, infantile spasms, subsequent intractable epilepsy consistent with Lennox–Gastaut syndrome, partial agenesis of the corpus callosum, and cerebellar vermis hypoplasia. The mutations mapped to exon 7 in KPNA7 result in two amino-acid substitutions, Pro339Ala and Glu344Gln. On the basis of the crystal structure of the paralog KPNA2 bound to a bipartite nuclear localization signal from the retinoblastoma protein, the amino-acid substitutions in the affected subjects were predicted to occur within the seventh armadillo repeat that forms one of the two nuclear localization signal-binding sites in KPNA family members. Glu344 is conserved in all seven KPNA proteins, and we found that the Glu354Gln mutation in KPNA2 is sufficient to reduce binding to the retinoblastoma nuclear localization signal to approximately one-half that of wild-type protein. Our data show that compound heterozygous mutations in KPNA7 are associated with a human neurodevelopmental disease, and provide the first example of a human disease associated with mutation of a nuclear transport receptor. PMID:24045845
CD147 promotes the formation of functional osteoclasts through NFATc1 signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishioku, Tsuyoshi, E-mail: nishiokut@niu.ac.jp; Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180; Terasawa, Mariko
CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreasedmore » CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. - Highlights: • CD147 expression was markedly upregulated during osteoclast differentiation. • Downregulation of CD147 expression inhibited osteoclastgenesis and bone resorption. • Decreased CD147 expression inhibited RANKL-induced nuclear translocation of NFATc1.« less
Ordinary differential equation for local accumulation time.
Berezhkovskii, Alexander M
2011-08-21
Cell differentiation in a developing tissue is controlled by the concentration fields of signaling molecules called morphogens. Formation of these concentration fields can be described by the reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be characterized by the local accumulation time, defined in terms of the local relaxation function. Here, we show that this time satisfies an ordinary differential equation. Using this equation one can straightforwardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation function by solving the partial differential equation, as was done in previous studies. We derive this ordinary differential equation together with the accompanying boundary conditions and demonstrate that the earlier obtained results for the local accumulation time can be recovered by solving this equation. © 2011 American Institute of Physics
Shiheido, Hirokazu; Shimizu, Jun
2015-02-20
BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND356-58, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. Copyright © 2015 Elsevier Inc. All rights reserved.
Subcellular localization of celery mannitol dehydrogenase. A cytosolic metabolic enzyme in nuclei.
Yamamoto, Y T; Zamski, E; Williamson, J D; Conkling, M A; Pharr, D M
1997-01-01
Mannitol dehydrogenase (MTD) is the first enzyme in mannitol catabolism in celery (Apium graveolens L. var dulce [Mill] Pers. cv Florida 638). Mannitol is an important photoassimilate, as well as providing plants with resistance to salt and osmotic stress. Previous work has shown that expression of the celery Mtd gene is regulated by many factors, such as hexose sugars, salt and osmotic stress, and salicylic acid. Furthermore, MTD is present in cells of sink organs, phloem cells, and mannitol-grown suspension cultures. Immunogold localization and biochemical analyses presented here demonstrate that celery MTD is localized in the cytosol and nuclei. Although the cellular density of MTD varies among different cell types, densities of nuclear and cytosolic MTD in a given cell are approximately equal. Biochemical analyses of nuclear extracts from mannitol-grown cultured cells confirmed that the nuclear-localized MTD is enzymatically active. The function(s) of nuclear-localized MTD is unknown. PMID:9414553
Vences, Miguel; Rasoloariniaina, Jean R; Riemann, Jana C
2018-02-08
The genus Typhleotris contains three poorly known blind fish species, inhabiting aquifers in the limestone plateau of south-western Madagascar. Until recently these species were known from only few localities, and their pattern of genetic differentiation remains poorly studied. In this study we analyse 122 Typhleotris tissue samples collected from 12 localities, spanning the entire known range of the genus, and use DNA sequences to assign these samples to the three species known. The phylogeny based on the mitochondrial marker cox1 revealed three main clades corresponding to the three species: Typhleotris madagascariensis, T. mararybe and T. pauliani, differing by uncorrected pairwise sequence divergences of 6.3-9.8%. The distribution ranges of the three species overlapped widely: T. mararybe was collected only in a southern group of localities, T. madagascariensis was found in both the southern and the central group of localities, and T. pauliani occurred from the northernmost site to the southern group of localities; yet the three species did not share haplotypes in two nuclear genes, except for three individuals that we hypothesize are hybrids of T. pauliani with T. madagascariensis and T. mararybe. This pattern of concordant mitochondrial and nuclear divergence despite sympatry strongly supports the status of all three taxa as separate species. Phylogeographic structure was obvious in T. madagascariensis, with two separate shallow mitochondrial clades occupying (1) the central vs. (2) the southern group of populations, and in T. pauliani, with separate mitochondrial clades for (1) the northern vs. (2) the central/southern populations. The widespread occurrence of these three cave fish species suggests that the aquifers in south-western Madagascar have at least in the past allowed episodic dispersal and gene flow of subterraneous organisms, whereas the phylogeographic pattern of T. madagascariensis and T. pauliani provides evidence for isolation and loss of connectivity in the more recent past.
Balasundaram, David; Benedik, Michael J.; Morphew, Mary; Dang, Van-Dinh; Levin, Henry L.
1999-01-01
The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag. PMID:10409764
Balasundaram, D; Benedik, M J; Morphew, M; Dang, V D; Levin, H L
1999-08-01
The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag.
Functional Activity of the Fanconi Anemia Protein FAA Requires FAC Binding and Nuclear Localization
Näf, Dieter; Kupfer, Gary M.; Suliman, Ahmed; Lambert, Kathleen; D’Andrea, Alan D.
1998-01-01
Fanconi anemia (FA) is an autosomal recessive disease characterized by genomic instability, cancer susceptibility, and cellular hypersensitivity to DNA-cross-linking agents. Eight complementation groups of FA (FA-A through FA-H) have been identified. Two FA genes, corresponding to complementation groups FA-A and FA-C, have been cloned, but the functions of the encoded FAA and FAC proteins remain unknown. We have recently demonstrated that FAA and FAC interact to form a nuclear complex. In this study, we have analyzed a series of mutant forms of the FAA protein with respect to functional activity, FAC binding, and nuclear localization. Mutation or deletion of the amino-terminal nuclear localization signal (NLS) of FAA results in loss of functional activity, loss of FAC binding, and cytoplasmic retention of FAA. Replacement of the NLS sequence with a heterologous NLS sequence, derived from the simian virus 40 T antigen, results in nuclear localization but does not rescue functional activity or FAC binding. Nuclear localization of the FAA protein is therefore necessary but not sufficient for FAA function. Mutant forms of FAA which fail to bind to FAC also fail to promote the nuclear accumulation of FAC. In addition, wild-type FAC promotes the accumulation of wild-type FAA in the nucleus. Our results suggest that FAA and FAC perform a concerted function in the cell nucleus, required for the maintenance of chromosomal stability. PMID:9742112
[Therapeutic cloning. Biology, perspectives and alternatives].
Maddox-Hyttel, Poul
2003-02-24
Certain diseases are caused by or cause irreversible loss of cells and may in the future be treated by cell-based therapies where spare cells are introduced into the body. Therapeutic cloning constitutes a scientifically and ethically challenging route to the generation of autologous patient specific spare cells: Stem cells for subsequent differentiation and transplantation are isolated from one week old embryos, which are produced by cloning by nuclear transfer from normal cells retrieved from a patient. Research in therapeutic cloning should be pursued in line with alternative strategies for obtaining stem cells. Finally, the molecular biology of cloning by nuclear transfer may hold the key to understanding trans-differentiation, which ultimately may allow for de-differentiation and subsequent re-differentiation of adult somatic cells for therapeutic purposes.
Goal direction and effectiveness, emotional maturity, and nuclear family functioning.
Klever, Phillip
2009-07-01
Differentiation of self, a cornerstone concept in Bowen theory, has a profound influence over time on the functioning of the individual and his or her family unit. This 5-year longitudinal study tested this hypothesis with 50 developing nuclear families. The dimensions of differentiation of self that were examined were goal direction and effectiveness and emotional maturity. A qualitative analysis of participants' goals demonstrated that couples with higher functioning developing nuclear families, when compared with couples with lower functioning families, placed more emphasis on family goals, had more balance between family and personal goals, and pursued more goals over the 5 years. The quantitative analysis supported the hypothesis that goal effectiveness and emotional maturity influenced variation in nuclear family functioning. In addition, couple goal effectiveness and emotional maturity were associated with nuclear family functioning more strongly than individual goal effectiveness and emotional maturity were associated with individual functioning.
Higher Levels of Organization in the Interphase Nucleus of Cycling and Differentiated Cells
Leitch, Andrew R.
2000-01-01
The review examines the structured organization of interphase nuclei using a range of examples from the plants, animals, and fungi. Nuclear organization is shown to be an important phenomenon in cell differentiation and development. The review commences by examining nuclei in dividing cells and shows that the organization patterns can be dynamic within the time frame of the cell cycle. When cells stop dividing, derived differentiated cells often show quite different nuclear organizations. The developmental fate of nuclei is divided into three categories. (i) The first includes nuclei that undergo one of several forms of polyploidy and can themselves change in structure during the course of development. Possible function roles of polyploidy is given. (ii) The second is nuclear reorganization without polyploidy, where nuclei reorganize their structure to form novel arrangements of proteins and chromosomes. (iii) The third is nuclear disintegration linked to programmed cell death. The role of the nucleus in this process is described. The review demonstrates that recent methods to probe nuclei for nucleic acids and proteins, as well as to examine their intranuclear distribution in vivo, has revealed much about nuclear structure. It is clear that nuclear organization can influence or be influenced by cell activity and development. However, the full functional role of many of the observed phenomena has still to be fully realized. PMID:10704477
Wang, Lei; Kamath, Anant; Frye, Janie; Iwamoto, Gary A; Chun, Ju Lan; Berry, Suzanne E
2012-05-01
Mesoangioblasts are vessel-derived stem cells that differentiate into mesodermal derivatives. We have isolated postnatal aorta-derived mesoangioblasts (ADMs) that differentiate into smooth, skeletal, and cardiac muscle, and adipocytes, and regenerate damaged skeletal muscle in a murine model for Duchenne muscular dystrophy. We report that the marker profile of ADM is similar to that of mesoangioblasts isolated from embryonic dorsal aorta, postnatal bone marrow, and heart, but distinct from mesoangioblasts derived from skeletal muscle. We also demonstrate that ADM differentiate into myelinating glial cells. ADM localize to peripheral nerve bundles in regenerating muscles and exhibit morphology and marker expression of mature Schwann cells, and myelinate axons. In vitro, ADM spontaneously express markers of oligodendrocyte progenitors, including the chondroitin sulphate proteoglycan NG2, nestin, platelet-derived growth factor (PDGF) receptor α, the A2B5 antigen, thyroid hormone nuclear receptor α, and O4. Pharmacological inhibition of Rho kinase (ROCK) initiated process extension by ADM, and when combined with insulin-like growth factor 1, PDGF, and thyroid hormone, enhanced ADM expression of oligodendrocyte precursor markers and maturation into the oligodendrocyte lineage. ADM injected into the right lateral ventricle of the brain migrate to the corpus callosum, and cerebellar white matter, where they express components of myelin. Because ADM differentiate or mature into cell types of both mesodermal and ectodermal origin, they may be useful for treatment of a variety of degenerative diseases, or repair and regeneration of multiple cell types in severely damaged tissue.
Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin
2013-12-01
Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with werewolf (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER's nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization.
Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin
2013-01-01
Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with WEREWOLF (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER’s nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization. PMID:24368785
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, Carolyn P.; Ayalew, Lisanework E.; Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5E3 S7N 5B4 Canada
The L1 region of bovine adenovirus (BAdV)-3 encodes a non-structural protein designated 52K. Anti-52K serum detected a protein of 40 kDa, which localized to the nucleus but not to the nucleolus in BAdV-3-infected or transfected cells. Analysis of mutant 52K proteins suggested that three basic residues ({sup 105}RKR{sup 107}) of the identified domain (amino acids {sup 102}GMPRKRVLT{sup 110}) are essential for nuclear localization of 52K. The nuclear import of a GST-52K fusion protein utilizes the classical importin {alpha}/{beta}-dependent nuclear transport pathway. The 52K protein is preferentially bound to the cellular nuclear import receptor importin {alpha}3. Although deletion of amino acidmore » 102-110 is sufficient to abrogate the nuclear localization of 52K, amino acid 90-133 are required for interaction with importin-{alpha}3 and localizing a cytoplasmic protein to the nucleus. These results suggest that 52K contains a bipartite NLS, which preferentially utilize an importin {alpha}3 nuclear import receptor-mediated pathway to transport 52K to the nucleus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaskar,; Kumari, Neeti; Goyal, Neena, E-mail: neenacdri@yahoo.com
Highlights: Black-Right-Pointing-Pointer The study presents cloning and characterization of TCP1{gamma} gene from L. donovani. Black-Right-Pointing-Pointer TCP1{gamma} is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. Black-Right-Pointing-Pointer LdTCP{gamma} exhibited differential expression in different stages of promastigotes. Black-Right-Pointing-Pointer LdTCP{gamma} co-localized with actin, a cytoskeleton protein. Black-Right-Pointing-Pointer The data suggests that this gene may have a role in differentiation/biogenesis. Black-Right-Pointing-Pointer First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complexmore » (TCP1{gamma}), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1{gamma} of Leishmania donovani (LdTCP1{gamma}), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1{gamma} revealed the presence of all the characteristic features of TCP1{gamma}. However, leishmanial TCP1{gamma} represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1{gamma} exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1{gamma} as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1{gamma} was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1{gamma} with actin suggests that, this gene may have a role in maintaining the structural dynamics of cytoskeleton of parasite.« less
Strakova, Zuzana; Reed, Jennifer; Ihnatovych, Ivanna
2010-06-01
Transcriptional coactivator with PDZ-binding motif (TAZ) is known to bind to a variety of transcription factors to control cell differentiation and organ development. However, its role in uterine physiology has not yet been described. To study its regulation during the unique process of differentiation of fibroblasts into decidual cells (decidualization), we utilized the human uterine fibroblast (HuF) in vitro cell model. Immunocytochemistry data demonstrated that the majority of the TAZ protein is localized in the nucleus. Treatment of HuF cells with the embryonic stimulus cytokine interleukin 1 beta in the presence of steroid hormones (estradiol-17 beta and medroxyprogesterone acetate) for 13 days did not cause any apparent TAZ mRNA changes but resulted in a significant TAZ protein decline (approximately 62%) in total cell lysates. Analysis of cytosolic and nuclear extracts revealed that the decline of total TAZ was caused primarily by a drop of TAZ protein levels in the nucleus. TAZ was localized on the peroxisome proliferator-activated receptor response element site (located at position -1200 bp relative to the transcription start site) of the genomic region of decidualization marker insulin-like growth factor-binding protein 1 (IGFBP1) in HuF cells as detected by chromatin immunoprecipitation. TAZ is also present in human endometrium tissue as confirmed by immunohistochemistry. During the secretory phase of the menstrual cycle, specific TAZ staining particularly diminishes in the stroma, suggesting its participation during the decidualization process, as well as implantation. During early baboon pregnancy, TAZ protein expression remains minimal in the endometrium close to the implantation site. In summary, the presented evidence shows for the first time to date TAZ protein in the human uterine tract, its downregulation during in vitro decidualization, and its localization on the IGFBP1 promoter region, all of which indicate its presence in the uterine differentiation program during pregnancy.
Mao, Tsui-Lien; Kurman, Robert J; Huang, Chao-Cheng; Lin, Ming-Chieh; Shih, Ie-Ming
2007-11-01
Choriocarcinoma is traditionally described as being composed of cytotrophoblast and syncytiotrophoblast. Microscopically, these 2 types of cells are intimately associated with each other, forming a characteristic biphasic plexiform pattern, however, the nature of these 2 types of trophoblastic cells is not well understood. In this study, we used immunohistochemistry for several trophoblastic markers to analyze the trophoblastic subpopulations in 36 gestational choriocarcinomas. Eighty-one specimens including placenta, complete mole, placental site nodule, epithelioid trophoblastic tumor, and placental site trophoblastic tumor were analyzed. The antibodies included Mel-CAM, HLA-G, MUC-4, and beta-catenin. A semiquantitative assessment of positive cells and the cellular localization of these markers were recorded. We found diffuse strong membranous and cytoplasmic staining for MUC-4 in mononucleate cells in all 36 cases (100%) and a similar pattern of localization in 28 cases (78%) for HLA-G. This distribution was similar to that in normal placentas, where MUC-4 and HLA-G are expressed in the trophoblastic cells of the trophoblastic columns and implantation site. In choriocarcinoma, mononucleate trophoblastic cells showed moderate immunoreactivity for Mel-CAM, a specific marker for implantation site intermediate trophoblast, in 78% of the cases. The MUC-4, HLA-G, and Mel-CAM-positive trophoblastic cells were larger than cytotrophoblastic cells, with more abundant cytoplasm, consistent with the morphology of intermediate trophoblast. In contrast, 31% of the choriocarcinomas contained a very small proportion (<5%) of mononucleate trophoblastic cells compatible with cytotrophoblast that was positive for nuclear beta-catenin, a cytotrophoblast-associated marker. These results suggest that choriocarcinoma is composed predominantly of a mixture of syncytiotrophoblast and intermediate trophoblast with only a small proportion of cytotrophoblast. The presence of nuclear beta-catenin staining in the cytotrophoblast of choriocarcinoma is consistent with the view that choriocarcinoma develops from transformed cytotrophoblastic cells which are presumably the cancer stem cells that differentiate into either intermediate trophoblast or syncytiotrophoblast.
Levine, Paul M.; Lee, Eugine; Greenfield, Alex; Bonneau, Richard; Logan, Susan K.; Garabedian, Michael J.; Kirshenbaum, Kent
2013-01-01
Sustained treatment of prostate cancer with Androgen Receptor (AR) antagonists can evoke drug resistance, leading to castrate-resistant disease. Elevated activity of the AR is often associated with this highly aggressive disease state. Therefore, new therapeutic regimens that target and modulate AR activity could prove beneficial. We previously introduced a versatile chemical platform to generate competitive and non-competitive multivalent peptoid oligomer conjugates that modulate AR activity. In particular, we identified a linear and a cyclic divalent ethisterone conjugate that exhibit potent anti-proliferative properties in LNCaP-abl cells, a model of castrate-resistant prostate cancer. Here, we characterize the mechanism of action of these compounds utilizing confocal microscopy, time-resolved fluorescence resonance energy transfer, chromatin immunoprecipitation, flow cytometry, and microarray analysis. The linear conjugate competitively blocks AR action by inhibiting DNA binding. In addition, the linear conjugate does not promote AR nuclear localization or co-activator binding. In contrast, the cyclic conjugate promotes AR nuclear localization and induces cell-cycle arrest, despite its inability to compete against endogenous ligand for binding to AR in vitro. Genome-wide expression analysis reveals that gene transcripts are differentially affected by treatment with the linear or cyclic conjugate. Although the divalent ethisterone conjugates share extensive chemical similarities, we illustrate that they can antagonize the AR via distinct mechanisms of action, establishing new therapeutic strategies for potential applications in AR pharmacology. PMID:22871957
Khan, Shahid N; Persons, John D; Paulsen, Janet L; Guerrero, Michel; Schiffer, Celia A; Kurt-Yilmaz, Nese; Ishima, Rieko
2018-03-13
In the era of state-of-the-art inhibitor design and high-resolution structural studies, detection of significant but small protein structural differences in the inhibitor-bound forms is critical to further developing the inhibitor. Here, we probed differences in HIV-1 protease (PR) conformation among darunavir and four analogous inhibitor-bound forms and compared them with a drug-resistant mutant using nuclear magnetic resonance chemical shifts. Changes in amide chemical shifts of wild-type (WT) PR among these inhibitor-bound forms, ΔCSP, were subtle but detectable and extended >10 Å from the inhibitor-binding site, asymmetrically between the two subunits of PR. Molecular dynamics simulations revealed differential local hydrogen bonding as the molecular basis of this remote asymmetric change. Inhibitor-bound forms of the drug-resistant mutant also showed a similar long-range ΔCSP pattern. Differences in ΔCSP values of the WT and the mutant (ΔΔCSPs) were observed at the inhibitor-binding site and in the surrounding region. Comparing chemical shift changes among highly analogous inhibitors and ΔΔCSPs effectively eliminated local environmental effects stemming from different chemical groups and enabled exploitation of these sensitive parameters to detect subtle protein conformational changes and to elucidate asymmetric and remote conformational effects upon inhibitor interaction.
Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J.
2016-01-01
Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC12 but not BODIPY-FLC5 to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC12 to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC12 was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. PMID:26658423
Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J
2016-02-01
Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC(12) but not BODIPY-FLC(5) to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC(12) to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC(12) was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.
The nucleoporin Mlp2 is involved in chromosomal distribution during mitosis in trypanosomatids
Morelle, Christelle; Sterkers, Yvon; Crobu, Lucien; MBang-Benet, Diane-Ethna; Kuk, Nada; Portalès, Pierre; Bastien, Patrick; Pagès, Michel; Lachaud, Laurence
2015-01-01
Nucleoporins are evolutionary conserved proteins mainly involved in the constitution of the nuclear pores and trafficking between the nucleus and cytoplasm, but are also increasingly viewed as main actors in chromatin dynamics and intra-nuclear mitotic events. Here, we determined the cellular localization of the nucleoporin Mlp2 in the ‘divergent’ eukaryotes Leishmania major and Trypanosoma brucei. In both protozoa, Mlp2 displayed an atypical localization for a nucleoporin, essentially intranuclear, and preferentially in the periphery of the nucleolus during interphase; moreover, it relocated at the mitotic spindle poles during mitosis. In T. brucei, where most centromeres have been identified, TbMlp2 was found adjacent to the centromeric sequences, as well as to a recently described unconventional kinetochore protein, in the periphery of the nucleolus, during interphase and from the end of anaphase onwards. TbMlp2 and the centromeres/kinetochores exhibited a differential migration towards the poles during mitosis. RNAi knockdown of TbMlp2 disrupted the mitotic distribution of chromosomes, leading to a surprisingly well-tolerated aneuploidy. In addition, diploidy was restored in a complementation assay where LmMlp2, the orthologue of TbMlp2 in Leishmania, was expressed in TbMlp2-RNAi-knockdown parasites. Taken together, our results demonstrate that Mlp2 is involved in the distribution of chromosomes during mitosis in trypanosomatids. PMID:25690889
KLF4 Nuclear Export Requires ERK Activation and Initiates Exit from Naive Pluripotency.
Dhaliwal, Navroop K; Miri, Kamelia; Davidson, Scott; Tamim El Jarkass, Hala; Mitchell, Jennifer A
2018-04-10
Cooperative action of a transcription factor complex containing OCT4, SOX2, NANOG, and KLF4 maintains the naive pluripotent state; however, less is known about the mechanisms that disrupt this complex, initiating exit from pluripotency. We show that, as embryonic stem cells (ESCs) exit pluripotency, KLF4 protein is exported from the nucleus causing rapid decline in Nanog and Klf4 transcription; as a result, KLF4 is the first pluripotency transcription factor removed from transcription-associated complexes during differentiation. KLF4 nuclear export requires ERK activation, and phosphorylation of KLF4 by ERK initiates interaction of KLF4 with nuclear export factor XPO1, leading to KLF4 export. Mutation of the ERK phosphorylation site in KLF4 (S132) blocks KLF4 nuclear export, the decline in Nanog, Klf4, and Sox2 mRNA, and differentiation. These findings demonstrate that relocalization of KLF4 to the cytoplasm is a critical first step in exit from the naive pluripotent state and initiation of ESC differentiation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shuyuan; Chen, Jiaxi; Huang, Pintong
Recently GLP-1 was found to have cardioprotective effects independent of those attributable to tight glycemic control. Methods and results: We employed ultrasound targeted microbubble destruction (UTMD) to deliver piggybac transposon plasmids encoding the GLP-1 gene with a nuclear localizing signal to rat hearts with adriamycin cardiomyopathy. After a single UTMD treatment, overexpression of transgenic GLP-1 was found in nuclei of rat heart cells with evidence that transfected cardiac cells had undergone proliferation. UTMD-GLP-1 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Nuclear overexpression of GLP-1 by inducing phosphorylation of FoxO1-S256 and translocationmore » of FoxO1 from the nucleus to the cytoplasm significantly inactivated FoxO1 and activated the expression of cyclin D1 in nuclei of cardiac muscle cells. Reversal of adriamycin cardiomyopathy appeared to be mediated by dedifferentiation and proliferation of nuclear FoxO1-positive cardiac muscle cells with evidence of embryonic stem cell markers (OCT4, Nanog, SOX2 and c-kit), cardiac early differentiation markers (NKX2.5 and ISL-1) and cellular proliferation markers (BrdU and PHH3) after UTMD with GLP-1 gene therapy. Conclusions: Intranuclear myocardial delivery of the GLP-1gene can reverse established adriamycin cardiomyopathy by stimulating myocardial regeneration. - Highlights: • The activation of nuclear FoxO1 in cardiac muscle cells associated with adriamycin cardiomyopathy. • Myocardial nuclear GLP-1 stimulates myocardial regeneration and reverses adriamycin cardiomyopathy. • The process of myocardial regeneration associated with dedifferentiation and proliferation.« less
Honda, Akinobu; Chigwechokha, Petros Kingstone; Kamada-Futagami, Yuko; Komatsu, Masaharu; Shiozaki, Kazuhiro
2018-06-01
Sialidase catalyzes the removal of sialic acids from glycoconjugates. Different from Neu1 and Neu3 sialidases, Neu4 enzymatic properties such as substrate specificity and subcellular localization are not well-conserved among vertebrates. In fish only zebrafish and medaka neu4 genes have been cloned and their polypeptides have been characterized so far. Thus, characterization of Neu4 from other fish species is necessary to evaluate Neu4 physiological functions. Here, Nile tilapia was chosen for the characterization of Neu4 polypeptide considering that it is one of the major cultured fish all over the world and that its genomic sequences are now available. Coding DNA sequence of tilapia Neu4 was identified as 1,497 bp and its recombinant protein showed broad substrate specificity and optimal sialidase enzyme activity pH at 4.0. Neu4 activity was sustained even in neutral and alkali pH. Interestingly, immunofluorescence analysis revealed that major subcellular localization of tilapia Neu4 was nuclear, quite distinct from zebrafish (ER) and medaka Neu4 (lysosome). Bioinformatic analysis showed the existence of putative nuclear localization signal (NLS) in tilapia Neu4. In general, it is known that importin families bind to several proteins via NLS and transfer them into nucleus. Therefore, to determine the involvement of putative NLS in Neu4 nuclear localization, Neu4 mutant deleting NLS was constructed and expressed in cultured cells. As a result, NLS deletion significantly diminished the nuclear localization. Furthermore, treatment of importazole, interrupter of binding importin β and RanGTP, significantly suppressed Neu4 nuclear localization. In summary, tilapia Neu4 is a unique sialidase localized at nucleus and its transport system into nucleus is regulated by importin. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Method for automatically scramming a nuclear reactor
Ougouag, Abderrafi M.; Schultz, Richard R.; Terry, William K.
2005-12-27
An automatically scramming nuclear reactor system. One embodiment comprises a core having a coolant inlet end and a coolant outlet end. A cooling system operatively associated with the core provides coolant to the coolant inlet end and removes heated coolant from the coolant outlet end, thus maintaining a pressure differential therebetween during a normal operating condition of the nuclear reactor system. A guide tube is positioned within the core with a first end of the guide tube in fluid communication with the coolant inlet end of the core, and a second end of the guide tube in fluid communication with the coolant outlet end of the core. A control element is positioned within the guide tube and is movable therein between upper and lower positions, and automatically falls under the action of gravity to the lower position when the pressure differential drops below a safe pressure differential.
Minireview: The Role of Nuclear Receptors in Photoreceptor Differentiation and Disease
Swaroop, Anand
2012-01-01
Rod and cone photoreceptors are specialized sensory cells that mediate vision. Transcriptional controls are critical for the development and long-term survival of photoreceptors; when these controls become ineffective, retinal dysfunction or degenerative disease may result. This review discusses the role of nuclear receptors, a class of ligand-regulated transcription factors, at key stages of photoreceptor life in the mammalian retina. Nuclear receptors with known ligands, such as retinoids or thyroid hormone, together with several orphan receptors without identified physiological ligands, complement other classes of transcription factors in directing the differentiation and functional maintenance of photoreceptors. The potential of nuclear receptors to respond to ligands introduces versatility into the control of photoreceptor development and function and may suggest new opportunities for treatments of photoreceptor disease. PMID:22556342
Measurement of differential cross section of D(3He,p)4He from 0.8 MeV to 3.6 MeV
NASA Astrophysics Data System (ADS)
Zhu, J. P.; Xiao, X.; Yan, S.; Gao, Y.; Xue, J. M.; Wang, Y. G.
2017-12-01
Precise knowledge of the nuclear reaction cross-section is crucial for nuclear reaction analysis methods and its applications. In order to apply nuclear reaction analysis methods to Plasma Facing Materials studies on 4.5 MV electrostatic accelerator at Peking University, differential cross-section for d(3He,p) α at several backward angles was measured with a relative error about ± 6.2 % , gives detailed information at the laboratory angle of 135° from 800 keV to 3600 keV, as well as a rough angular distribution from 130° to 160°.
Ding, Zhiyong; German, Peter; Bai, Shanshan; Feng, Zhehui; Gao, Meng; Si, Wendy; Sobieski, Mary M.; Stephan, Clifford C.; Mills, Gordon B.; Jonasch, Eric
2014-01-01
Background von Hippel Lindau (VHL) disease is an autosomal dominant inherited disorder that results in multiple organ systems being affected. Treatment is mainly surgical, however, effective systemic therapies are needed. We developed and tested a cell-based screening tool to identify compounds that stabilize or upregulate full-length, point mutated VHL. Methods The 786-0 cell line was infected with full-length W117A mutated VHL linked to a C-terminal Venus fluorescent protein. This VHL-W117A-Venus line was used to screen the Prestwick drug library and was tested against the known proteasome inhibitors MG132 and bortezomib. Western blot validation and evaluation of downstream functional readouts, including HIF and GLUT1 levels, were performed. Results Bortezomib, MG132, and the Prestwick compounds 8-azaguanine, thiostrepton and thioguanosine were found to reliably upregulate VHL-W117A-Venus in 786-0 cells. 8-azaguanine was found to downregulate HIF2α levels, and was augmented by the presence of VHL W117A. VHL p30 band intensities varied as a function of compound used, suggesting alternate post-translational processing. In addition, nuclear-cytoplasmic localization of pVHL varied amongst the different compounds. Conclusion 786-0 cells containing VHL-W117A-Venus can be successfully used to identify compounds that upregulate VHL levels, and that have a differential effect on pVHL intracellular localization and posttranslational processing. Further screening efforts will broaden the number of pharmacophores available to develop therapeutic agents that will upregulate and refunctionalize mutated VHL. PMID:22357874
Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf
2015-12-07
Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs). Results indicate that a higher NLS density does not result in maximum protein nuclear localization and that a universal optimal density for NPs of different sizes does not exist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaiboullina, Svetlana F., E-mail: sv.khaiboullina@gmail.com; Morzunov, Sergey P.; Boichuk, Sergei V.
2013-09-01
Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirusmore » triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.« less
Stronger activation of SREBP-1a by nucleus-localized HBx
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qi; Qiao, Ling; Yang, Jian
2015-05-08
We previously showed that hepatitis B virus (HBV) X protein activates the sterol regulatory element-binding protein-1a (SREBP-1a). Here we examined the role of nuclear localization of HBx in this process. In comparison to the wild-type and cytoplasmic HBx, nuclear HBx had stronger effects on SREBP-1a and fatty acid synthase transcription activation, intracellular lipid accumulation and cell proliferation. Furthermore, nuclear HBx could activate HBV enhancer I/X promoter and was more effective on up-regulating HBV mRNA level in the context of HBV replication than the wild-type HBx, while the cytoplasmic HBx had no effect. Our results demonstrate the functional significance of themore » nucleus-localized HBx in regulating host lipogenic pathway and HBV replication. - Highlights: • Nuclear HBx is more effective on activating SREBP-1a and FASN transcription. • Nuclear HBx is more effective on enhancing intracellular lipid accumulation. • Nuclear HBx is more effective on enhancing cell proliferation. • Nuclear HBx up-regulates HBV enhancer I/X promoter activity. • Nuclear HBx increases HBV mRNA level in the context of HBV replication.« less
Fabbretti, Fabiana; Iannetti, Ilaria; Guglielmi, Loredana; Perconti, Susanna; Evangelistella, Chiara; Proietti De Santis, Luca; Bongiorni, Silvia; Prantera, Giorgio
2016-01-01
Lamin family proteins are structural components of a filamentous framework, the nuclear lamina (NL), underlying the inner membrane of nuclear envelope. The NL not only plays a role in nucleus mechanical support and nuclear shaping, but is also involved in many cellular processes including DNA replication, gene expression and chromatin positioning. Spermatogenesis is a very complex differentiation process in which each stage is characterized by nuclear architecture dramatic changes, from the early mitotic stage to the sperm differentiation final stage. Nevertheless, very few data are present in the literature on the NL behavior during this process. Here we show the first and complete description of NL behavior during meiosis and spermatogenesis in Drosophila melanogaster. By confocal imaging, we characterized the NL modifications from mitotic stages, through meiotic divisions to sperm differentiation with an anti-laminDm0 antibody against the major component of the Drosophila NL. We observed that continuous changes in the NL structure occurred in parallel with chromatin reorganization throughout the whole process and that meiotic divisions occurred in a closed context. Finally, we analyzed NL in solofuso meiotic mutant, where chromatin segregation is severely affected, and found the strict correlation between the presence of chromatin and that of NL.
Fabbretti, Fabiana; Iannetti, Ilaria; Guglielmi, Loredana; Perconti, Susanna; Evangelistella, Chiara; Proietti De Santis, Luca; Bongiorni, Silvia; Prantera, Giorgio
2016-01-01
Lamin family proteins are structural components of a filamentous framework, the nuclear lamina (NL), underlying the inner membrane of nuclear envelope. The NL not only plays a role in nucleus mechanical support and nuclear shaping, but is also involved in many cellular processes including DNA replication, gene expression and chromatin positioning. Spermatogenesis is a very complex differentiation process in which each stage is characterized by nuclear architecture dramatic changes, from the early mitotic stage to the sperm differentiation final stage. Nevertheless, very few data are present in the literature on the NL behavior during this process. Here we show the first and complete description of NL behavior during meiosis and spermatogenesis in Drosophila melanogaster. By confocal imaging, we characterized the NL modifications from mitotic stages, through meiotic divisions to sperm differentiation with an anti-laminDm0 antibody against the major component of the Drosophila NL. We observed that continuous changes in the NL structure occurred in parallel with chromatin reorganization throughout the whole process and that meiotic divisions occurred in a closed context. Finally, we analyzed NL in solofuso meiotic mutant, where chromatin segregation is severely affected, and found the strict correlation between the presence of chromatin and that of NL. PMID:26963718
Alterations in the nuclear proteome of HIV-1 infected T-cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBoer, Jason; Jagadish, Teena; Haverland, Nicole A.
Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified fourmore » clusters of protein–protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection. - Highlights: • We identify changes in the expression of nuclear proteins during HIV-1 infection. • 163 nuclear proteins were found differentially regulated during HIV-1 infection. • Bioinformatic analysis identified several nuclear pathways altered by HIV infection. • Candidate factors were validated in two independent cell lines.« less
Burns, David; Blau, Helen M
2014-07-01
Nuclear reprogramming was first shown to be possible by Sir John Gurdon over a half century ago. The process has been revolutionized by the production of induced pluripotent cells by overexpression of the four transcription factors discovered by Shinya Yamanaka, which now enables mammalian applications. Yet, reprogramming by a few transcription factors remains incomplete and inefficient, whether to pluripotent or differentiated cells. We propose that a better understanding of mechanistic insights based on developmental principles gained from heterokaryon studies may inform the process of directing cell fate, fundamentally and clinically. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Sung, Li-Ying; Gao, Shaorong; Shen, Hongmei; Yu, Hui; Song, Yifang; Smith, Sadie L; Chang, Ching-Chien; Inoue, Kimiko; Kuo, Lynn; Lian, Jin; Li, Ao; Tian, X Cindy; Tuck, David P; Weissman, Sherman M; Yang, Xiangzhong; Cheng, Tao
2006-11-01
Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.
Gutiérrez, Lina A.; Gómez, Giovan F.; González, John J.; Castro, Martha I.; Luckhart, Shirley; Conn, Jan E.; Correa, Margarita M.
2010-01-01
Anopheles darlingi is an important vector of Plasmodium spp. in several malaria-endemic regions of Colombia. This study was conducted to test genetic variation of An. darlingi at a microgeographic scale (approximately 100 km) from localities in Córdoba and Antioquia states, in western Colombia, to better understand the potential contribution of population genetics to local malaria control programs. Microsatellite loci: nuclear white and cytochrome oxidase subunit I (COI) gene sequences were analyzed. The northern white gene lineage was exclusively distributed in Córdoba and Antioquia and shared COI haplotypes were highly represented in mosquitoes from both states. COI analyses showed these An. darlingi are genetically closer to Central American populations than southern South American populations. Overall microsatellites and COI analysis showed low to moderate genetic differentiation among populations in northwestern Colombia. Given the existence of high gene flow between An. darlingi populations of Córdoba and Antioquia, integrated vector control strategies could be developed in this region of Colombia. PMID:20595475
Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ
Andrews, Joel F.; Sykora, Landon J.; Barik-Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna; Barik, Sailen; Shevde, Lalita A.; Samant, Rajeev S.
2012-01-01
HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington’s, Parkinson’s diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S). PMID:22504047
NASA Astrophysics Data System (ADS)
Patrick, C. E.; Aliaga, L.; Bashyal, A.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Caceres v., G. F. R.; Carneiro, M. F.; Chavarria, E.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Han, J. Y.; Harris, D. A.; Henry, S.; Hurtado, K.; Jena, D.; Kleykamp, J.; Kordosky, M.; Le, T.; Lu, X.-G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nowak, G. M.; Nuruzzaman, Paolone, V.; Perdue, G. N.; Peters, E.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Sultana, M.; Sánchez Falero, S.; Teklu, A. M.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Zhang, D.; Miner ν A Collaboration
2018-03-01
We present double-differential measurements of antineutrino charged-current quasielastic scattering in the MINERvA detector. This study improves on a previous single-differential measurement by using updated reconstruction algorithms and interaction models and provides a complete description of observed muon kinematics in the form of a double-differential cross section with respect to muon transverse and longitudinal momentum. We include in our signal definition zero-meson final states arising from multinucleon interactions and from resonant pion production followed by pion absorption in the primary nucleus. We find that model agreement is considerably improved by a model tuned to MINERvA inclusive neutrino scattering data that incorporates nuclear effects such as weak nuclear screening and two-particle, two-hole enhancements.
Sugimoto, Hiroki; Kusumi, Kensuke; Noguchi, Ko; Yano, Masahiro; Yoshimura, Atsushi; Iba, Koh
2007-11-01
Guanylate kinase (GK) is a critical enzyme in guanine nucleotide metabolism pathways, catalyzing the phosphorylation of (d)GMP to (d)GDP. Here we show that a novel gene, VIRESCENT 2 (V2), encodes a new type of GK (designated pt/mtGK) that is localized in plastids and mitochondria. We initially identified the V2 gene by positional cloning of the rice v2 mutant. The v2 mutant is temperature-sensitive and develops chlorotic leaves at restrictive temperatures. The v2 mutation causes inhibition of chloroplast differentiation; in particular, it disrupts the chloroplast translation machinery during early leaf development [Sugimoto et al. (2004)Plant Cell Physiol. 45, 985]. In the bacterial and animal species studied to date, GK is localized in the cytoplasm and participates in maintenance of the guanine nucleotide pools required for many fundamental cellular processes. Phenotypic analysis of rice seedlings with RNAi knockdown of cytosolic GK (designated cGK) showed that cGK is indispensable for the growth and development of plants, but not for chloroplast development. Thus, rice has two types of GK, as does Arabidopsis, suggesting that higher plants have two types of GK. Our results suggest that, of the two types of GK, only pt/mtGK is essential for chloroplast differentiation.
Wang, Chunyi; Mao, Jinghe; Redfield, Samantha; Mo, Yinyuan; Lage, Janice M; Zhou, Xinchun
2014-10-01
Five sphingosine-1-phosphate receptors (S1PR): S1PR1, S1PR2, S1PR3, S1PR4 and S1PR5 (S1PR1-5) have been shown to be involved in the proliferation and progression of various cancers. However, none of the S1PRs have been systemically investigated. In this study, we performed immunohistochemistry (IHC) for S1PR1-S1PR5 on different tissues, in order to simultaneously determine the systemic distribution, subcellular localization and expression level of all five S1PRs. We constructed tissue microarrays (TMAs) from 384 formalin-fixed paraffin-embedded (FFPE) blocks containing 183 benign and 201 malignant tissues from 34 human organs/systems. Then we performed IHC for all five S1PRs simultaneously on these TMA slides. The distribution, subcellular localization and expression of each S1PR were determined for each tissue. The data in benign and malignant tissues from the same organ/tissue were then compared using the Student's t-test. In order to reconfirm the subcellular localization of each S1PR as determined by IHC, immunocytochemistry (ICC) was performed on several malignant cell lines. We found that all five S1PRs are widely distributed in multiple human organs/systems. All S1PRs are expressed in both the cytoplasm and nucleus, except S1PR3, whose IHC signals are only seen in the nucleus. Interestingly, the S1PRs are rarely expressed on cellular membranes. Each S1PR is unique in its organ distribution, subcellular localization and expression level in benign and malignant tissues. Among the five S1PRs, S1PR5 has the highest expression level (in either the nucleus or cytoplasm), with S1PR1, 3, 2 and 4 following in descending order. Strong nuclear expression was seen for S1PR1, S1PR3 and S1PR5, whereas S1PR2 and S1PR4 show only weak staining. Four organs/tissues (adrenal gland, liver, brain and colon) show significant differences in IHC scores for the multiple S1PRs (nuclear and/or cytoplasmic), nine (stomach, lymphoid tissues, lung, ovary, cervix, pancreas, skin, soft tissues and uterus) show differences for only one S1PR (cytoplasmic or nuclear), and twenty three organs/tissues show no significant difference in IHC scores for any S1PR (cytoplasmic or nuclear) between benign and malignant changes. This is the first study to evaluate the expression level of all S1PRs in benign and malignant tissues from multiple human organs. This study provides data regarding the systemic distribution, subcellular localization and differences in expression of all five S1PRs in benign and malignant changes for each organ/tissue. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Chunyi; Mao, Jinghe; Redfield, Samantha; Mo, Yinyuan; Lage, Janice M.; Zhou, Xinchun
2014-01-01
Aims Five sphingosine-1-phosphate receptors (S1PR): S1PR1, S1PR2, S1PR3, S1PR4 and S1PR5 (S1PR1-5) have been shown to be involved in the proliferation and progression of various cancers. However, none of the S1PRs have been systemically investigated. In this study, we performed immunohistochemistry (IHC) for S1PR1-S1PR5 on different tissues, in order to simultaneously determine the systemic distribution, subcellular localization and expression level of all five S1PRs. Methods We constructed tissue microarrays (TMAs) from 384 formalin-fixed paraffin-embedded (FFPE) blocks containing 183 benign and 201 malignant tissues from 34 human organs/systems. Then we performed IHC for all five S1PRs simultaneously on these TMA slides. The distribution, subcellular localization and expression of each S1PR were determined for each tissue. The data were then compared in benign and malignant tissues from the same organ/tissue using the student t-test. In order to reconfirm the subcellular localization of each S1PR as determined by IHC, immunocytochemistry (ICC) was performed on several malignant cell lines. Results We found that all five S1PRs are widely distributed in multiple human organs/systems. All S1PRs are expressed in both the cytoplasm and nucleus, except S1PR3, whose IHC signals are only seen in the nucleus. Interestingly, the S1PRs are rarely expressed on cellular membranes. Each S1PR is unique in its organ distribution, subcellular localization and expression level in benign and malignant tissues. Among the five S1PRs, S1PR5 has the highest expression level (either in nucleus or cytoplasm), with S1PR1, 3, 2 and 4 following in descending order. Strong nuclear expression was seen for S1PR1, S1PR3 and S1PR5, whereas S1PR2 and S1PR4 show only weak staining. Four organs/tissues (adrenal gland, liver, brain and colon) show significant differences in IHC scores for the multiple S1PRs (nuclear and/or cytoplasmic), nine (stomach, lymphoid tissues, lung, ovary, cervix, pancreas, skin, soft tissues and uterus) show differences for only one S1PR (cytoplasmic or nuclear), and twenty three organs/tissues show no significant difference in IHC score of any S1PR (cytoplasmic or nuclear) between benign and malignant changes. Conclusion This is the first study to evaluate the expression level of all S1PRs in benign and malignant tissues from multiple human organs. This study provides data regarding the systemic distribution, subcellular localization and differences in expression of all five S1PRs in benign and malignant changes for each organ/tissue. PMID:25084322
Evaluation of candidate barcoding markers in Orinus (Poaceae).
Su, X; Liu, Y P; Chen, Z; Chen, K L
2016-04-26
Orinus is an alpine endemic genus of Poaceae. Because of the imperfect specimens, high level of intraspecific morphological variability, and homoplasies of morphological characters, it is relatively difficult to delimitate species of Orinus by using morphology alone. To this end, the DNA barcoding has shown great potential in identifying species. The present study is the first attempt to test the feasibility of four proposed DNA barcoding markers (matK, rbcL, trnH-psbA, and ITS) in identifying four currently revised species of Orinus from the Qinghai-Tibetan Plateau (QTP). Among all the single-barcode candidates, the differentiation power was the highest for the nuclear internal transcribed spacer (ITS), while the chloroplast barcodes matK (M), rbcL (R), and trnH-psbA (H) could not identify the species. Meanwhile, the differentiation efficiency of the nuclear ITS (I) was also higher than any two- or three-locus combination of chloroplast barcodes, or even a combination of ITS and any chloroplast barcode except H + I and R + I. All the combinations of chloroplast barcodes plus the nuclear ITS, H + I, and R + I differentiated the highest portion of species. The highest differentiation rate for the barcodes or barcode combinations examined here was 100% (H + I and R + I). In summary, this case study showed that the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions in differentiating Orinus species from the QTP. Moreover, combining the ITS region with chloroplast regions may improve the barcoding success rate.
Canela-Pérez, Israel; López-Villaseñor, Imelda; Cevallos, Ana María; Hernández, Roberto
2018-03-01
Trypanosoma cruzi is the aetiologic agent of Chagas disease. Our research group studies ribosomal RNA (rRNA) gene transcription and nucleolus dynamics in this species of trypanosomes. RPA31 is an essential subunit of RNA polymerase I (Pol I) whose presence is apparently restricted to trypanosomes. Using fluorescent-tagged versions of this protein (TcRPA31-EGFP), we describe its nuclear distribution during growth and metacyclogenesis. Our findings indicate that TcRPA31-EGFP alters its nuclear presence from concentrated nucleolar localization in exponentially growing epimastigotes to a dispersed granular distribution in the nucleoplasm of stationary epimastigotes and metacyclic trypomastigotes. These changes likely reflect a structural redistribution of the Pol I transcription machinery in quiescent cellular stages where downregulation of rRNA synthesis is known to occur. In addition, and related to the nuclear internalization of this protein, the presence of a classical bipartite-type nuclear localization signal was identified towards its C-terminal end. The functionality of this motif was demonstrated by its partial or total deletion in recombinant versions of the tagged fluorescent protein. Moreover, ivermectin inhibited the nuclear localization of the labelled chimaera, suggesting the involvement of the importin α/β transport system.
Petrovsky, Roman; Krohne, Georg; Großhans, Jörg
2018-03-01
The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope. Copyright © 2018 Elsevier GmbH. All rights reserved.
Dang, Van-Dinh; Levin, Henry L.
2000-01-01
Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein. PMID:11003674
Dang, V D; Levin, H L
2000-10-01
Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein.
Kelley, Joshua B.; Datta, Sutirtha; Snow, Chelsi J.; Chatterjee, Mandovi; Ni, Li; Spencer, Adam; Yang, Chun-Song; Cubeñas-Potts, Caelin; Matunis, Michael J.; Paschal, Bryce M.
2011-01-01
The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways. PMID:21670151
Kelley, Joshua B; Datta, Sutirtha; Snow, Chelsi J; Chatterjee, Mandovi; Ni, Li; Spencer, Adam; Yang, Chun-Song; Cubeñas-Potts, Caelin; Matunis, Michael J; Paschal, Bryce M
2011-08-01
The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir
2015-03-30
In this report, new experimental data and MCNPX simulation results of the differential die-away (DDA) instrument response to the presence of neutron absorbers are evaluated. In our previous fresh nuclear fuel experiments and simulations, no neutron absorbers or poisons were included in the fuel definition. These new results showcase the capability of the DDA instrument to acquire data from a system that better mimics spent nuclear fuel.
Aguilar, Areli; Wagstaff, Kylie M; Suárez-Sánchez, Rocío; Zinker, Samuel; Jans, David A; Cisneros, Bulmaro
2015-05-01
Although α-dystrobrevin (DB) is assembled into the dystrophin-associated protein complex, which is central to cytoskeletal organization, it has also been found in the nucleus. Here we delineate the nuclear import pathway responsible for nuclear targeting of α-DB for the first time, together with the importance of nuclear α-DB in determining nuclear morphology. We map key residues of the nuclear localization signal of α-DB within the zinc finger domain (ZZ) using various truncated versions of the protein, and site-directed mutagenesis. Pulldown, immunoprecipitation, and AlphaScreen assays showed that the importin (IMP) α2/β1 heterodimer interacts with high affinity with the ZZ domain of α-DB. In vitro nuclear import assays using antibodies to specific importins, as well as in vivo studies using siRNA or a dominant negative importin construct, confirmed the key role of IMPα2/β1 in α-DB nuclear translocation. Knockdown of α-DB expression perturbed cell cycle progression in C2C12 myoblasts, with decreased accumulation of cells in S phase and, significantly, altered localization of lamins A/C, B1, and B2 with accompanying gross nuclear morphology defects. Because α-DB interacts specifically with lamin B1 in vivo and in vitro, nuclear α-DB would appear to play a key role in nuclear shape maintenance through association with the nuclear lamina. © FASEB.
Kang, Sung-Hwan; Qu, Feng; Morris, T Jack
2015-12-02
The N-terminal 25 amino acids (AAs) of turnip crinkle virus (TCV) capsid protein (CP) are recognized by the resistance protein HRT to trigger a hypersensitive response (HR) and systemic resistance to TCV infection. This same region of TCV CP also contains a motif that interacts with the transcription factor TIP, as well as a nuclear localization signal (NLS). However, it is not yet known whether nuclear localization of TCV CP is needed for the induction of HRT-mediated HR and resistance. Here we present new evidence suggesting a tight correlation between nuclear inclusions formed by CP and the manifestation of HR. We show that a fraction of TCV CP localized to cell nuclei to form discrete inclusion-like structures, and a mutated CP (R6A) known to abolish HR failed to form nuclear inclusions. Notably, TIP-CP interaction augments the inclusion-forming activity of CP by tethering inclusions to the nuclear membrane. This TIP-mediated augmentation is also critical for HR resistance, as another CP mutant (R8A) known to elicit a less restrictive HR, though still self-associated into nuclear inclusions, failed to direct inclusions to the nuclear membrane due to its inability to interact with TIP. Finally, exclusion of CP from cell nuclei abolished induction of HR. Together, these results uncovered a strong correlation between nuclear localization and nuclear inclusion formation by TCV CP and induction of HR, and suggest that CP nuclear inclusions could be the key trigger of the HRT-dependent, yet TIP-reinforced, resistance to TCV. Copyright © 2015 Elsevier B.V. All rights reserved.
Piwi Nuclear Localization and Its Regulatory Mechanism in Drosophila Ovarian Somatic Cells.
Yashiro, Ryu; Murota, Yukiko; Nishida, Kazumichi M; Yamashiro, Haruna; Fujii, Kaede; Ogai, Asuka; Yamanaka, Soichiro; Negishi, Lumi; Siomi, Haruhiko; Siomi, Mikiko C
2018-06-19
In Drosophila ovarian somatic cells (OSCs), Piwi represses transposons transcriptionally to maintain genome integrity. Piwi nuclear localization requires the N terminus and PIWI-interacting RNA (piRNA) loading of Piwi. However, the underlying mechanism remains unknown. Here, we show that Importinα (Impα) plays a pivotal role in Piwi nuclear localization and that Piwi has a bipartite nuclear localization signal (NLS). Impα2 and Impα3 are highly expressed in OSCs, whereas Impα1 is the least expressed. Loss of Impα2 or Impα3 forces Piwi to be cytoplasmic, which is rectified by overexpression of any Impα members. Extension of Piwi-NLS with an additional Piwi-NLS leads Piwi to be imported to the nucleus in a piRNA-independent manner, whereas replacement of Piwi-NLS with SV40-NLS fails. Limited proteolysis analysis suggests that piRNA loading onto Piwi triggers conformational change, exposing the N terminus to the environment. These results suggest that Piwi autoregulates its nuclear localization by exposing the NLS to Impα upon piRNA loading. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Gareau, Brian J.
2007-01-01
Local peoples living in protected areas often have a different understanding about their natural space than do non-local groups that promote and declare such areas "protected." By designing protected areas without local involvement, or understandings of local social differentiation and power, natural resources management schemes will…
Bropirimine inhibits osteoclast differentiation through production of interferon-β
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Hiroaki; Mochizuki, Ayako; Yoshimura, Kentaro
Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presencemore » of activated vitamin D{sub 3}. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D{sub 3}. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.« less
Large-Scale Paraphrasing for Natural Language Understanding
2018-04-01
to manufacture , use, or sell any patented invention that may relate to them. This report is the result of contracted fundamental research deemed...station contaminated local fish populations Atomic power generation in Springfield polluted indigenous seafood stocks Radioactive power generation...from PPDB. Springfield’s nuclear power plant contaminated local fish populations nuclear power station nuclear plant power plant fish stocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piccioli, Zachary; McKee, Courtney H.; Leszczynski, Anna
We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE7{sub 39-98} localized mostly to the nucleus. The GST-11E7 and GST-11cE7{sub 39-98} were imported into the nuclei in the presence of either Ran-GDP or RanG19V-GTP mutant and in the absence of nuclear import receptors. This suggests that 11E7 enters the nucleus via a Ran-dependent pathway, independent of nuclear import receptors, mediated bymore » a nuclear localization signal located in its C-terminal domain (cNLS). This cNLS contains the zinc binding domain consisting of two copies of Cys-X-X-Cys motif. Mutagenesis of Cys residues in these motifs changed the localization of the EGFP-11cE7/-11E7 mutants to cytoplasmic, suggesting that the zinc binding domain is essential for nuclear localization of 11E7.« less
Tau regulates the subcellular localization of calmodulin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barreda, Elena Gomez de; Avila, Jesus, E-mail: javila@cbm.uam.es; CIBER de Enfermedades Neurodegenerativas, 28031 Madrid
Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in amore » change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.« less
C3G dynamically associates with nuclear speckles and regulates mRNA splicing.
Shakyawar, Dhruv Kumar; Muralikrishna, Bhattiprolu; Radha, Vegesna
2018-05-01
C3G (Crk SH3 domain binding guanine nucleotide releasing factor) (Rap guanine nucleotide exchange factor 1), essential for mammalian embryonic development, is ubiquitously expressed and undergoes regulated nucleocytoplasmic exchange. Here we show that C3G localizes to SC35-positive nuclear speckles and regulates splicing activity. Reversible association of C3G with speckles was seen on inhibition of transcription and splicing. C3G shows partial colocalization with SC35 and is recruited to a chromatin and RNase-sensitive fraction of speckles. Its presence in speckles is dependent on intact cellular actin cytoskeleton and is lost on expression of the kinase Clk1. Rap1, a substrate of C3G, is also present in nuclear speckles, and inactivation of Rap signaling by expression of GFP-Rap1GAP alters speckle morphology and number. Enhanced association of C3G with speckles is seen on glycogen synthase kinase 3 beta inhibition or differentiation of C2C12 cells to myotubes. CRISPR/Cas9-mediated knockdown of C3G resulted in altered splicing activity of an artificial gene as well as endogenous CD44. C3G knockout clones of C2C12 as well as MDA-MB-231 cells showed reduced protein levels of several splicing factors compared with control cells. Our results identify C3G and Rap1 as novel components of nuclear speckles and a role for C3G in regulating cellular RNA splicing activity.
Role of morphometry in the cytological differentiation of benign and malignant thyroid lesions
Khatri, Pallavi; Choudhury, Monisha; Jain, Manjula; Thomas, Shaji
2017-01-01
Context: Thyroid nodules represent a common problem, with an estimated prevalence of 4–7%. Although fine needle aspiration cytology (FNAC) has been accepted as a first line diagnostic test, the rate of false negative reports of malignancy is still high. Nuclear morphometry is the measurement of nuclear parameters by image analysis. Image analysis can merge the advantages of morphologic interpretation with those of quantitative data. Aims: To evaluate the nuclear morphometric parameters in fine needle aspirates of thyroid lesions and to study its role in differentiating benign from malignant thyroid lesions. Material and Methods: The study included 19 benign and 16 malignant thyroid lesions. Image analysis was performed on Giemsa-stained FNAC slides by Nikon NIS-Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included nuclear size, shape, texture, and density parameters. Statistical Analysis: Normally distributed continuous variables were compared using the unpaired t-test for two groups and analysis of variance was used for three or more groups. Tukey or Tamhane's T2 multiple comparison test was used to assess the differences between the individual groups. Categorical variables were analyzed using the chi square test. Results and Conclusion: Five out of the six nuclear size parameters as well as all the texture and density parameters studied were significant in distinguishing between benign and malignant thyroid lesions (P < 0.05). Cut-off values were derived to differentiate between benign and malignant cases. PMID:28182069
5 CFR 591.234 - Under what circumstances may people recruited locally receive a post differential?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Under what circumstances may people recruited locally receive a post differential? 591.234 Section 591.234 Administrative Personnel OFFICE OF... Post Differential-Nonforeign Areas Post Differentials § 591.234 Under what circumstances may people...
5 CFR 591.234 - Under what circumstances may people recruited locally receive a post differential?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Under what circumstances may people recruited locally receive a post differential? 591.234 Section 591.234 Administrative Personnel OFFICE OF... Post Differential-Nonforeign Areas Post Differentials § 591.234 Under what circumstances may people...
5 CFR 591.234 - Under what circumstances may people recruited locally receive a post differential?
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Under what circumstances may people recruited locally receive a post differential? 591.234 Section 591.234 Administrative Personnel OFFICE OF... Post Differential-Nonforeign Areas Post Differentials § 591.234 Under what circumstances may people...
5 CFR 591.234 - Under what circumstances may people recruited locally receive a post differential?
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Under what circumstances may people recruited locally receive a post differential? 591.234 Section 591.234 Administrative Personnel OFFICE OF... Post Differential-Nonforeign Areas Post Differentials § 591.234 Under what circumstances may people...
5 CFR 591.234 - Under what circumstances may people recruited locally receive a post differential?
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Under what circumstances may people recruited locally receive a post differential? 591.234 Section 591.234 Administrative Personnel OFFICE OF... Post Differential-Nonforeign Areas Post Differentials § 591.234 Under what circumstances may people...
Dubey, Aditi; Copeland, Paul R
2016-01-01
Selenocysteine (Sec) is a critical residue in at least 25 human proteins that are essential for antioxidant defense and redox signaling in cells. Sec is inserted into proteins cotranslationally by the recoding of an in-frame UGA termination codon to a Sec codon. In eukaryotes, this recoding event requires several specialized factors, including a dedicated, Sec-specific elongation factor called eEFSec, which binds Sec-tRNASec with high specificity and delivers it to the ribosome for selenoprotein production. Unlike most translation factors, including the canonical elongation factor eEF1A, eEFSec readily localizes to the nucleus of mammalian cells and shuttles between the cytoplasmic and nuclear compartments. The functional significance of eEFSec's nuclear localization has remained unclear. In this study, we have examined the subcellular localization of eEFSec in the context of altered Sec incorporation to demonstrate that reduced selenoprotein production does not correlate with changes in the nuclear localization of eEFSec. In addition, we identify several novel sequences of the protein that are essential for localization as well as Sec insertion activity, and show that eEFSec utilizes CRM1-mediated nuclear export pathway. Our findings argue for two distinct pools of eEFSec in the cell, where the cytoplasmic pool participates in Sec incorporation and the nuclear pool may be involved in an as yet unknown function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drdova, Blanka; Vachtenheim, Jiri
2005-03-10
Combined treatment of teratocarcinoma F9 cells with retinoic acid and dibutyryl-cAMP induces the differentiation into cells with a phenotype resembling parietal endoderm. We show that the levels of cyclin-dependent kinase inhibitor p21/WAF1/Cip1 (p21) protein and mRNA are dramatically elevated at the end of this differentiation, concomitantly with the appearance of p21 in the immunoprecipitated CDK2-cyclin E complex. The induction of differentiation markers could not be achieved by expression of ectopic p21 alone and still required treatment with differentiation agents. Clones of F9 cells transfected with sense or antisense p21 cDNA constructs revealed, upon differentiation, upregulated levels of mRNA for thrombomodulin,more » a parietal endoderm-specific marker, or increased fraction of cells in sub-G1 phase of the cell cycle, respectively. Consistent with this observation, whereas p21 was strictly nuclear in undifferentiated cells, a large proportion of differentiated cells had p21 localized also in the cytoplasm, a site associated with the antiapoptotic function of p21. Furthermore, p21 activated the thrombomodulin promoter in transient reporter assays and the p21 mutant defective in binding to cyclin E was equally efficient in activation. The promoter activity in differentiated cells was reduced by cotransfection of p21-specific siRNA or antisense cDNA. Coexpression of p21 increased the activity of the GAL-p300(1-1303) fusion protein on the GAL sites-containing TM promoter. This implies that p21 might act through a derepression of the p300 N-terminal-residing repression domain, thereby enhancing the p300 coactivator function. As differentiation of F9 cells into parietal endoderm-like cells requires the cAMP signaling, the results together suggest that the cyclin-dependent kinase inhibitor p21 may promote specifically this pathway in F9 cells.« less
Using the VLBA to Uncover AGN in Dwarf Galaxies Exhibiting Nuclear Radio Emission
NASA Astrophysics Data System (ADS)
Dieck, Christopher; Johnson, Megan; Reines, Amy; Greene, Jenny
2018-01-01
The formation mechanism of billion solar mass black holes found in massive galaxies in the early universe is not yet understood. Investigation of black holes in dwarf galaxies in the local universe can help to constrain theoretical formation mechanisms and masses of black hole seeds for these supermassive black holes. The pilot study discussed herein used the Very Long Baseline Array (VLBA) to observe three nearby low mass (~109 M⊙) dwarf galaxies detected with the Jansky Very Large Array (JVLA). However, the JVLA does not have sufficient spatial resolution to discriminate between emission from various processes (e.g. supernova remnants and active galactic nuclei). Due to the high spatial resolution of the VLBA and the proximity of the targets, the physical scales probed are on the order of unity parsecs. Imaging of this small physical region should allow us to differentiate the source of the JVLA detected emission between a single nuclear source and multiple discreet sources, depending on whether the emission is resolved by the VLBA or not. Here we present preliminary results of our VLBA imaging and future plans.
Spagnol, Stephen T.; Dahl, Kris Noel
2016-01-01
The linear sequence of DNA encodes access to the complete set of proteins that carry out cellular functions. Yet, much of the functionality appropriate for each cell is nested within layers of dynamic regulation and organization, including a hierarchy of chromatin structural states and spatial arrangement within the nucleus. There remain limitations in our understanding of gene expression within the context of nuclear organization from an inability to characterize hierarchical chromatin organization in situ. Here we demonstrate the use of fluorescence lifetime imaging microscopy (FLIM) to quantify and spatially resolve chromatin condensation state using cell-permeable, DNA-binding dyes (Hoechst 33342 and PicoGreen). Through in vitro and in situ experiments we demonstrate the sensitivity of fluorescence lifetime to condensation state through the mechanical effects that accompany the structural changes and are reflected through altered viscosity. The establishment of FLIM for resolving and quantifying chromatin condensation state opens the door for single-measurement mechanical studies of the nucleus and for characterizing the role of genome structure and organization in nuclear processes that accompany physiological and pathological changes. PMID:26765322
Wang, Lu-Kai; Pan, Szu-Hua; Chang, Yih-Leong; Hung, Pei-Fang; Kao, Shih-Han; Wang, Wen-Lung; Lin, Ching-Wen; Yang, Shuenn-Chen; Liang, Chen-Hsien; Wu, Chen-Tu; Hsiao, Tzu-Hung
2016-01-01
Melanoma differentiation-associated gene-9 (MDA-9)/Syntenin is a novel therapeutic target because it plays critical roles in cancer progression and exosome biogenesis. Here we show that Slug, a key epithelial-mesenchymal-transition (EMT) regulator, is a MDA-9/Syntenin downstream target. Mitogen EGF stimulation increases Slug expression and MDA-9/Syntenin nuclear translocation. MDA-9/Syntenin uses its PDZ1 domain to bind with Slug, and this interaction further leads to HDAC1 recruitment, up-regulation of Slug transcriptional repressor activity, enhanced Slug-mediated EMT, and promotion of cancer invasion and metastasis. The PDZ domains and nuclear localization of MDA-9/Syntenin are both required for promoting Slug-mediated cancer invasion. Clinically, patients with high MDA-9/Syntenin and high Slug expressions were associated with poor overall survival compared to those with low expression in lung adenocarcinomas. Our findings provide evidence that MDA-9/Syntenin acts as a pivotal adaptor of Slug and it transcriptionally enhances Slug-mediated EMT to promote cancer invasion and metastasis. PMID:26561205
Experimental investigation of differential confinement effects in a rotating helicon plasma
NASA Astrophysics Data System (ADS)
Gueroult, Renaud; Evans, Eugene; Zweben, Stewart J.; Fisch, Nathaniel J.; Levinton, Fred
2014-10-01
Although plasmas have long been considered for isotope separation, challenges presented by nuclear waste remediation and nuclear spent fuel reprocessing have recently sparked a renewed interest for high-throughput plasma based mass separation techniques. Different filter concepts relying on rotating plasmas have been proposed to address these needs. However, one of the challenges common to these concepts is the need to control the plasma rotation profile, which is generally assumed to be provided by means of dedicated electrodes. An experimental effort aiming to evaluate the practicality of these plasma filter concepts has recently been started at PPPL. For this purpose, a linear helicon plasma source is used in combination with concentric ring electrodes. Preliminary biasing experiments results indicate floating potential profiles locally suitable for mass discrimination for different gas mixtures (Ar/Ne, Ar/N2, Ar/Kr). Radially resolved spectroscopic measurements and neutral gas composition analysis at two different axial positions are being planned to assess the mass separation effect. Work supported by US DOE under Contract No. DE-AC02-09CH11466.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekhri, Palak; Tao, Tao; Kaplan, Feige
As the sole E2 enzyme for SUMOylation, Ubc9 is predominantly nuclear. However, the underlying mechanisms of Ubc9 nuclear localization are still not well understood. Here we show that RNAi-depletion of Imp13, an importin known to mediate Ubc9 nuclear import, reduces both Ubc9 nuclear accumulation and global SUMOylation. Furthermore, Ubc9-R13A or Ubc9-H20D mutation previously shown to interrupt the interaction of Ubc9 with nucleus-enriched SUMOs reduces the nuclear enrichment of Ubc9, suggesting that the interaction of Ubc9 with the nuclear SUMOs may enhance Ubc9 nuclear retention. Moreover, Ubc9-R17E mutation, which is known to disrupt the interaction of Ubc9 with both SUMOs andmore » Imp13, causes a greater decrease in Ubc9 nuclear accumulation than Ubc9-R13A or Ubc9-H20D mutation. Lastly, Ubc9-K74A/S89D mutations that perturb the interaction of Ubc9 with nucleus-enriched SUMOylation-consensus motifs has no effect on Ubc9 nuclear localization. Altogether, our results have elucidated that the amino acid residues within the N-terminal region of Ubc9 play a pivotal role in regulation of Ubc9 nuclear localization. - Highlights: • Imp13-mediated nuclear import of Ubc9 is critical for global SUMOylation. • Ubc9 mutations disrupting Ubc9-SUMO interaction decrease Ubc9 nuclear accumulation. • N-terminal amino acid residues of Ubc9 are critical for Ubc9 nuclear enrichment.« less
Subcellular Localization and Polymorphism of Bovine FABP4 in Bovine Intramuscular Adipocytes.
Yonekura, Shinichi; Hirota, Shohei; Miyazaki, Honami; Tokutake, Yukako
2016-01-01
Fatty acid binding protein 4 (FABP4) I74 V, a gene polymorphism associated with unsaturated fatty acid contents, was discovered in Japanese Black cattle. Individuals with FABP4 I/I genotype contain a significantly high level of palmitoleic acid compared to those with FABP4 V/V genotype. It remains unknown how the FABP4 polymorphism leads to different palmitoleic acid contents. We overexpressed FABP4 of different genotypes in bovine intramuscular preadipocytes and examined whether the intracellular localization of FABP4 and the expression levels of lipid metabolism-related genes were different among cells expressing different genotypes. Nuclear localization was observed for the FABP4 V/V, while the FABP4 I/I almost did not. The cells expressing FABP4 of different genotypes were comparable in terms of the expression levels of genes involved in lipid metabolism. FABP4 I/I was localized in most of the lipid droplets 4 days after differentiation induction, whereas approximately 25% lipid droplet co-localized with FABP4 in cells expressing FABP4 V/V. The lipid droplet size increased when palmitoleic acid was added compared to the size observed when palmitic acid was added. These results suggest that lipid droplet enlargement caused by palmitoleic acid and genotype-dependent differences in the fatty acid transporting capacity underlie variations in palmitoleic acid content among FABP4 polymorphisms.
Heuser, M
1979-09-01
Abducens nerve paresis may be of nuclear, of peripheral distal neurogenic origine, or is simulated by a myogenic weakness of abduction. Polygraphic emg analysis of the oculoauricularphenomenon (oap) permits a differentiation. In the emg, the oap proved to be a physiologic and constant automatic and always bilateral interaction between the hemolateral abducens nerve and both Nn. faciales with corresponding and obligatory coinnervation of the Mm. retroauricularis of the external ear. In case of medullary, nuclear or internuclear lesions, the oap is disturbed, instable, diminished or abolished, whereas in distal neurogenic or myogenic paresis, even in complete paralysis the oap is bilaterally well preserved.
Campo, D; Lehmann, K; Fjeldsted, C; Souaiaia, T; Kao, J; Nuzhdin, S V
2013-10-01
The prevailing demographic model for Drosophila melanogaster suggests that the colonization of North America occurred very recently from a subset of European flies that rapidly expanded across the continent. This model implies a sudden population growth and range expansion consistent with very low or no population subdivision. As flies adapt to new environments, local adaptation events may be expected. To describe demographic and selective events during North American colonization, we have generated a data set of 35 individual whole-genome sequences from inbred lines of D. melanogaster from a west coast US population (Winters, California, USA) and compared them with a public genome data set from Raleigh (Raleigh, North Carolina, USA). We analysed nuclear and mitochondrial genomes and described levels of variation and divergence within and between these two North American D. melanogaster populations. Both populations exhibit negative values of Tajima's D across the genome, a common signature of demographic expansion. We also detected a low but significant level of genome-wide differentiation between the two populations, as well as multiple allele surfing events, which can be the result of gene drift in local subpopulations on the edge of an expansion wave. In contrast to this genome-wide pattern, we uncovered a 50-kilobase segment in chromosome arm 3L that showed all the hallmarks of a soft selective sweep in both populations. A comparison of allele frequencies within this divergent region among six populations from three continents allowed us to cluster these populations in two differentiated groups, providing evidence for the action of natural selection on a global scale. © 2013 John Wiley & Sons Ltd.
Ansmann, Ina C; Parra, Guido J; Lanyon, Janet M; Seddon, Jennifer M
2012-09-01
Highly mobile marine species in areas with no obvious geographic barriers are expected to show low levels of genetic differentiation. However, small-scale variation in habitat may lead to resource polymorphisms and drive local differentiation by adaptive divergence. Using nuclear microsatellite genotyping at 20 loci, and mitochondrial control region sequencing, we investigated fine-scale population structuring of inshore bottlenose dolphins (Tursiops aduncus) inhabiting a range of habitats in and around Moreton Bay, Australia. Bayesian structure analysis identified two genetic clusters within Moreton Bay, with evidence of admixture between them (F(ST) = 0.05, P = 0.001). There was only weak isolation by distance but one cluster of dolphins was more likely to be found in shallow southern areas and the other in the deeper waters of the central northern bay. In further analysis removing admixed individuals, southern dolphins appeared genetically restricted with lower levels of variation (AR = 3.252, π = 0.003) and high mean relatedness (r = 0.239) between individuals. In contrast, northern dolphins were more diverse (AR = 4.850, π = 0.009) and were mixing with a group of dolphins outside the bay (microsatellite-based STRUCTURE analysis), which appears to have historically been distinct from the bay dolphins (mtDNA Φ(ST) = 0.272, P < 0.001). This study demonstrates the ability of genetic techniques to expose fine-scale patterns of population structure and explore their origins and mechanisms. A complex variety of inter-related factors including local habitat variation, differential resource use, social behaviour and learning, and anthropogenic disturbances are likely to have played a role in driving fine-scale population structure among bottlenose dolphins in Moreton Bay. © 2012 Blackwell Publishing Ltd.
Yao, Wenjuan; Huang, Lei; Sun, Qinju; Yang, Lifeng; Tang, Lian; Meng, Guoliang; Xu, Xiaole; Zhang, Wei
2016-10-01
Macrophage foam cell formation triggered by oxLDL is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) exhibits significant anti-atherosclerotic activity. Herein we used U937 cells induced by PMA and oxLDL in vitro to investigate the inhibitory effects of TSG on U937 differentiation and macrophage foam cell formation. TSG pretreatment markedly inhibited cell differentiation induced by PMA, macrophage apoptosis and foam cell formation induced by oxLDL. The inhibition of vimentin expression and cleavage was involved in these inhibitory effects of TSG. The suppression of vimentin by siRNA in U937 significantly inhibited cell differentiation, apoptosis and foam cell formation. Using inhibitors for TGFβR1 and PI3K, we found that vimentin production in U937 cells is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG pretreatment inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by PMA and oxLDL. Furthermore, TSG attenuated the induced caspase-3 activation and adhesion molecules levels by PMA and oxLDL. PMA and oxLDL increased the co-localization of vimentin with ICAM-1, which was attenuated by pretreatment with TSG. These results suggest that TSG inhibits macrophage foam cell formation through suppressing vimentin expression and cleavage, adhesion molecules expression and vimentin-ICAM-1 co-localization. The interruption of TGFβ/Smad pathway and caspase-3 activation is responsible for the downregulation of TSG on vimentin expression and degradation, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Tale taming radioactive fears: Linking nuclear waste disposal to the "continuum of the good".
Yli-Kauhaluoma, Sari; Hänninen, Hannu
2014-04-01
We examine how the constructor of the world's first repository for the final disposal of spent nuclear fuel in Eurajoki, Finland, aims to shape lay understanding of the facility's risks and to tame the nuclear fears of the local community by producing positive associations, imagery and tales. Our empirical material consists of the constructor's newsletters targeted mainly at the local residents. In the narrative analysis, we identified a storyline where the construction of the repository is linked into the "continuum of the good" in the municipality of the construction site and the surrounding areas. The storyline consists of five different themes all emphasizing the "continuum of the good" in the area: cultural heritage, well-being, developing expertise, natural environment, and local families. Our study contributes to the literature on pro-nuclear storytelling by showing how the inclination is towards narratives that are constructed around local symbols, cultural landmarks, and institutions.
ERIC Educational Resources Information Center
Spada, Hans; And Others
1977-01-01
As part of a senior high school physics unit on nuclear power, changes in student attitudes toward nuclear power plants and problems of energy supply were analyzed. Tests included a situational test, semantic differentials, knowledge or achievement, and a final questionnaire. The results are discussed. (CTM)
The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signaling.
Chen, Haiyang; Chen, Xin; Zheng, Yixian
2013-07-03
Stem cell niche interactions have been studied extensively with regard to cell polarity and extracellular signaling. Less is known about the way in which signals and polarity cues integrate with intracellular structures to ensure appropriate niche organization and function. Here, we report that nuclear lamins function in the cyst stem cells (CySCs) of Drosophila testes to control the interaction of CySCs with the hub. This interaction is important for regulation of CySC differentiation and organization of the niche that supports the germline stem cells (GSCs). Lamin promotes nuclear retention of phosphorylated ERK in the CySC lineage by regulating the distribution of specific nucleoporins within the nuclear pores. Lamin-regulated nuclear epidermal growth factor (EGF) receptor signaling in the CySC lineage is essential for proliferation and differentiation of the GSCs and the transient amplifying germ cells. Thus, we have uncovered a role for the nuclear lamina in the integration of EGF signaling to regulate stem cell niche function. Copyright © 2013 Elsevier Inc. All rights reserved.
Nuclear location of a chromatin insulator in Drosophila melanogaster.
Xu, Qinghao; Li, Mo; Adams, Jessica; Cai, Haini N
2004-03-01
Chromatin-related functions are associated with spatial organization in the nucleus. We have investigated the relationship between the enhancer-blocking activity and subnuclear localization of the Drosophila melanogaster suHw insulator. Using fluorescent in situ hybridization, we observed that genomic loci containing the gypsy retrotransposon were distributed closer to the nuclear periphery than regions without the gypsy retrotransposon. However, transgenes containing a functional 340 bp suHw insulator did not exhibit such biased distribution towards the nuclear periphery, which suggests that the suHw insulator sequence is not responsible for the peripheral localization of the gypsy retrotransposon. Antibody stains showed that the two proteins essential for the suHw insulator activity, SUHW and MOD(MDG4), are not restricted to the nuclear periphery. The enhancer-blocking activity of suHw remained intact under the heat shock conditions, which was shown to disrupt the association of gypsy, SUHW and MOD(MDG4) with the nuclear periphery. Our results indicate that the suHw insulator can function in the nuclear interior, possibly through local interactions with chromatin components or other nuclear structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassell, Geoffrey D.; Weitzman, Matthew D.
2004-10-01
Adeno-associated virus (AAV) replicates in the nucleus of infected cells, and therefore multiple nuclear import events are required for productive infection. We analyzed nuclear import of the viral Rep proteins and characterized a nuclear localization signal (NLS) in the C-terminus. We demonstrate that basic residues in this region constitute an NLS that is transferable and mediates interaction with the nuclear import receptor importin {alpha} in vitro. Mutant Rep proteins are predominantly cytoplasmic and are severely compromised for interactions with importin {alpha}, but retain their enzymatic functions in vitro. Interestingly, mutations of the NLS had significantly less effect on importin {alpha}more » interaction and replication in the context of Rep78 than when incorporated into the Rep68 protein. Together, our results demonstrate that a bipartite NLS exists in the shared part of Rep68 and Rep78, and suggest that an alternate entry mechanism may also contribute to nuclear localization of the Rep78 protein.« less
Nuclear localization of coactivator RAC3 is mediated by a bipartite NLS and importin {alpha}3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Percy Luk; Zhang, Aihua; Chen, J. Don
2006-09-15
The nuclear receptor coactivator RAC3 (also known as SRC-3/ACTR/AIB1/p/CIP/TRAM-1) belongs to the p160 coactivator family, which are involved in several physiological processes and diseases. Here we have investigated how RAC3 is translocated into the nucleus and show that it is mediated through a bipartite NLS and importin {alpha}3. This bipartite NLS is located within the conserved bHLH domain, and its mutation abolished nuclear localization. The NLS is also sufficient to cause nuclear import of EGFP, and the activity requires basic amino acids within the NLS. RAC3 binds strongly to importin {alpha}3, which also depends on the basic amino acids. Functionally,more » RAC3 cytoplasmic mutant loses its ability to enhance transcription, suggesting that nuclear localization is essential for coactivator function. Together, these results reveal a previous unknown mechanism for nuclear translocation of p160 coactivators and a critical function of the conserved bHLH within the coactivator.« less
Funk, Jason A; Schnellmann, Rick G
2013-12-01
Kidney ischemia-reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5mg/kg) starting 24h after reperfusion until 72h-144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R+vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even further augmented and nuclear localization was restored in the kidneys of rats after I/R+SRT1720 treatment (IRS). PGC-1α was elevated at 72 h-144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24h-144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na(+),K(+)-ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. © 2013. Published by Elsevier Inc. All rights reserved.
Single-level resonance parameters fit nuclear cross-sections
NASA Technical Reports Server (NTRS)
Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.
1970-01-01
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.
Fey, E G; Wan, K M; Penman, S
1984-06-01
Madin-Darby canine kidney (MDCK) cells grow as differentiated, epithelial colonies that display tissue-like organization. We examined the structural elements underlying the colony morphology in situ using three consecutive extractions that produce well-defined fractions for both microscopy and biochemical analysis. First, soluble proteins and phospholipid were removed with Triton X-100 in a physiological buffer. The resulting skeletal framework retained nuclei, dense cytoplasmic filament networks, intercellular junctional complexes, and apical microvillar structures. Scanning electron microscopy showed that the apical cell morphology is largely unaltered by detergent extraction. Residual desmosomes, as can be seen in thin sections, were also well-preserved. The skeletal framework was visualized in three dimensions as an unembedded whole mount that revealed the filament networks that were masked in Epon-embedded thin sections of the same preparation. The topography of cytoskeletal filaments was relatively constant throughout the epithelial sheet, particularly across intercellular borders. This ordering of epithelial skeletal filaments across contiguous cell boundaries was in sharp contrast to the more independent organization of networks in autonomous cells such as fibroblasts. Further extraction removed the proteins of the salt-labile cytoskeleton and the chromatin as separate fractions, and left the nuclear matrix-intermediate filament (NM-IF) scaffold. The NM-IF contained only 5% of total cellular protein, but whole mount transmission electron microscopy and immunofluorescence showed that this scaffold was organized as in the intact epithelium. Immunoblots demonstrate that vimentin, cytokeratins, desmosomal proteins, and a 52,000-mol-wt nuclear matrix protein were found almost exclusively in the NM-IF scaffold. Vimentin was largely perinuclear while the cytokeratins were localized at the cell borders. The 52,000-mol-wt nuclear matrix protein was confined to the chromatin-depleted matrix and the desmosomal proteins were observed in punctate polygonal arrays at intercellular junctions. The filaments of the NM-IF were seen to be interconnected, via the desmosomes, over the entire epithelial colony. The differentiated epithelial morphology was reflected in both the cytoskeletal framework and the NM-IF scaffold.
1984-01-01
Madin-Darby canine kidney (MDCK) cells grow as differentiated, epithelial colonies that display tissue-like organization. We examined the structural elements underlying the colony morphology in situ using three consecutive extractions that produce well-defined fractions for both microscopy and biochemical analysis. First, soluble proteins and phospholipid were removed with Triton X-100 in a physiological buffer. The resulting skeletal framework retained nuclei, dense cytoplasmic filament networks, intercellular junctional complexes, and apical microvillar structures. Scanning electron microscopy showed that the apical cell morphology is largely unaltered by detergent extraction. Residual desmosomes, as can be seen in thin sections, were also well- preserved. The skeletal framework was visualized in three dimensions as an unembedded whole mount that revealed the filament networks that were masked in Epon-embedded thin sections of the same preparation. The topography of cytoskeletal filaments was relatively constant throughout the epithelial sheet, particularly across intercellular borders. This ordering of epithelial skeletal filaments across contiguous cell boundaries was in sharp contrast to the more independent organization of networks in autonomous cells such as fibroblasts. Further extraction removed the proteins of the salt-labile cytoskeleton and the chromatin as separate fractions, and left the nuclear matrix-intermediate filament (NM-IF) scaffold. The NM-IF contained only 5% of total cellular protein, but whole mount transmission electron microscopy and immunofluorescence showed that this scaffold was organized as in the intact epithelium. Immunoblots demonstrate that vimentin, cytokeratins, desmosomal proteins, and a 52,000-mol-wt nuclear matrix protein were found almost exclusively in the NM-IF scaffold. Vimentin was largely perinuclear while the cytokeratins were localized at the cell borders. The 52,000-mol-wt nuclear matrix protein was confined to the chromatin- depleted matrix and the desmosomal proteins were observed in punctate polygonal arrays at intercellular junctions. The filaments of the NM-IF were seen to be interconnected, via the desmosomes, over the entire epithelial colony. The differentiated epithelial morphology was reflected in both the cytoskeletal framework and the NM-IF scaffold. PMID:6202700
Jour, George; Liu, Yajuan; Ricciotti, Robert; Pritchard, Colin; Hoch, Benjamin L
2015-09-01
Epithelial glandular differentiation in dedifferentiated chondrosarcoma has not been described. Our patient was a 64-year-old man with a history of prostate cancer status post-radiation and hormonal therapy. On screening bone scan, he was found to have increased uptake in his right femoral shaft. Biopsy revealed intermediate-grade conventional chondrosarcoma. Subsequent femoral resection was remarkable for an intermediate-grade chondrosarcomatous component juxtaposed to an area composed of anastomosing nests and cords of malignant epithelial cells showing nuclear atypia and increased mitotic activity. A fibroblastic-appearing spindle cell population was intimately associated with the epithelial cells. The epithelial cells labeled with 34bE12, AE1/AE3, EMA, and Vimentin (both spindled and epithelial components) while being negative for prostate-specific antigen, prostate specific acid phosphatase, cytokeratin 20, thyroid transcription factor-1, and CDX2. The patient developed local recurrence 9 months after the initial resection but has had no metastatic disease and consistently undetectable prostate-specific antigen levels. Deep parallel sequencing of the dedifferentiated component showed a nonsynonymous mutation at exon 4 of IDH1 gene at codon R132 leading to a substitution of arginine, with serine confirming glandular differentiation in dedifferentiated chondrosarcoma. Copyright © 2015 Elsevier Inc. All rights reserved.
Immunohistochemical localization of galectin-3 in the pig retina during postnatal development
Kim, Jihoon; Moon, Changjong; Ahn, Meejung; Joo, Hong-Gu; Jin, Jae-Kwang
2009-01-01
Purpose The differential level and localization of galectin-3 protein were examined in the retinas of two-day-old pigs and six-month-old pigs. Methods The retinas sampled from two-day-old and six-month-old pigs were analyzed by western blot and immunohistochemistry. Results western blot analysis detected galectin-3 in both age groups, although the levels were significantly higher in six-month-old pigs. Immunohistochemical staining showed that galectin-3 was localized in the retinas of both two-day-old pigs and six-month-old pigs; the galectin-3 immunostaining was more intense in the six-month-old pig retina, as shown in the western blot analysis. Galectin-3 was expressed in glial cells, particularly in glutamine synthetase-positive Müller cells and their processes, across all retina layers in both age groups; however, it was not found in ganglion cells of the ganglion cell layer or neuronal cells of the inner and outer nuclear cell layers in either age group. Conclusions This is the first demonstration that galectin-3 is detected in the retinas of two-day-old pigs and that the expression in Müller cells increases with postnatal development. PMID:19816601
Farnum, C E; Wilsman, N J
1984-06-01
A postembedment method for the localization of lectin-binding glycoconjugates was developed using Epon-embedded growth plate cartilage from Yucatan miniature swine. By testing a variety of etching, blocking, and incubation procedures, a standard protocol was developed for 1 micron thick sections that allowed visualization of both intracellular and extracellular glycoconjugates with affinity for wheat germ agglutinin and concanavalin A. Both fluorescent and peroxidase techniques were used, and comparisons were made between direct methods and indirect methods using the biotin-avidin bridging system. Differential extracellular lectin binding allowed visualization of interterritorial , territorial, and pericellular matrices. Double labeling experiments showed the precision with which intracellular binding could be localized to specific cytoplasmic compartments, with resolution of binding to the Golgi apparatus, endoplasmic reticulum, and nuclear membrane at the light microscopic level. This method allows the localization of both intracellular and extracellular lectin-binding glycoconjugates using fixation and embedment procedures that are compatible with simultaneous ultrastructural analysis. As such it should have applicability both to the morphological analysis of growth plate organization during normal endochondral ossification, as well as to the diagnostic pathology of matrix abnormalities in disease states of growing cartilage.
NASA Technical Reports Server (NTRS)
Musaro, A.; McCullagh, K. J.; Naya, F. J.; Olson, E. N.; Rosenthal, N.
1999-01-01
Localized synthesis of insulin-like growth factors (IGFs) has been broadly implicated in skeletal muscle growth, hypertrophy and regeneration. Virally delivered IGF-1 genes induce local skeletal muscle hypertrophy and attenuate age-related skeletal muscle atrophy, restoring and improving muscle mass and strength in mice. Here we show that the molecular pathways underlying the hypertrophic action of IGF-1 in skeletal muscle are similar to those responsible for cardiac hypertrophy. Transfected IGF-1 gene expression in postmitotic skeletal myocytes activates calcineurin-mediated calcium signalling by inducing calcineurin transcripts and nuclear localization of calcineurin protein. Expression of activated calcineurin mimics the effects of IGF-1, whereas expression of a dominant-negative calcineurin mutant or addition of cyclosporin, a calcineurin inhibitor, represses myocyte differentiation and hypertrophy. Either IGF-1 or activated calcineurin induces expression of the transcription factor GATA-2, which accumulates in a subset of myocyte nuclei, where it associates with calcineurin and a specific dephosphorylated isoform of the transcription factor NF-ATc1. Thus, IGF-1 induces calcineurin-mediated signalling and activation of GATA-2, a marker of skeletal muscle hypertrophy, which cooperates with selected NF-ATc isoforms to activate gene expression programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, C. E.; Aliaga, L.; Bashyal, A.
We present double-differential measurements of antineutrino charged-current quasielastic scattering in the MINERvA detector. This study improves on a previous single-differential measurement by using updated reconstruction algorithms and interaction models and provides a complete description of observed muon kinematics in the form of a double-differential cross section with respect to muon transverse and longitudinal momentum. We also include in our signal definition, zero-meson final states arising from multinucleon interactions and from resonant pion production followed by pion absorption in the primary nucleus. We find that model agreement is considerably improved by a model tuned to MINERvA inclusive neutrino scattering data thatmore » incorporates nuclear effects such as weak nuclear screening and two-particle, two-hole enhancements.« less
Analysis of Nuclear Lamina Proteins in Myoblast Differentiation by Functional Complementation.
Tapia, Olga; Gerace, Larry
2016-01-01
We describe straightforward methodology for structure-function mapping of nuclear lamina proteins in myoblast differentiation, using populations of C2C12 myoblasts in which the endogenous lamina components are replaced with ectopically expressed mutant versions of the proteins. The procedure involves bulk isolation of C2C12 cell populations expressing the ectopic proteins by lentiviral transduction, followed by depletion of the endogenous proteins using siRNA, and incubation of cells under myoblast differentiation conditions. Similar methodology may be applied to mouse embryo fibroblasts or to other cell types as well, for the identification and characterization of sequences of lamina proteins involved in functions that can be measured biochemically or cytologically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Michael J.; King, Cason R.; Dikeakos, Jimmy D.
The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285–289, as well as a second basic patch situatedmore » between residues 258 and 263 ({sup 258}RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP{sup 289}). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs. - Highlights: • Human adenovirus E1A is localized to the nucleus. • The C-terminus of E1A contains a bipartite nuclear localization signal (NLS). • This signal was previously misidentified to be a monopartite NLS. • Key basic amino acid residues within this sequence are highly conserved.« less
1978-01-01
This laboratory has previously isolated a fraction from rat liver nuclei consisting of nuclear pore complexes associated with the proteinaceous lamina which underlies the inner nuclear membrane. Using protein eluted from sodium dodecyl sulfate (SDS) gels, we have prepared antibodies in chickens to each of the three predominant pore complex- lamina bands. Ouchterlony double diffusion analysis shows that each of these individual bands cross-reacts strongly with all three antisera. In immunofluorescence localization performed on tissue culture cells with these antibodies, we obtain a pattern of intense staining at the periphery of the interphase nucleus, with little or no cytoplasmic reaction. Electron microscope immunoperoxidase staining of rat liver nuclei with these antibodies labels exclusively the nuclear periphery. Furthermore, reaction occurs in areas which contain the lamina, but not at the pore complexes. While our isolation procedure extracts the internal contents of nuclei completely, semiquantitative Ouchterlony analysis shows that it releases negligible amounts of these lamina antigens. Considered together, our results indicate that these three bands represent major components of a peripheral nuclear lamina, and are not structural elements of an internal "nuclear protein matrix." Fluorescence microscopy shows that the perinuclear interphase localization of these lamina proteins undergoes dramatic changes during mitosis. Concomitant with nuclear envelope disassembly in prophase, these antigens assume a diffuse localization throughout the cell. This distribution persists until telophase, when the antigens become progressively and completely localized at the surface of the daughter chromosome masses. We propose that the lamina is a biological polymer which can undergo reversible disassembly during mitosis. PMID:102651
Moon, Dong Chan; Choi, Chul Hee; Lee, Su Man; Lee, Jung Hwa; Kim, Seung Il; Kim, Dong Sun; Lee, Je Chul
2012-01-01
Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs), (225)RKRKRK(230). Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.
Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha
2014-07-18
Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated thatmore » TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.« less
COP1 is required for UV-B–induced nuclear accumulation of the UVR8 photoreceptor
Skvortsova, Mariya Y.; Loubéry, Sylvain
2016-01-01
The UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) promotes UV-B acclimation and tolerance in Arabidopsis thaliana. UVR8 localizes to both cytosol and nucleus, but its main activity is assumed to be nuclear. UV-B photoreception stimulates nuclear accumulation of UVR8 in a presently unknown manner. Here, we show that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is required for UV-B–induced nuclear accumulation of UVR8, but bypassing the COP1 requirement for UVR8 nuclear accumulation did not rescue the cop1 mutant UV-B phenotype. Using a glucocorticoid receptor (GR)-based fusion protein system to conditionally localize GR-UVR8 to the nucleus, we have demonstrated that both photoactivation and nuclear localization of UVR8 are required for UV-B–induced photomorphogenic responses. In contrast, there was no UV-B response when UV-B–activated UVR8 was artificially retained in the cytosol. In agreement with a predominantly nuclear activity, constitutively active UVR8W285A accumulated in the nucleus also in the absence of UV-B. Furthermore, GR-COP1 expression lines suggested that UV-B–activated UVR8 can be coimported into the nucleus by COP1. Our data strongly support localization of UVR8 signaling in the nucleus and a dual role for COP1 in the regulation of UV-B–induced UVR8 nuclear accumulation and in UVR8-mediated UV-B signaling. PMID:27407149
Patrick, C. E.; Aliaga, L.; Bashyal, A.; ...
2018-03-08
We present double-differential measurements of antineutrino charged-current quasielastic scattering in the MINERvA detector. This study improves on a previous single-differential measurement by using updated reconstruction algorithms and interaction models and provides a complete description of observed muon kinematics in the form of a double-differential cross section with respect to muon transverse and longitudinal momentum. We also include in our signal definition, zero-meson final states arising from multinucleon interactions and from resonant pion production followed by pion absorption in the primary nucleus. We find that model agreement is considerably improved by a model tuned to MINERvA inclusive neutrino scattering data thatmore » incorporates nuclear effects such as weak nuclear screening and two-particle, two-hole enhancements.« less
Production and Clinical Applications of Radiopharmaceuticals and Medical Radioisotopes in Iran.
Jalilian, Amir Reza; Beiki, Davood; Hassanzadeh-Rad, Arman; Eftekhari, Arash; Geramifar, Parham; Eftekhari, Mohammad
2016-07-01
During past 3 decades, nuclear medicine has flourished as vibrant and independent medical specialty in Iran. Since that time, more than 200 nuclear physicians have been trained and now practicing in nearly 158 centers throughout the country. In the same period, Tc-99m generators and variety of cold kits for conventional nuclear medicine were locally produced for the first time. Local production has continued to mature in robust manner while fulfilling international standards. To meet the ever-growing demand at the national level and with international achievements in mind, work for production of other Tc-99m-based peptides such as ubiquicidin, bombesin, octreotide, and more recently a kit formulation for Tc-99m TRODAT-1 for clinical use was introduced. Other than the Tehran Research Reactor, the oldest facility active in production of medical radioisotopes, there is one commercial and three hospital-based cyclotrons currently operational in the country. I-131 has been one of the oldest radioisotope produced in Iran and traditionally used for treatment of thyrotoxicosis and differentiated thyroid carcinoma. Since 2009, (131)I-meta-iodobenzylguanidine has been locally available for diagnostic applications. Gallium-67 citrate, thallium-201 thallous chloride, and Indium-111 in the form of DTPA and Oxine are among the early cyclotron-produced tracers available in Iran for about 2 decades. Rb-81/Kr-81m generator has been available for pulmonary ventilation studies since 1996. Experimental production of PET radiopharmaceuticals began in 1998. This work has culminated with development and optimization of the high-scale production line of (18)F-FDG shortly after installation of PET/CT scanner in 2012. In the field of therapy, other than the use of old timers such as I-131 and different forms of P-32, there has been quite a significant advancement in production and application of therapeutic radiopharmaceuticals in recent years. Application of (131)I-meta-iodobenzylguanidine for treatment of neuroblastoma, pheochromocytoma, and other neuroendocrine tumors has been steadily increasing in major academic university hospitals. Also (153)Sm-EDTMP, (177)Lu-EDTMP, (90)Y-citrate, (90)Y-hydroxyapatite colloid, (188/186)Re-sulfur colloid, and (188/186)Re-HEDP have been locally developed and now routinely available for bone pain palliation and radiosynovectomy. Cu-64 has been available to the nuclear medicine community for some time. With recent reports in diagnostic and therapeutic applications of this agent especially in the field of oncology, we anticipate an expansion in production and availability. The initiation of the production line for gallium-68 generator is one of the latest exciting developments. We are proud that Iran would be joining the club of few nations with production lines for this type of generator. There are also quite a number of SPECT and PET tracers at research and preclinical stage of development preliminarily introduced for possible future clinical applications. Availability of fluorine-18 tracers and gallium-68 generators would no doubt allow rapid dissemination of PET/CT practices in various parts of our large country even far from a cyclotron facility. Also, local production and availability of therapeutic radiopharmaceuticals are going to open exciting horizons in the field of nuclear medicine therapy. Given the available manpower, local infrastructure of SPECT imaging, and rapidly growing population, the production of Tc-99m generators and cold kit would continue to flourish in Iran. Copyright © 2016 Elsevier Inc. All rights reserved.
Xie, Yi; Jin, Yu; Merenick, Bethany L.; Ding, Min; Fetalvero, Kristina M.; Wagner, Robert J.; Mai, Alice; Gleim, Scott; Tucker, David; Birnbaum, Morris J.; Ballif, Bryan A.; Luciano, Amelia K.; Sessa, William C.; Rzucidlo, Eva M.; Powell, Richard J.; Hou, Lin; Zhao, Hongyu; Hwa, John; Yu, Jun; Martin, Kathleen A.
2015-01-01
Vascular smooth muscle cells (VSMCs) undergo transcriptionally regulated reversible differentiation in growing and injured blood vessels. This de-differentiation also contributes to VSMC hyperplasia following vascular injury, including that caused by angioplasty and stenting. Stents provide mechanical support and can contain and release rapamycin, an inhibitor of the mammalian target of rapamycin complex 1 (mTORC1). Rapamycin suppresses VSMC hyperplasia and promotes VSMC differentiation. We report that rapamycin-induced differentiation of VSMCs required the transcription factor GATA-6. Inhibition of mTORC1 stabilized GATA-6 and promoted the nuclear accumulation of GATA-6, its binding to DNA, and its transactivation of promoters encoding contractile proteins and inhibitors of proliferation. These effects were mediated by phosphorylation of GATA-6 at Ser290, potentially by Akt2, a kinase that is activated in VSMCs when mTORC1 is inhibited. Rapamycin induced phosphorylation of GATA-6 in wild-type mice, but not in Akt2−/− mice. Intimal hyperplasia after arterial injury was greater in Akt2−/− mice than in wild-type mice, and the exacerbated response in Akt2−/− mice was rescued to a greater extent by local overexpression of the wild-type or phosphomimetic (S290D) mutant GATA-6 than by that of the phosphorylation-deficient (S290A) mutant. Our data indicated that GATA-6 and Akt2 are involved in the mTORC1-mediated regulation of VSMC proliferation and differentiation. Identifying the downstream transcriptional targets of mTORC1 may provide cell type-specific drug targets to combat cardiovascular diseases associated with excessive proliferation of VSMCs. PMID:25969542
Enami, Kazuhiko; Ozawa, Tomoki; Motohashi, Noriko; Nakamura, Masayuki; Tanaka, Kan; Hanaoka, Mitsumasa
2011-01-01
Amyloplasts, a subtype of plastid, are found in nonphotosynthetic tissues responsible for starch synthesis and storage. When tobacco (Nicotiana tabacum) Bright Yellow-2 cells are cultured in the presence of cytokinin instead of auxin, their plastids differentiate from proplastids to amyloplasts. In this program, it is well known that the expression of nucleus-encoded starch biosynthesis genes, such as ADP-Glucose Pyrophosphorylase (AgpS) and Granule-Bound Starch Synthase (GBSS), is specifically induced. In this study, we investigated the roles of plastid gene expression in amyloplast differentiation. Microarray analysis of plastid genes revealed that no specific transcripts were induced in amyloplasts. Nevertheless, amyloplast development accompanied with starch biosynthesis was drastically inhibited in the presence of plastid transcription/translation inhibitors. Surprisingly, the expression of nuclear AgpS and GBSS was significantly repressed by the addition of these inhibitors, suggesting that a plastid-derived signal(s) that reflects normal plastid gene expression was essential for nuclear gene expression. A series of experiments was performed to examine the effects of intermediates and inhibitors of tetrapyrrole biosynthesis, since some of the intermediates have been characterized as candidates for plastid-to-nucleus retrograde signals. Addition of levulinic acid, an inhibitor of tetrapyrrole biosynthesis, resulted in the up-regulation of nuclear AgpS and GBSS gene expression as well as starch accumulation, while the addition of heme showed opposite effects. Thus, these results indicate that plastid transcription and/or translation are required for normal amyloplast differentiation, regulating the expression of specific nuclear genes by unknown signaling mechanisms that can be partly mediated by tetrapyrrole intermediates. PMID:21771917
Vega, Sebastián L; Liu, Er; Arvind, Varun; Bushman, Jared; Sung, Hak-Joon; Becker, Matthew L; Lelièvre, Sophie; Kohn, Joachim; Vidi, Pierre-Alexandre; Moghe, Prabhas V
2017-02-01
Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. Copyright © 2017 Elsevier Inc. All rights reserved.
Scher, Howard I; Graf, Ryon P; Schreiber, Nicole A; McLaughlin, Brigit; Lu, David; Louw, Jessica; Danila, Daniel C; Dugan, Lyndsey; Johnson, Ann; Heller, Glenn; Fleisher, Martin; Dittamore, Ryan
2017-06-01
Circulating tumor cells (CTCs) expressing AR-V7 protein localized to the nucleus (nuclear-specific) identify metastatic castration-resistant prostate cancer (mCRPC) patients with improved overall survival (OS) on taxane therapy relative to the androgen receptor signaling inhibitors (ARSi) abiraterone acetate, enzalutamide, and apalutamide. To evaluate if expanding the positivity criteria to include both nuclear and cytoplasmic AR-V7 localization ("nuclear-agnostic") identifies more patients who would benefit from a taxane over an ARSi. The study used a cross-sectional cohort. Between December 2012 and March 2015, 193 pretherapy blood samples, 191 of which were evaluable, were collected and processed from 161 unique mCRPC patients before starting a new line of systemic therapy for disease progression at the Memorial Sloan Kettering Cancer Center. The association between two AR-V7 scoring criteria, post-therapy prostate-specific antigen (PSA) change (PTPC) and OS following ARSi or taxane treatment, was explored. One criterion required nuclear-specific AR-V7 localization, and the other required an AR-V7 signal but was agnostic to protein localization in CTCs. Correlation of AR-V7 status to PTPC and OS was investigated. Relationships with survival were analyzed using multivariable Cox regression and log-rank analyses. A total of 34 (18%) samples were AR-V7-positive using nuclear-specific criteria, and 56 (29%) were AR-V7-positive using nuclear-agnostic criteria. Following ARSi treatment, none of the 16 nuclear-specific AR-V7-positive samples and six of the 32 (19%) nuclear-agnostic AR-V7-positive samples had ≥50% PTPC at 12 weeks. The strongest baseline factor influencing OS was the interaction between the presence of nuclear-specific AR-V7-positive CTCs and treatment with a taxane (hazard ratio 0.24, 95% confidence interval 0.078-0.79; p=0.019). This interaction was not significant when nuclear-agnostic criteria were used. To reliably inform treatment selection using an AR-V7 protein biomarker in CTCs, nuclear-specific localization is required. We analyzed outcomes for patients with metastatic castration-resistant prostate cancer on androgen receptor signaling inhibitors and standard chemotherapy. Patients with circulating tumor cells that had AR-V7 protein in the cellular nuclei were very likely to survive longer on taxane-based chemotherapy, and tests unable to distinguish where the protein is located in the cell are not as predictive of benefit. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Scanlon, Vanessa; Walia, Bhavita; Yu, Jungeun; Hansen, Marc; Drissi, Hicham; Maye, Peter; Sanjay, Archana
2018-01-01
The periosteum contains multipotent skeletal progenitors that contribute to bone repair. The signaling pathways regulating the response of periosteal cells to fracture are largely unknown. Phosphatidylinositol-3 Kinase (PI3K), a prominent lipid kinase, is a major signaling protein downstream of several factors that regulate osteoblast differentiation. Cbl is an E3 ubiquitin ligase and a major adaptor protein that binds to the p85 regulatory subunit and modulates PI3K activity. Substitution of tyrosine 737 to phenylalanine (Y737F) in Cbl abolishes the interaction between Cbl and the p85 subunit without affecting the Cbl’s ubiquitin ligase function. Here, we investigated the role of PI3K signaling during the very early stages of fracture healing using OsterixRFP reporter mice. We found that the absence of PI3K regulation by Cbl resulted in robust periosteal thickening, with increased proliferation of periosteal cells. While the multipotent properties of periosteal progenitors to differentiate into chondrocytes and adipocytes did not change, osteogenic differentiation in the absence of Cbl-PI3K interaction was highly augmented. The increased stability and nuclear localization of Osterix observed in periosteal cells lacking Cbl-PI3K interaction may explain this enhanced osteogenic differentiation since the expression of Osterix transcriptional target genes including osteocalcin and BSP are increased in YF cells. Overall, our findings highlight a hitherto unexplored and novel role for Cbl and PI3K in modulating the osteogenic response of periosteal cells during the early stages of fracture repair. PMID:27884787
Scanlon, Vanessa; Walia, Bhavita; Yu, Jungeun; Hansen, Marc; Drissi, Hicham; Maye, Peter; Sanjay, Archana
2017-02-01
The periosteum contains multipotent skeletal progenitors that contribute to bone repair. The signaling pathways regulating the response of periosteal cells to fracture are largely unknown. Phosphatidylinositol-3 Kinase (PI3K), a prominent lipid kinase, is a major signaling protein downstream of several factors that regulate osteoblast differentiation. Cbl is an E3 ubiquitin ligase and a major adaptor protein that binds to the p85 regulatory subunit and modulates PI3K activity. Substitution of tyrosine 737 to phenylalanine (Y737F) in Cbl abolishes the interaction between Cbl and p85 subunit without affecting the Cbl's ubiquitin ligase function. Here, we investigated the role of PI3K signaling during the very early stages of fracture healing using Osterix RFP reporter mice. We found that the absence of PI3K regulation by Cbl resulted in robust periosteal thickening, with increased proliferation of periosteal cells. While the multipotent properties of periosteal progenitors to differentiate into chondrocytes and adipocytes did not change, osteogenic differentiation in the absence of Cbl-PI3K interaction was highly augmented. The increased stability and nuclear localization of Osterix observed in periosteal cells lacking Cbl-PI3K interaction may explain this enhanced osteogenic differentiation since the expression of Osterix transcriptional target genes including osteocalcin and BSP are increased in YF cells. Overall, our findings highlight a hitherto unexplored and novel role for Cbl and PI3K in modulating the osteogenic response of periosteal cells during the early stages of fracture repair. Copyright © 2016 Elsevier Inc. All rights reserved.
Expression of Active Notch1 in Avian Coronary Development
Yang, Ke; Doughman, Yong-Qiu; Karunamuni, Ganga; Gu, Shi; Yang, Yu-Chung; Bader, David M.; Watanabe, Michiko
2010-01-01
Notch1 is an important regulator of intercellular interactions in cardiovascular development. We show that the nuclear-localized, cleaved and active form of Notch1, the Notch1 intracellular domain (N1ICD), appeared in mesothelial cells of the pro-epicardium during epicardial formation at looped heart stages. N1ICD was also present in mesothelial cells and mesenchymal cells specifically within the epicardium at sulcus regions. N1ICD-positive endothelial cells were detected within the nascent vessel plexus at the atrio-ventricular junction and within the compact myocardium (HH25-30). The endothelial cells expressing N1ICD were surrounded by N1ICD positive smooth muscle cells after coronary orifice formation (HH32-35), while N1ICD expression was absent in the mesenchymal and mesothelial cells surrounding mature coronary vessels. We propose that differential activation of the hypoxia/HIF1-VEGF-Notch pathway may play a role in epicardial cell interactions that promote epicardial EMT and coronary progenitor cell differentiation during epicardial development and coronary vasculogenesis in particularly hypoxic sulcus regions. PMID:19097050
NASA Astrophysics Data System (ADS)
Chuvilskaya, T. V.; Shirokova, A. A.
2018-03-01
The results of calculation of 63Cu + p differential cross sections at incident-proton energies between 10 and 200 MeV and a comparative analysis of these results are presented as a continuation of the earlier work of our group on developing methods for calculating the contribution of nuclear reactions to radiative effects arising in the onboard spacecraft electronics under the action of high-energy cosmic-ray protons on 63Cu nuclei (generation of single-event upsets) and as a supplement to the earlier calculations performed on the basis of the TALYS code in order to determine elastic- and inelastic-scattering cross sections and charge, mass, and energy distributions of recoil nuclei (heavy products of the 63Cu + p nuclear reaction). The influence of various mechanisms of the angular distributions of particles emitted in the 63Cu + p nuclear reaction is also discussed.
Weiss, Scott L; Cvijanovich, Natalie Z; Allen, Geoffrey L; Thomas, Neal J; Freishtat, Robert J; Anas, Nick; Meyer, Keith; Checchia, Paul A; Shanley, Thomas P; Bigham, Michael T; Fitzgerald, Julie; Banschbach, Sharon; Beckman, Eileen; Howard, Kelli; Frank, Erin; Harmon, Kelli; Wong, Hector R
2014-11-19
Increasing evidence supports a role for mitochondrial dysfunction in organ injury and immune dysregulation in sepsis. Although differential expression of mitochondrial genes in blood cells has been reported for several diseases in which bioenergetic failure is a postulated mechanism, there are no data about the blood cell mitochondrial transcriptome in pediatric sepsis. We conducted a focused analysis using a multicenter genome-wide expression database of 180 children ≤ 10 years of age with septic shock and 53 healthy controls. Using total RNA isolated from whole blood within 24 hours of PICU admission for septic shock, we evaluated 296 nuclear-encoded mitochondrial genes using a false discovery rate of 1%. A series of bioinformatic approaches were applied to compare differentially expressed genes across previously validated gene expression-based subclasses (groups A, B, and C) of pediatric septic shock. In total, 118 genes were differentially regulated in subjects with septic shock compared to healthy controls, including 48 genes that were upregulated and 70 that were downregulated. The top scoring canonical pathway was oxidative phosphorylation, with general downregulation of the 51 genes corresponding to the electron transport system (ETS). The top two gene networks were composed primarily of mitochondrial ribosomal proteins highly connected to ETS complex I, and genes encoding for ETS complexes I, II, and IV that were highly connected to the peroxisome proliferator activated receptor (PPAR) family. There were 162 mitochondrial genes differentially regulated between groups A, B, and C. Group A, which had the highest maximum number of organ failures and mortality, exhibited a greater downregulation of mitochondrial genes compared to groups B and C. Based on a focused analysis of a pediatric septic shock transcriptomic database, nuclear-encoded mitochondrial genes were differentially regulated early in pediatric septic shock compared to healthy controls, as well as across genotypic and phenotypic distinct pediatric septic shock subclasses. The nuclear genome may be an important mechanism contributing to alterations in mitochondrial bioenergetic function and outcomes in pediatric sepsis.
Okuyama, Takahide; Yamagishi, Ryosuke; Shimada, Jiro; Ikeda, Masaaki; Maruoka, Yayoi; Kaneko, Hiroki
2018-02-01
Oct4 is a master regulator of the induction and maintenance of cellular pluripotency, and has crucial roles in early stages of differentiation. It is the only factor that cannot be substituted by other members of the same protein family to induce pluripotency. However, although Oct4 nuclear transport and delivery to target DNA are critical events for reprogramming to pluripotency, little is known about the molecular mechanism. Oct4 is imported to the nucleus by the classical nuclear transport mechanism, which requires importin α as an adaptor to bind the nuclear localization signal (NLS). Although there are structures of complexes of the NLS of transcription factors (TFs) in complex with importin α, there are no structures available for complexes involving intact TFs. We have therefore modeled the structure of the complex of the whole Oct4 POU domain and importin α2 using protein-protein docking and molecular dynamics. The model explains how the Ebola virus VP24 protein has a negative effect on the nuclear import of STAT1 by importin α but not on Oct4, and how Nup 50 facilitates cargo release from importin α. The model demonstrates the structural differences between the Oct4 importin α bound and DNA bound crystal states. We propose that the 'expanded linker' between the two DNA-binding domains of Oct4 is an intrinsically disordered region and that its conformational changes have a key role in the recognition/binding to both DNA and importin α. Moreover, we propose that this structural change enables efficient delivery to DNA after release from importin α.
Role of cyclophilin B in prolactin signal transduction and nuclear retrotranslocation.
Rycyzyn, M A; Reilly, S C; O'Malley, K; Clevenger, C V
2000-08-01
The pleiotropic actions of PRL are necessary for mammary growth and differentiation and in vitro lymphoid proliferation. The proximal action of this ligand is mediated by its cell surface receptor via associated networks. PRL action, however, is also associated with the internalization and translocation of this hormone into the nucleus. To delineate the mechanism of this retrotranslocation, a yeast two-hybrid screen was performed and revealed an interaction between PRL and cyclophilin B (CypB). CypB is a peptidyl prolyl isomerase (PPI) found in the endoplasmic reticulum, extracellular space, and nucleus. The interaction between CypB and PRL was subsequently confirmed in vitro and in vivo through the use of recombinant proteins and coimmunoprecipitation studies. The exogenous addition of CypB potentiated the 3H-thymidine incorporation of PRL-dependent cell lines up to 18-fold. CypB by itself was nonmitogenic and did not potentiate the action of GH or other interleukins. CypB did not alter the affinity of the PRL receptor (PRLr) for its ligand, or increase the phosphorylation of PRLr-associated Jak2 or Stat5a. The potentiation of PRL-action by CypB, however, was accompanied by a dramatic increase in the nuclear retrotranslocation of PRL. A CypB mutant, termed CypB-NT, was generated that lacked the wild-type N-terminal nuclear localization sequence. Although CypB-NT demonstrated levels of PRL binding and PPI activity equivalent to wild-type CypB, it was incapable of mediating the nuclear retrotranslocation of PRL or enhancing PRL-driven proliferation. These studies reveal CypB as an important chaperone facilitating the nuclear retrotransport and action of the lactogenic hormones.
Pereira, Ricardo J; Martínez-Solano, Iñigo; Buckley, David
2016-04-01
Ecological models predict that, in the face of climate change, taxa occupying steep altitudinal gradients will shift their distributions, leading to the contraction or extinction of the high-elevation (cold-adapted) taxa. However, hybridization between ecomorphologically divergent taxa commonly occurs in nature and may lead to alternative evolutionary outcomes, such as genetic merger or gene flow at specific genes. We evaluate this hypothesis by studying patterns of divergence and gene flow across three replicate contact zones between high- and low-elevation ecomorphs of the fire salamander (Salamandra salamandra) that have experienced altitudinal range shifts over the current postglacial period. Strong population structure with high genetic divergence in mitochondrial DNA suggests that vicariant evolution has occurred over several glacial-interglacial cycles and that it has led to cryptic differentiation within ecomorphs. In current parapatric boundaries, we do not find evidence for local extinction and replacement upon postglacial expansion. Instead, parapatric taxa recurrently show discordance between mitochondrial and nuclear markers, suggesting nuclear-mediated gene flow across contact zones. Isolation with migration models support this hypothesis by showing significant gene flow across all five parapatric boundaries. Together, our results suggest that, while some genomic regions, such as the mitochondria, may follow morphologic species traits and retreat to isolated mountain tops, other genomic regions, such as nuclear markers, may flow across parapatric boundaries, sometimes leading to a complete genetic merger. We show that despite high ecologic and morphologic divergence over prolonged periods of time, hybridization allows for evolutionary outcomes alternative to extinction and replacement of taxa in response to climate change. © 2016 John Wiley & Sons Ltd.
Singh, Shilpee; Englander, Ella W
2012-11-01
Apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) is a multifunctional protein critical for cellular survival. Its involvement in adaptive survival responses includes key roles in redox sensing, transcriptional regulation, and repair of DNA damage via the base excision repair (BER) pathway. Ape1 is abundant in most cell types and central in integrating the first BER step catalyzed by different DNA glycosylases. BER is the main process for removal of oxidative DNA lesions in postmitotic brain cells, and after ischemic brain injury preservation of Ape1 coincides with neuronal survival, while its loss has been associated with neuronal death. Here, we report that in cultured primary neurons, diminution of cellular ATP by either oligomycin or H(2)O(2) is accompanied by depletion of nuclear Ape1, while other BER proteins are unaffected and retain their nuclear localization under these conditions. Importantly, while H(2)O(2) induces γH2AX phosphorylation, indicative of chromatin rearrangements in response to DNA damage, oligomycin does not. Furthermore, despite comparable diminution of ATP content, H(2)O(2) and oligomycin differentially affect critical parameters of mitochondrial respiration that ultimately determine cellular ATP content. Taken together, our findings demonstrate that in neurons, nuclear compartmentalization of Ape1 depends on ATP and loss of nuclear Ape1 reflects disruption of neuronal energy homeostasis. Energy crisis is a hallmark of stroke and other ischemic/hypoxic brain injuries. In vivo studies have shown that Ape1 deficit precedes neuronal loss in injured brain regions. Thus, our findings bring to light the possibility that energy failure-induced Ape1 depletion triggers neuronal death in ischemic brain injuries. Copyright © 2012 Elsevier Inc. All rights reserved.
Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Shi, Yanhong
2009-04-01
MicroRNAs have been implicated as having important roles in stem cell biology. MicroRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain and may be involved in neural stem cell self-renewal and differentiation. We showed previously that the nuclear receptor TLX is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation. Introducing a TLX expression vector that is not prone to miR-9 regulation rescued miR-9-induced proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in embryonic brains led to premature differentiation and outward migration of the transfected neural stem cells. Moreover, TLX represses expression of the miR-9 pri-miRNA. By forming a negative regulatory loop with TLX, miR-9 provides a model for controlling the balance between neural stem cell proliferation and differentiation.
Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Shi, Yanhong
2009-01-01
Summary MicroRNAs are important players in stem cell biology. Among them, microRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain. Whether miR-9 plays a role in neural stem cell self-renewal and differentiation is unknown. We showed previously that nuclear receptor TLX is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation. Introducing a TLX expression vector lacking the miR-9 recognition site rescued miR-9-induced proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in embryonic brains led to premature differentiation and outward migration of the transfected neural stem cells. Moreover, TLX represses miR-9 pri-miRNA expression. MiR-9, by forming a negative regulatory loop with TLX, establishes a model for controlling the balance between neural stem cell proliferation and differentiation. PMID:19330006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanitchang, Asawin; Narkpuk, Jaraspim; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th
The nucleoprotein of influenza B virus (BNP) shares several characteristics with its influenza A virus counterpart (ANP), including localization in the host's nucleus. However, while the nuclear localization signal(s) (NLS) of ANP are well characterized, little is known about those of BNP. In this study, we showed that the fusion protein bearing the BNP N-terminus fused with GFP (N70–GFP) is exclusively nuclear, and identified a highly conserved KRXR motif spanning residues 44–47 as a putative NLS. In addition, we demonstrated that residues 3–15 of BNP, though not an NLS, are also crucial for nuclear import. Results from mutational analyses ofmore » N70–GFP and the full-length BNP suggest that this region may be required for protection of the N-terminus from proteolytic cleavage. Altogether, we propose that the N-terminal region of BNP contains the NLS and cleavage-protection motif, which together drive its nuclear localization. - Highlights: • The N-terminal region of BNP is required for nuclear accumulation. • The conserved motif at position 44–47 is a putative nuclear localization signal. • The first 15 amino acids of BNP may function as a cleavage-protection motif. • BNP may get access to the nucleus via a mechanism distinct from ANP.« less
Geographic variation and genetic structure in Spotted Owls
Haig, Susan M.; Wagner, R.S.; Forsman, E.D.; Mullins, Thomas D.
2001-01-01
We examined genetic variation, population structure, and definition of conservation units in Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory, long-lived, socially monogamous birds that have decreased population viability due to their occupation of highly-fragmented late successional forests in western North America. To investigate potential effects of habitat fragmentation on population structure, we used random amplified polymorphic DNA (RAPD) to examine genetic variation hierarchically among local breeding areas, subregional groups, regional groups, and subspecies via sampling of 21 breeding areas (276 individuals) among the three subspecies of Spotted Owls. Data from 11 variable bands suggest a significant relationship between geographic distance among local breeding groups and genetic distance (Mantel r = 0.53, P < 0.02) although multi-dimensional scaling of three significant axes did not identify significant grouping at any hierarchical level. Similarly, neighbor-joining clustering of Manhattan distances indicated geographic structure at all levels and identified Mexican Spotted Owls as a distinct clade. RAPD analyses did not clearly differentiate Northern Spotted Owls from California Spotted Owls. Among Northern Spotted Owls, estimates of population differentiation (FST) ranged from 0.27 among breeding areas to 0.11 among regions. Concordantly, within-group agreement values estimated via multi-response permutation procedures of Jaccarda??s distances ranged from 0.22 among local sites to 0.11 among regions. Pairwise comparisons of FST and geographic distance within regions suggested only the Klamath region was in equilibrium with respect to gene flow and genetic drift. Merging nuclear data with recent mitochondrial data provides support for designation of an Evolutionary Significant Unit for Mexican Spotted Owls and two overlapping Management Units for Northern and California Spotted Owls.
Yan, Xia; Li, Ya; Yue, Xiaofeng; Wang, Congcong; Que, Yawei; Kong, Dandan; Ma, Zhonghua; Talbot, Nicholas J.; Wang, Zhengyi
2011-01-01
The cyclic AMP-dependent protein kinase A signaling pathway plays a major role in regulating plant infection by the rice blast fungus Magnaporthe oryzae. Here, we report the identification of two novel genes, MoSOM1 and MoCDTF1, which were discovered in an insertional mutagenesis screen for non-pathogenic mutants of M. oryzae. MoSOM1 or MoCDTF1 are both necessary for development of spores and appressoria by M. oryzae and play roles in cell wall differentiation, regulating melanin pigmentation and cell surface hydrophobicity during spore formation. MoSom1 strongly interacts with MoStu1 (Mstu1), an APSES transcription factor protein, and with MoCdtf1, while also interacting more weakly with the catalytic subunit of protein kinase A (CpkA) in yeast two hybrid assays. Furthermore, the expression levels of MoSOM1 and MoCDTF1 were significantly reduced in both Δmac1 and ΔcpkA mutants, consistent with regulation by the cAMP/PKA signaling pathway. MoSom1-GFP and MoCdtf1-GFP fusion proteins localized to the nucleus of fungal cells. Site-directed mutagenesis confirmed that nuclear localization signal sequences in MoSom1 and MoCdtf1 are essential for their sub-cellular localization and biological functions. Transcriptional profiling revealed major changes in gene expression associated with loss of MoSOM1 during infection-related development. We conclude that MoSom1 and MoCdtf1 functions downstream of the cAMP/PKA signaling pathway and are novel transcriptional regulators associated with cellular differentiation during plant infection by the rice blast fungus. PMID:22144889
Velickovic, Ksenija; Cvoro, Aleksandra; Srdic, Biljana; Stokic, Edita; Markelic, Milica; Golic, Igor; Otasevic, Vesna; Stancic, Ana; Jankovic, Aleksandra; Vucetic, Milica; Buzadzic, Biljana; Korac, Bato; Korac, Aleksandra
2014-01-01
Brown adipose tissue (BAT) has the unique ability of generating heat due to the expression of mitochondrial uncoupling protein 1 (UCP1). A recent discovery regarding functional BAT in adult humans has increased interest in the molecular pathways of BAT development and functionality. An important role for estrogen in white adipose tissue was shown, but the possible role of estrogen in human fetal BAT (fBAT) is unclear. The objective of this study was to determine whether human fBAT expresses estrogen receptor α (ERα) and ERβ. In addition, we examined their localization as well as their correlation with crucial proteins involved in BAT differentiation, proliferation, mitochondriogenesis and thermogenesis including peroxisome proliferator-activated receptor γ (PPARγ), proliferating cell nuclear antigen (PCNA), PPARγ-coactivator-1α (PGC-1α), and UCP1. The fBAT was obtained from 4 human male fetuses aged 15, 17, 20, and 23 weeks gestation. ERα and ERβ expression was assessed using Western blotting, immunohistochemistry, and immunocytochemistry. Possible correlations with PPARγ, PCNA, PGC-1α, and UCP1 were examined by double immunofluorescence. Both ERα and ERβ were expressed in human fBAT, with ERα being dominant. Unlike ERβ, which was present only in mature brown adipocytes, we detected ERα in mature adipocytes, preadipocytes, mesenchymal and endothelial cells. In addition, double immunofluorescence supported the notion that differentiation in fBAT probably involves ERα. Immunocytochemical analysis revealed mitochondrial localization of both receptors. The expression of both ERα and ERβ in human fBAT suggests a role for estrogen in its development, primarily via ERα. In addition, our results indicate that fBAT mitochondria could be targeted by estrogens and pointed out the possible role of both ERs in mitochondriogenesis.
Wilson, Robert E.; Gust, J R; Petersen, Margaret; Talbot, Sandra L.
2016-01-01
Arctic ecosystems are changing at an unprecedented rate. How Arctic species are able to respond to such environmental change is partially dependent on the connections between local and broadly distributed populations. For species like the Long-tailed Duck (Clangula hyemalis), we have limited telemetry and band-recovery information from which to infer population structure and migratory connectivity; however, genetic analyses can offer additional insights. To examine population structure in the Long-tailed Duck, we characterized variation at mtDNA control region and microsatellite loci among four breeding areas in Alaska, Canada, and Russia. We observed significant differences in the variance of mtDNA haplotype frequencies between the Yukon-Kuskokwim Delta (YKD) and the three Arctic locations (Arctic Coastal Plain in Alaska, eastern Siberia, and central Canadian Arctic). However, like most sea duck genetic assessments, our study found no evidence of population structure based on autosomal microsatellite loci. Long-tailed Ducks use multiple wintering areas where pair formation occurs with some populations using both the Pacific and Atlantic Oceans. This situation provides a greater opportunity for admixture across breeding locales, which would likely homogenize the nuclear genome even in the presence of female philopatry. The observed mtDNA differentiation was largely due to the presence of two divergent clades: (A) a clade showing signs of admixture among all breeding locales and (B) a clade primarily composed of YKD samples. We hypothesize that the pattern of mtDNA differentiation reflects some degree of philopatry to the YKD and isolation of two refugial populations with subsequent expansion and admixture. We recommend additional genetic assessments throughout the circumpolar range of Long-tailed Ducks to further quantify aspects of genetic diversity and migratory connectivity in this species.
Imamura, Katsuyuki; Maeda, Shingo; Kawamura, Ichiro; Matsuyama, Kanehiro; Shinohara, Naohiro; Yahiro, Yuhei; Nagano, Satoshi; Setoguchi, Takao; Yokouchi, Masahiro; Ishidou, Yasuhiro; Komiya, Setsuro
2014-04-04
Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis.
Controlling Androgen receptor nuclear localization by dendrimer conjugates
NASA Astrophysics Data System (ADS)
Wang, Haoyu
Androgen Receptor (AR) antagonists, such as bicalutamide and flutamide have been used widely in the treatment of prostate cancer. Although initial treatment is effective, prostate cancer cells often acquire antiandrogen resistance with prolonged treatment. AR over-expression and AR mutations contribute to the development of antiandrogen resistant cancer. Second generation antiandrogens such as enzalutamide are more effective and show reduced AR nuclear localization. In this study, derivatives of PAN52, a small molecule antiandrogen previously developed in our lab, were conjugated to the surface of generation 4 and generation 6 PAMAM dendrimers to obtain antiandrogen PAMAM dendrimer conjugates (APDC). APDCs readily enter cells and associate with AR in the cytoplasm. Due to their large size and positive charge, they can not enter the nucleus, thus retaining AR in the cytoplasm. In addition, APDCs are effective in decreasing AR mediated transcription and cell proliferation. APDC is the first AR antagonists that inhibit DHT-induced nuclear localization of AR. By inhibiting AR nuclear localization, APDC represents a new class of antiandrogens that offer an alternative approach to addressing antiandrogen-resistant prostate cancer. Lysine post-translational modification of AR Nuclear Localization Sequence (NLS) has great impact on AR cellular localization. It is of interest to understand which modifications modulate AR translocation into the nucleus. In this study, we prepared dendrimer-based acetyltransferase mimetic (DATM), DATM is able to catalytically acetylate AR in CWR22Rv1 cells, which will be a useful tool for studying AR modification effect on AR cellular localization. Derivatives of DATM, which transfer other chemical groups to AR, can be prepared similarly, and with more dendrimer based AR modification tools prepared in future, we will be able to understand and control AR cellular localization through AR modification.
The CCDC55 couples cannabinoid receptor CNR1 to a putative DISC1 schizophrenia pathway.
Xie, J; Gizatullin, R; Vukojevic, V; Leopardi, R
2015-12-03
Our previous study suggested that the coiled coil domain-containing 55 gene (CCDC55), also named as NSRP1 (nuclear speckle splicing regulatory protein 1 (NSRP1)), was encompassed in a haplotype block spanning over the serotonin transporter (5-HTT) gene in patients with schizophrenia (SCZ). However, the neurobiological function of CCDC55 gene remains unknown. This study aims to uncover the potential role of CCDC55 in SCZ-associated molecular pathways. Using molecular cloning, sequencing and immune blotting to identify basic properties, yeast two-hybrid screening and glutathione S-transferase (GST) pull-down assay to test protein-protein interaction, and confocal laser scanning microscopy (CSLM) to show intracellular interaction of proteins. (i) CCDC55 is expressed as a nuclear protein in human neuronal cells; (ii) Protein-protein interaction analyses showed CCDC55 physically interacted with Ran binding protein 9 (RanBP9) and disrupted in schizophrenia 1 (DISC1); (iii) CCDC55 and RanBP9 co-localized in the nucleus of human neuronal cells; (iv) CCDC55 also interacted with the cannabinoid receptor 1 (CNR1), and with the brain cannabinoid receptor-interacting protein 1a (CNRIP1a); (v) CNR1 activation in differentiated human neuronal cells resulted in an altered RanBP9 localization. CCDC55 may be involved in a functional bridging between the CNR1 activation and the DISC1/RanBP9-associated pathways. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
The nucleoporin Mlp2 is involved in chromosomal distribution during mitosis in trypanosomatids.
Morelle, Christelle; Sterkers, Yvon; Crobu, Lucien; MBang-Benet, Diane-Ethna; Kuk, Nada; Portalès, Pierre; Bastien, Patrick; Pagès, Michel; Lachaud, Laurence
2015-04-30
Nucleoporins are evolutionary conserved proteins mainly involved in the constitution of the nuclear pores and trafficking between the nucleus and cytoplasm, but are also increasingly viewed as main actors in chromatin dynamics and intra-nuclear mitotic events. Here, we determined the cellular localization of the nucleoporin Mlp2 in the 'divergent' eukaryotes Leishmania major and Trypanosoma brucei. In both protozoa, Mlp2 displayed an atypical localization for a nucleoporin, essentially intranuclear, and preferentially in the periphery of the nucleolus during interphase; moreover, it relocated at the mitotic spindle poles during mitosis. In T. brucei, where most centromeres have been identified, TbMlp2 was found adjacent to the centromeric sequences, as well as to a recently described unconventional kinetochore protein, in the periphery of the nucleolus, during interphase and from the end of anaphase onwards. TbMlp2 and the centromeres/kinetochores exhibited a differential migration towards the poles during mitosis. RNAi knockdown of TbMlp2 disrupted the mitotic distribution of chromosomes, leading to a surprisingly well-tolerated aneuploidy. In addition, diploidy was restored in a complementation assay where LmMlp2, the orthologue of TbMlp2 in Leishmania, was expressed in TbMlp2-RNAi-knockdown parasites. Taken together, our results demonstrate that Mlp2 is involved in the distribution of chromosomes during mitosis in trypanosomatids. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Messaoudi, Lydia; Yang, Yun-Gui; Kinomura, Aiko; Stavreva, Diana A; Yan, Gonghong; Bortolin-Cavaillé, Marie-Line; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Hainaut, Pierre; Cavaillé, Jérome; Takata, Minoru; Van Dyck, Eric
2007-01-01
The RDM1 gene encodes a RNA recognition motif (RRM)-containing protein involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. We previously reported a cDNA encoding the full-length human RDM1 protein. Here, we describe the identification of 11 human cDNAs encoding RDM1 protein isoforms. This repertoire is generated by alternative pre-mRNA splicing and differential usage of two translational start sites, resulting in proteins with long or short N-terminus and a great diversity in the exonic composition of their C-terminus. By using tagged proteins and fluorescent microscopy, we examined the subcellular distribution of full-length RDM1 (renamed RDM1alpha), and other RDM1 isoforms. We show that RDM1alpha undergoes subcellular redistribution and nucleolar accumulation in response to proteotoxic stress and mild heat shock. In unstressed cells, the long N-terminal isoforms displayed distinct subcellular distribution patterns, ranging from a predominantly cytoplasmic to almost exclusive nuclear localization, suggesting functional differences among the RDM1 proteins. However, all isoforms underwent stress-induced nucleolar accumulation. We identified nuclear and nucleolar localization determinants as well as domains conferring cytoplasmic retention to the RDM1 proteins. Finally, RDM1 null chicken DT40 cells displayed an increased sensitivity to heat shock, compared to wild-type (wt) cells, suggesting a function for RDM1 in the heat-shock response.
Betticher, D. C.; Heighway, J.; Hasleton, P. S.; Altermatt, H. J.; Ryder, W. D.; Cerny, T.; Thatcher, N.
1996-01-01
Amplification of the CCDN1 gene encoding cyclin D1 was examined by Southern blotting and multiplex polymerase chain reaction (PCR) and occurred in 8 of 53 patients (15%) with primary resected non-small-cell lung cancer (NSCLC). These tumours and 17 additional tumours with a normal gene copy number showed overexpression of cyclin D1 (25/53, 47%), as assessed by immunostaining using a monoclonal antibody. In 22/25 cases, cyclin D1 was localised in the cytoplasm, but some (7/25) had simultaneous nuclear staining. This result is in marked contrast to that reported in breast, hepatocellular and colorectal carcinoma studies where immunostaining was invariably nuclear. Examination of a restriction fragment length polymorphic (RFLP) site within the 3'untranslated region of the cDNA following reverse transcriptase (RT)-PCR (29/53 informative cases) showed a strong association between cytoplasmic staining and imbalance in allele-specific message levels. Cyclin D1 overexpression was associated with a poorly differentiated histology (P = 0.04), less lymphocytic infiltration of the tumour (P = 0.02) and a reduction in local relapse rate (P = 0.01). The relative risk of local relapse was 9.1 in tumours without cyclin D1 overexpression (P = 0.01, Cox regression analysis). We conclude that genetic alteration of cyclin D1 is a key abnormality in lung carcinogenesis and may have diagnostic and prognostic importance in the treatment of resectable NSCLC. Images Figure 1 Figure 2 Figure 3 PMID:8562333
Nuclear data correlation between different isotopes via integral information
NASA Astrophysics Data System (ADS)
Rochman, Dimitri A.; Bauge, Eric; Vasiliev, Alexander; Ferroukhi, Hakim; Perret, Gregory
2018-05-01
This paper presents a Bayesian approach based on integral experiments to create correlations between different isotopes which do not appear with differential data. A simple Bayesian set of equations is presented with random nuclear data, similarly to the usual methods applied with differential data. As a consequence, updated nuclear data (cross sections,
Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium
Polosukhin, Vasiliy V; Cates, Justin M; Lawson, William E; Milstone, Aaron P; Matafonov, Anton G; Massion, Pierre P; Lee, Jae Woo; Randell, Scott H; Blackwell, Timothy S
2018-01-01
Goblet cell hyperplasia is a common feature of chronic obstructive pulmonary disease (COPD) airways, but the mechanisms that underlie this epithelial remodelling in COPD are not understood. Based on our previous finding of hypoxia-inducible factor-1α (HIF-1α) nuclear localization in large airways from patients with COPD, we investigated whether hypoxia-inducible signalling could influence the development of goblet cell hyperplasia. We evaluated large airway samples obtained from 18 lifelong non-smokers and 13 former smokers without COPD, and 45 former smokers with COPD. In these specimens, HIF-1α nuclear staining occurred almost exclusively in COPD patients in areas of airway remodelling. In COPD patients, 93.2 ± 3.9% (range 65 – 100%) of goblet cells were HIF-1α positive in areas of goblet cell hyperplasia, whereas nuclear HIF-1α was not detected in individuals without COPD or in normal-appearing pseudostratified epithelium from COPD patients. To determine the direct effects of hypoxia-inducible signalling on epithelial cell differentiation in vitro, human bronchial epithelial cells (HBECs) were grown in air-liquid interface cultures under hypoxia (1% O2) or following treatment with a selective HIF-1α stabilizer, (2R)-[(4-biphenylylsulphonyl)amino]-N-hydroxy-3-phenyl-propionamide (BiPS). HBECs grown in hypoxia or with BiPS treatment were characterized by HIF-1α activation, carbonic anhydrase IX expression, mucus-producing cell hyperplasia and increased expression of MUC5AC. Analysis of signal transduction pathways in cells with HIF-1α activation showed increased ERK1/2 phosphorylation without activation of epidermal growth factor receptor, Ras, PI3K-Akt or STAT6. These data indicate an important effect of hypoxia-inducible signalling on airway epithelial cell differentiation and identify a new potential target to limit mucus production in COPD. PMID:21557221
Vazquez-Martin, Alejandro; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Menendez, Javier A
2011-09-15
Raptor is the key scaffolding protein that recruits mTOR substrates to rapamycin-sensitive mTOR complex 1 (mTORC1), a molecular integrator of mitogenic and nutrient/energy environmental inputs into protein translation and cell growth. Although Raptor phosphorylation on various sites is pivotal in the regulation of mTORC1 activity, it remains to be elucidated whether site-specific phosphorylation differentially distributes Raptor to unique subcellular compartments. When exploring the spatiotemporal cell cycle dynamics of six different phospho (P)-Raptor isoforms (Thr ( 706) , Ser ( 722) , Ser ( 863) , Ser ( 792) and Ser ( 877) ), a number of remarkable events differentially defined a topological resetting of P-RaptorThr706 on interphasic and mitotic chromosomes. In interphase nuclei, P-Raptor (Thr706) co-localized with fibrillarin, a component of the nucleolar small nuclear ribonucleoprotein particle, as well as with RNA polymerase I, the enzyme that transcribes nucleolar rRNA. Upon Actinomycin D-induced nucleolar segregation and disaggregation, P-RaptorThr706 was excluded from the nucleolus to accumulate at discrete nucleoplasmic bodies. During mitosis, CDK1 inhibition-induced premature assembly of nucleoli relocated fibrillarin to the surrounding regions of chromosomal-associated P-Raptor (Thr706) , suggesting that a subpopulation of mitotic P-Raptor (Thr706) remained targeted at chromosomal loops of rDNA or nuclear organizer regions (NORs). At the end of mitosis and cytokinesis, when reassembly of incipient nucleoli begins upon NORs activation of rDNA transcription, fibrillarin spatially reorganized with P-Raptor (Thr706) to give rise to daughter nucleoli. Treatment with IGF1 exclusively hyperactivated nuclear P-Raptor (Ser706) and concomitantly promoted Ser ( 2481) autophosphorylation of mTOR, which monitors mTORC1-associated catalytic activity. Nucleolar- and NOR-associated P-Raptor (Ser706) may physically link mTORC1 signaling to ever-growing nucleolus plurifunctionality including ribosome biogenesis, cell stress sensor and cell cycle/aging control.
Sun, Kai; Montana, Vedrana; Chellappa, Karthikeyani; Brelivet, Yann; Moras, Dino; Maeda, Yutaka; Parpura, Vladimir; Paschal, Bryce M; Sladek, Frances M
2007-06-01
Nuclear receptors (NRs) are a superfamily of transcription factors whose genomic functions are known to be activated by lipophilic ligands, but little is known about how to deactivate them or how to turn on their nongenomic functions. One obvious mechanism is to alter the nuclear localization of the receptors. Here, we show that protein kinase C (PKC) phosphorylates a highly conserved serine (Ser) between the two zinc fingers of the DNA binding domain of orphan receptor hepatocyte nuclear factor 4alpha (HNF4alpha). This Ser (S78) is adjacent to several positively charged residues (Arg or Lys), which we show here are involved in nuclear localization of HNF4alpha and are conserved in nearly all other NRs, along with the Ser/threonine (Thr). A phosphomimetic mutant of HNF4alpha (S78D) reduced DNA binding, transactivation ability, and protein stability. It also impaired nuclear localization, an effect that was greatly enhanced in the MODY1 mutant Q268X. Treatment of the hepatocellular carcinoma cell line HepG2 with PKC activator phorbol 12-myristate 13-acetate also resulted in increased cytoplasmic localization of HNF4alpha as well as decreased endogenous HNF4alpha protein levels in a proteasome-dependent fashion. We also show that PKC phosphorylates the DNA binding domain of other NRs (retinoic acid receptor alpha, retinoid X receptor alpha, and thyroid hormone receptor beta) and that phosphomimetic mutants of the same Ser/Thr result in cytoplasmic localization of retinoid X receptor alpha and peroxisome proliferator-activated receptor alpha. Thus, phosphorylation of this conserved Ser between the two zinc fingers may be a common mechanism for regulating the function of NRs.
Tajbakhsh, Jian; Gertych, Arkadiusz; Fagg, W. Samuel; Hatada, Seigo; Fair, Jeffrey H.
2011-01-01
The genome organization in pluripotent cells undergoing the first steps of differentiation is highly relevant to the reprogramming process in differentiation. Considering this fact, chromatin texture patterns that identify cells at the very early stage of lineage commitment could serve as valuable tools in the selection of optimal cell phenotypes for regenerative medicine applications. Here we report on the first-time use of high-resolution three-dimensional fluorescence imaging and comprehensive topological cell-by-cell analyses with a novel image-cytometrical approach towards the identification of in situ global nuclear DNA methylation patterns in early endodermal differentiation of mouse ES cells (up to day 6), and the correlations of these patterns with a set of putative markers for pluripotency and endodermal commitment, and the epithelial and mesenchymal character of cells. Utilizing this in vitro cell system as a model for assessing the relationship between differentiation and nuclear DNA methylation patterns, we found that differentiating cell populations display an increasing number of cells with a gain in DNA methylation load: first within their euchromatin, then extending into heterochromatic areas of the nucleus, which also results in significant changes of methylcytosine/global DNA codistribution patterns. We were also able to co-visualize and quantify the concomitant stochastic marker expression on a per-cell basis, for which we did not measure any correlation to methylcytosine loads or distribution patterns. We observe that the progression of global DNA methylation is not correlated with the standard transcription factors associated with endodermal development. Further studies are needed to determine whether the progression of global methylation could represent a useful signature of cellular differentiation. This concept of tracking epigenetic progression may prove useful in the selection of cell phenotypes for future regenerative medicine applications. PMID:21779341
Dawes, L J; Shelley, E J; McAvoy, J W; Lovicu, F J
2018-04-01
Recent studies indicate an important role for the transcriptional co-activator Yes-associated protein (YAP), and its regulatory pathway Hippo, in controlling cell growth and fate during lens development; however, the exogenous factors that promote this pathway are yet to be identified. Given that fibroblast growth factor (FGF)-signaling is an established regulator of lens cell behavior, the current study investigates the relationship between this pathway and Hippo/YAP-signaling during lens cell proliferation and fibre differentiation. Rat lens epithelial explants were cultured with FGF2 to induce epithelial cell proliferation or fibre differentiation. Immunolabeling methods were used to detect the expression of Hippo-signaling components, Total and Phosphorylated YAP, as well as fibre cell markers, Prox-1 and β-crystallin. FGF-induced lens cell proliferation was associated with a strong nuclear localisation of Total-YAP and low-level immuno-staining for phosphorylated-YAP. FGF-induced lens fibre differentiation was associated with a significant increase in cytoplasmic phosphorylated YAP (inactive state) and enhanced expression of core Hippo-signaling components. Inhibition of YAP with Verteporfin suppressed FGF-induced lens cell proliferation and ablated cell elongation during lens fibre differentiation. Inhibition of either FGFR- or MEK/ERK-signaling suppressed FGF-promoted YAP nuclear translocation. Here we propose that FGF promotes Hippo/YAP-signaling during lens cell proliferation and differentiation, with FGF-induced nuclear-YAP expression playing an essential role in promoting the proliferation of lens epithelial cells. An FGF-induced switch from proliferation to differentiation, hence regulation of lens growth, may play a key role in mediating Hippo suppression of YAP transcriptional activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Characterization of tumor cells and stem cells by differential nuclear methylation imaging
NASA Astrophysics Data System (ADS)
Tajbakhsh, Jian; Wawrowsky, Kolja A.; Gertych, Arkadiusz; Bar-Nur, Ori; Vishnevsky, Eugene; Lindsley, Erik H.; Farkas, Daniel L.
2008-02-01
DNA methylation plays a key role in cellular differentiation. Aberrant global methylation patterns are associated with several cancer types, as a result of changes in long-term activation status of up to 50% of genes, including oncogenes and tumor-suppressor genes, which are regulated by methylation and demethylation of promoter region CpG dinucleotides (CpG islands). Furthermore, DNA methylation also occurs in nonisland CpG sites (> 95% of the genome), present once per 80 dinucleotides on average. Nuclear DNA methylation increases during the course of cellular differentiation while cancer cells usually show a net loss in methylation. Given the large dynamic range in DNA methylation load, the methylation pattern of a cell can provide a valuable distinction as to its status during differentiation versus the disease state. By applying immunofluorescence, confocal microscopy and 3D image analysis we assessed the potential of differential nuclear distribution of methylated DNA to be utilized as a biomarker to characterize cells during development and when diseased. There are two major fields that may immediately benefit from this development: (1) the search for factors that contribute to pluripotency and cell fate in human embryonic stem cell expansion and differentiation, and (2) the characterization of tumor cells with regard to their heterogeneity in molecular composition and behavior. We performed topological analysis of the distribution of methylated CpG-sites (MeC) versus heterochromatin. This innovative approach revealed significant differences in colocalization patterns of MeC and heterochromatin-derived signals between undifferentiated and differentiated human embryonic stem cells, as well as untreated AtT20 mouse pituitary tumor cells compared to a subpopulation of these cells treated with 5-azacytidine for 48 hours.
Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation
Swift, Joe; Ivanovska, Irena L.; Buxboim, Amnon; Harada, Takamasa; Dingal, P. C. Dave P.; Pinter, Joel; Pajerowski, J. David; Spinler, Kyle R.; Shin, Jae-Won; Tewari, Manorama; Rehfeldt, Florian; Speicher, David W.; Discher, Dennis E.
2014-01-01
Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination. PMID:23990565
Martel, Catherine; Macchi, Paolo; Furic, Luc; Kiebler, Michael A.; Desgroseillers, Luc
2005-01-01
Mammalian Stau1 (Staufen1), a modular protein composed of several dsRBDs (double-stranded RNA-binding domains), is probably involved in mRNA localization. Although Stau1 is mostly described in association with the rough endoplasmic reticulum and ribosomes in the cytoplasm, recent studies suggest that it may transit through the nucleus/nucleolus. Using a sensitive yeast import assay, we show that Stau1 is actively imported into the nucleus through a newly identified bipartite nuclear localization signal. As in yeast, the bipartite nuclear localization signal is necessary for Stau1 nuclear import in mammalian cells. It is also required for Stau1 nucleolar trafficking. However, Stau1 nuclear transit seems to be regulated by mechanisms that involve cytoplasmic retention and/or facilitated nuclear export. Cytoplasmic retention is mainly achieved through the action of dsRBD3, with dsRBD2 playing a supporting role in this function. Similarly, dsRBD3, but not its RNA-binding activity, is critical for Stau1 nucleolar trafficking. The function of dsRBD3 is strengthened or stabilized by the presence of dsRBD4 but prevented by the interdomain between dsRBD2 and dsRBD3. Altogether, these results suggest that Stau1 nuclear trafficking is a highly regulated process involving several determinants. The presence of Stau1 in the nucleus/nucleolus suggests that it may be involved in ribonucleoprotein formation in the nucleus and/or in other nuclear functions not necessarily related to mRNA transport. PMID:16162096
Miller, Matthew S; Furlong, Wendy E; Pennell, Leesa; Geadah, Marc; Hertel, Laura
2010-07-01
The products of numerous open reading frames (ORFs) present in the genome of human cytomegalovirus (CMV) have not been characterized. Here, we describe the identification of a new CMV protein localizing to the nuclear envelope and in cytoplasmic vesicles at late times postinfection. Based on this distinctive localization pattern, we called this new protein nuclear rim-associated cytomegaloviral protein, or RASCAL. Two RASCAL isoforms exist, a short version of 97 amino acids encoded by the majority of CMV strains and a longer version of 176 amino acids encoded by the Towne, Toledo, HAN20, and HAN38 strains. Both isoforms colocalize with lamin B in deep intranuclear invaginations of the inner nuclear membrane (INM) and in novel cytoplasmic vesicular structures possibly derived from the nuclear envelope. INM infoldings have been previously described as sites of nucleocapsid egress, which is mediated by the localized disruption of the nuclear lamina, promoted by the activities of viral and cellular kinases recruited by the lamina-associated proteins UL50 and UL53. RASCAL accumulation at the nuclear membrane required the presence of UL50 but not of UL53. RASCAL and UL50 also appeared to specifically interact, suggesting that RASCAL is a new component of the nuclear egress complex (NEC) and possibly involved in mediating nucleocapsid egress from the nucleus. Finally, the presence of RASCAL within cytoplasmic vesicles raises the intriguing possibility that this protein might participate in additional steps of virion maturation occurring after capsid release from the nucleus.
Howard, Kellie; Cherezova, Lidia; DeMaster, Laura K; Rose, Timothy M
2017-11-01
The latency-associated nuclear antigens (LANA) of KSHV and macaque RFHVMn, members of the RV1 rhadinovirus lineage, are closely related with conservation of complex nuclear localization signals (NLS) containing bipartite KR-rich motifs and RG-rich domains, which interact distinctly with importins α and ß1 for nuclear import via classical and non-classical pathways, respectively. RV1 LANAs are expressed in the nucleus of latently-infected cells where they inhibit replication and establish a dominant RV1 latency. Here we show that LANA homologs of macaque RRV and MneRV2 from the more distantly-related RV2 lineage, lack the KR-rich NLS, and instead have a large RG-rich NLS with multiple RG dipeptides and a conserved RGG motif. The RG-NLS interacts uniquely with importin β1, which mediates nuclear import and accumulation of RV2 LANA in the nucleolus. The alternative nuclear import and localization of RV2 LANA homologs may contribute to the dominant RV2 lytic replication phenotype. Copyright © 2017. Published by Elsevier Inc.
Kim, Hiyoung; Kim, Kwang-Jin; Yeon, Jeong-Tae; Kim, Seong Hwan; Won, Dong Hwan; Choi, Hyukjae; Nam, Sang-Jip; Son, Young-Jin; Kang, Heonjoong
2014-01-01
A new inhibitor, placotylene A (1), of the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation, and a regioisomer of placotylene A, placotylene B (2), were isolated from a Korean marine sponge Placospongia sp. The chemical structures of placotylenes A and B were elucidated on the basis of 1D and 2D NMR, along with MS spectral analysis and revealed as an iodinated polyacetylene class of natural products. Placotylene A (1) displayed inhibitory activity against RANKL-induced osteoclast differentiation at 10 μM while placotylene B (2) did not show any significant activity up to 100 μM, respectively. PMID:24705502
Atypical nuclear localization of VIP receptors in glioma cell lines and patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbarin, Alice; Séité, Paule; Godet, Julie
Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, bymore » applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.« less
Reynolds, Ashley E.; Ryckman, Brent J.; Baines, Joel D.; Zhou, Yuping; Liang, Li; Roller, Richard J.
2001-01-01
The herpes simplex virus type 1 (HSV-1) UL34 protein is likely a type II membrane protein that localizes within the nuclear membrane and is required for efficient envelopment of progeny virions at the nuclear envelope, whereas the UL31 gene product of HSV-1 is a nuclear matrix-associated phosphoprotein previously shown to interact with UL34 protein in HSV-1-infected cell lysates. For these studies, polyclonal antisera directed against purified fusion proteins containing UL31 protein fused to glutathione-S-transferase (UL31-GST) and UL34 protein fused to GST (UL34-GST) were demonstrated to specifically recognize the UL31 and UL34 proteins of approximately 34,000 and 30,000 Da, respectively. The UL31 and UL34 gene products colocalized in a smooth pattern throughout the nuclear rim of infected cells by 10 h postinfection. UL34 protein also accumulated in pleiomorphic cytoplasmic structures at early times and associated with an altered nuclear envelope late in infection. Localization of UL31 protein at the nuclear rim required the presence of UL34 protein, inasmuch as cells infected with a UL34 null mutant virus contained UL31 protein primarily in central intranuclear domains separate from the nuclear rim, and to a lesser extent in the cytoplasm. Conversely, localization of UL34 protein exclusively at the nuclear rim required the presence of the UL31 gene product, inasmuch as UL34 protein was detectable at the nuclear rim, in replication compartments, and in the cytoplasm of cells infected with a UL31 null virus. When transiently expressed in the absence of other viral factors, UL31 protein localized diffusely in the nucleoplasm, whereas UL34 protein localized primarily in the cytoplasm and at the nuclear rim. In contrast, coexpression of the UL31 and UL34 proteins was sufficient to target both proteins exclusively to the nuclear rim. The proteins were also shown to directly interact in vitro in the absence of other viral proteins. In cells infected with a virus lacking the US3-encoded protein kinase, previously shown to phosphorylate the UL34 gene product, UL31 and UL34 proteins colocalized in small punctate areas that accumulated on the nuclear rim. Thus, US3 kinase is required for even distribution of UL31 and UL34 proteins throughout the nuclear rim. Taken together with the similar phenotypes of the UL31 and UL34 deletion mutants, these data strongly suggest that the UL31 and UL34 proteins form a complex that accumulates at the nuclear membrane and plays an important role in nucleocapsid envelopment at the inner nuclear membrane. PMID:11507225
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inagaki, Yuichi; Mitsutake, Susumu; Igarashi, Yasuyuki
2006-05-12
Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. A mutation in a new ceramide kinase (CERK) homologous gene, named CERK-like protein (CERKL), was found to cause autosomal recessive retinitis pigmentosa (RP26). Here, we show a point mutation of one of two putative nuclear localization signal (NLS) sequences inhibited the nuclear localization of the protein. Furthermore, the tetra-GFP-tagged NLS, which cannot passively enter the nucleus, was observed not only in the nucleus but also in the nucleolus. Our results provide First evidence of the active nuclear import of CERKL and suggest that the identified NLSmore » might be responsible for nucleolar retention of the protein. As recent studies have shown other RP-related proteins are localized in the nucleus or the nucleolus, our identification of NLS in CERKL suggests that CERKL likely plays important roles for retinal functions in the nucleus and the nucleolus.« less
Leong Pock Tsy, Jean-Michel; Lumaret, Roselyne; Flaven-Noguier, Elodie; Sauve, Mathieu; Dubois, Marie-Pierre; Danthu, Pascal
2013-01-01
Background and Aims Adansonia comprises nine species, six of which are endemic to Madagascar. Genetic relationships between the Malagasy species remain unresolved due to conflicting results between nuclear and plastid DNA variation. Morphologically intermediate individuals between distinct species have been identified, indicative of interspecific hybridization. In this paper, microsatellite data are used to identify potential cases of hybridization and to provide insights into the evolutionary history of the genus on Madagascar. Methods Eleven microsatellites amplified with new primers developed for Adansonia rubrostipa were used to analyse 672 individuals collected at 27 sites for the six Malagasy species and morphologically intermediate individuals. Rates of individual admixture were examined using three Bayesian clustering programs, STRUCTURE, BAPS and NewHybrids, with no a priori species assignment. Key Results Population differentiation was coherent, with recognized species boundaries. In the four Malagasy species of section Longitubae, 8·0, 9·0 and 9·5 % of individuals with mixed genotypes were identified by BAPS, NewHybrids and STRUCTURE, respectively. At sites with sympatric populations of A. rubrostipa and A. za, NewHybrids indicated these individuals to be F2 and, predominantly, backcrosses with both parental species. In northern Madagascar, two populations of trees combining A. za and A. perrieri morphology and microsatellite alleles were identified in the current absence of the parental species. Conclusions The clear genetic differentiation observed between the six species may reflect their adaptation to different assortments of climate regimes and habitats during the colonization of the island. Microsatellite variation reveals that hybridization probably occurred in secondary contact between species of section Longitubae. This type of hybridization may also have been involved in the differentiation of a local new stabilized entity showing specific microsatellite alleles and morphological characters, suggesting a potential role of hybridization in the recent history of diversification on Madagascar. PMID:24187031
Olmedilla, A; de Dios Alché, J; Rodríguez-García, M I
1997-10-01
We studied the ultrastructural evolution of the nucleolus during meiotic prophase in olive microsporocytes. During prophase, nuclear bodies morphologically similar to coiled bodies were observed. The nucleic acid composition of these bodies was examined in microsporocytes using electron microscopic techniques with EDTA preferential ribonucleoprotein staining, anti-DNA immunolabeling, the in situ terminal deoxynucleotidyl transferase-immunogold technique, and in situ hybridization with 18S rRNA and U3 snoRNA digoxigenin-labeled probes. The ultrastructural appearance of the meiocyte nucleolus indicated a low level of activity from the early prophase stage: the granular component was practically absent and nucleoli were constituted almost exclusively by dense fibrillar component containing large fibrillar centers that lacked chromatin inclusions. However, the appearance of reactivation vacuoles in the nucleolus during zygotene and high levels of rRNA in the nucleoplasm during pachytene support the presence of a peak in rRNA synthesis. Our results also show that the nuclear bodies that appear during prophase I are ribonucleoproteinaceous in nature; neither DNA nor ribosomal RNA were detected. The presence of U3 snoRNA, as shown by in situ hybridization in nuclear bodies from plant material, is also evidence that these structures are coiled bodies. We suggest that coiled bodies are involved not only in pre- and post-splicing events but also in the storage, transport or recycling of rRNA maturation elements.
Ferrero, Gabriel O; Renner, Marianne L; Gil, Germán A; Rodríguez-Berdini, Lucia; Caputto, Beatriz L
2014-08-01
c-Fos is a well-recognized member of the AP-1 (activator protein-1) family of transcription factors. In addition to this canonical activity, we previously showed that cytoplasmic c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. c-Fos associates with particular enzymes of the lipid synthesis pathway at the endoplasmic reticulum and increases the Vmax of the reactions without modifying the Km values. This lipid synthesis activation is associated with events of differentiation and proliferation that require high rates of membrane biogenesis. Since lipid synthesis also occurs in the nucleus, and different phospholipids have been assigned transcription regulatory functions, in the present study we examine if c-Fos also acts as a regulator of phospholipid synthesis in the nucleus. Furthermore, we examine if c-Fos modulates transcription through its phospholipid synthesis activator capacity. We show that nuclear-localized c-Fos associates with and activates PI4P5K (phosphatidylinositol-4-monophosphate 5-kinase), but not with PI4KIIIβ (type IIIβ phosphatidylinositol 4-kinase) thus promoting PtdIns(4,5)P₂ (phosphatidylinositol 4,5-bisphosphate) formation, which, in turn, promotes transcriptional changes. We propose c-Fos as a key regulator of nuclear PtdIns(4,5)P₂ synthesis in response to growth signals that results in c-Fos-dependent transcriptional changes promoted by the newly synthesized lipids.
Duan, Mei; Zhang, Rongxue; Zhu, Fugui; Gou, Lanming; Dong, Jiangli
2017-01-01
The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play a vital role in the response to drought stress. Here, we report a lipid-anchored NACsa TF in Medicago falcata. MfNACsa is an essential regulator of plant tolerance to drought stress, resulting in the differential expression of genes involved in oxidation reduction and lipid transport and localization. MfNACsa is associated with membranes under unstressed conditions and, more specifically, is targeted to the plasma membrane through S-palmitoylation. However, a Cys26-to-Ser mutation or inhibition of S-palmitoylation results in MfNACsa retention in the endoplasmic reticulum/Golgi. Under drought stress, MfNACsa translocates to the nucleus through de-S-palmitoylation mediated by the thioesterase MtAPT1, as coexpression of APT1 results in the nuclear translocation of MfNACsa, whereas mutation of the catalytic site of APT1 results in colocalization with MfNACsa and membrane retention of MfNACsa. Specifically, the nuclear MfNACsa binds the glyoxalase I (MtGlyl) promoter under drought stress, resulting in drought tolerance by maintaining the glutathione pool in a reduced state, and the process is dependent on the APT1-NACsa regulatory module. Our findings reveal a novel mechanism for the nuclear translocation of an S-palmitoylated NAC in response to stress. PMID:28684428
Baker, Steven Andrew; Lombardi, Laura Marie; Zoghbi, Huda Yahya
2015-09-11
Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein with important roles in regulating chromatin structure and gene expression, and mutations in MECP2 cause Rett syndrome (RTT). Within the MeCP2 protein sequence, the nuclear localization signal (NLS) is reported to reside between amino acids 255-271, and certain RTT-causing mutations overlap with the MeCP2 NLS, suggesting that they may alter nuclear localization. One such mutation, R270X, is predicted to interfere with the localization of MeCP2, but recent in vivo studies have demonstrated that this mutant remains entirely nuclear. To clarify the mechanism of MeCP2 nuclear import, we isolated proteins that interact with the NLS and identified karyopherin α 3 (KPNA3 or Kap-α3) and karyopherin α 4 (KPNA4 or Kap-α4) as key binding partners of MeCP2. MeCP2-R270X did not interact with KPNA4, consistent with a requirement for an intact NLS in this interaction. However, this mutant retains binding to KPNA3, accounting for the normal localization of MeCP2-R270X to the nucleus. These data provide a mechanism for MeCP2 nuclear import and have implications for the design of therapeutics aimed at modulating the function of MeCP2 in RTT patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Badiane, Arnaud; Garcia-Porta, Joan; Červenka, Jan; Kratochvíl, Lukáš; Sindaco, Roberto; Robinson, Michael D; Morales, Hernan; Mazuch, Tomáš; Price, Thomas; Amat, Fèlix; Shobrak, Mohammed Y; Wilms, Thomas; Simó-Riudalbas, Marc; Ahmadzadeh, Faraham; Papenfuss, Theodore J; Cluchier, Alexandre; Viglione, Julien; Carranza, Salvador
2014-07-09
A molecular phylogeny of the sphaerodactylid geckos of the genus Pristurus is inferred based on an alignment of 1845 base pairs (bp) of concatenated mitochondrial (12S) and nuclear (acm4, cmos, rag1 and rag2) genes for 80 individuals, representing 18 of the 23-26 species, and the three subspecies of P. rupestris. The results indicate that P. rupestris is polyphyletic and includes two highly divergent clades: the eastern clade, found in coastal Iran and throughout the Hajar Mountain range in northern Oman and eastern UAE; and the western clade, distributed from central coastal Oman, through Yemen, Saudi Arabia and north to southern Jordan. Inferred haplotype networks for the four nuclear genes show that the eastern and western clades of "P. rupestris" are highly differentiated and do not share any alleles. Moreover, although the two clades are differentiated by a morphological multivariate analysis, no one character or set of characters was found to be diagnostic. Based on the molecular analysis of specimens from the type locality of P. rupestris rupestris, the name P. rupestris is applied to the eastern clade. The name that should apply to the western clade cannot be clarified until morphological and genetic data for "P. rupestris" is available from the vicinity of Bosaso, Somalia, and therefore we refer to it as Pristurus sp. 1. The phylogenetic tree of Pristurus supports the hypothesis that P. celerrimus is sister to all the other species in the analyses and that the Socotra Archipelago was independently colonized a minimum of two times.
Kato, Mutsuko; Sugiyama, Takashi; Sakai, Kazumi; Yamashita, Takahiro; Fujita, Hirofumi; Sato, Keita; Tomonari, Sayuri; Shichida, Yoshinori; Ohuchi, Hideyo
2016-01-01
Opsin family genes encode G protein-coupled seven-transmembrane proteins that bind a retinaldehyde chromophore in photoreception. Here, we sought potential as yet undescribed avian retinal photoreceptors, focusing on Opsin 3 homologs in the chicken. We found two Opsin 3-related genes in the chicken genome: one corresponding to encephalopsin/panopsin (Opn3) in mammals, and the other belonging to the teleost multiple tissue opsin (TMT) 2 group. Bioluminescence imaging and G protein activation assays demonstrated that the chicken TMT opsin (cTMT) functions as a blue light sensor when forced-expressed in mammalian cultured cells. We did not detect evidence of light sensitivity for the chicken Opn3 (cOpn3). In situ hybridization demonstrated expression of cTMT in subsets of differentiating cells in the inner retina and, as development progressed, predominant localization to retinal horizontal cells (HCs). Immunohistochemistry (IHC) revealed cTMT in HCs as well as in small numbers of cells in the ganglion and inner nuclear layers of the post-hatch chicken retina. In contrast, cOpn3-IR cells were found in distinct subsets of cells in the inner nuclear layer. cTMT-IR cells were also found in subsets of cells in the hypothalamus. Finally, we found differential distribution of cOpn3 and cTMT proteins in specific cells of the cerebellum. The present results suggest that a novel TMT-type opsin 3 may function as a photoreceptor in the chicken retina and brain.
RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheren, Jamie E.; Kassenbrock, C. Kenneth, E-mail: ken.kassenbrock@ucdenver.edu; Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
2013-11-01
Highlights: •RNF38 is shown to be a nuclear protein with a bipartite nuclear localization signal. •RNF38 protein is purified and shown to have ubiquitin protein ligase (E3) activity. •We show that RNF38 binds p53 and can ubiquitinate p53 in vitro. •Overexpression of RNF38 increases p53 ubiquitination in HEK293T cells. •Overexpression of RNF38 in HEK293T cells alters p53 localization. -- Abstract: The RNF38 gene encodes a RING finger protein of unknown function. Here we demonstrate that RNF38 is a functional ubiquitin protein ligase (E3). We show that RNF38 isoform 1 is localized to the nucleus by a bipartite nuclear localization sequencemore » (NLS). We confirm that RNF38 is a binding partner of p53 and demonstrate that RNF38 can ubiquitinate p53 in vitro and in vivo. Finally, we show that overexpression of RNF38 in HEK293T cells results in relocalization of p53 to discrete foci associated with PML nuclear bodies. These results suggest RNF38 is an E3 ubiquitin ligase that may play a role in regulating p53.« less
Tracking STAT nuclear traffic.
Reich, Nancy C; Liu, Ling
2006-08-01
Accurate cellular localization is crucial for the effective function of most signalling molecules and nuclear translocation is central to the function of transcription factors. The passage of large molecules between the cytoplasm and nucleus is restricted, and this restriction affords a mechanism to regulate transcription by controlling the access of transcription factors to the nucleus. In this Review, we focus on the signal transducer and activator of transcription (STAT) family of transcription factors. The regulation of the nuclear trafficking of STAT-family members is diverse. Some STAT proteins constitutively shuttle between the nucleus and cytoplasm, whereas others require tyrosine phosphorylation for nuclear localization. In either case, the regulation of nuclear trafficking can provide a target for therapeutic intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreck, Ilona; Al-Rawi, Marco; Mingot, Jose-Manuel
2011-04-22
Highlights: {yields} HSP70, Ku70 and 80 as well as importin 8 are novel interactors of c-Jun. {yields} Nuclear accumulation of c-Jun does not require its functions as a transcription factor. {yields} Nuclear accumulation of c-Jun does not require the interaction with its kinase JNK. {yields} Nuclear accumulation of JNK is regulated by interaction with c-Jun. -- Abstract: In order to activate gene expression, transcription factors such as c-Jun have to reside in the nucleus. The abundance of c-Jun in the nucleus correlates with the activity of its target genes. As a consequence of excessive c-Jun activation, cells undergo apoptosis ormore » changes in differentiation whereas decreased c-Jun function can reduce proliferation. In the present study we addressed how nuclear accumulation of the transcription factor c-Jun is regulated. First, we analyzed which functions of c-Jun are required for efficient nuclear accumulation. Mutants of c-Jun deficient in dimerization or DNA-binding show no defect in nuclear transport. Furthermore, c-Jun import into the nucleus of living cells occurred when the c-Jun phosphorylation sites were mutated as well in cells that lack the major c-Jun kinase, JNK, suggesting that c-Jun transport into the nucleus does not require JNK signaling. Conversely, however, binding of c-Jun seemed to enhance nuclear accumulation of JNK. In order to identify proteins that might be relevant for the nuclear translocation of c-Jun we searched for novel binding partners by a proteomic approach. In addition to the heat shock protein HSP70 and the DNA damage repair factors Ku70 and 80, we isolated human importin 8 as a novel interactor of c-Jun. Interaction of Imp 8 with c-Jun in human cells was confirmed by co-immunoprecipitation experiments. Nuclear accumulation of c-Jun does not require its functions as a transcription factor or the interaction with its kinase JNK. Interestingly, nuclear accumulation of JNK is regulated by interaction with c-Jun. Unraveling the mechanisms of c-Jun and JNK transport to the nucleus and its regulation will improve our understanding of their role in biological and pathophysiological processes.« less
Induction of CD4 T cell memory by local cellular collectivity.
Polonsky, Michal; Rimer, Jacob; Kern-Perets, Amos; Zaretsky, Irina; Miller, Stav; Bornstein, Chamutal; David, Eyal; Kopelman, Naama Meira; Stelzer, Gil; Porat, Ziv; Chain, Benjamin; Friedman, Nir
2018-06-15
Cell differentiation is directed by signals driving progenitors into specialized cell types. This process can involve collective decision-making, when differentiating cells determine their lineage choice by interacting with each other. We used live-cell imaging in microwell arrays to study collective processes affecting differentiation of naïve CD4 + T cells into memory precursors. We found that differentiation of precursor memory T cells sharply increases above a threshold number of locally interacting cells. These homotypic interactions involve the cytokines interleukin-2 (IL-2) and IL-6, which affect memory differentiation orthogonal to their effect on proliferation and survival. Mathematical modeling suggests that the differentiation rate is continuously modulated by the instantaneous number of locally interacting cells. This cellular collectivity can prioritize allocation of immune memory to stronger responses. Copyright © 2018, American Association for the Advancement of Science.
Genetic evidence for nonrandom sorting of mitochondria in the basidiomycete Agrocybe aegerita.
Barroso, G; Labarère, J
1997-01-01
We studied mitochondrial transmission in the homobasidiomycete Agrocybe aegerita during plasmogamy, vegetative growth, and basidiocarp differentiation. Plasmogamy between homokaryons from progeny of three wild-type strains resulted in bidirectional nuclear migration, and the dikaryotization speed was dependent on the nuclear genotype of the recipient homokaryon. Little mitochondrial migration accompanied the nuclear migration. A total of 75% of the dikaryons from the fusion lines had both parental mitochondrial haplotypes (mixed dikaryons), and 25% had only a single haplotype (homoplasmic dikaryons); with some matings, there was a strong bias in favor of one parental haplotype. We demonstrated the heteroplasmic nature of mixed dikaryons by (i) isolating and subculturing apical cells in micromanipulation experiments and (ii) identifying recombinant mitochondrial genomes. This heteroplasmy is consistent with the previously reported suggestion that there is recombination between mitochondrial alleles in A. aegerita. Conversion of heteroplasmons into homoplasmons occurred (i) during long-term storage, (ii) in mycelia regenerated from isolated apical cells, and (iii) during basidiocarp differentiation. Homokaryons that readily accepted foreign nuclei were the most efficient homokaryons in maintaining their mitochondrial haplotype during plasmogamy, long-term storage, and basidiocarp differentiation. This suggests that the mechanism responsible for the nonrandom retention or elimination of a given haplotype may be related to the nuclear genotype or the mitochondrial haplotype or both. PMID:9406387
Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif.
Hernández-Sánchez, Itzell E; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P; Jiménez-Bremont, Juan F
2015-01-01
The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.
Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif
Hernández-Sánchez, Itzell E.; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P.; Jiménez-Bremont, Juan F.
2015-01-01
The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization. PMID:26442018
DeZwaan, Todd M.; Ellingson, Eric; Pellman, David; Roof, David M.
1997-01-01
Spindle orientation and nuclear migration are crucial events in cell growth and differentiation of many eukaryotes. Here we show that KIP3, the sixth and final kinesin-related gene in Saccharomyces cerevisiae, is required for migration of the nucleus to the bud site in preparation for mitosis. The position of the nucleus in the cell and the orientation of the mitotic spindle was examined by microscopy of fixed cells and by time-lapse microscopy of individual live cells. Mutations in KIP3 and in the dynein heavy chain gene defined two distinct phases of nuclear migration: a KIP3-dependent movement of the nucleus toward the incipient bud site and a dynein-dependent translocation of the nucleus through the bud neck during anaphase. Loss of KIP3 function disrupts the unidirectional movement of the nucleus toward the bud and mitotic spindle orientation, causing large oscillations in nuclear position. The oscillatory motions sometimes brought the nucleus in close proximity to the bud neck, possibly accounting for the viability of a kip3 null mutant. The kip3 null mutant exhibits normal translocation of the nucleus through the neck and normal spindle pole separation kinetics during anaphase. Simultaneous loss of KIP3 and kinesin-related KAR3 function, or of KIP3 and dynein function, is lethal but does not block any additional detectable movement. This suggests that the lethality is due to the combination of sequential and possibly overlapping defects. Epitope-tagged Kip3p localizes to astral and central spindle microtubules and is also present throughout the cytoplasm and nucleus. PMID:9281581
Su, Shifeng; Parris, Amanda B; Grossman, Gail; Mohler, James L; Wang, Zengjun; Wilson, Elizabeth M
2017-04-01
High affinity androgen binding to the androgen receptor (AR) activates genes required for male sex differentiation and promotes the development and progression of prostate cancer. Human AR transcriptional activity involves interactions with coregulatory proteins that include primate-specific melanoma antigen-A11 (MAGE-A11), a coactivator that increases AR transcriptional activity during prostate cancer progression to castration-resistant/recurrent prostate cancer (CRPC). Microarray analysis and quantitative RT-PCR were performed to identify androgen-regulated MAGE-A11-dependent genes in LAPC-4 prostate cancer cells after lentivirus shRNA knockdown of MAGE-A11. Chromatin immunoprecipitation was used to assess androgen-dependent AR recruitment, and immunocytochemistry to localize an androgen-dependent protein in prostate cancer cells and tissue and in the CWR22 human prostate cancer xenograft. Microarray analysis of androgen-treated LAPC-4 prostate cancer cells indicated follistatin-like 1 (FSTL1) is up-regulated by MAGE-A11. Androgen-dependent up-regulation of FSTL1 was inhibited in LAPC-4 cells by lentivirus shRNA knockdown of AR or MAGE-A11. Chromatin immunoprecipitation demonstrated AR recruitment to intron 10 of the FSTL1 gene that contains a classical consensus androgen response element. Increased levels of FSTL1 protein in LAPC-4 cells correlated with higher levels of MAGE-A11 relative to other prostate cancer cells. FSTL1 mRNA levels increased in CRPC and castration-recurrent CWR22 xenografts in association with predominantly nuclear FSTL1. Increased nuclear localization of FSTL1 in prostate cancer was suggested by predominantly cytoplasmic FSTL1 in benign prostate epithelial cells and predominantly nuclear FSTL1 in epithelial cells in CRPC tissue and the castration-recurrent CWR22 xenograft. AR expression studies showed nuclear colocalization of AR and endogenous FSTL1 in response to androgen. AR and MAGE-A11 cooperate in the up-regulation of FSTL1 to promote growth and progression of CRPC. Prostate 77:505-516, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Microsomal receptor for steroid hormones: functional implications for nuclear activity.
Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J
1988-01-01
Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of microsomal binding sites extracted. These observations suggest three possible roles for the microsomal receptor-like proteins: (a) modulation of estrogen access to nuclear binding sites; (b) formation of functional complexes which diffuse to other extranuclear sites to alter non-genomic cellular processes; (c) regulation of nuclear concentration of estrogen-receptor complexes by virtue of producing microsomal acceptor sites for uptake of free or loosely associated nuclear complexes, previously thought to exist in the cytoplasm.
Gdula, Michal R.; Poterlowicz, Krzysztof; Mardaryev, Andrei N.; Sharov, Andrey A.; Peng, Y.; Fessing, Michael Y.; Botchkarev, Vladimir A.
2014-01-01
The nucleus of epidermal keratinocytes is a complex and highly compartmentalized organelle, whose structure is markedly changed during terminal differentiation and transition of the genome from a transcriptionally active state seen in the basal and spinous epidermal cells to a fully inactive state in the keratinized cells of the cornified layer. Here, using multi-color confocal microscopy, followed by computational image analysis and mathematical modelling, we demonstrate that in normal mouse foot-pad epidermis transition of keratinocytes from basal epidermal layer to the granular layer is accompanied by marked differences in nuclear architecture and micro-environment including: i) decrease of the nuclear volume, ii) decrease in expression of the markers of transcriptionally-active chromatin; iii) internalization and decrease in the number of nucleoli; iv) increase in the number of pericentromeric heterochromatic clusters; v) increase in the frequency of associations between pericentromeric clusters, chromosomal territory 3, and nucleoli. These data suggest a role for nucleoli and pericentromeric heterochromatin clusters as organizers of nuclear micro-environment required for proper execution of gene expression programs in differentiating keratinocytes and provide important background information for further analyses of alterations in the topological genome organization seen in pathological skin conditions including disorders of epidermal differentiation and epidermal tumors. PMID:23407401
Lu, Hai-zhen; Zhang, Hong-tu; Liu, Xiu-yun; Xue, Xin-hua; Xie, Yong-qiang; Liu, Shang-mei; Su, Qin
2009-03-01
To study the neoplasm with perivascular epithelioid cell differentiation (PEComa) with respect to their morphologic, immunohistochemical and clinical phenotypes. Three PEComas were included in this study, one located at the left uterine horn, and two presented as a mass in the uterine corpus. The tumors were examined by histopathology and immunohistochemistry. The lesions were composed of spindle, blunt epithelioid cells, with foci of, or scattered, cells showing adipose differentiation in two cases. The myomelanocytic differentiation was demonstrated, proving the diagnosis as PEComa. Mild nuclear atypia and focal necrosis was observed in one lesion, and the rest two showed malignant morphologic phenotypes including moderate nuclear atypia and coagulative necrosis. The mitotic and Ki67-labelling indices ranged from 0.5/10 HPF to 14/10 HPF and 0.6% to 7.0%, respectively. All of the three patients remain alive. Malignant nature of the two lesions with worrisome morphology was confirmed by occurrence of metastases after hysterectomy. PEComa is a rare tumor, occurring preferentially in the uterus. It is regarded as a tumor with uncertain malignant potential, but a minority of them shows malignant clinical behaviors. Some pathologic parameters including large tumor size, sheet-like necrosis, marked nuclear atypia, elevated mitotic index (> or = 10/10 HPF), aberrant mitotic figure and vascular invasion may help to establish a diagnosis of malignant PEComa.
Noise suppression for the differential detection in nuclear magnetic resonance gyroscope
NASA Astrophysics Data System (ADS)
Yang, Dan; Zhou, Binquan; Chen, LinLin; Jia, YuChen; Lu, QiLin
2017-10-01
The nuclear magnetic resonance gyroscope is based on spin-exchange optical pumping of noble gases to detect and measure the angular velocity of the carrier, but it would be challenging to measure the precession signal of noble gas nuclei directly. To solve the problem, the primary detection method utilizes alkali atoms, the precession of nuclear magnetization modulates the alkali atoms at the Larmor frequency of nuclei, relatively speaking, and it is easier to detect the precession signal of alkali atoms. The precession frequency of alkali atoms is detected by the rotation angle of linearly polarized probe light; and differential detection method is commonly used in NMRG in order to detect the linearly polarized light rotation angle. Thus, the detection accuracy of differential detection system will affect the sensitivity of the NMRG. For the purpose of further improvement of the sensitivity level of the NMRG, this paper focuses on the aspects of signal detection, and aims to do an error analysis as well as an experimental research of the linearly light rotation angle detection. Through the theoretical analysis and the experimental illustration, we found that the extinction ratio σ2 and DC bias are the factors that will produce detective noise in the differential detection method.
Nuclear targeting of the maize R protein requires two nuclear localization sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shieh, M.W.; Raikhel, N.V.; Wessler, S.R.
1993-02-01
Previous genetic and structural evidence indicates that the maize R gene encodes a nuclear transcriptional activating factor. In-frame carboxyl- and amino-terminal fusions of the R gene to the reporter gene encoding [beta]-glucuronidase (GUS) were sufficient to direct GUS to the nucleus of the transiently transformed onion (Allium cepa) epidermal cells. Further analysis of chimeric constructs containing regions of the R gene fused to the GUS cDNA revealed three specific nuclear localization sequences (NLSs) that were capable of redirecting the GUS protein to the nucleus. Amino-terminal NLS-A (amino acids 100-109, GDRRAAPARP) contained several arginine residues; a similar localization signal is foundmore » in only a few viral proteins. The medial NLS-M (amino acids 419-428, MSERKRREKL) is a simian virus 40 large T antigen-type NLS, and the carboxyl-terminal NLS-C (amino acids 598-610, MISESLRKAIGKR) is a mating type [alpha]2 type. NLSs M and C are independently sufficient to direct the GUS protein to the nucleus when it is fused at the amino terminus of GUS, whereas NLS-A fused to GUS partitioned between the nucleus and cytoplasm. Similar partitioning was observed when localization signals NLS-A and NLS-C were independently fused to the carboxy-terminal portion of GUS. A sequential deletion of the localization signals indicated that the amino-terminal and carboxyl-terminal fusions of R and GUS were redirected to the nucleus only when both NLS-A and -M, or NLS-C and -M, were present. These results indicate that multiple localization signals are necessary for nuclear targeting of this protein. The conservation of the localization signals within the alleles of R and similar proteins from other organisms is also discussed. 45 refs., 6 figs.« less
NASA Technical Reports Server (NTRS)
Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)
1992-01-01
A nuclear localization signal (NLS) has been identified in the N-terminal (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) amino acid sequence of the polyomavirus major capsid protein VP1. The importance of this amino acid sequence for nuclear transport of VP1 protein was demonstrated by a genetic "subtractive" study using the constructs pSG5VP1 (full-length VP1) and pSG5 delta 5'VP1 (truncated VP1, lacking amino acids Ala1-Cys11). These constructs were used to transfect COS-7 cells, and expression and intracellular localization of the VP1 protein was visualized by indirect immunofluorescence. These studies revealed that the full-length VP1 was expressed and localized in the nucleus, while the truncated VP1 protein was localized in the cytoplasm and not transported to the nucleus. These findings were substantiated by an "additive" approach using FITC-labeled conjugates of synthetic peptides homologous to the NLS of VP1 cross-linked to bovine serum albumin or immunoglobulin G. Both conjugates localized in the nucleus after microinjection into the cytoplasm of 3T6 cells. The importance of individual amino acids found in the basic sequence (Lys3-Arg-Lys5) of the NLS was also investigated. This was accomplished by synthesizing three additional peptides in which lysine-3 was substituted with threonine, arginine-4 was substituted with threonine, or lysine-5 was substituted with threonine. It was found that lysine-3 was crucial for nuclear transport, since substitution of this amino acid with threonine prevented nuclear localization of the microinjected, FITC-labeled conjugate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishino, Tasuku; Matsunaga, Ryota; Konishi, Hiroaki, E-mail: hkonishi@pu-hiroshima.ac.jp
2015-08-21
GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association withmore » the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction.« less
Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel
2012-01-01
Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.
Venkatesiah, Sowmya S; Kale, Alka D; Hallikeremath, Seema R; Kotrashetti, Vijayalakshmi S
2013-01-01
Lichen planus is a chronic inflammatory mucocutaneous disease that clinically and histologically resembles lichenoid lesions, although the latter has a different etiology. Though criteria have been suggested for differentiating oral lichen planus from lichenoid lesions, confusion still prevails. To study the cellular and nuclear volumetric features in the epithelium of normal mucosa, lichen planus, and lichenoid lesions to determine variations if any. A retrospective study was done on 25 histologically diagnosed cases each of oral lichen planus, oral lichenoid lesions, and normal oral mucosa. Cellular and nuclear morphometric measurements were assessed on hematoxylin and eosin sections using image analysis software. Analysis of variance test (ANOVA) and Tukey's post-hoc test. The basal cells of oral lichen planus showed a significant increase in the mean nuclear and cellular areas, and in nuclear volume; there was a significant decrease in the nuclear-cytoplasmic ratio as compared to normal mucosa. The suprabasal cells showed a significant increase in nuclear and cellular areas, nuclear diameter, and nuclear and cellular volumes as compared to normal mucosa. The basal cells of oral lichenoid lesions showed significant difference in the mean cellular area and the mean nuclear-cytoplasmic ratio as compared to normal mucosa, whereas the suprabasal cells differed significantly from normal mucosa in the mean nuclear area and the nuclear and cellular volumes. Morphometry can differentiate lesions of oral lichen planus and oral lichenoid lesions from normal oral mucosa. Thus, morphometry may serve to discriminate between normal and premalignant lichen planus and lichenoid lesions. These lesions might have a high risk for malignant transformation and may behave in a similar manner with respect to malignant transformation.
Taniyama, Toshiyuki; Tsuda, Natsumi; Sueda, Shinji
2018-06-15
The nuclear envelope (NE) is a double membrane that segregates nuclear components from the cytoplasm in eukaryotic cells. It is well-known that the NE undergoes a breakdown and reformation during mitosis in animal cells. However, the detailed mechanisms of the NE dynamics are not yet fully understood. Here, we propose a method for the fluorescent labeling of the NE in living cells, which enables the tracing of the NE dynamics during cell division under physiological conditions. In our method, labeling of the NE is accomplished by fixing green fluorescent protein carrying the nuclear localization signal on the inner nuclear membrane based on a unique biotinylation reaction from the archaeon Sulfolobus tokodaii. With this method, we observed HeLa cells during mitosis by confocal laser scanning microscopy and succeeded in clearly visualizing the difference in the timing of the formation of the NE and the nuclear lamina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ping; Wang, Ningling; Lin, Xianhua
Heterogeneous nuclear ribonucleoprotein K (hnRNP K), an evolutionarily conserved protein, is involved in several important cellular processes that are relevant to cell proliferation, differentiation, apoptosis, and cancer development. However, details of hnRNP K expression during mammalian oogenesis and preimplantation embryo development are lacking. The present study investigates the expression and cellular localization of K protein in the mouse ovaries and preimplantation embryos using immunostaining. We demonstrate, for the first time, that hnRNP K is abundantly expressed in the nuclei of mouse oocytes in primordial, primary and secondary follicles. In germ vesicle (GV)-stage oocytes, hnRNP K accumulates in the germinal vesiclemore » in a spot distribution manner. After germinal vesicle breakdown, speckled hnRNP K is diffusely distributed in the cytoplasm. However, after fertilization, the K protein relocates into the female and male pronucleus and persists in the blastomere nuclei. Localization of K protein in the human ovary and ovarian granulosa cell tumor (GCT) was also investigated. Overall, this study provides important morphological evidence to better understand the possible roles of hnRNP K in mammalian oogenesis and early embryo development. - Highlights: • HnRNP K localizes in the nucleus of GV-stage oocyte in a punctate distribution. • HnRNP K strongly accumulates in zygotic pronuclei as condensed spots. • The localization of hnRNP K during oogenesis and embryogenesis is characteristic. • HnRNP K might have an important role in oogenesis and embryonic development.« less
Mito-nuclear discord in six congeneric lineages of Holarctic ducks (genus Anas).
Peters, Jeffrey L; Winker, Kevin; Millam, Kendra C; Lavretsky, Philip; Kulikova, Irina; Wilson, Robert E; Zhuravlev, Yuri N; McCracken, Kevin G
2014-06-01
Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favreau, Catherine; Delbarre, Erwan; Courvalin, Jean-Claude
2008-04-01
Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation ofmore » proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.« less
Rühl, R; Plum, C; Elmazar, M M; Nau, H
2001-09-01
Isotretinoin (13-cis-retinoic acid [13CRA], Accutane) is used for the treatment of dermatological diseases. Isotretinoin is, however, teratogenic in animals and humans. The mechanism of action of its teratogenicity is still not clearly identified. It has little or no binding properties to cytosolic retinoid-binding proteins or nuclear retinoid receptors (RAR, RXR). One hypothesis is that the teratogenicity of 2 approximately equipotent teratogenic doses of 13CRA and all-trans-retinoic acids (ATRA) could mainly be correlated to ATRA in the nuclei, where the retinoic acid receptors (RARs) are located. To test this hypothesis, female mice at gestational day 11 were treated with approximately equipotent teratogenic doses of 13-cis-retinoic acid (100 mg/kg orally) or all-trans-retinoic acid (10 mg/kg orally) and sacrificed 1 h and 4 h after administration. Embryos were homogenized and centrifuged into 4 fractions, and the purity of the fractions was tested by quantification of marker constituents for various cell compartments. We analyzed, by RP-HPLC, nuclear, mitochondrial, microsomal, and cytosolic fractions, as well as embryo homogenate and maternal plasma. After treatment with 13-cis-retinoic acid, this substance was mainly located in the nuclear fraction of the embryo (approximately 82%), whereas all-trans-retinoic acid, after ATRA treatment, was mainly located in the cytosolic supernatant (approximately 64%). The binding to cellular retinoid-binding protein (CRABP) may limit the access of ATRA to the nucleus, in contrast to 13CRA, which does not bind to CRABP. The concentration of ATRA in the nuclear fraction was similar after administration of either 13CRA or ATRA. The teratogenic activity of 13-cis-retinoic acid could therefore be explained by its access to the nucleus and its possible conversion to all-trans-retinoic acids, which will interact with the nuclear retinoid receptors.
Region of Nipah virus C protein responsible for shuttling between the cytoplasm and nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horie, Ryo; Yoneda, Misako, E-mail: yone@ims.u-tok
Nipah virus (NiV) causes severe encephalitis in humans, with high mortality. NiV nonstructural C protein (NiV-C) is essential for its pathogenicity, but its functions are unclear. In this study, we focused on NiV-C trafficking in cells and found that it localizes predominantly in the cytoplasm but partly in the nucleus. An analysis of NiV-C mutants showed that amino acids 2, 21–24 and 110–139 of NiV-C are important for its localization in the cytoplasm. Inhibitor treatment indicates that the nuclear export determinant is not a classical CRM1-dependent nuclear export signal. We also determined that amino acids 60–75 and 72–75 were importantmore » for nuclear localization of NiV-C. Furthermore, NiV-C mutants that had lost their capacity for nuclear localization inhibited the interferon (IFN) response more strongly than complete NiV-C. These results indicate that the IFN-antagonist activity of NiV-C occurs in the cytoplasm. -- Highlights: •Nipah virus (NiV) infection resulted in high mortality, but effective treatment has not been established. •Several reports revealed that NiV nonstructural C protein (NiV-C) was essential for NiV pathogenicity, however, whole of NiV-C function is still unknown. •Although nonstructural C proteins of other Paramyxoviruses are expressed in similar mechanism and exert similar activity, subcellular localization and cellular targets are different. In this study, we evaluated the subcellular localization of NiV-C. •To our knowledge, this is the first report showing that NiV-C shuttles between the nucleus and cytoplasm. We also clarified that NiV-C has nuclear export signal and nuclear localization signal using NiV-C deleted, alanine substitution mutants and enhanced green fluorescent protein (EGFP) fused proteins. •And we also showed that interferon (IFN) antagonist activity of NiV-C related to its subcellular localization. Our results indicate that NiV-C exert IFN antagonist activity in the cytoplasm.« less
Recloned dogs derived from adipose stem cells of a transgenic cloned beagle.
Oh, Hyun Ju; Park, Jung Eun; Kim, Min Jung; Hong, So Gun; Ra, Jeong Chan; Jo, Jung Youn; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun
2011-04-15
A number of studies have postulated that efficiency in mammalian cloning is inversely correlated with donor cell differentiation status and may be increased by using undifferentiated cells as nuclear donors. Here, we attempted the recloning of dogs by nuclear transfer of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) from a transgenic cloned beagle to determine if cAd-MSCs can be a suitable donor cell type. In order to isolate cAd-MSCs, adipose tissues were collected from a transgenic cloned beagle produced by somatic cell nuclear transfer (SCNT) of canine fetal fibroblasts modified genetically with a red fluorescent protein (RFP) gene. The cAd-MSCs expressed the RFP gene and cell-surface marker characteristics of MSCs including CD29, CD44 and thy1.1. Furthermore, cAd-MSCs underwent osteogenic, adipogenic, myogenic, neurogenic and chondrogenic differentiation when exposed to specific differentiation-inducing conditions. In order to investigate the developmental potential of cAd-MSCs, we carried out SCNT. Fused-couplets (82/109, 75.2%) were chemically activated and transferred into the uterine tube of five naturally estrus-synchronized surrogates. One of them (20%) maintained pregnancy and subsequently gave birth to two healthy cloned pups. The present study demonstrated for the first time the successful production of cloned beagles by nuclear transfer of cAd-MSCs. Another important outcome of the present study is the successful recloning of RFP-expressing transgenic cloned beagle pups by nuclear transfer of cells derived from a transgenic cloned beagle. In conclusion, the present study demonstrates that adipose stem cells can be a good nuclear donor source for dog cloning. Copyright © 2011 Elsevier Inc. All rights reserved.
Crosstalk between ERK2 and RXR regulates nuclear import of transcription factor NGFI-B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Chris M.; Paulsen, Ragnhild E.
2005-10-21
Transcription factor NGFI-B initiates apoptosis when allowed to translocate to mitochondria. Retinoid-X receptor (RXR), another member of the nuclear receptor family, regulates NGFI-B signaling through heterodimerization and nuclear export. Growth factor EGF activates ERK2, which phosphorylates NGFI-B and determines if NGFI-B is allowed to translocate to mitochondria. In the present study, EGF treatment resulted in an increased nuclear import of NGFI-B. Likewise, active ERK2 resulted in a preferential nuclear localization of NGFI-B. When coexpressed with RXR the nuclear import and nuclear localization induced by active ERK2 were strongly reduced. In the presence of its ligand 9-cis-retinoic acid, RXR no longermore » inhibited ERK2-induced nuclear import. Thus, RXR serves a permissive role for ERK2-mediated nuclear accumulation of NGFI-B. This finding represents a novel crosstalk between ERK2 and RXR signaling pathways, and explains how two independent inhibitors of apoptosis (EGF and 9-cis-retinoic acid) may cooperate to regulate nuclear targeting of apoptosis inducer NGFI-B.« less
Pinarbasi, Emile S; Cağatay, Tolga; Fung, Ho Yee Joyce; Li, Ying C; Chook, Yuh Min; Thomas, Philip J
2018-05-04
ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disease characterized by the redistribution of the RNA binding protein TDP-43 in affected neurons: from predominantly nuclear to aggregated in the cytosol. However, the determinants of TDP-43 localization and the cellular insults that promote redistribution are incompletely understood. Here, we show that the putative Nuclear Export Signal (NES) is not required for nuclear egress of TDP-43. Moreover, when the TDP-43 domain which contains the putative NES is fused to a reporter protein, YFP, the presence of the NES is not sufficient to mediate nuclear exclusion of the fusion protein. We find that the previously studied "∆NES" mutant, in which conserved hydrophobic residues are mutated to alanines, disrupts both solubility and splicing function. We further show that nuclear export of TDP-43 is independent of the exportin XPO1. Finally, we provide evidence that nuclear egress of TDP-43 is size dependent; nuclear export of dTomato TDP-43 is significantly impaired compared to Flag TDP-43. Together, these results suggest nuclear export of TDP-43 is predominantly driven by passive diffusion.
Mechanism for G2 phase-specific nuclear export of the kinetochore protein CENP-F.
Loftus, Kyle M; Cui, Heying; Coutavas, Elias; King, David S; Ceravolo, Amanda; Pereiras, Dylan; Solmaz, Sozanne R
2017-08-03
Centromere protein F (CENP-F) is a component of the kinetochore and a regulator of cell cycle progression. CENP-F recruits the dynein transport machinery and orchestrates several cell cycle-specific transport events, including transport of the nucleus, mitochondria and chromosomes. A key regulatory step for several of these functions is likely the G2 phase-specific export of CENP-F from the nucleus to the cytosol, where the cytoplasmic dynein transport machinery resides; however, the molecular mechanism of this process is elusive. Here, we have identified 3 phosphorylation sites within the bipartite classical nuclear localization signal (cNLS) of CENP-F. These sites are specific for cyclin-dependent kinase 1 (Cdk1), which is active in G2 phase. Phosphomimetic mutations of these residues strongly diminish the interaction of the CENP-F cNLS with its nuclear transport receptor karyopherin α. These mutations also diminish nuclear localization of the CENP-F cNLS in cells. Notably, the cNLS is phosphorylated in the -1 position, which is important to orient the adjacent major motif for binding into its pocket on karyopherin α. We propose that localization of CENP-F is regulated by a cNLS, and a nuclear export pathway, resulting in nuclear localization during most of interphase. In G2 phase, the cNLS is weakened by phosphorylation through Cdk1, likely resulting in nuclear export of CENP-F via the still active nuclear export pathway. Once CENP-F resides in the cytosol, it can engage in pathways that are important for cell cycle progression, kinetochore assembly and the faithful segregation of chromosomes into daughter cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakatsu, Miho; Goto, Shinji, E-mail: sgoto@nagasaki-u.ac.jp; Yoshida, Takako
2011-08-12
Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family ofmore » multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Infante, Anthony A.; Infante, Dzintra; Chan, M.-C.
We characterized chicken erythrocyte and human platelet ferritin by biochemical studies and immunofluorescence. Erythrocyte ferritin was found to be a homopolymer of H-ferritin subunits, resistant to proteinase K digestion, heat stable, and contained iron. In mature chicken erythrocytes and human platelets, ferritin was localized at the marginal band, a ring-shaped peripheral microtubule bundle, and displayed properties of bona fide microtubule-associated proteins such as tau. Red blood cell ferritin association with the marginal band was confirmed by temperature-induced disassembly-reassembly of microtubules. During erythrocyte differentiation, ferritin co-localized with coalescing microtubules during marginal band formation. In addition, ferritin was found in the nucleimore » of mature erythrocytes, but was not detectable in those of bone marrow erythrocyte precursors. These results suggest that ferritin has a function in marginal band formation and possibly in protection of the marginal band from damaging effects of reactive oxygen species by sequestering iron in the mature erythrocyte. Moreover, our data suggest that ferritin and syncolin, a previously identified erythrocyte microtubule-associated protein, are identical. Nuclear ferritin might contribute to transcriptional silencing or, alternatively, constitute a ferritin reservoir.« less
Awad, Lara; Fady, Bruno; Khater, Carla; Roig, Anne; Cheddadi, Rachid
2014-01-01
The threatened conifer Abies cilicica currently persists in Lebanon in geographically isolated forest patches. The impact of demographic and evolutionary processes on population genetic diversity and structure were assessed using 10 nuclear microsatellite loci. All remnant 15 local populations revealed a low genetic variation but a high recent effective population size. FST-based measures of population genetic differentiation revealed a low spatial genetic structure, but Bayesian analysis of population structure identified a significant Northeast-Southwest population structure. Populations showed significant but weak isolation-by-distance, indicating non-equilibrium conditions between dispersal and genetic drift. Bayesian assignment tests detected an asymmetric Northeast-Southwest migration involving some long-distance dispersal events. We suggest that the persistence and Northeast-Southwest geographic structure of Abies cilicica in Lebanon is the result of at least two demographic processes during its recent evolutionary history: (1) recent migration to currently marginal populations and (2) local persistence through altitudinal shifts along a mountainous topography. These results might help us better understand the mechanisms involved in the species response to expected climate change. PMID:24587219
Genetic variability in captive populations of the stingless bee Tetragonisca angustula.
Santiago, Leandro R; Francisco, Flávio O; Jaffé, Rodolfo; Arias, Maria C
2016-08-01
Low genetic variability has normally been considered a consequence of animal husbandry and a major contributing factor to declining bee populations. Here, we performed a molecular analysis of captive and wild populations of the stingless bee Tetragonisca angustula, one of the most commonly kept species across South America. Microsatellite analyses showed similar genetic variability between wild and captive populations However, captive populations showed lower mitochondrial genetic variability. Male-mediated gene flow, transport and division of nests are suggested as the most probable explanations for the observed patterns of genetic structure. We conclude that increasing the number of colonies kept through nest divisions does not negatively affect nuclear genetic variability, which seems to be maintained by small-scale male dispersal and human-mediated nest transport. However, the transport of nests from distant localities should be practiced with caution given the high genetic differentiation observed between samples from western and eastern areas. The high genetic structure verified is the result of a long-term evolutionary process, and bees from distant localities may represent unique evolutionary lineages.
Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1.
Zhang, Chun-Li; Zou, Yuhua; Yu, Ruth T; Gage, Fred H; Evans, Ronald M
2006-05-15
During mammalian embryogenesis, precise coordination of progenitor cell proliferation and differentiation is essential for proper organ size and function. The involvement of TLX (NR2E1), an orphan nuclear receptor, has been implicated in ocular development, as Tlx-/- mice exhibit visual impairment. Using genetic and biochemical approaches, we show that TLX modulates retinal progenitor cell proliferation and cell cycle re-entry by directly regulating the expression of Pten and its target cyclin D1. Additionally, TLX finely tunes the progenitor differentiation program by modulating the phospholipase C and mitogen-activated protein kinase (MAPK) pathways and the expression of an array of cell type-specific transcriptional regulators. Consequently, Tlx-/- mice have a dramatic reduction in retina thickness and enhanced generation of S-cones, and develop severe early onset retinal dystrophy. Furthermore, TLX interacts with atrophin1 (Atn1), a corepressor that is involved in human neurodegenerative dentatorubral-pallidoluysian atrophy (DRPLA) and that is essential for development of multiple tissues. Together, these results reveal a molecular strategy by which an orphan nuclear receptor can precisely orchestrate tissue-specific proliferation and differentiation programs to prevent retinal malformation and degeneration.
CD147 promotes the formation of functional osteoclasts through NFATc1 signalling.
Nishioku, Tsuyoshi; Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi
2016-04-29
CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu
The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 inmore » addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.« less
Wen, Shi; Zhan, Bohan; Feng, Jianghua; Hu, Weize; Lin, Xianchao; Bai, Jianxi; Huang, Heguang
2017-11-02
The differentiation of pancreatic ductal adenocarcinoma (PDAC) could be associated with prognosis and may influence the choices of clinical management. No applicable methods could reliably predict the tumor differentiation preoperatively. Thus, the aim of this study was to compare the metabonomic profiling of pancreatic ductal adenocarcinoma with different differentiations and assess the feasibility of predicting tumor differentiations through metabonomic strategy based on nuclear magnetic resonance spectroscopy. By implanting pancreatic cancer cell strains Panc-1, Bxpc-3 and SW1990 in nude mice in situ, we successfully established the orthotopic xenograft models of PDAC with different differentiations. The metabonomic profiling of serum from different PDAC was achieved and analyzed by using 1 H nuclear magnetic resonance (NMR) spectroscopy combined with the multivariate statistical analysis. Then, the differential metabolites acquired were used for enrichment analysis of metabolic pathways to get a deep insight. An obvious metabonomic difference was demonstrated between all groups and the pattern recognition models were established successfully. The higher concentrations of amino acids, glycolytic and glutaminolytic participators in SW1990 and choline-contain metabolites in Panc-1 relative to other PDAC cells were demonstrated, which may be served as potential indicators for tumor differentiation. The metabolic pathways and differential metabolites identified in current study may be associated with specific pathways such as serine-glycine-one-carbon and glutaminolytic pathways, which can regulate tumorous proliferation and epigenetic regulation. The NMR-based metabonomic strategy may be served as a non-invasive detection method for predicting tumor differentiation preoperatively.
Cuende, J; Moreno, S; Bolaños, J P; Almeida, A
2008-05-22
In neuroblastoma cells, retinoic acid induces cell cycle arrest and differentiation through degradation of the F-box protein, Skp2, and stabilization of cyclin-dependent kinase inhibitor, p27. However, the mechanism responsible for retinoic acid-mediated Skp2 destabilization is unknown. Since Skp2 is degraded by anaphase-promoting complex (APC)(Cdh1), here we studied whether retinoic acid promotes differentiation of human SH-SY5Y neuroblastoma cells by modulating Cdh1. We found that retinoic acid induced the nuclear accumulation of Cdh1 that paralleled Skp2 destabilization and p27 accumulation. The mRNA and protein abundance of Rae1-a nuclear export factor that limits APC(Cdh1) activity in mitosis-decreased upon retinoic acid-induced inhibition of neuroblastoma cell proliferation. Furthermore, either Rae1 overexpression or Cdh1 inhibition promoted Skp2 accumulation, p27 destabilization and prevented retinoic acid-induced cell cycle arrest and differentiation. Conversely, inhibition of Rae1 accelerated retinoic acid-induced differentiation. Thus, retinoic acid downregulates Rae1, hence facilitating APC(Cdh1)-mediated Skp2 degradation leading to the arrest of cell cycle progression and neuroblastoma differentiation.
Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Yasuda, Hisataka; Sakamoto, Reiko; Yoshida, Nobuaki
2016-01-01
Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire+ mTECs) is unclear. Here, we describe novel embryonic precursors of Aire+ mTECs. We found the candidate precursors of Aire+ mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire+ mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire+ mTECs and efficiently suppressed the onset of autoimmunity induced by Aire+ mTEC deficiency. Mechanistically, pMECs differentiated into Aire+ mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire+ mTECs. PMID:27401343
Grapputo, A; Pilastro, A; Marin, G
1998-09-01
In passerine birds morphological differentiation in bill size within species is not commonly observed. Bill size is usually associated with a trophic niche, and strong differences in it may reflect the process of genetic differentiation and, possibly, speciation. We used both mitochondrial DNA (mtDNA) and nuclear microsatellites to study genetic variation between two subspecies of reed bunting, Emberiza schoeniclus schoeniclus and E.s. intermedia, along their distributional boundary in western Europe. These two subspecies are characterized by a high dimorphism in bill size and, although breeding populations of the two subspecies are found very close to each other in northern Italy, apparently no interbreeding occurs. The observed morphological pattern between the two subspecies may be maintained by geographically varying selective forces or, alternatively, may be the result of a long geographical separation followed by a secondary contact. MtDNA sequences of cytochrome b and ND5 (515 bp) showed little variation and did not discriminate between the two subspecies, indicating a divergence time of less than 500 000 years. The analysis of four microsatellite loci suggested a clear, although weak, degree of genetic differentiation in the large- and small-billed populations, as indicated by FST and RST values and genetic distances. The correlation between bill size and genetic distance between populations remained significant after accounting for the geographical distances between sampling localities. Altogether, these results indicate a very recent genetic differentiation between the two bill morphs and suggest that a strong selection for large bills in the southern part of the breeding range is probably involved in maintaining the geographical differentiation of this species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, Edward I.; EH Graham Centre for Agricultural Innovation; Dombrovski, Andrew K.
2013-09-06
Highlights: •Circovirus capsid proteins contain large nuclear localization signals (NLS). •A method of nuclear import has not been elucidated. •Beak and feather disease virus (BFDV) capsid NLS was crystallized with importin α. •The structure showed BFDV NLS binding to the major site of importin α. •Result shows implications for mechanism of nuclear transport for all circoviruses. -- Abstract: Circoviruses represent a rapidly increasing genus of viruses that infect a variety of vertebrates. Replication requires shuttling viral molecules into the host cell nucleus, a process facilitated by capsid-associated protein (Cap). Whilst a nuclear localization signal (NLS) has been shown to mediatemore » nuclear translocation, the mode of nuclear transport remains to be elucidated. To better understand this process, beak and feather disease virus (BFDV) Cap NLS was crystallized with nuclear import receptor importin-α (Impα). Diffraction yielded structural data to 2.9 Å resolution, and the binding site on both Impα and BFDV Cap NLS were well resolved. The binding mechanism for the major site is likely conserved across circoviruses as supported by the similarity of NLSs in circovirus Caps. This finding illuminates a crucial step for infection of host cells by this viral family, and provides a platform for rational drug design against the binding interface.« less
Regulation of the Drosophila Hypoxia-Inducible Factor α Sima by CRM1-Dependent Nuclear Export ▿
Romero, Nuria M.; Irisarri, Maximiliano; Roth, Peggy; Cauerhff, Ana; Samakovlis, Christos; Wappner, Pablo
2008-01-01
Hypoxia-inducible factor α (HIF-α) proteins are regulated by oxygen levels through several different mechanisms that include protein stability, transcriptional coactivator recruitment, and subcellular localization. It was previously reported that these transcription factors are mainly nuclear in hypoxia and cytoplasmic in normoxia, but so far the molecular basis of this regulation is unclear. We show here that the Drosophila melanogaster HIF-α protein Sima shuttles continuously between the nucleus and the cytoplasm. We identified the relevant nuclear localization signal and two functional nuclear export signals (NESs). These NESs are in the Sima basic helix-loop-helix (bHLH) domain and promote CRM1-dependent nuclear export. Site-directed mutagenesis of either NES provoked Sima nuclear retention and increased transcriptional activity, suggesting that nuclear export contributes to Sima regulation. The identified NESs are conserved and probably functional in the bHLH domains of several bHLH-PAS proteins. We propose that rapid nuclear export of Sima regulates the duration of cellular responses to hypoxia. PMID:18332128
Robust nuclear lamina-based cell classification of aging and senescent cells
Righolt, Christiaan H.; van 't Hoff, Merel L.R.; Vermolen, Bart J.; Young, Ian T.; Raz, Vered
2011-01-01
Changes in the shape of the nuclear lamina are exhibited in senescent cells, as well as in cells expressing mutations in lamina genes. To identify cells with defects in the nuclear lamina we developed an imaging method that quantifies the intensity and curvature of the nuclear lamina. We show that this method accurately describes changes in the nuclear lamina. Spatial changes in nuclear lamina coincide with redistribution of lamin A proteins and local reduction in protein mobility in senescent cell. We suggest that local accumulation of lamin A in the nuclear envelope leads to bending of the structure. A quantitative distinction of the nuclear lamina shape in cell populations was found between fresh and senescent cells, and between primary myoblasts from young and old donors. Moreover, with this method mutations in lamina genes were significantly distinct from cells with wild-type genes. We suggest that this method can be applied to identify abnormal cells during aging, in in vitro propagation, and in lamina disorders. PMID:22199022
Robust nuclear lamina-based cell classification of aging and senescent cells.
Righolt, Christiaan H; van 't Hoff, Merel L R; Vermolen, Bart J; Young, Ian T; Raz, Vered
2011-12-01
Changes in the shape of the nuclear lamina are exhibited in senescent cells, as well as in cells expressing mutations in lamina genes. To identify cells with defects in the nuclear lamina we developed an imaging method that quantifies the intensity and curvature of the nuclear lamina. We show that this method accurately describes changes in the nuclear lamina. Spatial changes in nuclear lamina coincide with redistribution of lamin A proteins and local reduction in protein mobility in senescent cell. We suggest that local accumulation of lamin A in the nuclear envelope leads to bending of the structure. A quantitative distinction of the nuclear lamina shape in cell populations was found between fresh and senescent cells, and between primary myoblasts from young and old donors. Moreover, with this method mutations in lamina genes were significantly distinct from cells with wild-type genes. We suggest that this method can be applied to identify abnormal cells during aging, in in vitro propagation, and in lamina disorders.
Edelson, Benjamin S; Best, Timothy P; Olenyuk, Bogdan; Nickols, Nicholas G; Doss, Raymond M; Foister, Shane; Heckel, Alexander; Dervan, Peter B
2004-01-01
A pivotal step forward in chemical approaches to controlling gene expression is the development of sequence-specific DNA-binding molecules that can enter live cells and traffic to nuclei unaided. DNA-binding polyamides are a class of programmable, sequence-specific small molecules that have been shown to influence a wide variety of protein-DNA interactions. We have synthesized over 100 polyamide-fluorophore conjugates and assayed their nuclear uptake profiles in 13 mammalian cell lines. The compiled dataset, comprising 1300 entries, establishes a benchmark for the nuclear localization of polyamide-dye conjugates. Compounds in this series were chosen to provide systematic variation in several structural variables, including dye composition and placement, molecular weight, charge, ordering of the aromatic and aliphatic amino-acid building blocks and overall shape. Nuclear uptake does not appear to be correlated with polyamide molecular weight or with the number of imidazole residues, although the positions of imidazole residues affect nuclear access properties significantly. Generally negative determinants for nuclear access include the presence of a beta-Ala-tail residue and the lack of a cationic alkyl amine moiety, whereas the presence of an acetylated 2,4-diaminobutyric acid-turn is a positive factor for nuclear localization. We discuss implications of these data on the design of polyamide-dye conjugates for use in biological systems.
Morphometric evaluation of AgNORs in odontogenic cysts.
Sreeshyla, Huchanahalli S; Shashidara, Raju; Sudheendra, Udyavara Sridhara
2013-10-01
To evaluate the morphometry of AgNORs in odontogenic cysts and to compare their biologic behavior to determine whether AgNOR morphometry is helpful in predicting the behavior. Ten cases each of odontogenic keratocyst (OKC), dentigerous cyst (DC) and radicular cyst (RC) were stained with silver nitrate. Morphometric analysis of 100 selected epithelial and connective tissue cells was done to record their nuclear volume, nuclear perimeter, contour index of the nucleus, AgNOR count, AgNOR proportion and single AgNOR volume. The results were statistically analyzed using ANOVA. AgNOR count, nuclear volume and nuclear perimeter were greatest in the OKC followed by DC and RC, suggesting that these parameters differentiate between the aggressive and less aggressive odontogenic cysts. Single AgNOR volume and AgNOR proportion were greatest in the RC followed by OKC and DC, respectively. Results of our study taken in isolation point to AgNOR count as the most reliable factor in differentiating between aggressive and nonaggressive odontogenic cysts.
Galaxy interactions and strength of nuclear activity
NASA Technical Reports Server (NTRS)
Simkin, S. M.
1990-01-01
Analysis of data in the literature for differential velocities and projected separations of nearby Seyfert galaxies with possible companions shows a clear difference in projected separations between type 1's and type 2's. This kinematic difference between the two activity classes reinforces other independent evidence that their different nuclear characteristics are related to a non-nuclear physical distinction between the two classes. The differential velocities and projected separations of the galaxy pairs in this sample yield mean galaxy masses, sizes, and mass to light ratios which are consistent with those found by the statistical methods of Karachentsev. Although the galaxy sample discussed here is too small and too poorly defined to provide robust support for these conclusions, the results strongly suggest that nuclear activity in Seyfert galaxies is associated with gravitational perturbations from companion galaxies, and that there are physical distinctions between the host companions of Seyfert 1 and Seyfert 2 nuclei which may depend both on the environment and the structure of the host galaxy itself.
Sepuri, Naresh Babu V; Tammineni, Prasad; Mohammed, Fareed; Paripati, Arunkumar
2017-01-01
Noncanonical functions of several nuclear transcription factors in the mitochondria have been gaining exceptional traction over the years. These transcription factors include nuclear hormone receptors like estrogen, glucocorticoid, and thyroid hormone receptors: p53, IRF3, STAT3, STAT5, CREB, NF-kB, and MEF-2D. Mitochondria-localized nuclear transcription factors regulate mitochondrial processes like apoptosis, respiration and mitochondrial transcription albeit being nuclear in origin and having nuclear functions. Hence, the cell permits these multi-stationed transcription factors to orchestrate and fine-tune cellular metabolism at various levels of operation. Despite their ubiquitous distribution in different subcompartments of mitochondria, their targeting mechanism is poorly understood. Here, we review the current status of mitochondria-localized transcription factors and discuss the possible targeting mechanism besides the functional interplay between these factors.
Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Lang, Ming-Fei; Yang, Su; Li, Wendong; Shi, Yanhong
2010-01-01
Neural stem cell self-renewal and differentiation is orchestrated by precise control of gene expression involving nuclear receptor TLX. Let-7b, a member of the let-7 microRNA family, is expressed in mammalian brains and exhibits increased expression during neural differentiation. However, the role of let-7b in neural stem cell proliferation and differentiation remains unknown. Here we show that let-7b regulates neural stem cell proliferation and differentiation by targeting the stem cell regulator TLX and the cell cycle regulator cyclin D1. Overexpression of let-7b led to reduced neural stem cell proliferation and increased neural differentiation, whereas antisense knockdown of let-7b resulted in enhanced proliferation of neural stem cells. Moreover, in utero electroporation of let-7b to embryonic mouse brains led to reduced cell cycle progression in neural stem cells. Introducing an expression vector of Tlx or cyclin D1 that lacks the let-7b recognition site rescued let-7b-induced proliferation deficiency, suggesting that both TLX and cyclin D1 are important targets for let-7b-mediated regulation of neural stem cell proliferation. Let-7b, by targeting TLX and cyclin D1, establishes an efficient strategy to control neural stem cell proliferation and differentiation. PMID:20133835
Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Lang, Ming-Fei; Yang, Su; Li, Wendong; Shi, Yanhong
2010-02-02
Neural stem cell self-renewal and differentiation is orchestrated by precise control of gene expression involving nuclear receptor TLX. Let-7b, a member of the let-7 microRNA family, is expressed in mammalian brains and exhibits increased expression during neural differentiation. However, the role of let-7b in neural stem cell proliferation and differentiation remains unknown. Here we show that let-7b regulates neural stem cell proliferation and differentiation by targeting the stem cell regulator TLX and the cell cycle regulator cyclin D1. Overexpression of let-7b led to reduced neural stem cell proliferation and increased neural differentiation, whereas antisense knockdown of let-7b resulted in enhanced proliferation of neural stem cells. Moreover, in utero electroporation of let-7b to embryonic mouse brains led to reduced cell cycle progression in neural stem cells. Introducing an expression vector of Tlx or cyclin D1 that lacks the let-7b recognition site rescued let-7b-induced proliferation deficiency, suggesting that both TLX and cyclin D1 are important targets for let-7b-mediated regulation of neural stem cell proliferation. Let-7b, by targeting TLX and cyclin D1, establishes an efficient strategy to control neural stem cell proliferation and differentiation.
Fascin regulates nuclear actin during Drosophila oogenesis
Kelpsch, Daniel J.; Groen, Christopher M.; Fagan, Tiffany N.; Sudhir, Sweta; Tootle, Tina L.
2016-01-01
Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5–9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved. PMID:27535426
Lee, Su-Ui; Park, Sang-Joon; Kwak, Han Bok; Oh, Jaemin; Min, Yong Ki; Kim, Seong Hwan
2008-01-01
In the field of osteoporosis, there has been growing interest in anabolic agents that enhance bone mass and improve bone architecture. In this study, we demonstrated that the ubiquitous plant triterpenoid, ursolic acid, enhances differentiation and mineralization of osteoblasts in vitro. We found that ursolic acid induced the expression of osteoblast-specific genes with the activation of mitogen-activated protein kinases, nuclear factor-kappaB, and activator protein-1. Additionally, noggin, an antagonist of bone morphogenetic proteins (BMPs), inhibited ursolic acid-induced osteoblast differentiation. Noggin also inhibited the activation of Smad and the induction of BMP-2 mRNA expression by ursolic acid in the late stage of osteoblast differentiation. Importantly, ursolic acid was shown to have bone-forming activity in vivo in a mouse calvarial bone formation model. A high proportion of positive immunostaining of BMP-2 was found in the nuclear region of woven bone formed by ursolic acid. These results suggested that ursolic acid has the anabolic potential to stimulate osteoblast differentiation and enhance new bone formation.
Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes.
Gaustad, Kristine G; Boquest, Andrew C; Anderson, Brent E; Gerdes, A Martin; Collas, Philippe
2004-02-06
We report the differentiation of human adipose tissue stem cells (ATSCs) to take on cardiomyocyte properties following transient exposure to a rat cardiomyocyte extract. Reversibly permeabilized ATSCs were incubated for 1h in a nuclear and cytoplasmic extract of rat cardiomyocytes, resealed with CaCl(2), and cultured. Three weeks after exposure to extract, ATSCs expressed several cardiomyocyte markers including sarcomeric alpha-actinin, desmin, and cardiac troponin I, and displayed targeted expression of the gap junction protein connexin 43. Formation of binucleated and striated cells, and spontaneous beating in culture were also observed. A low proportion of intact ATSCs exposed to the extract also showed signs of alpha-actinin and connexin 43 expression. Additional evidence of differentiation was provided by induction of expression of nuclear lamin A/C, a marker of terminally differentiated cells, and a remarkable increase in cell cycle length. Together with our previous data, this study suggests that alteration of cell fate using cellular extracts may be applied to multiple cell types. Cell extracts may also prove useful for investigating the molecular mechanisms of stem cell differentiation.
Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion
NASA Astrophysics Data System (ADS)
Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei
2004-02-01
A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.
NASA Astrophysics Data System (ADS)
Liu, Cheng-shi
2017-01-01
We first prove that for a continuous function f(x) defined on an open interval, the Kolvankar-Gangal's (or equivalently Chen-Yan-Zhang's) local fractional derivative f(α)(x) is not continuous, and then prove that it is impossible that the KG derivative f(α)(x) exists everywhere on the interval and satisfies f(α)(x) ≠ 0 in the same time. In addition, we give a criterion of the nonexistence of the local fractional derivative of everywhere non-differentiable continuous functions. Furthermore, we construct two simple nowhere differentiable continuous functions on (0, 1) and prove that they have no the local fractional derivatives everywhere.
Differential two-body compound nuclear cross section, including the width-fluctuation corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.; Herman, M.
2014-09-02
We figure out the compound angular differential cross sections, following mainly Fröbrich and Lipperheide, but with the angular momentum couplings that make sense for optical model work. We include the width-fluctuation correction along with calculations.
Jiao, Bo; Ren, Zhi-Hong; Liu, Ping; Chen, Li-Juan; Shi, Jing-Yi; Dong, Ying; Ablain, Julien; Shi, Lin; Gao, Li; Hu, Jun-Pei; Ren, Rui-Bao; de Thé, Hugues; Chen, Zhu; Chen, Sai-Juan
2013-01-01
The refractoriness of acute promyelocytic leukemia (APL) with t(11;17)(q23;q21) to all-trans retinoic acid (ATRA)-based therapy concerns clinicians and intrigues basic researchers. By using a murine leukemic model carrying both promyelocytic leukemia zinc finger/retinoic acid receptor-α (PLZF/RARα) and RARα/PLZF fusion genes, we discovered that 8-chlorophenylthio adenosine-3′, 5′-cyclic monophosphate (8-CPT-cAMP) enhances cellular differentiation and improves gene trans-activation by ATRA in leukemic blasts. Mechanistically, in combination with ATRA, 8-CPT-cAMP activates PKA, causing phosphorylation of PLZF/RARα at Ser765 and resulting in increased dissociation of the silencing mediator for retinoic acid and thyroid hormone receptors/nuclear receptor corepressor from PLZF/RARα. This process results in changes of local chromatin and transcriptional reactivation of the retinoic acid pathway in leukemic cells. Meanwhile, 8-CPT-cAMP also potentiated ATRA-induced degradation of PLZF/RARα through its Ser765 phosphorylation. In vivo treatment of the t(11;17) APL mouse model demonstrated that 8-CPT-cAMP could significantly improve the therapeutic effect of ATRA by targeting a leukemia-initiating cell activity. This combined therapy, which induces enhanced differentiation and oncoprotein degradation, may benefit t(11;17) APL patients. PMID:23382200
Pollex, Tim; Piolot, Tristan; Heard, Edith
2013-01-01
Differentiation of embryonic stem cells is accompanied by changes of gene expression and chromatin and chromosome dynamics. One of the most impressive examples for these changes is inactivation of one of the two X chromosomes occurring upon differentiation of mouse female embryonic stem cells. With a few exceptions, these events have been mainly studied in fixed cells. In order to better understand the dynamics, kinetics, and order of events during differentiation, one needs to employ live-cell imaging techniques. Here, we describe a combination of live-cell imaging with techniques that can be used in fixed cells (e.g., RNA FISH) to correlate locus dynamics or subnuclear localization with, e.g., gene expression. To study locus dynamics in female ES cells, we generated cell lines containing TetO arrays in the X-inactivation center, the locus on the X chromosome regulating X-inactivation, which can be visualized upon expression of TetR fused to fluorescent proteins. We will use this system to elaborate on how to generate ES cell lines for live-cell imaging of locus dynamics, how to culture ES cells prior to live-cell imaging, and to describe typical live-cell imaging conditions for ES cells using different microscopes. Furthermore, we will explain how RNA, DNA FISH, or immunofluorescence can be applied following live-cell imaging to correlate gene expression with locus dynamics.
Xiong, Yan; Yue, Feng; Jia, Zhihao; Gao, Yun; Jin, Wen; Hu, Keping; Zhang, Yong; Zhu, Dahai; Yang, Gongshe; Kuang, Shihuan
2018-04-01
The thermogenic activities of brown and beige adipocytes can be exploited to reduce energy surplus and counteract obesity. Recent RNA sequencing studies have uncovered a number of long noncoding RNAs (lncRNAs) uniquely expressed in white and brown adipose tissues (WAT and BAT), but whether and how these lncRNAs function in adipogenesis remain largely unknown. Here, we report the identification of a novel brown adipocyte-enriched LncRNA (AK079912), and its nuclear localization, function and regulation. The expression of AK079912 increases during brown preadipocyte differentiation and in response to cold-stimulated browning of white adipocytes. Knockdown of AK079912 inhibits brown preadipocyte differentiation, manifested by reductions in lipid accumulation and down-regulation of adipogenic and BAT-specific genes. Conversely, ectopic expression of AK079912 in white preadipocytes up-regulates the expression of genes involved in thermogenesis. Mechanistically, inhibition of AK079912 reduces mitochondrial copy number and protein levels of mitochondria electron transport chain (ETC) complexes, whereas AK079912 overexpression increases the levels of ETC proteins. Lastly, reporter and pharmacological assays identify Pparγ as an upstream regulator of AK079912. These results provide new insights into the function of non-coding RNAs in brown adipogenesis and regulating browning of white adipocytes. Copyright © 2018 Elsevier B.V. All rights reserved.
CCAR1 is required for Ngn3-mediated endocrine differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Chung-Kuang; Lai, Yi-Chyi; Lin, Yung-Fu
2012-02-10
Highlights: Black-Right-Pointing-Pointer We identify CCAR1 to directly interact with Ngn3. Black-Right-Pointing-Pointer CCAR1 is co-localized with Ngn3 in the nucleus. Black-Right-Pointing-Pointer CCAR1 cooperates with Ngn3 in activating NeuroD expression. Black-Right-Pointing-Pointer CCAR1 is required for Ngn3-mediated PANC-1 transdifferentiation. -- Abstract: Neurogenin3 (Ngn3) is a basic helix-loop-helix transcription factor that specifies pancreatic endocrine cell fates during pancreas development. It can also initiate a transdifferentiation program when expressed in pancreatic exocrine and ductal cells. However, how Ngn3 initiates a transcriptional cascade to achieve endocrine differentiation is still poorly understood. Here, we show that cell cycle and apoptosis regulator 1 (CCAR1), which is a transcriptionalmore » coactivator for nuclear receptors, also interacts with Ngn3. The association between Ngn3 and CCAR1 was verified by pull-down assays and co-immunoprecipitation analyses. Using gene reporter assays, we found that CCAR1 is essential for Ngn3 to activate the expression of the reporter genes containing the NeuroD promoter. Moreover, down-regulation of endogenous CCAR1 in the PANC-1 pancreatic ductal cell line inhibits the transdifferentiation program initiated by Ngn3. CCAR1 is, therefore, a novel partner of Ngn3 in mediating endocrine differentiation.« less
Sun, Lifeng; Ren, Xiaomeng; Wang, I-Ching; Pradhan, Arun; Zhang, Yufang; Flood, Hannah M; Han, Bo; Whitsett, Jeffrey A; Kalin, Tanya V; Kalinichenko, Vladimir V
2017-04-18
Goblet cell metaplasia and excessive mucus secretion associated with asthma, cystic fibrosis, and chronic obstructive pulmonary disease contribute to morbidity and mortality worldwide. We performed a high-throughput screen to identify small molecules targeting a transcriptional network critical for the differentiation of goblet cells in response to allergens. We identified RCM-1, a nontoxic small molecule that inhibited goblet cell metaplasia and excessive mucus production in mice after exposure to allergens. RCM-1 blocked the nuclear localization and increased the proteasomal degradation of Forkhead box M1 (FOXM1), a transcription factor critical for the differentiation of goblet cells from airway progenitor cells. RCM-1 reduced airway resistance, increased lung compliance, and decreased proinflammatory cytokine production in mice exposed to the house dust mite and interleukin-13 (IL-13), which triggers goblet cell metaplasia. In cultured airway epithelial cells and in mice, RCM-1 reduced IL-13 and STAT6 (signal transducer and activator of transcription 6) signaling and prevented the expression of the STAT6 target genes Spdef and Foxa3 , which are key transcriptional regulators of goblet cell differentiation. These results suggest that RCM-1 is an inhibitor of goblet cell metaplasia and IL-13 signaling, providing a new therapeutic candidate to treat patients with asthma and other chronic airway diseases. Copyright © 2017, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Fernández-Pérez, Jenyfer; Froufe, Elsa; Nantón, Ana; Gaspar, Miguel B.; Méndez, Josefina
2017-10-01
In this study, the genetic diversity of Donax vittatus across the Iberian Peninsula was investigated using four mitochondrial (COI, Cytb, 16S F and M types) and three nuclear (H3, 18S and 28S) genes. These same molecular markers were also sequenced in D. semistriatus and D variegatus to address the phylogenetic relationships of the species of the genus Donax common along the European coasts. Our results showed high haplotype diversity in combination with a low nucleotide diversity and a star-shaped network with a predominant haplotype, indicating a recent population expansion for the examined sampling sites of D. vittatus. Furthermore, analyses of population differentiation performed with COI mitochondrial marker, including global FST estimation and pairwise FST values, indicated the non-existence of significant genetic structure in D. vittatus of Northwest Iberian populations. Because these localities show a high genetic similarity, we suggest that D. vittatus could be a potentially alternative exploitable resource, as complement to the D. trunculus fisheries, whose natural stocks have decreased dramatically in some areas. Furthermore, we present for the first time, evidence of DUI in the clams D. vittatus and D. semistriatus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Joo-Hee; Kim, Jung-Woong; Jang, Sang-Min
Highlights: {yields} The actin binding protein Gelsolin (GSN) interacts with transcription factor p53. {yields} GSN interacts with transactivation- and DNA binding domains of p53. {yields} GSN represses transactivity of p53 via inhibition of nuclear translocation of p53. {yields} GSN inhibits the p53-mediated apoptosis in hepatocarcinoma HepG2 cells. -- Abstract: As a transcription factor, p53 modulates several cellular responses including cell-cycle control, apoptosis, and differentiation. In this study, we have shown that an actin regulatory protein, gelsolin (GSN), can physically interact with p53. The nuclear localization of p53 is inhibited by GSN overexpression in hepatocarcinoma HepG2 cells. Additionally, we demonstrate thatmore » GSN negatively regulates p53-dependent transcriptional activity of a reporter construct, driven by the p21-promoter. Furthermore, p53-mediated apoptosis was repressed in GSN-transfected HepG2 cells. Taken together, these results suggest that GSN binds to p53 and this interaction leads to the inhibition of p53-induced apoptosis by anchoring of p53 in the cytoplasm in HepG2 cells.« less
Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast.
Hannan, Abdul; Abraham, Neethu Maria; Goyal, Siddharth; Jamir, Imlitoshi; Priyakumar, U Deva; Mishra, Krishnaveni
2015-12-02
Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD(+)-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Hisano, Setsuji; Sawada, Kazuhiko; Kawano, Michihiro; Kanemoto, Mizuki; Xiong, Guoxiang; Mogi, Koichi; Sakata-Haga, Hiromi; Takeda, Jun; Fukui, Yoshihiro; Nogami, Haruo
2002-10-30
Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) was studied in the cerebellum and precerebellar nuclei of rats using immunohistochemistry and in situ hybridization. DNPI/VGLUT2-stained mossy fibers were principally seen in the vermis (lobules I and VIII-X) and flocculus, whereas BNPI/VGLUT1-stained mossy fibers were localized throughout the cortex. Some vermal and floccular mossy fibers were stained for both transporters. High levels of DNPI/VGLUT2 mRNA hybridization signals were demonstrated in many neurons throughout the vestibular nuclear complex as well as the lateral reticular, external cuneate, inferior olivary and deep cerebellar nuclei. Significant BNPI/VGLUT1 mRNA signals were demonstrated in the lateral reticular nucleus and vestibular nuclear complex but not in the inferior olivary nucleus, indicating that climbing fibers have DNPI/VGLUT2 only. These results show that DNPI/VGLUT2 is expressed preferentially to vestibulo-, reticulo- and cuneocerebellar neurons, some of which also possess BNPI/VGLUT1, suggesting some differential and co-operative functions between DNPI/VGLUT2 and BNPI/VGLUT1 in the cerebellum.
Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum
Echevarría, Wihelma; Leite, M. Fatima; Guerra, Mateus T.; Zipfel, Warren R.; Nathanson, Michael H.
2013-01-01
Calcium is a second messenger in virtually all cells and tissues1. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with the endoplasmic reticulum and the nuclear envelope. This network expresses inositol 1,4,5-trisphosphate (InsP3) receptors, and the nuclear component of InsP3-mediated calcium signals begins in its locality. Stimulation of these receptors with a little InsP3 results in small calcium signals that are initiated in this region of the nucleus. Localized release of calcium in the nucleus causes nuclear protein kinase C (PKC) to translocate to the region of the nuclear envelope, whereas release of calcium in the cytosol induces translocation of cytosolic PKC to the plasma membrane. Our findings show that the nucleus contains a nucleoplasmic reticulum with the capacity to regulate calcium signals in localized subnuclear regions. The presence of such machinery provides a potential mechanism by which calcium can simultaneously regulate many independent processes in the nucleus. PMID:12717445
Isolation and characterization of a novel calmodulin-binding protein from potato
NASA Technical Reports Server (NTRS)
Reddy, Anireddy S N.; Day, Irene S.; Narasimhulu, S. B.; Safadi, Farida; Reddy, Vaka S.; Golovkin, Maxim; Harnly, Melissa J.
2002-01-01
Tuberization in potato is controlled by hormonal and environmental signals. Ca(2+), an important intracellular messenger, and calmodulin (CaM), one of the primary Ca(2+) sensors, have been implicated in controlling diverse cellular processes in plants including tuberization. The regulation of cellular processes by CaM involves its interaction with other proteins. To understand the role of Ca(2+)/CaM in tuberization, we have screened an expression library prepared from developing tubers with biotinylated CaM. This screening resulted in isolation of a cDNA encoding a novel CaM-binding protein (potato calmodulin-binding protein (PCBP)). Ca(2+)-dependent binding of the cDNA-encoded protein to CaM is confirmed by (35)S-labeled CaM. The full-length cDNA is 5 kb long and encodes a protein of 1309 amino acids. The deduced amino acid sequence showed significant similarity with a hypothetical protein from another plant, Arabidopsis. However, no homologs of PCBP are found in nonplant systems, suggesting that it is likely to be specific to plants. Using truncated versions of the protein and a synthetic peptide in CaM binding assays we mapped the CaM-binding region to a 20-amino acid stretch (residues 1216-1237). The bacterially expressed protein containing the CaM-binding domain interacted with three CaM isoforms (CaM2, CaM4, and CaM6). PCBP is encoded by a single gene and is expressed differentially in the tissues tested. The expression of CaM, PCBP, and another CaM-binding protein is similar in different tissues and organs. The predicted protein contained seven putative nuclear localization signals and several strong PEST motifs. Fusion of the N-terminal region of the protein containing six of the seven nuclear localization signals to the reporter gene beta-glucuronidase targeted the reporter gene to the nucleus, suggesting a nuclear role for PCBP.