Sample records for differential phase delay

  1. Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay

    NASA Astrophysics Data System (ADS)

    Pan, C.; Liu, Q. H.; Zheng, X.; He, Q. B.; Wu, Y. J.

    2015-07-01

    On 2013 December 14, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking the photos of each other. With the same beam VLBI (Very long baseline interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect a minor change of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in moving process, and lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.

  2. Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay

    NASA Astrophysics Data System (ADS)

    Chao, Pan; Qing-hui, Liu; Xin, Zheng; Qing-bao, He; Ya-jun, Wu

    2016-04-01

    On 14th December 2013, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking pictures of each other. With the same beam VLBI (Very Long Baseline Interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect the minor changes of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in the moving process and the lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.

  3. Continuous angle steering of an optically- controlled phased array antenna based on differential true time delay constituted by micro-optical components.

    PubMed

    Wang, Jian; Hou, Peipei; Cai, Haiwen; Sun, Jianfeng; Wang, Shunan; Wang, Lijuan; Yang, Fei

    2015-04-06

    We propose an optically controlled phased array antenna (PAA) based on differential true time delay constructed optical beamforming network (OBFN). Differential true time delay is realized by stack integrated micro-optical components. Optically-controlled angle steering of radio frequency (RF) beams are realized and demonstrated by this configuration. Experimental results demonstrate that OBFN based PAA can accomplish RF-independent broadband beam steering without beam squint effect and can achieve continuous angle steering. In addition, multi-beams for different steering angles are acquired synchronously.

  4. Pulmonary MRA: differentiation of pulmonary embolism from truncation artefact.

    PubMed

    Bannas, Peter; Schiebler, Mark L; Motosugi, Utaroh; François, Christopher J; Reeder, Scott B; Nagle, Scott K

    2014-08-01

    Truncation artefact (Gibbs ringing) causes central signal drop within vessels in pulmonary magnetic resonance angiography (MRA) that can be mistaken for emboli, reducing diagnostic accuracy for pulmonary embolism (PE). We propose a quantitative approach to differentiate truncation artefact from PE. Twenty-eight patients who underwent pulmonary computed tomography angiography (CTA) for suspected PE were recruited for pulmonary MRA. Signal intensity drops within pulmonary arteries that persisted on both arterial-phase and delayed-phase MRA were identified. The percent signal loss between the vessel lumen and central drop was measured. CTA served as the reference standard for presence of pulmonary emboli. A total of 65 signal intensity drops were identified on MRA. Of these, 48 (74%) were artefacts and 17 (26%) were PE, as confirmed by CTA. Truncation artefacts had a significantly lower median signal drop than PE on both arterial-phase (26% [range 12-58%] vs. 85% [range 53-91%]) and delayed-phase MRA (26% [range 11-55%] vs. 77% [range 47-89%]), p < 0.0001 for both. Receiver operating characteristic (ROC) analyses revealed a threshold value of 51% (arterial phase) and 47% signal drop (delayed phase) to differentiate between truncation artefact and PE with 100% sensitivity and greater than 90% specificity. Quantitative signal drop is an objective tool to help differentiate truncation artefact and pulmonary embolism in pulmonary MRA. • Inexperienced readers may mistake truncation artefacts for emboli on pulmonary MRA • Pulmonary emboli have non-uniform signal drop • 51% (arterial phase) and 47% (delayed phase) cut-off differentiates truncation artefact from PE • Quantitative signal drop measurement enables more accurate pulmonary embolism diagnosis with MRA.

  5. Pulmonary MRA: Differentiation of pulmonary embolism from truncation artifact

    PubMed Central

    Bannas, Peter; Schiebler, Mark L; Motosugi, Utaroh; François, Christopher J; Reeder, Scott B; Nagle, Scott K

    2015-01-01

    Purpose Truncation artifact (Gibbs ringing) causes central signal drop within vessels in pulmonary MRA that can be mistaken for emboli, reducing the diagnostic accuracy for pulmonary embolism (PE). We propose a quantitative approach to differentiate truncation artifact from PE. Methods Twenty-eight patients who underwent pulmonary CTA for suspected PE were recruited for pulmonary MRA. Signal intensity drops within pulmonary arteries that persisted on both arterial-phase and delayed-phase MRA were identified. The percent signal loss between the vessel lumen and central drop was measured. CTA served as the reference standard for presence of pulmonary emboli. Results A total of 65 signal intensity drops were identified on MRA. 48 (74%) of these were artifact and 17 (26%) were PE, as confirmed by CTA. Truncation artifacts had a significantly lower median signal drop than PE at both arterial-phase (26% [range 12–58%] vs. 85% [range 53–91%]) and at delayed-phase MRA (26% [range 11–55%] vs. 77% [range 47–89%]), p<0.0001 for both. ROC analyses revealed a threshold value of 51% (arterial-phase) and 47%-signal drop (delayed-phase) to differentiate between truncation artifact and PE with 100% sensitivity and >90% specificity. Conclusion Quantitative signal drop is an objective tool to help differentiate truncation artifact and pulmonary embolism in pulmonary MRA. PMID:24863886

  6. Dynamics of a neutral delay equation for an insect population with long larval and short adult phases

    NASA Astrophysics Data System (ADS)

    Gourley, Stephen A.; Kuang, Yang

    We present a global study on the stability of the equilibria in a nonlinear autonomous neutral delay differential population model formulated by Bocharov and Hadeler. This model may be suitable for describing the intriguing dynamics of an insect population with long larval and short adult phases such as the periodical cicada. We circumvent the usual difficulties associated with the study of the stability of a nonlinear neutral delay differential model by transforming it to an appropriate non-neutral nonautonomous delay differential equation with unbounded delay. In the case that no juveniles give birth, we establish the positivity and boundedness of solutions by ad hoc methods and global stability of the extinction and positive equilibria by the method of iteration. We also show that if the time adjusted instantaneous birth rate at the time of maturation is greater than 1, then the population will grow without bound, regardless of the population death process.

  7. Transmission ultrasonography. [time delay spectrometry for soft tissue transmission imaging

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.; Le Croissette, D. H.

    1973-01-01

    Review of the results of the application of an advanced signal-processing technique, called time delay spectrometry, in obtaining soft tissue transmission images by transmission ultrasonography, both in vivo and in vitro. The presented results include amplitude ultrasound pictures and phase ultrasound pictures obtained by this technique. While amplitude ultrasonographs of tissue are closely analogous to X-ray pictures in that differential absorption is imaged, phase ultrasonographs represent an entirely new source of information based on differential time of propagation. Thus, a new source of information is made available for detailed analysis.

  8. Parametric Sensitivity Analysis of Oscillatory Delay Systems with an Application to Gene Regulation.

    PubMed

    Ingalls, Brian; Mincheva, Maya; Roussel, Marc R

    2017-07-01

    A parametric sensitivity analysis for periodic solutions of delay-differential equations is developed. Because phase shifts cause the sensitivity coefficients of a periodic orbit to diverge, we focus on sensitivities of the extrema, from which amplitude sensitivities are computed, and of the period. Delay-differential equations are often used to model gene expression networks. In these models, the parametric sensitivities of a particular genotype define the local geometry of the evolutionary landscape. Thus, sensitivities can be used to investigate directions of gradual evolutionary change. An oscillatory protein synthesis model whose properties are modulated by RNA interference is used as an example. This model consists of a set of coupled delay-differential equations involving three delays. Sensitivity analyses are carried out at several operating points. Comments on the evolutionary implications of the results are offered.

  9. Programmable Differential Delay Circuit With Fine Delay Adjustment

    DOEpatents

    DeRyckere, John F.; Jenkins, Philip Nord; Cornett, Frank Nolan

    2002-07-09

    Circuitry that provides additional delay to early arriving signals such that all data signals arrive at a receiving latch with same path delay. The delay of a forwarded clock reference is also controlled such that the capturing clock edge will be optimally positioned near quadrature (depending on latch setup/hold requirements). The circuitry continuously adapts to data and clock path delay changes and digital filtering of phase measurements reduce errors brought on by jittering data edges. The circuitry utilizes only the minimum amount of delay necessary to achieve objective thereby limiting any unintended jitter. Particularly, this programmable differential delay circuit with fine delay adjustment is designed to allow the skew between ASICS to be minimized. This includes skew between data bits, between data bits and clocks as well as minimizing the overall skew in a channel between ASICS.

  10. A 100-Gb/s noncoherent silicon receiver for PDM-DBPSK/DQPSK signals.

    PubMed

    Klamkin, Jonathan; Gambini, Fabrizio; Faralli, Stefano; Malacarne, Antonio; Meloni, Gianluca; Berrettini, Gianluca; Contestabile, Giampiero; Potì, Luca

    2014-01-27

    An integrated noncoherent silicon receiver for demodulation of 100-Gb/s polarization-division multiplexed differential quadrature phase-shift keying and polarization-division multiplexed differential binary phase-shift keying signals is demonstrated. The receiver consists of a 2D surface grating coupler, four Mach-Zehnder delay interferometers and four germanium balanced photodetectors.

  11. Atmospheric Phase Delay Correction of D-Insar Based on SENTINEL-1A

    NASA Astrophysics Data System (ADS)

    Li, X.; Huang, G.; Kong, Q.

    2018-04-01

    In this paper, we used the Generic Atmospheric Correction Online Service for InSAR (GACOS) tropospheric delay maps to correct the atmospheric phase delay of the differential interferometric synthetic aperture radar (D-InSAR) monitoring, and we improved the accuracy of subsidence monitoring using D-InSAR technology. Atmospheric phase delay, as one of the most important errors that limit the monitoring accuracy of InSAR, would lead to the masking of true phase in subsidence monitoring. For the problem, this paper used the Sentinel-1A images and the tropospheric delay maps got from GACOS to monitor the subsidence of the Yellow River Delta in Shandong Province. The conventional D-InSAR processing was performed using the GAMMA software. The MATLAB codes were used to correct the atmospheric delay of the D-InSAR results. The results before and after the atmospheric phase delay correction were verified and analyzed in the main subsidence area. The experimental results show that atmospheric phase influences the deformation results to a certain extent. After the correction, the measurement error of vertical deformation is reduced by about 18 mm, which proves that the removal of atmospheric effects can improve the accuracy of the D-InSAR monitoring.

  12. Multi-delay, phase coherent pulse pair generation for precision Ramsey-frequency comb spectroscopy.

    PubMed

    Morgenweg, J; Eikema, K S E

    2013-03-11

    We demonstrate the generation of phase-stable mJ-pulse pairs at programmable inter-pulse delays up to hundreds of nanoseconds. A detailed investigation of potential sources for phase shifts during the parametric amplification of the selected pulses from a Ti:Sapphire frequency comb is presented, both numerically and experimentally. It is shown that within the statistical error of the phase measurement of 10 mrad, there is no dependence of the differential phase shift over the investigated inter-pulse delay range of more than 300 ns. In combination with nonlinear upconversion of the amplified pulses, the presented system will potentially enable short wavelength (<100 nm), multi-transition Ramsey-frequency comb spectroscopy at the kHz-level.

  13. Application values of 99mTc-methoxyisobutylisonitrile imaging for differentiating benign and malignant thymic masses.

    PubMed

    Lu, Chenghui; Wang, Xufu; Liu, Bin; Liu, Xinfeng; Wang, Guoming; Zhang, Qin

    2017-08-01

    The aim of the present study was to investigate the application value of 99m Tc-methoxyisobutylisonitrile (MIBI) imaging to differentiate between benign and malignant thymic masses. A total of 32 patients with space-occupying mediastinal masses were enrolled and early and delayed-phase images were collected following injection with the imaging agent. The tumor to background ratio (T/N) values at the different phases were also recorded. The sensitivity of the qualitative analysis to distinguish between benign and malignant thymic masses was 95.24%, with specificity as 90.91%. The T/N values in the early and delayed phases were not significantly different in the group with benign thymic masses, but demonstrated statistical significant differences in the groups with low- and intermediate-grade malignant thymic masses. The T/N values at the above early and delayed phase were significantly different between the benign and low-grade malignancy groups, as well as between low- and moderate-grade malignancy groups. Those between the benign and moderate-grade malignancy groups demonstrated no significant difference. 99m Tc-MIBI imaging was able to differentiate between benign and malignant thymic masses, and the simultaneous semi-quantitative analysis of the T/N values of the tumors may be able to initially determine the degree of malignancy of thymoma.

  14. Super-Latent Inhibition of Conditioned Taste Preference with a Long Retention Interval

    ERIC Educational Resources Information Center

    De la Casa, L. G.; Marquez, R.; Lubow, R. E.

    2009-01-01

    A long delay inserted between conditioning and test phases of a 3-stage Latent Inhibition (LI) procedure produces differential effects on LI depending on the delay context. Thus, enhanced LI has been obtained when the delay is spent in a context that is different from the remaining experimental contexts, but not when it is the same. The present…

  15. Direct measurement of group delay with joint time-frequency analysis of a white-light spectral interferogram.

    PubMed

    Deng, Yuqiang; Yang, Weijian; Zhou, Chun; Wang, Xi; Tao, Jun; Kong, Weipeng; Zhang, Zhigang

    2008-12-01

    We propose and demonstrate an analysis method to directly extract the group delay rather than the phase from the white-light spectral interferogram. By the joint time-frequency analysis technique, group delay is directly read from the ridge of wavelet transform, and group-delay dispersion is easily obtained by additional differentiation. The technique shows reasonable potential for the characterization of ultra-broadband chirped mirrors.

  16. Delay differential analysis of time series.

    PubMed

    Lainscsek, Claudia; Sejnowski, Terrence J

    2015-03-01

    Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time compared with frequency-based methods such as the DFT and cross-spectral analysis.

  17. Efficient Processing of Data for Locating Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Starr, Stan

    2003-01-01

    Two algorithms have been devised to increase the efficiency of processing of data in lightning detection and ranging (LDAR) systems so as to enable the accurate location of lightning strikes in real time. In LDAR, the location of a lightning strike is calculated by solving equations for the differences among the times of arrival (DTOAs) of the lightning signals at multiple antennas as functions of the locations of the antennas and the speed of light. The most difficult part of the problem is computing the DTOAs from digitized versions of the signals received by the various antennas. One way (a time-domain approach) to determine the DTOAs is to compute cross-correlations among variously differentially delayed replicas of the digitized signals and to select, as the DTOAs, those differential delays that yield the maximum correlations. Another way (a frequency-domain approach) to determine the DTOAs involves the computation of cross-correlations among Fourier transforms of variously differentially phased replicas of the digitized signals, along with utilization of the relationship among phase difference, time delay, and frequency.

  18. Ionospheric corrections to precise time transfer using GPS

    NASA Technical Reports Server (NTRS)

    Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.

    1994-01-01

    The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of ionospheric time delay in the northeastern U.S., and initial results with the ICS-4000Z, will be presented.

  19. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah

    2015-02-03

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  20. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    NASA Astrophysics Data System (ADS)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md

    2015-02-01

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  1. Spectral Structure Of Phase-Induced Intensity Noise In Recirculating Delay Lines

    NASA Astrophysics Data System (ADS)

    Tur, M.; Moslehi, B.; Bowers, J. E.; Newton, S. A.; Jackson, K. P.; Goodman, J. W.; Cutler, C. C.; Shaw, H. J.

    1983-09-01

    The dynamic range of fiber optic signal processors driven by relatively incoherent multimode semiconductor lasers is shown to be severely limited by laser phase-induced noise. It is experimentally demonstrated that while the noise power spectrum of differential length fiber filters is approximately flat, processors with recirculating loops exhibit noise with a periodically structured power spectrum with notches at zero frequency as well as at all other multiples of 1/(loop delay). The experimental results are aug-mented by a theoretical analysis.

  2. Triple-phase bone image abnormalities in Lyme arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S.J.; Dadparvar, S.; Slizofski, W.J.

    1989-10-01

    Arthritis is a frequent manifestation of Lyme disease. Limited triple-phase Tc-99m MDP bone imaging of the wrists and hands with delayed whole-body images was performed in a patient with Lyme arthritis. This demonstrated abnormal joint uptake in the wrists and hands in all three phases, with increased activity seen in other affected joints on delayed whole-body images. These findings are nonspecific and have been previously described in a variety of rheumatologic conditions, but not in Lyme disease. Lyme disease should be considered in the differential diagnosis of articular and periarticular bone scan abnormalities.

  3. Does Computed Tomography Have the Ability to Differentiate Aggressive From Nonaggressive Solid Pseudopapillary Neoplasm?

    PubMed

    Rastogi, Ashita; Assing, Mathew; Taggart, Mellisa; Rao, Brinda; Sun, Jia; Elsayes, Khaled; Tamm, Eric; Bhosale, Priya

    The aim of the study was to assess the ability of contrast-enhanced computed tomography (CECT) to differentiate aggressive from nonaggressive solid pseudopapillary neoplasms (SPNs). Forty treatment-naive patients with pathologically proven pancreatic SPNs were included. Imaging characteristics were determined by consensus of 3 radiologists blinded to histopathologic aggressiveness. All patients underwent 4-phase CECT using a pancreatic protocol. The regions of interest of the tumor and the normal pancreas were documented on all phases. Lymph nodes were considered metastatic if greater than 1.0 cm in short-axis diameter.Fisher exact and Wilcoxon rank-sum tests were used to compare between aggressive and nonaggressive tumors. No significant difference was noted between imaging covariates, such as internal hemorrhage, calcification, wall thickness perceptibility, vascular invasion, margins, cystic component, and pancreatic and biliary ductal dilation. Tumors with greater than 62.5 Hounsfield units and progressive enhancement during the delayed phase had aggressive characteristics (P = 0.03). On delayed phase CECT, pathologically aggressive SPNs may show greater enhancement than nonaggressive SPNs.

  4. Timing group delay and differential code bias corrections for BeiDou positioning

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Zhang, Xiaohong; Wang, Jinling

    2015-05-01

    This article first clearly figures out the relationship between parameters of timing group delay (TGD) and differential code bias (DCB) for BDS, and demonstrates the equivalence of TGD and DCB correction models combining theory with practice. The TGD/DCB correction models have been extended to various occasions for BDS positioning, and such models have been evaluated by real triple-frequency datasets. To test the effectiveness of broadcast TGDs in the navigation message and DCBs provided by the Multi-GNSS Experiment (MGEX), both standard point positioning (SPP) and precise point positioning (PPP) tests are carried out for BDS signals with different schemes. Furthermore, the influence of differential code biases on BDS positioning estimates such as coordinates, receiver clock biases, tropospheric delays and carrier phase ambiguities is investigated comprehensively. Comparative analysis show that the unmodeled differential code biases degrade the performance of BDS SPP by a factor of two or more, whereas the estimates of PPP are subject to varying degrees of influences. For SPP, the accuracy of dual-frequency combinations is slightly worse than that of single-frequency, and they are much more sensitive to the differential code biases, particularly for the B2B3 combination. For PPP, the uncorrected differential code biases are mostly absorbed into the receiver clock bias and carrier phase ambiguities and thus resulting in a much longer convergence time. Even though the influence of the differential code biases could be mitigated over time and comparable positioning accuracy could be achieved after convergence, it is suggested to properly handle with the differential code biases since it is vital for PPP convergence and integer ambiguity resolution.

  5. Development of realtime connected element interferometry at the Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Edwards, C. D.

    1990-01-01

    Connected-element interferometry (CEI) has the potential to provide high-accuracy angular spacecraft tracking on short baselines by making use of the very precise phase delay observable. Within the Goldstone Deep Space Communications Complex (DSCC), one of three tracking complexes in the NASA Deep Space Network, baselines of up to 21 km in length are available. Analysis of data from a series of short-baseline phase-delay interferometry experiments are presented to demonstrate the potential tracking accuracy on these baselines. Repeated differential observations of pairs of angularly close extragalactic radio sources were made to simulate differential spacecraft-quasar measurements. Fiber-optic data links and a correlation processor are currently being developed and installed at Goldstone for a demonstration of real-time CEI in 1990.

  6. Hopf-Pitchfork Bifurcation in a Symmetrically Conservative Two-Mass System with Delay

    NASA Astrophysics Data System (ADS)

    Sun, Ye; Zhang, Chunrui; Cai, Yuting

    2018-06-01

    A symmetrically conservative two-mass system with time delay is considered here. We analyse the influence of interaction coefficient and time delay on the Hopf-pitchfork bifurcation. The bifurcation diagrams and phase portraits are then obtained by computing the normal forms for the system in which, particularly, the unfolding form for case III is seldom given in delayed differential equations. Furthermore, we also find some interesting dynamical behaviours of the original system, such as the coexistence of two stable non-trivial equilibria and a pair of stable periodic orbits, which are verified both theoretically and numerically.

  7. Delayed temporal discrimination in pigeons: A comparison of two procedures

    PubMed Central

    Chatlosh, Diane L.; Wasserman, Edward A.

    1987-01-01

    A within-subjects comparison was made of pigeons' performance on two temporal discrimination procedures that were signaled by differently colored keylight samples. During stimulus trials, a peck on the key displaying a slanted line was reinforced following short keylight samples, and a peck on the key displaying a horizontal line was reinforced following long keylight samples, regardless of the location of the stimuli on those two choice keys. During position trials, a peck on the left key was reinforced following short keylight samples and a peck on the right key was reinforced following long keylight samples, regardless of which line stimulus appeared on the correct key. Thus, on stimulus trials, the correct choice key could not be discriminated prior to the presentation of the test stimuli, whereas on position trials, the correct choice key could be discriminated during the presentation of the sample stimulus. During Phase 1, with a 0-s delay between sample and choice stimuli, discrimination learning was faster on position trials than on stimulus trials for all 4 birds. During Phase 2, 0-, 0.5-, and 1.0-s delays produced differential loss of stimulus control under the two tasks for 2 birds. Response patterns during the delay intervals provided some evidence for differential mediation of the two delayed discriminations. These between-task differences suggest that the same processes may not mediate performance in each. PMID:16812483

  8. High-resolution correlation

    NASA Astrophysics Data System (ADS)

    Nelson, D. J.

    2007-09-01

    In the basic correlation process a sequence of time-lag-indexed correlation coefficients are computed as the inner or dot product of segments of two signals. The time-lag(s) for which the magnitude of the correlation coefficient sequence is maximized is the estimated relative time delay of the two signals. For discrete sampled signals, the delay estimated in this manner is quantized with the same relative accuracy as the clock used in sampling the signals. In addition, the correlation coefficients are real if the input signals are real. There have been many methods proposed to estimate signal delay to more accuracy than the sample interval of the digitizer clock, with some success. These methods include interpolation of the correlation coefficients, estimation of the signal delay from the group delay function, and beam forming techniques, such as the MUSIC algorithm. For spectral estimation, techniques based on phase differentiation have been popular, but these techniques have apparently not been applied to the correlation problem . We propose a phase based delay estimation method (PBDEM) based on the phase of the correlation function that provides a significant improvement of the accuracy of time delay estimation. In the process, the standard correlation function is first calculated. A time lag error function is then calculated from the correlation phase and is used to interpolate the correlation function. The signal delay is shown to be accurately estimated as the zero crossing of the correlation phase near the index of the peak correlation magnitude. This process is nearly as fast as the conventional correlation function on which it is based. For real valued signals, a simple modification is provided, which results in the same correlation accuracy as is obtained for complex valued signals.

  9. Introducing causality violation for improved DPOAE component unmixing

    NASA Astrophysics Data System (ADS)

    Moleti, Arturo; Sisto, Renata; Shera, Christopher A.

    2018-05-01

    The DPOAE response consists of the linear superposition of two components, a nonlinear distortion component generated in the overlap region, and a reflection component generated by roughness in the DP resonant region. Due to approximate scaling symmetry, the DPOAE distortion component has approximately constant phase. As the reflection component may be considered as a SFOAE generated by the forward DP traveling wave, it has rapidly rotating phase, relative to that of its source, which is also equal to the phase of the DPOAE distortion component. This different phase behavior permits effective separation of the DPOAE components (unmixing), using time-domain or time-frequency domain filtering. Departures from scaling symmetry imply fluctuations around zero delay of the distortion component, which may seriously jeopardize the accuracy of these filtering techniques. The differential phase-gradient delay of the reflection component obeys causality requirements, i.e., the delay is positive only, and the fine-structure oscillations of amplitude and phase are correlated to each other, as happens for TEOAEs and SFOAEs relative to their stimulus phase. Performing the inverse Fourier (or wavelet) transform of a modified DPOAE complex spectrum, in which a constant phase function is substituted for the measured one, the time (or time-frequency) distribution shows a peak at (exactly) zero delay and long-latency specular symmetric components, with a modified (positive and negative) delay, which is that relative to that of the distortion component in the original response. Component separation, applied to this symmetrized distribution, becomes insensitive to systematic errors associated with violation of the scaling symmetry in specific frequency ranges.

  10. Histopathologic diversity of gastric cancers: Relationship between enhancement pattern on dynamic contrast-enhanced CT and histological type.

    PubMed

    Tsurumaru, Daisuke; Miyasaka, Mitsutoshi; Muraki, Toshio; Nishie, Akihiro; Asayama, Yoshiki; Oki, Eiji; Oda, Yoshinao; Honda, Hiroshi

    2017-12-01

    To evaluate the diagnostic value of contrast-enhanced computed tomography gastrography (CE-CTG) to predict the histological type of gastric cancer. We analyzed 47 consecutive patients with resectable advanced gastric cancer preoperatively evaluated by multiphasic dynamic contrast-enhanced CT. Two radiologists independently reviewed the CT images and they determined the peak enhancement phase, and then measured the CT attenuation value of the gastric lesion for each phase. The histological types of gastric cancers were assigned to three groups as differentiated-type, undifferentiated-type, and mixed-type. We compared the peak enhancement phase of the three types and compared the CT attenuation values in each phase. The peak enhancement was significantly different between the three types of gastric cancers for both readers (reader 1, p=0.001; reader 2, p=0.009); most of the undifferentiated types had peak enhancement in the delayed phase. The CT attenuation values of undifferentiated type were significantly higher than those of differentiated or mixed type in the delayed phase according to both readers (reader 1, p=0.002; reader 2, p=0.004). CE-CTG could provide helpful information in diagnosing the histological type of gastric cancers preoperatively. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Interference Confocal Microscope Integrated with Spatial Phase Shifter.

    PubMed

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-08-24

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.

  12. A Model of Relation between Fluctuation of Double Differential Total Ionospheric Electron Content and Angular Distance of the Two Satellites Observed by Same-beam VLBI

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Qing-hui, Liu

    2018-01-01

    Time delay and phase fluctuation are produced when the signals of a spacecraft are transmitted through the ionosphere of the earth, which give rise to a great influence on the measurement precision of VLBI (Very Long Baseline Interferometry). Using the 1-year same-beam VLBI data of 2 satellites (Rstar and Vstar) in the Japanese lunar exploration project SELENE, we obtained a model of the relation between the fluctuation of double differential total electron content in the ionosphere and the angular distance of the two satellites. For the 6 baselines, the root mean square r of fluctuation (in units of TECU) and the angular distance of the two satellites θ (in units of ∘) has a relation of r = 0.773θ + 0.562, and for the 4 VLBI stations, the relation is r = 0.554θ + 0.399 from the baselines inversion. The results can serve as a reference for the derivation of differential phase delay and for the occultation observation and study of planetary ionospheres.

  13. Automated Measurement of P- and S-Wave Differential Times for Imaging Spatial Distributions of Vp/Vs Ratio, with Moving-Window Cross-Correlation Technique

    NASA Astrophysics Data System (ADS)

    Taira, T.; Kato, A.

    2013-12-01

    A high-resolution Vp/Vs ratio estimate is one of the key parameters to understand spatial variations of composition and physical state within the Earth. Lin and Shearer (2007, BSSA) recently developed a methodology to obtain local Vp/Vs ratios in individual similar earthquake clusters, based on P- and S-wave differential times. A waveform cross-correlation approach is typically employed to measure those differential times for pairs of seismograms from similar earthquakes clusters, at narrow time windows around the direct P and S waves. This approach effectively collects P- and S-wave differential times and however requires the robust P- and S-wave time windows that are extracted based on either manually or automatically picked P- and S-phases. We present another technique to estimate P- and S-wave differential times by exploiting temporal properties of delayed time as a function of elapsed time on the seismograms with a moving-window cross-correlation analysis (e.g., Snieder, 2002, Phys. Rev. E; Niu et al. 2003, Nature). Our approach is based on the principle that the delayed time for the direct S wave differs from that for the direct P wave. Two seismograms aligned by the direct P waves from a pair of similar earthquakes yield that delayed times become zero around the direct P wave. In contrast, delayed times obtained from time windows including the direct S wave have non-zero value. Our approach, in principle, is capable of measuring both P- and S-wave differential times from single-component seismograms. In an ideal case, the temporal evolution of delayed time becomes a step function with its discontinuity at the onset of the direct S wave. The offset in the resulting step function would be the S-wave differential time, relative to the P-wave differential time as the two waveforms are aligned by the direct P wave. We apply our moving-window cross-correlation technique to the two different data sets collected at: 1) the Wakayama district, Japan and 2) the Geysers geothermal field, California. The both target areas are characterized by earthquake swarms that provide a number of similar events clusters. We use the following automated procedure to systematically analyze the two data sets: 1) the identification of the direct P arrivals by using an Akaike Information Criterion based phase picking algorithm introduced by Zhang and Thurber (2003, BSSA), 2) the waveform alignment by the P-wave with a waveform cross-correlation to obtain P-wave differential time, 3) the moving-time window analysis to estimate the S-differential time. Kato et al. (2010, GRL) have estimated the Vp/Vs ratios for a few similar earthquake clusters from the Wakayama data set, by a conventional approach to obtain differential times. We find that the resulting Vp/Vs ratios from our approach for the same earthquake clusters are comparable with those obtained from Kato et al. (2010, GRL). We show that the moving-window cross-correlation technique effectively measures both P- and S-wave differential times for the seismograms in which the clear P and S phases are not observed. We will show spatial distributions in Vp/Vs ratios in our two target areas.

  14. Real-time estimation of ionospheric delay using GPS measurements

    NASA Astrophysics Data System (ADS)

    Lin, Lao-Sheng

    1997-12-01

    When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is able to estimate the sum of the satellite and receiver L1/L2 differential delay for each tracked GPS satellite. A 'UNSW grid-based algorithm' is proposed to improve the accuracy of real-time ionosphere modelling. The proposed algorithm is similar to the conventional grid-based algorithm. However, two modifications were made to the algorithm: (1) an 'exponential function' is adopted as the weighting function, and (2) the 'grid-based ionosphere model' estimated from the previous day is used to predict the ionospheric delay ratios between the grid point and reference points. (Abstract shortened by UMI.)

  15. Optical signal monitoring in phase modulated optical fiber transmission systems

    NASA Astrophysics Data System (ADS)

    Zhao, Jian

    Optical performance monitoring (OPM) is one of the essential functions for future high speed optical networks. Among the parameters to be monitored, chromatic dispersion (CD) is especially important since it has a significant impact on overall system performance. In this thesis effective CD monitoring approaches for phase-shift keying (PSK) based optical transmission systems are investigated. A number of monitoring schemes based on radio frequency (RF) spectrum analysis and delay-tap sampling are proposed and their performance evaluated. A method for dispersion monitoring of differential phase-shift keying (DPSK) signals based on RF power detection is studied. The RF power spectrum is found to increase with the increase of CD and decrease with polarization mode dispersion (PMD). The spectral power density dependence on CD is studied theoretically and then verified through simulations and experiments. The monitoring sensitivity for nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) and return-to-zero differential phase-shift keying (RZ-DPSK) based systems can reach 80ps/nm/dB and 34ps/nm/dB respectively. The scheme enables the monitoring of differential group delay (DGD) and CD simultaneously. The monitoring sensitivity of CD and DGD can reach 56.7ps/nm/dB and 3.1ps/dB using a bandpass filter. The effects of optical signal-to-noise ratio (OSNR), DGD, fiber nonlinearity and chirp on the monitoring results are investigated. Two RF pilot tones are employed for CD monitoring of DPSK signals. Specially selected pilot tone frequencies enable good monitoring sensitivity with minimum influence on the received signals. The dynamic range exceeding 35dB and monitoring sensitivity up to 9.5ps/nm/dB are achieved. Asynchronous sampling technique is employed for CD monitoring. A signed CD monitoring method for 10Gb/s NRZ-DPSK and RZ-DPSK systems using asynchronous delay-tap sampling technique is studied. The demodulated signals suffer asymmetric waveform distortion if there is a phase error (Deltaphi) in the delay interferometer (DI) and in the presence of residual CD. Using delay-tap sampling the scatter plots can reflect this signal distortion through their asymmetric characteristics. A distance ratio (DR) is defined to represent the change of the scatter plots which is directly related to the accumulated CD. The monitoring range can be up to +/-400ps/nm and to +/-720ps/nm for 10Gb/s NRZ-DPSK and RZ-DPSK signals with 450 phase error in DI. The monitoring sensitivity reaches +/-8ps/nm and CD polarity discrimination is realized. It is found that the signal degradation is related to the increment of the absolute value of CD or phase mismatch. The effect of different polarities of phase error on CD monitoring is also analyzed. The shoulders location depends on the sign of the product DLDeltaphi. If DLDeltaphi > 0, the shoulder will appear on trailing edge else the shoulder will appear on leading edge when DLDeltaphi < 0. The analysis shows that the phase error is identical to the frequency offset of optical source so a signed frequency offset monitoring is also demonstrated. The monitoring results show that the monitoring range can reach +/-2.2GHz and the monitoring sensitivity is around 27MHz. The effect of nonlinearity, OSNR and bandwidth of the lowpass filter on the proposed monitoring method has also been studied. The signed CD monitoring for 100Gb/s carrier suppressed return-to-zero differential quadrature phase-shift keying (CSRZ-DQPSK) system based on the delay-tap sampling technology is demonstrated. The monitoring range and monitoring resolution can goes up to +/-32ps/nm and +/-8ps/nm, respectively. A signed CD and optical carrier wavelength monitoring scheme using cross-correlation method for on-off keying (00K) wavelength division multiplexing (WDM) system is proposed and demonstrated. CD monitoring sensitivity is high and can be less than 10% of the bit period. Wavelength monitoring is implemented using the proposed approach. The monitoring results show that the sensitivity can reach up to 1.37ps/GHz.

  16. Delayed Accumulation of H3K27me3 on Nascent DNA Is Essential for Recruitment of Transcription Factors at Early Stages of Stem Cell Differentiation.

    PubMed

    Petruk, Svetlana; Cai, Jingli; Sussman, Robyn; Sun, Guizhi; Kovermann, Sina K; Mariani, Samanta A; Calabretta, Bruno; McMahon, Steven B; Brock, Hugh W; Iacovitti, Lorraine; Mazo, Alexander

    2017-04-20

    Recruitment of transcription factors (TFs) to repressed genes in euchromatin is essential to activate new transcriptional programs during cell differentiation. However, recruitment of all TFs, including pioneer factors, is impeded by condensed H3K27me3-containing chromatin. Single-cell and gene-specific analyses revealed that, during the first hours of induction of differentiation of mammalian embryonic stem cells (ESCs), accumulation of the repressive histone mark H3K27me3 is delayed after DNA replication, indicative of a decondensed chromatin structure in all regions of the replicating genome. This delay provides a critical "window of opportunity" for recruitment of lineage-specific TFs to DNA. Increasing the levels of post-replicative H3K27me3 or preventing S phase entry inhibited recruitment of new TFs to DNA and significantly blocked cell differentiation. These findings suggest that recruitment of lineage-specifying TFs occurs soon after replication and is facilitated by a decondensed chromatin structure. This insight may explain the developmental plasticity of stem cells and facilitate their exploitation for therapeutic purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Galileo radio science investigations

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Eshleman, V. R.; Hinson, D. P.; Kliore, A. J.; Lindal, G. F.; Woo, R.; Bird, M. K.; Volland, H.; Edenhoffer, P.; Paetzold, M.

    1992-01-01

    Galileo radio-propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements can be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system provides linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. A highly-stable, dual-frequency, spacecraft radio system is developed that is suitable for simultaneous measurements of all the parameters normally attributed to radio waves.

  18. Value of two-phase dynamic multidetector computed tomography in differential diagnosis of post-inflammatory strictures from esophageal cancer

    PubMed Central

    Karmazanovsky, Grigory G; Buryakina, Svetlana A; Kondratiev, Evgeny V; Yang, Qin; Ruchkin, Dmitry V; Kalinin, Dmitry V

    2015-01-01

    AIM: To characterize the computed tomography (CT) findings in patients with post-inflammatory esophageal strictures (corrosive and peptic) and reveal the optimal scanning phase protocols for distinguishing post-inflammatory esophageal stricture and esophageal cancer. METHODS: Sixty-five patients with esophageal strictures of different etiology were included in this study: 24 patients with 27 histopathologically confirmed corrosive strictures, 10 patients with 12 peptic strictures and 31 patients with esophageal cancer were evaluated with a two-phase dynamic contrast-enhanced MDCT. Arterial and venous phases at 10 and 35 s after the attenuation of 200 HU were obtained at the descending aorta, with a delayed phase at 6-8 min after the start of injection of contrast media. For qualitative analysis, CT scans of benign strictures were reviewed for the presence/absence of the following features: “target sign”, luminal mass, homogeneity of contrast medium uptake, concentric wall thickening, conically shaped suprastenotic dilatation, smooth boundaries of stenosis and smooth mucous membrane at the transition to stenosis, which were compared with a control group of 31 patients who had esophageal cancer. The quantitative analysis included densitometric parameter acquisition using regions-of-interest measurement of the zone of stenosis and normal esophageal wall and the difference between those measurements (ΔCT) at all phases of bolus contrast enhancement. Esophageal wall thickening, length of esophageal wall thickening and size of the regional lymph nodes were also evaluated. RESULTS: The presence of a concentric esophageal wall, conically shaped suprastenotic dilatation, smooth upper and lower boundaries, “target sign” and smooth mucous membrane at the transition to stenosis were suggestive of a benign cause, with sensitivities of 92.31%, 87.17%, 94.87%, 76.92% and 82.05%, respectively, and specificities of 70.96%, 89.66%, 80.65%, 96.77% and 93.55%, respectively. The features that were most suggestive of a malignant cause were eccentric esophageal wall thickening, tuberous upper and lower boundaries of stenosis, absence of mucous membrane visualization, rupture of the mucous membrane at the upper boundary of stenosis, cup-shaped suprastenotic dilatation, luminal mass and enlarged regional lymph nodes with specificities of 92.31% 94.87%, 67.86%, 100%, 97.44%, 94.87% and 82.86%, respectively and sensitivities of 70.97%, 80.65%, 96.77%, 80.65%, 54.84%, 87.10% and 60%, respectively. The highest tumor attenuation occurred in the arterial phase (mean attenuation 74.13 ± 17.42 HU), and the mean attenuation difference between the tumor and the normal esophageal wall (mean ΔCT) in the arterial phase was 23.86 ± 19.31 HU. Here, 11.5 HU of ΔCT in the arterial phase was the cut-off value used to differentiate esophageal cancer from post-inflammatory stricture (P = 0.000). The highest attenuation of post-inflammatory strictures occurred in the delayed phase (mean attenuation 71.66 ± 14.28 HU), and the mean ΔCT in delayed phase was 34.03 ± 15.94 HU. Here, 18.5 HU of ΔCT in delayed phase was the cut-off value used to differentiate post-inflammatory stricture from esophageal cancer (P < 0.0001). CONCLUSION: The described imaging findings reveal high diagnostic significance in the differentiation of benign strictures from esophageal cancer. PMID:26269677

  19. Atmospheric Phase Delay in Sentinel SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Krishnakumar, V.; Monserrat, O.; Crosetto, M.; Crippa, B.

    2018-04-01

    The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR) Interferometry (InSAR) has been a widely used geodetic technique for observing the Earth's surface, especially for mapping the Earth's topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth's atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere) are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC) of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR). To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET) and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC) images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate height and deformation measurements.

  20. Clinical efficacy of dim light melatonin onset testing in diagnosing delayed sleep phase syndrome.

    PubMed

    Rahman, Shadab A; Kayumov, Leonid; Tchmoutina, Ekaterina A; Shapiro, Colin M

    2009-05-01

    Delayed Sleep Phase Syndrome (DSPS) arises from biological clock desynchrony and accounts for 10% of chronic insomnia patients. Currently DSPS is diagnosed based on sleep/wake cycle disruptions rather than examining the underlying biological clock alterations. The objective of the study was to determine the sensitivity and specificity of the Dim Light Melatonin Onset (DLMO) Test in diagnosing DSPS in a clinical setting. Fifty-six patients (mean age 28 years) symptomatic of DSPS participated in the study. Following an initial assessment of DSPS using sleep diaries, participants underwent two consecutive nights of polysomnography (PSG), with an imposed sleep period on the second night to demonstrate the delay in the timing of habitual sleep period and to thereby confirm DSPS. Circadian phase delays were also measured using melatonin secretion profiles, and the efficacy of diagnosing DSPS using DLMO was compared to using sleep diaries and PSG. Melatonin secretion was assayed for each individual by ELISA using saliva samples. Main outcome measures included the time of melatonin secretion onset, clinical sensitivity and specificity of the DLMO test. The time of melatonin secretion onset was significantly delayed in DSPS patients. Clinical sensitivity and specificity of the DLMO test in diagnosing DSPS were 90.3% and 84.0%, respectively. The DLMO test is an accurate tool for differentiating between sleep disorder patients with or without underlying circadian rhythm disruption. It is effective for phase typing DSPS patients in a clinical setting.

  1. The usefulness of the sum of relative enhancement ratio in making a differential diagnosis of hepatocellular carcinoma from cirrhosis-related nodules.

    PubMed

    Yoon, Ki Woong; Song, Ji Soo; Han, Young Min

    2014-01-01

    To estimate the diagnostic accuracy of the sum of relative enhancement ratio (sRER) in making a differential diagnosis of hepatocellular carcinoma (HCC) from benign cirrhosis-related nodules. Eighteen benign cirrhosis-related nodules and 18 HCCs were evaluated. Three radiologists independently reviewed computed tomography images using visual assessment and sRER. sRER was estimated by adding region-of-interest measurement in the arterial phase and the delayed phase. Diagnostic performance and accuracy were evaluated. The mean values of sRER were significantly higher in HCCs than in benign cirrhosis-related nodules. The sRER method improved diagnostic accuracy of differentiating HCCs from benign cirrhosis-related nodules. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Utility of Intermediate-Delay Washout CT Images for Differentiation of Malignant and Benign Adrenal Lesions: A Multivariate Analysis.

    PubMed

    Ng, Chaan S; Altinmakas, Emre; Wei, Wei; Ghosh, Payel; Li, Xiao; Grubbs, Elizabeth G; Perrier, Nancy D; Lee, Jeffrey E; Prieto, Victor G; Hobbs, Brian P

    2018-06-27

    The objective of this study was to identify features that impact the diagnostic performance of intermediate-delay washout CT for distinguishing malignant from benign adrenal lesions. This retrospective study evaluated 127 pathologically proven adrenal lesions (82 malignant, 45 benign) in 126 patients who had undergone portal venous phase and intermediate-delay washout CT (1-3 minutes after portal venous phase) with or without unenhanced images. Unenhanced images were available for 103 lesions. Quantitatively, lesion CT attenuation on unenhanced (UA) and delayed (DL) images, absolute and relative percentage of enhancement washout (APEW and RPEW, respectively), descriptive CT features (lesion size, margin characteristics, heterogeneity or homogeneity, fat, calcification), patient demographics, and medical history were evaluated for association with lesion status using multiple logistic regression with stepwise model selection. Area under the ROC curve (A z ) was calculated from both univariate and multivariate analyses. The predictive diagnostic performance of multivariate evaluations was ascertained through cross-validation. A z for DL, APEW, RPEW, and UA was 0.751, 0.795, 0.829, and 0.839, respectively. Multivariate analyses yielded the following significant CT quantitative features and associated A z when combined: RPEW and DL (A z = 0.861) when unenhanced images were not available and APEW and UA (A z = 0.889) when unenhanced images were available. Patient demographics and presence of a prior malignancy were additional significant factors, increasing A z to 0.903 and 0.927, respectively. The combined predictive classifier, without and with UA available, yielded 85.7% and 87.3% accuracies with cross-validation, respectively. When appropriately combined with other CT features, washout derived from intermediate-delay CT with or without additional clinical data has potential utility in differentiating malignant from benign adrenal lesions.

  3. Controlling Mackey-Glass chaos.

    PubMed

    Kiss, Gábor; Röst, Gergely

    2017-11-01

    The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.

  4. Group delay variations of GPS transmitting and receiving antennas

    NASA Astrophysics Data System (ADS)

    Wanninger, Lambert; Sumaya, Hael; Beer, Susanne

    2017-09-01

    GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne-Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases.

  5. Controlling Mackey-Glass chaos

    NASA Astrophysics Data System (ADS)

    Kiss, Gábor; Röst, Gergely

    2017-11-01

    The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.

  6. The Emergence and Propagation of a Phase Boundary in an Elastic Bar.

    DTIC Science & Technology

    1983-06-01

    differential- delay equations, where the delay 1s unknown. We first present a short- time analysis of this system in order to describe the emergence and Initial...ft, which arise on x=0 at progressively earlier times ; see Fig. 8. This geometric state of affairs is described by the inequalities : TT^"^^WF...t))) < 0 , (6.7) so that e(s(t)~,t) and v(s(t)",t) are decreasing with time . We have already observed that the first Inequality In (6.2

  7. Effects of Stress and Sex on Acquisition and Consolidation of Human Fear Conditioning

    ERIC Educational Resources Information Center

    Kuhn, Cynthia M.; LaBar, Kevin S.; Zorawski, Michael; Blanding, Nineequa Q.

    2006-01-01

    We examined the relationship between stress hormone (cortisol) release and acquisition and consolidation of conditioned fear learning in healthy adults. Participants underwent acquisition of differential fear conditioning, and consolidation was assessed in a 24-h delayed extinction test. The acquisition phase was immediately followed by an 11-min…

  8. A comparison of atmospheric effects on differential phase for a two-element antenna array and nearby site test interferometer

    NASA Astrophysics Data System (ADS)

    Morabito, David D.; D'Addario, Larry; Finley, Susan

    2016-02-01

    Phased arrays of reflector antennas can be used to obtain effective area and gain that are much larger than is practical with a single antenna. This technique is routinely used by NASA for receiving weak signals from deep space. Phase alignment of the signals can be disrupted by turbulence in the troposphere, which causes fluctuations in the differences of signal delays among the antennas. At the Deep Space Network stations, site test interferometers (STIs) are being used for long-term monitoring of these delay fluctuations using signals from geostationary satellites. In this paper, we compare the STI measurements with the phase variations seen by a nearby two-element array of 34 m diameter antennas tracking 8.4 GHz and 32 GHz signals from the Cassini spacecraft in orbit around Saturn. It is shown that the statistics of the STI delay fluctuations, after appropriate scaling for differences in antenna separation and elevation angle and conversion to phase at the spacecraft frequencies, provide reliable estimates of the phase fluctuations seen by the large antennas on the deep space signal. Techniques for adaptive compensation of the phase fluctuations are available when receiving a sufficiently strong signal, but compensation is often impractical or impossible when using the array for transmitting. These results help to validate the use of long-term STI data for assessing the feasibility of large transmitting arrays at various sites.

  9. Triple-phase helical computed tomography in dogs with solid splenic masses

    PubMed Central

    KUTARA, Kenji; SEKI, Mamiko; ISHIGAKI, Kumiko; TESHIMA, Kenji; ISHIKAWA, Chieko; KAGAWA, Yumiko; EDAMURA, Kazuya; NAKAYAMA, Tomohiro; ASANO, Kazushi

    2017-01-01

    We investigated the utility of triple-phase helical computed tomography (CT) in differentiating between benign and malignant splenic masses in dogs. Forty-two dogs with primary splenic masses underwent triple-phase helical CT scanning (before administration of contrast, and in the arterial phase, portal venous phase, and delayed phase) prior to splenectomy. Tissue specimens were sent for pathological diagnosis; these included hematomas (n=14), nodular hyperplasias (n=12), hemangiosarcomas (n=11), and undifferentiated sarcomas (n=5). The CT findings were compared with the histological findings. Nodular hyperplasia significantly displayed a homogeneous normal enhancement pattern in all phases. Hemangiosarcoma displayed 2 significant contrast-enhancement patterns, including a homogeneous pattern of poor enhancement in all phases, and a heterogeneous remarkable enhancement pattern in the arterial and portal venous phases. Hematoma and undifferentiated sarcoma displayed a heterogeneous normal enhancement pattern in all phases. The contrast-enhanced volumetric ratios of hematoma tended to be greater than those of undifferentiated sarcoma. Our study demonstrated that the characteristic findings on triple-phase helical CT could be useful for the preoperative differentiation of hematoma, nodular hyperplasia, hemangiosarcoma, and undifferentiated sarcoma in dogs. Triple-phase helical CT may be a useful diagnostic tool in dogs with splenic masses. PMID:28993600

  10. Two-phase computed tomography study of warthin tumor of parotid gland: differentiation from other parotid gland tumors and its pathologic explanation.

    PubMed

    Woo, Seung Hoon; Choi, Dae-Seob; Kim, Jin-pyeong; Park, Jung Je; Joo, Yeon Hee; Chung, Phil-Sang; Kim, Bo-Young; Ko, Young-Hyeh; Jeong, Han-Sin; Kim, Hyung-Jin

    2013-01-01

    The objective of this study was to define the radiological characteristics of 2-phase computed tomography (CT) of parotid gland Warthin tumors (WTs) with a pathologic basis for these findings. We prospectively enrolled 116 patients with parotid gland tumor who underwent preoperative 2-phase CT scans(scanning delays of 30 and 120 seconds). The attenuation changes and enhancement patterns were analyzed according to pathology. We also evaluated size-matched samples of WTs and pleomorphic adenoma by staining CD31, vascular endothelial growth factor-receptor 2, collagen IV, and smooth muscle actin. Computed tomography numbers in WTs were significantly higher than those in other tumors in early-phase scans and lower in delayed scans. Pathologically, CD31(+) blood vessel area was significantly higher in WTs than in pleomorphic adenomas. In addition, WTs had an extensive capillary network and many leaky blood vessels. The enhancement pattern of early fill-in and early washout is the typical finding of WTs on 2-phase CT scans, which may be attributed pathologically to abundant blood vessel and extensive capillary network.

  11. Multi-level trellis coded modulation and multi-stage decoding

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Wu, Jiantian; Lin, Shu

    1990-01-01

    Several constructions for multi-level trellis codes are presented and many codes with better performance than previously known codes are found. These codes provide a flexible trade-off between coding gain, decoding complexity, and decoding delay. New multi-level trellis coded modulation schemes using generalized set partitioning methods are developed for Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK) signal sets. New rotationally invariant multi-level trellis codes which can be combined with differential encoding to resolve phase ambiguity are presented.

  12. Radiation hard programmable delay line for LHCb calorimeter upgrade

    NASA Astrophysics Data System (ADS)

    Mauricio, J.; Gascón, D.; Vilasís, X.; Picatoste, E.; Machefert, F.; Lefrancois, J.; Duarte, O.; Beigbeder, C.

    2014-01-01

    This paper describes the implementation of a SPI-programmable clock delay chip based on a Delay Locked Loop (DLL) in order to shift the phase of the LHC clock (25 ns) in steps of 1ns, with less than 5 ps jitter and 23 ps of DNL. The delay lines will be integrated into ICECAL, the LHCb calorimeter front-end analog signal processing ASIC in the near future. The stringent noise requirements on the ASIC imply minimizing the noise contribution of digital components. This is accomplished by implementing the DLL in differential mode. To achieve the required radiation tolerance several techniques are applied: double guard rings between PMOS and NMOS transistors as well as glitch suppressors and TMR Registers. This 5.7 mm2 chip has been implemented in CMOS 0.35 μm technology.

  13. Real-Time Point Positioning Performance Evaluation of Single-Frequency Receivers Using NASA's Global Differential GPS System

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Iijima, Byron; Meyer, Robert; Bar-Sever, Yoaz; Accad, Elie

    2004-01-01

    This paper evaluates the performance of a single-frequency receiver using the 1-Hz differential corrections as provided by NASA's global differential GPS system. While the dual-frequency user has the ability to eliminate the ionosphere error by taking a linear combination of observables, the single-frequency user must remove or calibrate this error by other means. To remove the ionosphere error we take advantage of the fact that the magnitude of the group delay in range observable and the carrier phase advance have the same magnitude but are opposite in sign. A way to calibrate this error is to use a real-time database of grid points computed by JPL's RTI (Real-Time Ionosphere) software. In both cases we evaluate the positional accuracy of a kinematic carrier phase based point positioning method on a global extent.

  14. Setting the main circadian clock of a diurnal mammal by hypocaloric feeding

    PubMed Central

    Mendoza, Jorge; Gourmelen, Sylviane; Dumont, Stephanie; Sage-Ciocca, Dominique; Pévet, Paul; Challet, Etienne

    2012-01-01

    Caloric restriction attenuates the onset of a number of pathologies related to ageing. In mammals, circadian rhythms, controlled by the hypothalamic suprachiasmatic (SCN) clock, are altered with ageing. Although light is the main synchronizer for the clock, a daily hypocaloric feeding (HF) may also modulate the SCN activity in nocturnal rodents. Here we report that a HF also affects behavioural, physiological and molecular circadian rhythms of the diurnal rodent Arvicanthis ansorgei. Under constant darkness HF, but not normocaloric feeding (NF), entrains circadian behaviour. Under a light–dark cycle, HF at midnight led to phase delays of the rhythms of locomotor activity and plasma corticosterone. Furthermore, Per2 and vasopressin gene oscillations in the SCN were phase delayed in HF Arvicanthis compared with animals fed ad libitum. Moreover, light-induced expression of Per genes in the SCN was modified in HF Arvicanthis, despite a non-significant effect on light-induced behavioural phase delays. Together, our data show that HF affects the circadian system of the diurnal rodent Arvicanthis ansorgei differentially from nocturnal rodents. The Arvicanthis model has relevance for the potential use of HF to manipulate circadian rhythms in diurnal species including humans. PMID:22570380

  15. [(99)Tc(m)N-NOET dual-phase SPECT in differential diagnosis of benign and malignant lung tumors].

    PubMed

    Liu, Haiyan; Li, Sijin; Yang, Suyun; Wu, Zhifang

    2014-01-01

    To investigate the value of (99)Tc(m)N-NOET dual-phase SPECT in differential diagnosis of benign and malignant lung tumors. CT scan, early (20 to 30 min) and delayed (2 h) imaging of NOET SPECT were performed on 61 patients suspected of lung lesions before operation. The results were compared with the pathological findings. All cases were not treated with radiotherapy, chemotherapy or surgery before checks. Moreover, all patients had pathological diagnosis. To determine the value in differential diagnosis of tumors by analyzing the tumor uptake and excretion of (99)Tc(m)N-NOET, and the results were compared with that of CT. The value of early T/N ratio (ER) in the malignant (G1) and benign (G2) groups was 1.25 ± 0.15 and 1.09 ± 0.11 (P < 0.001), respectively, and delayed T/N ratio (DR) was 1.40 ± 0.17 and 1.18 ± 0.21 (P < 0.001). The retention index (RI) of groups G1 was (12.22 ± 6.38)% and group G2 was (8.3 ± 10.91)%, with a non-significant difference between them (P > 0.05). The ER, DR and RI of NOET SPECT in the malignant patients were not significantly correlated with TNM staging, pathological types, tumor diameter, cavity in the lung tumor mass, history of smoking, tumor size and patient gender (P > 0.05). The sensitivity of NOET dual-phase SPECT and CT in the differential diagnosis of benign and malignant lung tumors was 94.1% vs. 90.2%, specificity was 70.0% vs. 80.0% , positive predictive value (PPV) was 94.1% vs. 95.8%, negative predictive value (NPV) was 70.0% vs. 61.5 %, and accuracy was 90.2%. vs. 88.5% (P > 0.05 for all). (99)Tc(m)N- NOET dual-phase SPECT could be used in differential diagnosis of benign and malignant lung tumors, with no significant differences compared with the efficacy of CT imaging. The semiquantitative indexes (ER, DR and RI) of NOET SPECT can also be used in differential diagnosis of benign and malignant lung tumors, and are not significantly correlated with TNM staging, pathological types, tumor diameter, cavity of the lung tumor mass, history of smoking, tumor size and patient gender.

  16. Hardware Verification of Laser Noise Cancellation and Gravitational Wave Extraction using Time-Delay Interferometry

    NASA Astrophysics Data System (ADS)

    Mitryk, Shawn; Mueller, Guido

    The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.

  17. Nonlinear optical coupler using a doped optical waveguide

    DOEpatents

    Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.

    1994-01-01

    An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.

  18. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.

    2010-09-15

    We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delaymore » time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.« less

  19. Estimating Accurate Relative Spacecraft Angular Position from DSN VLBI Phases Using X-Band Telemetry or DOR Tones

    NASA Technical Reports Server (NTRS)

    Bagri, Durgadas S.; Majid, Walid

    2009-01-01

    At present spacecraft angular position with Deep Space Network (DSN) is determined using group delay estimates from very long baseline interferometer (VLBI) phase measurements employing differential one way ranging (DOR) tones. As an alternative to this approach, we propose estimating position of a spacecraft to half a fringe cycle accuracy using time variations between measured and calculated phases as the Earth rotates using DSN VLBI baseline(s). Combining fringe location of the target with the phase allows high accuracy for spacecraft angular position estimate. This can be achieved using telemetry signals of at least 4-8 MSamples/sec data rate or DOR tones.

  20. Lie group classification of first-order delay ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel

    2018-05-01

    A group classification of first-order delay ordinary differential equations (DODEs) accompanied by an equation for the delay parameter (delay relation) is presented. A subset of such systems (delay ordinary differential systems or DODSs), which consists of linear DODEs and solution-independent delay relations, have infinite-dimensional symmetry algebras—as do nonlinear ones that are linearizable by an invertible transformation of variables. Genuinely nonlinear DODSs have symmetry algebras of dimension n, . It is shown how exact analytical solutions of invariant DODSs can be obtained using symmetry reduction.

  1. Parallel Acquisition of Awareness and Differential Delay Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Weidemann, Gabrielle; Antees, Cassandra

    2012-01-01

    There is considerable debate about whether differential delay eyeblink conditioning can be acquired without awareness of the stimulus contingencies. Previous investigations of the relationship between differential-delay eyeblink conditioning and awareness of the stimulus contingencies have assessed awareness after the conditioning session was…

  2. Optimal estimation of parameters and states in stochastic time-varying systems with time delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-08-01

    In this study estimation of parameters and states in stochastic linear and nonlinear delay differential systems with time-varying coefficients and constant delay is explored. The approach consists of first employing a continuous time approximation to approximate the stochastic delay differential equation with a set of stochastic ordinary differential equations. Then the problem of parameter estimation in the resulting stochastic differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the resulting system, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states.

  3. Analysis of stability for stochastic delay integro-differential equations.

    PubMed

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  4. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate.

    PubMed

    Baptista, Sofia; Lasgi, Charlène; Benstaali, Caroline; Milhazes, Nuno; Borges, Fernanda; Fontes-Ribeiro, Carlos; Agasse, Fabienne; Silva, Ana Paula

    2014-09-01

    Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG). Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10nM) decreased DG stem cell self-renewal, while 1nM delayed cell cycle in the G0/G1-to-S phase transition and increased the number of quiescent cells (G0 phase), which correlated with a decrease in cyclin E, pEGFR and pERK1/2 protein levels. Importantly, both drug concentrations (1 or 10nM) did not induce cell death. In accordance with the impairment of self-renewal capacity, METH (10nM) decreased Sox2(+)/Sox2(+) while increased Sox2(-)/Sox2(-) pairs of daughter cells. This effect relied on N-methyl-d-aspartate (NMDA) signaling, which was prevented by the NMDA receptor antagonist, MK-801 (10μM). Moreover, METH (10nM) increased doublecortin (DCX) protein levels consistent with neuronal differentiation. In conclusion, METH alters DG stem cell properties by delaying cell cycle and decreasing self-renewal capacities, mechanisms that may contribute to DG neurogenesis impairment followed by cognitive deficits verified in METH consumers. Copyright © 2014. Published by Elsevier B.V.

  5. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.

    1988-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  6. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.

    1990-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  7. Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations.

    PubMed

    Banks, H Thomas; Robbins, Danielle; Sutton, Karyn L

    2013-01-01

    In this paper we present new results for differentiability of delay systems with respect to initial conditions and delays. After motivating our results with a wide range of delay examples arising in biology applications, we further note the need for sensitivity functions (both traditional and generalized sensitivity functions), especially in control and estimation problems. We summarize general existence and uniqueness results before turning to our main results on differentiation with respect to delays, etc. Finally we discuss use of our results in the context of estimation problems.

  8. Experimental investigation of polarization insensitivity and cascadability with semiconductor optical amplifier-based differential phase-shift keyed wavelength converter

    NASA Astrophysics Data System (ADS)

    Mao, Yaya; Wu, Chongqing; Liu, Bo; Ullah, Rahat; Tian, Feng

    2017-12-01

    We experimentally investigate the polarization insensitivity and cascadability of an all-optical wavelength converter for differential phase-shift keyed (DPSK) signals for the first time. The proposed wavelength converter is composed of a one-bit delay interferometer demodulation stage followed by a single semiconductor optical amplifier. The impact of input DPSK signal polarization fluctuation on receiver sensitivity for the converted signal is carried out. It is found that this scheme is almost insensitive to the state of polarization of the input DPSK signal. Furthermore, the cascadability of the converter is demonstrated in a two-path recirculating loop. Error-free transmission is achieved with 20 stage cascaded wavelength conversions over 2800 km, where the power penalty is <3.4 dB at bit error rate of 10-9.

  9. Valproic Acid Arrests Proliferation but Promotes Neuronal Differentiation of Adult Spinal NSPCs from SCI Rats.

    PubMed

    Chu, Weihua; Yuan, Jichao; Huang, Lei; Xiang, Xin; Zhu, Haitao; Chen, Fei; Chen, Yanyan; Lin, Jiangkai; Feng, Hua

    2015-07-01

    Although the adult spinal cord contains a population of multipotent neural stem/precursor cells (NSPCs) exhibiting the potential to replace neurons, endogenous neurogenesis is very limited after spinal cord injury (SCI) because the activated NSPCs primarily differentiate into astrocytes rather than neurons. Valproic acid (VPA), a histone deacetylase inhibitor, exerts multiple pharmacological effects including fate regulation of stem cells. In this study, we cultured adult spinal NSPCs from chronic compressive SCI rats and treated with VPA. In spite of inhibiting the proliferation and arresting in the G0/G1 phase of NSPCs, VPA markedly promoted neuronal differentiation (β-tubulin III(+) cells) as well as decreased astrocytic differentiation (GFAP(+) cells). Cell cycle regulator p21(Cip/WAF1) and proneural genes Ngn2 and NeuroD1 were increased in the two processes respectively. In vivo, to minimize the possible inhibitory effects of VPA to the proliferation of NSPCs as well as avoid other neuroprotections of VPA in acute phase of SCI, we carried out a delayed intraperitoneal injection of VPA (150 mg/kg/12 h) to SCI rats from day 15 to day 22 after injury. Both of the newborn neuron marker doublecortin and the mature neuron marker neuron-specific nuclear protein were significantly enhanced after VPA treatment in the epicenter and adjacent segments of the injured spinal cord. Although the impaired corticospinal tracks had not significantly improved, Basso-Beattie-Bresnahan scores in VPA treatment group were better than control. Our study provide the first evidence that administration of VPA enhances the neurogenic potential of NSPCs after SCI and reveal the therapeutic value of delayed treatment of VPA to SCI.

  10. Texture analysis of common renal masses in multiple MR sequences for prediction of pathology

    NASA Astrophysics Data System (ADS)

    Hoang, Uyen N.; Malayeri, Ashkan A.; Lay, Nathan S.; Summers, Ronald M.; Yao, Jianhua

    2017-03-01

    This pilot study performs texture analysis on multiple magnetic resonance (MR) images of common renal masses for differentiation of renal cell carcinoma (RCC). Bounding boxes are drawn around each mass on one axial slice in T1 delayed sequence to use for feature extraction and classification. All sequences (T1 delayed, venous, arterial, pre-contrast phases, T2, and T2 fat saturated sequences) are co-registered and texture features are extracted from each sequence simultaneously. Random forest is used to construct models to classify lesions on 96 normal regions, 87 clear cell RCCs, 8 papillary RCCs, and 21 renal oncocytomas; ground truths are verified through pathology reports. The highest performance is seen in random forest model when data from all sequences are used in conjunction, achieving an overall classification accuracy of 83.7%. When using data from one single sequence, the overall accuracies achieved for T1 delayed, venous, arterial, and pre-contrast phase, T2, and T2 fat saturated were 79.1%, 70.5%, 56.2%, 61.0%, 60.0%, and 44.8%, respectively. This demonstrates promising results of utilizing intensity information from multiple MR sequences for accurate classification of renal masses.

  11. Differential roles of breakfast and supper in rats of a daily three-meal schedule upon circadian regulation and physiology.

    PubMed

    Wu, Tao; Sun, Lu; ZhuGe, Fen; Guo, Xichao; Zhao, Zhining; Tang, Ruiqi; Chen, Qinping; Chen, Lin; Kato, Hisanori; Fu, Zhengwei

    2011-12-01

    The timing of meals has been suggested to play an important role in circadian regulation and metabolic health. Three meals a day is a well-established human feeding habit, which in today's lifestyle may or may not be followed. The aim of this study was to test whether the absence of breakfast or supper significantly affects the circadian system and physiological function. The authors developed a rat model for their daily three meals study, whereby animals were divided into three groups (three meals, TM; no first meal, NF; no last meal, NL) all fed with the same amount of food every day. Rats in the NF group displayed significantly decreased levels of plasma triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose in the activity phase, accompanied by delayed circadian phases of hepatic peripheral clock and downstream metabolic genes. Rats in the NL group showed lower concentration of plasma TC, HDL-C, and glucose in the rest phase, plus reduced adipose tissue accumulation and body weight gain. Real-time polymerase chain reaction (PCR) analysis indicated an attenuated rhythm in the food-entraining pathway, including down-regulated expression of the clock genes Per2, Bmal1, and Rev-erbα, which may further contribute to the delayed and decreased expression of FAS in lipogenesis in this group. Our findings are consistent with the conclusion that the daily first meal determines the circadian phasing of peripheral clocks, such as in the liver, whereas the daily last meal tightly couples to lipid metabolism and adipose tissue accumulation, which suggests differential physiological effects and function of the respective meal timings.

  12. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De

    2013-05-20

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two opticalmore » telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.« less

  13. Analysis of backward differentiation formula for nonlinear differential-algebraic equations with 2 delays.

    PubMed

    Sun, Leping

    2016-01-01

    This paper is concerned with the backward differential formula or BDF methods for a class of nonlinear 2-delay differential algebraic equations. We obtain two sufficient conditions under which the methods are stable and asymptotically stable. At last, examples show that our methods are true.

  14. Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations.

    PubMed

    Koch, Gilbert; Krzyzanski, Wojciech; Pérez-Ruixo, Juan Jose; Schropp, Johannes

    2014-08-01

    In pharmacokinetics/pharmacodynamics (PKPD) the measured response is often delayed relative to drug administration, individuals in a population have a certain lifespan until they maturate or the change of biomarkers does not immediately affects the primary endpoint. The classical approach in PKPD is to apply transit compartment models (TCM) based on ordinary differential equations to handle such delays. However, an alternative approach to deal with delays are delay differential equations (DDE). DDEs feature additional flexibility and properties, realize more complex dynamics and can complementary be used together with TCMs. We introduce several delay based PKPD models and investigate mathematical properties of general DDE based models, which serve as subunits in order to build larger PKPD models. Finally, we review current PKPD software with respect to the implementation of DDEs for PKPD analysis.

  15. Razumikhin-Type Stability Criteria for Differential Equations with Delayed Impulses.

    PubMed

    Wang, Qing; Zhu, Quanxin

    2013-01-01

    This paper studies stability problems of general impulsive differential equations where time delays occur in both differential and difference equations. Based on the method of Lyapunov functions, Razumikhin technique and mathematical induction, several stability criteria are obtained for differential equations with delayed impulses. Our results show that some systems with delayed impulses may be exponentially stabilized by impulses even if the system matrices are unstable. Some less restrictive sufficient conditions are also given to keep the good stability property of systems subject to certain type of impulsive perturbations. Examples with numerical simulations are discussed to illustrate the theorems. Our results may be applied to complex problems where impulses depend on both current and past states.

  16. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color.

    PubMed

    Canton, Jillian L; Smith, Mark R; Choi, Ho-Sun; Eastman, Charmane I

    2009-07-17

    Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Subjects (blue-eyed n = 7; brown eyed n = 6) maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO). Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux). An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline). A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment.Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. The average phase delay of the DLMO was -1.3 +/- 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. A single 2-hour bright light pulse combined with a moderate delay of the sleep/dark episode delayed the circadian clock an average of ~1.5 hours. There was no evidence that iris color influenced the magnitude of the phase shift. Future studies are needed to replicate our findings that iris color does not impact the magnitude of light-induced circadian phase shifts, and that the previously reported differences may be due to race.

  17. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks.

    PubMed

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  18. Comparison principle for impulsive functional differential equations with infinite delays and applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaodi; Shen, Jianhua; Akca, Haydar; Rakkiyappan, R.

    2018-04-01

    We introduce the Razumikhin technique to comparison principle and establish some comparison results for impulsive functional differential equations (IFDEs) with infinite delays, where the infinite delays may be infinite time-varying delays or infinite distributed delays. The idea is, under the help of Razumikhin technique, to reduce the study of IFDEs with infinite delays to the study of scalar impulsive differential equations (IDEs) in which the solutions are easy to deal with. Based on the comparison principle, we study the qualitative properties of IFDEs with infinite delays , which include stability, asymptotic stability, exponential stability, practical stability, boundedness, etc. It should be mentioned that the developed results in this paper can be applied to IFDEs with not only infinite delays but also persistent impulsive perturbations. Moreover, even for the special cases of non-impulsive effects or/and finite delays, the criteria prove to be simpler and less conservative than some existing results. Finally, two examples are given to illustrate the effectiveness and advantages of the proposed results.

  19. Charge modeling of ionic polymer-metal composites for dynamic curvature sensing

    NASA Astrophysics Data System (ADS)

    Bahramzadeh, Yousef; Shahinpoor, Mohsen

    2011-04-01

    A curvature sensor based on Ionic Polymer-Metal Composite (IPMC) is proposed and characterized for sensing of curvature variation in structures such as inflatable space structures in which using low power and flexible curvature sensor is of high importance for dynamic monitoring of shape at desired points. The linearity of output signal of sensor for calibration, effect of deflection rate at low frequencies and the phase delay between the output signal and the input deformation of IPMC curvature sensor is investigated. An analytical chemo-electro-mechanical model for charge dynamic of IPMC sensor is presented based on Nernst-Planck partial differential equation which can be used to explain the phenomena observed in experiments. The rate dependency of output signal and phase delay between the applied deformation and sensor signal is studied using the proposed model. The model provides a background for predicting the general characteristics of IPMC sensor. It is shown that IPMC sensor exhibits good linearity, sensitivity, and repeatability for dynamic curvature sensing of inflatable structures.

  20. Study of the GPS inter-frequency calibration of timing receivers

    NASA Astrophysics Data System (ADS)

    Defraigne, P.; Huang, W.; Bertrand, B.; Rovera, D.

    2018-02-01

    When calibrating Global Positioning System (GPS) stations dedicated to timing, the hardware delays of P1 and P2, the P(Y)-codes on frequencies L1 and L2, are determined separately. In the international atomic time (TAI) network the GPS stations of the time laboratories are calibrated relatively against reference stations. This paper aims at determining the consistency between the P1 and P2 hardware delays (called dP1 and dP2) of these reference stations, and to look at the stability of the inter-signal hardware delays dP1-dP2 of all the stations in the network. The method consists of determining the dP1-dP2 directly from the GPS pseudorange measurements corrected for the frequency-dependent antenna phase center and the frequency-dependent ionosphere corrections, and then to compare these computed dP1-dP2 to the calibrated values. Our results show that the differences between the computed and calibrated dP1-dP2 are well inside the expected combined uncertainty of the two quantities. Furthermore, the consistency between the calibrated time transfer solution obtained from either single-frequency P1 or dual-frequency P3 for reference laboratories is shown to be about 1.0 ns, well inside the 2.1 ns uB uncertainty of a time transfer link based on GPS P3 or Precise Point Positioning. This demonstrates the good consistency between the P1 and P2 hardware delays of the reference stations used for calibration in the TAI network. The long-term stability of the inter-signal hardware delays is also analysed from the computed dP1-dP2. It is shown that only variations larger than 2 ns can be detected for a particular station, while variations of 200 ps can be detected when differentiating the results between two stations. Finally, we also show that in the differential calibration process as used in the TAI network, using the same antenna phase center or using different positions for L1 and L2 signals gives maximum differences of 200 ps on the hardware delays of the separate codes P1 and P2; however, the final impact on the P3 combination is less than 10 ps.

  1. A GPS measurement system for precise satellite tracking and geodesy

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  2. Mean, covariance, and effective dimension of stochastic distributed delay dynamics

    NASA Astrophysics Data System (ADS)

    René, Alexandre; Longtin, André

    2017-11-01

    Dynamical models are often required to incorporate both delays and noise. However, the inherently infinite-dimensional nature of delay equations makes formal solutions to stochastic delay differential equations (SDDEs) challenging. Here, we present an approach, similar in spirit to the analysis of functional differential equations, but based on finite-dimensional matrix operators. This results in a method for obtaining both transient and stationary solutions that is directly amenable to computation, and applicable to first order differential systems with either discrete or distributed delays. With fewer assumptions on the system's parameters than other current solution methods and no need to be near a bifurcation, we decompose the solution to a linear SDDE with arbitrary distributed delays into natural modes, in effect the eigenfunctions of the differential operator, and show that relatively few modes can suffice to approximate the probability density of solutions. Thus, we are led to conclude that noise makes these SDDEs effectively low dimensional, which opens the possibility of practical definitions of probability densities over their solution space.

  3. Singular Hopf bifurcation in a differential equation with large state-dependent delay

    PubMed Central

    Kozyreff, G.; Erneux, T.

    2014-01-01

    We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol’s equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays. PMID:24511255

  4. Singular Hopf bifurcation in a differential equation with large state-dependent delay.

    PubMed

    Kozyreff, G; Erneux, T

    2014-02-08

    We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol's equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays.

  5. The characteristics of grating structure in magnetic field measurements based on polarization properties of fiber gratings

    NASA Astrophysics Data System (ADS)

    Su, Yang; Peng, Hui; Feng, Kui; Li, Yu-quan

    2009-11-01

    In this paper the characteristics of grating structure in magnetic field measurements based on differential group delay of fiber gratings are analyzed. Theoretical simulations are realized using the coupled-mode theory and transfer matrix method. The effects of grating parameters of uniform Bragg grating on measurement range and sensitivity are analyzed. The impacts of chirped, phase-shifted and apodized gratings on DGD peak values are also monitored. FBG transmitted spectrums and DGD spectrums are recorded by means of an optical vector analyzer (OVA). Both the simulations and experiments demonstrate that the phase-shifted gratings can obviously improve the sensitivity.

  6. Analysis of an age structured model for tick populations subject to seasonal effects

    NASA Astrophysics Data System (ADS)

    Liu, Kaihui; Lou, Yijun; Wu, Jianhong

    2017-08-01

    We investigate an age-structured hyperbolic equation model by allowing the birth and death functions to be density dependent and periodic in time with the consideration of seasonal effects. By studying the integral form solution of this general hyperbolic equation obtained through the method of integration along characteristics, we give a detailed proof of the uniqueness and existence of the solution in light of the contraction mapping theorem. With additional biologically natural assumptions, using the tick population growth as a motivating example, we derive an age-structured model with time-dependent periodic maturation delays, which is quite different from the existing population models with time-independent maturation delays. For this periodic differential system with seasonal delays, the basic reproduction number R0 is defined as the spectral radius of the next generation operator. Then, we show the tick population tends to die out when R0 < 1 while remains persistent if R0 > 1. When there is no intra-specific competition among immature individuals due to the sufficient availability of immature tick hosts, the global stability of the positive periodic state for the whole model system of four delay differential equations can be obtained with the observation that a scalar subsystem for the adult stage size can be decoupled. The challenge for the proof of such a global stability result can be overcome by introducing a new phase space, based on which, a periodic solution semiflow can be defined which is eventually strongly monotone and strictly subhomogeneous.

  7. Objective measures of sleep and dim light melatonin onset in adolescents and young adults with delayed sleep phase disorder compared to healthy controls.

    PubMed

    Saxvig, Ingvild W; Wilhelmsen-Langeland, Ane; Pallesen, Ståle; Vedaa, Oystein; Nordhus, Inger H; Sørensen, Eli; Bjorvatn, Bjørn

    2013-08-01

    Delayed sleep phase disorder is characterized by a delay in the timing of the major sleep period relative to conventional norms. The sleep period itself has traditionally been described as normal. Nevertheless, it is possible that sleep regulatory mechanism disturbances associated with the disorder may affect sleep duration and/or architecture. Polysomnographic data that may shed light on the issue are scarce. Hence, the aim of this study was to examine polysomnographic measures of sleep in adolescents and young adults with delayed sleep phase disorder, and to compare findings to that of healthy controls. A second aim was to estimate dim light melatonin onset as a marker of circadian rhythm and to investigate the phase angle relationship (time interval) between dim light melatonin onset and the sleep period. Data from 54 adolescents and young adults were analysed, 35 diagnosed with delayed sleep phase disorder and 19 healthy controls. Results show delayed timing of sleep in participants with delayed sleep phase disorder, but once sleep was initiated no group differences in sleep parameters were observed. Dim light melatonin onset was delayed in participants with delayed sleep phase disorder, but no difference in phase angle was observed between the groups. In conclusion, both sleep and dim light melatonin onset were delayed in participants with delayed sleep phase disorder. The sleep period appeared to occur at the same circadian phase in both groups, and once sleep was initiated no differences in sleep parameters were observed. © 2013 European Sleep Research Society.

  8. Dynamic enhanced computed tomography imaging findings of an inflammatory fibroid polyp with massive fibrosis in the stomach

    PubMed Central

    Shim, Eun Jung; Ahn, Sung Eun; Lee, Dong Ho; Park, Seong Jin; Kim, Youn Wha

    2017-01-01

    Inflammatory fibroid polyp (IFP) is a rare benign lesion of the gastrointestinal tract. We report a case of computed tomography (CT) imaging finding of a gastric IFP with massive fibrosis. CT scans showed thickening of submucosal layer with overlying mucosal hyperenhancement in the gastric antrum. The submucosal layer showed increased enhancement on delayed phase imaging. An antrectomy with gastroduodenostomy was performed because gastric cancer was suspected, particularly signet ring cell carcinoma. The histopathological diagnosis was an IFP with massive fibrosis. The authors suggest that when the submucosal layer of the gastric wall is markedly thickened with delayed enhancement and preservation of the mucosal layer, an IFP with massive fibrosis should be considered in the differential diagnosis. PMID:28373777

  9. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  10. On the role of differenced phase-delays in high-precision wide-field multi-source astrometry

    NASA Astrophysics Data System (ADS)

    Martí-Vidal, I.; Marcaide, J. M.; Guirado, J. C.

    2007-07-01

    Phase-delay is, by far, the most precise observable used in interferometry. In typical very-long-baseline-interferometry (VLBI) observations, the uncertainties of the phase-delays can be about 100 times smaller than those of the group delays. However, the phase-delays have an important handicap: they are ambiguous, since they are computed from the relative phases of the signals of the different antennas, and an indeterminate number of complete 2¶- cycles can be added to those phases leaving them unchanged. There are different approaches to solve the ambiguity problem of the phase delays (Shapiro et al., 1979; Beasley & Conway, 1995), but none of them has been ever used in observations involving more than 2.3 sources. In this contribution, we will report for the first-time wide-field multi-source astrometric analysis that has been performed on a complete set of radio sources using the phase-delay observable. The target of our analysis is the S5 polar cap sample, consisting on 13 bright ICRF sources near the North Celestial Pole. We have developed new algorithms and updated existing software to correct, in an automatic way, the ambiguities of the phase-delay and, therefore, perform a phasedelay astrometric analysis of all the sources in the sample. We will also discuss on the impact of the use of phase-delays in the astrometric precision.

  11. Hierarchical organization of the coordinative structure of the skill of clay kneading.

    PubMed

    Yamamoto, Tomoyuki; Fujinami, Tsutomu

    2008-10-01

    An experiment was conducted to study the skill of clay kneading in pottery. This task usually requires a few years to master and is therefore well suited to study the long-term development of a complex motor skill. Participants' kneading movements were measured in 3D using a motion capture device and phase relations among coordinates and joint angles were analyzed in terms of the mutual phase relative to a reference point using the Hilbert transform. While a certain degree of periodicity was observed in all 10 participants, the behavior of the experts was characterized by a significant delay for the right elbow (i.e., the pushing arm) and the fore-aft position of the upper torso and only brief delays for the other parts, which all tended to synchronize with the reference. These findings are consistent with our notion of "differentiation within coordination", according to which skill learning proceeds in a hierarchical manner in that coordination among limb movements is established first, followed by modulations of specific limb movements within the established coordination. Although this feature of expert behavior was also apparent in our previous studies of clay kneading and samba shaking and dancing, the numbers of participants in those studies were not sufficient to draw firm conclusions. Since the present study involved more participants and a superior method of analysis, the present evidence for the principle of differentiation within coordination is more conclusive.

  12. Numerical modelling of multimode fibre-optic communication lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidelnikov, O S; Fedoruk, M P; Sygletos, S

    The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong couplingmore » regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)« less

  13. Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-07-01

    The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.

  14. MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation

    PubMed Central

    Sebastian, Soji; Sreenivas, Prethish; Sambasivan, Ramkumar; Cheedipudi, Sirisha; Kandalla, Prashanth; Pavlath, Grace K.; Dhawan, Jyotsna

    2009-01-01

    Most cells in adult tissues are nondividing. In skeletal muscle, differentiated myofibers have exited the cell cycle permanently, whereas satellite stem cells withdraw transiently, returning to active proliferation to repair damaged myofibers. We have examined the epigenetic mechanisms operating in conditional quiescence by analyzing the function of a predicted chromatin regulator mixed lineage leukemia 5 (MLL5) in a culture model of reversible arrest. MLL5 is induced in quiescent myoblasts and regulates both the cell cycle and differentiation via a hierarchy of chromatin and transcriptional regulators. Knocking down MLL5 delays entry of quiescent myoblasts into S phase, but hastens S-phase completion. Cyclin A2 (CycA) mRNA is no longer restricted to S phase, but is induced throughout G0/G1, with activation of the cell cycle regulated element (CCRE) in the CycA promoter. Overexpressed MLL5 physically associates with the CCRE and impairs its activity. MLL5 also regulates CycA indirectly: Cux, an activator of CycA promoter and S phase is induced in RNAi cells, and Brm/Brg1, CCRE-binding repressors that promote differentiation are repressed. In knockdown cells, H3K4 methylation at the CCRE is reduced, reflecting quantitative global changes in methylation. MLL5 appears to lack intrinsic histone methyl transferase activity, but regulates expression of histone-modifying enzymes LSD1 and SET7/9, suggesting an indirect mechanism. Finally, expression of muscle regulators Pax7, Myf5, and myogenin is impaired in MLL5 knockdown cells, which are profoundly differentiation defective. Collectively, our results suggest that MLL5 plays an integral role in novel chromatin regulatory mechanisms that suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells. PMID:19264965

  15. On the Number of Periodic Solutions of Delay Differential Equations

    NASA Astrophysics Data System (ADS)

    Han, Maoan; Xu, Bing; Tian, Huanhuan; Bai, Yuzhen

    In this paper, we consider the existence and number of periodic solutions for a class of delay differential equations of the form ẋ(t) = bx(t ‑ 1) + 𝜀f(x(t),x(t ‑ 1),𝜀), based on the Kaplan-Yorke method. Especially, we consider a kind of delay differential equations with f as a polynomial having parameters and find the number of periodic solutions with period 4 4k+1 or 4 4k+3.

  16. Numerical Bifurcation Analysis of Delayed Recycle Stream in a Continuously Stirred Tank Reactor

    NASA Astrophysics Data System (ADS)

    Gangadhar, Nalwala Rohitbabu; Balasubramanian, Periyasamy

    2010-10-01

    In this paper, we present the stability analysis of delay differential equations which arise as a result of transportation lag in the CSTR-mechanical separator recycle system. A first order irreversible elementary reaction is considered to model the system and is governed by the delay differential equations. The DDE-BIFTOOL software package is used to analyze the stability of the delay system. The present analysis reveals that the system exhibits delay independent stability for isothermal operation of the CSTR. In the absence of delay, the system is dynamically unstable for non-isothermal operation of the CSTR, and as a result of delay, the system exhibits delay dependent stability.

  17. l-5-hydroxytryptophan resets the circadian locomotor activity rhythm of the nocturnal Indian pygmy field mouse, Mus terricolor

    NASA Astrophysics Data System (ADS)

    Basu, Priyoneel; Singaravel, Muniyandi; Haldar, Chandana

    2012-03-01

    We report that l-5-hydroxytryptophan (5-HTP), a serotonin precursor, resets the overt circadian rhythm in the Indian pygmy field mouse, Mus terricolor, in a phase- and dose-dependent manner. We used wheel running to assess phase shifts in the free-running locomotor activity rhythm. Following entrainment to a 12:12 h light-dark cycle, 5-HTP (100 mg/kg in saline) was intraperitoneally administered in complete darkness at circadian time (CT)s 0, 3, 6, 9, 12, 15, 18, and 21, and the ensuing phase shifts in the locomotor activity rhythm were calculated. The results show that 5-HTP differentially shifts the phase of the rhythm, causing phase advances from CT 0 to CT 12 and phase delays from CT 12 to CT 21. Maximum advance phase shift was at CT 6 (1.18 ± 0.37 h) and maximum delay was at CT 18 (-2.36 ± 0.56 h). No extended dead zone is apparent. Vehicle (saline) at any CT did not evoke a significant phase shift. Investigations with different doses (10, 50, 100, and 200 mg/kg) of 5-HTP revealed that the phase resetting effect is dose-dependent. The shape of the phase-response curve (PRC) has a strong similarity to PRCs obtained using some serotonergic agents. There was no significant increase in wheel-running activity after 5-HTP injection, ruling out behavioral arousal-dependent shifts. This suggests that this phase resetting does not completely depend on feedback of the overt rhythmic behavior on the circadian clock. A mechanistic explanation of these shifts is currently lacking.

  18. Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology.

    PubMed

    Allen, Edward J

    2014-06-01

    Stochastic versions of several discrete-delay and continuous-delay differential equations, useful in mathematical biology, are derived from basic principles carefully taking into account the demographic, environmental, or physiological randomness in the dynamic processes. In particular, stochastic delay differential equation (SDDE) models are derived and studied for Nicholson's blowflies equation, Hutchinson's equation, an SIS epidemic model with delay, bacteria/phage dynamics, and glucose/insulin levels. Computational methods for approximating the SDDE models are described. Comparisons between computational solutions of the SDDEs and independently formulated Monte Carlo calculations support the accuracy of the derivations and of the computational methods.

  19. Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles.

    PubMed

    Earnshaw, John C; Kyprianou, Phillip; Krishan, Kewal; Dhoot, Gurtej K

    2002-07-01

    The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.

  20. Interval oscillation criteria for second-order forced impulsive delay differential equations with damping term.

    PubMed

    Thandapani, Ethiraju; Kannan, Manju; Pinelas, Sandra

    2016-01-01

    In this paper, we present some sufficient conditions for the oscillation of all solutions of a second order forced impulsive delay differential equation with damping term. Three factors-impulse, delay and damping that affect the interval qualitative properties of solutions of equations are taken into account together. The results obtained in this paper extend and generalize some of the the known results for forced impulsive differential equations. An example is provided to illustrate the main result.

  1. Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS.

    PubMed

    Yi, Lilin; Jaouen, Yves; Hu, Weisheng; Su, Yikai; Bigo, Sébastien

    2007-12-10

    We have demonstrated error-free operations of slow-light via stimulated Brillouin scattering (SBS) in optical fiber for 10-Gb/s signals with different modulation formats, including non-return-to-zero (NRZ), phase-shaped binary transmission (PSBT) and differential phase-shiftkeying (DPSK). The SBS gain bandwidth is broadened by using current noise modulation of the pump laser diode. The gain shape is simply controlled by the noise density function. Super-Gaussian noise modulation of the Brillouin pump allows a flat-top and sharp-edge SBS gain spectrum, which can reduce slow-light induced distortion in case of 10-Gb/s NRZ signal. The corresponding maximal delay-time with error-free operation is 35 ps. Then we propose the PSBT format to minimize distortions resulting from SBS filtering effect and dispersion accompanied with slow light because of its high spectral efficiency and strong dispersion tolerance. The sensitivity of the 10-Gb/s PSBT signal is 5.2 dB better than the NRZ case with a same 35-ps delay. The maximal delay of 51 ps with error-free operation has been achieved. Futhermore, the DPSK format is directly demodulated through a Gaussian-shaped SBS gain, which is achieved using Gaussian-noise modulation of the Brillouin pump. The maximal error-free time delay after demodulation of a 10-Gb/s DPSK signal is as high as 81.5 ps, which is the best demonstrated result for 10-Gb/s slow-light.

  2. Large tuning of birefringence in two strip silicon waveguides via optomechanical motion.

    PubMed

    Ma, Jing; Povinelli, Michelle L

    2009-09-28

    We present an optomechanical method to tune phase and group birefringence in parallel silicon strip waveguides. We first calculate the deformation of suspended, parallel strip waveguides due to optical forces. We optimize the frequency and polarization of the pump light to obtain a 9 nm deformation for an optical power of 20 mW. Widely tunable phase and group birefringence can be achieved by varying the pump power, with maximum values of 0.026 and 0.13, respectively. The giant phase birefringence allows linear to circular polarization conversion within 30 microm for a pump power of 67 mW. The group birefringence gives a tunable differential group delay of 6fs between orthogonal polarizations. We also evaluate the tuning performance of waveguides with different cross sections.

  3. The performance of differential VLBI delay during interplanetary cruise

    NASA Technical Reports Server (NTRS)

    Moultrie, B.; Wolff, P. J.; Taylor, T. H.

    1984-01-01

    Project Voyager radio metric data are used to evaluate the orbit determination abilities of several data strategies during spacecraft interplanetary cruise. Benchmark performance is established with an operational data strategy of conventional coherent doppler, coherent range, and explicitly differenced range data from two intercontinental baselines to ameliorate the low declination singularity of the doppler data. Employing a Voyager operations trajectory as a reference, the performance of the operational data strategy is compared to the performances of data strategies using differential VLBI delay data (spacecraft delay minus quasar delay) in combinations with the aforementioned conventional data types. The comparison of strategy performances indicates that high accuracy cruise orbit determination can be achieved with a data strategy employing differential VLBI delay data, where the quantity of coherent radio metric data has been greatly reduced.

  4. Maximum principle for a stochastic delayed system involving terminal state constraints.

    PubMed

    Wen, Jiaqiang; Shi, Yufeng

    2017-01-01

    We investigate a stochastic optimal control problem where the controlled system is depicted as a stochastic differential delayed equation; however, at the terminal time, the state is constrained in a convex set. We firstly introduce an equivalent backward delayed system depicted as a time-delayed backward stochastic differential equation. Then a stochastic maximum principle is obtained by virtue of Ekeland's variational principle. Finally, applications to a state constrained stochastic delayed linear-quadratic control model and a production-consumption choice problem are studied to illustrate the main obtained result.

  5. Quasi-Newton methods for parameter estimation in functional differential equations

    NASA Technical Reports Server (NTRS)

    Brewer, Dennis W.

    1988-01-01

    A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.

  6. Control of the coherence behavior in a SFG interferometer through the multipump phases command.

    PubMed

    Darré, P; Lehmann, L; Grossard, L; Delage, L; Reynaud, F

    2018-03-19

    In this paper, we report on a novel method to control the coherence behavior in a sum frequency generation interferometer powered by two independent pump lines. At the output of the interferometer, the two incoherent fringe patterns must be superimposed to maximize the contrast. The first step consists in canceling the differential group delay. The second one uses the phase control on one pump to synchronize the fringe patterns. This innovative method is experimentally demonstrated with a setup involving a 1544 nm signal and two pump lines around 1064 nm leading to a converted signal around 630 nm. It can be easily extended to a greater number of pump lines.

  7. Response-food delay gradients for lever pressing and schedule-induced licking in rats.

    PubMed

    Pellón, Ricardo; Pérez-Padilla, Angeles

    2013-06-01

    Eight food-deprived Wistar rats developed stable patterns of lever pressing and licking when exposed to a fixed-time 30-s schedule of food pellet presentation. The rats were trained to lever press by presenting the lever 10 s before the programmed food delivery, with the food pellet being delivered immediately upon a lever press. The operant contingency was then removed and the lever was inserted through the entire interfood interval, being withdrawn with food delivery and reinserted 2 s later. On successive phases of the study, a protective contingency postponed food delivery if responses (lever presses or licks) occurred within the last 1, 2, 5, 10, 20, or 25 s of the interfood interval. Lever pressing was reduced at much shorter response-food delays than those that reduced licking. These results demonstrate that reinforcement contributes to the maintenance of different response patterns on periodic schedules, and that different responses are differentially sensitive to delays.

  8. Ionizing radiation and cell cycle progression in ataxia telangiectasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beamish, H.; Khanna, K.K.; Lavin, M.F.

    1994-04-01

    Exposure of mammalian cells to ionizing radiation causes delay in normal progress through the cell cycle at a number of different checkpoints. Abnormalities in these checkpoints have been described for ataxia telangiectasia cells after irradiation. In this report we show that these abnormalities occur at different phases in the cell cycle in several ataxia telangiectasia lymphoblastoid cells. Ataxia telangiectasia cells, synchronized in late G{sub 1} phase with either mimosine or aphidicolin and exposed to radiation, showed a reduced delay in entering S phase compared to irradiated control cells. Failure to exhibit G{sub 1}-phase delay in ataxia telangiectasia cells is accompaniedmore » by a reduced ability of radiation to activate the product of the tumor suppressor gene p53, a protein involved in G{sub 1}/S-phase delay. When the progress of irradiated G{sub 1}-phase cells was followed into the subsequent G{sub 2} and G{sub 1} phases ataxia telangiectasia cells showed a more pronounced accumulation in G{sub 2} phase than control cells. When cells were irradiated in S phase and extent of delay was more evident in G{sub 2} phase and ataxia telangiectasia cells were delayed to a greater extent. These results suggest that the lack of initial delay in both G{sub 1} and S phases to the radiosensitivity observed in this syndrome. 26 refs., 3 figs., 2 tabs.« less

  9. Cross-phase modulation-induced spectral broadening in silicon waveguides.

    PubMed

    Zhang, Yanbing; Husko, Chad; Lefrancois, Simon; Rey, Isabella H; Krauss, Thomas F; Schröder, Jochen; Eggleton, Benjamin J

    2016-01-11

    We analytically and experimentally investigate cross-phase modulation (XPM) in silicon waveguides. In contrast to the well known result in pure Kerr media, the spectral broadening ratio of XPM to self-phase modulation is not two in the presence of either two-photon absorption (TPA) or free carriers. The physical origin of this change is different for each effect. In the case of TPA, this nonlinear absorption attenuates and slightly modifies the pulse shape due to differential absorption in the pulse peak and wings. When free carriers are present two different mechanisms modify the dynamics. First, free-carrier absorption performs a similar role to TPA, but is additionally asymmetric due to the delayed free-carrier response. Second, free-carrier dispersion induces an asymmetric blue phase shift which competes directly with the symmetric Kerr-induced XPM red shift. We confirm this analysis with pump-probe experiments in a silicon photonic crystal waveguide.

  10. Integration of ERS and ASAR Time Series for Differential Interferometric SAR Analysis

    NASA Astrophysics Data System (ADS)

    Werner, C. L.; Wegmüller, U.; Strozzi, T.; Wiesmann, A.

    2005-12-01

    Time series SAR interferometric analysis requires SAR data with good temporal sampling covering the time period of interest. The ERS satellites operated by ESA have acquired a large global archive of C-Band SAR data since 1991. The ASAR C-Band instrument aboard the ENVISAT platform launched in 2002 operates in the same orbit as ERS-1 and ERS-2 and has largely replaced the remaining operational ERS-2 satellite. However, interferometry between data acquired by ERS and ASAR is complicated by a 31 MHz offset in the radar center frequency between the instruments leading to decorrelation over distributed targets. Only in rare instances, when the baseline exceeds 1 km, can the spectral shift compensate for the difference in the frequencies of the SAR instruments to produce visible fringes. Conversely, point targets do not decorrelate due to the frequency offset making it possible to incorporate the ERS-ASAR phase information and obtain improved temporal coverage. We present an algorithm for interferometric point target analysis that integrates ERS-ERS, ASAR-ASAR and ERS-ASAR data. Initial analysis using the ERS-ERS data is used to identify the phase stable point-like scatterers within the scene. Height corrections relative to the initial DEM are derived by regression of the residual interferometric phases with respect to perpendicular baseline for a set of ERS-ERS interferograms. The ASAR images are coregistered with the ERS scenes and the point phase values are extracted. The different system pixel spacing values between ERS and ASAR requires additional refinement in the offset estimation and resampling procedure. Calculation of the ERS-ASAR simulated phase used to derive the differential interferometric phase must take into account the slightly different carrrier frequencies. Differential ERS-ASAR point phases contain an additional phase component related to the scatterer location within the resolution element. This additional phase varies over several cycles making the differential interferogram appear as uniform phase noise. We present how this point phase difference can be determined and used to correct the ERS-ASAR interferograms. Further processing proceeds as with standard ERS-ERS interferogram stacks utilizing the unwrapped point phases to obtain estimates of the deformation history, and path delay due to variations in tropospheric water vapor. We show and discuss examples demonstrating the success of this approach.

  11. Broadband pump-probe spectroscopy at 20-MHz modulation frequency.

    PubMed

    Preda, Fabrizio; Kumar, Vikas; Crisafi, Francesco; Figueroa Del Valle, Diana Gisell; Cerullo, Giulio; Polli, Dario

    2016-07-01

    We introduce an innovative high-sensitivity broadband pump-probe spectroscopy system, based on Fourier-transform detection, operating at 20-MHz modulation frequency. A common-mode interferometer employing birefringent wedges creates two phase-locked delayed replicas of the broadband probe pulse, interfering at a single photodetector. A single-channel lock-in amplifier demodulates the interferogram, whose Fourier transform provides the differential transmission spectrum. Our approach combines broad spectral coverage with high sensitivity, due to high-frequency modulation and detection. We demonstrate its performances by measuring two-dimensional differential transmission maps of a carbon nanotubes sample, simultaneously acquiring the signal over the entire 950-1350 nm range with 2.7·10-6  rms noise over 1.5 s integration time.

  12. A necessary and sufficient condition for well-posedness of initial value problems of retarded functional differential equations

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Junya

    2017-09-01

    We introduce the retarded functional differential equations (RFDEs) with general delay structure to treat various delay differential equations (DDEs) in a unified way and to clarify the delay structure in those dynamics. We are interested in the question as to which space of histories is suitable for the dynamics of each DDE, and investigate the well-posedness of the initial value problems (IVPs) of the RFDEs. A main theorem is that the IVP is well-posed for any ;admissible; history functional if and only if the semigroup determined by the trivial RFDE x ˙ = 0 is continuous. We clarify the meaning of the Hale-Kato axiom (Hale & Kato [12]) by applying this result to RFDEs with infinite delay. We also apply the result to DDEs with unbounded time- and state-dependent delays.

  13. GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis.

    PubMed

    Gan, Yinbo; Kumimoto, Rod; Liu, Chang; Ratcliffe, Oliver; Yu, Hao; Broun, Pierre

    2006-06-01

    As a plant shoot matures, it transitions through a series of growth phases in which successive aerial organs undergo distinct developmental changes. This process of phase change is known to be influenced by gibberellins (GAs). We report the identification of a putative transcription factor, GLABROUS INFLORESCENCE STEMS (GIS), which regulates aspects of shoot maturation in Arabidopsis thaliana. GIS loss-of-function mutations affect the epidermal differentiation of inflorescence organs, causing a premature decrease in trichome production on successive leaves, stem internodes, and branches. Overexpression has the opposite effect on trichome initiation and causes other heterochronic phenotypes, affecting flowering and juvenile-adult leaf transition and inducing the formation of rosette leaves on inflorescence stems. Genetic and gene expression analyses suggest that GIS acts in a GA-responsive pathway upstream of the trichome initiation regulator GLABROUS1 (GL1) and downstream of the GA signaling repressor SPINDLY (SPY). GIS mediates the induction of GL1 expression by GA in inflorescence organs and is antagonized in its action by the DELLA repressor GAI. The implication of GIS in the broader regulation of phase change is further suggested by the delay in flowering caused by GIS loss of function in the spy background. The discovery of GIS reveals a novel mechanism in the control of shoot maturation, through which GAs regulate cellular differentiation in plants.

  14. Revealing determinants of two-phase dynamics of P53 network under gamma irradiation based on a reduced 2D relaxation oscillator model.

    PubMed

    Demirkıran, Gökhan; Kalaycı Demir, Güleser; Güzeliş, Cüneyt

    2018-02-01

    This study proposes a two-dimensional (2D) oscillator model of p53 network, which is derived via reducing the multidimensional two-phase dynamics model into a model of ataxia telangiectasia mutated (ATM) and Wip1 variables, and studies the impact of p53-regulators on cell fate decision. First, the authors identify a 6D core oscillator module, then reduce this module into a 2D oscillator model while preserving the qualitative behaviours. The introduced 2D model is shown to be an excitable relaxation oscillator. This oscillator provides a mechanism that leads diverse modes underpinning cell fate, each corresponding to a cell state. To investigate the effects of p53 inhibitors and the intrinsic time delay of Wip1 on the characteristics of oscillations, they introduce also a delay differential equation version of the 2D oscillator. They observe that the suppression of p53 inhibitors decreases the amplitudes of p53 oscillation, though the suppression increases the sustained level of p53. They identify Wip1 and P53DINP1 as possible targets for cancer therapies considering their impact on the oscillator, supported by biological findings. They model some mutations as critical changes of the phase space characteristics. Possible cancer therapeutic strategies are then proposed for preventing these mutations' effects using the phase space approach.

  15. Effects of joint attention on long-term memory in 9-month-old infants: an event-related potentials study.

    PubMed

    Kopp, Franziska; Lindenberger, Ulman

    2011-07-01

    Joint attention develops during the first year of life but little is known about its effects on long-term memory. We investigated whether joint attention modulates long-term memory in 9-month-old infants. Infants were familiarized with visually presented objects in either of two conditions that differed in the degree of joint attention (high versus low). EEG indicators in response to old and novel objects were probed directly after the familiarization phase (immediate recognition), and following a 1-week delay (delayed recognition). In immediate recognition, the amplitude of positive slow-wave activity was modulated by joint attention. In the delayed recognition, the amplitude of the Pb component differentiated between high and low joint attention. In addition, the positive slow-wave amplitude during immediate and delayed recognition correlated with the frequency of infants' looks to the experimenter during familiarization. Under both high- and low-joint-attention conditions, the processing of unfamiliar objects was associated with an enhanced Nc component. Our results show that the degree of joint attention modulates EEG during immediate and delayed recognition. We conclude that joint attention affects long-term memory processing in 9-month-old infants by enhancing the relevance of attended items. © 2010 Blackwell Publishing Ltd.

  16. Low-noise sub-harmonic injection locked multiloop ring oscillator

    NASA Astrophysics Data System (ADS)

    Weilin, Xu; Di, Wu; Xueming, Wei; Baolin, Wei; Jihai, Duan; Fadi, Gui

    2016-09-01

    A three-stage differential voltage-controlled ring oscillator is presented for wide-tuning and low-phase noise requirement of clock and data recovery circuit in ultra wideband (UWB) wireless body area network. To improve the performance of phase noise of delay cell with coarse and fine frequency tuning, injection locked technology together with pseudo differential architecture are adopted. In addition, a multiloop is employed for frequency boosting. Two RVCOs, the standard RVCO without the IL block and the proposed IL RVCO, were fabricated in SMIC 0.18 μm 1P6M Salicide CMOS process. The proposed IL RVCO exhibits a measured phase noise of -112.37 dBc/Hz at 1 MHz offset from the center frequency of 1 GHz, while dissipating a current of 8 mA excluding the buffer from a 1.8-V supply voltage. It shows a 16.07 dB phase noise improvement at 1 MHz offset compared to the standard topology. Project supported by the National Natural Science Foundation of China (No. 61264001), the Guangxi Natural Science Foundation (Nos. 2013GXNSFAA019333, 2015GXNSFAA139301, 2014GXNSFAA118386), the Graduate Education Innovation Program of GUET (No. GDYCSZ201457), the Project of Guangxi Education Department (No. LD14066B) and the High-Level-Innovation Team and Outstanding Scholar Project of Guangxi Higher Education Institutes.

  17. Hepatocellular carcinoma in cirrhotic patients at multidetector CT: hepatic venous phase versus delayed phase for the detection of tumour washout

    PubMed Central

    Furlan, A; Marin, D; Vanzulli, A; Patera, G Palermo; Ronzoni, A; Midiri, M; Bazzocchi, M; Lagalla, R; Brancatelli, G

    2011-01-01

    Objectives Our aim was to compare retrospectively hepatic venous and delayed phase images for the detection of tumour washout during multiphasic multidetector row CT (MDCT) of the liver in patients with hepatocellular carcinoma (HCC). Methods 30 cirrhotic patients underwent multiphasic MDCT in the 90 days before liver transplantation. MDCT was performed before contrast medium administration and during hepatic arterial hepatic venous and delayed phases, images were obtained at 12, 55 and 120 s after trigger threshold. Two radiologists qualitatively evaluated images for lesion attenuation. Tumour washout was evaluated subjectively and objectively. Tumour-to-liver contrast (TLC) was measured for all pathologically proven HCCs. Results 48 HCCs were detected at MDCT. 46 of the 48 tumours (96%) appeared as either hyper- or isoattenuating during the hepatic arterial phase subjective washout was present in 15 HCCs (33%) during the hepatic venous phase and in 35 (76%) during the delayed phase (p<0.001, McNemar’s test). Objective washout was present in 30 of the 46 HCCs (65%) during the hepatic venous phase and in 42 of the HCCs (91%) during the delayed phase (p=0.001). The delayed phase yielded significantly higher mean TLC absolute values compared with the hepatic venous phase (−16.1±10.8 HU vs −10.5±10.2 HU; p<0.001). Conclusions The delayed phase is superior to the hepatic venous phase for detection of tumour washout of pathologically proven HCC in cirrhotic patients. PMID:21081569

  18. Radar wideband digital beamforming based on time delay and phase compensation

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Jiang, Defu

    2018-07-01

    In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.

  19. Phase modulated 2D HSQC-TOCSY for unambiguous assignment of overlapping spin systems

    NASA Astrophysics Data System (ADS)

    Singh, Amrinder; Dubey, Abhinav; Adiga, Satish K.; Atreya, Hanudatta S.

    2018-01-01

    We present a new method that allows one to unambiguously resolve overlapping spin systems often encountered in biomolecular systems such as peptides and proteins or in samples containing a mixture of different molecules such as in metabolomics. We address this problem using the recently proposed phase modulation approach. By evolving the 1H chemical shifts in a conventional two dimensional (2D) HSQC-TOCSY experiment for a fixed delay period, the phase/intensity of set of cross peaks belonging to one spin system are modulated differentially relative to those of its overlapping counterpart, resulting in their discrimination and recognition. The method thus accelerates the process of identification and resonance assignment of individual compounds in complex mixtures. This approach facilitated the assignment of molecules in the embryo culture medium used in human assisted reproductive technology.

  20. Boon and Bane of Inflammation in Bone Tissue Regeneration and Its Link with Angiogenesis.

    PubMed

    Schmidt-Bleek, Katharina; Kwee, Brian J; Mooney, David J; Duda, Georg N

    2015-08-01

    Delayed healing or nonhealing of bone is an important clinical concern. Although bone, one of the two tissues with scar-free healing capacity, heals in most cases, healing is delayed in more than 10% of clinical cases. Treatment of such delayed healing condition is often painful, risky, time consuming, and expensive. Tissue healing is a multistage regenerative process involving complex and well-orchestrated steps, which are initiated in response to injury. At best, these steps lead to scar-free tissue formation. At the onset of healing, during the inflammatory phase, stationary and attracted macrophages and other immune cells at the fracture site release cytokines in response to injury. This initial reaction to injury is followed by the recruitment, proliferation, and differentiation of mesenchymal stromal cells, synthesis of extracellular matrix proteins, angiogenesis, and finally tissue remodeling. Failure to heal is often associated with poor revascularization. Since blood vessels mediate the transport of circulating cells, oxygen, nutrients, and waste products, they appear essential for successful healing. The strategy of endogenous regeneration in a tissue such as bone is interesting to analyze since it may represent a blueprint of successful tissue formation. This review highlights the interdependency of the time cascades of inflammation, angiogenesis, and tissue regeneration. A better understanding of these inter-relations is mandatory to early identify patients at risk as well as to overcome critical clinical conditions that limit healing. Instead of purely tolerating the inflammatory phase, modulations of inflammation (immunomodulation) might represent a valid therapeutic strategy to enhance angiogenesis and foster later phases of tissue regeneration.

  1. Estimation of delays and other parameters in nonlinear functional differential equations

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Lamm, P. K. D.

    1983-01-01

    A spline-based approximation scheme for nonlinear nonautonomous delay differential equations is discussed. Convergence results (using dissipative type estimates on the underlying nonlinear operators) are given in the context of parameter estimation problems which include estimation of multiple delays and initial data as well as the usual coefficient-type parameters. A brief summary of some of the related numerical findings is also given.

  2. Prevalence of delayed-onset posttraumatic stress disorder in military personnel: is there evidence for this disorder?: Results of a prospective UK cohort study.

    PubMed

    Goodwin, Laura; Jones, Margaret; Rona, Roberto J; Sundin, Josefin; Wessely, Simon; Fear, Nicola T

    2012-05-01

    Delayed-onset posttraumatic stress disorder (PTSD) is defined as onset at least 6 months after a traumatic event. This study investigates the prevalence of delayed-onset PTSD in 1397 participants from a two-phase prospective cohort study of UK military personnel. Delayed-onset PTSD was categorized as participants who did not meet the criteria for probable PTSD (assessed using the PTSD Checklist Civilian version) at phase 1 but met the criteria by phase 2. Of the participants, 3.5% met the criteria for delayed-onset PTSD. Subthreshold PTSD, common mental disorder (CMD), poor/fair self-reported health, and multiple physical symptoms at phase 1 and the onset of alcohol misuse or CMD between phases 1 and 2 were associated with delayed-onset PTSD. Delayed-onset PTSD exists in this UK military sample. Military personnel who developed delayed-onset PTSD were more likely to have psychological ill-health at an earlier assessment, and clinicians should be aware of the potential comorbidity in these individuals, including alcohol misuse. Leaving the military or experiencing relationship breakdown was not associated.

  3. Perturbations of linear delay differential equations at the verge of instability.

    PubMed

    Lingala, N; Namachchivaya, N Sri

    2016-06-01

    The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.

  4. Stability analysis for a delay differential equations model of a hydraulic turbine speed governor

    NASA Astrophysics Data System (ADS)

    Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.

    2017-01-01

    The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.

  5. Local bifurcations in differential equations with state-dependent delay.

    PubMed

    Sieber, Jan

    2017-11-01

    A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDE.

  6. Decoding synchronized oscillations within the brain: phase-delayed inhibition provides a robust mechanism for creating a sharp synchrony filter.

    PubMed

    Patel, Mainak; Joshi, Badal

    2013-10-07

    The widespread presence of synchronized neuronal oscillations within the brain suggests that a mechanism must exist that is capable of decoding such activity. Two realistic designs for such a decoder include: (1) a read-out neuron with a high spike threshold, or (2) a phase-delayed inhibition network motif. Despite requiring a more elaborate network architecture, phase-delayed inhibition has been observed in multiple systems, suggesting that it may provide inherent advantages over simply imposing a high spike threshold. In this work, we use a computational and mathematical approach to investigate the efficacy of the phase-delayed inhibition motif in detecting synchronized oscillations. We show that phase-delayed inhibition is capable of creating a synchrony detector with sharp synchrony filtering properties that depend critically on the time course of inputs. Additionally, we show that phase-delayed inhibition creates a synchrony filter that is far more robust than that created by a high spike threshold. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Use of Very Long Baseline Array Interferometric Data for Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Antreasian, P.; Border, J.; Benson, J.; Dhawan, V.; Fomalont, E.; Graat, E.; Jacobson, R.; Lanyi, G.; McElrath, T.; hide

    2006-01-01

    The main VLBI technique that is used at JPL is known as the Delta Differential One-way Ranging ((Delta)DOR). Two DSN antennas simultaneously track a source, and alternate between sources. The signals recorded at the antennas from each source are correlated to obtain the delay in arrival to the two antennas, and the delays are differenced to remove common-source errors. An alternative technique is to use carrier phase differences between antennas. This is routinely done by the Very Large Baseline Array (VLBA) as part of source imaging. The VLBA capabilities are used for scientific research, but also have the potential to be used for navigation. Two main experiments were performed with the VLBA and JPL spacecraft. This paper describes and analyzes these experiments and discusses the possible uses of VLBA tracking for spacecraft navigation.

  8. Sleep deprivation decreases phase-shift responses of circadian rhythms to light in the mouse: role of serotonergic and metabolic signals.

    PubMed

    Challet, E; Turek, F W; Laute, M; Van Reeth, O

    2001-08-03

    The circadian pacemaker in the suprachiasmatic nuclei is primarily synchronized to the daily light-dark cycle. The phase-shifting and synchronizing effects of light can be modulated by non-photic factors, such as behavioral, metabolic or serotonergic cues. The present experiments examine the effects of sleep deprivation on the response of the circadian pacemaker to light and test the possible involvement of serotonergic and/or metabolic cues in mediating the effects of sleep deprivation. Photic phase-shifting of the locomotor activity rhythm was analyzed in mice transferred from a light-dark cycle to constant darkness, and sleep-deprived for 8 h from Zeitgeber Time 6 to Zeitgeber Time 14. Phase-delays in response to a 10-min light pulse at Zeitgeber Time 14 were reduced by 30% in sleep-deprived mice compared to control mice, while sleep deprivation without light exposure induced no significant phase-shifts. Stimulation of serotonin neurotransmission by fluoxetine (10 mg/kg), a serotonin reuptake inhibitor that decreases light-induced phase-delays in non-deprived mice, did not further reduce light-induced phase-delays in sleep-deprived mice. Impairment of serotonin neurotransmission with p-chloroamphetamine (three injections of 10 mg/kg), which did not increase light-induced phase-delays in non-deprived mice significantly, partially normalized light-induced phase-delays in sleep-deprived mice. Injections of glucose increased light-induced phase-delays in control and sleep-deprived mice. Chemical damage of the ventromedial hypothalamus by gold-thioglucose (600 mg/kg) prevented the reduction of light-induced phase-delays in sleep-deprived mice, without altering phase-delays in control mice. Taken together, the present results indicate that sleep deprivation can reduce the light-induced phase-shifts of the mouse suprachiasmatic pacemaker, due to serotonergic and metabolic changes associated with the loss of sleep.

  9. Delay in Apoptosome Formation Attenuates Apoptosis in Mouse Embryonic Stem Cell Differentiation

    PubMed Central

    Akbari-Birgani, Shiva; Hosseinkhani, Saman; Mollamohamadi, Sepideh; Baharvand, Hossein

    2014-01-01

    Differentiation is an inseparable process of development in multicellular organisms. Mouse embryonic stem cells (mESCs) represent a valuable research tool to conduct in vitro studies of cell differentiation. Apoptosis as a well known cell death mechanism shows some common features with cell differentiation, which has caused a number of ambiguities in the field. The research question here is how cells could differentiate these two processes from each other. We have investigated the role of the mitochondrial apoptotic pathway and cell energy level during differentiation of mESCs into the cardiomyocytes and their apoptosis. p53 expression, cytochrome c release, apoptosome formation, and caspase-3/7 activation are observed upon induction of both apoptosis and differentiation. However, remarkable differences are detected in time of cytochrome c appearance, apoptosome formation, and caspase activity upon induction of both processes. In apoptosis, apoptosome formation and caspase activity were observed rapidly following the cytochrome c release. Unlike apoptosis, the release of cytochrome c upon differentiation took more time, and the maximum caspase activity was also postponed for 24 h. This delay suggests that there is a regulatory mechanism during differentiation of mESCs into cardiomyocytes. The highest ATP content of cells was observed immediately after cytochrome c release 6 h after apoptosis induction and then decreased, but it was gradually increased up to 48 h after differentiation. These observations suggest that a delay in the release of cytochrome c or delay in ATP increase attenuate apoptosome formation, and caspase activation thereby discriminates apoptosis from differentiation in mESCs. PMID:24755221

  10. Inducing jet-lag in older people: directional asymmetry

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Carrier, J.; Kupfer, D. J.

    2000-01-01

    Twenty healthy elderly subjects (12 female, 8 male; mean age 81 years, range 67-87 years) each experienced a 15-day time isolation protocol in which they lived individually in a special laboratory apartment in which sleep and circadian rhythm measures could be taken. There were two experiments: one (6 females, 4 males) involved a 6-h phase advance of the sleep/wake cycle, and the other (6 females, 4 males) a 6-h phase delay. Each started with 5 baseline days, immediately followed by the phase shift. The subject was then held to the phase shifted routine for the remainder of the study. Rectal temperatures were recorded minute-by-minute throughout the entire experiment and each night of sleep was recorded using polysomnography. A directional asymmetry in phase-shift effects was apparent, with significantly more sleep disruption and circadian rhythm amplitude disruption after the phase advance than after the phase delay. Sleep disruption was reflected in reduced time spent asleep, and in changed REM latency, which increased in the phase advance direction but decreased in the phase delay direction. Although the phase advance led to a significant increase in wakefulness in the first half of the night, the phase delay did not lead to an equivalent increase in wakefulness during the second half of the night. Examination of both raw and 'demasked' circadian rectal temperature rhythms confirmed that phase adjustment was slow in both directions, but was less slow (and more monotonic) after the phase delay than after the phase advance. Subjective alertness suffered more disruption after the phase advance than after the phase delay.

  11. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemicalmore » Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.« less

  12. [Fibrous tissue(s): a key for lesion characterization in digestive diseases].

    PubMed

    Régent, D; Laurent, V; Antunes, L; Debelle, L; Cannard, L; Leclerc, Jc; Beot, S

    2002-02-01

    Fibrosis is one of the hallmarks of inflammatory and repair processes in pathology. Various exogenous and endogenous stimuli, including tumor development, can induce inflammatory reactions. During the post-equilibrium phase after IV injection of non specific contrast media, CT and/or MR allow the study of these inflammatory answers to tumoral or infectious processes. Delayed enhancement of collagenic fibrous tissue during the late post-equilibrium phase is an essential complementary data in the characterization of many liver lesions: cirrhosis, cholangiocarcinoma, focal nodular hyperplasia, fibrous metastasis. but also for the differential diagnosis of pancreatic diseases (groove pancreatitis vs ductal adenocarcinoma) or of gastro-intestinal diseases (gastric adenocarcinoma vs lymphoma, mechanical complication vs inflammatory bouts of ileal Crohn's disease).

  13. Effects of UCS intensity and duration of exposure of nonreinforced CS on conditioned electrodermal responses: an experimental analysis of the incubation theory of anxiety.

    PubMed

    Chorot, P; Sandín, B

    1993-12-01

    Eysenck's incubation theory of fear or anxiety was examined in a human Pavlovian conditioning experiment with skin-conductance responses as the dependent variable. The conditioned stimuli (CSs) were fear-relevant slides (snakes and spiders) and the unconditioned stimuli (UCSs) were aversive tones. Different groups of subjects were presented two tone intensities during the acquisition phase and three durations of nonreinforced CS (extinction phase) in a delay differential conditioning paradigm. Resistance to extinction of conditioned skin-conductance responses (conditioned fear responses) exhibited was largest for high intensity of tone and short presentations of the nonreinforced CS (CS+presented alone). The result tends to support Eysenck's incubation theory of anxiety.

  14. Core-Mantle Boundary Complexities beneath the Mid-Pacific

    NASA Astrophysics Data System (ADS)

    Sun, D.; Helmberger, D. V.; Jackson, J. M.

    2016-12-01

    The detailed core-mantle boundary (CMB) structures beneath the Mid-Pacific are important to map the boundary of Large Low Shear Velocity Province (LLSVP) and the location of ultra-low velocity zone (ULVZ) related to the LLSVP and the D" layer, which are crucial for answering the key questions regarding to the mantle dynamics. Seismic data from deep earthquakes in the Fiji-Tonga region recorded by stations of USArray provide great sampling of the CMB beneath the Mid-Pacific. Here we explore the USArray data with different seismic phases to study the CMB complexities beneath the Mid-Pacific. First, we examined the differential travel time and amplitude between ScS and S for data at western US and confirm the northeastern boundary of the mid-Pacific LLSVP. The delayed ScS-S travel times and smaller amplitude of ScS require the existence of ULVZ locally. Secondly, the Sdiff data recorded by stations at central US shows variation in multi-pathing, that is, the presence of secondary arrivals following the S phase at diffracted distances (Sdiff) which suggests that the waveform complexity is due to structures at the eastern edge of the mid-Pacific LLSVP. This study reinforces previous studies that indicate late arrivals occurring after the primary Sdiff arrivals. A tapered wedge structure with low shear velocity allows for wave energy trapping, producing the observed waveform complexity and delayed arrivals at large distances. The location of the low velocity anomaly agrees with that inferred from the ScS-S measurements. We also observed advanced SV arrivals, which can be explained by the emerging of the D" discontinuity to the east of the boundary of the LLSVP to produce a "pseudo anisotropy". Thirdly, the arrivals of the SPdKS phase support the presence of an ULVZ within a two-humped LLSVP. A sharp 10 secs jump of the differential travel time between S and SKS (TS-SKS) across distance range of 5° is observed. The associated SKS waveform distortions suggest that the differential travel time anomaly is mainly controlled by the SKS, which is explained by a possible slab subducted to the lower mantle.

  15. Differential clinical efficacy of anti-CD4 monoclonal antibodies in rat adjuvant arthritis is paralleled by differential influence on NF-κB binding activity and TNF-α secretion of T cells

    PubMed Central

    Pohlers, Dirk; Schmidt-Weber, Carsten B; Franch, Angels; Kuhlmann, Jürgen; Bräuer, Rolf; Emmrich, Frank; Kinne, Raimund W

    2002-01-01

    The aim of this study was to analyze the differential effects of three anti-CD4 monoclonal antibodies (mAbs) (with distinct epitope specifities) in the treatment of rat adjuvant arthritis (AA) and on T-cell function and signal transduction. Rat AA was preventively treated by intraperitoneal injection of the anti-CD4 mAbs W3/25, OX35, and RIB5/2 (on days -1, 0, 3, and 6, i.e. 1 day before AA induction, on the day of induction [day 0], and thereafter). The effects on T-cell reactivity in vivo (delayed-type hypersensitivity), ex vivo (ConA-induced proliferation), and in vitro (mixed lymphocyte culture) were assessed. The in vitro effects of anti-CD4 preincubation on T-cell receptor (TCR)/CD3-induced cytokine production and signal transduction were also analyzed. While preventive treatment with OX35 and W3/25 significantly ameliorated AA from the onset, treatment with RIB5/2 even accelerated the onset of AA by approximately 2 days (day 10), and ameliorated the arthritis only in the late phase (day 27). Differential clinical effects at the onset of AA were paralleled by a differential influence of the mAbs on T-cell functions, i.e. in comparison with OX35 and W3/25, the 'accelerating' mAb RIB5/2 failed to increase the delayed-type hypersentivity (DTH) to Mycobacterium tuberculosis, increased the in vitro tumor necrosis factor (TNF)-α secretion, and more strongly induced NF-κB binding activity after anti-CD4 preincubation and subsequent TCR/CD3-stimulation. Depending on their epitope specificity, different anti-CD4 mAbs differentially influence individual proinflammatory functions of T cells. This fine regulation may explain the differential efficacy in the treatment of AA and may contribute to the understanding of such treatments in other immunopathologies. PMID:12010568

  16. Describing-function analysis of a ripple regulator with slew-rate limits and time delays

    NASA Technical Reports Server (NTRS)

    Wester, Gene W.

    1990-01-01

    The effects of time delays and slew-rate limits on the steady-state operating points and performance of a free-running ripple regulator are evaluated using describing-function analysis. The describing function of an ideal comparator (no time delays or slew rate limits) has no phase shift and is independent of frequency. It is found that turn-on delay and turn-off delay have different effects on gain and phase and cannot be combined. Comparator hysteresis affects both gain and phase; likewise, time delays generally affect both gain and phase. It is found that the effective time delay around the feedback loop is one half the sum of turn-on and turn-off delays, regardless of whether the delays are caused by storage time or slew rate limits. Expressions are formulated for the switching frequency, switch duty ratio, dc output, and output ripple. For the case of no hysteresis, a simple, graphical solution for the switching frequency is possible, and the resulting switching frequency is independent of first-order variations of input or load.

  17. Analytical approximate solutions for a general class of nonlinear delay differential equations.

    PubMed

    Căruntu, Bogdan; Bota, Constantin

    2014-01-01

    We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.

  18. Lesions Responsible for Delayed Oral Transit Time in Post-stroke Dysphagia.

    PubMed

    Moon, Hyun Im; Yoon, Seo Yeon; Yi, Tae Im; Jeong, Yoon Jeong; Cho, Tae Hwan

    2018-06-01

    Some stroke patients show oral phase dysphagia, characterized by a markedly prolonged oral transit time that hinders oral feeding. The aim of this study was to clarify the clinical characteristics and lesions responsible for delayed swallowing. We reviewed 90 patients with stroke. The oral processing time plus the postfaucial aggregation time required to swallow semisolid food was assessed. The patients were divided into two groups according to oral transit time, and we analyzed the differences in characteristics such as demographic factors, lesion factors, and cognitive function. Logistic regression analyses were performed to examine the predictors of delayed oral transit time. Lesion location and volume were measured on brain magnetic resonance images. We generated statistic maps of lesions related to delayed oral phase in swallowing using voxel-based lesion symptom mapping (VLSM). The group of patients who showed delayed oral transit time had significantly low cognitive function. Also, in a regression model, delayed oral phase was predicted with low K-MMSE (Korean version of the Mini Mental Status Exam). Using VLSM, we found the lesion location to be associated with delayed oral phase after adjusting for K-MMSE score. Although these results did not reach statistical significance, they showed the lesion pattern with predominant distribution in the left frontal lobe. Delayed oral phase in post-stroke patients was not negligible clinically. Patients' cognitive impairments affect the oral transit time. When adjusting it, we found a trend that the lesion responsible for delayed oral phase was located in the left frontal lobe, though the association did not reach significance. The delay might be related to praxis function.

  19. A new multi-step technique with differential transform method for analytical solution of some nonlinear variable delay differential equations.

    PubMed

    Benhammouda, Brahim; Vazquez-Leal, Hector

    2016-01-01

    This work presents an analytical solution of some nonlinear delay differential equations (DDEs) with variable delays. Such DDEs are difficult to treat numerically and cannot be solved by existing general purpose codes. A new method of steps combined with the differential transform method (DTM) is proposed as a powerful tool to solve these DDEs. This method reduces the DDEs to ordinary differential equations that are then solved by the DTM. Furthermore, we show that the solutions can be improved by Laplace-Padé resummation method. Two examples are presented to show the efficiency of the proposed technique. The main advantage of this technique is that it possesses a simple procedure based on a few straight forward steps and can be combined with any analytical method, other than the DTM, like the homotopy perturbation method.

  20. Phase-Controlled Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Wollack, E. J.; Novak, G.; Moseley, S. H.; Pisano, G.; Krejny, M.; U-Yen, K.

    2012-01-01

    We report technology development of millimeter/submillimeter polarization modulators that operate by introducing a a variable, controlled phase delay between two orthogonal polarization states. The variable-delay polarization modulator (VPM) operates via the introduction of a variable phase delay between two linear orthogonal polarization states, resulting in a variable mapping of a single linear polarization into a combination of that Stokes parameter and circular (Stokes V) polarization. Characterization of a prototype VPM is presented at 350 and 3000 microns. We also describe a modulator in which a variable phase delay is introduced between right- and left- circular polarization states. In this architecture, linear polarization is fully modulated. Each of these devices consists of a polarization diplexer parallel to and in front of a movable mirror. Modulation involves sub-wavelength translations of the mirror that change the magnitude of the phase delay.

  1. Short nights reduce light-induced circadian phase delays in humans.

    PubMed

    Burgess, Helen J; Eastman, Charmane I

    2006-01-01

    Short sleep episodes are common in modern society. We recently demonstrated that short nights reduce phase advances to light. Here we show that short nights also reduce phase delays to light. Two weeks of 6-hour sleep episodes in the dark (short nights) and 2 weeks of long 9-hour sleep episodes (long nights) in counterbalanced order, separated by 7 days. Following each series of nights, there was a dim-light phase assessment to assess baseline phase. Three days later, subjects were exposed to a phase-delaying light stimulus for 2 days, followed by a final phase assessment. Subjects slept at home in dark bedrooms but came to the laboratory for the phase assessments and light stimulus. Seven young healthy subjects. The 3.5-hour light stimulus was four 30-minute pulses of bright light (-5000 lux) separated by 30-minute intervals of room light. The stimulus began 2.5 hours after each subject's dim-light melatonin onset, followed by a 6- or 9-hour sleep episode. On the second night, the bright light and sleep episode began 1 hour later. The dim-light melatonin onset and dimlight melatonin offset phase delayed 1.4 and 0.7 hours less in the short nights, respectively (both p < or = .015). These results indicate for the first time that short nights can reduce circadian phase delays, that long nights can increase phase delays to light, or both. People who curtail their sleep may inadvertently reduce their circadian responsiveness to evening light.

  2. Social cues at encoding affect memory in 4-month-old infants.

    PubMed

    Kopp, Franziska; Lindenberger, Ulman

    2012-01-01

    Available evidence suggests that infants use adults' social cues for learning by the second half of the first year of life. However, little is known about the short-term or long-term effects of joint attention interactions on learning and memory in younger infants. In the present study, 4-month-old infants were familiarized with visually presented objects in either of two conditions that differed in the degree of joint attention (high vs. low). Brain activity in response to familiar and novel objects was assessed immediately after the familiarization phase (immediate recognition), and following a 1-week delay (delayed recognition). The latency of the Nc component differentiated between recognition of old versus new objects. Pb amplitude and latency were affected by joint attention in delayed recognition. Moreover, the frequency of infant gaze to the experimenter during familiarization differed between the two experimental groups and modulated the Pb response. Results show that joint attention affects the mechanisms of long-term retention in 4-month-old infants. We conclude that joint attention helps children at this young age to recognize the relevance of learned items.

  3. The Role of Convection and Growth Competition in Phase Selection in Microgravity: Controlled Convection in the Containerless Processing of Steel Alloys

    NASA Technical Reports Server (NTRS)

    Matson, D. M.; Loser, W.; Rogers, J. R.; Flemings, M. C.

    2001-01-01

    Containerless processing using electromagnetic levitation (EML) is a powerful technique in the investigation of reactive molten metal systems. On ground, the power required to overcome the weight of the sample is sufficient to cause significant heating and induce substantial melt convection. In microgravity, the heating and positioning fields may be decoupled and the field strength may be varied to achieve the desired level of convection within the limits set by the geometry of the levitation coil and the sample size. From high-speed digital images of the double recalescence behavior of Fe-Cr-Ni alloys in ground-based testing and in reduced-gravity aboard the NASA KC-135 parabolic aircraft, we have shown that phase selection can be predicted based on a growth competition model. An important parameter in this model is the delay time between primary nucleation and subsequent nucleation of the stable solid within the liquid/metastable solid array. This delay time is a strong function of composition and a weak function of the undercooling of the melt below the metastable liquidus. From the results obtained during the first Microgravity Sciences Laboratory (MSL-1) mission, we also know that convection may significantly influence the delay time, especially at low undercoolings. Currently, it is unclear what mechanism controls the formation of a heterogeneous site that allows nucleation of the austenitic phase on the pre-existing ferrite skeleton. By examining the behavior of the delay time under different convective conditions, we hypothesize that we can differentiate between several of these mechanisms to gain an understanding of how to control microstructural. evolution. We will anchor these predictions by examining samples quenched at different times following primary recalescence in microgravity. A second important parameter in the growth competition model is the identification of the growth rate of the stable phase into the semi-solid array that formed during primary recalescence. Current dendritic growth theory is inadequate in predicting solidification behavior under these conditions as metallographic analyses show that stable phase growth proceeds along the interface between the metastable solid and residual liquid. Since growth velocity is independent of the initial undercooling relative to the metastable liquidus, we hypothesize that purely thermal effects can be separated from other important growth model parameters by careful selection of the liquid composition in a ternary system.

  4. Delayed-enhanced cardiac MRI for differentiation of Fabry's disease from symmetric hypertrophic cardiomyopathy.

    PubMed

    De Cobelli, Francesco; Esposito, Antonio; Belloni, Elena; Pieroni, Maurizio; Perseghin, Gianluca; Chimenti, Cristina; Frustaci, Andrea; Del Maschio, Alessandro

    2009-03-01

    Fabry's disease may be difficult to differentiate from symmetric hypertrophic cardiomyopathy. Our aim was to compare the myocardial location and distribution patterns of delayed enhancement between patients with Fabry's disease who are affected by symmetric myocardial hypertrophy and patients with symmetric hypertrophic cardiomyopathy in order to identify a specific sign to best differentiate the two diseases. Patients with Fabry's disease-related hypertrophy showed left ventricular (LV) delayed enhancement with a typical and consistently found pattern characterized by the involvement of the inferolateral basal or mid basal segments and a mesocardial distribution that spared the subendocardium. This pattern seems to be specific to Fabry's disease; in fact, patients with symmetric hypertrophic cardiomyopathy had variable locations and distributions of delayed enhancement. These observations may contribute to identifying Fabry's disease as a specific cause of symmetric hypertrophy.

  5. Experimental verification of arm-locking for LISA using electronic phase delay [rapid communication

    NASA Astrophysics Data System (ADS)

    Thorpe, J. I.; Mueller, G.

    2005-07-01

    We present results of an electronic model of arm-locking, a proposed technique for reducing the laser phase noise in the laser interferometer space antenna (LISA). The model is based on a delay of 500 ms, achieved using the electronic phase delay (EPD) method. The observed behavior is consistent with predictions.

  6. W-transform for exponential stability of second order delay differential equations without damping terms.

    PubMed

    Domoshnitsky, Alexander; Maghakyan, Abraham; Berezansky, Leonid

    2017-01-01

    In this paper a method for studying stability of the equation [Formula: see text] not including explicitly the first derivative is proposed. We demonstrate that although the corresponding ordinary differential equation [Formula: see text] is not exponentially stable, the delay equation can be exponentially stable.

  7. Control of nausea with palonosetron versus granisetron, both combined with dexamethasone, in patients receiving cisplatin- or anthracycline plus cyclophosphamide-based regimens.

    PubMed

    Kubota, Kaoru; Saito, Mitsue; Aogi, Kenjiro; Sekine, Ikuo; Yoshizawa, Hirohisa; Yanagita, Yasuhiro; Sakai, Hiroshi; Inoue, Kenichi; Kitagawa, Chiyoe; Ogura, Takashi

    2016-09-01

    In a comparative phase 3 study involving 1114 Japanese patients receiving highly emetogenic chemotherapy (HEC), palonosetron (PALO) was found to be superior to granisetron (GRA) for the prophylaxis of chemotherapy-induced nausea and vomiting (CINV) in the delayed phase. This post hoc analysis of the phase 3 study evaluated the efficacy of PALO for the control of nausea. The proportion of patients without nausea was assessed at 24-h intervals during the acute phase (0-24 h), delayed phase (24-120 h), and overall (0-120 h). No nausea rates were also evaluated by sex, type of chemotherapy (cisplatin or doxorubicin/epirubicin plus cyclophosphamide [AC/EC]), and age (<55 vs. ≥55 years). Nausea severity was categorized using a 4-point Likert scale (0 = no nausea to 3 = severe nausea). The proportion of patients without nausea was significantly higher in the PALO arm than in the GRA arm in the delayed phase (37.8 % vs. 27.2 %; p = 0.002) and overall (31.9 % vs. 25.0 %; p = 0.0117). When analyzed by stratification factors, the proportion of patients without nausea was significantly higher in the PALO arm in the delayed phase and overall in patients who were female, younger, or treated with cisplatin and in the delayed phase in patients who were older or treated with doxorubicin or epirubicin plus cyclophosphamide (all p < 0.05). PALO was more effective than GRA in prophylaxis of HEC-induced nausea in the delayed phase and overall. In addition, PALO was more effective than GRA in young and female patients, who are at high risk of CINV, both in the delayed phase and overall.

  8. Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Ping; Center for Partial Differential Equations, East China Normal University, 500 Dongchuan Rd., Shanghai 200241; Ruan, Shigui, E-mail: ruan@math.miami.edu

    2014-06-15

    In this paper, a tumor and immune system interaction model consisted of two differential equations with three time delays is considered in which the delays describe the proliferation of tumor cells, the process of effector cells growth stimulated by tumor cells, and the differentiation of immune effector cells, respectively. Conditions for the asymptotic stability of equilibria and existence of Hopf bifurcations are obtained by analyzing the roots of a second degree exponential polynomial characteristic equation with delay dependent coefficients. It is shown that the positive equilibrium is asymptotically stable if all three delays are less than their corresponding critical valuesmore » and Hopf bifurcations occur if any one of these delays passes through its critical value. Numerical simulations are carried out to illustrate the rich dynamical behavior of the model with different delay values including the existence of regular and irregular long periodic oscillations.« less

  9. Design and Implementation of an RTK-Based Vector Phase Locked Loop

    PubMed Central

    Shafaati, Ahmad; Lin, Tao; Broumandan, Ali; Lachapelle, Gérard

    2018-01-01

    This paper introduces a novel double-differential vector phase-locked loop (DD-VPLL) for Global Navigation Satellite Systems (GNSS) that leverages carrier phase position solutions as well as base station measurements in the estimation of rover tracking loop parameters. The use of double differencing alleviates the need for estimating receiver clock dynamics and atmospheric delays; therefore, the navigation filter consists of the baseline dynamic states only. It is shown that using vector processing for carrier phase tracking leads to a significant enhancement in the receiver sensitivity compared to using the conventional scalar-based tracking loop (STL) and vector frequency locked loop (VFLL). The sensitivity improvement of 8 to 10 dB compared to STL, and 7 to 8 dB compared to VFLL, is obtained based on the test cases reported in the paper. Also, an increased probability of ambiguity resolution in the proposed method results in better availability for real time kinematic (RTK) applications. PMID:29533994

  10. APF530 (granisetron injection extended-release) in a three-drug regimen for delayed CINV in highly emetogenic chemotherapy.

    PubMed

    Schnadig, Ian D; Agajanian, Richy; Dakhil, Christopher; Gabrail, Nashat Y; Smith, Robert E; Taylor, Charles; Wilks, Sharon T; Schwartzberg, Lee S; Cooper, William; Mosier, Michael C; Payne, J Yvette; Klepper, Michael J; Vacirca, Jeffrey L

    2016-06-01

    APF530, extended-release granisetron, provides sustained release for ≥5 days for acute- and delayed-phase chemotherapy-induced nausea and vomiting (CINV). We compared efficacy and safety of APF530 versus ondansetron for delayed CINV after highly emetogenic chemotherapy (HEC), following a guideline-recommended three-drug regimen. HEC patients received APF530 500 mg subcutaneously or ondansetron 0.15 mg/kg intravenously, with dexamethasone and fosaprepitant. Primary end point was delayed-phase complete response (no emesis or rescue medication). A higher percentage of APF530 versus ondansetron patients had delayed-phase complete response (p = 0.014). APF530 was generally well tolerated; treatment-emergent adverse event incidence was similar across arms, mostly mild-to-moderate injection-site reactions. APF530 versus the standard three-drug regimen provided superior control of delayed-phase CINV following HEC. ClinicalTrials.gov : NCT02106494.

  11. Multipath noise reduction spread spectrum signals

    NASA Technical Reports Server (NTRS)

    Meehan, Thomas K. (Inventor)

    1994-01-01

    The concepts of early-prompt delay tracking, multipath correction of early-prompt delay tracking from correlation shape, and carrier phase multipath correction are addressed. In early-prompt delay tracking, since multipath is always delayed with respect to the direct signals, the system derives phase and pseudorange observables from earlier correlation lags. In multipath correction of early-prompt delay tracking from correlation shape, the system looks for relative variations of amplitude across the code correlation function that do not match the predicted multipath-free code cross-correlation shape. The system then uses deviations from the multipath-free shape to infer the magnitude of multipath, and to generate corrections pseudorange observables. In carrier phase multipath correction, the system looks for variations of phase among plural early and prompt lags. The system uses the measured phase variations, along with the general principle that the multipath errors are larger for later lags, to infer the presence of multipath, and to generate corrections for carrier-phase observables.

  12. Nanosecond pulsed electric fields have differential effects on cells in the S-phase.

    PubMed

    Hall, Emily H; Schoenbach, Karl H; Beebe, Stephen J

    2007-03-01

    Nanosecond pulsed electric fields (nsPEFs) are a type of nonthermal, nonionizing radiation that exhibit intense electric fields with high power, but low energy. NsPEFs extend conventional electroporation (EP) to affect intracellular structures and functions and depending on the intensity, can induce lethal and nonlethal cell signaling. In this study, HCT116 human colon carcinoma cells were synchronized to the S-phase or remained unsynchronized, exposed to electric fields of 60 kV/cm with either 60-ns or 300-ns durations, and analyzed for apoptosis and proliferative markers. Several nsPEF structural and functional targets were identified. Unlike unsynchronized cells, S-phase cells under limiting conditions exhibited greater membrane integrity and caspase activation and maintained cytoskeletal structure. Regardless of synchronization, cells exposed to nsPEFs under these conditions primarily survived, but exhibited some turnover and delayed proliferation in cell populations, as well as reversible increases in phosphatidylserine externalization, membrane integrity, and nuclei size. These results show that nsPEFs can act as a nonligand agonist to modulate plasma membrane (PM) and intracellular structures and functions, as well as differentially affect cells in the S-phase, but without effect on cell survival. Furthermore, nsPEF effects on the nucleus and cytoskeleton may provide synergistic therapeutic actions with other agents, such as ionizing radiation or chemotherapeutics that affect these same structures.

  13. Astrometria diferencial de precision con VLBI el triangulo de Draco (y estudios de SN1993J)

    NASA Astrophysics Data System (ADS)

    Ros, E.

    1997-11-01

    The Very Long Baseline Interferometry (VLBI) technique provides unprecedented resolutions in astronomy. In this PhD we show progress in the study of high precision phase-delay differential astrometry through observations of the radio source triangle formed by the BL-Lac objects 1803+784 and 2007+777, and the QSO 1928+738, in the Northern constellation of Draco (the Dragon), from observations carried out on 20/21 November 1991 with an intercontinental interferometric array simultaneously at the frequencies of 2.3 and 8.4 GHz. We have determined the angular separations among the three radio sources with submilliarcsecond accuracy from a weighted least squares analysis of the differential phase delay from the three celestial bodies. Our present work introduces important advances with respect to previous astrometric studies, carried out over radio source pairs separated by smaller angular distances. We have consistently modeled the parameters involved in an astrometric VLBI observation, in order to reproduce the differential phase observed for radio sources separated by almost 7o on the sky. We have demonstrated the possibility of phase-connection over these angular distances at 8.4 GHz, even at an epoch of a maximum in the solar activity. After the phase-connection we have corrected the effects of the extended structure of the radio source and of the ionosphere. This last correction is one of the main technical achievements of this thesis: it is possible to remove the ionospheric contribution with independent measurements of the ionosphere total electron content obtained at Global Positioning Systems (GPS) sites the VLBI observing stations. The triangular geometry introduces constraints in parameter space that allow a better estimation of the angular separations among the radio sources. It is possible to test the consistency of the astrometric results through the Sky-Closure, defined as the circular sum of the angular separations of the three radio sources, determined pairwise and independently. In our case it is consistent with zero, and verifies satisfactorily the data process followed. The comparison of the measurements of the separations of the pair 1928+738/2007+777 (1991 data) with previous measurements (data from 1985 and 1988), carried out with the same technique, allows us to register adequately the absolute position of 1928+738 relative to 2007+777. We estimate the proper motion of components in 1928+738, and also identify the position of the radio source core. We confirm the superluminal motion of the components of 1928+738. The comparison of our results with those obtained by Eubanks (USNO) from group delay measurements (without structure correction) show the incorrectness of the latter. We also include succinctly in this PhD my colaboration in the work on the radio supernova SN 1993J, in galaxy M81. We have discovered a shell-like structure of the radio emission of SN 1993J which exploded on March 1993. We have also elaborated a movie of its evolution, by monitoring the shell structure for different epochs, and determined the deceleration of its expansion.

  14. Differential Sensitivity to Ethanol-Induced Circadian Rhythm Disruption in Adolescent and Adult Mice

    PubMed Central

    Ruby, Christina L.; Palmer, Kaitlyn N.; Zhang, Jiawen; Risinger, Megan O.; Butkowski, Melissa A.; Swartzwelder, H. Scott

    2016-01-01

    Background Growing evidence supports a central role for the circadian system in alcohol use disorders, but few studies have examined this relationship during adolescence. In mammals, circadian rhythms are regulated by the suprachiasmatic nucleus (SCN), a biological clock whose timing is synchronized (reset) to the environment primarily by light (photic) input. Alcohol (ethanol) disrupts circadian timing in part by attenuating photic phase-resetting responses in adult rodents. However, circadian rhythms change throughout life and it is not yet known whether ethanol has similar effects on circadian regulation during adolescence. Methods General circadian locomotor activity was monitored in male C57BL6/J mice beginning in adolescence (P27) or adulthood (P61) in a 12 h light, 12 h dark photocycle for ~2 weeks to establish baseline circadian activity measures. On the day of the experiment, mice received an acute injection of ethanol (1.5 g/kg, i.p.) or equal volume saline 15 min prior to a 30-min light pulse at Zeitgeber Time 14 (2 h into the dark phase), then were released into constant darkness (DD) for ~2 weeks to assess phase-resetting responses. Control mice of each age group received injections but no light pulse prior to DD. Results While adults showed the expected decrease in photic phase-delays induced by acute ethanol, this effect was absent in adolescent mice. Adolescents also showed baseline differences in circadian rhythmicity compared to adults, including advanced photocycle entrainment, larger photic phase-delays, a shorter free-running (endogenous) circadian period, and greater circadian rhythm amplitude. Conclusions Collectively, our results indicate that adolescent mice are less sensitive to the effect of ethanol on circadian photic phase-resetting and that their daily activity rhythms are markedly different than those of adults. PMID:27997028

  15. Parametric Identification of Nonlinear Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Feeny, Brian

    2002-01-01

    In this project, we looked at the application of harmonic balancing as a tool for identifying parameters (HBID) in a nonlinear dynamical systems with chaotic responses. The main idea is to balance the harmonics of periodic orbits extracted from measurements of each coordinate during a chaotic response. The periodic orbits are taken to be approximate solutions to the differential equations that model the system, the form of the differential equations being known, but with unknown parameters to be identified. Below we summarize the main points addressed in this work. The details of the work are attached as drafts of papers, and a thesis, in the appendix. Our study involved the following three parts: (1) Application of the harmonic balance to a simulation case in which the differential equation model has known form for its nonlinear terms, in contrast to a differential equation model which has either power series or interpolating functions to represent the nonlinear terms. We chose a pendulum, which has sinusoidal nonlinearities; (2) Application of the harmonic balance to an experimental system with known nonlinear forms. We chose a double pendulum, for which chaotic response were easily generated. Thus we confronted a two-degree-of-freedom system, which brought forth challenging issues; (3) A study of alternative reconstruction methods. The reconstruction of the phase space is necessary for the extraction of periodic orbits from the chaotic responses, which is needed in this work. Also, characterization of a nonlinear system is done in the reconstructed phase space. Such characterizations are needed to compare models with experiments. Finally, some nonlinear prediction methods can be applied in the reconstructed phase space. We developed two reconstruction methods that may be considered if the common method (method of delays) is not applicable.

  16. Robustness of delayed multistable systems with application to droop-controlled inverter-based microgrids

    NASA Astrophysics Data System (ADS)

    Efimov, Denis; Schiffer, Johannes; Ortega, Romeo

    2016-05-01

    Motivated by the problem of phase-locking in droop-controlled inverter-based microgrids with delays, the recently developed theory of input-to-state stability (ISS) for multistable systems is extended to the case of multistable systems with delayed dynamics. Sufficient conditions for ISS of delayed systems are presented using Lyapunov-Razumikhin functions. It is shown that ISS multistable systems are robust with respect to delays in a feedback. The derived theory is applied to two examples. First, the ISS property is established for the model of a nonlinear pendulum and delay-dependent robustness conditions are derived. Second, it is shown that, under certain assumptions, the problem of phase-locking analysis in droop-controlled inverter-based microgrids with delays can be reduced to the stability investigation of the nonlinear pendulum. For this case, corresponding delay-dependent conditions for asymptotic phase-locking are given.

  17. Compromised genomic integrity impedes muscle growth after Atrx inactivation

    PubMed Central

    Huh, Michael S.; Price O’Dea, Tina; Ouazia, Dahmane; McKay, Bruce C.; Parise, Gianni; Parks, Robin J.; Rudnicki, Michael A.; Picketts, David J.

    2012-01-01

    ATR-X syndrome is a severe intellectual disability disorder caused by mutations in the ATRX gene. Many ancillary clinical features are attributed to CNS deficiencies, yet most patients have muscle hypotonia, delayed ambulation, or kyphosis, pointing to an underlying skeletal muscle defect. Here, we identified a cell-intrinsic requirement for Atrx in postnatal muscle growth and regeneration in mice. Mice with skeletal muscle–specific Atrx conditional knockout (Atrx cKO mice) were viable, but by 3 weeks of age presented hallmarks of underdeveloped musculature, including kyphosis, 20% reduction in body mass, and 34% reduction in muscle fiber caliber. Atrx cKO mice also demonstrated a marked regeneration deficit that was not due to fewer resident satellite cells or their inability to terminally differentiate. However, activation of Atrx-null satellite cells from isolated muscle fibers resulted in a 9-fold reduction in myoblast expansion, caused by delayed progression through mid to late S phase. While in S phase, Atrx colocalized specifically to late-replicating chromatin, and its loss resulted in rampant signs of genomic instability. These observations support a model in which Atrx maintains chromatin integrity during the rapid developmental growth of a tissue. PMID:23114596

  18. Mitigation of Atmospheric Errors in Differential InSAR Data Using a High-Resolution Weather Model, Mauna Loa and Kilauea volcanoes, Hawaii

    NASA Astrophysics Data System (ADS)

    Brooks, B. A.; Foster, J.; Cherubini, T.; Businger, S.; Miklius, A.; Mouginis-Mark, P.

    2004-12-01

    We investigate the utility of a mesoscale weather model for mitigating atmospheric errors in InSAR-derived displacement fields associated with volcanotectonic phenomena at Mauna Loa and Kilauea volcanoes on the Island of Hawaii. The MM5 (NCAR-Penn State Mesoscale Model Version 5) forecast is run twice daily for the island of Hawaii by the Mauna Kea Weather Center in support of Mauna Kea's astronomical observatories. MM5 has a 60-hour forecast window and the forecast fields are output in 3-hour increments. A high-resolution analysis that incorporates weather observations from National Weather Service and satellite-derived winds from the University of Wisconsin, provides the initial conditions for MM5. In turn, MM5 produces predictions of thermodynamic properties of the atmosphere, including temperature, pressure, and moisture fields at a 3 km horizontal resolution. The vertical resolution is density weighted with the greatest vertical resolution (10s of meters) near the surface. For any radar image acquisition there is a high-resolution 3D simulation of atmospheric water vapor valid within 1.5 hours of the acquisition time and predicted forward no more than 12 hours from the initial observations. Using MM5 forecast water vapor, we create line-of-sight delay maps that can be either directly removed from InSAR differential pairs or used to create synthetic radar interferograms that can be compared with the observed interferogram. We analyze Envisat ASAR radar data collected during 2003-2004 and find, qualitatively, that contours of excess path delay in MM5 model runs often closely mimic both topographic contours and fringes observed in differential interferograms which have had topographic phase removed. Over periods of days, the delays can vary in magnitude and spatial scale by 10s of mms and 10s of kms, respectively. Individual models can predict peak delays associated with moist layer inversions of order ~20 mm around the summits of Mauna Loa and Kilauea, both active volcanoes. Similar delays are also associated with the inactive Mauna Kea summit. These results are particularly pertinent for using InSAR to track accurately the history of summit-related magmatic phenomena between scene acquisitions. The path delays would introduce a significant atmosphere-related bias if included in a deformation analysis. To validate the technique, we compare total delays and precipitable water data from more than 20 continuous GPS (CGPS) sites with those estimated by the MM5 model. We investigate the technique's efficacy by inverting InSAR-derived line-of-sight displacement fields for the time-varying characteristics of a shallow magma chamber below Mauna Loa's summit caldera. Finally, we compare these results with independent inversion of summit CGPS data.

  19. Daily Profiles of Light Exposure and Evening Use of Light-emitting Devices in Young Adults Complaining of a Delayed Sleep Schedule.

    PubMed

    Van der Maren, Solenne; Moderie, Christophe; Duclos, Catherine; Paquet, Jean; Daneault, Véronique; Dumont, Marie

    2018-04-01

    A number of factors can contribute to a delayed sleep schedule. An important factor could be a daily profile of light exposure favoring a later circadian phase. This study aimed to compare light exposure between 14 young adults complaining of a delayed sleep schedule and 14 matched controls and to identify possible associations between habitual light exposure and circadian phase. Exposure to white and blue light was recorded with ambulatory monitors for 7 consecutive days. Participants also noted their daily use of light-emitting devices before bedtime. Endogenous circadian phase was estimated with the dim light melatonin onset (DLMO) in the laboratory. The amplitude of the light-dark cycle to which the subjects were exposed was smaller in delayed than in control subjects, and smaller amplitude was associated with a later DLMO. Smaller amplitude was due to both decreased exposure in the daytime and increased exposure at night. Total exposure to blue light, but not to white light, was lower in delayed subjects, possibly due to lower exposure to blue-rich outdoor light. Lower daily exposure to blue light was associated with a later DLMO. Timing of relative increases and decreases of light exposure in relation to endogenous circadian phase was also compared between the 2 groups. In delayed subjects, there was a relatively higher exposure to white and blue light 2 h after DLMO, a circadian time with maximal phase-delaying effect. Delayed participants also had higher exposure to light 8 to 10 h after DLMO, which occurred mostly during their sleep episode but may have some phase-advancing effects. Self-reported use of light-emitting devices before bedtime was higher in delayed than in control subjects and was associated with a later DLMO. This study suggests that individuals complaining of a delayed sleep schedule engage in light-related behaviors favoring a later circadian phase and a later bedtime.

  20. Precision digital pulse phase generator

    DOEpatents

    McEwan, T.E.

    1996-10-08

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.

  1. Precision digital pulse phase generator

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.

  2. Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems with pure delay

    NASA Astrophysics Data System (ADS)

    Tang, Xianhua; Cao, Daomin; Zou, Xingfu

    We consider a periodic Lotka-Volterra competition system without instantaneous negative feedbacks (i.e., pure-delay systems) x(t)=x(t)[r(t)-∑j=1na(t)x(t-τ(t))], i=1,2,…,n. We establish some 3/2-type criteria for global attractivity of a positive periodic solution of the system, which generalize the well-known Wright's 3/2 criteria for the autonomous delay logistic equation, and thereby, address the open problem proposed by both Kuang [Y. Kuang, Global stability in delayed nonautonomous Lotka-Volterra type systems without saturated equilibria, Differential Integral Equations 9 (1996) 557-567] and Teng [Z. Teng, Nonautonomous Lotka-Volterra systems with delays, J. Differential Equations 179 (2002) 538-561].

  3. Tuning and performance evaluation of PID controller for superheater steam temperature control of 200 MW boiler using gain phase assignment algorithm

    NASA Astrophysics Data System (ADS)

    Begum, A. Yasmine; Gireesh, N.

    2018-04-01

    In superheater, steam temperature is controlled in a cascade control loop. The cascade control loop consists of PI and PID controllers. To improve the superheater steam temperature control the controller's gains in a cascade control loop has to be tuned efficiently. The mathematical model of the superheater is derived by sets of nonlinear partial differential equations. The tuning methods taken for study here are designed for delay plus first order transfer function model. Hence from the dynamical model of the superheater, a FOPTD model is derived using frequency response method. Then by using Chien-Hrones-Reswick Tuning Algorithm and Gain-Phase Assignment Algorithm optimum controller gains has been found out based on the least value of integral time weighted absolute error.

  4. Circadian phase, dynamics of subjective sleepiness and sensitivity to blue light in young adults complaining of a delayed sleep schedule.

    PubMed

    Moderie, Christophe; Van der Maren, Solenne; Dumont, Marie

    2017-06-01

    To assess factors that might contribute to a delayed sleep schedule in young adults with sub-clinical features of delayed sleep phase disorder. Two groups of 14 young adults (eight women) were compared: one group complaining of a delayed sleep schedule and a control group with an earlier bedtime and no complaint. For one week, each subject maintained a target bedtime reflecting their habitual sleep schedule. Subjects were then admitted to the laboratory for the assessment of circadian phase (dim light melatonin onset), subjective sleepiness, and non-visual light sensitivity. All measures were timed relative to each participant's target bedtime. Non-visual light sensitivity was evaluated using subjective sleepiness and salivary melatonin during 1.5-h exposure to blue light, starting one hour after target bedtime. Compared to control subjects, delayed subjects had a later circadian phase and a slower increase of subjective sleepiness in the late evening. There was no group difference in non-visual sensitivity to blue light, but we found a positive correlation between melatonin suppression and circadian phase within the delayed group. Our results suggest that a late circadian phase, a slow build-up of sleep need, and an increased circadian sensitivity to blue light contribute to the complaint of a delayed sleep schedule. These findings provide targets for strategies aiming to decreasing the severity of a sleep delay and the negative consequences on daytime functioning and health. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Bifurcation to large period oscillations in physical systems controlled by delay

    NASA Astrophysics Data System (ADS)

    Erneux, Thomas; Walther, Hans-Otto

    2005-12-01

    An unusual bifurcation to time-periodic oscillations of a class of delay differential equations is investigated. As we approach the bifurcation point, both the amplitude and the frequency of the oscillations go to zero. The class of delay differential equations is a nonlinear extension of a nonevasive control method and is motivated by a recent study of the foreign exchange rate oscillations. By using asymptotic methods, we determine the bifurcation scaling laws for the amplitude and the period of the oscillations.

  6. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function.

    PubMed

    Kuwada, S; Yin, T C

    1983-10-01

    Detailed, quantitative studies were made of the interaural phase sensitivity of 197 neurons with low best frequency in the inferior colliculus (IC) of the barbiturate-anesthetized cat. We analyzed the responses of single cells to interaural delays in which tone bursts were delivered to the two ears via sealed earphones and the onset of the tone to one ear with respect to the other was varied. For most (80%) cells the discharge rate is a cyclic function of interaural delay at a period corresponding to that of the stimulating frequency. The cyclic nature of the interaural delay curve indicates that these cells are sensitive to the interaural phase difference. These cells are distributed throughout the low-frequency zone of the IC, but they are less numerous in the medial and caudal zones. Cells with a wide variety of response patterns will exhibit interaural phase sensitivities at stimulating frequencies up to 3,100 Hz, although above 2,500 Hz the number of such cells decrease markedly. Using dichotic stimuli we could study the cell's sensitivity to the onset delay and interaural phase independently. The large majority of IC cells respond only to changes in interaural phase, with no sensitivity to the onset delay. However, a small number (7%) of cells exhibit a sensitivity to the onset delay as well as to the interaural phase disparity, and most of these cells show an onset response. The effects of changing the stimulus intensity equally to both ears or of changing the interaural intensity difference on the mean interaural phase were studied. While some neurons are not affected by level changes, others exhibit systematic phase shifts for both average and interaural intensity variations, and there is a continuous distribution of sensitivities between these extremes. A few cells also showed systematic changes in the shape of the interaural delay curves as a function of interaural intensity difference, especially at very long delays. These shifts can be interpreted as a form of time-intensity trading. A few cells demonstrated orderly changes in the interaural delay curve as the repetition rate of the stimulus was varied. Some of these changes are consonant with an inhibitory effect that occurs at stimulus offset. The responses of the neurons show a strong bias for stimuli that would originate from he contralateral sound field; 77% of the responses display mean interaural phase angles that are less than 0.5 of a cycle, which are delays to the ipsilateral tone.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Stability and bifurcation analysis of a generalized scalar delay differential equation.

    PubMed

    Bhalekar, Sachin

    2016-08-01

    This paper deals with the stability and bifurcation analysis of a general form of equation D(α)x(t)=g(x(t),x(t-τ)) involving the derivative of order α ∈ (0, 1] and a constant delay τ ≥ 0. The stability of equilibrium points is presented in terms of the stability regions and critical surfaces. We provide a necessary condition to exist chaos in the system also. A wide range of delay differential equations involving a constant delay can be analyzed using the results proposed in this paper. The illustrative examples are provided to explain the theory.

  8. Measuring Differential Delays With Sine-Squared Pulses

    NASA Technical Reports Server (NTRS)

    Hurst, Robert N.

    1994-01-01

    Technique for measuring differential delays among red, green, and blue components of video signal transmitted on different parallel channels exploits sine-squared pulses that are parts of standard test signals transmitted during vertical blanking interval of frame period. Technique does not entail expense of test-signal generator. Also applicable to nonvideo signals including sine-squared pulses.

  9. Speech Inconsistency in Children With Childhood Apraxia of Speech, Language Impairment, and Speech Delay: Depends on the Stimuli.

    PubMed

    Iuzzini-Seigel, Jenya; Hogan, Tiffany P; Green, Jordan R

    2017-05-24

    The current research sought to determine (a) if speech inconsistency is a core feature of childhood apraxia of speech (CAS) or if it is driven by comorbid language impairment that affects a large subset of children with CAS and (b) if speech inconsistency is a sensitive and specific diagnostic marker that can differentiate between CAS and speech delay. Participants included 48 children ranging between 4;7 to 17;8 (years;months) with CAS (n = 10), CAS + language impairment (n = 10), speech delay (n = 10), language impairment (n = 9), or typical development (n = 9). Speech inconsistency was assessed at phonemic and token-to-token levels using a variety of stimuli. Children with CAS and CAS + language impairment performed equivalently on all inconsistency assessments. Children with language impairment evidenced high levels of speech inconsistency on the phrase "buy Bobby a puppy." Token-to-token inconsistency of monosyllabic words and the phrase "buy Bobby a puppy" was sensitive and specific in differentiating children with CAS and speech delay, whereas inconsistency calculated on other stimuli (e.g., multisyllabic words) was less efficacious in differentiating between these disorders. Speech inconsistency is a core feature of CAS and is efficacious in differentiating between children with CAS and speech delay; however, sensitivity and specificity are stimuli dependent.

  10. Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter.

    PubMed

    Yi, Sun; Nelson, Patrick W; Ulsoy, A Galip

    2007-04-01

    In a turning process modeled using delay differential equations (DDEs), we investigate the stability of the regenerative machine tool chatter problem. An approach using the matrix Lambert W function for the analytical solution to systems of delay differential equations is applied to this problem and compared with the result obtained using a bifurcation analysis. The Lambert W function, known to be useful for solving scalar first-order DDEs, has recently been extended to a matrix Lambert W function approach to solve systems of DDEs. The essential advantages of the matrix Lambert W approach are not only the similarity to the concept of the state transition matrix in lin ear ordinary differential equations, enabling its use for general classes of linear delay differential equations, but also the observation that we need only the principal branch among an infinite number of roots to determine the stability of a system of DDEs. The bifurcation method combined with Sturm sequences provides an algorithm for determining the stability of DDEs without restrictive geometric analysis. With this approach, one can obtain the critical values of delay, which determine the stability of a system and hence the preferred operating spindle speed without chatter. We apply both the matrix Lambert W function and the bifurcation analysis approach to the problem of chatter stability in turning, and compare the results obtained to existing methods. The two new approaches show excellent accuracy and certain other advantages, when compared to traditional graphical, computational and approximate methods.

  11. Collaborative Research: Robust Climate Projections and Stochastic Stability of Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilya Zaliapin

    This project focused on conceptual exploration of El Nino/Southern Oscillation (ENSO) variability and sensitivity using a Delay Differential Equation developed in the project. We have (i) established the existence and continuous dependence of solutions of the model (ii) explored multiple models solutions, and the distribution of solutions extrema, and (iii) established and explored the phase locking phenomenon and the existence of multiple solutions for the same values of model parameters. In addition, we have applied to our model the concept of pullback attractor, which greatly facilitated predictive understanding of the nonlinear model's behavior.

  12. Phase and group delay of S-band megawatt Cassegrain diplexer and S-band megawatt transmit filter

    NASA Technical Reports Server (NTRS)

    Lay, R.

    1977-01-01

    The phase characteristics and group delay of the S-band Megawatt Cassegrain Diplexer (MCD) and S-band Megawatt Transmit Filter (MTF) are reported. These phase measurements on the MCD and MTF were done in response to the need to obtain the total DSS hardware ground delay required for very long baseline interferometry and ranging radio metric measurements.

  13. Fatigue damage evaluation of short fiber CFRP based on phase information of thermoelastic temperature change

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Shiozawa, Daiki; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-05-01

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to the evaluation of fatigue damage in short carbon fiber composites. The distributions of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damages was detected from distributions of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was clearly detected than ever by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the nature that carbon fiber show opposite phase thermoelastic temperature change.

  14. Integration of human sleep-wake regulation and circadian rhythmicity

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan; Lockley, Steven W.

    2002-01-01

    The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.

  15. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    PubMed

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  16. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition.

    PubMed

    Gong, Zhaoyuan; Walls, Jamie D

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T 2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T 2 -relaxing species are more suppressed relative to the sharp signals from slow T 2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition

    NASA Astrophysics Data System (ADS)

    Gong, Zhaoyuan; Walls, Jamie D.

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T2 -relaxing species are more suppressed relative to the sharp signals from slow T2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented.

  18. Light-Induced resetting of the circadian pacemaker: quantitative analysis of transient versus steady-state phase shifts.

    PubMed

    Watanabe, K; Deboer, T; Meijer, J H

    2001-12-01

    The suprachiasmatic nuclei of the hypothalamus contain the major circadian pacemaker in mammals, driving circadian rhythms in behavioral and physiological functions. This circadian pacemaker's responsiveness to light allows synchronization to the light-dark cycle. Phase shifting by light often involves several transient cycles in which the behavioral activity rhythm gradually shifts to its steady-state position. In this article, the authors investigate in Syrian hamsters whether a phase-advancing light pulse results in immediate shifts of the PRC at the next circadian cycle. In a first series of experiments, the authors aimed a light pulse at CT 19 to induce a phase advance. It appeared that the steady-state phase advances were highly correlated with activity onset in the first and second transient cycle. This enabled them to make a reliable estimate of the steady-state phase shift induced by a phase-advancing light pulse on the basis of activity onset in the first transient cycle. In the next series of experiments, they presented a light pulse at CT 19, which was followed by a second light pulse aimed at the delay zone of the PRC on the next circadian cycle. The immediate and steady-state phase delays induced by the second light pulse were compared with data from a third experiment in which animals received a phase-delaying light pulse only. The authors observed that the waveform of the phase-delay part of the PRC (CT 12-16) obtained in Experiment 2 was virtually identical to the phase-delay part of the PRC for a single light pulse (obtained in Experiment 3). This finding allowed for a quantitative assessment of the data. The analysis indicates that the delay part of the PRC-between CT 12 and CT 16-is rapidly reset following a light pulse at CT 19. These findings complement earlier findings in the hamster showing that after a light pulse at CT 19, the phase-advancing part of the PRC is immediately shifted. Together, the data indicate that the basis for phase advancing involves rapid resetting of both advance and delay components of the PRC.

  19. Stability and square integrability of derivatives of solutions of nonlinear fourth order differential equations with delay.

    PubMed

    Korkmaz, Erdal

    2017-01-01

    In this paper, we give sufficient conditions for the boundedness, uniform asymptotic stability and square integrability of the solutions to a certain fourth order non-autonomous differential equations with delay by using Lyapunov's second method. The results obtained essentially improve, include and complement the results in the literature.

  20. Differential games in economic systems with delays

    NASA Astrophysics Data System (ADS)

    Kim, A. V.; Kormyshev, V. M.; Novikov, M. Yu.; Nikonov, M. A.

    2017-11-01

    In the paper, we consider application of i-smooth analysis (A.V. Kim, 2015) to differential games with delays in economics (Dockner E.J., et all, 2000; R. Isaacs, 1999). The approach is developed in the framework of the theory of positional differential games (N.N. Krasovskii, A.I. Subbotin, 1988; A.V. Kryazhimskii, Yu.S. Osipov, 1973; Yu.S. Osipov, J. Appl. Math. Mech. Vol. 35, № 1, № 6, 1971) and is based on application of the extremal shift strategy. We consider basic notions and constructions of the approach-evasion problem for linear systems with delays. The necessary and sufficient conditions of solvability the approach-evasion problem in terms of special u-stable sets are presented in another paper.

  1. Anisotropy beneath the Southern Pacific - real or apparent?

    NASA Astrophysics Data System (ADS)

    Prasse, Philipp; Thomas, Christine

    2016-04-01

    Anisotropy of the lowermost mantle beneath the South- to Central Pacific is investigated using US-Array receivers and events located near the Tonga-Fiji subduction zones. Differential splitting in three different distance ranges (65° -85° , 90° -110° and >110°) of S-ScS, SKS-S, SKS-Sdiff phases is used. By utilizing differential splitting technique, it was possible to correct for upper mantle, as well as source- and receiver side anisotropy and effectively quantify shear wave splitting originating in the lowermost mantle. Delay times of horizontal (SH) and vertical polarized (SV) shear waves show that predominantly the SH wave is delayed relative to the SV wave. Motivated by the discrepancy in previous Pacific studies investigating the lowermost mantle beneath the Pacific the possibility of isotropic structure producing the observed splitting is tested. Synthetic seismograms are computed, based on various isotropic models and the resulting synthetics are analysed in the same way as the real data. While simple layered models do not produce splitting and therefore apparent anisotropy, models in which the lowermost mantle is represented as a negative gradient in P- and S-wave velocity, produce clear apparent anisotropy. Thus, this study presents a possible alternative way of explaining the structure of the D" region.

  2. Prevalence and correlates of delayed sleep phase in high school students.

    PubMed

    Saxvig, Ingvild W; Pallesen, Ståle; Wilhelmsen-Langeland, Ane; Molde, Helge; Bjorvatn, Bjørn

    2012-02-01

    To investigate prevalence and correlates of delayed sleep phase, characterized by problems falling asleep in the evening and rising at adequate times in the morning, in a large sample of Norwegian high school students. A randomized sample of 1285 high school students (aged 16-19 years) participated in an internet based study answering questions about sleep habits, height, weight, smoking, alcohol use, school grades, and anxiety and depression symptoms. Delayed sleep phase was operationalized as difficulties falling asleep before 2 a.m. at least three nights per week together with much or very much difficulty waking up in the morning. The results show a prevalence of delayed sleep phase of 8.4%. In all, 68% of these students (5.7% of the total sample) also reported problems advancing their sleep period as well as one daytime consequence (oversleeping at least two days a week or experiencing much/very much sleepiness at school). Delayed sleep phase was associated with lower average school grades, smoking, alcohol usage, and elevated anxiety and depression scores. Delayed sleep phase appears to be common amongst Norwegian adolescents and is associated with negative outcomes such as lower average school grades, smoking, alcohol usage, and elevated anxiety and depression scores. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Optical resonators for true-time-delay beam steering

    NASA Astrophysics Data System (ADS)

    Gesell, Leslie H.; Evanko, Stephen M.

    1996-06-01

    Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.

  4. On the Maximum Mass of Differentially Rotating Neutron Stars

    NASA Astrophysics Data System (ADS)

    Baumgarte, Thomas W.; Shapiro, Stuart L.; Shibata, Masaru

    2000-01-01

    We construct relativistic equilibrium models of differentially rotating neutron stars and show that they can support significantly more mass than their nonrotating or uniformly rotating counterparts. We dynamically evolve such ``hypermassive'' models in full general relativity and show that there do exist configurations that are dynamically stable against radial collapse and bar formation. Our results suggest that the remnant of binary neutron star coalescence may be temporarily stabilized by differential rotation, leading to delayed collapse and a delayed gravitational wave burst.

  5. Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things.

    PubMed

    Liu, Xiao; Liu, Anfeng; Huang, Changqin

    2017-01-12

    Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%-53.684% for a delay-sensitive event and reduce the communication costs by 5%-22.308% for interesting events, and reduce the network lifetime by about 28.713%.

  6. Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things

    PubMed Central

    Liu, Xiao; Liu, Anfeng; Huang, Changqin

    2017-01-01

    Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%–53.684% for a delay-sensitive event and reduce the communication costs by 5%–22.308% for interesting events, and reduce the network lifetime by about 28.713%. PMID:28085097

  7. Positive and negative modulation of circadian activity rhythms by mGluR5 and mGluR2/3 metabotropic glutamate receptors.

    PubMed

    Gannon, Robert L; Millan, Mark J

    2011-01-01

    Glutamate released from retinal ganglion cells conveys information about the daily light:dark cycle to master circadian pacemaker neurons within the suprachiasmatic nucleus that then synchronize internal circadian rhythms with the external day-length. Glutamate activation of ionotropic glutamate receptors in the suprachiasmatic nucleus is well established, but the function of the metabotropic glutamate receptors that are also located in this nucleus is not known. Therefore, in this study we evaluated agonists and antagonists acting at orthosteric or allosteric sites for mGluR5 and mGluR2/3 metabotropic glutamate receptors for their ability to modulate light-induced phase advances and delays of hamster circadian activity rhythms. mGluR5 allosteric antagonists fenobam, MPEP and MTEP, each 10 mg/kg, potentiated light-induced phase advances of hamster circadian activity rhythms, while the mGluR5 agonists CHPG, (S)-3,5-DHPG or positive allosteric modulator CDPPB had no effect. Neither mGluR5 agonists nor antagonists had any effect on light-induced phase delays of activity rhythms. The competitive mGluR2/3 antagonist LY341495, 10 mg/kg, also potentiated light-induced phase advances, but inhibited light-induced phase delays. The mGluR2/3 agonists LY354740 and LY404039 were without effect on phase advances while a third agonist LY379268, 10 mg/kg, inhibited both light-induced advances and delays. Finally, mGluR2/3 agonists LY379268 and LY404039 also inhibited light-induced phase delays of activity rhythms. These results suggest that during light-induced phase advances, mGluR2/3 and mGluR5 receptors act to negatively modulate the effects of light on the circadian pacemaker or its output(s). mGluR5 receptors do not appear to be involved during light-induced phase delays. In contrast, the role for mGluR2/3 receptors during phase delays is more complicated as both agonists and antagonists inhibit light-induced phase delays. Dysfunctions in human circadian rhythms have been implicated in some forms of depression, and metabotropic glutamate receptor ligands, which are also being evaluated for antidepressant activity, are shown here to be capable of modifying light-induced phase shifts of circadian activity rhythms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Effects of Delay Duration on the WMS Logical Memory Performance of Older Adults with Probable Alzheimer's Disease, Probable Vascular Dementia, and Normal Cognition.

    PubMed

    Montgomery, Valencia; Harris, Katie; Stabler, Anthony; Lu, Lisa H

    2017-05-01

    To examine how the duration of time delay between Wechsler Memory Scale (WMS) Logical Memory I and Logical Memory II (LM) affected participants' recall performance. There are 46,146 total Logical Memory administrations to participants diagnosed with either Alzheimer's disease (AD), vascular dementia (VaD), or normal cognition in the National Alzheimer's Disease Coordinating Center's Uniform Data Set. Only 50% of the sample was administered the standard 20-35 min of delay as specified by WMS-R and WMS-III. We found a significant effect of delay time duration on proportion of information retained for the VaD group compared to its control group, which remained after adding LMI raw score as a covariate. There was poorer retention of information with longer delay for this group. This association was not as strong for the AD and cognitively normal groups. A 24.5-min delay was most optimal for differentiating AD from VaD participants (47.7% classification accuracy), an 18.5-min delay was most optimal for differentiating AD versus normal participants (51.7% classification accuracy), and a 22.5-min delay was most optimal for differentiating VaD versus normal participants (52.9% classification accuracy). Considering diagnostic implications, our findings suggest that test administration should incorporate precise tracking of delay periods. We recommend a 20-min delay with 18-25-min range. Poor classification accuracy based on LM data alone is a reminder that story memory performance is only one piece of data that contributes to complex clinical decisions. However, strict adherence to the recommended range yields optimal data for diagnostic decisions. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Zhang, Tonghua; Tadé, Moses O.

    2009-12-01

    The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.

  10. Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays

    NASA Astrophysics Data System (ADS)

    Nguimdo, Romain Modeste

    2018-03-01

    Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.

  11. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, Marie-Pierre; Lasserre, Cécile; Peltzer, Gilles; Cavalié, Olivier; Doubre, Cécile

    2010-05-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.

  12. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C.

    2009-09-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/ T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.

  13. Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems.

    PubMed

    Athanasopoulos, Georgios I; Carey, Stephen J; Hatfield, John V

    2011-07-01

    This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.

  14. Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses.

    PubMed

    Zhang, Wei; Huang, Tingwen; He, Xing; Li, Chuandong

    2017-11-01

    In this study, we investigate the global exponential stability of inertial memristor-based neural networks with impulses and time-varying delays. We construct inertial memristor-based neural networks based on the characteristics of the inertial neural networks and memristor. Impulses with and without delays are considered when modeling the inertial neural networks simultaneously, which are of great practical significance in the current study. Some sufficient conditions are derived under the framework of the Lyapunov stability method, as well as an extended Halanay differential inequality and a new delay impulsive differential inequality, which depend on impulses with and without delays, in order to guarantee the global exponential stability of the inertial memristor-based neural networks. Finally, two numerical examples are provided to illustrate the efficiency of the proposed methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Study of Relationship Between Illness Perception and Delay in Seeking Help for Breast Cancer Patients Based on Leventhal's Self-Regulation Model.

    PubMed

    Attari, Seyedeh Maryam; Ozgoli, Giti; Solhi, Mahnaz; Alavi Majd, Hamid

    2016-01-01

    One of the major causes of morbidity and mortality in breast cancer patients is delay in seeking help. Leventhal's self-regulation model provides an appropriate framework to assess delay in seeking help. The aim of this study was to investigate the relationship between "illness perception" and "help seeking delay" in breast cancer patients based on Leventhal's self-regulation model. In this correlational descriptive study with convenience sampling conducted in 2013, participants were 120 women with breast cancer who were diagnosed in the last year and referred to chemotherapy and radiotherapy centers in Rasht, Iran. Data collection scales included demographic data, Revised Illness Perception Questionnaire (IPQ-R)and a researcher made questionnaire to measure the delay in seeking help. Pre-hospital delay (help seeking delay) was evaluated in 3 phases (assessment, disease, behavior). The data were analyzed using SPSS-19. The mean (SD) age calculated for the patients was 47.3±10.2. Some 43% of the patients had a high school or higher education level and 82% were married. The "pre-hospital delay" was reported ≥3 months. Logistic regression analysis showed that none of the illness perception components were correlated with appraisal and behavioral delay phases. In the illness delay phase, "time line" (p-value =0.04) and "risk factors"(p-value=0.03) had significant effects on reducing and "psychological attributions" had significant effects on increasing the delay (p-value =0.01). "Illness coherence" was correlated with decreased pre-hospital patient delay (p-value<0.01). Women's perceptions of breast cancer influences delay in seeking help. In addition to verifying the validity of Leventhal's self-regulation model in explaining delay in seeking help, the results signify the importance of the "illness delay phase" (decision to seek help) and educational interventions-counseling for women in the community.

  16. Optoelectronic frequency discriminated phase tuning technology and its applications

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng

    2000-07-01

    By using a phase-tunable optoelectronic phase-locked loop, we are able to continuously change the phase as well as the delay-time of optically distributed microwave clock signals or optical pulse train. The advantages of the proposed technique include such as wide-band operation up to 20GHz, wide-range tuning up to 640 degrees, high tuning resolution of <6x10-2 degree/mV, ultra-low short-term phase fluctuation and drive of 4.7x10-2 degree and 3.4x10- 3 degree/min, good linearity with acceptable deviations, and frequency-independent transferred function with slope of nearly 90 degrees/volt, etc. The novel optoelectronic phase shifter is performed by using a DC-voltage controlled, optoelectronic-mixer-based, frequency-down-converted digital phase-locked-loop. The maximum delay-time is continuously tunable up to 3.9 ns for optical pulses repeated at 500 MHz from a gain-switched laser diode. This corresponds to a delay responsivity of about 0.54 ps/mV. The using of the OEPS as being an optoelectronic delay-time controller for optical pulses is demonstrated with temporal resolution of <0.2 ps. Electro-optic sampling of high-frequency microwave signals by using the in-situ delay-time-tunable pulsed laser as a novel optical probe is primarily reported.

  17. Malignant uveal melanoma and similar lesions studied by computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mafee, M.F.; Peyman, G.A.; McKusick, M.A.

    1985-08-01

    Forty-four patients with intraocular disease were studied by computed tomography (CT); in 19 cases malignant uveal melanoma was considered the likely diagnosis. CT proved to be accurate in determining the location and size of uveal melanomas, demonstrating scleral invasion, and differentiating melanoma from choroidal detachment or angioma, toxocariasis, and senile macular degeneration. On CT, uveal melanomas appeared as hyperdense lesions with slight to moderate contrast enhancement. Tumors thinner than 2 mm could not be seen. Using dynamic CT, the authors noted moderate peak amplitude, normal or delayed tissue transit time, and persistently elevated washout phase (downslope), indicating increased permeability asmore » the result of an impaired tumor blood barrier. Histological types of uveal melanoma could not be differentiated on the basis of circulatory patterns. Dynamic CT may be useful in distinguishing uveal melanoma from choroidal hemangioma or hematoma.« less

  18. Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems.

    PubMed

    Tan, Kang; Shao, Jing; Sun, Junqiang; Wang, Jian

    2012-01-16

    We propose and demonstrate a scheme for optical ultrawideband (UWB) pulse generation by exploiting a half-carrier-suppressed Mach-Zehnder modulator (MZM) and a delay-interferometer- and wavelength-division-multiplexer-based, reconfigurable and multi-channel differentiator (DWRMD). Multi-wavelength, polarity- and shape-switchable UWB pulses of monocycle, doublet, triplet, and quadruplet are experimentally generated simply by tuning two bias voltages to modify the carrier-suppression ratio of MZM and the differential order of DWRMD respectively. The pulse position modulation, pulse shape modulation, pulse amplitude modulation and binary phase-shift keying modulation of UWB pulses can also be conveniently realized with the same scheme structure, which indicates that the hybrid modulation of those four formats can be achieved. Consequently, the proposed approach has potential applications in multi-shape, multi-modulation and multi-access UWB-over-fiber communication systems.

  19. Phase-locking and coherent power combining of broadband linearly chirped optical waves.

    PubMed

    Satyan, Naresh; Vasilyev, Arseny; Rakuljic, George; White, Jeffrey O; Yariv, Amnon

    2012-11-05

    We propose, analyze and demonstrate the optoelectronic phase-locking of optical waves whose frequencies are chirped continuously and rapidly with time. The optical waves are derived from a common optoelectronic swept-frequency laser based on a semiconductor laser in a negative feedback loop, with a precisely linear frequency chirp of 400 GHz in 2 ms. In contrast to monochromatic waves, a differential delay between two linearly chirped optical waves results in a mutual frequency difference, and an acoustooptic frequency shifter is therefore used to phase-lock the two waves. We demonstrate and characterize homodyne and heterodyne optical phase-locked loops with rapidly chirped waves, and show the ability to precisely control the phase of the chirped optical waveform using a digital electronic oscillator. A loop bandwidth of ~ 60 kHz, and a residual phase error variance of < 0.01 rad(2) between the chirped waves is obtained. Further, we demonstrate the simultaneous phase-locking of two optical paths to a common master waveform, and the ability to electronically control the resultant two-element optical phased array. The results of this work enable coherent power combining of high-power fiber amplifiers-where a rapidly chirping seed laser reduces stimulated Brillouin scattering-and electronic beam steering of chirped optical waves.

  20. Gadoxetate Disodium-Enhanced MRI to Differentiate Dysplastic Nodules and Grade of Hepatocellular Carcinoma: Correlation With Histopathology.

    PubMed

    Channual, Stephanie; Tan, Nelly; Siripongsakun, Surachate; Lassman, Charles; Lu, David S; Raman, Steven S

    2015-09-01

    The objective of our study was to determine quantitative differences to differentiate low-grade from high-grade dysplastic nodules (DNs) and low-grade from high-grade hepatocellular carcinomas (HCCs) using gadoxetate disodium-enhanced MRI. A retrospective study of 149 hepatic nodules in 127 consecutive patients who underwent gadoxetic acid-enhanced MRI was performed. MRI signal intensities (SIs) of the representative lesion ROI and of ROIs in liver parenchyma adjacent to the lesion were measured on unenhanced T1-weighted imaging and on dynamic contrast-enhanced MRI in the arterial, portal venous, delayed, and hepatobiliary phases. The relative SI of the lesion was calculated for each phase as the relative intensity ratio as follows: [mass SI / liver SI]. Of the 149 liver lesions, nine (6.0%) were low-grade DNs, 21 (14.1%) were high-grade DNs, 83 (55.7%) were low-grade HCCs, and 36 (24.2%) were high-grade HCCs. The optimal cutoffs for differentiating low-grade DNs from high-grade DNs and HCCs were an unenhanced to arterial SI of ≥ 0 or a relative SI on T2-weighted imaging of ≤ 1.5, with a positive predictive value (PPV) of 99.2% and accuracy of 88.6%. The optimal cutoffs for differentiating low-grade HCCs from high-grade HCCs were a relative hepatobiliary SI of ≤ 0.5 or a relative T2 SI of ≥ 1.5, with a PPV of 81.0% and an accuracy of 60.5%. Gadoxetate disodium-enhanced MRI allows quantitative differentiation of low-grade DNs from high-grade DNs and HCCs, but significant overlap was seen between low-grade HCCs and high-grade HCCs.

  1. Typical teleoperator time delay profiles, phase 2. [remotely controlled manipulator arms

    NASA Technical Reports Server (NTRS)

    Wetherington, R. D.; Walsh, J. R.

    1974-01-01

    The results of the second phase of a study on time delays in communications systems applicable to the teleoperator program are presented. Estimates of the maximum time delays that will be encountered and presents time delay profiles are given for (1) ground control to teleoperator in low earth orbit, (2) ground control to teleoperator in geosynchronous orbit, and (3) low earth orbit control to teleoperator in low earth orbit.

  2. Traveling waves in a coupled reaction-diffusion and difference model of hematopoiesis

    NASA Astrophysics Data System (ADS)

    Adimy, M.; Chekroun, A.; Kazmierczak, B.

    2017-04-01

    The formation and development of blood cells is a very complex process, called hematopoiesis. This process involves a small population of cells called hematopoietic stem cells (HSCs). The HSCs are undifferentiated cells, located in the bone marrow before they become mature blood cells and enter the blood stream. They have a unique ability to produce either similar cells (self-renewal), or cells engaged in one of different lineages of blood cells: red blood cells, white cells and platelets (differentiation). The HSCs can be either in a proliferating or in a quiescent phase. In this paper, we distinguish between dividing cells that enter directly to the quiescent phase and dividing cells that return to the proliferating phase to divide again. We propose a mathematical model describing the dynamics of HSC population, taking into account their spatial distribution. The resulting model is a coupled reaction-diffusion equation and difference equation with delay. We study the existence of monotone traveling wave fronts and the asymptotic speed of spread.

  3. The application of Legendre-tau approximation to parameter identification for delay and partial differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.

    1983-01-01

    Approximation schemes based on Legendre-tau approximation are developed for application to parameter identification problem for delay and partial differential equations. The tau method is based on representing the approximate solution as a truncated series of orthonormal functions. The characteristic feature of the Legendre-tau approach is that when the solution to a problem is infinitely differentiable, the rate of convergence is faster than any finite power of 1/N; higher accuracy is thus achieved, making the approach suitable for small N.

  4. On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit.

    PubMed

    Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José

    2014-11-01

    We proposed and experimentally demonstrated an ultra-broadband on-chip microwave photonic processor that can operate both as RF phase shifter (PS) and true-time-delay (TTD) line, with continuous tuning. The processor is based on a silicon dual-phase-shifted waveguide Bragg grating (DPS-WBG) realized with a CMOS compatible process. We experimentally demonstrated the generation of delay up to 19.4 ps over 10 GHz instantaneous bandwidth and a phase shift of approximately 160° over the bandwidth 22-29 GHz. The available RF measurement setup ultimately limits the phase shifting demonstration as the device is capable of providing up to 300° phase shift for RF frequencies over a record bandwidth approaching 1 THz.

  5. Evaluating the Coda Phase Delay Method for Determining Temperature Ratios in Windy Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Sarah; Bowman, Daniel; Rodgers, Arthur

    2017-07-01

    We evaluate the acoustic coda phase delay method for estimating changes in atmospheric phenomena in realistic environments. Previous studies verifying the method took place in an environment with negligible wind. The equation for effective sound speed, which the method is based upon, shows that the influence of wind is equal to the square of temperature. Under normal conditions, wind is significant and therefore cannot be ignored. Results from this study con rm the previous statement. The acoustic coda phase delay method breaks down in non-ideal environments, namely those where wind speed and direction varies across small distances. We suggest thatmore » future studies make use of gradiometry to better understand the effect of wind on the acoustic coda and subsequent phase delays.« less

  6. Identification of microRNAs differentially expressed involved in male flower development.

    PubMed

    Wang, Zhengjia; Huang, Jianqin; Sun, Zhichao; Zheng, Bingsong

    2015-03-01

    Hickory (Carya cathayensis Sarg.) is one of the most economically important woody trees in eastern China, but its long flowering phase delays yield. Our understanding of the regulatory roles of microRNAs (miRNAs) in male flower development in hickory remains poor. Using high-throughput sequencing technology, we have pyrosequenced two small RNA libraries from two male flower differentiation stages in hickory. Analysis of the sequencing data identified 114 conserved miRNAs that belonged to 23 miRNA families, five novel miRNAs including their corresponding miRNA*s, and 22 plausible miRNA candidates. Differential expression analysis revealed 12 miRNA sequences that were upregulated in the later (reproductive) stage of male flower development. Quantitative real-time PCR showed similar expression trends as that of the deep sequencing. Novel miRNAs and plausible miRNA candidates were predicted using bioinformatic analysis methods. The miRNAs newly identified in this study have increased the number of known miRNAs in hickory, and the identification of differentially expressed miRNAs will provide new avenues for studies into miRNAs involved in the process of male flower development in hickory and other related trees.

  7. Culturing on Wharton's jelly extract delays mesenchymal stem cell senescence through p53 and p16INK4a/pRb pathways.

    PubMed

    Hao, Haojie; Chen, Guanghui; Liu, Jiejie; Ti, Dongdong; Zhao, Yali; Xu, Shenjun; Fu, Xiaobing; Han, Weidong

    2013-01-01

    Mesenchymal stem cells (MSCs) hold great therapeutic potential. However, MSCs undergo replication senescence during the in vitro expansion process. Wharton's jelly from the human umbilical cord harbors a large number of MSCs. In this study, we hypothesized that Wharton's jelly would be beneficial for in vitro expansion of MSCs. Wharton's jelly extract (WJEs), which is mainly composed of extracellular matrix and cytokines, was prepared as coating substrate. Human MSCs were isolated and cultured on WJE-coated plates. Although the proliferation capacity of cells was not augmented by WJE in early phase culture, adynamic growth in late-phase culture was clearly reduced, suggesting that the replicative senescence of MSCs was efficiently slowed by WJE. This was confirmed by β-galactosidase staining and telomere length measurements of MSCs in late-phase culture. In addition, the decreased differentiation ability of MSCs after long-term culture was largely ameliorated by WJE. Reactive oxygen species (ROS), p53, and p16INK4a/pRb expression increased with passaging. Analysis at the molecular level revealed that WJE-based culture efficiently suppressed the enhancement of intracellular ROS, p53, and p16INK4a/pRb in MSCs. These data demonstrated that WJE provided an ideal microenvironment for MSCs culture expansion in vitro preserved MSC properties by delaying MSCs senescence, and allowed large numbers of MSCs to be obtained for basic research and clinical therapies.

  8. Distinct Gamma-Band Components Reflect the Short-Term Memory Maintenance of Different Sound Lateralization Angles

    PubMed Central

    Heidegger, Tonio; Wibral, Michael; Altmann, Christian F.; Lutzenberger, Werner

    2008-01-01

    Oscillatory activity in human electro- or magnetoencephalogram has been related to cortical stimulus representations and their modulation by cognitive processes. Whereas previous work has focused on gamma-band activity (GBA) during attention or maintenance of representations, there is little evidence for GBA reflecting individual stimulus representations. The present study aimed at identifying stimulus-specific GBA components during auditory spatial short-term memory. A total of 28 adults were assigned to 1 of 2 groups who were presented with only right- or left-lateralized sounds, respectively. In each group, 2 sample stimuli were used which differed in their lateralization angles (15° or 45°) with respect to the midsagittal plane. Statistical probability mapping served to identify spectral amplitude differences between 15° versus 45° stimuli. Distinct GBA components were found for each sample stimulus in different sensors over parieto-occipital cortex contralateral to the side of stimulation peaking during the middle 200–300 ms of the delay phase. The differentiation between “preferred” and “nonpreferred” stimuli during the final 100 ms of the delay phase correlated with task performance. These findings suggest that the observed GBA components reflect the activity of distinct networks tuned to spatial sound features which contribute to the maintenance of task-relevant information in short-term memory. PMID:18252742

  9. A Robust and Multi-Weighted Approach to Estimating Topographically Correlated Tropospheric Delays in Radar Interferograms

    PubMed Central

    Zhu, Bangyan; Li, Jiancheng; Chu, Zhengwei; Tang, Wei; Wang, Bin; Li, Dawei

    2016-01-01

    Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS) pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS. PMID:27420066

  10. A Robust and Multi-Weighted Approach to Estimating Topographically Correlated Tropospheric Delays in Radar Interferograms.

    PubMed

    Zhu, Bangyan; Li, Jiancheng; Chu, Zhengwei; Tang, Wei; Wang, Bin; Li, Dawei

    2016-07-12

    Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS) pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS.

  11. Spectral characterization of differential group delay in uniform fiber Bragg gratings.

    PubMed

    Bette, S; Caucheteur, C; Wuilpart, M; Mégret, P; Garcia-Olcina, R; Sales, S; Capmany, J

    2005-12-12

    In this paper, we completely study the wavelength dependency of differential group delay (DGD) in uniform fiber Bragg gratings (FBG) exhibiting birefringence. An analytical expression of DGD is established. We analyze the impact of grating parameters (physical length, index modulation and apodization profile) on the wavelength dependency of DGD. Experimental results complete the paper. A very good agreement between theory and experience is reported.

  12. Involvement of an Alternative Oxidase in Oxidative Stress and Mycelium-to-Yeast Differentiation in Paracoccidioides brasiliensis ▿ †

    PubMed Central

    Martins, Vicente P.; Dinamarco, Taisa M.; Soriani, Frederico M.; Tudella, Valéria G.; Oliveira, Sergio C.; Goldman, Gustavo H.; Curti, Carlos; Uyemura, Sérgio A.

    2011-01-01

    Paracoccidioides brasiliensis is a thermodimorphic human pathogenic fungus that causes paracoccidioidomycosis (PCM), which is the most prevalent systemic mycosis in Latin America. Differentiation from the mycelial to the yeast form (M-to-Y) is an essential step for the establishment of PCM. We evaluated the involvement of mitochondria and intracellular oxidative stress in M-to-Y differentiation. M-to-Y transition was delayed by the inhibition of mitochondrial complexes III and IV or alternative oxidase (AOX) and was blocked by the association of AOX with complex III or IV inhibitors. The expression of P. brasiliensis aox (Pbaox) was developmentally regulated through M-to-Y differentiation, wherein the highest levels were achieved in the first 24 h and during the yeast exponential growth phase; Pbaox was upregulated by oxidative stress. Pbaox was cloned, and its heterologous expression conferred cyanide-resistant respiration in Saccharomyces cerevisiae and Escherichia coli and reduced oxidative stress in S. cerevisiae cells. These results reinforce the role of PbAOX in intracellular redox balancing and demonstrate its involvement, as well as that of other components of the mitochondrial respiratory chain complexes, in the early stages of the M-to-Y differentiation of P. brasiliensis. PMID:21183691

  13. Influence of cue word perceptual information on metamemory accuracy in judgement of learning.

    PubMed

    Hu, Xiao; Liu, Zhaomin; Li, Tongtong; Luo, Liang

    2016-01-01

    Previous studies have suggested that perceptual information regarding to-be-remembered words in the study phase affects the accuracy of judgement of learning (JOL). However, few have investigated whether the perceptual information in the JOL phase influences JOL accuracy. This study examined the influence of cue word perceptual information in the JOL phase on immediate and delayed JOL accuracy through changes in cue word font size. In Experiment 1, large-cue word pairs had significantly higher mean JOL magnitude than small-cue word pairs in immediate JOLs and higher relative accuracy than small-cue pairs in delayed JOLs, but font size had no influence on recall performance. Experiment 2 increased the JOL time, and mean JOL magnitude did not reliably differ for large-cue compared with small-cue pairs in immediate JOLs. However, the influence on relative accuracy still existed in delayed JOLs. Experiment 3 increased the familiarity of small-cue words in the delayed JOL phase by adding a lexical decision task. The results indicated that cue word font size no longer affected relative accuracy in delayed JOLs. The three experiments in our study indicated that the perceptual information regarding cue words in the JOL phase affects immediate and delayed JOLs in different ways.

  14. Coded acoustic wave sensors and system using time diversity

    NASA Technical Reports Server (NTRS)

    Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)

    2012-01-01

    An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.

  15. Conceptualising the prevention of adverse obstetric outcomes among immigrants using the 'three delays' framework in a high-income context.

    PubMed

    Binder, Pauline; Johnsdotter, Sara; Essén, Birgitta

    2012-12-01

    Women from high-mortality settings in sub-Saharan Africa can remain at risk for adverse maternal outcomes even after migrating to low-mortality settings. To conceptualise underlying socio-cultural factors, we assume a 'maternal migration effect' as pre-migration influences on pregnant women's post-migration care-seeking and consistent utilisation of available care. We apply the 'three delays' framework, developed for low-income African contexts, to a high-income western scenario, and aim to identify delay-causing influences on the pathway to optimal facility treatment. We also compare factors influencing the expectations of women and maternal health providers during care encounters. In 2005-2006, we interviewed 54 immigrant African women and 62 maternal providers in greater London, United Kingdom. Participants were recruited by snowball and purposive sampling. We used a hermeneutic, naturalistic study design to create a qualitative proxy for medical anthropology. Data were triangulated to the framework and to the national health system maternity care guidelines. This maintained the original three phases of (1) care-seeking, (2) facility accessibility, and (3) receipt of optimal care, but modified the framework for a migration context. Delays to reciprocal care encounters in Phase 3 result from Phase 1 factors of 'broken trust, which can be mutually held between women and providers. An additional factor is women's 'negative responses to future care', which include rationalisations made during non-emergency situations about future late-booking, low-adherence or refusal of treatment. The greatest potential for delay was found during the care encounter, suggesting that perceived Phase 1 factors have stronger influence on Phase 3 than in the original framework. Phase 2 'language discordance' can lead to a 'reliance on interpreter service', which can cause delays in Phase 3, when 'reciprocal incongruent language ability' is worsened by suboptimal interpreter systems. 'Non-reciprocating care conceptualisations', 'limited system-level care guidelines', and 'low staff levels' can additionally delay timely care in Phase 3. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Chaotic simulated annealing by a neural network with a variable delay: design and application.

    PubMed

    Chen, Shyan-Shiou

    2011-10-01

    In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem. © 2011 IEEE

  17. Simultaneous DPSK demodulation and chirp management using delay interferometer in symmetric 40-Gb/s capability TWDM-PON system.

    PubMed

    Bi, Meihua; Xiao, Shilin; He, Hao; Yi, Lilin; Li, Zhengxuan; Li, Jun; Yang, Xuelin; Hu, Weisheng

    2013-07-15

    We propose a symmetric 40-Gb/s aggregate rate time and wavelength division multiplexed passive optical network (TWDM-PON) system with the capability of simultaneous downstream differential phase shift keying (DPSK) signal demodulation and upstream signal chirp management based on delay interferometer (DI). With the bi-pass characteristic of DI, we experimentally demonstrate the bidirectional transmission of signals at 10-Gb/s per wavelength, and achieve negligible power penalties after 50-km single mode fiber (SMF). For the uplink transmission with DI, a ~11-dB optical power budget improvement at a bit error ratio of 1e-3 is obtained and the extinction ratio (ER) of signal is also improved from 3.4 dB to 13.75 dB. Owing to this high ER, the upstream burst-mode transmitting is successfully presented in term of time-division multiplexing. Moreover, in our experiment, a ~38-dB power budget is obtained to support 256 users with 50-km SMF transmission.

  18. Estimating tropospheric phase delay in SAR interferograms using Global Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Doin, M.; Lasserre, C.; Peltzer, G.; Cavalie, O.; Doubre, C.

    2008-12-01

    The main limiting factor on the accuracy of Interferometric SAR (InSAR) measurements comes from phase propagation delays through the Earth's troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal in InSAR data, and a turbulent component. The stratified delay can be expressed as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. We compare the stratified delay computed using results from global atmospheric models with the topography-dependent signal observed in interferograms covering three test areas in different geographic and climatic environments: Lake Mead, Nevada, USA, the Haiyuan fault area, Gansu, China, and Afar, Republic of Djibouti. For each site we compute a multi-year series of interferograms. The phase-elevation ratio is estimated for each interferogram and the series is inverted to form a timeline of delay-elevation ratios characterizing each epoch of data acquisition. InSAR derived ratios are in good agreement with the ratios computed from global atmospheric models. This agreement shows that both estimations of the delay-elevation ratio can be used to perform a first order correction of the InSAR phase. Seasonal variations of the atmosphere significantly affect the phase delay throughout the year, aliasing the results of time series inversions using temporal smoothing or data stacking when the acquisitions are not evenly distributed in time. This is particularly critical when the spatial shape of the signal of interest correlates with topography. In the Lake Mead area, the irregular temporal sampling of our SAR data results in an interannual bias of amplitude ~2~cm on range change estimates. In the Haiyuan Fault area, the coarse and uneven data sampling results in a bias of up to ~0.5~cm/yr on the line of sight velocity across the fault. In the Afar area, the seasonal signal exceeds the deformation signal in the phase time series. In all cases, correcting interferograms from the stratified delay helps removing these biases. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependance to the elevation, as consistent non-linear relationships are observed in many interferograms as well as in global atmospheric models.

  19. Time-delayed feedback control of diffusion in random walkers.

    PubMed

    Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U

    2017-07-01

    Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.

  20. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse

    PubMed Central

    Ou, Xuan; Chae, Hee-Don; Wang, Rui-Hong; Shelley, William C.; Cooper, Scott; Taylor, Tammi; Kim, Young-June; Deng, Chu-Xia; Yoder, Mervin C.

    2011-01-01

    SIRT1 is a founding member of a sirtuin family of 7 proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1−/− mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1−/− mouse embryonic stem cells (ESCs) in vitro, and hematopoietic progenitors in SIRT1+/++/−, and −/− mice. SIRT1−/− ESCs formed fewer mature blast cell colonies. Replated SIRT1−/− blast colony-forming cells demonstrated defective hematopoietic potential. Endothelial cell production was unaltered, but there were defects in formation of a primitive vascular network from SIRT1−/−-derived embryoid bodies. Development of primitive and definitive progenitors derived from SIRT1−/− ESCs were also delayed and/or defective. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5 expression, decreased β-H1 globin, β-major globin, and Scl gene expression, and reduced activation of Erk1/2. Ectopic expression of SIRT1 rescued SIRT1−/− ESC differentiation deficiencies. SIRT1−/− yolk sacs manifested fewer primitive erythroid precursors. SIRT1−/− and SIRT1+/− adult marrow had decreased numbers and cycling of hematopoietic progenitors, effects more apparent at 5%, than at 20%, oxygen tension, and these progenitors survived less well in vitro under conditions of delayed growth factor addition. This suggests a role for SIRT1 in ESC differentiation and mouse hematopoiesis. PMID:20966168

  1. Single generation cycles and delayed feedback cycles are not separate phenomena.

    PubMed

    Pfaff, T; Brechtel, A; Drossel, B; Guill, C

    2014-12-01

    We study a simple model for generation cycles, which are oscillations with a period of one or a few generation times of the species. The model is formulated in terms of a single delay-differential equation for the population density of an adult stage, with recruitment to the adult stage depending on the intensity of competition during the juvenile phase. This model is a simplified version of a group of models proposed by Gurney and Nisbet, who were the first to distinguish between single-generation cycles and delayed-feedback cycles. According to these authors, the two oscillation types are caused by different mechanisms and have periods in different intervals, which are one to two generation times for single-generation cycles and two to four generation times for delayed-feedback cycles. By abolishing the strict coupling between the maturation time and the time delay between competition and its effect on the population dynamics, we find that single-generation cycles and delayed-feedback cycles occur in the same model version, with a gradual transition between the two as the model parameters are varied over a sufficiently large range. Furthermore, cycle periods are not bounded to lie within single octaves. This implies that a clear distinction between different types of generation cycles is not possible. Cycles of all periods and even chaos can be generated by varying the parameters that determine the time during which individuals from different cohorts compete with each other. This suggests that life-cycle features in the juvenile stage and during the transition to the adult stage are important determinants of the dynamics of density limited populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Fatigue Damage Evaluation of Short Carbon Fiber Reinforced Plastics Based on Phase Information of Thermoelastic Temperature Change.

    PubMed

    Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-12-06

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.

  3. Cable delay compensator for microwave signal distribution over optical fibers

    NASA Astrophysics Data System (ADS)

    Primas, Lori E.

    1990-12-01

    The basic principles of microwave fiber-optic systems are outlined with emphasis on fiber-optic cable delay compensators (CDC). Degradation of frequency and phase stability is considered, and it is pointed out that the long-term stability of a fiber-optic link is degraded by group delay variations due to temperature fluctuations in the optical fiber and low-frequency noise characteristics of the laser. A CDC employing a voltage-controlled oscillator to correct for phase variations in the optical fiber is presented, and the static as well as dynamic closed-loop analyses of the fiber-optic CDC are discussed. A constructed narrow-band fiber-optic CDC is shown to reduce phase variations caused by temperature fluctuations by a factor of 400. A wide-band CDC utilizing a temperature-controlled coil of fiber to compensate for phase delay is also proposed.

  4. Effects of Phytoplankton Growth Phase on Delayed Settling Behavior of Marine Snow Aggregates at Sharp Density Transitions

    NASA Astrophysics Data System (ADS)

    Proctor, K. W.; Montgomery, Q. W.; Prairie, J. C.

    2016-02-01

    Marine snow aggregates play a fundamental role in the marine carbon cycle. Since marine snow aggregates are larger and thus sink faster than individual phytoplankton, aggregates often dominate carbon flux. Previous studies have shown that marine snow aggregates will significantly decrease their settling velocity when passing through sharp density transitions within the ocean, a phenomenon defined as delayed settling. Given the importance of aggregate settling to carbon export, these small-scale changes in aggregate settling dynamics may have significant impacts on the efficiency of the biological pump. However, there is still a lack of knowledge about how different physical properties of aggregates can affect this delayed settling. In this study, we investigated the effect of phytoplankton growth phase on delayed settling behavior. Using phytoplankton cultures stopped at four different growth phases, we formed marine snow aggregates in the laboratory in rotating cylindrical tanks. We then observed individual aggregates as they settled through a stratified tank. We will present data which illustrates that aggregates experience greatly reduced settling rates when passing through sharp density gradients and that the growth phase of the phytoplankton used to form these aggregates has a significant effect on this delayed settling behavior. A thorough understanding of the impact of phytoplankton growth phase on the delayed settling behavior of marine snow will offer insight into the way phytoplankton growth phase may influence the efficiency of the biological pump, carbon flux, and the carbon cycle as a whole.

  5. Organization of Anti-Phase Synchronization Pattern in Neural Networks: What are the Key Factors?

    PubMed Central

    Li, Dong; Zhou, Changsong

    2011-01-01

    Anti-phase oscillation has been widely observed in cortical neural network. Elucidating the mechanism underlying the organization of anti-phase pattern is of significance for better understanding more complicated pattern formations in brain networks. In dynamical systems theory, the organization of anti-phase oscillation pattern has usually been considered to relate to time delay in coupling. This is consistent to conduction delays in real neural networks in the brain due to finite propagation velocity of action potentials. However, other structural factors in cortical neural network, such as modular organization (connection density) and the coupling types (excitatory or inhibitory), could also play an important role. In this work, we investigate the anti-phase oscillation pattern organized on a two-module network of either neuronal cell model or neural mass model, and analyze the impact of the conduction delay times, the connection densities, and coupling types. Our results show that delay times and coupling types can play key roles in this organization. The connection densities may have an influence on the stability if an anti-phase pattern exists due to the other factors. Furthermore, we show that anti-phase synchronization of slow oscillations can be achieved with small delay times if there is interaction between slow and fast oscillations. These results are significant for further understanding more realistic spatiotemporal dynamics of cortico-cortical communications. PMID:22232576

  6. PPARα autocrine regulation of Ca²⁺-regulated exocytosis in guinea pig antral mucous cells: NO and cGMP accumulation.

    PubMed

    Tanaka, Saori; Sugiyama, Nanae; Takahashi, Yuko; Mantoku, Daiki; Sawabe, Yukinori; Kuwabara, Hiroko; Nakano, Takashi; Shimamoto, Chikao; Matsumura, Hitoshi; Marunaka, Yoshinori; Nakahari, Takashi

    2014-12-15

    In antral mucous cells, acetylcholine (ACh, 1 μM) activates Ca(2+)-regulated exocytosis, consisting of a peak in exocytotic events that declines rapidly (initial phase) followed by a second slower decline (late phase) lasting during ACh stimulation. GW7647 [a peroxisome proliferation activation receptor α (PPARα) agonist] enhanced the ACh-stimulated initial phase, and GW6471 (a PPARα antagonist) abolished the GW7647-induced enhancement. However, GW6471 produced the delayed, but transient, increase in the ACh-stimulated late phase, and it also decreased the initial phase and produced the delayed increase in the late phase during stimulation with ACh alone. A similar delayed increase in the ACh-stimulated late phase is induced by an inhibitor of the PKG, Rp8BrPETcGMPS, suggesting that GW6471 inhibits cGMP accumulation. An inhibitor of nitric oxide synthase 1 (NOS1), N(5)-[imino(propylamino)methyl]-L-ornithine hydrochloride (N-PLA), also abolished the GW7647-induced-enhancement of ACh-stimulated initial phase but produced the delayed increase in the late phase. However, in the presence of N-PLA, an NO donor or 8BrcGMP enhanced the ACh-stimulated initial phase and abolished the delayed increase in the late phase. Moreover, GW7647 and ACh stimulated NO production and cGMP accumulation in antral mucosae, which was inhibited by GW6471 or N-PLA. Western blotting and immunohistochemistry revealed that NOS1 and PPARα colocalize in antral mucous cells. In conclusion, during ACh stimulation, a PPARα autocrine mechanism, which accumulates NO via NOS1 leading to cGMP accumulation, modulates the Ca(2+)-regulated exocytosis in antral mucous cells. Copyright © 2014 the American Physiological Society.

  7. Nonlinear interaction in differential mode delay managed mode-division multiplexed transmission systems.

    PubMed

    Rademacher, Georg; Warm, Stefan; Petermann, Klaus

    2015-01-12

    We analyze the impact of Differential Mode Delay (DMD) Management on the nonlinear impairments in mode-division multiplexed transmission systems. It is found out that DMD Management can lead to a degraded performance, due to enhanced intermodal nonlinear interaction. This can be attributed to an increased correlation of co-propagating channels, similar to the effects that show up in dispersion managed single-mode systems.

  8. Differentiation of Speech Delay and Global Developmental Delay in Children Using DTI Tractography-Based Connectome.

    PubMed

    Jeong, J-W; Sundaram, S; Behen, M E; Chugani, H T

    2016-06-01

    Pure speech delay is a common developmental disorder which, according to some estimates, affects 5%-8% of the population. Speech delay may not only be an isolated condition but also can be part of a broader condition such as global developmental delay. The present study investigated whether diffusion tensor imaging tractography-based connectome can differentiate global developmental delay from speech delay in young children. Twelve children with pure speech delay (39.1 ± 20.9 months of age, 9 boys), 14 children with global developmental delay (39.3 ± 18.2 months of age, 12 boys), and 10 children with typical development (38.5 ± 20.5 months of age, 7 boys) underwent 3T DTI. For each subject, whole-brain connectome analysis was performed by using 116 cortical ROIs. The following network metrics were measured at individual regions: strength (number of the shortest paths), efficiency (measures of global and local integration), cluster coefficient (a measure of local aggregation), and betweeness (a measure of centrality). Compared with typical development, global and local efficiency were significantly reduced in both global developmental delay and speech delay (P < .0001). The nodal strength of the cognitive network is reduced in global developmental delay, whereas the nodal strength of the language network is reduced in speech delay. This finding resulted in a high accuracy of >83% ± 4% to discriminate global developmental delay from speech delay. The network abnormalities identified in the present study may underlie the neurocognitive and behavioral consequences commonly identified in children with global developmental delay and speech delay. Further validation studies in larger samples are required. © 2016 by American Journal of Neuroradiology.

  9. Sea Ice Detection Based on Differential Delay-Doppler Maps from UK TechDemoSat-1

    PubMed Central

    Zhu, Yongchao; Yu, Kegen; Zou, Jingui; Wickert, Jens

    2017-01-01

    Global Navigation Satellite System (GNSS) signals can be exploited to remotely sense atmosphere and land and ocean surface to retrieve a range of geophysical parameters. This paper proposes two new methods, termed as power-summation of differential Delay-Doppler Maps (PS-D) and pixel-number of differential Delay-Doppler Maps (PN-D), to distinguish between sea ice and sea water using differential Delay-Doppler Maps (dDDMs). PS-D and PN-D make use of power-summation and pixel-number of dDDMs, respectively, to measure the degree of difference between two DDMs so as to determine the transition state (water-water, water-ice, ice-ice and ice-water) and hence ice and water are detected. Moreover, an adaptive incoherent averaging of DDMs is employed to improve the computational efficiency. A large number of DDMs recorded by UK TechDemoSat-1 (TDS-1) over the Arctic region are used to test the proposed sea ice detection methods. Through evaluating against ground-truth measurements from the Ocean Sea Ice SAF, the proposed PS-D and PN-D methods achieve a probability of detection of 99.72% and 99.69% respectively, while the probability of false detection is 0.28% and 0.31% respectively. PMID:28704948

  10. Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE

    NASA Astrophysics Data System (ADS)

    Ansmann, Gerrit

    2018-04-01

    We present a family of Python modules for the numerical integration of ordinary, delay, or stochastic differential equations. The key features are that the user enters the derivative symbolically and it is just-in-time-compiled, allowing the user to efficiently integrate differential equations from a higher-level interpreted language. The presented modules are particularly suited for large systems of differential equations such as those used to describe dynamics on complex networks. Through the selected method of input, the presented modules also allow almost complete automatization of the process of estimating regular as well as transversal Lyapunov exponents for ordinary and delay differential equations. We conceptually discuss the modules' design, analyze their performance, and demonstrate their capabilities by application to timely problems.

  11. Wigner time delay in photodetachment of Tm-and in photoionization of Yb: A comparative study

    NASA Astrophysics Data System (ADS)

    Saha, Soumyajit; Jose, Jobin; Deshmukh, Pranawa; Dolmatov, Valeriy; Kheifets, Anatoli; Manson, Steven

    2017-04-01

    Preliminary studies of Wigner time delay in photodetachment spectra of negative ions have been reported. Photodetachment time delay for some dipole channels of Tm- and of Cl- were calculated using relativistic random phase approximation (RRPA). Comparisons between photodetachment time delay of Cl- and photoionization time delay of Ar were made. We investigate the photodetachment time delay for all three relativistically split nd -> ɛ f channels of Tm- and for nd -> ɛ f channels of Yb (isoelectronic to Tm-) using RRPA. We study the effect of the shape resonance, brought about by the centrifugal barrier potential, on photodetachment time delay. A negative ion is a good laboratory for studying the effects of shape resonances on time delay since the phase is unaffected by the Coulomb component. Wigner time delay in photodetachment of Tm- and in photoionization of Yb: A comparative study.

  12. A delay differential model of ENSO variability: Extreme values and stability analysis

    NASA Astrophysics Data System (ADS)

    Zaliapin, I.; Ghil, M.

    2009-04-01

    We consider a delay differential equation (DDE) model for El-Niño Southern Oscillation (ENSO) variability [Ghil et al. (2008), Nonlin. Proc. Geophys., 15, 417-433.] The model combines two key mechanisms that participate in ENSO dynamics: delayed negative feedback and seasonal forcing. Toy models of this type were shown to capture major features of the ENSO phenomenon [Jin et al., Science (1994); Tziperman et al., Science (1994)]; they provide a convenient paradigm for explaining interannual ENSO variability and shed new light on its dynamical properties. So far, though, DDE model studies of ENSO have been limited to linear stability analysis of steady-state solutions, which are not typical in forced systems, case studies of particular trajectories, or one-dimensional scenarios of transition to chaos, varying a single parameter while the others are kept fixed. In this work we take several steps toward a comprehensive analysis of DDE models relevant for ENSO phenomenology and illustrate the complexity of phase-parameter space structure for even such a simple model of climate dynamics. We formulate an initial value problem for our model and prove the existence, uniqueness, and continuous dependence theorem. We then use this theoretical result to perform detailed numerical stability analyses of the model in the three-dimensional space of its physically relevant parameters: strength of seasonal forcing b, atmosphere-ocean coupling ΰ, and propagation period ? of oceanic waves across the Tropical Pacific. Two regimes of variability, stable and unstable, are reported; they are separated by a sharp neutral curve in the (b,?) plane at constant ΰ. The detailed structure of the neutral curve becomes very irregular and possibly fractal, while individual trajectories within the unstable region become highly complex and possibly chaotic, as the atmosphere-ocean coupling ΰ increases. In the unstable regime, spontaneous transitions occur in the mean temperature (i.e., thermocline depth), period, and extreme annual values, for purely periodic, seasonal forcing. The model reproduces the Devils bleachers characterizing other ENSO models, such as nonlinear, coupled systems of partial differential equations; some of the features of this behavior have been documented in general circulation models, as well as in observations. We analyze the values of annual extremes and their location within an annual cycle and report the phase-locking phenomenon, which is connected to the occurrence of El-Niño events during the boreal (Northern Hemisphere) winter. We report existence of multiple solutions and study their basins of attraction in a space of initial conditions. We also present a model-based justification for the observed quasi-biennial oscillation in Tropical Pacific SSTs. We expect similar behavior in much more detailed and realistic models, where it is harder to describe its causes as completely. The basic mechanisms used in our model (delayed feedback and forcing) may be relevant to other natural systems in which internal instabilities interact with external forcing and give rise to extreme events.

  13. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing.

    PubMed

    Jäger, Marten; Ott, Claus-Eric; Grünhagen, Johannes; Hecht, Jochen; Schell, Hanna; Mundlos, Stefan; Duda, Georg N; Robinson, Peter N; Lienau, Jasmin

    2011-03-24

    The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism.

  14. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing

    PubMed Central

    2011-01-01

    Background The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Results Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Conclusions Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism. PMID:21435219

  15. Effect of time delay on surgical performance during telesurgical manipulation.

    PubMed

    Fabrizio, M D; Lee, B R; Chan, D Y; Stoianovici, D; Jarrett, T W; Yang, C; Kavoussi, L R

    2000-03-01

    Telementoring allows a less experienced surgeon to benefit from an expert surgical consultation, reducing cost, travel, and the learning curve associated with new procedures. However, there are several technical limitations that affect practical applications. One potentially serious problem is the time delay that occurs any time data are transferred across long distances. To date, the effect of time delay on surgical performance has not been studied. A two-phase trial was designed to examine the effect of time delay on surgical performance. In the first phase, a series of tasks was performed, and the numbers of robotic movements required for completion was counted. Programmed incremental time delays were made in audiovisual acquisition and robotic controls. The number of errors made while performing each task at various time delay intervals was noted. In the second phase, a remote surgeon in Baltimore performed the tasks 9000 miles away in Singapore. The number of errors made was recorded. As the time delay increased, the number of operator errors increased. The accuracy needed to perform remote robotic procedures was diminished as the time delay increased. A learning curve did exist for each task, but as the time delay interval increased, it took longer to complete the task. Time delay does affect surgical performance. There is an acceptable delay of <700 msec in which surgeons can compensate for this phenomenon. Clinical studies will be needed to evaluate the true impact of time delay.

  16. Familiar Phases: Receiver Function Study of the Lithospheric Structure Across the Eastern Margin of the Superior Craton

    NASA Astrophysics Data System (ADS)

    Levin, V. L.; Servali, A.; Dunham, B.; Klaser, M.

    2015-12-01

    A 1200 km long array of seismic observatories from James Bay to the Atlantic coast covers nearly 2 Ga in time, from the Archean Superior Province to the Paleozoic Appalachian Orogen. We use traditional (P-to-SV) receiver function analysis for detailed characterization of the lithospheric mantle along the array, focusing on the 5-15 s delay range where direct conversions from within the lithosphere and crustal multiples are expected.Superior craton sites show exceptionaly clear receiver functions dominated by the first crustal multiple. Also, a negative phase consistent with impedance decrease at the Mid-Lithospheric Discontinuity (~8 s delay) is observed north of 51°N, within the La Grande and Opinaca terranes of the Superior province. In the Opatica terrane further south we see a positive phase at similar delays instead. This implies a downward impedance increase 70-80 km deep within the lithosphere, consistent with the Hales discontinuity. In the Abitibi terrane just north of the Grenville Front we see evidence for two impedance drops in the 60-130 km depth range. Within the Proterozoic Grenvile province receiver functions vary with direction at individual sites, and lack regional consistency. Crustal multiples are noticeably weaker. South of 49°N we once again find negative phases in the 8-10 s delay range. While weak and directionally-dependent in the central Grenville province, these phases are clear near the Appalachian Front (AF), and are followed by positive phases, suggesting thin low-velocity layers in the lower part of the lithosphere. Similarity of receiver function signatures on opposite sides of the AF suggests continuity of the lithosphere beneath it.South of the AF and north of the Norumbega Fault Zone (NFZ) in Maine we find positive phases at ~10 s delays. The implied increase in impedance at ~75 km depth is puzzling. We also find previously-reported weak negative phases in the 6-8 s delay range. South of the NFZ a strong negative phase at ~9 s delay likely marks the bottom of the lithosphere.

  17. Premature extravasation. A bleeding site identified during the dynamic phase of Tc-99m red blood cell bleeding scintigraphy.

    PubMed

    el-Shirbiny, A; Fernandez, R; Zuckier, L S

    1995-08-01

    Tc-99m RBC scintigraphy is favored by many investigators because it provides the ability to image the abdomen over a prolonged period of time, thereby allowing identification of delayed bleeding sites that are frequently encountered due to the intermittent nature of gastrointestinal bleeding. The authors describe a case of bleeding scintigraphy with labeled red blood cells in which the bleeding site was identifiable only on the dynamic blood-flow and first static images. On later images, the labeled blood cells had spread throughout the colon, rendering localization of the actual bleeding site impossible. Two previous red blood cell scintigraphies and a subsequent contrast angiogram did not reveal sites of active bleeding. As illustrated by this unusual case, factors governing timing and visualization of abnormal bleeding sites are discussed, as is a differential diagnosis of abnormal foci of activity seen on the dynamic phase of bleeding scintigraphy.

  18. System for stabilizing cable phase delay utilizing a coaxial cable under pressure

    NASA Technical Reports Server (NTRS)

    Clements, P. A. (Inventor)

    1974-01-01

    Stabilizing the phase delay of signals passing through a pressurizable coaxial cable is disclosed. Signals from an appropriate source at a selected frequency, e.g., 100 MHz, are sent through the controlled cable from a first cable end to a second cable end which, electrically, is open or heavily mismatched at 100 MHz, thereby reflecting 100 MHz signals back to the first cable end. Thereat, the phase difference between the reflected-back signals and the signals from the source is detected by a phase detector. The output of the latter is used to control the flow of gas to or from the cable, thereby controlling the cable pressure, which in turn affects the cable phase delay.

  19. Designing Estimator/Predictor Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Hurd, W. J.

    1988-01-01

    Signal delays in equipment compensated automatically. New approach to design of digital phase-locked loop (DPLL) incorporates concepts from estimation theory and involves decomposition of closed-loop transfer function into estimator and predictor. Estimator provides recursive estimates of phase, frequency, and higher order derivatives of phase with respect to time, while predictor compensates for delay, called "transport lag," caused by PLL equipment and by DPLL computations.

  20. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  1. Synchronization properties of network motifs: Influence of coupling delay and symmetry

    NASA Astrophysics Data System (ADS)

    D'Huys, O.; Vicente, R.; Erneux, T.; Danckaert, J.; Fischer, I.

    2008-09-01

    We investigate the effect of coupling delays on the synchronization properties of several network motifs. In particular, we analyze the synchronization patterns of unidirectionally coupled rings, bidirectionally coupled rings, and open chains of Kuramoto oscillators. Our approach includes an analytical and semianalytical study of the existence and stability of different in-phase and out-of-phase periodic solutions, complemented by numerical simulations. The delay is found to act differently on networks possessing different symmetries. While for the unidirectionally coupled ring the coupling delay is mainly observed to induce multistability, its effect on bidirectionally coupled rings is to enhance the most symmetric solution. We also study the influence of feedback and conclude that it also promotes the in-phase solution of the coupled oscillators. We finally discuss the relation between our theoretical results on delay-coupled Kuramoto oscillators and the synchronization properties of networks consisting of real-world delay-coupled oscillators, such as semiconductor laser arrays and neuronal circuits.

  2. Three-phase 18F-fluorocholine PET/CT in the evaluation of prostate cancer recurrence.

    PubMed

    Steiner, Ch; Vees, H; Zaidi, H; Wissmeyer, M; Berrebi, O; Kossovsky, M P; Khan, H G; Miralbell, R; Ratib, O; Buchegger, F

    2009-01-01

    Contribution of 3-phase 18F-fluorocholine PET/CT in suspected prostate cancer recurrence at early rise of PSA. Retrospective analysis was performed in 47 patients after initial treatment with radiotherapy (n=30) or surgery (n=17). Following CT, 10 minutes list-mode PET acquisition was done over the prostate bed after injection of 300 MBq of 18F-fluorocholine. Three timeframes of 3 minutes each were reconstructed for analysis. All patients underwent subsequent whole body PET/CT. Delayed pelvic PET/CT was obtained in 36 patients. PET/CT was interpreted visually by two observers and SUVmax determined for suspicious lesions. Biopsies were obtained from 13 patients. Biopsies confirmed the presence of cancer in 11 of 13 patients with positive PET for a total of 15 local recurrences in which average SUVmax increased during 14 minutes post injection and marginally decreased in delayed scanning. Conversely inguinal lymph nodes with mild to moderate metabolic activity on PET showed a clearly different pattern with decreasing SUVmax on dynamic images. Three-phase PET/CT contributed to the diagnostic assessment of 10 of 47 patients with biological evidence of recurrence of cancer. It notably allowed the discrimination of confounding blood pool or urinary activity from suspicious hyperactivities. PET/CT was positive in all patients with PSA>or=2 ng/ml (n=34) and in 4/13 patients presenting PSA values<2 ng/ml. 18F-fluorocholine 3-phase PET/CT showed a progressively increasing SUVmax in biopsy confirmed cancer lesions up to 14 minutes post injection while decreasing in inguinal lymph nodes interpreted as benign. Furthermore, it was very useful in differentiating local recurrences from confounding blood pool and urinary activity.

  3. Fractional Order Spatiotemporal Chaos with Delay in Spatial Nonlinear Coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yingqian; Wang, Xingyuan; Liu, Liyan; Liu, Jia

    We investigate the spatiotemporal dynamics with fractional order differential logistic map with delay under nonlinear chaotic maps for spatial coupling connections. Here, the coupling methods between lattices are the nonlinear chaotic map coupling of lattices. The fractional order differential logistic map with delay breaks the limits of the range of parameter μ ∈ [3.75, 4] in the classical logistic map for chaotic states. The Kolmogorov-Sinai entropy density and universality, and bifurcation diagrams are employed to investigate the chaotic behaviors of the proposed model in this paper. The proposed model can also be applied for cryptography, which is verified in a color image encryption scheme in this paper.

  4. Performance Assessment of a Gnss-Based Troposphere Path Delay Estimation Software

    NASA Astrophysics Data System (ADS)

    Mariotti, Gilles; Avanzi, Alessandro; Graziani, Alberto; Tortora, Paolo

    2013-04-01

    Error budgets of Deep Space Radio Science experiments are heavily affected by interplanetary and Earth transmission media, that corrupt, due to their non-unitary refraction index, the radiometric information of signals coming from the spacecraft. An effective removal of these noise sources is crucial to achieve the accuracy and signal stability levels required by radio science applications. Depending on the nature of these refractions, transmission media are divided into dispersive (that consists of ionized particles, i.e. Solar Wind and Ionosphere) and non-dispersive ones (the refraction is caused by neutral particles: Earth Troposphere). While dispersive noises are successfully removed by multifrequency combinations (as for GPS with the well-known ionofree combination), the most accurate estimation of tropospheric noise is obtained using microwave radiometers (MWR). As the use of MWRs suffers from strong operational limitations (rain and heavy clouds conditions), the GNSS-based processing is still widely adopted to provide a cost-effective, all-weather condition estimation of the troposphere path delay. This work describes the development process and reports the results of a GNSS analysis code specifically aimed to the estimation of the path delays introduced by the troposphere above deep space complexes, to be used for the calibration of Range and Doppler radiometric data. The code has been developed by the Radio Science Laboratory of the University of Bologna in Forlì, and is currently in the testing phase. To this aim, the preliminary output is compared to MWR measurements and IGS TropoSINEX products in order to assess the reliability of the estimate. The software works using ionofree carrier-phase observables and is based upon a double-difference approach, in which the GNSS receiver placed nearby the Deep Space receiver acts as the rover station. Several baselines are then created with various IGS and EUREF stations (master or reference stations) in order to perform the differentiation. The code relies on several IGS products, like SP3 precise orbits and SINEX positions available for the master stations in order to remove several error components, while the phase ambiguities (both wide and narrow lane) are resolved using the modified LAMBDA (MLAMBDA) method. The double-differenced data are then processed by a Kalman Filter that estimates the contingent positioning error of the rover station, its Zenith Wet Delay (ZWD) and the residual phase ambiguities. On the other hand, the Zenith Hydrostatic Delay (ZHD) is preliminarily computed using a mathematical model, based on surface meteorological measurements. The final product of the developed code is an output file containing the estimated ZWD and ZHD time-series in a format compatible with the major orbit determination software, e.g. the CSP card format (TRK-2-23) used by NASA JPL's Orbit Determination Program.

  5. Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster.

    PubMed

    Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura

    2016-07-01

    Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. Copyright © 2016 by the Genetics Society of America.

  6. Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster

    PubMed Central

    Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura

    2016-01-01

    Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo. However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed Drosophila, Rbf, E2F and Myb/Multi-vulva class B (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. PMID:27184390

  7. Calibration of the Geosar Dual Frequency Interferometric SAR

    NASA Technical Reports Server (NTRS)

    Chapine, Elaine

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (INSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation (CalDOC) with funding provided by the Topographic Engineering Center (TEC) of the U.S. Army Corps of Engineers and the Defense Advanced Research Projects Agency (DARPA). The radar simultaneously maps swaths on both sides of the aircraft at two frequencies, X-Band and P-Band. For the P-Band system, data is collected for two across track interferometric baselines and at the crossed polarization. The aircraft position and attitude are measured using two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The mechanical orientation and position of the antennas are actively measured using a Laser Baseline Metrology System (LBMS). In the GeoSAR motion measurement software, these data are optimally combined with data from a nearby ground station using Ashtech PNAV software to produce the position, orientation, and baseline information are used to process the dual frequency radar data. Proper calibration of the GeoSAR system is essential to obtaining digital elevation models (DEMS) with the required sub-meter level planimetric and vertical accuracies. Calibration begins with the determination of the yaw and pitch biases for the two EGI units. Common range delays are determined for each mode, along with differential time and phase delays between channels. Because the antennas are measured by the LBMS, baseline calibration consists primarily of measuring a constant offset between mechanical center and the electrical phase center of the antennas. A phase screen, an offset to the interferometric phase difference which is a function of absolute phase, is applied to the interferometric data to compensate for multipath and leakage. Calibration parameters are calculated for each of the ten processing modes, each of the operational bandwidths (80 and 160 MHZ), and each aircraft altitude. In this talk we will discuss the layout calibration sites, the synthesis of data from multiple flights to improve the calibration, methods for determining time and phase delays, and techniques for determining radiometric and polarimetric quantities. We will describe how calibration quantities are incorporated into the processor and pre-processor. We will demonstrate our techniques applied to GeoSar data and assess the stability and accuracy of the calibration. This will be compared to the modeled performance determined from calibrating the output of a point target simulator. The details of baseline determination and phase screen calculation are covered in related talks.

  8. Security-enhanced chaos communication with time-delay signature suppression and phase encryption.

    PubMed

    Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2016-08-15

    A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data.

  9. A differential delay equation arising from the sieve of Eratosthenes

    NASA Technical Reports Server (NTRS)

    Cheer, A. Y.; Goldston, D. A.

    1990-01-01

    Consideration is given to the differential delay equation introduced by Buchstab (1937) in connection with an asymptotic formula for the uncanceled terms in the sieve of Eratosthenes. Maier (1985) used this result to show there is unexpected irreqularity in the distribution of primes in short intervals. The function omega(u) is studied in this paper using numerical and analytical techniques. The results are applied to give some numerical constants in Maier's theorem.

  10. Delayed nonlinear cournot and bertrand dynamics with product differentiation.

    PubMed

    Matsumoto, Akio; Szidarovszky, Ferenc

    2007-07-01

    Dynamic duopolies will be examined with product differentiation and isoelastic price functions. We will first prove that under realistic conditions the equilibrium is always locally asymptotically stable. The stability can however be lost if the firms use delayed information in forming their best responses. Stability conditions are derived in special cases, and simulation results illustrate the complexity of the dynamism of the systems. Both price and quantity adjusting models are discussed.

  11. Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2006-01-01

    This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.

  12. Numerical modelling in biosciences using delay differential equations

    NASA Astrophysics Data System (ADS)

    Bocharov, Gennadii A.; Rihan, Fathalla A.

    2000-12-01

    Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.

  13. Alternans promotion in cardiac electrophysiology models by delay differential equations.

    PubMed

    Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  14. Phase-locked-loop-based delay-line-free picosecond electro-optic sampling system

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng

    2003-04-01

    A delay-line-free, high-speed electro-optic sampling (EOS) system is proposed by employing a delay-time-controlled ultrafast laser diode as the optical probe. Versatile optoelectronic delay-time controllers (ODTCs) based on modified voltage-controlled phase-locked-loop phase-shifting technologies are designed for the laser. The integration of the ODTC circuit and the pulsed laser diode has replaced the traditional optomechanical delay-line module used in the conventional EOS system. This design essentially prevents sampling distortion from misalignment of the probe beam, and overcomes the difficulty in sampling free-running high-speed transients. The maximum tuning range, error, scanning speed, tuning responsivity, and resolution of the ODTC are 3.9π (700°), <5% deviation, 25-2405 ns/s, 0.557 ps/mV, and ˜1 ps, respectively. Free-running wave forms from the analog, digital, and pulsed microwave signals are sampled and compared with those measured by the commercial apparatus.

  15. Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay.

    PubMed

    Akimenko, Vitalii; Anguelov, Roumen

    2017-12-01

    In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.

  16. Opto-VLSI-based photonic true-time delay architecture for broadband adaptive nulling in phased array antennas.

    PubMed

    Juswardy, Budi; Xiao, Feng; Alameh, Kamal

    2009-03-16

    This paper proposes a novel Opto-VLSI-based tunable true-time delay generation unit for adaptively steering the nulls of microwave phased array antennas. Arbitrary single or multiple true-time delays can simultaneously be synthesized for each antenna element by slicing an RF-modulated broadband optical source and routing specific sliced wavebands through an Opto-VLSI processor to a high-dispersion fiber. Experimental results are presented, which demonstrate the principle of the true-time delay unit through the generation of 5 arbitrary true-time delays of up to 2.5 ns each. (c) 2009 Optical Society of America

  17. Differential S-phase progression after irradiation of p53 functional versus non-functional tumour cells

    PubMed Central

    Zölzer, Friedo; Mußfeldt, Tamare; Streffer, Christian

    2014-01-01

    Background Many pathways seem to be involved in the regulation of the intra-S-phase checkpoint after exposure to ionizing radiation, but the role of p53 has proven to be rather elusive. Here we have a closer look at the progression of irradiated cells through S-phase in dependence of their p53 status. Materials and methods. Three pairs of tumour cell lines were used, each consisting of one p53 functional and one p53 non-functional line. Cells were labelled with bromodeoxyuridine(BrdU) immediately after irradiation, they were then incubated in label-free medium, and at different times afterwards their position within the S-phase was determined by means of flow cytometry. Results While in the p53 deficient cells progression through S-phase was slowed significantly over at least a few hours, it was halted for just about an hour in the p53 proficient cells and then proceeded without further delay or even at a slightly accelerated pace. Conclusions It is clear from the experiments presented here that p53 does play a role for the progress of cells through the S-phase after X-ray exposure, but the exact mechanisms by which replicon initiation and elongation is controlled in irradiated cells remain to be elucidated. PMID:25435848

  18. Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia).

    PubMed

    Johnston, Melissa; Anderson, Catrona; Colombo, Michael

    2017-01-15

    We recorded neuronal activity from the nidopallium caudolaterale, the avian equivalent of mammalian prefrontal cortex, and the entopallium, the avian equivalent of the mammalian visual cortex, in four birds trained on a differential outcomes delayed matching-to-sample procedure in which one sample stimulus was followed by reward and the other was not. Despite similar incidence of reward-specific and reward-unspecific delay cell types across the two areas, overall entopallium delay activity occurred following both rewarded and non-rewarded stimuli, whereas nidopallium caudolaterale delay activity tended to occur following the rewarded stimulus but not the non-rewarded stimulus. These findings are consistent with the view that delay activity in entopallium represents a code of the sample stimulus whereas delay activity in nidopallium caudolaterale represents a code of the possibility of an upcoming reward. However, based on the types of delay cells encountered, cells in NCL also code the sample stimulus and cells in ENTO are influenced by reward. We conclude that both areas support the retention of information, but that the activity in each area is differentially modulated by factors such as reward and attentional mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Persistent Language Delay Versus Late Language Emergence in Children With Early Cochlear Implantation

    PubMed Central

    Nicholas, Johanna; Tobey, Emily; Davidson, Lisa

    2016-01-01

    Purpose The purpose of the present investigation is to differentiate children using cochlear implants (CIs) who did or did not achieve age-appropriate language scores by midelementary grades and to identify risk factors for persistent language delay following early cochlear implantation. Materials and Method Children receiving unilateral CIs at young ages (12–38 months) were tested longitudinally and classified with normal language emergence (n = 19), late language emergence (n = 22), or persistent language delay (n = 19) on the basis of their test scores at 4.5 and 10.5 years of age. Relative effects of demographic, audiological, linguistic, and academic characteristics on language emergence were determined. Results Age at CI was associated with normal language emergence but did not differentiate late emergence from persistent delay. Children with persistent delay were more likely to use left-ear implants and older speech processor technology. They experienced higher aided thresholds and lower speech perception scores. Persistent delay was foreshadowed by low morphosyntactic and phonological diversity in preschool. Logistic regression analysis predicted normal language emergence with 84% accuracy and persistent language delay with 74% accuracy. Conclusion CI characteristics had a strong effect on persistent versus resolving language delay, suggesting that right-ear (or bilateral) devices, technology upgrades, and improved audibility may positively influence long-term language outcomes. PMID:26501740

  20. WE-FG-207B-01: BEST IN PHYSICS (IMAGING): Abdominal CT with Three K-Edge Contrast Materials Using a Whole-Body Photon-Counting Scanner: Initial Results of a Large Animal Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshmanan, M; Symons, R; Cork, T

    Purpose: To demonstrate the feasibility of in vivo three-material decomposition techniques using photon-counting CT (PCCT) with possible advantage of resolving arterial and venous flow of an organ simultaneously. Methods: Abdominal PCCT scans were acquired using a prototype whole-body PCCT with four energy thresholds (25/50/75/90keV) in a canine. Bismuth subsalicylate (60 mg) was administered orally one day prior to scanning. Immediately prior to CT scan, gadoteric acid (60 ml, Dotarem, Guerbet) was intravenously injected, followed in ten minutes by a 20mL injection of iodinated contrast (iopamidol 370 mg/mL, Bracco). Scans were acquired every ∼20 seconds, starting from the time of iodinemore » injection. Linear material decomposition was performed using the least mean squares method to create concentration maps of iodine, gadolinium, and bismuth. The method was calibrated to vials with known concentrations of materials placed next to the animal. The accuracy of this method was tested on vials with known concentrations. Results: The material decomposition algorithm’s accuracy was confirmed to be within ±4mM in the test vials. In the animal, we could estimate the concentration of gadolinium in delayed-enhanced phase (10 minutes post-injection) in the abdomen. We could follow the wash-in and wash-out of iodine in arterial, venous, and excretory flow of the kidneys (20s, 80s, and 120s post-iodine injection) while gadolinium was present in the delayed-enhanced phase. Bismuth, which was used as a contrast agent for the gastro-intestinal tract, was easily differentiable from the other two contrast agents in the small intestine. Conclusion: This study shows the feasibility of using photon-counting CT with four energy thresholds to differentiate three k-edge contrast agents in vivo. This can potentially reduce radiation dose to patients by combining arterial and venous phases into a single acquisition.« less

  1. Local and global Hopf bifurcation analysis in a neutral-type neuron system with two delays

    NASA Astrophysics Data System (ADS)

    Lv, Qiuyu; Liao, Xiaofeng

    2018-03-01

    In recent years, neutral-type differential-difference equations have been applied extensively in the field of engineering, and their dynamical behaviors are more complex than that of the delay differential-difference equations. In this paper, the equations used to describe a neutral-type neural network system of differential difference equation with two delays are studied (i.e. neutral-type differential equations). Firstly, by selecting τ1, τ2 respectively as a parameter, we provide an analysis about the local stability of the zero equilibrium point of the equations, and sufficient conditions of asymptotic stability for the system are derived. Secondly, by using the theory of normal form and applying the theorem of center manifold introduced by Hassard et al., the Hopf bifurcation is found and some formulas for deciding the stability of periodic solutions and the direction of Hopf bifurcation are given. Moreover, by applying the theorem of global Hopf bifurcation, the existence of global periodic solution of the system is studied. Finally, an example is given, and some computer numerical simulations are taken to demonstrate and certify the correctness of the presented results.

  2. Method and system of doppler correction for mobile communications systems

    NASA Technical Reports Server (NTRS)

    Georghiades, Costas N. (Inventor); Spasojevic, Predrag (Inventor)

    1999-01-01

    Doppler correction system and method comprising receiving a Doppler effected signal comprising a preamble signal (32). A delayed preamble signal (48) may be generated based on the preamble signal (32). The preamble signal (32) may be multiplied by the delayed preamble signal (48) to generate an in-phase preamble signal (60). The in-phase preamble signal (60) may be filtered to generate a substantially constant in-phase preamble signal (62). A plurality of samples of the substantially constant in-phase preamble signal (62) may be accumulated. A phase-shifted signal (76) may also be generated based on the preamble signal (32). The phase-shifted signal (76) may be multiplied by the delayed preamble signal (48) to generate an out-of-phase preamble signal (80). The out-of-phase preamble signal (80) may be filtered to generate a substantially constant out-of-phase preamble signal (82). A plurality of samples of the substantially constant out-of-phase signal (82) may be accumulated. A sum of the in-phase preamble samples and a sum of the out-of-phase preamble samples may be normalized relative to each other to generate an in-phase Doppler estimator (92) and an out-of-phase Doppler estimator (94).

  3. Control of amplitude chimeras by time delay in oscillator networks

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna

    2017-04-01

    We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.

  4. Optimal Control for Stochastic Delay Evolution Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less

  5. Comparison of Interferometric Time-Series Analysis Techniques with Implications for Future Mission Design

    NASA Astrophysics Data System (ADS)

    Werner, C. L.; Wegmuller, U.; Strozzi, T.; Wiesmann, A.

    2006-12-01

    Principle contributors to the noise in differential SAR interferograms are temporal phase stability of the surface, geometry relating to baseline and surface slope, and propagation path delay variations due to tropospheric water vapor and the ionosphere. Time series analysis of multiple interferograms generated from a stack of SAR SLC images seeks to determine the deformation history of the surface while reducing errors. Only those scatterers within a resolution element that are stable and coherent for each interferometric pair contribute to the desired deformation signal. Interferograms with baselines exceeding 1/3 the critical baseline have substantial geometrical decorrelation for distributed targets. Short baseline pairs with multiple reference scenes can be combined using least-squares estimation to obtain a global deformation solution. Alternately point-like persistent scatterers can be identified in scenes that do not exhibit geometrical decorrelation associated with large baselines. In this approach interferograms are formed from a stack of SAR complex images using a single reference scene. Stable distributed scatter pixels are excluded however due to the presence of large baselines. We apply both point- based and short-baseline methodologies and compare results for a stack of fine-beam Radarsat data acquired in 2002-2004 over a rapidly subsiding oil field near Lost Hills, CA. We also investigate the density of point-like scatters with respect to image resolution. The primary difficulty encountered when applying time series methods is phase unwrapping errors due to spatial and temporal gaps. Phase unwrapping requires sufficient spatial and temporal sampling. Increasing the SAR range bandwidth increases the range resolution as well as increasing the critical interferometric baseline that defines the required satellite orbital tube diameter. Sufficient spatial sampling also permits unwrapping because of the reduced phase/pixel gradient. Short time intervals further reduce the differential phase due to deformation when the deformation is continuous. Lower frequency systems (L- vs. C-Band) substantially improve the ability to unwrap the phase correctly by directly reducing both interferometric phase amplitude and temporal decorrelation.

  6. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    PubMed

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss <27  dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.

  7. Computer laboratory notification system via short message service to reduce health care delays in management of tuberculosis in Taiwan.

    PubMed

    Chen, Tun-Chieh; Lin, Wei-Ru; Lu, Po-Liang; Lin, Chun-Yu; Lin, Shu-Hui; Lin, Chuen-Ju; Feng, Ming-Chu; Chiang, Horn-Che; Chen, Yen-Hsu; Huang, Ming-Shyan

    2011-06-01

    We investigated the impacts of introducing an expedited acid-fast bacilli (AFB) smear laboratory procedure and an automatic, real-time laboratory notification system by short message with mobile phones on delays in prompt isolation of patients with pulmonary tuberculosis (TB). We analyzed the data for all patients with active pulmonary tuberculosis at a hospital in Kaohsiung, Taiwan, a 1,600-bed medical center, during baseline (January 2004 to February 2005) and intervention (July 2005 to August 2006) phases. A total of 96 and 127 patients with AFB-positive TB was reported during the baseline and intervention phases, respectively. There were significant decreases in health care system delays (ie, laboratory delays: reception of sputum to reporting, P < .001; response delays: reporting to patient isolation, P = .045; and interval from admission to patient isolation, P < .001) during the intervention phase. Significantly fewer nurses were exposed to each patient with active pulmonary TB during the intervention phase (P = .039). Implementation of expedited AFB smear laboratory procedures and an automatic, real-time laboratory mobile notification system significantly decreased delays in the diagnosis and isolation of patients with active TB. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  8. Obtaining reliable phase-gradient delays from otoacoustic emission data.

    PubMed

    Shera, Christopher A; Bergevin, Christopher

    2012-08-01

    Reflection-source otoacoustic emission phase-gradient delays are widely used to obtain noninvasive estimates of cochlear function and properties, such as the sharpness of mechanical tuning and its variation along the length of the cochlear partition. Although different data-processing strategies are known to yield different delay estimates and trends, their relative reliability has not been established. This paper uses in silico experiments to evaluate six methods for extracting delay trends from reflection-source otoacoustic emissions (OAEs). The six methods include both previously published procedures (e.g., phase smoothing, energy-weighting, data exclusion based on signal-to-noise ratio) and novel strategies (e.g., peak-picking, all-pass factorization). Although some of the methods perform well (e.g., peak-picking), others introduce substantial bias (e.g., phase smoothing) and are not recommended. In addition, since standing waves caused by multiple internal reflection can complicate the interpretation and compromise the application of OAE delays, this paper develops and evaluates two promising signal-processing strategies, the first based on time-frequency filtering using the continuous wavelet transform and the second on cepstral analysis, for separating the direct emission from its subsequent reflections. Altogether, the results help to resolve previous disagreements about the frequency dependence of human OAE delays and the sharpness of cochlear tuning while providing useful analysis methods for future studies.

  9. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation.

    PubMed

    Chaney, Shawnta Y; Mukherjee, Shradha; Giddabasappa, Anand; Rueda, Elda M; Hamilton, W Ryan; Johnson, Jerry E; Fox, Donald A

    2016-01-01

    Studies of neuronal development in the retina often examine the stages of proliferation, differentiation, and synaptic development, albeit independently. Our goal was to determine if a known neurotoxicant insult to a population of retinal progenitor cells (RPCs) would affect their eventual differentiation and synaptic development. To that end, we used our previously published human equivalent murine model of low-level gestational lead exposure (GLE). Children and animals with GLE exhibit increased scotopic electroretinogram a- and b-waves. Adult mice with GLE exhibit an increased number of late-born RPCs, a prolonged period of RPC proliferation, and an increased number of late-born rod photoreceptors and rod and cone bipolar cells (BCs), with no change in the number of late-born Müller glial cells or early-born neurons. The specific aims of this study were to determine whether increased and prolonged RPC proliferation alters the spatiotemporal differentiation and synaptic development of rods and BCs in early postnatal GLE retinas compared to control retinas. C57BL/6N mouse pups were exposed to lead acetate via drinking water throughout gestation and until postnatal day 10, which is equivalent to the human gestation period for retinal neurogenesis. RT-qPCR, immunohistochemical analysis, and western blots of well-characterized, cell-specific genes and proteins were performed at embryonic and early postnatal ages to assess rod and cone photoreceptor differentiation, rod and BC differentiation and synaptic development, and Müller glial cell differentiation. Real-time quantitative PCR (RT-qPCR) with the rod-specific transcription factors Nrl , Nr2e3 , and Crx and the rod-specific functional gene Rho , along with central retinal confocal studies with anti-recoverin and anti-rhodopsin antibodies, revealed a two-day delay in the differentiation of rod photoreceptors in GLE retinas. Rhodopsin immunoblots supported this conclusion. No changes in glutamine synthetase gene or protein expression, a marker for late-born Müller glial cells, were observed in the developing retinas. In the retinas from the GLE mice, anti-PKCα, - Chx10 (Vsx2) and -secretagogin antibodies revealed a two- to three-day delay in the differentiation of rod and cone BCs, whereas the expression of the proneural and BC genes Otx2 and Chx10 , respectively, increased. In addition, confocal studies of proteins associated with functional synapses (e.g., vesicular glutamate transporter 1 [VGluT1], plasma membrane calcium ATPase [PMCA], transient receptor potential channel M1 [TRPM1], and synaptic vesicle glycoprotein 2B [SV2B]) revealed a two-day delay in the formation of the outer and inner plexiform layers of the GLE retinas. Moreover, several markers revealed that the initiation of the differentiation and intensity of the labeling of early-born cells in the retinal ganglion cell and inner plexiform layers were not different in the control retinas. Our combined gene, confocal, and immunoblot findings revealed that the onset of rod and BC differentiation and their subsequent synaptic development is delayed by two to three days in GLE retinas. These results suggest that perturbations during the early proliferative stages of late-born RPCs fated to be rods and BCs ultimately alter the coordinated time-dependent progression of rod and BC differentiation and synaptic development. These GLE effects were selective for late-born neurons. Although the molecular mechanisms are unknown, alterations in soluble neurotrophic factors and/or their receptors are likely to play a role. Since neurodevelopmental delays and altered synaptic connectivity are associated with neuropsychiatric and behavioral disorders as well as cognitive deficits, future work is needed to determine if similar effects occur in the brains of GLE mice and whether children with GLE experience similar delays in retinal and brain neuronal differentiation and synaptic development.

  10. Limitations to Dual Frequency Ionosphere Corrections for Frequency Switched K-Q-Band Observations with the VLBA

    NASA Technical Reports Server (NTRS)

    Lanyi, Gabor; Gordon, David; Sovers, Ojars J.

    2004-01-01

    A series of VLBA experiments were carried out at K and Q bands for astrometry and imaging within the KQ VLBI Survey Collaboration. The paired K and Q observations of each source are separated by approximately 3 minutes of time. We investigate the delay effect of the ionosphere between K and Q bands involving the interscan separation. This differential delay effect is intermixed with the differential fluctuation effect of the troposphere.

  11. Genetic differential susceptibility in literacy-delayed children: a randomized controlled trial on emergent literacy in kindergarten.

    PubMed

    Plak, Rachel D; Kegel, Cornelia A T; Bus, Adriana G

    2015-02-01

    In this randomized controlled trial, 508 5-year-old kindergarten children participated, of whom 257 were delayed in literacy skills because they belonged to the lowest quartile of a national standard literacy test. We tested the hypothesis that some children are more susceptible to school-entry educational interventions than their peers due to their genetic makeup, and thus whether the dopamine receptor D4 gene moderated intervention effects. Children were randomly assigned to a control condition or one of two interventions involving computer programs tailored to the literacy needs of delayed pupils: Living Letters for alphabetic knowledge and Living Books for text comprehension. Effects of Living Books met the criteria of differential susceptibility. For carriers of the dopamine receptor D4 gene seven-repeat allele (about one-third of the delayed group), the Living Books program was an important addition to the common core curriculum in kindergarten (effect size d = 0.56), whereas the program did not affect the other children (d = -0.09). The same seven-repeat carriers benefited more from Living Letters than did the noncarriers, as reflected in effect sizes of 0.63 and 0.34, respectively, although such differences did not fulfill the statistical criteria for differential susceptibility. The implications of differential susceptibility for education and regarding the crucial question "what works for whom?" are discussed.

  12. Quality of service routing in the differentiated services framework

    NASA Astrophysics Data System (ADS)

    Oliveira, Marilia C.; Melo, Bruno; Quadros, Goncalo; Monteiro, Edmundo

    2001-02-01

    In this paper we present a quality of service routing strategy for network where traffic differentiation follows the class-based paradigm, as in the Differentiated Services framework. This routing strategy is based on a metric of quality of service. This metric represents the impact that delay and losses verified at each router in the network have in application performance. Based on this metric, it is selected a path for each class according to the class sensitivity to delay and losses. The distribution of the metric is triggered by a relative criterion with two thresholds, and the values advertised are the moving average of the last values measured.

  13. New stability conditions for mixed linear Levin-Nohel integro-differential equations

    NASA Astrophysics Data System (ADS)

    Dung, Nguyen Tien

    2013-08-01

    For the mixed Levin-Nohel integro-differential equation, we obtain new necessary and sufficient conditions of asymptotic stability. These results improve those obtained by Becker and Burton ["Stability, fixed points and inverse of delays," Proc. - R. Soc. Edinburgh, Sect. A 136, 245-275 (2006)], 10.1017/S0308210500004546 and Jin and Luo ["Stability of an integro-differential equation," Comput. Math. Appl. 57(7), 1080-1088 (2009)], 10.1016/j.camwa.2009.01.006 when b(t) = 0 and supplement the 3/2-stability theorem when a(t, s) = 0. In addition, the case of the equations with several delays is discussed as well.

  14. Stability in Cohen Grossberg-type bidirectional associative memory neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Cao, Jinde; Song, Qiankun

    2006-07-01

    In this paper, the exponential stability problem is investigated for a class of Cohen-Grossberg-type bidirectional associative memory neural networks with time-varying delays. By using the analysis method, inequality technique and the properties of an M-matrix, several novel sufficient conditions ensuring the existence, uniqueness and global exponential stability of the equilibrium point are derived. Moreover, the exponential convergence rate is estimated. The obtained results are less restrictive than those given in the earlier literature, and the boundedness and differentiability of the activation functions and differentiability of the time-varying delays are removed. Two examples with their simulations are given to show the effectiveness of the obtained results.

  15. Anticontrol of chaos in continuous-time systems via time-delay feedback.

    PubMed

    Wang, Xiao Fan; Chen, Guanrong; Yu, Xinghuo

    2000-12-01

    In this paper, a systematic design approach based on time-delay feedback is developed for anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometry control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure. (c) 2000 American Institute of Physics.

  16. Numerical analysis for trajectory controllability of a coupled multi-order fractional delay differential system via the shifted Jacobi method

    NASA Astrophysics Data System (ADS)

    Priya, B. Ganesh; Muthukumar, P.

    2018-02-01

    This paper deals with the trajectory controllability for a class of multi-order fractional linear systems subject to a constant delay in state vector. The solution for the coupled fractional delay differential equation is established by the Mittag-Leffler function. The necessary and sufficient condition for the trajectory controllability is formulated and proved by the generalized Gronwall's inequality. The approximate trajectory for the proposed system is obtained through the shifted Jacobi operational matrix method. The numerical simulation of the approximate solution shows the theoretical results. Finally, some remarks and comments on the existing results of constrained controllability for the fractional dynamical system are also presented.

  17. Interleukin-6 and Delayed Onset Muscle Soreness Do Not Vary during the Menstrual Cycle

    ERIC Educational Resources Information Center

    Chaffin, Morgan E.; Berg, Kris E.; Meendering, Jessica R.; Llewellyn, Tamra L.; French, Jeffrey A.; Davis, Jeremy E.

    2011-01-01

    The purpose of this study was to determine if a difference in interleukin-6 (IL-6) and delayed onset muscles soreness (DOMS) exists in two different phases of the menstrual cycle. Nine runners performed one 75-min high-intensity interval running session during the early follicular (EF) phase and once during the midluteal (ML) phase of the…

  18. CDKL5, a novel MYCN-repressed gene, blocks cell cycle and promotes differentiation of neuronal cells

    PubMed Central

    Valli, Emanuele; Trazzi, Stefania; Fuchs, Claudia; Erriquez, Daniela; Bartesaghi, Renata; Perini, Giovanni; Ciani, Elisabetta

    2012-01-01

    Mutations in the CDKL5 (cyclin-dependent kinase-like 5) gene are associated with a severe epileptic encephalopathy (early infantile epileptic encephalopathy type 2, EIEE2) characterized by early-onset intractable seizures, infantile spasms, severe developmental delay, intellectual disability, and Rett syndrome (RTT)-like features. Despite the clear involvement of CDKL5 mutations in intellectual disability, the function of this protein during brain development and the molecular mechanisms involved in its regulation are still unknown. Using human neuroblastoma cells as a model system we found that an increase in CDKL5 expression caused an arrest of the cell cycle in the G0/G1 phases and induced cellular differentiation. Interestingly, CDKL5 expression was inhibited by MYCN, a transcription factor that promotes cell proliferation during brain development and plays a relevant role in neuroblastoma biology. Through a combination of different and complementary molecular and cellular approaches we could show that MYCN acts as a direct repressor of the CDKL5 promoter. Overall our findings unveil a functional axis between MYCN and CDKL5 governing both neuron proliferation rate and differentiation. The fact that CDKL5 is involved in the control of both neuron proliferation and differentiation may help understand the early appearance of neurological symptoms in patients with mutations in CDKL5. PMID:22921766

  19. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    PubMed

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  20. Free-running waveform characterization using a delay-time tunable laser based delay-line-free electro-optic sampling oscilloscope

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru

    2002-12-01

    We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.

  1. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  2. Sensitivity analysis of dynamic biological systems with time-delays.

    PubMed

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2010-10-15

    Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.

  3. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    PubMed

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  4. In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network

    PubMed Central

    Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang

    2014-01-01

    The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948

  5. Performance of various branch-point tolerant phase reconstructors with finite time delays and measurement noise

    NASA Astrophysics Data System (ADS)

    Zetterlind, Virgil E., III; Magee, Eric P.

    2002-06-01

    This study extends branch point tolerant phase reconstructor research to examine the effect of finite time delays and measurement error on system performance. Branch point tolerant phase reconstruction is particularly applicable to atmospheric laser weapon and communication systems, which operate in extended turbulence. We examine the relative performance of a least squares reconstructor, least squares plus hidden phase reconstructor, and a Goldstein branch point reconstructor for various correction time-delays and measurement noise scenarios. Performance is evaluated using a wave-optics simulation that models a 100km atmospheric propagation of a point source beacon to a transmit/receive aperture. Phase-only corrections are then calculated using the various reconstructor algorithms and applied to an outgoing uniform field. Point Strehl is used as the performance metric. Results indicate that while time delays and measurement noise reduce the performance of branch point tolerant reconstructors, these reconstructors can still outperform least squares implementations in many cases. We also show that branch point detection becomes the limiting factor in measurement noise corrupted scenarios.

  6. Seismic Observations of the Mid-Pacific Large Low Shear Velocity Province

    NASA Astrophysics Data System (ADS)

    Chan, A.; Helmberger, D. V.; Sun, D.; Li, D.; Jackson, J. M.

    2015-12-01

    Seismic data from earthquakes originating in the Fiji-Tonga region exhibits waveform complexity of a number of phases which may be attributed to various structures along ray paths to stations of USArray, including anomalous structures at the core-mantle boundary. The data shows variation in multipathing, that is, the presence of secondary arrivals following the S phase at diffracted distances (Sdiff) which suggests that the waveform complexity is due to structures at the eastern edge of the mid-Pacific Large Low Shear Velocity Province (LLSVP). This study examines data from earthquake events while the Transportable Array portion of USArray was situated in the midwest United States, reinforcing previous studies that indicate late arrivals occurring as long as 26 seconds after the primary arrivals (To et al., 2011). Using earth flattening transformations and finite difference methods, simulations of tapered wedge structures of low velocity material allow for wave energy trapping, producing the observed waveform complexity and delayed arrivals at large distances, with such structures having characteristic properties of, for example, a height of 70 km, in-plane extent more than 1000 km, and shear wave velocity drop of 3% at the top to 15% at the bottom relative to PREM. Differential arrival times for SH and SV components suggest anisotropy and possible wave propagation through downgoing slabs beneath the source region. The arrivals of the SPdKS phase further support the presence of an ultra-low velocity zone (ULVZ) within a two-humped LLSVP. Some systematic delays in arrival times of multiple phases for distances less than 102º are accounted for and attributed to the presence of a mantle slab underneath the continental United States. Comparisons to seismic data from earthquakes originating from other locations further constrain depths of the deep mantle structures. Possible explanations include iron-enrichment of deep mantle phases.

  7. An automated multi-scale network-based scheme for detection and location of seismic sources

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  8. Cognitive performance in adolescents with Delayed Sleep-Wake Phase Disorder: Treatment effects and a comparison with good sleepers.

    PubMed

    Richardson, C; Micic, G; Cain, N; Bartel, K; Maddock, B; Gradisar, M

    2018-06-01

    The present study aimed to investigate whether Australian adolescents with Delayed Sleep-Wake Phase Disorder have impaired cognitive performance and whether chronobiological treatment for Delayed Sleep-Wake Phase Disorder improves adolescents' sleep, daytime functioning and cognitive performance. Adolescents with Delayed Sleep-Wake Phase Disorder (mean = 15.68 ± 2.1 y, 62% f) reported significantly later sleep timing (d = 1.03-1.45), less total sleep time (d = 0.82) and greater daytime sleepiness (d = 2.66), fatigue (d = 0.63) and impairment (d = 2.41), compared to good sleeping adolescents (mean = 15.9 ± 2.4 y, 75% f). However, there were no significant between-group differences (all p > 0.05) in performance on the Operation Span (ηp 2  = 0.043), Digit Span (forwards: ηp 2  = 0.002, backwards: ηp 2  = 0.003), Letter Number Sequencing (ηp 2  < 0.001) (working memory) and Digit-Symbol Substitution Tasks (ηp 2  = 0.010) (processing speed). Adolescents with Delayed Sleep-Wake Phase Disorder went on to receive 3 weeks of light therapy. At 3 months post-treatment, adolescents with Delayed Sleep-Wake Phase Disorder reported significantly advanced sleep timing (d = 0.56-0.65), greater total sleep time (d = 0.52) and improved daytime sleepiness (d = 1.33), fatigue (d = 0.84) and impairment (d = 0.78). Performance on the Operation Span (d = 0.46), Letter Number Sequencing (d = 0.45) and Digit-Symbol Substitution tasks (d = 0.57) also significantly improved. Copyright © 2018. Published by Elsevier Ltd.

  9. Passivity analysis of memristor-based impulsive inertial neural networks with time-varying delays.

    PubMed

    Wan, Peng; Jian, Jigui

    2018-03-01

    This paper focuses on delay-dependent passivity analysis for a class of memristive impulsive inertial neural networks with time-varying delays. By choosing proper variable transformation, the memristive inertial neural networks can be rewritten as first-order differential equations. The memristive model presented here is regarded as a switching system rather than employing the theory of differential inclusion and set-value map. Based on matrix inequality and Lyapunov-Krasovskii functional method, several delay-dependent passivity conditions are obtained to ascertain the passivity of the addressed networks. In addition, the results obtained here contain those on the passivity for the addressed networks without impulse effects as special cases and can also be generalized to other neural networks with more complex pulse interference. Finally, one numerical example is presented to show the validity of the obtained results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Plasma melatonin circadian rhythms during the menstrual cycle and after light therapy in premenstrual dysphoric disorder and normal control subjects.

    PubMed

    Parry, B L; Berga, S L; Mostofi, N; Klauber, M R; Resnick, A

    1997-02-01

    The aim of this study was to replicate and extend previous work in which the authors observed lower, shorter, and advanced nocturnal melatonin secretion patterns in premenstrually depressed patients compared to those in healthy control women. The authors also sought to test the hypothesis that the therapeutic effect of bright light in patients was associated with corrective effects on the phase, duration, and amplitude of melatonin rhythms. In 21 subjects with premenstrual dysphoric disorder (PMDD) and 11 normal control (NC) subjects, the authors measured the circadian profile of melatonin during follicular and luteal menstrual cycle phases and after 1 week of light therapy administered daily, in a randomized crossover design. During three separate luteal phases, the treatments were either (1) bright (> 2,500 lux) white morning (AM; 06:30 to 08:30 h), (2) bright white evening (PM; 19:00 to 21:00 h), or (3) dim (< 10 lux) red evening light (RED). In PMDD subjects, during the luteal phase compared to the follicular menstrual cycle phase, melatonin onset time was delayed, duration was compressed, and area under the curve, amplitude, and mean levels were decreased. In NC subjects, melatonin rhythms did not change significantly during the menstrual cycle. After AM light in PMDD subjects, onset and offset times were advanced and both duration and midpoint concentration were decreased as compared to RED light. After PM light in PMDD subjects, onset and offset times were delayed, midpoint concentration was increased, and duration was decreased as compared to RED light. By contrast, after light therapy in NC subjects, duration did not change; onset, offset, and midpoint concentration changed as they did in PMDD subjects. When the magnitude of advance and delay phase shifts in onset versus offset time with AM, PM, or RED light were compared, the authors found that in PMDD subjects light shifted offset time more than onset time and that AM light had a greater effect on shifting melatonin offset time (measured the following night in RED light), whereas PM light had a greater effect in shifting melatonin onset time. These findings replicate the authors' previous observation that nocturnal melatonin concentrations are decreased in women with PMDD and suggest specific effects of light therapy on melatonin circadian rhythms that are associated with mood changes in patient versus control groups. The differential changes in onset and offset times during the menstrual cycle, and in response to AM and PM bright light compared with RED light, support a two-oscillator (complex) model of melatonin regulation in humans.

  11. Response of an oscillatory differential delay equation to a single stimulus.

    PubMed

    Mackey, Michael C; Tyran-Kamińska, Marta; Walther, Hans-Otto

    2017-04-01

    Here we analytically examine the response of a limit cycle solution to a simple differential delay equation to a single pulse perturbation of the piecewise linear nonlinearity. We construct the unperturbed limit cycle analytically, and are able to completely characterize the perturbed response to a pulse of positive amplitude and duration with onset at different points in the limit cycle. We determine the perturbed minima and maxima and period of the limit cycle and show how the pulse modifies these from the unperturbed case.

  12. New optical frequency domain differential mode delay measurement method for a multimode optical fiber.

    PubMed

    Ahn, T; Moon, S; Youk, Y; Jung, Y; Oh, K; Kim, D

    2005-05-30

    A novel mode analysis method and differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

  13. Direct simulation of phase delay effects on induced-charge electro-osmosis under large ac electric fields

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2016-08-01

    The standard theory of induced-charge electro-osmosis (ICEO) often overpredicts experimental values of ICEO velocities. Using a nonsteady direct multiphysics simulation technique based on the coupled Poisson-Nernst-Planck and Stokes equations for an electrolyte around a conductive cylinder subject to an ac electric field, we find that a phase delay effect concerning an ion response provides a fundamental mechanism for electrokinetic suppression. A surprising aspect of our findings is that the phase delay effect occurs even at much lower frequencies (e.g., 50 Hz) than the generally believed charging frequency of an electric double layer (typically, 1 kHz) and it can decrease the electrokinetic velocities in one to several orders. In addition, we find that the phase delay effect may also cause a change in the electrokinetic flow directions (i.e., flow reversal) depending on the geometrical conditions. We believe that our findings move toward a more complete understanding of complex experimental nonlinear electrokinetic phenomena.

  14. Design and analysis of coherent OCDM en/decoder based on photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun

    2008-08-01

    The design and performance analysis of a new coherent optical en/decoder based on photonic crystal (PhC) for optical code -division -multiple (OCDM) are presented in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by photonic crystal phase shifter and time delayer by using the appropriate design of fabrication. According to the PhC transmission matrix theorem, combination calculation of the impurity and normal period layers is applied, and performances of the PhC-based optical en/decoder are also analyzed. The reflection, transmission, time delay characteristic and optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by numerical calculation. Theoretical analysis and numerical results indicate that the optical pulse is achieved to properly phase modulation and time delay, and an auto-correlation of about 8 dB ration and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.

  15. Palonosetron Prevents Highly Emetogenic Chemotherapy-induced Nausea and Vomiting in Oral Cancer Patients.

    PubMed

    Sento, Shinya; Kitamura, Naoya; Yamamoto, Tetsuya; Nakashiro, Koichi; Hamakawa, Hiroyuki; Ibaragi, Soichiro; Sasaki, Akira; Takamaru, Natsumi; Miyamoto, Yoji; Kodani, Isamu; Ryoke, Kazuo; Mishima, Katsuaki; Ueyama, Yoshiya

    2017-12-01

    To evaluate the efficacy of palonosetron in preventing acute and delayed nausea and vomiting in patients receiving highly emetogenic chemotherapy (HEC) in oral cancer patients. Oral cancer patients receiving HEC were enrolled; among the 40 patients, 87 courses of chemotherapy were administered. On day 1, 0.75 mg palonosetron was intravenously administrated just before chemotherapy. The primary endpoint was the proportion of patients with a complete response (CR) and the secondary endpoint was the proportion of patients with complete control (CC) during the acute and delayed phase. During the acute phase, 86 of 87 courses (98.9%) had CR and 84 of 87 courses (96.6%) had CC. During the delayed phase, 84 of 87 courses (96.6%) had CR and 70 of 87 courses (80.5%) had CC. Palonosetron is effective at preventing HEC-induced chemotherapy-induced nausea and vomiting (CINV) in oral cancer chemotherapeutic regimens in the acute and delayed phases. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Nonlinear Prediction As A Tool For Determining Parameters For Phase Space Reconstruction In Meteorology

    NASA Astrophysics Data System (ADS)

    Miksovsky, J.; Raidl, A.

    Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.

  17. Synchronization of tunable asymmetric square-wave pulses in delay-coupled optoelectronic oscillators.

    PubMed

    Martínez-Llinàs, Jade; Colet, Pere; Erneux, Thomas

    2015-03-01

    We consider a model for two delay-coupled optoelectronic oscillators under positive delayed feedback as prototypical to study the conditions for synchronization of asymmetric square-wave oscillations, for which the duty cycle is not half of the period. We show that the scenario arising for positive feedback is much richer than with negative feedback. First, it allows for the coexistence of multiple in- and out-of-phase asymmetric periodic square waves for the same parameter values. Second, it is tunable: The period of all the square-wave periodic pulses can be tuned with the ratio of the delays, and the duty cycle of the asymmetric square waves can be changed with the offset phase while the total period remains constant. Finally, in addition to the multiple in- and out-of-phase periodic square waves, low-frequency periodic asymmetric solutions oscillating in phase may coexist for the same values of the parameters. Our analytical results are in agreement with numerical simulations and bifurcation diagrams obtained by using continuation techniques.

  18. Time delay in the Kuramoto model of coupled-phase oscillators

    NASA Astrophysics Data System (ADS)

    Yeung, Man Kit Stephen

    1999-10-01

    The Kuramoto model is a mean-field model of coupled phase oscillators with distributed natural frequencies. It was proposed to study collective synchronization in large systems of nonlinear oscillators. Here we generalize this model to allow time-delayed interactions. Despite the delay, synchronization is still possible. We derive exact stability conditions for the incoherent state, and for synchronized states and clustering states in the special case of noiseless identical oscillators. We also study the bifurcations of these states. We find that the incoherent state loses stability in a Hopf bifurcation. In the absence of noise, this leads to partial synchrony, where some oscillators are entrained to a common frequency. New phenomena caused by the delay include multistability among synchronization, incoherence, and clustering; and unsteady solutions with time-dependent order parameters. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase- locked loops, lasers, and communication satellites.

  19. Measurement of time delay for a prospectively gated CT simulator.

    PubMed

    Goharian, M; Khan, R F H

    2010-04-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery; otherwise the simulation and treatment may not be correlated with the patient's breathing.

  20. Inhibition of GSK-3β Rescues the Impairments in Bone Formation and Mechanical Properties Associated with Fracture Healing in Osteoblast Selective Connexin 43 Deficient Mice

    PubMed Central

    Loiselle, Alayna E.; Lloyd, Shane A. J.; Paul, Emmanuel M.; Lewis, Gregory S.; Donahue, Henry J.

    2013-01-01

    Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblastic lineage from immature osteoblasts through osteocytes and tested the hypothesis that Cx43 deficiency results in delayed osteoblastic differentiation and impaired restoration of biomechanical properties due to attenuated β-catenin expression relative to wild type littermates. Here we show that Cx43 deficiency results in alterations in the mineralization and remodeling phases of healing. In Cx43 deficient fractures the mineralization phase is marked by delayed expression of osteogenic genes. Additionally, the decrease in the RankL/ Opg ratio, osteoclast number and osteoclast size suggest decreased osteoclast bone resorption and remodeling. These changes in healing result in functional deficits as shown by a decrease in ultimate torque at failure. Consistent with these impairments in healing, β-catenin expression is attenuated in Cx43 deficient fractures at 14 and 21 days, while Sclerostin (Sost) expression, a negative regulator of bone formation is increased in Cx43cKO fractures at 21 days, as is GSK-3β, a key component of the β-catenin proteasomal degradation complex. Furthermore, we show that alterations in healing in Cx43 deficient fractures can be rescued by inhibiting GSK-3β activity using Lithium Chloride (LiCl). Treatment of Cx43 deficient mice with LiCl restores both normal bone formation and mechanical properties relative to LiCl treated WT fractures. This study suggests that Cx43 is a potential therapeutic target to enhance fracture healing and identifies a previously unknown role for Cx43 in regulating β-catenin expression and thus bone formation during fracture repair. PMID:24260576

  1. Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays

    NASA Astrophysics Data System (ADS)

    Wan, Li; Zhou, Qinghua

    2007-10-01

    The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem.

  2. Global Hopf bifurcation analysis on a BAM neural network with delays

    NASA Astrophysics Data System (ADS)

    Sun, Chengjun; Han, Maoan; Pang, Xiaoming

    2007-01-01

    A delayed differential equation that models a bidirectional associative memory (BAM) neural network with four neurons is considered. By using a global Hopf bifurcation theorem for FDE and a Bendixon's criterion for high-dimensional ODE, a group of sufficient conditions for the system to have multiple periodic solutions are obtained when the sum of delays is sufficiently large.

  3. Anticipated and zero-lag synchronization in motifs of delay-coupled systems

    NASA Astrophysics Data System (ADS)

    Mirasso, Claudio R.; Carelli, Pedro V.; Pereira, Tiago; Matias, Fernanda S.; Copelli, Mauro

    2017-11-01

    Anticipated and zero-lag synchronization have been observed in different scientific fields. In the brain, they might play a fundamental role in information processing, temporal coding and spatial attention. Recent numerical work on anticipated and zero-lag synchronization studied the role of delays. However, an analytical understanding of the conditions for these phenomena remains elusive. In this paper, we study both phenomena in systems with small delays. By performing a phase reduction and studying phase locked solutions, we uncover the functional relation between the delay, excitation and inhibition for the onset of anticipated synchronization in a sender-receiver-interneuron motif. In the case of zero-lag synchronization in a chain motif, we determine the stability conditions. These analytical solutions provide an excellent prediction of the phase-locked regimes of Hodgkin-Huxley models and Roessler oscillators.

  4. Blockade of LGR4 inhibits proliferation and odonto/osteogenic differentiation of stem cells from apical papillae.

    PubMed

    Zhou, Meng; Guo, Shuyu; Yuan, Lichan; Zhang, Yuxin; Zhang, Mengnan; Chen, Huimin; Lu, Mengting; Yang, Jianrong; Ma, Junqing

    2017-12-01

    During tooth root development, stem cells from apical papillae (SCAPs) are indispensable, and their abilities of proliferation, migration and odontoblast differentiation are linked to root formation. Leucine-rich repeat-containing GPCR 4 (LGR4) modulates the biological processes of proliferation and differentiation in multiple stem cells. In this study, we showed that LGR4 is expressed in all odontoblast cell lineage cells and Hertwig's epithelial root sheath (HERS) during the mouse root formation in vivo. In vitro we determined that LGR4 is involved in the Wnt/β-catenin signaling pathway regulating proliferation and odonto/osteogenic differentiation of SCAPs. Quantitative reverse-transcription PCR (qRT-PCR) confirmed that LGR4 is expressed during odontogenic differentiation of SCAPs. CCK8 assays and in vitro scratch tests, together with cell cycle flow cytometric analysis, demonstrated that downregulation of LGR4 inhibited SCAPs proliferation, delayed migration and arrested cell cycle progression at the S and G2/M phases. ALP staining revealed that blockade of LGR4 decreased ALP activity. QRT-PCR and Western blot analysis demonstrated that LGR4 silencing reduced the expression of odonto/osteogenic markers (RUNX2, OSX, OPN, OCN and DSPP). Further Western blot and immunofluorescence studies clarified that inhibition of LGR4 disrupted β-catenin stabilization. Taken together, downregulation of LGR4 gene expression inhibited SCAPs proliferation, migration and odonto/osteogenic differentiation by blocking the Wnt/β-catenin signaling pathway. These results indicate that LGR4 might play a vital role in SCAPs proliferation and odontoblastic differentiation.

  5. Prolonged CT urography in duplex kidney.

    PubMed

    Gong, Honghan; Gao, Lei; Dai, Xi-Jian; Zhou, Fuqing; Zhang, Ning; Zeng, Xianjun; Jiang, Jian; He, Laichang

    2016-05-13

    Duplex kidney is a common anomaly that is frequently associated with multiple complications. Typical computed tomography urography (CTU) includes four phases (unenhanced, arterial, parenchymal and excretory) and has been suggested to considerably aid in the duplex kidney diagnosi. Unfortunately, regarding duplex kidney with prolonged dilatation, the affected parenchyma and tortuous ureters demonstrate a lack of or delayed excretory opacification. We used prolonged-delay CTU, which consists of another prolonged-delay phase (1- to 72-h delay; mean delay: 24 h) to opacify the duplicated ureters and affected parenchyma. Seventeen patients (9 males and 8 females; age range: 2.5-56 y; mean age: 40.4 y) with duplex kidney were included in this study. Unenhanced scans did not find typical characteristics of duplex kidney, except for irregular perirenal morphology. Duplex kidney could not be confirmed on typical four-phase CTU, whereas it could be easily diagnosed in axial and CT-3D reconstruction using prolonged CTU (prolonged-delay phase). Between January 2005 and October 2010, in this review board-approved study (with waived informed consent), 17 patients (9 males and 8 females; age range: 2.5 ~ 56 y; mean age: 40.4 y) with suspicious duplex kidney underwent prolonged CTU to opacify the duplicated ureters and confirm the diagnosis. Our results suggest the validity of prolonged CTU to aid in the evaluation of the function of the affected parenchyma and in the demonstration of urinary tract malformations.

  6. Oscillatory dynamics of an intravenous glucose tolerance test model with delay interval

    NASA Astrophysics Data System (ADS)

    Shi, Xiangyun; Kuang, Yang; Makroglou, Athena; Mokshagundam, Sriprakash; Li, Jiaxu

    2017-11-01

    Type 2 diabetes mellitus (T2DM) has become prevalent pandemic disease in view of the modern life style. Both diabetic population and health expenses grow rapidly according to American Diabetes Association. Detecting the potential onset of T2DM is an essential focal point in the research of diabetes mellitus. The intravenous glucose tolerance test (IVGTT) is an effective protocol to determine the insulin sensitivity, glucose effectiveness, and pancreatic β-cell functionality, through the analysis and parameter estimation of a proper differential equation model. Delay differential equations have been used to study the complex physiological phenomena including the glucose and insulin regulations. In this paper, we propose a novel approach to model the time delay in IVGTT modeling. This novel approach uses two parameters to simulate not only both discrete time delay and distributed time delay in the past interval, but also the time delay distributed in a past sub-interval. Normally, larger time delay, either a discrete or a distributed delay, will destabilize the system. However, we find that time delay over a sub-interval might not. We present analytically some basic model properties, which are desirable biologically and mathematically. We show that this relatively simple model provides good fit to fluctuating patient data sets and reveals some intriguing dynamics. Moreover, our numerical simulation results indicate that our model may remove the defect in well known Minimal Model, which often overestimates the glucose effectiveness index.

  7. Time-delayed directional beam phased array antenna

    DOEpatents

    Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron

    2004-10-19

    An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.

  8. Granisetron in the treatment of chemotherapy-induced nausea and vomiting (CINV) - is there still a role after comparison with palonosetron?

    PubMed

    Doggrell, Sheila A

    2017-07-01

    Chemotherapy-induced nausea and vomiting (CINV) has a negative impact on the lives of subjects receiving chemotherapy. In 2009, the second generation 5-HT 3 -receptor antagonist, palonosetron, which is longer-acting than granisetron, was shown, as part of dual therapy with dexamethasone, to be superior to intravenous granisetron in the delayed phase of CINV. Area covered: In an attempt to maintain plasma levels of granisetron during the delayed phase of CINV, longer-acting preparations of granisetron have been manufactured. In addition to comparing intravenous/oral granisetron with palonosetron, this review considers the new longer-acting preparations of granisetron (transdermal and subcutanous) with emphasis on whether they are effective in the delayed phase of CINV. Expert opinion: Comparison of intravenous/oral granisetron and palonosetron, as part of triple therapy against the delayed phase of CINV, do not give clear-cut results as to non-inferiority or superiority of either agent. Subcutaneous granisetron is more convenient to use than transdermal granisetron, and has been shown to be non-inferior to palonosetron, as part of dual therapy, in the treatment of the acute and delayed phases of CINV. At present, it seems likely that there will be ongoing roles for intravenous and subcutaneous granisetron in CINV, but further data is required to ascertain the future of transdermal granisetron.

  9. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Irwin, S. H.; NELSON; Roleyni, G.

    1977-01-01

    Optimal design studies of MLS angle-receivers and a theoretical design-study of MLS DME-receivers are reported. The angle-receiver results include an integration of the scan data processor and tracking filter components of the optimal receiver into a unified structure. An extensive simulation study comparing the performance of the optimal and threshold receivers in a wide variety of representative dynamical interference environments was made. The optimal receiver was generally superior. A simulation of the performance of the threshold and delay-and-compare receivers in various signal environments was performed. An analysis of combined errors due to lateral reflections from vertical structures with small differential path delays, specular ground reflections with neglible differential path delays, and thermal noise in the receivers is provided.

  10. Application of the Green's function method for 2- and 3-dimensional steady transonic flows

    NASA Technical Reports Server (NTRS)

    Tseng, K.

    1984-01-01

    A Time-Domain Green's function method for the nonlinear time-dependent three-dimensional aerodynamic potential equation is presented. The Green's theorem is being used to transform the partial differential equation into an integro-differential-delay equation. Finite-element and finite-difference methods are employed for the spatial and time discretizations to approximate the integral equation by a system of differential-delay equations. Solution may be obtained by solving for this nonlinear simultaneous system of equations in time. This paper discusses the application of the method to the Transonic Small Disturbance Equation and numerical results for lifting and nonlifting airfoils and wings in steady flows are presented.

  11. Two Different Approaches to Nonzero-Sum Stochastic Differential Games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainer, Catherine

    2007-06-15

    We make the link between two approaches to Nash equilibria for nonzero-sum stochastic differential games: the first one using backward stochastic differential equations and the second one using strategies with delay. We prove that, when both exist, the two notions of Nash equilibria coincide.

  12. Linear-phase delay filters for ultra-low-power signal processing in neural recording implants.

    PubMed

    Gosselin, Benoit; Sawan, Mohamad; Kerherve, Eric

    2010-06-01

    We present the design and implementation of linear-phase delay filters for ultra-low-power signal processing in neural recording implants. We use these filters as low-distortion delay elements along with an automatic biopotential detector to perform integral waveform extraction and efficient power management. The presented delay elements are realized employing continuous-time OTA-C filters featuring 9th-order equiripple transfer functions with constant group delay. Such analog delay enables processing neural waveforms with reduced overhead compared to a digital delay since it does not requires sampling and digitization. It uses an allpass transfer function for achieving wider constant-delay bandwidth than all-pole does. Two filters realizations are compared for implementing the delay element: the Cascaded structure and the Inverse follow-the-leader feedback filter. Their respective strengths and drawbacks are assessed by modeling parasitics and non-idealities of OTAs, and by transistor-level simulations. A budget of 200 nA is used in both filters. Experimental measurements with the chosen filter topology are presented and discussed.

  13. Application of higher-order cepstral techniques in problems of fetal heart signal extraction

    NASA Astrophysics Data System (ADS)

    Sabry-Rizk, Madiha; Zgallai, Walid; Hardiman, P.; O'Riordan, J.

    1996-10-01

    Recently, cepstral analysis based on second order statistics and homomorphic filtering techniques have been used in the adaptive decomposition of overlapping, or otherwise, and noise contaminated ECG complexes of mothers and fetals obtained by a transabdominal surface electrodes connected to a monitoring instrument, an interface card, and a PC. Differential time delays of fetal heart beats measured from a reference point located on the mother complex after transformation to cepstra domains are first obtained and this is followed by fetal heart rate variability computations. Homomorphic filtering in the complex cepstral domain and the subuent transformation to the time domain results in fetal complex recovery. However, three problems have been identified with second-order based cepstral techniques that needed rectification in this paper. These are (1) errors resulting from the phase unwrapping algorithms and leading to fetal complex perturbation, (2) the unavoidable conversion of noise statistics from Gaussianess to non-Gaussianess due to the highly non-linear nature of homomorphic transform does warrant stringent noise cancellation routines, (3) due to the aforementioned problems in (1) and (2), it is difficult to adaptively optimize windows to include all individual fetal complexes in the time domain based on amplitude thresholding routines in the complex cepstral domain (i.e. the task of `zooming' in on weak fetal complexes requires more processing time). The use of third-order based high resolution differential cepstrum technique results in recovery of the delay of the order of 120 milliseconds.

  14. Anti-synchronization control of BAM memristive neural networks with multiple proportional delays and stochastic perturbations

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; Yuan, Manman; Luo, Xiong; Liu, Linlin; Zhang, Yao

    2018-01-01

    Proportional delay is a class of unbounded time-varying delay. A class of bidirectional associative memory (BAM) memristive neural networks with multiple proportional delays is concerned in this paper. First, we propose the model of BAM memristive neural networks with multiple proportional delays and stochastic perturbations. Furthermore, by choosing suitable nonlinear variable transformations, the BAM memristive neural networks with multiple proportional delays can be transformed into the BAM memristive neural networks with constant delays. Based on the drive-response system concept, differential inclusions theory and Lyapunov stability theory, some anti-synchronization criteria are obtained. Finally, the effectiveness of proposed criteria are demonstrated through numerical examples.

  15. Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus.

    PubMed

    McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R

    1998-08-01

    Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors.

  16. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    PubMed

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.

  17. Synchronization in networks with heterogeneous coupling delays

    NASA Astrophysics Data System (ADS)

    Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor

    2018-01-01

    Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

  18. Impact of cycling cells and cell cycle regulation on Hydra regeneration.

    PubMed

    Buzgariu, Wanda; Wenger, Yvan; Tcaciuc, Nina; Catunda-Lemos, Ana-Paula; Galliot, Brigitte

    2018-01-15

    Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyurea-induced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Hybrid Smith predictor and phase lead based divergence compensation for hardware-in-the-loop contact simulation with measurement delay

    NASA Astrophysics Data System (ADS)

    Qi, Chenkun; Gao, Feng; Zhao, Xianchao; Wang, Qian; Ren, Anye

    2018-06-01

    On the ground the hardware-in-the-loop (HIL) simulation is a good approach to test the contact dynamics of spacecraft docking process in space. Unfortunately, due to the time delay in the system the HIL contact simulation becomes divergent. However, the traditional first-order phase lead compensation approach still result in a small divergence for the pure time delay. The serial Smith predictor and phase lead compensation approach proposed by the authors recently will lead to an over-compensation and an obvious convergence. In this study, a hybrid Smith predictor and phase lead compensation approach is proposed. The hybrid Smith predictor and phase lead compensation can achieve a higher simulation fidelity with a little convergence. The phase angle of the compensator is analyzed and the stability condition of the HIL simulation system is given. The effectiveness of the proposed compensation approach is tested by simulations on an undamped elastic contact process.

  20. Estimation of coupling between time-delay systems from time series

    NASA Astrophysics Data System (ADS)

    Prokhorov, M. D.; Ponomarenko, V. I.

    2005-07-01

    We propose a method for estimation of coupling between the systems governed by scalar time-delay differential equations of the Mackey-Glass type from the observed time series data. The method allows one to detect the presence of certain types of linear coupling between two time-delay systems, to define the type, strength, and direction of coupling, and to recover the model equations of coupled time-delay systems from chaotic time series corrupted by noise. We verify our method using both numerical and experimental data.

  1. Delayed Sleep Phase Disorder In Temporal Isolation

    PubMed Central

    Campbell, Scott S.; Murphy, Patricia J.

    2007-01-01

    Study Objectives: This study sought to characterize sleep and the circadian rhythm of body core temperature of an individual with delayed sleep phase disorder (DSPD) in the absence of temporal cues and social entrainment and to compare those measures to age-matched normal control subjects studied under identical conditions. Design: Polysomnography and body temperature were recorded continuously for 4 days in entrained conditions, followed immediately by 17 days in a “free-running” environment. Setting: Temporal isolation facility in the Laboratory of Human Chronobiology, Weill Cornell Medical College. Participants: One individual who met criteria for delayed sleep phase disorder according to the International Classification of Sleep Disorders Diagnostic and Coding Manual (ICSD-2) and 3 age-matched control subjects. Interventions: None. Measurements and Results: The DSPD subject had a spontaneous period length (tau) of 25.38 hours compared to an average tau of 24.44 hours for the healthy controls. The DSPD subject also showed an altered phase relationship between sleep/wake and body temperature rhythms, as well as longer sleep latency, poorer sleep efficiency, and altered distribution of slow wave sleep (SWS) within sleep episodes, compared to control subjects. Conclusions: Delayed sleep phase disorder may be the reflection of an abnormal circadian timing system characterized not only by a long tau, but also by an altered internal phase relationship between the sleep/wake system and the circadian rhythm of body temperature. The latter results in significantly disturbed sleep, even when DSPD patients are permitted to sleep and wake at their preferred times. Citation: Campbell SS; Murphy PJ. Delayed sleep phase disorder in temporal isolation. SLEEP 2007;30(9):1225-1228. PMID:17910395

  2. Galileo FOC Satellite Group Delay Estimation based on Raw Method and published IOV Metadata

    NASA Astrophysics Data System (ADS)

    Reckeweg, Florian; Schönemann, Erik; Springer, Tim; Enderle, Werner

    2017-04-01

    In December 2016, the European GNSS Agency (GSA) published the Galileo In-Orbit Validation (IOV) satellite metadata. These metadata include among others the so-called Galileo satellite group delays, which were measured in an absolute sense by the satellite manufacturer on-ground for all three Galileo frequency bands E1, E5 and E6. Therewith Galileo is the first Global Navigation Satellite System (GNSS) for which absolute calibration values for satellite on-board group delays have been published. The different satellite group delays for the three frequency bands lead to the fact that the signals will not be transmitted at exactly the same epoch. Up to now, due to the lack of absolute group delays, it is common practice in GNSS analyses to estimate and apply the differences of these satellite group delays, commonly known as differential code biases (DCBs). However, this has the drawback that the determination of the "raw" clock and the absolute ionosphere is not possible. The use of absolute bias calibrations for satellites and receivers is a major step into the direction of more realistic (in a physical sense) clock and atmosphere estimates. The Navigation Support Office at the European Space Operation Centre (ESOC) was from the beginning involved in the validation process of the Galileo metadata. For the work presented in this presentation we will use the absolute bias calibrations of the Galileo IOV satellites to estimate and validate the absolute receiver group delays of the ESOC GNSS network and vice versa. The receiver group delays have exemplarily been calibrated in a calibration campaign with an IFEN GNSS Signal-Simulator at ESOC. Based on the calibrated network, making use of the ionosphere constraints given by the IOV satellites, GNSS raw observations are processed to estimate satellite group delays for the operational Galileo (Full Operational Capability) FOC satellites. In addition, "raw" satellite clock offsets are estimated, which are free of the ionosphere-free bias, which is inherent to all common satellite clock products, generated with the standard ionosphere-free linear combination processing approach. In the raw observation processing method, developed by the Navigation Support Office at ESOC, no differences or linear combinations of GNSS observations are formed and ionosphere parameters and multi-signal group delay parameters can be jointly estimated by making use of all available code and phase observations on multiple frequencies.

  3. Chaos control in delayed phase space constructed by the Takens embedding theory

    NASA Astrophysics Data System (ADS)

    Hajiloo, R.; Salarieh, H.; Alasty, A.

    2018-01-01

    In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.

  4. Photonic ultrawideband impulse radio generation and modulation over a fiber link using a phase modulator and a delay interferometer.

    PubMed

    Shao, Jing; Sun, Junqiang

    2012-08-15

    We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.

  5. A phase response curve to single bright light pulses in human subjects

    NASA Technical Reports Server (NTRS)

    Khalsa, Sat Bir S.; Jewett, Megan E.; Cajochen, Christian; Czeisler, Charles A.

    2003-01-01

    The circadian pacemaker is differentially sensitive to the resetting effects of retinal light exposure, depending upon the circadian phase at which the light exposure occurs. Previously reported human phase response curves (PRCs) to single bright light exposures have employed small sample sizes, and were often based on relatively imprecise estimates of circadian phase and phase resetting. In the present study, 21 healthy, entrained subjects underwent pre- and post-stimulus constant routines (CRs) in dim light (approximately 2-7 lx) with maintained wakefulness in a semi-recumbent posture. The 6.7 h bright light exposure stimulus consisted of alternating 6 min fixed gaze (approximately 10 000 lx) and free gaze (approximately 5000-9000 lx) exposures. Light exposures were scheduled across the circadian cycle in different subjects so as to derive a PRC. Plasma melatonin was used to determine the phase of the onset, offset, and midpoint of the melatonin profiles during the CRs. Phase shifts were calculated as the difference in phase between the pre- and post-stimulus CRs. The resultant PRC of the midpoint of the melatonin rhythm revealed a characteristic type 1 PRC with a significant peak-to-trough amplitude of 5.02 h. Phase delays occurred when the light stimulus was centred prior to the critical phase at the core body temperature minimum, phase advances occurred when the light stimulus was centred after the critical phase, and no phase shift occurred at the critical phase. During the subjective day, no prolonged 'dead zone' of photic insensitivity was apparent. Phase shifts derived using the melatonin onsets showed larger magnitudes than those derived from the melatonin offsets. These data provide a comprehensive characterization of the human PRC under highly controlled laboratory conditions.

  6. Structured FBG filters for 10-Gb/s DPSK signal demodulation in single ended applications

    NASA Astrophysics Data System (ADS)

    Marazzi, L.; Boffi, P.; Parolari, P.; Martinelli, M.; Gatti, D.; Coluccelli, N.; Longhi, S.

    2011-05-01

    Differential phase-shift keying (DPSK) demodulations operated by a structured fiber Bragg grating (FBG) filter and by a Mach-Zehnder delay interferometer (MZDI) in a single-ended configuration are compared. Experimental measurements at 10 Gb/s demonstrate that a specially designed FBG outperforms an integrated-optic MZDI of ˜4 dB and ˜3.5 dB in back-to-back and after 25-km propagation, respectively. Both demodulators show low polarization sensitivity and signal frequency detuning dependence, but only MZDI operating point requires a thermal control. FBG filter proves an interesting solution for DPSK demodulation in low-cost applications and, moreover, can be designed to match colorless requirements of wave division multiplexed passive optical network (WDM-PON) applications.

  7. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber.

    PubMed

    Wang, Shuang; Chen, Wei; Guo, Jun-Fu; Yin, Zhen-Qiang; Li, Hong-Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2012-03-15

    We report a demonstration of quantum key distribution (QKD) over a standard telecom fiber exceeding 50 dB in loss and 250 km in length. The differential phase shift QKD protocol was chosen and implemented with a 2 GHz system clock rate. By careful optimization of the 1 bit delayed Faraday-Michelson interferometer and the use of the superconducting single photon detector (SSPD), we achieved a quantum bit error rate below 2% when the fiber length was no more than 205 km, and of 3.45% for a 260 km fiber with 52.9 dB loss. We also improved the quantum efficiency of SSPD to obtain a high key rate for 50 km length.

  8. Local and global synchronization transitions induced by time delays in small-world neuronal networks with chemical synapses.

    PubMed

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile

    2015-02-01

    Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.

  9. On exponential stability of linear Levin-Nohel integro-differential equations

    NASA Astrophysics Data System (ADS)

    Tien Dung, Nguyen

    2015-02-01

    The aim of this paper is to investigate the exponential stability for linear Levin-Nohel integro-differential equations with time-varying delays. To the best of our knowledge, the exponential stability for such equations has not yet been discussed. In addition, since we do not require that the kernel and delay are continuous, our results improve those obtained in Becker and Burton [Proc. R. Soc. Edinburgh, Sect. A: Math. 136, 245-275 (2006)]; Dung [J. Math. Phys. 54, 082705 (2013)]; and Jin and Luo [Comput. Math. Appl. 57(7), 1080-1088 (2009)].

  10. Flight phasemeter on the Laser Ranging Interferometer on the GRACE Follow-On mission

    NASA Astrophysics Data System (ADS)

    Bachman, B.; de Vine, G.; Dickson, J.; Dubovitsky, S.; Liu, J.; Klipstein, W.; McKenzie, K.; Spero, R.; Sutton, A.; Ware, B.; Woodruff, C.

    2017-05-01

    As the first inter-spacecraft laser interferometer, the Laser Ranging Interferometer (LRI) on the GRACE Follow-On Mission will demonstrate interferometry technology relevant to the LISA mission. This paper focuses on the completed LRI Laser Ranging Processor (LRP), which includes heterodyne signal phase tracking at μ {{cycle/}}\\sqrt{{{Hz}}} precision, differential wavefront sensing, offset frequency phase locking and Pound-Drever-Hall laser stabilization. The LRI design has characteristics that are similar to those for LISA: 1064 nm NPRO laser source, science bandwidth in the mHz range, MHz-range intermediate frequency and Doppler shift, detected optical power of tens of picoWatts. Laser frequency stabilization has been demonstrated at a level below 30{{Hz/}}\\sqrt{{{Hz}}}, better than the LISA requirement of 300{{Hz/}}\\sqrt{{{Hz}}}. The LRP has completed all performance testing and environmental qualification and has been delivered to the GRACE Follow-On spacecraft. The LRI is poised to test the LISA techniques of tone-assisted time delay interferometry and arm-locking. GRACE Follow-On launches in 2017.

  11. Robust and tunable circadian rhythms from differentially sensitive catalytic domains

    PubMed Central

    Phong, Connie; Markson, Joseph S.; Wilhoite, Crystal M.; Rust, Michael J.

    2013-01-01

    Circadian clocks are ubiquitous biological oscillators that coordinate an organism’s behavior with the daily cycling of the external environment. To ensure synchronization with the environment, the period of the clock must be maintained near 24 h even as amplitude and phase are altered by input signaling. We show that, in a reconstituted circadian system from cyanobacteria, these conflicting requirements are satisfied by distinct functions for two domains of the central clock protein KaiC: the C-terminal autokinase domain integrates input signals through the ATP/ADP ratio, and the slow N-terminal ATPase acts as an input-independent timer. We find that phosphorylation in the C-terminal domain followed by an ATPase cycle in the N-terminal domain is required to form the inhibitory KaiB•KaiC complexes that drive the dynamics of the clock. We present a mathematical model in which this ATPase-mediated delay in negative feedback gives rise to a compensatory mechanism that allows a tunable phase and amplitude while ensuring a robust circadian period. PMID:23277568

  12. Comparison of synchronization of primate circadian rhythms by light and food

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.

    1978-01-01

    It is a well-documented fact that cycles of light and dark (LD) are the major entraining agent or 'zeitgeber' for circadian rhythms and that cycles of eating and fasting (EF) are capable of synchronizing a few circadian rhythms in the squirrel monkey. In this paper, by contrasting how these rhythms are timed by LD and EF cycles, the differential coupling to the oscillating system within adult male squirrel monkeys is examined. The variables measured are the rhythms of drinking, colonic temperature, and urinary potassium and water excretion. Attention is given to a comparison of the reproducibility of the averaged waveforms of the rhythms, the stability of the timing of a phase reference point, and the rate of resynchronization of these rhythms following an abrupt 8-hr phase delay in the zeitgeber. It is shown that the colonic temperature rhythm is more tightly controlled by LD than EF cycles, and that the drinking and urinary rhythms are more tightly coupled to EF than LD cycles.

  13. Aridity promotes bet hedging via delayed hatching: a case study with two temporary pond crustaceans along a latitudinal gradient.

    PubMed

    Pinceel, Tom; Vanschoenwinkel, Bram; Hawinkel, Wouter; Tuytens, Karen; Brendonck, Luc

    2017-05-01

    Climate change does affect not only average rainfall and temperature but also their variation, which can reduce the predictability of suitable conditions for growth and reproduction. This situation is problematic for inhabitants of temporary waters whose reproductive success depends on rainfall and evaporation that determine the length of the aquatic phase. For organisms with long-lived dormant life stages, bet hedging models suggest that a fraction of these should stay dormant during each growing season to buffer against the probability of total reproductive failure in variable environments. Thus far, however, little empirical evidence supports this prediction in aquatic organisms. We study geographic variation in delayed hatching of dormant eggs in natural populations of two crustaceans, Branchinella longirostris and Paralimnadia badia, that occur in temporary rock pools along a 725 km latitudinal aridity gradient in Western Australia. Consistent with bet hedging theory, populations of both species were characterised by delayed hatching under common garden conditions and hatching fractions decreased towards the drier end of the gradient where the probability of reproductive success was shown to be lower. This decrease was most pronounced in the species with the longer maturation time, presumably because it is more sensitive to the higher prevalence of short inundations. Overall, these findings illustrate that regional variation in climate can be reflected in differential investment in bet hedging and hints at a higher importance of delayed hatching to persist when the climate becomes harsher. Such strategies could become exceedingly relevant as determinants of vulnerability under climate change.

  14. Clinical Implications of Cardiac-MIBG SPECT in the Differentiation of Parkinsonian Syndromes

    PubMed Central

    Shin, Dong Hoon; Bang, Oh Young; Joo, In Soo; Huh, Kyoon

    2006-01-01

    Background and Purpose 123I cardiac meta-iodobenzylguanidine (MIBG), an analogue of norepinephrine, has been used to estimate myocardial sympathetic nerve function. We investigate whether cardiac-MIBG SPECT is clinically applicable in the differentiation of Parkinson's disease (PD) from parkinsonian syndromes. Methods Cardiac-MIBG scintigraphy was performed in 27 controls, in 40 patients with PD and in 52 patients with other parkinsonian syndromes comprising 23 with multiple system atrophy (MSA), 26 with drug-induced parkinsonism (DIP), and 3 with corticobasal degeneration (CBD). The heart to mediastinum (H/M) uptake ratio was calculated for each subjects. Patients who either had medical conditions that confused the MIBG SPECT results or who took medications that interfere with MIBG accumulation were excluded from the study. Results Both early and delayed H/M ratios were in patients with PD significantly lower than in controls (early, 1.34±0.15 vs 1.79±0.19; delayed, 1.29±0.15 vs 2.06±0.29, p<0.001). In patients with PD, both early and delayed H/M ratios were significantly lower than those in patients with MSA (early, 1.68±0.23; delayed, 1.80±0.34, p<0.001), DIP (early, 1.83±0.24; delayed, 2.07±0.4, p<0.001), or CBD (early, 1.85±0.01; delayed, 1.99±0.19, p<0.001). Two patients with DIP, who were within the range of patients with PD, showed clinically similar courses of PD. Conclusions This study demonstrates that cardiac-MIBG is a clinically powerful tools to differentiate PD from other parkinsonian syndromes. PMID:20396485

  15. Sleep Phase Delay in Cystic Fibrosis: A Potential New Manifestation of Cystic Fibrosis Transmembrane Regulator Dysfunction.

    PubMed

    Jensen, Judy L; Jones, Christopher R; Kartsonaki, Christiana; Packer, Kristyn A; Adler, Frederick R; Liou, Theodore G

    2017-08-01

    Cystic fibrosis (CF) transmembrane regulator (CFTR) protein dysfunction causes CF. Improving survival allows detection of increasingly subtle disease manifestations. CFTR dysfunction in the central nervous system (CNS) may disturb circadian rhythm and thus sleep phase. We studied sleep in adults to better understand potential CNS CFTR dysfunction. We recruited participants from April 2012 through April 2015 and administered the Munich Chronotype Questionnaire (MCTQ). We compared free-day sleep measurements between CF and non-CF participants and investigated associations with CF survival predictors. We recruited 23 female and 22 male adults with CF aged 18 to 46 years and 26 female and 22 male volunteers aged 18 to 45 years. Compared with volunteers without CF, patients with CF had delayed sleep onset (0.612 h; P = .015), midsleep (1.11 h; P < .001), and wake (1.15 h; P < .001) times and prolonged sleep latency (7.21 min; P = .05) and duration (0.489 h; P = .05). Every hour delay in sleep onset was associated with shorter sleep duration by 0.29 h in patients with CF and 0.75 h in subjects without CF (P = .007) and longer sleep latency by 7.51 min in patients with CF and 1.6 min in volunteers without CF (P = .035). Among patients with CF, FEV 1 % predicted, prior acute pulmonary exacerbations, and weight were independent of all free-day sleep measurements. CF in adults is associated with marked delays in sleep phase consistent with circadian rhythm phase delays. Independence from disease characteristics predictive of survival suggests that sleep phase delay is a primary manifestation of CFTR dysfunction in the CNS. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  16. The WS transform for the Kuramoto model with distributed amplitudes, phase lag and time delay

    NASA Astrophysics Data System (ADS)

    Lohe, M. A.

    2017-12-01

    We apply the Watanabe-Strogatz (WS) transform to a generalized Kuramoto model with distributed parameters describing the amplitude of oscillation, phase lag, and time delay at each node of the system. The model has global coupling and identical frequencies, but allows for repulsive interactions at arbitrary nodes leading to conformist-contrarian phenomena together with variable amplitude and time-delay effects. We show how to determine the initial values of the WS system for any initial conditions for the Kuramoto system, and investigate the asymptotic behaviour of the WS variables. For the case of zero time delay the possible asymptotic configurations are determined by the sign of a single parameter μ which measures whether or not the attractive nodes dominate the repulsive nodes. If μ>0 the system completely synchronizes from general initial conditions, whereas if μ<0 one of two types of phase-locked synchronization occurs, depending on the initial values, while for μ=0 periodic solutions can occur. For the case of arbitrary non-uniform time delays we derive a stability condition for completely synchronized solutions.

  17. Numerical investigation of differential phase noise and its power penalty for optical amplification using semiconductor optical amplifiers in DPSK applications

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi

    2007-11-01

    A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.

  18. Achievement motivation and memory: achievement goals differentially influence immediate and delayed remember-know recognition memory.

    PubMed

    Murayama, Kou; Elliot, Andrew J

    2011-10-01

    Little research has been conducted on achievement motivation and memory and, more specifically, on achievement goals and memory. In the present research, the authors conducted two experiments designed to examine the influence of mastery-approach and performance-approach goals on immediate and delayed remember-know recognition memory. The experiments revealed differential effects for achievement goals over time: Performance-approach goals showed higher correct remember responding on an immediate recognition test, whereas mastery-approach goals showed higher correct remember responding on a delayed recognition test. Achievement goals had no influence on overall recognition memory and no consistent influence on know responding across experiments. These findings indicate that it is important to consider quality, not just quantity, in both motivation and memory, when studying relations between these constructs.

  19. Control-based method to identify underlying delays of a nonlinear dynamical system.

    PubMed

    Yu, Dongchuan; Frasca, Mattia; Liu, Fang

    2008-10-01

    We suggest several stationary state control-based delay identification methods which do not require any structural information about the controlled systems and are applicable to systems described by delayed ordinary differential equations. This proposed technique includes three steps: (i) driving a system to a steady state; (ii) perturbing the control signal for shifting the steady state; and (iii) identifying all delays by detecting the time that the system is abruptly drawn out of stationarity. Some aspects especially important for applications are discussed as well, including interaction delay identification, stationary state convergence speed, performance comparison, and the influence of noise on delay identification. Several examples are presented to illustrate the reliability and robustness of all delay identification methods suggested.

  20. Digital signal processor and processing method for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1989-01-01

    A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.

  1. Factorization and the synthesis of optimal feedback kernels for differential-delay systems

    NASA Technical Reports Server (NTRS)

    Milman, Mark M.; Scheid, Robert E.

    1987-01-01

    A combination of ideas from the theories of operator Riccati equations and Volterra factorizations leads to the derivation of a novel, relatively simple set of hyperbolic equations which characterize the optimal feedback kernel for the finite-time regulator problem for autonomous differential-delay systems. Analysis of these equations elucidates the underlying structure of the feedback kernel and leads to the development of fast and accurate numerical methods for its computation. Unlike traditional formulations based on the operator Riccati equation, the gain is characterized by means of classical solutions of the derived set of equations. This leads to the development of approximation schemes which are analogous to what has been accomplished for systems of ordinary differential equations with given initial conditions.

  2. Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics and amplitude saturation.

    PubMed

    Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Chitgarha, Mohammad Reza; Almaiman, Ahmed; Cao, Yinwen; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2015-07-15

    We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3  dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.

  3. LIGHT EXPOSURE AMONG ADOLESCENTS WITH DELAYED SLEEP PHASE DISORDER: A PROSPECTIVE COHORT STUDY

    PubMed Central

    Auger, R. Robert; Burgess, Helen J.; Dierkhising, Ross A.; Sharma, Ruchi G.; Slocumb, Nancy L.

    2012-01-01

    Our study objective was to compare light exposure and sleep parameters between adolescents with delayed sleep phase disorder (n=16, 15.3 ± 1.8 years) and unaffected controls (n=22, 13.7 ± 2.4 years) using a prospective cohort design. Participants wore wrist actigraphs with photosensors for 14 days. Mean hourly lux levels from 20:00-05:00 h and 05:00-14:00 h were examined, in addition to the 9-hour intervals prior to sleep onset and after sleep offset. Sleep parameters were compared separately, and were also included as covariates within models that analyzed associations with specified light intervals. Additional covariates included group and school night status. Adolescent subjects with delayed sleep phase disorder received more evening (p<0.02, 22:00-02:00 h) and less morning light (p<0.05, 08:00-09:00 h and 10:00-12:00 h) than controls, but had less pre-sleep exposure with adjustments for the time of sleep onset (p<0.03, fifth-seventh hours prior to onset hour). No differences were identified with respect to the sleep offset interval. Increased total sleep time and later sleep offset times were associated with decreased evening (p<0.001 and p=0.02, respectively) and morning (p=0.01 and p<0.001, respectively) exposure, and later sleep onset times were associated with increased evening exposure (p<0.001). Increased total sleep time also correlated with increased exposure during the 9 hours before sleep-onset (p=0.01), and a later sleep onset time corresponded with decreased exposure during the same interval (p<0.001). Outcomes persisted regardless of school night status. In conclusion, light exposure interpretation requires adjustments for sleep timing among adolescents with delayed sleep phase disorder. Pre- and post-sleep exposure do not appear to contribute directly to phase delays. Sensitivity to morning light may be reduced among adolescents with delayed sleep phase disorder. PMID:22080736

  4. Robotic reactions: delay-induced patterns in autonomous vehicle systems.

    PubMed

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  5. Robotic reactions: Delay-induced patterns in autonomous vehicle systems

    NASA Astrophysics Data System (ADS)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  6. Lead exposure delays the differentiation of oligodendroglial progenitors in vitro.

    PubMed

    Deng, W; McKinnon, R D; Poretz, R D

    2001-08-01

    Lead (Pb) is an environmental neurotoxicant that can cause hypo- and demyelination. Oligodendrocytes (OLs), the myelin-forming cells in the central nervous system, may be a possible target for Pb toxicity. The present study describes the effect of Pb on the maturation of rat OL progenitor (OP) cells and the developmental expression of myelin-specific galactolipids. Dose-response studies showed that OP cultures were more sensitive to Pb than mature OLs. Pb delayed the differentiation of OL progenitors, as demonstrated by cell morphology and immunostaining with a panel of stage-specific differentiation markers. Pb given prior to and during differentiation caused a decrease in the biosynthesis of galactolipids in both undifferentiated and differentiated OLs, as detected by metabolic radiolabeling with 3H-D-galactose. While the ratios of galacto/gluco-cerebrosides, hydroxy fatty acid/nonhydroxy fatty acid galactolipids, and galactocerebrosides/sulfatides increased in control cultures during cell differentiation, Pb treatment prevented these changes. The results suggest that chronic Pb exposure may impact brain development by interfering with the timely developmental maturation of OL progenitors. Copyright 2001 Academic Press.

  7. CDKL5, a novel MYCN-repressed gene, blocks cell cycle and promotes differentiation of neuronal cells.

    PubMed

    Valli, Emanuele; Trazzi, Stefania; Fuchs, Claudia; Erriquez, Daniela; Bartesaghi, Renata; Perini, Giovanni; Ciani, Elisabetta

    2012-01-01

    Mutations in the CDKL5 (cyclin-dependent kinase-like 5) gene are associated with a severe epileptic encephalopathy (early infantile epileptic encephalopathy type 2, EIEE2) characterized by early-onset intractable seizures, infantile spasms, severe developmental delay, intellectual disability, and Rett syndrome (RTT)-like features. Despite the clear involvement of CDKL5 mutations in intellectual disability, the function of this protein during brain development and the molecular mechanisms involved in its regulation are still unknown. Using human neuroblastoma cells as a model system we found that an increase in CDKL5 expression caused an arrest of the cell cycle in the G(0)/G(1) phases and induced cellular differentiation. Interestingly, CDKL5 expression was inhibited by MYCN, a transcription factor that promotes cell proliferation during brain development and plays a relevant role in neuroblastoma biology. Through a combination of different and complementary molecular and cellular approaches we could show that MYCN acts as a direct repressor of the CDKL5 promoter. Overall our findings unveil a functional axis between MYCN and CDKL5 governing both neuron proliferation rate and differentiation. The fact that CDKL5 is involved in the control of both neuron proliferation and differentiation may help understand the early appearance of neurological symptoms in patients with mutations in CDKL5. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Establishment of Immortalized BMP2/4 Double Knock-Out Osteoblastic Cells Is Essential for Study of Osteoblast Growth, Differentiation, and Osteogenesis.

    PubMed

    Wu, Li-An; Wang, Feng; Donly, Kevin J; Baker, Andrew; Wan, Chunyan; Luo, Daoshu; MacDougall, Mary; Chen, Shuo

    2016-06-01

    Bone morphogenetic proteins 2 and 4 (BMP2/4) are essential for osteoblast differentiation and osteogenesis. Generation of a BMP2/4 dual knock-out ((ko/ko)) osteoblastic cell line is a valuable asset for studying effects of BMP2/4 on skeletal development. In this study, our goal was to create immortalized mouse deleted BMP2/4 osteoblasts by infecting adenoviruses with Cre recombinase and green fluorescent protein genes into immortalized murine floxed BMP2/4 osteoblasts. Transduced BMP2/4(ko/ko) cells were verified by green immunofluorescence and PCR. BMP2/4(ko/ko) osteoblasts exhibited small size, slow cell proliferation rate and cell growth was arrested in G1 and G2 phases. Expression of bone-relate genes was reduced in the BMP2/4(ko/ko) cells, resulting in delay of cell differentiation and mineralization. Importantly, extracellular matrix remodeling was impaired in the BMP2/4(ko/ko) osteoblasts as reflected by decreased Mmp-2 and Mmp-9 expressions. Cell differentiation and mineralization were rescued by exogenous BMP2 and/or BMP4. Therefore, we for the first time described establishment of an immortalized deleted BMP2/4 osteoblast line useful for study of mechanisms in regulating osteoblast lineages. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  9. A Modified Differential Coherent Bit Synchronization Algorithm for BeiDou Weak Signals with Large Frequency Deviation.

    PubMed

    Han, Zhifeng; Liu, Jianye; Li, Rongbing; Zeng, Qinghua; Wang, Yi

    2017-07-04

    BeiDou system navigation messages are modulated with a secondary NH (Neumann-Hoffman) code of 1 kbps, where frequent bit transitions limit the coherent integration time to 1 millisecond. Therefore, a bit synchronization algorithm is necessary to obtain bit edges and NH code phases. In order to realize bit synchronization for BeiDou weak signals with large frequency deviation, a bit synchronization algorithm based on differential coherent and maximum likelihood is proposed. Firstly, a differential coherent approach is used to remove the effect of frequency deviation, and the differential delay time is set to be a multiple of bit cycle to remove the influence of NH code. Secondly, the maximum likelihood function detection is used to improve the detection probability of weak signals. Finally, Monte Carlo simulations are conducted to analyze the detection performance of the proposed algorithm compared with a traditional algorithm under the CN0s of 20~40 dB-Hz and different frequency deviations. The results show that the proposed algorithm outperforms the traditional method with a frequency deviation of 50 Hz. This algorithm can remove the effect of BeiDou NH code effectively and weaken the influence of frequency deviation. To confirm the feasibility of the proposed algorithm, real data tests are conducted. The proposed algorithm is suitable for BeiDou weak signal bit synchronization with large frequency deviation.

  10. Automated delay estimation at signalized intersections : phase I concept and algorithm development.

    DOT National Transportation Integrated Search

    2011-07-01

    Currently there are several methods to measure the performance of surface streets, but their capabilities in dynamically estimating vehicle delay are limited. The objective of this research is to develop a method to automate traffic delay estimation ...

  11. Controlled patterns of daytime light exposure improve circadian adjustment in simulated night work.

    PubMed

    Dumont, Marie; Blais, Hélène; Roy, Joanie; Paquet, Jean

    2009-10-01

    Circadian misalignment between the endogenous circadian signal and the imposed rest-activity cycle is one of the main sources of sleep and health troubles in night shift workers. Timed bright light exposure during night work can reduce circadian misalignment in night workers, but this approach is limited by difficulties in incorporating bright light treatment into most workplaces. Controlled light and dark exposure during the daytime also has a significant impact on circadian phase and could be easier to implement in real-life situations. The authors previously described distinctive light exposure patterns in night nurses with and without circadian adaptation. In the present study, the main features of these patterns were used to design daytime light exposure profiles. Profiles were then tested in a laboratory simulation of night work to evaluate their efficacy in reducing circadian misalignment in night workers. The simulation included 2 day shifts followed by 4 consecutive night shifts (2400-0800 h). Healthy subjects (15 men and 23 women; 20-35 years old) were divided into 3 groups to test 3 daytime light exposure profiles designed to produce respectively a phase delay (delay group, n=12), a phase advance (advance group, n=13), or an unchanged circadian phase (stable group, n=13). In all 3 groups, light intensity was set at 50 lux during the nights of simulated night work. Salivary dim light melatonin onset (DLMO) showed a significant phase advance of 2.3 h (+/-1.3 h) in the advance group and a significant phase delay of 4.1 h (+/-1.3 h) in the delay group. The stable group showed a smaller but significant phase delay of 1.7 h (+/-1.6 h). Urinary 6-sulfatoxymelatonin (aMT6s) acrophases were highly correlated to salivary DLMOs. Urinary aMT6s acrophases were used to track daily phase shifts. They showed that phase shifts occurred rapidly and differed between the 3 groups by the 3rd night of simulated night work. These results show that significant phase shifts can be achieved in night workers by controlling daytime light exposure, with no nighttime intervention.

  12. Dynamical Consequences of Bandpass Feedback Loops in a Bacterial Phosphorelay

    PubMed Central

    Sen, Shaunak; Garcia-Ojalvo, Jordi; Elowitz, Michael B.

    2011-01-01

    Under conditions of nutrient limitation, Bacillus subtilis cells terminally differentiate into a dormant spore state. Progression to sporulation is controlled by a genetic circuit consisting of a phosphorelay embedded in multiple transcriptional feedback loops, which is used to activate the master regulator Spo0A by phosphorylation. These transcriptional regulatory interactions are “bandpass”-like, in the sense that activation occurs within a limited band of Spo0A∼P concentrations. Additionally, recent results show that the phosphorelay activation occurs in pulses, in a cell-cycle dependent fashion. However, the impact of these pulsed bandpass interactions on the circuit dynamics preceding sporulation remains unclear. In order to address this question, we measured key features of the bandpass interactions at the single-cell level and analyzed them in the context of a simple mathematical model. The model predicted the emergence of a delayed phase shift between the pulsing activity of the different sporulation genes, as well as the existence of a stable state, with elevated Spo0A activity but no sporulation, embedded within the dynamical structure of the system. To test the model, we used time-lapse fluorescence microscopy to measure dynamics of single cells initiating sporulation. We observed the delayed phase shift emerging during the progression to sporulation, while a re-engineering of the sporulation circuit revealed behavior resembling the predicted additional state. These results show that periodically-driven bandpass feedback loops can give rise to complex dynamics in the progression towards sporulation. PMID:21980382

  13. Neurodevelopmental delay among children under the age of three years at immunization clinics in Lagos State, Nigeria - Preliminary report.

    PubMed

    Bakare, Muideen O; Bello-Mojeed, Mashudat A; Munir, Kerim M; Ogun, Oluwayemi C; Eaton, Julian

    2016-04-29

    Late diagnosis and interventions characterize childhood neurodevelopmental disorders in Sub-Saharan Africa. This has negatively impacted on the prognosis of the children with neurodevelopmental disorders. This study examined the prevalence and pattern of neurodevelopmental delays among children under the age of 3 years attending immunization clinics in Lagos State, Nigeria and also affords opportunity of early follow-up and interventions, which had been documented to improve prognosis. The study involved two stage assessments; which consisted of first phase screening of the children for neurodevelopmental delays in immunization clinics at primary healthcare centers Lagos State, Nigeria and second phase which consists of definitive clinical evaluation and follow-up interventions for children screened positive for neurodevelopmental delays. Twenty seven (0.9%) of a total of 3,011 children under the age of 3 years were screened positive for neurodevelopmental delays and subsequently undergoing clinical evaluation and follow-up interventions. Preliminary working diagnoses among these children include cerebral palsy, autism spectrum disorder trait, nutritional deficiency, Down syndrome and Non-specific neurodevelopmental delay with co-morbid seizure disorder accounting for 33.3%, 14.8%, 18.5%, 7.4% and 25.9% respectively. This is a preliminary report that would be followed up with information on medium and long term intervention phase.

  14. Delay of behavioral estrus in hamsters and phenobarbital.

    PubMed

    Alleva, J J

    1989-01-01

    The onset of behavioral estrus was used as a phase marker of the hamster timing system in SLD 16:8 (dark 20:00-04:00). TZ was injected between 11:00 of cycle day 3 and noon of cycle day 4 when onset of estrus was determined. At no time did injection of TZ cause a phase advance in SLD 16:8. Small delays of estrus resulted from 11:00-16:00 injections but marked delays began with the 17:00 injection. Phenobarbital was injected between noon and 19:30 on cycle day 3. Injections between noon and 16:00 had no effect but all later injections beginning at 17:00 delayed estrus, the 17:30 injection causing the greatest delay. Diazepam also markedly delayed estrus when tested at 17:30. These results with three drugs support results with light pulses that 18:00 in SLD 16:8 marks the same phase of the 24-h hamster timing system as the onset of wheel running does in DD, LL, and WLD. These findings with three GABA potentiators extend to SLD previous evidence based on the onset of wheel running in DD, LL and WLD that GABA may be involved in hamster timekeeping and its responses to light and drugs.

  15. Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T. (Inventor)

    1997-01-01

    The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.

  16. Development and testing of a decision aid for women considering delayed breast reconstruction.

    PubMed

    Metcalfe, Kelly; Zhong, Toni; O'Neill, Anne C; McCready, David; Chan, Linda; Butler, Kate; Brennenstuhl, Sarah; Hofer, Stefan O P

    2018-03-01

    The decision to have post-mastectomy breast reconstruction (PMBR) is highly complex and many women feel ill equipped to make this decision. Decision aids have been advocated to promote patient involvement in decision-making by streamlining and standardizing communication between the patient and the health care professional. In this study, we report on the development and testing of a decision aid (DA) for breast cancer survivors considering delayed PMBR. The DA was developed and evaluated in three phases. The first phase included the development of the DA with input and review by practitioners and key stakeholders. The second phase involved pilot testing of the feasibility and acceptability of the DA with a convenience sample of women with delayed PMBR. The third phase involved a pretest/post-test evaluation of the DA for women who were making decisions about their PMBR options. The DA was developed using the Ottawa Decision Support Framework. In the second phase of the study, 21 women completed the acceptability survey, of whom 100% reported that they would recommend the DA to other women. In the third phase, decisional conflict decreased significantly (p < 0.001) and knowledge increased significantly (p < 0.001) from prior to using the DA to 1-2 weeks after using the DA. The DA is feasible and acceptable to women considering delayed PMBR. Furthermore, the DA is effective at reducing decisional conflict and increasing knowledge about delayed PMBR. The DA is an appropriate tool to be used in addition with standard care in women considering PMBR. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Context-dependent dynamic processes in attention deficit/hyperactivity disorder: differentiating common and unique effects of state regulation deficits and delay aversion.

    PubMed

    Sonuga-Barke, Edmund J S; Wiersema, Jan R; van der Meere, Jacob J; Roeyers, Herbert

    2010-03-01

    The ability to specify differential predictions is a mark of a scientific models' value. State regulation deficits (SRD) and delay aversion (DAv) have both been hypothesized as context-dependent dynamic dysfunctions in ADHD. However, to date there has been no systematic comparison of their common and unique elements. Here we review these hypotheses-and describe the core and secondary manifestations of the two constructs and review evidence in support of them. Second, we focus on what are seen as the hallmark indicators of the two deficits-preference of small immediate over large delayed rewards for DAv and the slow event rate effect for SRD. We describe the overlap between these two manifestations and then explore how experimental manipulations and the analysis of neuropsychological and physiological mediators of effects can allow us to differentiate these two patterns of neuropsychological dysfunction on the basis of specific predictions. Finally, we highlight the implications of neuropsychological heterogeneity for the practical implementation of tests of DAv and SRD.

  18. The Abcd Formula of Phase Definition in Optical Interferometry: Combined Effect of Air Dispersion and Broad Passband

    NASA Astrophysics Data System (ADS)

    Mathar, Richard J.

    Long-baseline interferometry detects fringes created by superposition of two beams of light collected by two telescopes pointing into a common direction. The external path difference is commonly compensated by adding a variable optical path length (delay) through air for one beam such that the optical path difference between the beams remains close to zero near the detector. The ABCD formula assigns a (wrapped) phase to the signals A to D of an interference pattern shifted by multiples of 90 degrees in phase. We study the interplay between a broad spectral passband of the optics and the dispersion of the air in the compensating delay, which leads to small deviations between the ABCD phase and the reduced, monochromatic group-delay representation of the wave packets. This adds dispersion to the effects that have been discussed for evacuated interferometers before (Milman 2005).

  19. Delays in Post-Remission Chemotherapy for Philadelphia Chromosome Negative Acute Lymphoblastic Leukemia are Associated with Inferior Outcomes in Patients who Undergo Allogeneic Transplant: an Analysis from ECOG 2993/MRC UK ALLXII

    PubMed Central

    Kumar, Anita J.; Rowe, Jacob M.; Goldstone, Anthony H; Fielding, Adele; Marks, David I; Litzow, Mark; Paietta, Elisabeth; Lazarus, Hillard M.; Tallman, Martin S.; Luger, Selina M.; Loren, Alison W.

    2016-01-01

    Adults with acute lymphoblastic leukemia (ALL) have a poorer prognosis than children due to a high risk of relapse. One explanation may be variable adherence to dose-intense chemotherapy. However, little is known about risk factors for delays in therapy and their impact on survival. We conducted an analysis of ECOG 2993/UKALLXII trial to study delays in post-remission chemotherapy in adults with newly-diagnosed ALL. Logistic regression was used to identify risk factors for a very long delay (>4 weeks, VLD) in start of intensification therapy. Cox regression was used to evaluate the impact of delays on overall and event-free survival (OS, EFS). We evaluated 1076 Philadelphia chromosome negative (Ph-) patients who completed induction chemotherapy, achieved complete remission, and started intensification. Factors independently associated with VLD included: duration of hospitalization (Odds Ratio (OR)=1.2, p<0.001) during Phase I; thrombocytopenia during Phase I (OR=1.16, p=0.004) or Phase II (OR 1.13, p=0.001); chemotherapy dose reductions during induction Phase I (OR=1.72, p<0.014); female sex (OR=1.53, p=0.010); Black (OR=3.24, p=0.003) and Asian (OR=2.26, p=0.021) race; and increasing age (OR=1.31, p<0.001). In multivariate Cox regression, patients who underwent allogeneic stem cell transplant (alloHCT) had significantly worse OS (HR 1.4, p=0.03) and EFS (HR 1.4, p=0.02) after experiencing a VLD compared to alloHCT patients who experienced <=4 weeks delay. Specific populations (female, older, Black, and Asian patients) were more likely to experience delays in chemotherapy, as were those with significant toxicity during induction. Very long delays in therapy negatively affected outcomes in patients undergoing allografting. PMID:27468137

  20. Reconstruction of ensembles of coupled time-delay systems from time series.

    PubMed

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  1. Increased expression of cyclin B1 mRNA coincides with diminished G{sub 2}-phase arrest in irradiated HeLa cells treated with staurosporine or caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhard, E.J.; Maity, A.; McKenna, W.G.

    1994-12-01

    The irradiation of cells results in delayed progression through the G{sub 2} phase of the cell cycle. Treatment of irradiated HeLa cells with caffeine greatly reduces the G{sub 2}-phase delay, while caffeine does not alter progression of cells through the cell cycle in unirradiated cells. In this report we demonstrate that treatment of HeLa cells with the kinase inhibitor staurosporine, but not with the inhibitor H7, also results in a reduction of the G{sub 2}-phase arrest after irradiation. Cell cycle progression in unirradiated cells is unaffected by 4.4 nM (2ng/ml) staurosporine, which releases the radiation-induced G{sub 2}-phase arrest. In HeLamore » cells, the G{sub 2}-phase delay after irradiation in S phase is accompanied by decreased expression of cyclin B1 mRNA. Coincident with the reduction in G{sub 2}-phase delay, we observed an increase in cyclin B1 mRNA accumulation in irradiated, staurosporine-treated cells compared to cells treated with irradiation alone. Caffeine treatment of irradiated HeLa cells also resulted in an elevation in the levels of cyclin B1 message. These results support the hypothesis that diminished cyclin B1 mRNA levels influence G{sub 2}-phase arrest to some degree. The findings that both staurosporine and caffeine treatments reverse the depression in cyclin B1 expression suggest that these two compounds may act on a common pathway of cell cycle control in response to radiation injury. 33 refs., 6 figs.« less

  2. Isolating behavioral mechanisms of intertemporal choice: nicotine effects on delay discounting and amount sensitivity.

    PubMed

    Locey, Matthew L; Dallery, Jesse

    2009-03-01

    Many drugs of abuse produce changes in impulsive choice, that is, choice for a smaller-sooner reinforcer over a larger-later reinforcer. Because the alternatives differ in both delay and amount, it is not clear whether these drug effects are due to the differences in reinforcer delay or amount. To isolate the effects of delay, we used a titrating delay procedure. In phase 1, 9 rats made discrete choices between variable delays (1 or 19 s, equal probability of each) and a delay to a single food pellet. The computer titrated the delay to a single food pellet until the rats were indifferent between the two options. This indifference delay was used as the starting value for the titrating delay for all future sessions. We next evaluated the acute effects of nicotine (subcutaneous 1.0, 0.3, 0.1, and 0.03 mg/kg) on choice. If nicotine increases delay discounting, it should have increased preference for the variable delay. Instead, nicotine had very little effect on choice. In a second phase, the titrated delay alternative produced three food pellets instead of one, which was again produced by the variable delay (1 s or 19 s) alternative. Under this procedure, nicotine increased preference for the one pellet alternative. Nicotine-induced changes in impulsive choice are therefore likely due to differences in reinforcer amount rather than differences in reinforcer delay. In addition, it may be necessary to include an amount sensitivity parameter in any mathematical model of choice when the alternatives differ in reinforcer amount.

  3. Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents.

    PubMed

    Husarik, Daniela B; Gupta, Rajan T; Ringe, Kristina I; Boll, Daniel T; Merkle, Elmar M

    2011-12-01

    To assess the enhancement pattern of focal confluent fibrosis (FCF) on contrast-enhanced hepatic magnetic resonance imaging (MRI) using hepatocyte-specific (Gd-EOB-DTPA) and extracellular (ECA) gadolinium-based contrast agents in patients with primary sclerosing cholangitis (PSC). After institutional review board approval, 10 patients with PSC (6 male, 4 female; 33-61 years) with 13 FCF were included in this retrospective study. All patients had a Gd-EOB-DTPA-enhanced liver MRI exam, and a comparison ECA-enhanced MRI. On each T1-weighted dynamic dataset, the signal intensity (SI) of FCF and the surrounding liver as well as the paraspinal muscle (M) were measured. In the Gd-EOB-DTPA group, hepatocyte phase images were also included. SI FCF/SI M, SI liver/SI M, and [(SI liver - SI FCF)/SI liver] were compared between the different contrast agents for each dynamic phase using the paired Student's t-test. There was no significant difference in SI FCF/SI M in all imaging phases. SI liver/SI M was significantly higher for the Gd-EOB-DTPA group in the delayed phase (P < .001), whereas there was no significant difference in all other imaging phases. In the Gd-EOB-DTPA group, mean [(SI liver - SI FCF)/SI liver] were as follows (values for ECA group in parentheses): unenhanced phase: 0.26 (0.26); arterial phase: 0.01 (-0.31); portal venous phase (PVP): -0.05 (-0.26); delayed phase (DP): 0.14 (-0.54); and hepatocyte phase: 0.26. Differences were significant for the DP (P < .001). On delayed phase MR images the FCF-to-liver contrast is reversed with the lesions appearing hyperintense on ECA enhanced images and hypointense on Gd-EOB-DTPA-enhanced images. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  4. Load compensation as a function of state during sleep onset.

    PubMed

    Gora, J; Kay, A; Colrain, I M; Kleiman, J; Trinder, J

    1998-06-01

    Ventilation decreases and airway resistance increases with the loss of electroencephalogram alpha activity at sleep onset. The aim of this study was to determine whether reflexive load compensation is lost immediately on the loss of alpha activity. Six healthy male subjects were studied under two conditions (load and control-no load), in three states (continuous alpha, continuous theta, and immediately after a transition from alpha to theta), and in two phases (early and late sleep onset). Ventilation and respiratory timing were measured. A comparison of loaded with control conditions indicated that loading had no effect on inspiratory minute ventilation during continuous alpha (differential effect of 0.00 l/min) and only a small, nonsignificant effect in theta immediately after phase 2 transitions (0.31 l/min), indicating a preservation of load compensation at these times. However, there were significant decreases in inspiratory minute ventilation on loaded trials during continuous theta in phase 2 (0.77 l/min) and phase 3 (1.15 l/min) and during theta immediately after a transition in phase 3 (0.87 l/min), indicating a lack of reflexive load compensation. The results indicate that, because reflex load compensation is state dependent, state-related changes in airway resistance contribute to state-related changes in ventilation during sleep onset. However, this effect was slightly delayed with transitions into theta early in sleep.

  5. A Low Power Low Phase Noise Oscillator for MICS Transceivers

    PubMed Central

    Li, Dawei; Liu, Dongsheng; Kang, Chaojian; Zou, Xuecheng

    2017-01-01

    A low-power, low-phase-noise quadrature oscillator for Medical Implantable Communications Service (MICS) transceivers is presented. The proposed quadrature oscillator generates 349~689 MHz I/Q (In-phase and Quadrature) signals covering the MICS band. The oscillator is based on a differential pair with positive feedback. Each delay cell consists of a few transistors enabling lower voltage operation. Since the oscillator is very sensitive to disturbances in the supply voltage and ground, a self-bias circuit for isolating the voltage disturbance is proposed to achieve bias voltages which can track the disturbances from the supply and ground. The oscillation frequency, which is controlled by the bias voltages, is less sensitive to the supply and ground noise, and a low phase noise is achieved. The chip is fabricated in the UMC (United Microelectronics Corporation) 0.18 μm CMOS (Complementary Metal Oxide Semiconductor) process; the core just occupies a 28.5 × 22 μm2 area. The measured phase noise is −108.45 dBc/Hz at a 1 MHz offset with a center frequency of 540 MHz. The gain of the oscillator is 0.309 MHz/mV with a control voltage from 0 V to 1.1 V. The circuit can work with a supply voltage as low as 1.2 V and the power consumption is only 0.46 mW at a 1.8 V supply voltage. PMID:28085107

  6. A Low Power Low Phase Noise Oscillator for MICS Transceivers.

    PubMed

    Li, Dawei; Liu, Dongsheng; Kang, Chaojian; Zou, Xuecheng

    2017-01-12

    A low-power, low-phase-noise quadrature oscillator for Medical Implantable Communications Service (MICS) transceivers is presented. The proposed quadrature oscillator generates 349~689 MHz I/Q (In-phase and Quadrature) signals covering the MICS band. The oscillator is based on a differential pair with positive feedback. Each delay cell consists of a few transistors enabling lower voltage operation. Since the oscillator is very sensitive to disturbances in the supply voltage and ground, a self-bias circuit for isolating the voltage disturbance is proposed to achieve bias voltages which can track the disturbances from the supply and ground. The oscillation frequency, which is controlled by the bias voltages, is less sensitive to the supply and ground noise, and a low phase noise is achieved. The chip is fabricated in the UMC (United Microelectronics Corporation) 0.18 μm CMOS (Complementary Metal Oxide Semiconductor) process; the core just occupies a 28.5 × 22 μm² area. The measured phase noise is -108.45 dBc/Hz at a 1 MHz offset with a center frequency of 540 MHz. The gain of the oscillator is 0.309 MHz/mV with a control voltage from 0 V to 1.1 V. The circuit can work with a supply voltage as low as 1.2 V and the power consumption is only 0.46 mW at a 1.8 V supply voltage.

  7. Trajectory controllability of semilinear systems with multiple variable delays in control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klamka, Jerzy, E-mail: Jerzy.Klamka@polsl.pl, E-mail: Michal.Niezabitowski@polsl.pl; Niezabitowski, Michał, E-mail: Jerzy.Klamka@polsl.pl, E-mail: Michal.Niezabitowski@polsl.pl

    In this paper, finite-dimensional dynamical control system described by semilinear differential state equation with multiple variable delays in control are considered. The concept of controllability we extend on trajectory controllability for systems with multiple point delays in control. Moreover, remarks and comments on the relationships between different concepts of controllability are presented. Finally, simple numerical example, which illustrates theoretical considerations is also given. The possible extensions are also proposed.

  8. A late wake time phase delays the human dim light melatonin rhythm.

    PubMed

    Burgess, Helen J; Eastman, Charmane I

    2006-03-13

    Short sleep/dark durations, due to late bedtimes or early wake times or both, are common in modern society. We have previously shown that a series of days with a late bedtime phase delays the human dim light melatonin rhythm, as compared to a series of days with an early bedtime, despite a fixed wake time. Here we compared the effect of an early versus late wake time with a fixed bedtime on the human dim light melatonin rhythm. Fourteen healthy subjects experienced 2 weeks of short 6h nights with an early wake time fixed at their habitual weekday wake time and 2 weeks of long 9 h nights with a wake time that occurred 3h later than the early wake time, in counterbalanced order. We found that after 2 weeks with the late wake time, the dim light melatonin onset delayed by 2.4 h and the dim light melatonin offset delayed by 2.6 h (both p < 0.001), as compared to after 2 weeks with the early wake time. These results highlight the substantial influence that wake time, likely via the associated morning light exposure, has on the timing of the human circadian clock. Furthermore, the results suggest that when people truncate their sleep by waking early their circadian clocks phase advance and when people wake late their circadian clocks phase delay.

  9. Tailoring the excitation of fundamental flexural guide waves in coated bone by phase-delayed array: two-dimensional simulations.

    PubMed

    Kilappa, Vantte; Moilanen, Petro; Salmi, Ari; Haeggström, Edward; Zhao, Zuomin; Myllylä, Risto; Timonen, Jussi

    2015-03-01

    The fundamental flexural guided wave (FFGW) enables ultrasonic assessment of cortical bone thickness. In vivo, it is challenging to detect this mode, as its power ratio with respect to disturbing ultrasound is reduced by soft tissue covering the bone. A phase-delayed ultrasound source is proposed to tailor the FFGW excitation in order to improve its power ratio. This situation is analyzed by 2D finite-element simulations. The soft tissue coating (7-mm thick) was simulated as a fluid covering an elastic plate (bone, 2-6 mm thick). A six-element array of emitters on top of the coating was excited by 50-kHz tone bursts so that each emitter was appropriately delayed from the previous one. Response was recorded by an array of receivers on top of the coating, 20-50 mm away from the closest emitter. Simulations predicted that such tailored/phase-delayed excitations should improve the power ratio of FFGW by 23 ± 5 dB, independent of the number of emitters (N). On the other hand, the FFGW magnitude should increase by 5.8 ± 0.5 dB for each doubling of N. This suggests that mode tailoring based on phase-delayed excitation may play a key role in the development of an in vivo FFGW assessment.

  10. Reduced order modelling in searches for continuous gravitational waves - I. Barycentring time delays

    NASA Astrophysics Data System (ADS)

    Pitkin, M.; Doolan, S.; McMenamin, L.; Wette, K.

    2018-06-01

    The frequencies and phases of emission from extra-solar sources measured by Earth-bound observers are modulated by the motions of the observer with respect to the source, and through relativistic effects. These modulations depend critically on the source's sky-location. Precise knowledge of the modulations are required to coherently track the source's phase over long observations, for example, in pulsar timing, or searches for continuous gravitational waves. The modulations can be modelled as sky-location and time-dependent time delays that convert arrival times at the observer to the inertial frame of the source, which can often be the Solar system barycentre. We study the use of reduced order modelling for speeding up the calculation of this time delay for any sky-location. We find that the time delay model can be decomposed into just four basis vectors, and with these the delay for any sky-location can be reconstructed to sub-nanosecond accuracy. When compared to standard routines for time delay calculation in gravitational wave searches, using the reduced basis can lead to speed-ups of 30 times. We have also studied components of time delays for sources in binary systems. Assuming eccentricities <0.25, we can reconstruct the delays to within 100 s of nanoseconds, with best case speed-ups of a factor of 10, or factors of two when interpolating the basis for different orbital periods or time stamps. In long-duration phase-coherent searches for sources with sky-position uncertainties, or binary parameter uncertainties, these speed-ups could allow enhancements in their scopes without large additional computational burdens.

  11. Computational Algorithms or Identification of Distributed Parameter Systems

    DTIC Science & Technology

    1993-04-24

    delay-differential equations, Volterra integral equations, and partial differential equations with memory terms . In particular we investigated a...tested for estimating parameters in a Volterra integral equation arising from a viscoelastic model of a flexible structure with Boltzmann damping. In...particular, one of the parameters identified was the order of the derivative in Volterra integro-differential equations containing fractional

  12. Stability and global Hopf bifurcation in a delayed food web consisting of a prey and two predators

    NASA Astrophysics Data System (ADS)

    Meng, Xin-You; Huo, Hai-Feng; Zhang, Xiao-Bing

    2011-11-01

    This paper is concerned with a predator-prey system with Holling II functional response and hunting delay and gestation. By regarding the sum of delays as the bifurcation parameter, the local stability of the positive equilibrium and the existence of Hopf bifurcation are investigated. We obtained explicit formulas to determine the properties of Hopf bifurcation by using the normal form method and center manifold theorem. Special attention is paid to the global continuation of local Hopf bifurcation. Using a global Hopf bifurcation result of Wu [Wu JH. Symmetric functional differential equations and neural networks with memory, Trans Amer Math Soc 1998;350:4799-4838] for functional differential equations, we may show the global existence of the periodic solutions. Finally, several numerical simulations illustrating the theoretical analysis are also given.

  13. Toward Diagnostic and Phenotype Markers for Genetically Transmitted Speech Delay

    ERIC Educational Resources Information Center

    Shriberg, Lawrence D.; Lewis, Barbara A.; Tomblin, J. Bruce; McSweeny, Jane L.; Karlsson, Heather B.; Scheer, Alison R.

    2005-01-01

    Converging evidence supports the hypothesis that the most common subtype of childhood speech sound disorder (SSD) of currently unknown origin is genetically transmitted. We report the first findings toward a set of diagnostic markers to differentiate this proposed etiological subtype (provisionally termed "speech delay-genetic") from other…

  14. Motivational Control of Impulsive Behavior Interacts with Choice Opportunities

    ERIC Educational Resources Information Center

    Tanno, Takayuki; Kurashima, Ryo; Watanabe, Shigeru

    2011-01-01

    Impulsive behavior has been investigated through choice between a smaller/immediate reinforcer and a larger/delayed reinforcer, or through performance on a differential reinforcement of low rate (DRL) schedule. In the present study, we investigated a methodological divergence between these two procedures: in the former procedure, delay is a…

  15. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    NASA Astrophysics Data System (ADS)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  16. Simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifiers in DPSK applications

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi

    2008-01-01

    A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase-shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise at the SOA output are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. It is also shown that Gaussian distribution can be useful as a good approximation of the total differential phase noise statistics in the whole operation range. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.

  17. Experimental demonstration of a phased-array antenna optically controlled with phase and time delays.

    PubMed

    Dolfi, D; Joffre, P; Antoine, J; Huignard, J P; Philippet, D; Granger, P

    1996-09-10

    The experimental demonstration and the far-field pattern characterization of an optically controlled phased-array antenna are described. It operates between 2.5 and 3.5 GHz and is made of 16 radiating elements. The optical control uses a two-dimensional architecture based on free-space propagation and on polarization switching by N spatial light modulators of p × p pixels. It provides 2(N-1) time-delay values and an analog control of the 0 to 2π phase for each of the p × p signals feeding the antenna (N = 5, p = 4).

  18. Method and apparatus for measuring the intensity and phase of an ultrashort light pulse

    DOEpatents

    Kane, Daniel J.; Trebino, Rick P.

    1998-01-01

    The pulse shape I(t) and phase evolution x(t) of ultrashort light pulses are obtained using an instantaneously responding nonlinear optical medium to form a signal pulse. A light pulse, such a laser pulse, is split into a gate pulse and a probe pulse, where the gate pulse is delayed relative to the probe pulse. The gate pulse and the probe pulse are combined within an instantaneously responding optical medium to form a signal pulse functionally related to a temporal slice of the gate pulse corresponding to the time delay of the probe pulse. The signal pulse is then input to a wavelength-selective device to output pulse field information comprising intensity vs. frequency for a first value of the time delay. The time delay is varied over a range of values effective to yield an intensity plot of signal intensity vs. wavelength and delay. In one embodiment, the beams are overlapped at an angle so that a selected range of delay times is within the intersection to produce a simultaneous output over the time delays of interest.

  19. A differential delay equation arising from the sieve of Eratosthenes

    NASA Astrophysics Data System (ADS)

    Cheer, A. Y.; Goldston, D. A.

    1990-07-01

    The differential delay equation defined by ω (u) = 1/u for 1 ≤ u ≤ 2 and (uω (u))' = ω (u - 1) for u ≥ 2 was introduced by Buchstab in connection with an asymptotic formula for the number of uncanceled terms in the sieve of Eratosthenes. Maier has recently used this result to show there is unexpected irregularity in the distribution of primes in short intervals. The function ω (u) is studied in this paper using numerical and analytical techniques. The results are applied to give some numerical constants in Maier's theorem.

  20. The Use of Generalized Laguerre Polynomials in Spectral Methods for Solving Fractional Delay Differential Equations.

    PubMed

    Khader, M M

    2013-10-01

    In this paper, an efficient numerical method for solving the fractional delay differential equations (FDDEs) is considered. The fractional derivative is described in the Caputo sense. The proposed method is based on the derived approximate formula of the Laguerre polynomials. The properties of Laguerre polynomials are utilized to reduce FDDEs to a linear or nonlinear system of algebraic equations. Special attention is given to study the error and the convergence analysis of the proposed method. Several numerical examples are provided to confirm that the proposed method is in excellent agreement with the exact solution.

  1. 2–stage stochastic Runge–Kutta for stochastic delay differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Norhayati; Jusoh Awang, Rahimah; Bahar, Arifah

    2015-05-15

    This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.

  2. Design of surface acoustic wave filters for the multiplex transmission system of multilevel inverter circuits

    NASA Astrophysics Data System (ADS)

    Kubo, Keita; Kanai, Nanae; Kobayashi, Fumiya; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji

    2017-07-01

    We designed surface acoustic wave (SAW) filters for a multiplex transmission system of multilevel inverter circuits, and applied them to a single-phase three-level inverter. To reduce the transmission delay time of the SAW filters, a four-channel SAW filter array was fabricated and its characteristics were measured. The delay time of the SAW filters was <350 ns, and the delay time difference was reduced to ≤184 ns, less than half that previously reported. The SAW filters withstood up to 990 V, which is sufficient for the inverters used in most domestic appliances. A single-phase three-level inverter with the fabricated SAW filters worked with a total delay time shorter than our target delay time of 2.5 µs. The delay time difference of the proposed system was 0.26 µs, which is sufficient for preventing the inverter circuit from short-circuiting. The SAW filters controlled a multilevel inverter system with simple signal wiring and high dielectric withstanding voltages.

  3. Large tunable optical delays via self-phase modulation and dispersion

    NASA Astrophysics Data System (ADS)

    Okawachi, Yoshitomo; Sharping, Jay E.; Xu, Chris; Gaeta, Alexander L.

    2006-12-01

    We demonstrate all-optically tunable delays in optical fiber via a dispersive stage and two stages of nonlinear spectral broadening and filtering. With this scheme, we achieve continuously tunable delays of 3.5- ps pulses and advancements over a total range of more than 1200 pulsewidths. Our technique is applicable to a wide range of pulse durations and delays.

  4. Design of an all-optical fractional-order differentiator with terahertz bandwidth based on a fiber Bragg grating in transmission.

    PubMed

    Liu, Xin; Shu, Xuewen

    2017-08-20

    All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.

  5. Robust stability bounds for multi-delay networked control systems

    NASA Astrophysics Data System (ADS)

    Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza

    2018-04-01

    In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.

  6. Phase stabilization for mode locked lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, M.T.

    A method is described for stabilizing a phase relationship between two mode locked lasers, comprising: driving through a power splitter the mode lockers of both lasers from a single stable radio frequency source; monitoring the phase of pulses from each laser utilizing a fast photodiode output of each laser; feeding the output of the fast photodiodes to a phase detector and comparator; measuring a relative phase difference between the lasers with a phase detector and comparator, producing a voltage output signal or phase error signal representing the phase difference; amplifying and filtering the voltage output signal with an amplifier andmore » loop filter; feeding the resulting output signal to a voltage controlled phase delay between the power splitter and one of the lasers; and delaying the RF drive to the one laser to achieve a desired phase relationship, between the two lasers.« less

  7. Antimatched Electromagnetic Metasurfaces for Broadband Arbitrary Phase Manipulation in Reflection

    DOE PAGES

    Tsilipakos, Odysseas; Koschny, Thomas; Soukoulis, Costas M.

    2018-03-21

    Metasurfaces impart phase discontinuities on impinging electromagnetic waves that are typically limited to 0-2π. Here, we demonstrate that multiresonant metasurfaces can break free from this limitation and supply arbitrarily large, tunable time delays over ultrawide bandwidths. As such, ultrathin metasurfaces can act as the equivalent of thick bulk structures by emulating the multiple geometric resonances of three-dimensional systems that originate from phase accumulation with effective material resonances implemented on the surface itself via suitable subwavelength meta-atoms. We describe a constructive procedure for defining the required sheet admittivities of such metasurfaces. Importantly, the proposed approach provides an exactly linear phase responsemore » so that broadband pulses can experience the desired group delay without any distortion of the pulse shape. We focus on operation in reflection by exploiting an antimatching condition, satisfied by interleaved electric and magnetic Lorentzian resonances in the surface admittivities, which completely zeroes out transmission through the metasurface. As a result, the proposed metasurfaces can perfectly reflect a broadband pulse imparting a prescribed group delay. The group delay can be tuned by modifying the implemented resonances, thus opening up diverse possibilities in the temporal applications of metasurfaces.« less

  8. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation.

    PubMed

    Vrijsen, N H; Jansen, J W; Compter, J C; Lomonova, E A

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.

  9. Antimatched Electromagnetic Metasurfaces for Broadband Arbitrary Phase Manipulation in Reflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsilipakos, Odysseas; Koschny, Thomas; Soukoulis, Costas M.

    Metasurfaces impart phase discontinuities on impinging electromagnetic waves that are typically limited to 0-2π. Here, we demonstrate that multiresonant metasurfaces can break free from this limitation and supply arbitrarily large, tunable time delays over ultrawide bandwidths. As such, ultrathin metasurfaces can act as the equivalent of thick bulk structures by emulating the multiple geometric resonances of three-dimensional systems that originate from phase accumulation with effective material resonances implemented on the surface itself via suitable subwavelength meta-atoms. We describe a constructive procedure for defining the required sheet admittivities of such metasurfaces. Importantly, the proposed approach provides an exactly linear phase responsemore » so that broadband pulses can experience the desired group delay without any distortion of the pulse shape. We focus on operation in reflection by exploiting an antimatching condition, satisfied by interleaved electric and magnetic Lorentzian resonances in the surface admittivities, which completely zeroes out transmission through the metasurface. As a result, the proposed metasurfaces can perfectly reflect a broadband pulse imparting a prescribed group delay. The group delay can be tuned by modifying the implemented resonances, thus opening up diverse possibilities in the temporal applications of metasurfaces.« less

  10. Validation on flight data of a closed-loop approach for GPS-based relative navigation of LEO satellites

    NASA Astrophysics Data System (ADS)

    Tancredi, U.; Renga, A.; Grassi, M.

    2013-05-01

    This paper describes a carrier-phase differential GPS approach for real-time relative navigation of LEO satellites flying in formation with large separations. These applications are characterized indeed by a highly varying number of GPS satellites in common view and large ionospheric differential errors, which significantly impact relative navigation performance and robustness. To achieve high relative positioning accuracy a navigation algorithm is proposed which processes double-difference code and carrier measurements on two frequencies, to fully exploit the integer nature of the related ambiguities. Specifically, a closed-loop scheme is proposed in which fixed estimates of the baseline and integer ambiguities produced by means of a partial integer fixing step are fed back to an Extended Kalman Filter for improving the float estimate at successive time instants. The approach also benefits from the inclusion in the filter state of the differential ionospheric delay in terms of the Vertical Total Electron Content of each satellite. The navigation algorithm performance is tested on actual flight data from GRACE mission. Results demonstrate the effectiveness of the proposed approach in managing integer unknowns in conjunction with Extended Kalman Filtering, and that centimeter-level accuracy can be achieved in real-time also with large separations.

  11. Dark goggles and bright light improve circadian rhythm adaptation to night-shift work.

    PubMed

    Eastman, C I; Stewart, K T; Mahoney, M P; Liu, L; Fogg, L F

    1994-09-01

    We compared the contributions of bright light during the night shift and dark goggles during daylight for phase shifting the circadian rhythm of temperature to realign with a 12-hour shift of sleep. After 10 baseline days there were 8 night-work/day-sleep days. Temperature was continuously recorded from 50 subjects. There were four groups in a 2 x 2 design: light (bright, dim), goggles (yes, no). Subjects were exposed to bright light (about 5,000 lux) for 6 hours on the first 2 night shifts. Dim light was < 500 lux. Both bright light and goggles were significant factors for producing circadian rhythm phase shifts. The combination of bright light plus goggles was the most effective, whereas the combination of dim light and no goggles was the least effective. The temperature rhythm either phase advanced or phase delayed when it aligned with daytime sleep. However, when subjects did not have goggles only phase advances occurred. Goggles were necessary for producing phase delays. The most likely explanation is that daylight during the travel-home window after a night shift inhibits phase-delay shifts, and goggles can prevent this inhibition. Larger temperature-rhythm phase shifts were associated with better subjective daytime sleep, less subjective fatigue and better mood.

  12. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  13. Theory of post-block 2 VLBI observable extraction

    NASA Technical Reports Server (NTRS)

    Lowe, Stephen T.

    1992-01-01

    The algorithms used in the post-Block II fringe-fitting software called 'Fit' are described. The steps needed to derive the very long baseline interferometry (VLBI) charged-particle corrected group delay, phase delay rate, and phase delay (the latter without resolving cycle ambiguities) are presented beginning with the set of complex fringe phasors as a function of observation frequency and time. The set of complex phasors is obtained from the JPL/CIT Block II correlator. The output of Fit is the set of charged-particle corrected observables (along with ancillary information) in a form amenable to the software program 'Modest.'

  14. Acupressure bands do not improve chemotherapy-induced nausea control in pediatric patients receiving highly emetogenic chemotherapy: A single-blinded, randomized controlled trial.

    PubMed

    Dupuis, L Lee; Kelly, Kara M; Krischer, Jeffrey P; Langevin, Anne-Marie; Tamura, Roy N; Xu, Ping; Chen, Lu; Kolb, E Anders; Ullrich, Nicole J; Sahler, Olle Jane Z; Hendershot, Eleanor; Stratton, Ann; Sung, Lillian; McLean, Thomas W

    2018-03-15

    Chemotherapy-induced nausea and vomiting remain common, distressing side effects of chemotherapy. It has been reported that acupressure prevents chemotherapy-induced nausea in adults, but it has not been well studied in children. In this multicenter, prospective, randomized, single-blind, sham-controlled trial, the authors compared acute-phase nausea severity in patients ages 4 to 18 years who were receiving highly emetic chemotherapy using standard antiemetic agents combined with acupressure wrist bands, the most common type of acupressure, versus sham bands. Patients wore acupressure or sham bands continuously on each day of chemotherapy and for up to 7 days afterward. Chemotherapy-induced nausea severity in the delayed phase and chemotherapy-induced vomiting control in the acute and delayed phases also were compared. Of the 187 patients randomized, 165 contributed nausea severity assessments during the acute phase. Acupressure bands did not reduce the severity of chemotherapy-induced nausea in the acute phase (odds ratio [OR], 1.33; 95% confidence limits, 0.89-2.00, in which an OR <1.00 favored acupressure) or in the delayed phase (OR, 1.23; 95% CL, 0.75-2.01). Furthermore, acupressure bands did not improve daily vomiting control during the acute phase (OR, 1.57; 95% CL, 0.95-2.59) or the delayed phase (OR, 0.84; 95% CL, 0.45-1.58). No serious adverse events were reported. Acupressure bands were safe but did not improve chemotherapy-induced nausea or vomiting in pediatric patients who were receiving highly emetic chemotherapy. Cancer 2018;124:1188-96. © 2017 American Cancer Society. © 2017 American Cancer Society.

  15. Differentiation of Recurrent Glioblastoma from Delayed Radiation Necrosis by Using Voxel-based Multiparametric Analysis of MR Imaging Data.

    PubMed

    Yoon, Ra Gyoung; Kim, Ho Sung; Koh, Myeong Ju; Shim, Woo Hyun; Jung, Seung Chai; Kim, Sang Joon; Kim, Jeong Hoon

    2017-10-01

    Purpose To assess a volume-weighted voxel-based multiparametric (MP) clustering method as an imaging biomarker to differentiate recurrent glioblastoma from delayed radiation necrosis. Materials and Methods The institutional review board approved this retrospective study and waived the informed consent requirement. Seventy-five patients with pathologic analysis-confirmed recurrent glioblastoma (n = 42) or radiation necrosis (n = 33) who presented with enlarged contrast material-enhanced lesions at magnetic resonance (MR) imaging after they completed concurrent chemotherapy and radiation therapy were enrolled. The diagnostic performance of the total MP cluster score was determined by using the area under the receiver operating characteristic curve (AUC) with cross-validation and compared with those of single parameter measurements (10% histogram cutoffs of apparent diffusion coefficient [ADC10] or 90% histogram cutoffs of normalized cerebral blood volume and initial time-signal intensity AUC). Results Receiver operating characteristic curve analysis showed that an AUC for differentiating recurrent glioblastoma from delayed radiation necrosis was highest in the total MP cluster score and lowest for ADC10 for both readers. The total MP cluster score had significantly better diagnostic accuracy than any single parameter (corrected P = .001-.039 for reader 1; corrected P = .005-.041 for reader 2). The total MP cluster score was the best predictor of recurrent glioblastoma (cross-validated AUCs, 0.942-0.946 for both readers), with a sensitivity of 95.2% for reader 1 and 97.6% for reader 2. Conclusion Quantitative analysis with volume-weighted voxel-based MP clustering appears to be superior to the use of single imaging parameters to differentiate recurrent glioblastoma from delayed radiation necrosis. © RSNA, 2017 Online supplemental material is available for this article.

  16. A neural model of normal and abnormal learning and memory consolidation: adaptively timed conditioning, hippocampus, amnesia, neurotrophins, and consciousness.

    PubMed

    Franklin, Daniel J; Grossberg, Stephen

    2017-02-01

    How do the hippocampus and amygdala interact with thalamocortical systems to regulate cognitive and cognitive-emotional learning? Why do lesions of thalamus, amygdala, hippocampus, and cortex have differential effects depending on the phase of learning when they occur? In particular, why is the hippocampus typically needed for trace conditioning, but not delay conditioning, and what do the exceptions reveal? Why do amygdala lesions made before or immediately after training decelerate conditioning while those made later do not? Why do thalamic or sensory cortical lesions degrade trace conditioning more than delay conditioning? Why do hippocampal lesions during trace conditioning experiments degrade recent but not temporally remote learning? Why do orbitofrontal cortical lesions degrade temporally remote but not recent or post-lesion learning? How is temporally graded amnesia caused by ablation of prefrontal cortex after memory consolidation? How are attention and consciousness linked during conditioning? How do neurotrophins, notably brain-derived neurotrophic factor (BDNF), influence memory formation and consolidation? Is there a common output path for learned performance? A neural model proposes a unified answer to these questions that overcome problems of alternative memory models.

  17. Gd-EOB-DTPA-enhanced 3.0-Tesla MRI findings for the preoperative detection of focal liver lesions: Comparison with iodine-enhanced multi-detector computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Hyong-Hu; Goo, Eun-Hoe; Im, In-Chul; Lee, Jae-Seung; Kim, Moon-Jib; Kwak, Byung-Joon; Chung, Woon-Kwan; Dong, Kyung-Rae

    2012-12-01

    The safety of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic-acid (Gd-EOB-DTPA) has been confirmed, but more study is needed to assess the diagnostic accuracy of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) in patients with a hepatocellular carcinoma (HCC) for whom surgical treatment is considered or with a metastatic hepatoma. Research is also needed to examine the rate of detection of hepatic lesions compared to multi-detector computed tomography (MDCT), which is used most frequently to localize and characterize a HCC. Gd-EOB-DTPA-enhanced MRI and iodine-enhanced MDCT imaging were compared for the preoperative detection of focal liver lesions. The clinical usefulness of each method was examined. The current study enrolled 79 patients with focal liver lesions who preoperatively underwent MRI and MDCT. In these patients, there was less than one month between the two diagnostic modalities. Imaging data were taken before and after contrast enhancement in both methods. To evaluate the images, we analyzed the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) in the lesions and the liver parenchyma. To compare the sensitivity of the two methods, we performed a quantitative analysis of the percentage signal intensity of the liver (PSIL) on a high resolution picture archiving and communication system (PACS) monitor (paired-samples t-test, p < 0.05). The enhancement was evaluated based on a consensus of four observers. The enhancement pattern and the morphological features during the arterial and the delayed phases were correlated between the Gd-EOB-DTPA-enhanced MRI findings and the iodine-enhanced MDCT by using an adjusted x2 test. The SNRs, CNRs, and PSIL all had a greater detection rate in Gd-EOB-DTPA enhanced MRI than in iodine-enhanced MDCT. Hepatocyte-selective uptake was observed 20 minutes after the injection in the focal nodular hyperplasia (FNH, 9/9), adenoma (9/10), and highly-differentiated HCC (grade G1, 27/30). Rim enhancement was detected in all metastases (30/30). During the arterial and the delayed phases, good overall agreement between the gadoxetic-acid-enhanced MR and CT was observed (x2 test, p < 0.05). For the preoperative detection of focal liver lesions, Gd-EOB-DTPA-enhanced MRI had a higher diagnostic value and higher detection rate than iodine-enhanced MDCT. The arterial and the delayed dynamic enhancement patterns, and the gadoxetic-acid-enhanced MR imaging can provide information on the possible degree of cellular differentiation of a HCC, adenoma or metastatic tumor.

  18. Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications

    NASA Astrophysics Data System (ADS)

    Chekroun, Mickaël D.; Glatt-Holtz, Nathan E.

    2012-12-01

    In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space X which is acted on by any continuous semigroup { S( t)} t ≥ 0. Suppose that { S( t)} t ≥ 0 possesses a global attractor {{A}}. We show that, for any generalized Banach limit LIM T → ∞ and any probability distribution of initial conditions {{m}_0}, that there exists an invariant probability measure {{m}}, whose support is contained in {{A}}, such that intX \\varphi(x) d{m}(x) = \\underset{t rightarrow infty}LIM1/T int_0^T int_X \\varphi(S(t) x) d{m}_0(x) dt, for all observables φ living in a suitable function space of continuous mappings on X. This work is based on the framework of Foias et al. (Encyclopedia of mathematics and its applications, vol 83. Cambridge University Press, Cambridge, 2001); it generalizes and simplifies the proofs of more recent works (Wang in Disc Cont Dyn Syst 23(1-2):521-540, 2009; Lukaszewicz et al. in J Dyn Diff Eq 23(2):225-250, 2011). In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when { S( t)} t ≥ 0 does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and thus restricts the phase space X to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail. We first consider the Navier-Stokes equations with memory in the diffusion terms. This is the so called Jeffery's model which describes certain classes of viscoelastic fluids. We then consider a family of neutral delay differential equations, that is equations with delays in the time derivative terms. These systems may arise in the study of wave propagation problems coming from certain first order hyperbolic partial differential equations; for example for the study of line transmission problems. For the second example the phase space is {X= C([-tau,0],{R}^n)}, for some delay τ > 0, so that X is not reflexive in this case.

  19. Light and melatonin schedule neuronal differentiation in the habenular nuclei

    PubMed Central

    de Borsetti, Nancy Hernandez; Dean, Benjamin J.; Bain, Emily J.; Clanton, Joshua A.; Taylor, Robert W.; Gamse, Joshua T.

    2011-01-01

    The formation of the embryonic brain requires the production, migration, and differentiation of neurons to be timely and coordinated. Coupling to the photoperiod could synchronize the development of neurons in the embryo. Here, we consider the effect of light and melatonin on the differentiation of embryonic neurons in zebrafish. We examine the formation of neurons in the habenular nuclei, a paired structure found near the dorsal surface of the brain adjacent to the pineal organ. Keeping embryos in constant darkness causes a temporary accumulation of habenular precursor cells, resulting in late differentiation and a long-lasting reduction in neuronal processes (neuropil). Because constant darkness delays the accumulation of the neurendocrine hormone melatonin in embryos, we looked for a link between melatonin signaling and habenular neurogenesis. A pharmacological block of melatonin receptors delays neurogenesis and reduces neuropil similarly to constant darkness, while addition of melatonin to embryos in constant darkness restores timely neurogenesis and neuropil. We conclude that light and melatonin schedule the differentiation of neurons and the formation of neural processes in the habenular nuclei. PMID:21840306

  20. Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea.

    PubMed

    De Jonghe, Bart C; Holland, Ruby A; Olivos, Diana R; Rupprecht, Laura E; Kanoski, Scott E; Hayes, Matthew R

    2016-01-01

    While chemotherapy-induced nausea and vomiting are clinically controlled in the acute (<24 h) phase following treatment, the anorexia, nausea, fatigue, and other illness-type behaviors during the delayed phase (>24 h) of chemotherapy are largely uncontrolled. As the hindbrain glucagon-like peptide-1 (GLP-1) system contributes to energy balance and mediates aversive and stressful stimuli, here we examine the hypothesis that hindbrain GLP-1 signaling mediates aspects of chemotherapy-induced nausea and reductions in feeding behavior in rats. Specifically, hindbrain GLP-1 receptor (GLP-1R) blockade, via 4th intracerebroventricular (ICV) exendin-(9-39) injections, attenuates the anorexia, body weight reduction, and pica (nausea-induced ingestion of kaolin clay) elicited by cisplatin chemotherapy during the delayed phase (48 h) of chemotherapy-induced nausea. Additionally, the present data provide evidence that the central GLP-1-producing preproglucagon neurons in the nucleus tractus solitarius (NTS) of the caudal brainstem are activated by cisplatin during the delayed phase of chemotherapy-induced nausea, as cisplatin led to a significant increase in c-Fos immunoreactivity in NTS GLP-1-immunoreactive neurons. These data support a growing body of literature suggesting that the central GLP-1 system may be a potential pharmaceutical target for adjunct anti-emetics used to treat the delayed-phase of nausea and emesis, anorexia, and body weight loss that accompany chemotherapy treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Additive-free size-controlled synthesis of gold square nanoplates using photochemical reaction in dynamic phase-separating media.

    PubMed

    Kajimoto, Shinji; Shirasawa, Daisuke; Horimoto, Noriko Nishizawa; Fukumura, Hiroshi

    2013-05-14

    Ultrafast phase separation of water and 2-butoxyethanol mixture was induced by nanosecond IR laser pulse irradiation. After a certain delay time, a UV laser pulse was introduced to induce photoreduction of aurate ions, which led to the formation of gold nanoparticles in dynamic phase-separating media. The structure and size of the nanoparticles varied depending on the delay time between the IR and UV pulses. For a delay time of 5 and 6 μs, gold square plates having edge lengths of 150 and 100 nm were selectively obtained, respectively. With a delay time of 3 μs, on the other hand, the size of the square plates varied widely from 100 nm to a few micrometers. The size of the gold square plates was also varied by varying the total irradiation time of the IR and UV pulses. The size distribution of the square plates obtained under different conditions suggests that the growth process of the square plates was affected by the size of the nanophases during phase separation. Electron diffraction patterns of the synthesized square plates showed that the square plates were highly crystalline with a Au(100) surface. These results showed that the nanophases formed during laser-induced phase separation can provide detergent-free reaction fields for size-controlled nanomaterial synthesis.

  2. Method to control artifacts of microstructural fabrication

    DOEpatents

    Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.

    2006-09-12

    New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.

  3. Wavefronts for a global reaction-diffusion population model with infinite distributed delay

    NASA Astrophysics Data System (ADS)

    Weng, Peixuan; Xu, Zhiting

    2008-09-01

    We consider a global reaction-diffusion population model with infinite distributed delay which includes models of Nicholson's blowflies and hematopoiesis derived by Gurney, Mackey and Glass, respectively. The existence of monotone wavefronts is derived by using the abstract settings of functional differential equations and Schauder fixed point theory.

  4. Stability Criteria for Differential Equations with Variable Time Delays

    ERIC Educational Resources Information Center

    Schley, D.; Shail, R.; Gourley, S. A.

    2002-01-01

    Time delays are an important aspect of mathematical modelling, but often result in highly complicated equations which are difficult to treat analytically. In this paper it is shown how careful application of certain undergraduate tools such as the Method of Steps and the Principle of the Argument can yield significant results. Certain delay…

  5. Persistent Language Delay versus Late Language Emergence in Children with Early Cochlear Implantation

    ERIC Educational Resources Information Center

    Geers, Ann E.; Nicholas, Johanna; Tobey, Emily; Davidson, Lisa

    2016-01-01

    Purpose: The purpose of the present investigation is to differentiate children using cochlear implants (CIs) who did or did not achieve age-appropriate language scores by mid-elementary grades and to identify risk factors for persistent language delay following early cochlear implantation. Materials and Method: Children receiving unilateral CIs at…

  6. Ectopic expression of Capsicum-specific cell wall protein Capsicum annuum senescence-delaying 1 (CaSD1) delays senescence and induces trichome formation in Nicotiana benthamiana.

    PubMed

    Seo, Eunyoung; Yeom, Seon-In; Jo, Sunghwan; Jeong, Heejin; Kang, Byoung-Cheorl; Choi, Doil

    2012-04-01

    Secreted proteins are known to have multiple roles in plant development, metabolism, and stress response. In a previous study to understand the roles of secreted proteins, Capsicum annuum secreted proteins (CaS) were isolated by yeast secretion trap. Among the secreted proteins, we further characterized Capsicum annuum senescence-delaying 1 (CaSD1), a gene encoding a novel secreted protein that is present only in the genus Capsicum. The deduced CaSD1 contains multiple repeats of the amino acid sequence KPPIHNHKPTDYDRS. Interestingly, the number of repeats varied among cultivars and species in the Capsicum genus. CaSD1 is constitutively expressed in roots, and Agrobacterium-mediated transient overexpression of CaSD1 in Nicotiana benthamiana leaves resulted in delayed senescence with a dramatically increased number of trichomes and enlarged epidermal cells. Furthermore, senescence- and cell division-related genes were differentially regulated by CaSD1-overexpressing plants. These observations imply that the pepper-specific cell wall protein CaSD1 plays roles in plant growth and development by regulating cell division and differentiation.

  7. Using convolutional decoding to improve time delay and phase estimation in digital communications

    DOEpatents

    Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM

    2010-01-26

    The time delay and/or phase of a communication signal received by a digital communication receiver can be estimated based on a convolutional decoding operation that the communication receiver performs on the received communication signal. If the original transmitted communication signal has been spread according to a spreading operation, a corresponding despreading operation can be integrated into the convolutional decoding operation.

  8. A Low Power Linear Phase Programmable Long Delay Circuit.

    PubMed

    Rodriguez-Villegas, Esther; Logesparan, Lojini; Casson, Alexander J

    2014-06-01

    A novel linear phase programmable delay is being proposed and implemented in a 0.35 μm CMOS process. The delay line consists of N cascaded cells, each of which delays the input signal by Td/N, where Td is the total line delay. The delay generated by each cell is programmable by changing a clock frequency and is also fully independent of the frequency of the input signal. The total delay hence depends only on the chosen clock frequency and the total number of cascaded cells. The minimum clock frequency is limited by the maximum time a voltage signal can effectively be held by an individual cell. The maximum number of cascaded cells will be limited by the effects of accumulated offset due to transistor mismatch, which eventually will affect the operating mode of the individual transistors in a cell. This latter limitation has however been dealt with in the topology by having an offset compensation mechanism that makes possible having a large number of cascaded cells and hence a long resulting delay. The delay line has been designed for scalp-based neural activity analysis that is predominantly in the sub-100 Hz frequency range. For these signals, the delay generated by a 31-cell cascade has been demonstrated to be programmable from 30 ms to 3 s. Measurement results demonstrate a 31 stage, 50 Hz bandwidth, 0.3 s delay that operates from a 1.1 V supply with power consumption of 270 nW.

  9. Optical injection phase-lock loops

    NASA Astrophysics Data System (ADS)

    Bordonalli, Aldario Chrestani

    Locking techniques have been widely applied for frequency synchronisation of semiconductor lasers used in coherent communication and microwave signal generation systems. Two main locking techniques, the optical phase-lock loop (OPLL) and optical injection locking (OIL) are analysed in this thesis. The principal limitations on OPLL performance result from the loop propagation delay, which makes difficult the implementation of high gain and wide bandwidth loops, leading to poor phase noise suppression performance and requiring the linewidths of the semiconductor laser sources to be less than a few megahertz for practical values of loop delay. The OIL phase noise suppression is controlled by the injected power. The principal limitations of the OIL implementation are the finite phase error under locked conditions and the narrow stable locking range the system provides at injected power levels required to reduce the phase noise output of semiconductor lasers significantly. This thesis demonstrates theoretically and experimentally that it is possible to overcome the limitations of OPLL and OIL systems by combining them, to form an optical injection phase-lock loop (OIPLL). The modelling of an OIPLL system is presented and compared with the equivalent OPLL and OIL results. Optical and electrical design of an homodyne OIPLL is detailed. Experimental results are given which verify the theoretical prediction that the OIPLL would keep the phase noise suppression as high as that of the OIL system over a much wider stable locking range, even with wide linewidth lasers and long loop delays. The experimental results for lasers with summed linewidth of 36 MHz and a loop delay of 15 ns showed measured phase error variances as low as 0.006 rad2 (500 MHz bandwidth) for locking bandwidths greater than 26 GHz, compared with the equivalent OPLL phase error variance of around 1 rad2 (500 MHz bandwidth) and the equivalent OIL locking bandwidth of less than 1.2 GHz.

  10. Ensemble codes involving hippocampal neurons are at risk during delayed performance tests.

    PubMed

    Hampson, R E; Deadwyler, S A

    1996-11-26

    Multielectrode recording techniques were used to record ensemble activity from 10 to 16 simultaneously active CA1 and CA3 neurons in the rat hippocampus during performance of a spatial delayed-nonmatch-to-sample task. Extracted sources of variance were used to assess the nature of two different types of errors that accounted for 30% of total trials. The two types of errors included ensemble "miscodes" of sample phase information and errors associated with delay-dependent corruption or disappearance of sample information at the time of the nonmatch response. Statistical assessment of trial sequences and associated "strength" of hippocampal ensemble codes revealed that miscoded error trials always followed delay-dependent error trials in which encoding was "weak," indicating that the two types of errors were "linked." It was determined that the occurrence of weakly encoded, delay-dependent error trials initiated an ensemble encoding "strategy" that increased the chances of being correct on the next trial and avoided the occurrence of further delay-dependent errors. Unexpectedly, the strategy involved "strongly" encoding response position information from the prior (delay-dependent) error trial and carrying it forward to the sample phase of the next trial. This produced a miscode type error on trials in which the "carried over" information obliterated encoding of the sample phase response on the next trial. Application of this strategy, irrespective of outcome, was sufficient to reorient the animal to the proper between trial sequence of response contingencies (nonmatch-to-sample) and boost performance to 73% correct on subsequent trials. The capacity for ensemble analyses of strength of information encoding combined with statistical assessment of trial sequences therefore provided unique insight into the "dynamic" nature of the role hippocampus plays in delay type memory tasks.

  11. The N-policy for an unreliable server with delaying repair and two phases of service

    NASA Astrophysics Data System (ADS)

    Choudhury, Gautam; Ke, Jau-Chuan; Tadj, Lotfi

    2009-09-01

    This paper deals with an MX/G/1 with an additional second phase of optional service and unreliable server, which consist of a breakdown period and a delay period under N-policy. While the server is working with any phase of service, it may break down at any instant and the service channel will fail for a short interval of time. Further concept of the delay time is also introduced. If no customer arrives during the breakdown period, the server becomes idle in the system until the queue size builds up to a threshold value . As soon as the queue size becomes at least N, the server immediately begins to serve the first phase of regular service to all the waiting customers. After the completion of which, only some of them receive the second phase of the optional service. We derive the queue size distribution at a random epoch and departure epoch as well as various system performance measures. Finally we derive a simple procedure to obtain optimal stationary policy under a suitable linear cost structure.

  12. O(t-α)-synchronization and Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations.

    PubMed

    Chen, Jiejie; Chen, Boshan; Zeng, Zhigang

    2018-04-01

    This paper investigates O(t -α )-synchronization and adaptive Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations. Firstly, based on the framework of Filippov solution and differential inclusion theory, using a Razumikhin-type method, some sufficient conditions ensuring the global O(t -α )-synchronization of considered networks are established via a linear-type discontinuous control. Next, a new fractional differential inequality is established and two new discontinuous adaptive controller is designed to achieve Mittag-Leffler synchronization between the drive system and the response systems using this inequality. Finally, two numerical simulations are given to show the effectiveness of the theoretical results. Our approach and theoretical results have a leading significance in the design of synchronized fractional-order memristive neural networks circuits involving discontinuous activations and time-varying delays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Potent Effects of Flavonoid Nobiletin on Amplitude, Period, and Phase of the Circadian Clock Rhythm in PER2::LUCIFERASE Mouse Embryonic Fibroblasts.

    PubMed

    Shinozaki, Ayako; Misawa, Kenichiro; Ikeda, Yuko; Haraguchi, Atsushi; Kamagata, Mayo; Tahara, Yu; Shibata, Shigenobu

    2017-01-01

    Flavonoids are natural polyphenols that are widely found in plants. The effects of flavonoids on obesity and numerous diseases such as cancer, diabetes, and Alzheimer's have been well studied. However, little is known about the relationships between flavonoids and the circadian clock. In this study, we show that continuous or transient application of flavonoids to the culture medium of embryonic fibroblasts from PER2::LUCIFERASE (PER2::LUC) mice induced various modifications in the circadian clock amplitude, period, and phase. Transient application of some of the tested flavonoids to cultured cells induced a phase delay of the PER2::LUC rhythm at the down slope phase. In addition, continuous application of the polymethoxy flavonoids nobiletin and tangeretin increased the amplitude and lengthened the period of the PER2::LUC rhythm. The nobiletin-induced phase delay was blocked by co-treatment with U0126, an ERK inhibitor. In summary, among the tested flavonoids, polymethoxy flavones increased the amplitude, lengthened the period, and delayed the phase of the PER2::LUC circadian rhythm. Therefore, foods that contain polymethoxy flavones may have beneficial effects on circadian rhythm disorders and jet lag.

  14. Transit and lifespan in neutrophil production: implications for drug intervention.

    PubMed

    Câmara De Souza, Daniel; Craig, Morgan; Cassidy, Tyler; Li, Jun; Nekka, Fahima; Bélair, Jacques; Humphries, Antony R

    2018-02-01

    A comparison of the transit compartment ordinary differential equation modelling approach to distributed and discrete delay differential equation models is studied by focusing on Quartino's extension to the Friberg transit compartment model of myelosuppression, widely relied upon in the pharmaceutical sciences to predict the neutrophil response after chemotherapy, and on a QSP delay differential equation model of granulopoiesis. An extension to the Quartino model is provided by considering a general number of transit compartments and introducing an extra parameter that allows for the decoupling of the maturation time from the production rate of cells. An overview of the well established linear chain technique, used to reformulate transit compartment models with constant transit rates as distributed delay differential equations (DDEs), is then given. A state-dependent time rescaling of the Quartino model is performed to apply the linear chain technique and rewrite the Quartino model as a distributed DDE, yielding a discrete DDE model in a certain parameter limit. Next, stability and bifurcation analyses are undertaken in an effort to situate such studies in a mathematical pharmacology context. We show that both the original Friberg and the Quartino extension models incorrectly define the mean maturation time, essentially treating the proliferative pool as an additional maturation compartment. This misspecification can have far reaching consequences on the development of future models of myelosuppression in PK/PD.

  15. Effect of caffeine on radiation-induced mitotic delay: delayed expression of G/sub 2/ arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, R.; Zorch, M.; Leeper, D.B.

    1984-01-01

    In the presence of 5 mM caffeine, irradiated (1.5 Gy) S and G/sub 2/ cells progressed to mitosis in register and without arrest in G/sub 2/. Caffeine (5 mM) markedly reduced mitotic delay even after radiation doses up to 20 Gy. When caffeine was removed from irradiated (1.5 Gy) and caffeine-treated cells, a period of G/sub 2/ arrest followed, similar in length to that produced by radiation alone. The arrest expressed was independent of the duration of the caffeine treatment for exposures up to 3 hr. The similarity of the response to the cited effects of caffeine on S-phase delaymore » suggests a common basis for delay induction in S and G/sub 2/ phases.« less

  16. Propagation of light through small clouds of cold interacting atoms

    NASA Astrophysics Data System (ADS)

    Jennewein, S.; Sortais, Y. R. P.; Greffet, J.-J.; Browaeys, A.

    2016-11-01

    We demonstrate experimentally that a dense cloud of cold atoms with a size comparable to the wavelength of light can induce large group delays on a laser pulse when the laser is tightly focused on it and is close to an atomic resonance. Delays as large as -10 ns are observed, corresponding to "superluminal" propagation with negative group velocities as low as -300 m /s . Strikingly, this large delay is associated with a moderate extinction owing to the very small size of the dense cloud. It implies that a large phase shift is imprinted on the continuous laser beam. Our system may thus be useful for applications to quantum technologies, such as variable delay line for individual photons or phase imprint between two beams at the single-photon level.

  17. Coupled lasers: phase versus chaos synchronization.

    PubMed

    Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I

    2013-10-15

    The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.

  18. Structural Properties and Estimation of Delay Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kwong, R. H. S.

    1975-01-01

    Two areas in the theory of delay systems were studied: structural properties and their applications to feedback control, and optimal linear and nonlinear estimation. The concepts of controllability, stabilizability, observability, and detectability were investigated. The property of pointwise degeneracy of linear time-invariant delay systems is considered. Necessary and sufficient conditions for three dimensional linear systems to be made pointwise degenerate by delay feedback were obtained, while sufficient conditions for this to be possible are given for higher dimensional linear systems. These results were applied to obtain solvability conditions for the minimum time output zeroing control problem by delay feedback. A representation theorem is given for conditional moment functionals of general nonlinear stochastic delay systems, and stochastic differential equations are derived for conditional moment functionals satisfying certain smoothness properties.

  19. Ultimate boundedness stability and controllability of hereditary systems

    NASA Technical Reports Server (NTRS)

    Chukwu, E. N.

    1979-01-01

    By generalizing the Liapunov-Yoshizawa techniques, necessary and sufficient conditions are given for uniform boundedness and uniform ultimate boundedness of a rather general class of nonlinear differential equations of neutral type. Among the applications treated by the methods are the Lienard equation of neutral type and hereditary systems of Lurie type. The absolute stability of this later equation is also investigated. A certain existence result of a solution of a neutral functional differential inclusion with two point boundary values is applied to study the exact function space controllability of a nonlinear neutral functional differential control system. A geometric growth condition is used to characterize both the function space and Euclidean controllability of another nonlinear delay system which has a compact and convex control set. This yields conditions under which perturbed nonlinear delay controllable systems are controllable.

  20. Staphylococcus aureus-Induced G2/M Phase Transition Delay in Host Epithelial Cells Increases Bacterial Infective Efficiency

    PubMed Central

    Almeida, Sintia; Legembre, Patrick; Edmond, Valérie; Azevedo, Vasco; Miyoshi, Anderson; Even, Sergine; Taieb, Frédéric; Arlot-Bonnemains, Yannick; Le Loir, Yves; Berkova, Nadia

    2013-01-01

    Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration. PMID:23717407

  1. Phase of neural excitation relative to basilar membrane motion in the organ of Corti: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Andoh, Masayoshi; Nakajima, Chihiro; Wada, Hiroshi

    2005-09-01

    Although the auditory transduction process is dependent on neural excitation of the auditory nerve in relation to motion of the basilar membrane (BM) in the organ of Corti (OC), specifics of this process are unclear. In this study, therefore, an attempt was made to estimate the phase of the neural excitation relative to the BM motion using a finite-element model of the OC at the basal turn of the gerbil, including the fluid-structure interaction with the lymph fluid. It was found that neural excitation occurs when the BM exhibits a maximum velocity toward the scala vestibuli at 10 Hz and shows a phase delay relative to the BM motion with increasing frequency up to 800 Hz. It then shows a phase advance until the frequency reaches 2 kHz. From 2 kHz, neural excitation again shows a phase delay with increasing frequency. From 800 Hz up to 2 kHz, the phase advances because the dominant force exerted on the hair bundle shifts from a velocity-dependent Couette flow-induced force to a displacement-dependent force induced by the pressure difference. The phase delay that occurs from 2 kHz is caused by the resonance process of the hair bundle of the IHC.

  2. Delayed fungal endophthalmitis secondary to Curvularia.

    PubMed

    Xu, Kunyong; Almeida, David R P; Chin, Eric K; Mahajan, Vinit B

    2016-10-01

    To describe a case of fungal endophthalmitis secondary to Curvularia after cataract surgery. This case showed delayed and recalcitrant fungal endophthalmitis secondary to Curvularia despite treatment with pars plana vitrectomy, intravitreal antifungal therapy, and systemic antifungals. Curvularia -associated endophthalmitis should be considered in the differential diagnosis of delayed post-cataract endophthalmitis, especially in tropical or subtropical geographical areas. Awareness and early identification, timely removal of the nidi of sequestration, and prolonged antifungal treatments are important for the eradication of Curvularia -associated endophthalmitis.

  3. Incorporating time-delays in S-System model for reverse engineering genetic networks.

    PubMed

    Chowdhury, Ahsan Raja; Chetty, Madhu; Vinh, Nguyen Xuan

    2013-06-18

    In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in Escherichia coli show a significant improvement compared with other state-of-the-art approaches for GRN modeling.

  4. Linear or linearizable first-order delay ordinary differential equations and their Lie point symmetries

    NASA Astrophysics Data System (ADS)

    Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel

    2018-05-01

    A recent article was devoted to an analysis of the symmetry properties of a class of first-order delay ordinary differential systems (DODSs). Here we concentrate on linear DODSs, which have infinite-dimensional Lie point symmetry groups due to the linear superposition principle. Their symmetry algebra always contains a two-dimensional subalgebra realized by linearly connected vector fields. We identify all classes of linear first-order DODSs that have additional symmetries, not due to linearity alone, and we present representatives of each class. These additional symmetries are then used to construct exact analytical particular solutions using symmetry reduction.

  5. Optimal control strategy for an impulsive stochastic competition system with time delays and jumps

    NASA Astrophysics Data System (ADS)

    Liu, Lidan; Meng, Xinzhu; Zhang, Tonghua

    2017-07-01

    Driven by both white and jump noises, a stochastic delayed model with two competitive species in a polluted environment is proposed and investigated. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of two species are established. In addition, we obtain that the system is asymptotically stable in distribution by using ergodic method. Furthermore, the optimal harvesting effort and the maximum of expectation of sustainable yield (ESY) are derived from Hessian matrix method and optimal harvesting theory of differential equations. Finally, some numerical simulations are provided to illustrate the theoretical results.

  6. Bistability and State Transition of a Delay Differential Equation Model of Neutrophil Dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Suqi; Zhu, Kaiyi; Lei, Jinzhi

    This paper studies the existence of bistable states and control strategies to induce state transitions of a delay differential equation model of neutrophil dynamics. We seek the conditions that a stable steady state and an oscillatory state coexist in the neutrophil dynamical system. Physiologically, stable steady state represents the healthy state, while oscillatory state is usually associated with diseases such as cyclical neutropenia. We study the control strategies to induce the transitions from the disease state to the healthy state by introducing temporal perturbations to system parameters. This study is valuable in designing clinical protocols for the treatment of cyclical neutropenia.

  7. Surface Deformation and Coherence Measurements of Kilauea Volcano, Hawaii, from SIR-C Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Zebker, H. A.; Webb, F. H.; Fielding, E. J.

    1996-01-01

    The shuttle imaging radar C/X synthetic aperture radar (SIR-C/X-SAR) radar on board the space shuttle Endeavor imaged Kilauea Volcano, Hawaii, in April and October 1994 for the purpose of measuring active surface deformation by the methods of repeat-pass differential radar interferometry. Observations at 24 cm (L band) and 5.6 cm (C band) wavelengths were reduced to interferograms showing apparent surface deformation over the 6-month interval and over a succession of 1-day intervals in October. A statistically significant local phase signature in the 6-month interferogram is coincident with the Pu'u O'o lava vent. Interpreted as deformation, the signal implies centimeter-scale deflation in an area several kilometers wide surrounding the vent. Peak deflation is roughly 14 cm if the deformation is purely vertical, centered southward of the Pu'u O'o caldera. Delays in the radar signal phase induced by atmospheric refractivity anomalies introduce spurious apparent deformation signatures, at the level of 12 cm peak-to-peak in the radar line-of-sight direction. Though the phase observations are suggestive of the wide-area deformation measured by Global Positioning System (GPS) methods, the atmospheric effects are large enough to limit the interpretation of the result. It is difficult to characterize centimeter-scale deformations spatially distributed over tens of kilometers using differential interferometry without supporting simultaneous, spatially distributed measurements of reactivity along the radar line of sight. Studies of the interferometric correlation of images acquired at different times show that L band is far superior to C band in the vegetated areas, even when the observations are separated by only 1 day. These results imply longer wavelength instruments are more appropriate for studying surfaces by repeat-pass observations.

  8. The heterocyst regulatory protein HetP and its homologs modulate heterocyst commitment in Anabaena sp. strain PCC 7120.

    PubMed

    Videau, Patrick; Rivers, Orion S; Hurd, Kathryn; Ushijima, Blake; Oshiro, Reid T; Ende, Rachel J; O'Hanlon, Samantha M; Cozy, Loralyn M

    2016-10-24

    The commitment of differentiating cells to a specialized fate is fundamental to the correct assembly of tissues within a multicellular organism. Because commitment is often irreversible, entry into and progression through this phase of development must be tightly regulated. Under nitrogen-limiting conditions, the multicellular cyanobacterium Anabaena sp. strain PCC 7120 terminally commits ∼10% of its cells to become specialized nitrogen-fixing heterocysts. Although commitment is known to occur 9-14 h after the induction of differentiation, the factors that regulate the initiation and duration of this phase have yet to be elucidated. Here, we report the identification of four genes that share a functional domain and modulate heterocyst commitment: hetP (alr2818), asl1930, alr2902, and alr3234 Epistatic relationships between all four genes relating to commitment were revealed by deleting them individually and in combination; asl1930 and alr3234 acted most upstream to delay commitment, alr2902 acted next in the pathway to inhibit development, and hetP acted most downstream to drive commitment forward. Possible protein-protein interactions between HetP, its homologs, and the heterocyst master regulator, HetR, were assessed, and interaction partners were defined. Finally, patterns of gene expression for each homolog, as determined by promoter fusions to gfp and reverse transcription-quantitative PCR, were distinct from that of hetP in both spatiotemporal organization and regulation. We posit that a dynamic succession of protein-protein interactions modulates the timing and efficiency of the commitment phase of development and note that this work highlights the utility of a multicellular cyanobacterium as a model for the study of developmental processes.

  9. Psychometric characteristics of the Rivermead Behavioural Memory Test (RBMT) as an early detection instrument for dementia and mild cognitive impairment in Brazil.

    PubMed

    Yassuda, Mônica Sanches; Flaks, Mariana Kneese; Viola, Luciane Fátima; Pereira, Fernanda Speggiorin; Memória, Claudia Maia; Nunes, Paula Villela; Forlenza, Orestes Vicente

    2010-09-01

    The Rivermead Behavioural Memory Test (RBMT) assesses everyday memory by means of tasks which mimic daily challenges. The objective was to examine the validity of the Brazilian version of the RBMT to detect cognitive decline. 195 older adults were diagnosed as normal controls (NC) or with mild cognitive impairment (MCI) or Alzheimer's disease (AD) by a multidisciplinary team, after participants completed clinical and neuropsychological protocols. Cronbach's alpha was high for the total sample for the RBMT profile (PS) and screening scores (SS) (PS = 0.91, SS = 0.87) and for the AD group (PS = 0.84, SS = 0.85), and moderate for the MCI (PS = 0.62, SS = 0.55) and NC (PS = 0.62, SS = 0.60) groups. RBMT total scores, Appointment, Pictures, Immediate and Delayed Story, Immediate and Delayed Route, Delayed Message and Date contributed to differentiate NC from MCI. ROC curve analyses indicated high accuracy to differentiate NC from AD patients, and, moderate accuracy to differentiate NC from MCI. The Brazilian version of the RBMT seems to be an appropriate instrument to identify memory decline in Brazilian older adults.

  10. Differential short-term memorisation for vocal and instrumental rhythms.

    PubMed

    Klyn, Niall A M; Will, Udo; Cheong, Yong-Jeon; Allen, Erin T

    2016-07-01

    This study explores differential processing of vocal and instrumental rhythms in short-term memory with three decision (same/different judgments) and one reproduction experiment. In the first experiment, memory performance declined for delayed versus immediate recall, with accuracy for the two rhythms being affected differently: Musicians performed better than non-musicians on clapstick but not on vocal rhythms, and musicians were better on vocal rhythms in the same than in the different condition. Results for the second experiment showed that concurrent sub-vocal articulation and finger-tapping differentially affected the two rhythms and same/different decisions, but produced no evidence for articulatory loop involvement in delayed decision tasks. In a third experiment, which tested rhythm reproduction, concurrent sub-vocal articulation decreased memory performance, with a stronger deleterious effect on the reproduction of vocal than of clapstick rhythms. This suggests that the articulatory loop may only be involved in delayed reproduction not in decision tasks. The fourth experiment tested whether differences between filled and empty rhythms (continuous vs. discontinuous sounds) can explain the different memorisation of vocal and clapstick rhythms. Though significant differences were found for empty and filled instrumental rhythms, the differences between vocal and clapstick can only be explained by considering additional voice specific features.

  11. Increased dosage of DYRK1A and DSCR1 delays neuronal differentiation in neocortical progenitor cells

    PubMed Central

    Kurabayashi, Nobuhiro; Sanada, Kamon

    2013-01-01

    Down's syndrome (DS), a major genetic cause of mental retardation, arises from triplication of genes on human chromosome 21. Here we show that DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) and DSCR1 (DS critical region 1), two genes lying within human chromosome 21 and encoding for a serine/threonine kinase and calcineurin regulator, respectively, are expressed in neural progenitors in the mouse developing neocortex. Increasing the dosage of both proteins in neural progenitors leads to a delay in neuronal differentiation, resulting ultimately in alteration of their laminar fate. This defect is mediated by the cooperative actions of DYRK1A and DSCR1 in suppressing the activity of the transcription factor NFATc. In Ts1Cje mice, a DS mouse model, dysregulation of NFATc in conjunction with increased levels of DYRK1A and DSCR1 was observed. Furthermore, counteracting the dysregulated pathway ameliorates the delayed neuronal differentiation observed in Ts1Cje mice. In sum, our findings suggest that dosage of DYRK1A and DSCR1 is critical for proper neurogenesis through NFATc and provide a potential mechanism to explain the neurodevelopmental defects in DS. PMID:24352425

  12. Solving delay differential equations in S-ADAPT by method of steps.

    PubMed

    Bauer, Robert J; Mo, Gary; Krzyzanski, Wojciech

    2013-09-01

    S-ADAPT is a version of the ADAPT program that contains additional simulation and optimization abilities such as parametric population analysis. S-ADAPT utilizes LSODA to solve ordinary differential equations (ODEs), an algorithm designed for large dimension non-stiff and stiff problems. However, S-ADAPT does not have a solver for delay differential equations (DDEs). Our objective was to implement in S-ADAPT a DDE solver using the methods of steps. The method of steps allows one to solve virtually any DDE system by transforming it to an ODE system. The solver was validated for scalar linear DDEs with one delay and bolus and infusion inputs for which explicit analytic solutions were derived. Solutions of nonlinear DDE problems coded in S-ADAPT were validated by comparing them with ones obtained by the MATLAB DDE solver dde23. The estimation of parameters was tested on the MATLB simulated population pharmacodynamics data. The comparison of S-ADAPT generated solutions for DDE problems with the explicit solutions as well as MATLAB produced solutions which agreed to at least 7 significant digits. The population parameter estimates from using importance sampling expectation-maximization in S-ADAPT agreed with ones used to generate the data. Published by Elsevier Ireland Ltd.

  13. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.

    PubMed

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-06-03

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.

  14. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    PubMed Central

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-01-01

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility. PMID:28772975

  15. Behaviour of fractional loop delay zero crossing digital phase locked loop (FR-ZCDPLL)

    NASA Astrophysics Data System (ADS)

    Nasir, Qassim

    2018-01-01

    This article analyses the performance of the first-order zero crossing digital phase locked loops (FR-ZCDPLL) when fractional loop delay is added to loop. The non-linear dynamics of the loop is presented, analysed and examined through bifurcation behaviour. Numerical simulation of the loop is conducted to proof the mathematical analysis of the loop operation. The results of the loop simulation show that the proposed FR-ZCDPLL has enhanced the performance compared to the conventional zero crossing DPLL in terms of wider lock range, captured range and stable operation region. In addition, extensive experimental simulation was conducted to find the optimum loop parameters for different loop environmental conditions. The addition of the fractional loop delay network in the conventional loop also reduces the phase jitter and its variance especially when the signal-to-noise ratio is low.

  16. A Control Allocation Technique to Recover From Pilot-Induced Oscillations (CAPIO) Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yildiray; Kolmanovsky, Ilya V.

    2010-01-01

    This paper proposes a control allocation technique that can help pilots recover from pilot induced oscillations (PIO). When actuators are rate-saturated due to aggressive pilot commands, high gain flight control systems or some anomaly in the system, the effective delay in the control loop may increase depending on the nature of the cause. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate PIOs. The proposed control allocator reduces the effective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. Simulation results are reported, which demonstrate phase shift minimization and recovery from PIOs. Conversion of the objective function to be minimized and constraints to a form that is suitable for implementation is given.

  17. The potential role of ribosomal protein S5 on cell cycle arrest and initiation of murine erythroleukemia cell differentiation.

    PubMed

    Matragkou, Christina N; Papachristou, Eleni T; Tezias, Sotirios S; Tsiftsoglou, Asterios S; Choli-Papadopoulou, Theodora; Vizirianakis, Ioannis S

    2008-07-01

    Evidence now exists to indicate that some ribosomal proteins besides being structural components of the ribosomal subunits are involved in the regulation of cell differentiation and apoptosis. As we have shown earlier, initiation of erythroid differentiation of murine erythroleukemia (MEL) cells is associated with transcriptional inactivation of genes encoding ribosomal RNAs and ribosomal proteins S5 (RPS5) and L35a. In this study, we extended these observations and investigated whether transfection of MEL cells with RPS5 cDNA affects the onset of initiation of erythroid maturation and their entrance in cell cycle arrest. Stably transfected MEL cloned cells (MEL-C14 and MEL-C56) were established and assessed for their capacity to produce RPS5 RNA transcript and its translated product. The impact of RPS5 cDNA transfection on the RPS5 gene expression patterns and the accumulation of RPS5 protein in inducible transfected MEL cells were correlated with their ability to: (a) initiate differentiation, (b) enter cell cycle arrest at G(1)/G(0) phase, and (c) modulate the level of cyclin-dependent kinases CDK2, CDK4, and CDK6. The data presented indicate that deregulation of RPS5 gene expression (constitutive expression) affects RPS5 protein level and delays both the onset of initiation of erythroid maturation and entrance in cell cycle arrest in inducer-treated MEL cells. 2008 Wiley-Liss, Inc.

  18. Quick Phases of Infantile Nystagmus Show the Saccadic Inhibition Effect

    PubMed Central

    Harrison, James J.; Sumner, Petroc; Dunn, Matt J.; Erichsen, Jonathan T.; Freeman, Tom C. A.

    2015-01-01

    Purpose. Infantile nystagmus (IN) is a pathological, involuntary oscillation of the eyes consisting of slow, drifting eye movements interspersed with rapid reorienting quick phases. The extent to which quick phases of IN are programmed similarly to saccadic eye movements remains unknown. We investigated whether IN quick phases exhibit ‘saccadic inhibition,' a phenomenon typically related to normal targeting saccades, in which the initiation of the eye movement is systematically delayed by task-irrelevant visual distractors. Methods. We recorded eye position from 10 observers with early-onset idiopathic nystagmus while task-irrelevant distractor stimuli were flashed along the top and bottom of a large screen at ±10° eccentricity. The latency distributions of quick phases were measured with respect to these distractor flashes. Two additional participants, one with possible albinism and one with fusion maldevelopment nystagmus syndrome, were also tested. Results. All observers showed that a distractor flash delayed the execution of quick phases that would otherwise have occurred approximately 100 ms later, exactly as in the standard saccadic inhibition effect. The delay did not appear to differ between the two main nystagmus types under investigation (idiopathic IN with unidirectional and bidirectional jerk). Conclusions. The presence of the saccadic inhibition effect in IN quick phases is consistent with the idea that quick phases and saccades share a common programming pathway. This could allow quick phases to take on flexible, goal-directed behavior, at odds with the view that IN quick phases are stereotyped, involuntary eye movements. PMID:25670485

  19. Biennial-Aligned Lunisolar-Forcing of ENSO: Implications for Simplified Climate Models

    NASA Astrophysics Data System (ADS)

    Pukite, P. R.

    2017-12-01

    By solving Laplace's tidal equations along the equatorial Pacific thermocline, assuming a delayed-differential effective gravity forcing due to a combined lunar+solar (lunisolar) stimulus, we are able to precisely match ENSO periodic variations over wide intervals. The underlying pattern is difficult to decode by conventional means such as spectral analysis, which is why it has remained hidden for so long, despite the excellent agreement in the time-domain. What occurs is that a non-linear seasonal modulation with monthly and fortnightly lunar impulses along with a biennially-aligned "see-saw" is enough to cause a physical aliasing and thus multiple folding in the frequency spectrum. So, instead of a conventional spectral tidal decomposition, we opted for a time-domain cross-validating approach to calibrate the amplitude and phasing of the lunisolar cycles. As the lunar forcing consists of three fundamental periods (draconic, anomalistic, synodic), we used the measured Earth's length-of-day (LOD) decomposed and resolved at a monthly time-scale [1] to align the amplitude and phase precisely. Even slight variations from the known values of the long-period tides will degrade the fit, so a high-resolution calibration is possible. Moreover, a narrow training segment from 1880-1920 using NINO34/SOI data is adequate to extrapolate the cycles of the past 100 years (see attached figure). To further understand the biennial impact of a yearly differential-delay, we were able to also decompose using difference equations the historical sea-level-height readings at Sydney harbor to clearly expose the ENSO behavior. Finally, the ENSO lunisolar model was validated by back-extrapolating to Unified ENSO coral proxy (UEP) records dating to 1650. The quasi-biennial oscillation (QBO) behavior of equatorial stratospheric winds derives following a similar pattern to ENSO via the tidal equations, but with an emphasis on draconic forcing. This improvement in ENSO and QBO understanding has implications for vastly simplifying global climate models due to the straightforward application of a well-known and well-calibrated forcing. [1] Na, Sung-Ho, et al. "Characteristics of Perturbations in Recent Length of Day and Polar Motion." Journal of Astronomy and Space Sciences 30 (2013): 33-41.

  20. Synchronization in oscillator networks with delayed coupling: a stability criterion.

    PubMed

    Earl, Matthew G; Strogatz, Steven H

    2003-03-01

    We derive a stability criterion for the synchronous state in networks of identical phase oscillators with delayed coupling. The criterion applies to any network (whether regular or random, low dimensional or high dimensional, directed or undirected) in which each oscillator receives delayed signals from k others, where k is uniform for all oscillators.

  1. Antiemetic therapy in Asia Pacific countries for patients receiving moderately and highly emetogenic chemotherapy--a descriptive analysis of practice patterns, antiemetic quality of care, and use of antiemetic guidelines.

    PubMed

    Yu, Shiying; Burke, Thomas A; Chan, Alexandre; Kim, Hoon-Kyo; Hsieh, Ruey Kuen; Hu, Xichun; Liang, Jin-Tung; Baños, Ana; Spiteri, Carmel; Keefe, Dorothy M K

    2015-01-01

    This paper reports prescribing patterns for prophylaxis of chemotherapy-induced nausea and vomiting (CINV) after highly or moderately emetogenic chemotherapy (HEC or MEC) for cancer in six Asia Pacific countries. In a prospective noninterventional study, 31 sites in Australia, China, India, Singapore, South Korea, and Taiwan recorded details of CINV prophylaxis for the acute phase (first 24 h) and delayed phase (days 2-5) after single-day HEC or MEC for adult patients. Additional information on CINV prophylactic medications was collected from 6-day patient diaries. Primary antiemetic therapies were defined as corticosteroids, the 5-hydroxytryptamine-3 receptor antagonists (5HT3-RAs), and neurokinin-1 receptor antagonists (NK1-RAs). Evaluable patients in cycle 1 numbered 648 (318 [49%] HEC and 330 [51%] MEC) of mean (SD) age of 56 (12) years, including 58% women. For the acute phase after HEC, overall (and country range), 96% (91-100%) of patients received a 5HT3-RA, 87% (70-100%) a corticosteroid, and 43% (0-91%) an NK1-RA. CINV prophylaxis for the HEC delayed phase was more variable: including 22% (7-65%) 5HT3-RA, 52% (12-93%) corticosteroid, and 46% (0-88%) NK1-RA. For the MEC acute phase, 97% (87-100%) of patients received 5HT3-RA and 86% (73-97%) a corticosteroid. For the MEC delayed phase, 201 patients (61%) received a primary antiemetic, including 5HT3-RA (41%), corticosteroid (37%), and/or NK1-RA (4%). The 5HT3-RAs were prescribed consistently in all countries, while prescribing of other antiemetic therapies was variable, and corticosteroids were under-prescribed for CINV prophylaxis, particularly in the delayed phase.

  2. Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation

    NASA Astrophysics Data System (ADS)

    Böcking, Dominique; Wiltschka, Oliver; Niinimäki, Jenni; Shokry, Hussein; Brenner, Rolf; Lindén, Mika; Sahlgren, Cecilia

    2014-01-01

    Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with γ-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with MSNs allows for a free standing substrate for cell directed drug delivery.Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with γ-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with MSNs allows for a free standing substrate for cell directed drug delivery. Electronic supplementary information (ESI) available: (1) Particle characterization. (2) Immunohistochemistry and SEM analyses of C2C12 cells grown on films for 3, 6, 24 and 72 h. Light microscopy and WST1 analyses of cells grown on cover slips and films for 6, 24 and 72 h (3) Quantification of protein levels of C2C12 cells differentiating on cover slips versus MSN films. (4) Stability of MSN films in biological solution and the influence on cell viability. (5) Cell internalization of particles from MSN films and intracellular drug release at 12 and 24 h (6) Cell internalization and intracellular DiI release of MSNs from (3Dtro®) fiber scaffolds impregnated with MSNs. See DOI: 10.1039/c3nr04022d

  3. Evidence of a Critical Phase Transition in Purely Temporal Dynamics with Long-Delayed Feedback

    NASA Astrophysics Data System (ADS)

    Faggian, Marco; Ginelli, Francesco; Marino, Francesco; Giacomelli, Giovanni

    2018-04-01

    Experimental evidence of an absorbing phase transition, so far associated with spatiotemporal dynamics, is provided in a purely temporal optical system. A bistable semiconductor laser, with long-delayed optoelectronic feedback and multiplicative noise, shows the peculiar features of a critical phenomenon belonging to the directed percolation universality class. The numerical study of a simple, effective model provides accurate estimates of the transition critical exponents, in agreement with both theory and our experiment. This result pushes forward a hard equivalence of nontrivial stochastic, long-delayed systems with spatiotemporal ones and opens a new avenue for studying out-of-equilibrium universality classes in purely temporal dynamics.

  4. Standard cosmology delayed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Debajyoti; Ghoshal, Debashis; Sen, Anjan Ananda, E-mail: debajyoti.choudhury@gmail.com, E-mail: dghoshal@mail.jnu.ac.in, E-mail: anjan.ctp@jmi.ac.in

    2012-02-01

    The introduction of a delay in the Friedmann equation of cosmological evolution is shown to result in the very early universe undergoing the necessary accelerated expansion in the usual radiation (or matter) dominated phase. Occurring even without a violation of the strong energy condition, this expansion slows down naturally to go over to the decelerated phase, namely the standard Hubble expansion. This may obviate the need for a scalar field driven inflationary epoch.

  5. Monolithic mm-wave phase shifter using optically activated superconducting switches

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Bhasin, Kul B. (Inventor)

    1992-01-01

    A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.

  6. Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control

    NASA Astrophysics Data System (ADS)

    Xue, Xiaoxiao; Xuan, Yi; Bao, Chengying; Li, Shangyuan; Zheng, Xiaoping; Zhou, Bingkun; Qi, Minghao; Weiner, Andrew M.

    2018-06-01

    Microwave phased array antennas (PAAs) are very attractive to defense applications and high-speed wireless communications for their abilities of fast beam scanning and complex beam pattern control. However, traditional PAAs based on phase shifters suffer from the beam-squint problem and have limited bandwidths. True-time-delay (TTD) beamforming based on low-loss photonic delay lines can solve this problem. But it is still quite challenging to build large-scale photonic TTD beamformers due to their high hardware complexity. In this paper, we demonstrate a photonic TTD beamforming network based on a miniature microresonator frequency comb (microcomb) source and dispersive time delay. A method incorporating optical phase modulation and programmable spectral shaping is proposed for positive and negative apodization weighting to achieve arbitrary microwave beam pattern control. The experimentally demonstrated TTD beamforming network can support a PAA with 21 elements. The microwave frequency range is $\\mathbf{8\\sim20\\ {GHz}}$, and the beam scanning range is $\\mathbf{\\pm 60.2^\\circ}$. Detailed measurements of the microwave amplitudes and phases are performed. The beamforming performances of Gaussian, rectangular beams and beam notch steering are evaluated through simulations by assuming a uniform radiating antenna array. The scheme can potentially support larger PAAs with hundreds of elements by increasing the number of comb lines with broadband microcomb generation.

  7. Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation.

    PubMed

    Krieg, Sandro M; Tarapore, Phiroz E; Picht, Thomas; Tanigawa, Noriko; Houde, John; Sollmann, Nico; Meyer, Bernhard; Vajkoczy, Peter; Berger, Mitchel S; Ringel, Florian; Nagarajan, Srikantan

    2014-10-15

    Within the primary motor cortex, navigated transcranial magnetic stimulation (nTMS) has been shown to yield maps strongly correlated with those generated by direct cortical stimulation (DCS). However, the stimulation parameters for repetitive nTMS (rTMS)-based language mapping are still being refined. For this purpose, the present study compares two rTMS protocols, which differ in the timing of pulse train onset relative to picture presentation onset during object naming. Results were the correlated with DCS language mapping during awake surgery. Thirty-two patients with left-sided perisylvian tumors were examined by rTMS prior to awake surgery. Twenty patients underwent rTMS pulse trains starting at 300 ms after picture presentation onset (delayed TMS), whereas another 12 patients received rTMS pulse trains starting at the picture presentation onset (ONSET TMS). These rTMS results were then evaluated for correlation with intraoperative DCS results as gold standard in terms of differential consistencies in receiver operating characteristics (ROC) statistics. Logistic regression analysis by protocols and brain regions were conducted. Within and around Broca's area, there was no difference in sensitivity (onset TMS: 100%, delayed TMS: 100%), negative predictive value (NPV) (onset TMS: 100%, delayed TMS: 100%), and positive predictive value (PPV) (onset TMS: 55%, delayed TMS: 54%) between the two protocols compared to DCS. However, specificity differed significantly (onset TMS: 67%, delayed TMS: 28%). In contrast, for posterior language regions, such as supramarginal gyrus, angular gyrus, and posterior superior temporal gyrus, early pulse train onset stimulation showed greater specificity (onset TMS: 92%, delayed TMS: 20%), NPV (onset TMS: 92%, delayed TMS: 57%) and PPV (onset TMS: 75%, delayed TMS: 30%) with comparable sensitivity (onset TMS: 75%, delayed TMS: 70%). Logistic regression analysis also confirmed the greater fit of the predictions by rTMS that had the pulse train onset coincident with the picture presentation onset when compared to the delayed stimulation. Analyses of differential disruption patterns of mapped cortical regions were further able to distinguish clusters of cortical regions standardly associated with semantic and pre-vocalization phonological networks proposed in various models of word production. Repetitive nTMS predictions by both protocols correlate well with DCS outcomes especially in Broca's region, particularly with regard to TMS negative predictions. With this study, we have demonstrated that rTMS stimulation onset coincident with picture presentation onset improves the accuracy of preoperative language maps, particularly within posterior language areas. Moreover, immediate and delayed pulse train onsets may have complementary disruption patterns that could differentially capture cortical regions causally necessary for semantic and pre-vocalization phonological networks. Published by Elsevier Inc.

  8. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    PubMed Central

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-01-01

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection. PMID:29023385

  9. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter.

    PubMed

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-10-12

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  10. A real time QRS detection using delay-coordinate mapping for the microcontroller implementation.

    PubMed

    Lee, Jeong-Whan; Kim, Kyeong-Seop; Lee, Bongsoo; Lee, Byungchae; Lee, Myoung-Ho

    2002-01-01

    In this article, we propose a new algorithm using the characteristics of reconstructed phase portraits by delay-coordinate mapping utilizing lag rotundity for a real-time detection of QRS complexes in ECG signals. In reconstructing phase portrait the mapping parameters, time delay, and mapping dimension play important roles in shaping of portraits drawn in a new dimensional space. Experimentally, the optimal mapping time delay for detection of QRS complexes turned out to be 20 ms. To explore the meaning of this time delay and the proper mapping dimension, we applied a fill factor, mutual information, and autocorrelation function algorithm that were generally used to analyze the chaotic characteristics of sampled signals. From these results, we could find the fact that the performance of our proposed algorithms relied mainly on the geometrical property such as an area of the reconstructed phase portrait. For the real application, we applied our algorithm for designing a small cardiac event recorder. This system was to record patients' ECG and R-R intervals for 1 h to investigate HRV characteristics of the patients who had vasovagal syncope symptom and for the evaluation, we implemented our algorithm in C language and applied to MIT/BIH arrhythmia database of 48 subjects. Our proposed algorithm achieved a 99.58% detection rate of QRS complexes.

  11. Are superhydrophobic surfaces best for icephobicity?

    PubMed

    Jung, Stefan; Dorrestijn, Marko; Raps, Dominik; Das, Arindam; Megaridis, Constantine M; Poulikakos, Dimos

    2011-03-15

    Ice formation can have catastrophic consequences for human activity on the ground and in the air. Here we investigate water freezing delays on untreated and coated surfaces ranging from hydrophilic to superhydrophobic and use these delays to evaluate icephobicity. Supercooled water microdroplets are inkjet-deposited and coalesce until spontaneous freezing of the accumulated mass occurs. Surfaces with nanometer-scale roughness and higher wettability display unexpectedly long freezing delays, at least 1 order of magnitude longer than typical superhydrophobic surfaces with larger hierarchical roughness and low wettability. Directly related to the main focus on heterogeneous nucleation and freezing delay of supercooled water droplets, the observed ensuing crystallization process consisted of two distinct phases: one very rapid recalescent partial solidification phase and a subsequent slower phase. Observations of the droplet collision process employed for the continuous liquid mass accumulation up to the point of ice formation reveal a previously unseen atmospheric-pressure, subfreezing-temperature regime for liquid-on-liquid bounce. On the basis of the entropy reduction of water near a solid surface, we formulate a modification to the classical heterogeneous nucleation theory, which predicts the observed freezing delay trends. Our results bring to question recent emphasis on super water-repellent surface formulations for ice formation retardation and suggest that anti-icing design must optimize the competing influences of both wettability and roughness.

  12. Differential phase measurements of D-region partial reflections

    NASA Technical Reports Server (NTRS)

    Wiersma, D. J.; Sechrist, C. F., Jr.

    1972-01-01

    Differential phase partial reflection measurements were used to deduce D region electron density profiles. The phase difference was measured by taking sums and differences of amplitudes received on an array of crossed dipoles. The reflection model used was derived from Fresnel reflection theory. Seven profiles obtained over the period from 13 October 1971 to 5 November 1971 are presented, along with the results from simultaneous measurements of differential absorption. Some possible sources of error and error propagation are discussed. A collision frequency profile was deduced from the electron concentration calculated from differential phase and differential absorption.

  13. Contribution of methylglyoxal to delayed healing of bone injury in diabetes.

    PubMed

    Aikawa, Takao; Matsubara, Hidenori; Ugaji, Shuhei; Shirakawa, Junichi; Nagai, Ryoji; Munesue, Seiichi; Harashima, Ai; Yamamoto, Yasuhiko; Tsuchiya, Hiroyuki

    2017-07-01

    Patients with diabetes are vulnerable to delayed bone fracture healing or pseudoarthrosis. Chronic sustained hyperglycemia, reactive intermediate derivatives of glucose metabolism, such as methylglyoxal (MGO), and advanced glycation end‑products (AGEs) are implicated in diabetic complications. In the present study, it was examined whether MGO is able to cause disturbed bone healing in diabetes. Diabetes was induced in male mice by injection of streptozotocin (50 mg/kg) for 5 days. A bone defect (1.0‑mm diameter) was created in the left distal femur, and bone repair was assessed from an examination of computed tomography scans. ST2 cells were exposed to MGO (0‑400 µM) to investigate osteoblastic differentiation, cell viability, and damage. Consequently, blood glucose and hemoglobin A1c levels in diabetic mice were determined to be 493±14.1 mg/dl and 8.0±0.05%, respectively. Compared with non‑diabetic control mice, diabetic mice exhibited markedly delayed bone healing, with increased levels of the MGO‑derived AGEs, Nε‑(carboxymethyl)‑lysine and Nδ‑(5‑hydro‑5‑methyl‑4‑imidazolone‑2‑yl)‑ornithine, in the sera and femurs. MGO inhibited the osteoblastic differentiation of ST2 cells in a dose‑dependent manner, and markedly decreased cell proliferation through cytotoxicity. In conclusion, MGO has been demonstrated to cause impaired osteoblastic differentiation and delayed bone repair in diabetes. Therefore, detoxification of MGO may be a potentially useful strategy against bone problems in patients with diabetes.

  14. Delayed sleep phase: An important circadian subtype of sleep disturbance in bipolar disorders.

    PubMed

    Steinan, Mette Kvisten; Morken, Gunnar; Lagerberg, Trine V; Melle, Ingrid; Andreassen, Ole A; Vaaler, Arne E; Scott, Jan

    2016-02-01

    Theoretical models of Bipolar Disorder (BD) highlight that sleep disturbances may be a marker of underlying circadian dysregulation. However, few studies of sleep in BD have reported on the most prevalent circadian sleep abnormality, namely Delayed Sleep Phase (DSP). A cross-sectional study of 404 adults with BD who met published clinical criteria for insomnia, hypersomnia or DSP, and who had previously participated in a study of sleep in BD using a comprehensive structured interview assessment. About 10% of BD cases with a sleep problem met criteria for a DSP profile. The DSP group was younger and had a higher mean Body Mass Index (BMI) than the other groups. Also, DSP cases were significantly more likely to be prescribed mood stabilizers and antidepressant than insomnia cases. An exploratory analysis of selected symptom item ratings indicated that DSP was significantly more likely to be associated with impaired energy and activity levels. The cross-sectional design precludes examination of longitudinal changes. DSP is identified by sleep profile, not by diagnostic criteria or objective sleep records such as actigraphy. The study uses data from a previous study to identify and examine the DSP group. The DSP group identified in this study can be differentiated from hypersomnia and insomnia groups on the basis of clinical and demographic features. The association of DSP with younger age, higher BMI and impaired energy and activity also suggest that this clinical profile may be a good proxy for underlying circadian dysregulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Design of a delayed XOR phase detector for an optical phase-locked loop toward high-speed coherent laser communication.

    PubMed

    Liu, Yang; Tong, Shoufeng; Chang, Shuai; Song, Yansong; Dong, Yan; Zhao, Xin; An, Zhe; Yu, Fuwan

    2018-05-10

    Optical phase-locked loops are an effective detection method in high-speed and long-distance laser communication. Although this method can detect weak signal light and maintain a small bit error rate, it is difficult to perform because identifying the phase difference between the signal light and the local oscillator accurately has always been a technical challenge. Thus, a series of studies is conducted to address this issue. First, a delayed exclusive or gate (XOR) phase detector with multi-level loop compound control is proposed. Then, a 50 ps delay line and relative signal-to-noise ratio control at 15 dB are produced through theoretical derivation and simulation. Thereafter, a phase discrimination module is designed on a 15  cm×5  cm printed circuit board board. Finally, the experiment platform is built for verification. Experimental results show that the phase discrimination range is -1.1 to 1.1 GHz, and the gain is 0.82 mV/MHz. Three times the standard deviation, that is, 0.064 V, is observed between the test and theoretical values. The accuracy of phase detection is better than 0.07 V, which meets the design standards. A coherent carrier recovery test system is established. The delayed XOR gate has good performance in this system. When the communication rate is 5 Gbps, the system realizes a bit error rate of 1.55×10 -8 when the optical power of the signal is -40.4  dBm. When the communication rate is increased to 10 Gbps, the detection sensitivity drops to -39.5  dBm and still shows good performance in high-speed communications. This work provides a reference for future high-speed coherent homodyne detection in space. Ideas for the next phase of this study are presented at the end of this paper.

  16. Increased impulsive choice for saccharin during PCP withdrawal in female monkeys: influence of menstrual cycle phase

    PubMed Central

    Carroll, Marilyn E.; Kohl, Emily A.; Johnson, Krista M.; LaNasa, Rachel M.

    2013-01-01

    Background In previous studies with male and female rhesus monkeys withdrawal of access to oral phencyclidine (PCP) self administration reduced responding for food under a high fixed-ratio (FR) schedule more in males than females and with a delay discounting (DD) task with saccharin (SACC) as the reinforcer. Impulsive choice for SACC increased during PCP withdrawal more than females. Objectives The goal of the present study was to examine the effect of PCP (0.25 or 0.5 mg/ml) withdrawal on impulsive choice for SACC in females during the follicular and luteal phases of the menstrual cycle. Materials and methods In Component 1 PCP and water were available from 2 drinking spouts for 1.5 h sessions under concurrent FR 16 schedules. In Component 2 a SACC solution was available for 45 min under a DD schedule. Monkeys had a choice of one immediate SACC delivery (0.6 ml) or 6 delayed SACC deliveries, and the delay was increased by 1 sec after a response on the delayed lever and decreased by 1 sec after a response on the immediate lever. There was then a 10-day water substitution phase, or PCP-withdrawal, that occurred during the mid-folllicular phase (Days 7–11) or the late-luteal (Days 24–28) phase of the menstrual cycle. Access to PCP and concurrent water was then restored, and the PCP withdrawal procedure was repeated over several follicular and luteal menstrual phases. Results PCP deliveries were higher during the luteal vs the follicular phase. Impulsive choice was greater during the luteal (vs follicular) phase during withdrawal of the higher PCP concentration. Conclusions PCP withdrawal was associated with elevated impulsive choice for SACC, especially in the luteal (vs follicular) phase of the menstrual cycle in female monkeys. PMID:23344553

  17. Time Delay of CGM Sensors

    PubMed Central

    Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi

    2015-01-01

    Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773

  18. A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements

    PubMed Central

    Britz, Olivier; Zhang, Jingming; Grossmann, Katja S; Dyck, Jason; Kim, Jun C; Dymecki, Susan; Gosgnach, Simon; Goulding, Martyn

    2015-01-01

    V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI: http://dx.doi.org/10.7554/eLife.04718.001 PMID:26465208

  19. Anodal tDCS Over the Left DLPFC Did Not Affect the Encoding and Retrieval of Verbal Declarative Information.

    PubMed

    de Lara, Gabriel A; Knechtges, Philipp N; Paulus, Walter; Antal, Andrea

    2017-01-01

    Several studies imply that anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) can modulate the formation of verbal episodic memories. The aim of this study was to test if tDCS through a multi-electrode Laplacian montage over the left DLPFC could differentially modulate declarative memory performance depending on the application phase. Two groups of healthy participants ( n = 2 × 15) received 1 mA anodal or sham stimulation for 20 min during the encoding or during the recall phase on a delayed cued-recall, using a randomized, double-blinded, repeated-measures experimental design. Memory performance was assessed at two time points: 10 min and 24 h after learning. We found no significant difference between anodal and sham stimulation with regard to the memory scores between conditions (stimulation during encoding or recall) or between time points, suggesting that anodal tDCS over the left DLPFC with these stimulation parameters had no effect on the encoding and the consolidation of associative verbal content.

  20. Anodal tDCS Over the Left DLPFC Did Not Affect the Encoding and Retrieval of Verbal Declarative Information

    PubMed Central

    de Lara, Gabriel A.; Knechtges, Philipp N.; Paulus, Walter; Antal, Andrea

    2017-01-01

    Several studies imply that anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) can modulate the formation of verbal episodic memories. The aim of this study was to test if tDCS through a multi-electrode Laplacian montage over the left DLPFC could differentially modulate declarative memory performance depending on the application phase. Two groups of healthy participants (n = 2 × 15) received 1 mA anodal or sham stimulation for 20 min during the encoding or during the recall phase on a delayed cued-recall, using a randomized, double-blinded, repeated-measures experimental design. Memory performance was assessed at two time points: 10 min and 24 h after learning. We found no significant difference between anodal and sham stimulation with regard to the memory scores between conditions (stimulation during encoding or recall) or between time points, suggesting that anodal tDCS over the left DLPFC with these stimulation parameters had no effect on the encoding and the consolidation of associative verbal content. PMID:28848378

  1. A single dose of alcohol does not meaningfully alter circadian phase advances and phase delays to light in humans

    PubMed Central

    Rizvydeen, Muneer; Fogg, Louis F.; Keshavarzian, Ali

    2016-01-01

    Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n = 10 light drinkers, 24–45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n = 14 light drinkers, 22–44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P ≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. PMID:26936778

  2. A single dose of alcohol does not meaningfully alter circadian phase advances and phase delays to light in humans.

    PubMed

    Burgess, Helen J; Rizvydeen, Muneer; Fogg, Louis F; Keshavarzian, Ali

    2016-04-15

    Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n= 10 light drinkers, 24-45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n= 14 light drinkers, 22-44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. Copyright © 2016 the American Physiological Society.

  3. Phase jitter in a differential phase experiment.

    NASA Technical Reports Server (NTRS)

    Tanenbaum, B. S.; Connolly, D. J.; Austin, G. L.

    1973-01-01

    Austin (1971) had concluded that, because of the 'phase jitter,' the differential phase experiment is useful over a more limited height range than the differential absorption experiment. Several observations are presented to show that this conclusion is premature. It is pointed out that the logical basis of the differential absorption experiment also requires that the O- and X-mode echoes, at a given time, come from the same irregularities. Austin's calculations are believed to contain a systematic error above 80 km.

  4. Estimation of nonlinear pilot model parameters including time delay.

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.; Wells, W. R.

    1972-01-01

    Investigation of the feasibility of using a Kalman filter estimator for the identification of unknown parameters in nonlinear dynamic systems with a time delay. The problem considered is the application of estimation theory to determine the parameters of a family of pilot models containing delayed states. In particular, the pilot-plant dynamics are described by differential-difference equations of the retarded type. The pilot delay, included as one of the unknown parameters to be determined, is kept in pure form as opposed to the Pade approximations generally used for these systems. Problem areas associated with processing real pilot response data are included in the discussion.

  5. Global stabilization analysis of inertial memristive recurrent neural networks with discrete and distributed delays.

    PubMed

    Wang, Leimin; Zeng, Zhigang; Ge, Ming-Feng; Hu, Junhao

    2018-05-02

    This paper deals with the stabilization problem of memristive recurrent neural networks with inertial items, discrete delays, bounded and unbounded distributed delays. First, for inertial memristive recurrent neural networks (IMRNNs) with second-order derivatives of states, an appropriate variable substitution method is invoked to transfer IMRNNs into a first-order differential form. Then, based on nonsmooth analysis theory, several algebraic criteria are established for the global stabilizability of IMRNNs under proposed feedback control, where the cases with both bounded and unbounded distributed delays are successfully addressed. Finally, the theoretical results are illustrated via the numerical simulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Equalizer tap length requirement for mode group delay-compensated fiber link with weakly random mode coupling.

    PubMed

    Bai, Neng; Li, Guifang

    2014-02-24

    The equalizer tap length requirement is investigated analytically and numerically for differential modal group delay (DMGD) compensated fiber link with weakly random mode coupling. Each span of the DMGD compensated link comprises multiple pairs of fibers which have opposite signs of DMGD. The result reveals that under weak random mode coupling, the required tap length of the equalizer is proportional to modal group delay of a single DMGD compensated pair, instead of the total modal group delay (MGD) of the entire link. By using small DMGD compensation step sizes, the required tap length (RTL) can be potentially reduced by 2 orders of magnitude.

  7. A dynamic and ultrafast group delay tuning mechanism in two microcavities side-coupled with a waveguide system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Boyun; Wang, Tao, E-mail: wangtao@hust.edu.cn; Tang, Jian

    2014-10-07

    We theoretically propose a dynamic and ultrafast group delay tuning mechanism in two microcavities side-coupled to a waveguide system through external optical pump beams. The optical Kerr effect modulation method is applied to improve tuning rate with response time of subpicoseconds or even femtoseconds. The group delay of an all-optical analog to electromagnetically induced transparency effect can be controlled by tuning either the frequency of photonic crystal microcavities or the propagation phase of line waveguide. Group delay is controlled between 5.88 and 70.98 ps by dynamically tuning resonant frequencies of the microcavities. Alternatively, the group delay is controlled between 1.86more » and 12.08 ps by dynamically tuning the propagation phase of line waveguide. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Results show a new direction toward microstructure integration optical pulse trapping and all-optical dynamical storage of light devices in optical communication and quantum information processing.« less

  8. Correlation study of real delay time and imaginary delay time in 1-dimensional weak disorder optical media

    NASA Astrophysics Data System (ADS)

    Sahay, Peeyush; Almabadi, Huda M.; Pradhan, Prabhakar

    Real delay time (τr) provides a measure of the time spent by photons inside an optical system. The measurement of τr is conducted in terms of energy (E) derivative of the Wigner phase delay (φ) , as τr = dϕ / dE dϕ / cdk k and c represents wavenumber and the speed of light, respectively. The characterization of τr requires interferometric system to measure φ of the light waves scattering from the medium [ R =√{ r} exp (- iϕ) ]. We investigated the possibility of extracting the τr information from the intensity measurement of the backscattered waves. The study was performed on a 1D model of weak disordered optical system and short sample length by numerically evaluating the backscattered light intensity. An imaginary delay time (τi) , defined as τi = dθ / cdk , where θ represents an `imaginary phase', was obtained upon expressing the backscattered intensity as RR* =| R | 2 = r = exp (- θ) . The result shows a strong correlation between r and φ with τr and τi exhibiting similar statistical distribution but with a shift. The magnitude and variation of the mean and std values of τr, and the std values of τi with sample lengths are nearly the same, which indicates about one parameter theory of delay time. This work potentially paves way for extracting phase information from the intensity distribution without using interferometric systems.

  9. A facility for gas- and condensed-phase measurements behind shock waves

    NASA Astrophysics Data System (ADS)

    Petersen, Eric L.; Rickard, Matthew J. A.; Crofton, Mark W.; Abbey, Erin D.; Traum, Matthew J.; Kalitan, Danielle M.

    2005-09-01

    A shock-tube facility consisting of two, single-pulse shock tubes for the study of fundamental processes related to gas-phase chemical kinetics and the formation and reaction of solid and liquid aerosols at elevated temperatures is described. Recent upgrades and additions include a new high-vacuum system, a new gas-handling system, a new control system and electronics, an optimized velocity-detection scheme, a computer-based data acquisition system, several optical diagnostics, and new techniques and procedures for handling experiments involving gas/powder mixtures. Test times on the order of 3 ms are possible with reflected-shock pressures up to 100 atm and temperatures greater than 4000 K. Applications for the shock-tube facility include the study of ignition delay times of fuel/oxidizer mixtures, the measurement of chemical kinetic reaction rates, the study of fundamental particle formation from the gas phase, and solid-particle vaporization, among others. The diagnostic techniques include standard differential laser absorption, FM laser absorption spectroscopy, laser extinction for particle volume fraction and size, temporally and spectrally resolved emission from gas-phase species, and a scanning mobility particle sizer for particle size distributions. Details on the set-up and operation of the shock tube and diagnostics are given, the results of a detailed uncertainty analysis on the accuracy of the test temperature inferred from the incident-shock velocity are provided, and some recent results are presented.

  10. Capacity to Delay Reward Differentiates Obsessive Compulsive Disorder and Obsessive Compulsive Personality Disorder

    PubMed Central

    Pinto, Anthony; Steinglass, Joanna E.; Greene, Ashley L.; Weber, Elke U.; Simpson, H. Blair

    2013-01-01

    Background Although the relationship between obsessive compulsive disorder (OCD) and obsessive compulsive personality disorder (OCPD) has long been debated, clinical samples of OCD (without OCPD) and OCPD (without OCD) have never been systematically compared. We studied whether individuals with OCD, OCPD, or both conditions differ on symptomatology, functioning, and a measure of self-control: the capacity to delay reward. Methods 25 OCD, 25 OCPD, 25 comorbid OCD+OCPD, and 25 healthy controls (HC) completed clinical assessments and a validated intertemporal choice task that measures capacity to forego small immediate rewards for larger delayed rewards. Results OCD and OCPD subjects both showed impairment in psychosocial functioning and quality of life, as well as compulsive behavior, but only subjects with OCD reported obsessions. Individuals with OCPD, with or without comorbid OCD, discounted the value of delayed monetary rewards significantly less than OCD and HC. This excessive capacity to delay reward discriminates OCPD from OCD, and is associated with perfectionism and rigidity. Conclusions OCD and OCPD are both impairing disorders marked by compulsive behaviors, but they can be differentiated by the presence of obsessions in OCD and by excessive capacity to delay reward in OCPD. That individuals with OCPD show less temporal discounting (suggestive of excessive self-control) whereas prior studies have shown that individuals with substance use disorders show greater discounting (suggestive of impulsivity) supports the premise that this component of self-control lies on a continuum in which both extremes (impulsivity and overcontrol) contribute to psychopathology. PMID:24199665

  11. Differential Activity-Driven Instabilities in Biphasic Active Matter

    NASA Astrophysics Data System (ADS)

    Weber, Christoph A.; Rycroft, Chris H.; Mahadevan, L.

    2018-06-01

    Active stresses can cause instabilities in contractile gels and living tissues. Here we provide a generic hydrodynamic theory that treats these systems as a mixture of two phases of varying activity and different mechanical properties. We find that differential activity between the phases causes a uniform mixture to undergo a demixing instability. We follow the nonlinear evolution of the instability and characterize a phase diagram of the resulting patterns. Our study complements other instability mechanisms in mixtures driven by differential adhesion, differential diffusion, differential growth, and differential motion.

  12. Extensions to the Speech Disorders Classification System (SDCS)

    ERIC Educational Resources Information Center

    Shriberg, Lawrence D.; Fourakis, Marios; Hall, Sheryl D.; Karlsson, Heather B.; Lohmeier, Heather L.; McSweeny, Jane L.; Potter, Nancy L.; Scheer-Cohen, Alison R.; Strand, Edythe A.; Tilkens, Christie M.; Wilson, David L.

    2010-01-01

    This report describes three extensions to a classification system for paediatric speech sound disorders termed the Speech Disorders Classification System (SDCS). Part I describes a classification extension to the SDCS to differentiate motor speech disorders from speech delay and to differentiate among three sub-types of motor speech disorders.…

  13. Discounting of Monetary Rewards that are Both Delayed and Probabilistic: Delay and Probability Combine Multiplicatively, not Additively

    PubMed Central

    Vanderveldt, Ariana; Green, Leonard; Myerson, Joel

    2014-01-01

    The value of an outcome is affected both by the delay until its receipt (delay discounting) and by the likelihood of its receipt (probability discounting). Despite being well-described by the same hyperboloid function, delay and probability discounting involve fundamentally different processes, as revealed, for example, by the differential effects of reward amount. Previous research has focused on the discounting of delayed and probabilistic rewards separately, with little research examining more complex situations in which rewards are both delayed and probabilistic. In two experiments, participants made choices between smaller rewards that were both immediate and certain and larger rewards that were both delayed and probabilistic. Analyses revealed significant interactions between delay and probability factors inconsistent with an additive model. In contrast, a hyperboloid discounting model in which delay and probability were combined multiplicatively provided an excellent fit to the data. These results suggest that the hyperboloid is a good descriptor of decision making in complicated monetary choice situations like those people encounter in everyday life. PMID:24933696

  14. Evolutionary Calculations of Phase Separation in Crystallizing White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Montgomery, M. H.; Klumpe, E. W.; Winget, D. E.; Wood, M. A.

    1999-11-01

    We present an exploration of the significance of carbon/oxygen phase separation in white dwarf stars in the context of self-consistent evolutionary calculations. Because phase separation can potentially increase the calculated ages of the oldest white dwarfs, it can affect the age of the Galactic disk as derived from the downturn in the white dwarf luminosity function. We find that the largest possible increase in ages due to phase separation is ~1.5 Gyr, with a most likely value of approximately 0.6 Gyr, depending on the parameters of our white dwarf models. The most important factors influencing the size of this delay are the total stellar mass, the initial composition profile, and the phase diagram assumed for crystallization. We find a maximum age delay in models with masses of ~0.6 Msolar, which is near the peak in the observed white dwarf mass distribution. In addition, we note that the prescription that we have adopted for the mixing during crystallization provides an upper bound for the efficiency of this process, and hence a maximum for the age delays. More realistic treatments of the mixing process may reduce the size of this effect. We find that varying the opacities (via the metallicity) has little effect on the calculated age delays. In the context of Galactic evolution, age estimates for the oldest Galactic globular clusters range from 11.5 to 16 Gyr and depend on a variety of parameters. In addition, a 4-6 Gyr delay is expected between the formation of the globular clusters and the formation of the Galactic thin disk, while the observed white dwarf luminosity function gives an age estimate for the thin disk of 9.5+1.1-0.8 Gyr, without including the effect of phase separation. Using the above numbers, we see that phase separation could add between 0 and 3 Gyr to the white dwarf ages and still be consistent with the overall picture of Galaxy formation. Our calculated maximum value of <~1.5 Gyr fits within these bounds, as does our best-guess value of ~0.6 Gyr.

  15. Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Hashizume, J.; Goto, M.; Yamaguchi, M.; Tsujimura, T.; Aoki, S.

    2013-10-01

    An x-ray differential phase microscope with a Foucault knife-edge scanning filter was set up at the bending magnet source BL3C, Photon Factory. A reconstructed phase profile from the differential phase image of an aluminium wire at 5.36 keV was fairly good agreement with the numerical simulation. Phase tomography of a biological specimen, such as an Artemia cyst, could be successfully demonstrated.

  16. Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide.

    PubMed

    Huo, Yijie; Sandhu, Sunil; Pan, Jun; Stuhrmann, Norbert; Povinelli, Michelle L; Kahn, Joseph M; Harris, James S; Fejer, Martin M; Fan, Shanhui

    2011-04-15

    We measure the group delay in an on-chip photonic-crystal device with two resonators side coupled to a waveguide. We demonstrate that such a group delay can be controlled by tuning either the propagation phase of the waveguide or the frequency of the resonators.

  17. Causal structure of oscillations in gene regulatory networks: Boolean analysis of ordinary differential equation attractors.

    PubMed

    Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S

    2013-06-01

    A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.

  18. Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates.

    PubMed

    Campbell, D A; Chkrebtii, O

    2013-12-01

    Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  19. The Mars Observer differential one-way range demonstration

    NASA Technical Reports Server (NTRS)

    Kroger, P. M.; Border, J. S.; Nandi, S.

    1994-01-01

    Current methods of angular spacecraft positioning using station differenced range data require an additional observation of an extragalactic radio source (quasar) to estimate the timing offset between the reference clocks at the two Deep Space Stations. The quasar observation is also used to reduce the effects of instrumental and media delays on the radio metric observable by forming a difference with the spacecraft observation (delta differential one-way range, delta DOR). An experiment has been completed using data from the Global Positioning System satellites to estimate the station clock offset, eliminating the need for the quasar observation. The requirements for direct measurement of the instrumental delays that must be made in the absence of a quasar observation are assessed. Finally, the results of the 'quasar-free' differential one-way range, or DOR, measurements of the Mars Observer spacecraft are compared with those of simultaneous conventional delta DOR measurements.

  20. Virtual Design of a Controller for a Hydraulic Cam Phasing System

    NASA Astrophysics Data System (ADS)

    Schneider, Markus; Ulbrich, Heinz

    2010-09-01

    Hydraulic vane cam phasing systems are nowadays widely used for improving the performance of combustion engines. At stationary operation, these systems should achieve a constant phasing angle, which however is badly disturbed by the alternating torque generated by the valve actuation. As the hydraulic system shows a non-linear characteristic over the full operation range and the inductivity of the hydraulic pipes generates a significant time delay, a full model based control emerges very complex. Therefore a simple feed-forward controller is designed, bridging the time delay of the hydraulic system and improving the system behaviour significantly.

  1. Broadband metasurfaces enabling arbitrarily large delay-bandwidth products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginis, Vincent; Tassin, Philippe; Koschny, Thomas

    2016-01-19

    Metasurfaces allow for advanced manipulation of optical signals by imposing phase discontinuities across flat interfaces. Unfortunately, these phase shifts remain restricted to values between 0 and 2π, limiting the delay-bandwidth product of such sheets. Here, we develop an analytical tool to design metasurfaces that mimic three-dimensional materials of arbitrary thickness. In this way, we demonstrate how large phase discontinuities can be realized by combining several subwavelength Lorentzian resonances in the unit cell of the surface. Finally, our methods open up the temporal response of metasurfaces and may lead to the construction of metasurfaces with a plethora of new optical functions.

  2. High Temperature Superconductivity Applications for Electronic Warfare and Microwave Systems

    DTIC Science & Technology

    1990-05-01

    instantaneous frequency measurement (IFM), as well as, switched delay lines for EW radar range deception and low loss, high resolution MMIC phase...Junction (JJ). This device has been demonstrated in LTSC and is used in very stable ( low noise ), frequency selective, oscillators and very low noise ...following HTSC components: 1) MMIC Filters 2) MMIC Delay Lines/Phase Shifters 3) Microwave Resonators 4) Antenna Feed Networks 5) Low Frequency Antennas 1

  3. Irregularities and Forecast Studies of Equatorial Spread

    DTIC Science & Technology

    2016-07-13

    less certain and requires investigation. It should be possible to observe the Faraday rotation of the signals received at Jicamarca. This is another...indication of the line-integrated electron number 9 DISTRIBUTION A: Distribution approved for public release. density. Like the phase delay, the Faraday ...angle is a modulo-two-pi quantity that is best used to constrain the time evolution of the ionosphere. Both the Faraday angle and the phase delay are

  4. Combinational logic for generating gate drive signals for phase control rectifiers

    NASA Technical Reports Server (NTRS)

    Dolland, C. R.; Trimble, D. W. (Inventor)

    1982-01-01

    Control signals for phase-delay rectifiers, which require a variable firing angle that ranges from 0 deg to 180 deg, are derived from line-to-line 3-phase signals and both positive and negative firing angle control signals which are generated by comparing current command and actual current. Line-to-line phases are transformed into line-to-neutral phases and integrated to produce 90 deg phase delayed signals that are inverted to produce three cosine signals, such that for each its maximum occurs at the intersection of positive half cycles of the other two phases which are inputs to other inverters. At the same time, both positive and negative (inverted) phase sync signals are generated for each phase by comparing each with the next and producing a square wave when it is greater. Ramp, sync and firing angle controls signals are than used in combinational logic to generate the gate firing control signals SCR gate drives which fire SCR devices in a bridge circuit.

  5. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway.

    PubMed

    Vonderschen, Katrin; Wagner, Hermann

    2012-04-25

    Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output.

  6. A finite state machine read-out chip for integrated surface acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Rakshit, Sambarta; Iliadis, Agis A.

    2015-01-01

    A finite state machine based integrated sensor circuit suitable for the read-out module of a monolithically integrated SAW sensor on Si is reported. The primary sensor closed loop consists of a voltage controlled oscillator (VCO), a peak detecting comparator, a finite state machine (FSM), and a monolithically integrated SAW sensor device. The output of the system oscillates within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The control inputs of this digital conversion block are generated by a second finite state machine operating under a divided system clock. The average output varies with changes in SAW center frequency, thus tracking mass sensing events in real time. Based on measured VCO gain of 16 MHz/V our system will convert a 10 kHz SAW frequency shift to a corresponding mean voltage shift of 0.7 mV. A corresponding shift in phase delay is converted to a one or two bit shift in the TDC output code. The system can handle alternate SAW center frequencies and group delays simply by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags.

  7. Temporary Losses of Highway Capacity and Impacts on Performance: Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, S.M.

    2004-11-10

    Traffic congestion and its impacts significantly affect the nation's economic performance and the public's quality of life. In most urban areas, travel demand routinely exceeds highway capacity during peak periods. In addition, events such as crashes, vehicle breakdowns, work zones, adverse weather, railroad crossings, large trucks loading/unloading in urban areas, and other factors such as toll collection facilities and sub-optimal signal timing cause temporary capacity losses, often worsening the conditions on already congested highway networks. The impacts of these temporary capacity losses include delay, reduced mobility, and reduced reliability of the highway system. They can also cause drivers to re-routemore » or reschedule trips. Such information is vital to formulating sound public policies for the highway infrastructure and its operation. In response to this need, Oak Ridge National Laboratory, sponsored by the Federal Highway Administration (FHWA), made an initial attempt to provide nationwide estimates of the capacity losses and delay caused by temporary capacity-reducing events (Chin et al. 2002). This study, called the Temporary Loss of Capacity (TLC) study, estimated capacity loss and delay on freeways and principal arterials resulting from fatal and non-fatal crashes, vehicle breakdowns, and adverse weather, including snow, ice, and fog. In addition, it estimated capacity loss and delay caused by sub-optimal signal timing at intersections on principal arterials. It also included rough estimates of capacity loss and delay on Interstates due to highway construction and maintenance work zones. Capacity loss and delay were estimated for calendar year 1999, except for work zone estimates, which were estimated for May 2001 to May 2002 due to data availability limitations. Prior to the first phase of this study, which was completed in May of 2002, no nationwide estimates of temporary losses of highway capacity by type of capacity-reducing event had been made. This report describes the second phase of the TLC study (TLC2). TLC2 improves upon the first study by expanding the scope to include delays from rain, toll collection facilities, railroad crossings, and commercial truck pickup and delivery (PUD) activities in urban areas. It includes estimates of work zone capacity loss and delay for all freeways and principal arterials, rather than for Interstates only. It also includes improved estimates of delays caused by fog, snow, and ice, which are based on data not available during the initial phase of the study. Finally, computational errors involving crash and breakdown delay in the original TLC report are corrected.« less

  8. Analysis of self-homodyne detection for 6-mode fiber with low-modal crosstalk

    NASA Astrophysics Data System (ADS)

    Guo, Meng; Hu, Guijun

    2017-12-01

    In this paper, we present an appropriate analysis on self-homodyne coherent system with 56 × 5 × 3 Gb / s WDM-PDM-MDM quadrature phase-shift keying (QPSK) signals using 6-mode weakly coupled few mode fiber. The mode division technology can effectively improve the spectral efficiency (SE) of self-homodyne detection. Of all the LP modes, LP01 mode is used to transmit the pilot tone (PT), while the others for signal channels. The influence of inter-mode crosstalk is analyzed. The proposed frequency domain MMA shows a better BER performance for intra-mode crosstalk elimination. The path-length misalignment's influence caused by mode differential group delay (MDGD) is also investigated. The system tolerance for different laser's line-width is compared as well as the influence of PT filter's bandwidth.

  9. Small sensitivity to temperature variations of Si-photonic Mach-Zehnder interferometer using Si and SiN waveguides

    NASA Astrophysics Data System (ADS)

    Hiraki, Tatsurou; Fukuda, Hiroshi; Yamada, Koji; Yamamoto, Tsuyoshi

    2015-03-01

    We demonstrated a small sensitivity to temperature variations of delay-line Mach-Zehnder interferometer (DL MZI) on a Si photonics platform. The key technique is to balance a thermo-optic effect in the two arms by using waveguide made of different materials. With silicon and silicon nitride waveguides, the fabricated DL MZI with a free-spectrum range of ~40 GHz showed a wavelength shift of -2.8 pm/K with temperature variations, which is 24 times smaller than that of the conventional Si-waveguide DL MZI. We also demonstrated the decoding of the 40-Gbit/s differential phase-shift keying signals to on-off keying signals with various temperatures. The tolerable temperature variation for the acceptable power penalty was significantly improved due to the small wavelength shifts.

  10. Theoretical studies on a (FGPM) system with Gaussian profile for a zero TCD SAW devices

    NASA Astrophysics Data System (ADS)

    Gharsellaoui, Rim; Takali, Farid; Njeh, Anouar

    We investigate the propagation of surface wave in a functionally graded piezoelectric material layer ZnO/AlN/ZnO on α-Al2O3 substrate in this study. The influence of buffer layer thickness on the temperature coefficient of delay (TCD) is studied. The stiffness matrix method (SMM) and the ordinary differential equation (ODE), treat the electrical and mechanical gradients. We demonstrate that for the second mode, the largest coupling coefficient of (5.43%) associated with a phase velocity of (5602 m/s) and a TCD of (66.16 ppm/°C) can be found for the (ZnO/AlN/ZnO)/R-Al2O3 structure. The simulation results indicate that for the first mode, a temperature compensation of (0 ppm/°C) and high velocities of up (6000 m/s).

  11. Neural bases of prospective memory: a meta-analysis and the "Attention to Delayed Intention" (AtoDI) model.

    PubMed

    Cona, Giorgia; Scarpazza, Cristina; Sartori, Giuseppe; Moscovitch, Morris; Bisiacchi, Patrizia Silvia

    2015-05-01

    Remembering to realize delayed intentions is a multi-phase process, labelled as prospective memory (PM), and involves a plurality of neural networks. The present study utilized the activation likelihood estimation method of meta-analysis to provide a complete overview of the brain regions that are consistently activated in each PM phase. We formulated the 'Attention to Delayed Intention' (AtoDI) model to explain the neural dissociation found between intention maintenance and retrieval phases. The dorsal frontoparietal network is involved mainly in the maintenance phase and seems to mediate the strategic monitoring processes, such as the allocation of top-down attention both towards external stimuli, to monitor for the occurrence of the PM cues, and to internal memory contents, to maintain the intention active in memory. The ventral frontoparietal network is recruited in the retrieval phase and might subserve the bottom-up attention captured externally by the PM cues and, internally, by the intention stored in memory. Together with other brain regions (i.e., insula and posterior cingulate cortex), the ventral frontoparietal network would support the spontaneous retrieval processes. The functional contribution of the anterior prefrontal cortex is discussed extensively for each PM phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Dynamics of scroll waves with time-delay propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Xiao, Jie; Qiao, Li-Yan; Xu, Jiang-Rong

    2018-06-01

    Information transmission delay can be widely observed in various systems. Here, we study the dynamics of scroll waves with time-delay propagation among slices in excitable media. Weak time delay induces scroll waves to meander. Through increasing the time delay, we find a series of dynamical transitions. Firstly, the straight filament of a scroll wave becomes twisted. Then, the scroll wave breaks and forms interesting patterns. With long time delay, loosed scroll waves are maintained while their period are greatly decreased. Also, cylinder waves appears. The influences of diffusively coupling strength on the time-delay-induced scroll waves are studied. It is found that the critical time delay characterizing those transitions decreases as the coupling strength is increased. A phase diagram in the diffusive coupling-time delay plane is presented.

  13. Subband-Based Group Delay Segmentation of Spontaneous Speech into Syllable-Like Units

    NASA Astrophysics Data System (ADS)

    Nagarajan, T.; Murthy, H. A.

    2004-12-01

    In the development of a syllable-centric automatic speech recognition (ASR) system, segmentation of the acoustic signal into syllabic units is an important stage. Although the short-term energy (STE) function contains useful information about syllable segment boundaries, it has to be processed before segment boundaries can be extracted. This paper presents a subband-based group delay approach to segment spontaneous speech into syllable-like units. This technique exploits the additive property of the Fourier transform phase and the deconvolution property of the cepstrum to smooth the STE function of the speech signal and make it suitable for syllable boundary detection. By treating the STE function as a magnitude spectrum of an arbitrary signal, a minimum-phase group delay function is derived. This group delay function is found to be a better representative of the STE function for syllable boundary detection. Although the group delay function derived from the STE function of the speech signal contains segment boundaries, the boundaries are difficult to determine in the context of long silences, semivowels, and fricatives. In this paper, these issues are specifically addressed and algorithms are developed to improve the segmentation performance. The speech signal is first passed through a bank of three filters, corresponding to three different spectral bands. The STE functions of these signals are computed. Using these three STE functions, three minimum-phase group delay functions are derived. By combining the evidence derived from these group delay functions, the syllable boundaries are detected. Further, a multiresolution-based technique is presented to overcome the problem of shift in segment boundaries during smoothing. Experiments carried out on the Switchboard and OGI-MLTS corpora show that the error in segmentation is at most 25 milliseconds for 67% and 76.6% of the syllable segments, respectively.

  14. All-optical clock recovery, photonic balancing, and saturated asymmetric filtering for fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Parsons, Earl Ryan

    In this dissertation I investigated a multi-channel and multi-bit rate all-optical clock recovery device. This device, a birefringent Fabry-Perot resonator, had previously been demonstrated to simultaneously recover the clock signal from 10 wavelength channels operating at 10 Gb/s and one channel at 40 Gb/s. Similar to clock signals recovered from a conventional Fabry-Perot resonator, the clock signal from the birefringent resonator suffers from a bit pattern effect. I investigated this bit pattern effect for birefringent resonators numerically and experimentally and found that the bit pattern effect is less prominent than for clock signals from a conventional Fabry-Perot resonator. I also demonstrated photonic balancing which is an all-optical alternative to electrical balanced detection for phase shift keyed signals. An RZ-DPSK data signal was demodulated using a delay interferometer. The two logically opposite outputs from the delay interferometer then counter-propagated in a saturated SOA. This process created a differential signal which used all the signal power present in two consecutive symbols. I showed that this scheme could provide an optical alternative to electrical balanced detection by reducing the required OSNR by 3 dB. I also show how this method can provide amplitude regeneration to a signal after modulation format conversion. In this case an RZ-DPSK signal was converted to an amplitude modulation signal by the delay interferometer. The resulting amplitude modulated signal is degraded by both the amplitude noise and the phase noise of the original signal. The two logically opposite outputs from the delay interferometer again counter-propagated in a saturated SOA. Through limiting amplification and noise modulation this scheme provided amplitude regeneration and improved the Q-factor of the demodulated signal by 3.5 dB. Finally I investigated how SPM provided by the SOA can provide a method to reduce the in-band noise of a communication signal. The marks, which represented data, experienced a spectral shift due to SPM while the spaces, which consisted of noise, did not. A bandpass filter placed after the SOA then selected the signal and filtered out what was originally in-band noise. The receiver sensitivity was improved by 3 dB.

  15. Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment

    PubMed Central

    Wetzel, Lucas; Jörg, David J.; Pollakis, Alexandros; Rave, Wolfgang; Fettweis, Gerhard; Jülicher, Frank

    2017-01-01

    Self-organized synchronization occurs in a variety of natural and technical systems but has so far only attracted limited attention as an engineering principle. In distributed electronic systems, such as antenna arrays and multi-core processors, a common time reference is key to coordinate signal transmission and processing. Here we show how the self-organized synchronization of mutually coupled digital phase-locked loops (DPLLs) can provide robust clocking in large-scale systems. We develop a nonlinear phase description of individual and coupled DPLLs that takes into account filter impulse responses and delayed signal transmission. Our phase model permits analytical expressions for the collective frequencies of synchronized states, the analysis of stability properties and the time scale of synchronization. In particular, we find that signal filtering introduces stability transitions that are not found in systems without filtering. To test our theoretical predictions, we designed and carried out experiments using networks of off-the-shelf DPLL integrated circuitry. We show that the phase model can quantitatively predict the existence, frequency, and stability of synchronized states. Our results demonstrate that mutually delay-coupled DPLLs can provide robust and self-organized synchronous clocking in electronic systems. PMID:28207779

  16. Cited2 Gene Controls Pluripotency and Cardiomyocyte Differentiation of Murine Embryonic Stem Cells through Oct4 Gene*

    PubMed Central

    Li, Qiang; Ramírez-Bergeron, Diana L.; Dunwoodie, Sally L.; Yang, Yu-Chung

    2012-01-01

    Cited2 (CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail 2) is a transcriptional modulator critical for the development of multiple organs. Although many Cited2-mediated phenotypes and molecular events have been well characterized using in vivo genetic murine models, Cited2-directed cell fate decision in embryonic stem cells (ESCs) remains elusive. In this study, we examined the role of Cited2 in the maintenance of stemness and pluripotency of murine ESCs by a gene-targeting approach. Cited2 knock-out (Cited2Δ/−, KO) ESCs display defective differentiation. Loss of Cited2 in differentiating ESCs results in delayed silencing of the genes involved in the maintenance of pluripotency and self-renewal of stem cells (Oct4, Klf4, Sox2, and c-Myc) and the disturbance in cardiomyocyte, hematopoietic, and neuronal differentiation. In addition, Cited2 KO ESCs experience a delayed induction of cardiomyocyte differentiation-associated proteins, NFAT3 (along with the reduced expression of NFAT3 target genes, Nkx2.5 and β-MHC), N-cadherin, and smooth muscle actin. CITED2 is recruited to the Oct4 promoter to regulate its expression during early ESC differentiation. This is the first demonstration that Cited2 controls ESC pluripotency and differentiation via direct regulation of Oct4 gene expression. PMID:22761414

  17. Zero-Extra-Dose PET Delayed Imaging with Data-Driven Attenuation Correction Estimation.

    PubMed

    Pang, Lifang; Zhu, Wentao; Dong, Yun; Lv, Yang; Shi, Hongcheng

    2018-05-08

    Delayed positron emission tomography (PET) imaging may improve sensitivity and specificity in lesion detection. We proposed a PET data-driven method to estimate the attenuation map (AM) for the delayed scan without an additional x-ray computed tomography (CT). An emission-attenuation-scatter joint estimation framework was developed. Several practical issues for clinical datasets were addressed. Particularly, the unknown scatter correction was incorporated in the joint estimation algorithm. The scaling problem was solved using prior information from the early CT scan. Fourteen patient datasets were added to evaluate the method. These patients went through two separate PET/CT scans. The delayed CT-based AM served as ground truth for the delayed scan. Standard uptake values (SUVmean and SUVmax) of lesion and normal tissue regions of interests (ROIs) in the early and delayed phase and the respective %DSUV (percentage change of SUVmean at two different time points) were analyzed, all with estimated and the true AM. Three radiologists participated in lesion detection tasks with images reconstructed with both AMs and rated scores for detectability. The mean relative difference of SUVmean in lesion and normal liver tissue were 3.30 and 6.69 %. The average lesion-to-background contrast (detectability) with delayed PET images using CT AM was 60 % higher than that of the earlier PET image, and was 64 % higher when using the data-based AM. %DSUV for lesions and liver backgrounds with CT-based AM were - 0.058 ± 0.25 and - 0.33 ± 0.08 while with data-based AM were - 0.00 ± 0.26 and - 0.28 ± 0.08. Only slight significance difference was found between using CT-based AM and using the data-based AM reconstruction delay phase on %DSUV of lesion. The scores associated with the two AMs matched well consistently. Our method may be used in delayed PET imaging, which allows no secondary CT radiation in delayed phase. The quantitative analysis for lesion detection purpose could be ensured.

  18. SU-E-J-141: Assessment of the Magnitude and Impact of Trigger Delay in Respiratory Triggered Real-Time Imaging during Radiotherapy.

    PubMed

    Duan, J; Shen, S; Popple, R; Wu, X; Cardan, R; Brezovich, I

    2012-06-01

    To assess the trigger delay in respiratory triggered real-time imaging and its impact on image guided radiotherapy (IGRT) with Varian TrueBeam System. A sinusoidal motion phantom with 2cm motion amplitude was used. The trigger delay was determined directly with video image, and indirectly by the distance between expected and actual triggering phantom positions. For the direct method, a fluorescent screen was placed on the phantom to visualize the x-ray. The motion of the screen was recorded at 60 frames/second. The number of frames between the time when the phantom reached expected triggering position and the time when the screen was illuminated by the x-ray was used to determine the trigger delay. In the indirect method, triggered kV x-ray images were acquired in real-time during 'treatment' with triggers set at 25% and 75% respiratory phases where the phantom moved at the maximum speed. 39-40 triggered images were acquired continuously in each series. The distance between the expected and actual triggering points, d, was measured on the images to determine the delay time t by d=Asin(wt), where w=2π/T, T=period and A=amplitude. Motion periods of 2s and 4s were used in the measurement. The trigger delay time determined with direct video imaging was 125ms (7.5 video frames). The average distance between the expected and actual triggering positions determined by the indirect method was 3.93±0.74mm for T=4s and 7.02±1.25mm for T=2s, yielding mean trigger delay times of 126±24ms and 120±22ms, respectively. Although the mean over-travel distance is significant at 25% and 75% phases, clinically, the target over-travel resulted from the trigger delay at the end of expiration (50% phase) is negligibly small(< 0.5mm). The trigger delay in respiration-triggered imaging is in the range of 120-126ms. This delay has negligible clinical effect on gated IGRT. © 2012 American Association of Physicists in Medicine.

  19. Effects of the gaseous and liquid water content of the atmosphere on range delay and Doppler frequency

    NASA Technical Reports Server (NTRS)

    Flock, W. L.

    1981-01-01

    When high precision is required for range measurement on Earth space paths, it is necessary to correct as accurately as possible for excess range delays due to the dry air, water vapor, and liquid water content of the atmosphere. Calculations based on representative values of atmospheric parameters are useful for illustrating the order of magnitude of the expected delays. Range delay, time delay, and phase delay are simply and directly related. Doppler frequency variations or noise are proportional to the time rate of change of excess range delay. Tropospheric effects were examined as part of an overall consideration of the capability of precision two way ranging and Doppler systems.

  20. Duration and timing of daily light exposure influence the rapid shifting of BALB/cJ mouse circadian locomotor rhythms.

    PubMed

    Vajtay, Thomas J; St Thomas, Jeremy J; Takacs, Tyrus E; McGann, Eric G; Weber, E Todd

    2017-10-01

    Photic entrainment of the murine circadian system can typically be explained with a discrete model in which light exposures near dusk and dawn can either advance or delay free-running rhythms to match the external light cycle period. In most mouse strains, the magnitude of those phase shifts is limited to several hours per day; however, the BALB/cJ mouse can re-entrain to large (6-8hour) phase advances of the light/dark cycle. In this study, we demonstrate that the circadian responses of BALB/cJ mice are dependent on duration as well as timing of light exposure, with significantly larger phase shifts resulting from >6-hour light exposures, yet loss of entrainment to photoperiods of <2-3hours per day or to skeleton photoperiods. Intermittent light exposures of the same total duration but distributed differentially over the same period of time as that of a 6-hour phase advance of the light cycle yielded phase shifts of different magnitudes depending on the pattern of exposure. Both negative and positive masking responses to light and darkness, respectively, were exaggerated in BALB/cJ mice under a T7 light cycle, but were not responsible for their rapid re-entrainment to chronic phase shifting of the light dark cycle. These results collectively suggest that the innately jetlag-resistant BALB/cJ mouse circadian system provides an alternative murine model in which to elucidate the limitations of photic entrainment observed in other commonly used strains of mice. Copyright © 2017 Elsevier Inc. All rights reserved.

Top