NASA Astrophysics Data System (ADS)
Tang, Xiangyang; Yang, Yi; Tang, Shaojie
2013-03-01
Under the framework of model observer with signal and background exactly known (SKE/BKE), we investigate the detectability of differential phase contrast CT compared with that of the conventional attenuation-based CT. Using the channelized Hotelling observer and the radially symmetric difference-of-Gaussians channel template , we investigate the detectability index and its variation over the dimension of object and detector cells. The preliminary data show that the differential phase contrast CT outperforms the conventional attenuation-based CT significantly in the detectability index while both the object to be detected and the cell of detector used for data acquisition are relatively small. However, the differential phase contrast CT's dominance in the detectability index diminishes with increasing dimension of either object or detector cell, and virtually disappears while the dimension of object or detector cell approaches a threshold, respectively. It is hoped that the preliminary data reported in this paper may provide insightful understanding of the differential phase contrast CT's characteristic in the detectability index and its comparison with that of the conventional attenuation-based CT.
Zhu, Haitao; Nie, Binbin; Liu, Hua; Guo, Hua; Demachi, Kazuyuki; Sekino, Masaki; Shan, Baoci
2016-05-01
Phase map cross-correlation detection and quantification may produce highlighted signal at superparamagnetic iron oxide nanoparticles, and distinguish them from other hypointensities. The method may quantify susceptibility change by performing least squares analysis between a theoretically generated magnetic field template and an experimentally scanned phase image. Because characteristic phase recognition requires the removal of phase wrap and phase background, additional steps of phase unwrapping and filtering may increase the chance of computing error and enlarge the inconsistence among algorithms. To solve problem, phase gradient cross-correlation and quantification method is developed by recognizing characteristic phase gradient pattern instead of phase image because phase gradient operation inherently includes unwrapping and filtering functions. However, few studies have mentioned the detectable limit of currently used phase gradient calculation algorithms. The limit may lead to an underestimation of large magnetic susceptibility change caused by high-concentrated iron accumulation. In this study, mathematical derivation points out the value of maximum detectable phase gradient calculated by differential chain algorithm in both spatial and Fourier domain. To break through the limit, a modified quantification method is proposed by using unwrapped forward differentiation for phase gradient generation. The method enlarges the detectable range of phase gradient measurement and avoids the underestimation of magnetic susceptibility. Simulation and phantom experiments were used to quantitatively compare different methods. In vivo application performs MRI scanning on nude mice implanted by iron-labeled human cancer cells. Results validate the limit of detectable phase gradient and the consequent susceptibility underestimation. Results also demonstrate the advantage of unwrapped forward differentiation compared with differential chain algorithms for susceptibility quantification at high-concentrated iron accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Differential phase contrast X-ray imaging system and components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stutman, Daniel; Finkenthal, Michael
2017-11-21
A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.
Telenkov, Sergey A; Dave, Digant P; Sethuraman, Shriram; Akkin, Taner; Milner, Thomas E
2004-01-07
We describe a differential phase low-coherence interferometric probe for non-invasive, quantitative imaging of photothermal phenomena in biological materials. Our detection method utilizes principles of optical coherence tomography with differential phase measurement of interference fringe signals. A dual-channel optical low-coherence probe is used to analyse laser-induced thermoelastic and thermorefractive effects in tissue with micrometre axial resolution and nanometre sensitivity. We demonstrate an application of the technique using tissue phantoms and ex-vivo tissue specimens of rodent dorsal skin.
Allard, Jean-François; Cornet, Alain; Debacq, Christophe; Meurens, Marc; Houde, Daniel; Morris, Denis
2011-02-28
We report quantitative measurement of the relative proportion of δ- and β-D-mannitol crystalline phases inserted into polyethylene powder pellets, obtained by time-domain terahertz spectroscopy. Nine absorption bands have been identified from 0.2 THz to 2.2 THz. The best quantification of the δ-phase proportion is made using the 1.01 THz absorption band. Coherent detection allows using the spectral phase shift of the transmitted THz waveform to improve the detection sensitivity of the relative δ-phase proportion. We argue that differential phase shift measurements are less sensitive to samples' defects. Using a linear phase shift compensation for pellets of slightly different thicknesses, we were able to distinguish a 0.5% variation in δ-phase proportion.
Differential detection in quadrature-quadrature phase shift keying (Q2PSK) systems
NASA Astrophysics Data System (ADS)
El-Ghandour, Osama M.; Saha, Debabrata
1991-05-01
A generalized quadrature-quadrature phase shift keying (Q2PSK) signaling format is considered for differential encoding and differential detection. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. Symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/N0. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK. When the error is due to AWGN, the ratio of double error rate to single error rate can be very high, and the ratio may approach zero at high SNR. To improve error rate, differential detection through maximum-likelihood decoding based on multiple or N symbol observations is considered. If N and SNR are large this decoding gives a 3-dB advantage in error rate over conventional N = 2 differential detection, fully recovering the energy loss (as compared to coherent detection) if the observation is extended to a large number of symbol durations.
Doppler-corrected differential detection system
NASA Technical Reports Server (NTRS)
Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)
1991-01-01
Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.
Vanin, Evgeny; Jacobsen, Gunnar
2010-03-01
The Bit-Error-Ratio (BER) floor caused by the laser phase noise in the optical fiber communication system with differential quadrature phase shift keying (DQPSK) and coherent detection followed by digital signal processing (DSP) is analytically evaluated. An in-phase and quadrature (I&Q) receiver with a carrier phase recovery using DSP is considered. The carrier phase recovery is based on a phase estimation of a finite sum (block) of the signal samples raised to the power of four and the phase unwrapping at transitions between blocks. It is demonstrated that errors generated at block transitions cause the dominating contribution to the system BER floor when the impact of the additive noise is negligibly small in comparison with the effect of the laser phase noise. Even the BER floor in the case when the phase unwrapping is omitted is analytically derived and applied to emphasize the crucial importance of this signal processing operation. The analytical results are verified by full Monte Carlo simulations. The BER for another type of DQPSK receiver operation, which is based on differential phase detection, is also obtained in the analytical form using the principle of conditional probability. The principle of conditional probability is justified in the case of differential phase detection due to statistical independency of the laser phase noise induced signal phase error and the additive noise contributions. Based on the achieved analytical results the laser linewidth tolerance is calculated for different system cases.
Oh, Junghwan; Feldman, Marc D; Kim, Jihoon; Sanghi, Pramod; Do, Dat; Mancuso, J Jacob; Kemp, Nate; Cilingiroglu, Mehmet; Milner, Thomas E
2008-01-01
We demonstrate the detection of iron oxide nanoparticles taken up by macrophages in atherosclerotic plaque with differential phase optical coherence tomography (DP-OCT). Magneto mechanical detection of nanoparticles is demonstrated in hyperlipidemic Watanabe and balloon-injured fat-fed New Zealand white rabbits injected with monocrystalline iron oxide nanoparticles (MIONs) of < 40 nm diam. MIONs taken up by macrophages was excited by an oscillating magnetic flux density and resulting nanometer tissue surface displacement was detected by DP-OCT. Frequency response of tissue surface displacement in response to an externally applied magnetic flux density was twice the stimulus frequency as expected from the equations of motion for the nanoparticle cluster.
Generation and detection of 80-Gbit/s return-to-zero differential phase-shift keying signals
NASA Astrophysics Data System (ADS)
Möller, Lothar; Su, Yikai; Xie, Chongjin; Liu, Xiang; Leuthold, Juerg; Gill, Douglas; Wei, Xing
2003-12-01
Nonlinear polarization rotation between a pump and a probe signal in a highly nonlinear fiber is used as a modulation process to generate 80-Gbit/s return-to-zero differential phase-shift keying signals. Its performance is analyzed and compared with a conventional on-off keying modulated signal.
Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, Vasily; Hall, Gregory
Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less
Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode
Goncharov, Vasily; Hall, Gregory
2016-08-25
Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less
Phase noise characterization of a QD-based diode laser frequency comb.
Vedala, Govind; Al-Qadi, Mustafa; O'Sullivan, Maurice; Cartledge, John; Hui, Rongqing
2017-07-10
We measure, simultaneously, the phases of a large set of comb lines from a passively mode locked, InAs/InP, quantum dot laser frequency comb (QDLFC) by comparing the lines to a stable comb reference using multi-heterodyne coherent detection. Simultaneity permits the separation of differential and common mode phase noise and a straightforward determination of the wavelength corresponding to the minimum width of the comb line. We find that the common mode and differential phases are uncorrelated, and measure for the first time for a QDLFC that the intrinsic differential-mode phase (IDMP) between adjacent subcarriers is substantially the same for all subcarrier pairs. The latter observation supports an interpretation of 4.4ps as the standard deviation of IDMP on a 200µs time interval for this laser.
Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus
2012-01-01
Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption contrast. Talbot interferometry with a plane wave increased detectability for 0.1-mm tumor and glandular structures by a factor of 3–4 at equal dose, whereas absorption contrast was the preferred method for structures larger than ∼0.5 mm. Microcalcifications are small, but differ from soft tissue in atomic number more than density, which is favored by absorption contrast, and Talbot interferometry was barely beneficial at all within the resolution limit of the system. Further, Talbot interferometry favored detection of “sharp” as opposed to “smooth” structures, and discrimination tasks by about 50% compared to detection tasks. The technique was relatively insensitive to spectrum bandwidth, whereas the projected source size was more important. If equal photon economy was added as a restriction, phase-contrast efficiency was reduced so that the benefit for detection tasks almost vanished compared to absorption contrast, but discrimination tasks were still improved close to a factor of 2 at the resolution limit. Conclusions: Cascaded-systems analysis enables comprehensive and intuitive evaluation of phase-contrast efficiency in relation to absorption contrast under requirements of equal dose, equal geometry, and equal photon economy. The benefit of Talbot interferometry was highly dependent on task, in particular detection versus discrimination tasks, and target size, shape, and material. Requiring equal photon economy weakened the benefit of Talbot interferometry in mammography. PMID:22957600
Analog CMOS design for optical coherence tomography signal detection and processing.
Xu, Wei; Mathine, David L; Barton, Jennifer K
2008-02-01
A CMOS circuit was designed and fabricated for optical coherence tomography (OCT) signal detection and processing. The circuit includes a photoreceiver, differential gain stage and lock-in amplifier based demodulator. The photoreceiver consists of a CMOS photodetector and low noise differential transimpedance amplifier which converts the optical interference signal into a voltage. The differential gain stage further amplifies the signal. The in-phase and quadrature channels of the lock-in amplifier each include an analog mixer and switched-capacitor low-pass filter with an external mixer reference signal. The interferogram envelope and phase can be extracted with this configuration, enabling Doppler OCT measurements. A sensitivity of -80 dB is achieved with faithful reproduction of the interferometric signal envelope. A sample image of finger tip is presented.
Oh, Junghwan; Feldman, Marc D; Kim, Jihoon; Kang, Hyun Wook; Sanghi, Pramod; Milner, Thomas E
2007-03-01
A novel method to detect tissue-based macrophages using a combination of superparamagnetic iron oxide (SPIO) nanoparticles and differential phase optical coherence tomography (DP-OCT) with an external oscillating magnetic field is reported. Magnetic force acting on iron-laden tissue-based macrophages was varied by applying a sinusoidal current to a solenoid containing a conical iron core that substantially focused and increased magnetic flux density. Nanoparticle motion was detected with DP-OCT, which can detect tissue movement with nanometer resolution. Frequency response of iron-laden tissue movement was twice the modulation frequency since the magnetic force is proportional to the product of magnetic flux density and gradient. Results of our experiments indicate that DP-OCT can be used to identify tissue-based macrophage when excited by an external focused oscillating magnetic field. (c) 2007 Wiley-Liss, Inc
Dovlo, Edem; Lashkari, Bahman; Soo Sean Choi, Sung; Mandelis, Andreas; Shi, Wei; Liu, Fei-Fei
2017-09-01
Overcoming the limitations of conventional linear spectroscopy used in multispectral photoacoustic imaging, wherein a linear relationship is assumed between the absorbed optical energy and the absorption spectra of the chromophore at a specific location, is crucial for obtaining accurate spatially-resolved quantitative functional information by exploiting known chromophore-specific spectral characteristics. This study introduces a non-invasive phase-filtered differential photoacoustic technique, wavelength-modulated differential photoacoustic radar (WM-DPAR) imaging that addresses this issue by eliminating the effect of the unknown wavelength-dependent fluence. It employs two laser wavelengths modulated out-of-phase to significantly suppress background absorption while amplifying the difference between the two photoacoustic signals. This facilitates pre-malignant tumor identification and hypoxia monitoring, as minute changes in total hemoglobin concentration and hemoglobin oxygenation are detectable. The system can be tuned for specific applications such as cancer screening and SO 2 quantification by regulating the amplitude ratio and phase shift of the signal. The WM-DPAR imaging of a head and neck carcinoma tumor grown in the thigh of a nude rat demonstrates the functional PA imaging of small animals in vivo. The PA appearance of the tumor in relation to tumor vascularity is investigated by immunohistochemistry. Phase-filtered WM-DPAR imaging is also illustrated, maximizing quantitative SO 2 imaging fidelity of tissues. Oxygenation levels within a tumor grown in the thigh of a nude rat using the two-wavelength phase-filtered differential PAR method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Differentially coherent quadrature-quadrature phase shift keying (Q2PSK)
NASA Astrophysics Data System (ADS)
Saha, Debabrata; El-Ghandour, Osama
The quadrature-quadrature phase-shift-keying (Q2PSK) signaling scheme uses the vertices of a hypercube of dimension four. A generalized Q2PSK signaling format for differentially coherent detection at the receiver is considered. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. The symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/Nb. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK.
NASA Astrophysics Data System (ADS)
Paudel, Hari P.; Jung, Yookyung; Raphael, Anthony; Alt, Clemens; Wu, Juwell; Runnels, Judith; Lin, Charles P.
2018-02-01
The present standard of blood cell analysis is an invasive procedure requiring the extraction of patient's blood, followed by ex-vivo analysis using a flow cytometer or a hemocytometer. We are developing a noninvasive optical technique that alleviates the need for blood extraction. For in-vivo blood analysis we need a high speed, high resolution and high contrast label-free imaging technique. In this proceeding report, we reported a label-free method based on differential epi-detection of forward scattered light, a method inspired by Jerome Mertz's oblique back-illumination microscopy (OBM) (Ford et al, Nat. Meth. 9(12) 2012). The differential epi-detection of forward light gives phase contrast image at diffraction-limited resolution. Unlike reflection confocal microscopy (RCM), which detects only sharp refractive index variation and suffers from speckle noise, this technique is suitable for detection of subtle variation of refractive index in biological tissue and it provides the shape and the size of cells. A custom built high speed electronic detection circuit board produces a real-time differential signal which yields image contrast based on phase gradient in the sample. We recorded blood flow in-vivo at 17.2k lines per second in line scan mode, or 30 frames per second (full frame), or 120 frame per second (quarter frame) in frame scan mode. The image contrast and speed of line scan data recording show the potential of the system for noninvasive blood cell analysis.
Amos, W B; Reichelt, S; Cattermole, D M; Laufer, J
2003-05-01
In this paper, differential phase imaging (DPC) with transmitted light is implemented by adding a suitable detection system to a standard commercially available scanning confocal microscope. DPC, a long-established method in scanning optical microscopy, depends on detecting the intensity difference between opposite halves or quadrants of a split photodiode detector placed in an aperture plane. Here, DPC is compared with scanned differential interference contrast (DIC) using a variety of biological specimens and objective lenses of high numerical aperture. While DPC and DIC images are generally similar, DPC seems to have a greater depth of field. DPC has several advantages over DIC. These include low cost (no polarizing or strain-free optics are required), absence of a double scanning spot, electronically variable direction of shading and the ability to image specimens in plastic dishes where birefringence prevents the use of DIC. DPC is also here found to need 20 times less laser power at the specimen than DIC.
Multiple-Bit Differential Detection of OQPSK
NASA Technical Reports Server (NTRS)
Simon, Marvin
2005-01-01
A multiple-bit differential-detection method has been proposed for the reception of radio signals modulated with offset quadrature phase-shift keying (offset QPSK or OQPSK). The method is also applicable to other spectrally efficient offset quadrature modulations. This method is based partly on the same principles as those of a multiple-symbol differential-detection method for M-ary QPSK, which includes QPSK (that is, non-offset QPSK) as a special case. That method was introduced more than a decade ago by the author of the present method as a means of improving performance relative to a traditional (two-symbol observation) differential-detection scheme. Instead of symbol-by-symbol detection, both that method and the present one are based on a concept of maximum-likelihood sequence estimation (MLSE). As applied to the modulations in question, MLSE involves consideration of (1) all possible binary data sequences that could have been received during an observation time of some number, N, of symbol periods and (2) selection of the sequence that yields the best match to the noise-corrupted signal received during that time. The performance of the prior method was shown to range from that of traditional differential detection for short observation times (small N) to that of ideal coherent detection (with differential encoding) for long observation times (large N).
Eddy current inspection of weld defects in tubing
NASA Technical Reports Server (NTRS)
Katragadda, G.; Lord, W.
1992-01-01
An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential eddy current techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.
Balanced detection for self-mixing interferometry.
Li, Kun; Cavedo, Federico; Pesatori, Alessandro; Zhao, Changming; Norgia, Michele
2017-01-15
We propose a new detection scheme for self-mixing interferometry using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The subtraction of the two outputs implements a sort of balanced detection that improves the signal quality, and allows canceling of unwanted signals due to laser modulation and disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the benefits of differential acquisition in a system for both absolute distance and displacement-vibration measurement. This Letter provides guidance for the design of self-mixing interferometers using balanced detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan, Kaustabh, E-mail: kaustabhdan@gmail.com; Roy, Madhusudan, E-mail: kaustabhdan@gmail.com; Datta, Alokmay, E-mail: kaustabhdan@gmail.com
2014-04-24
Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.
Li, Long-Zhu; Deng, Hong-Xia; Lou, Wen-Zhu; Sun, Xue-Yan; Song, Meng-Wan; Tao, Jing; Xiao, Bing-Xiu; Guo, Jun-Ming
2012-01-07
To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G₀/G₁ phase, whereas cells treated with high concentrations of PBA were arrested at the G₂/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G₀/ G₁ phase, cells treated with high concentrations of PBA were arrested at the S phase. The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G₀ /G₁ and G₂/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G₀/G₁ and S phases.
NASA Astrophysics Data System (ADS)
Mandelis, Andreas; Guo, Xinxin
2011-10-01
A differential photothermal radiometry method, wavelength-modulated differential photothermal radiometry (WM-DPTR), has been developed theoretically and experimentally for noninvasive, noncontact biological analyte detection, such as blood glucose monitoring. WM-DPTR features analyte specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the base line of a prominent and isolated mid-IR analyte absorption band (here the carbon-oxygen-carbon bond in the pyran ring of the glucose molecule). A theoretical photothermal model of WM-DPTR signal generation and detection has been developed. Simulation results on water-glucose phantoms with the human blood range (0-300 mg/dl) glucose concentration demonstrated high sensitivity and resolution to meet wide clinical detection requirements. The model has also been validated by experimental data of the glucose-water system obtained using WM-DPTR.
2007-03-01
32 4.4 Algorithm Pseudo - Code ...................................................................................34 4.5 WIND Interface With a...difference estimates of xc temporal derivatives, or by using a polynomial fit to the previous values of xc. 34 4.4 ALGORITHM PSEUDO - CODE Pseudo ...Phase Shift Keying DQPSK Differential Quadrature Phase Shift Keying EVM Error Vector Magnitude FFT Fast Fourier Transform FPGA Field Programmable
Differential Impedance Obstacle Detection Sensor (DIOD) - Phase 2
DOT National Transportation Integrated Search
2006-11-01
To minimize excavations and public inconvenience, utilities often use horizontal directional drilling (HDD) to create underground pathways for the installation of pipes, cables, and other utility lines. While HDD provides efficiency improvements over...
Differential phase-shift keying and channel equalization in free space optical communication system
NASA Astrophysics Data System (ADS)
Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu
2018-01-01
We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants
X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve themore » same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.« less
Higher-order differential phase shift keyed modulation
NASA Astrophysics Data System (ADS)
Vanalphen, Deborah K.; Lindsey, William C.
1994-02-01
Advanced modulation/demodulation techniques which are robust in the presence of phase and frequency uncertainties continue to be of interest to communication engineers. We are particularly interested in techniques which accommodate slow channel phase and frequency variations with minimal performance degradation and which alleviate the need for phase and frequency tracking loops in the receiver. We investigate the performance sensitivity to frequency offsets of a modulation technique known as binary Double Differential Phase Shift Keying (DDPSK) and compare it to that of classical binary Differential Phase Shift Keying (DPSK). We also generalize our analytical results to include n(sup -th) order, M-ary DPSK. The DDPSK (n = 2) technique was first introduced in the Russian literature circa 1972 and was studied more thoroughly in the late 1970's by Pent and Okunev. Here, we present an expression for the symbol error probability that is easy to derive and to evaluate numerically. We also present graphical results that establish when, as a function of signal energy-to-noise ratio and normalized frequency offset, binary DDPSK is preferable to binary DPSK with respect to performance in additive white Gaussian noise. Finally, we provide insight into the optimum receiver from a detection theory viewpoint.
Differential Group-Velocity Detection of Fluid Paths Leland Timothy Long
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Leland Timothy
2003-06-01
The objective of differential surface-wave interpretation is to identify and locate temporal perturbations in the shear-wave velocity. Perturbations in phase velocity are created when the stress and/or fluid content of soils changes, such as in pumping to remove or flush out contaminants. Differential surface wave analysis is a potential method to track the movement of fluids during remediation programs. This proposal is to develop and test this new technology to aid in the selection and design of remediation options in shallow aquifers.
Fazal, Irfan M; Ahmed, Nisar; Wang, Jian; Yang, Jeng-Yuan; Yan, Yan; Shamee, Bishara; Huang, Hao; Yue, Yang; Dolinar, Sam; Tur, Moshe; Willner, Alan E
2012-11-15
We demonstrate a 2 Tbit/s free-space data link using two orthogonal orbital angular momentum beams each carrying 25 different wavelength-division-multiplexing channels. We measure the performance for different modulation formats, including directly detected 40 Gbit/s nonreturn-to-zero (NRZ) differential phase-shift keying, 40 Gbit/s NRZ on-off keying, and coherently-detected 10 Gbaud NRZ quadrature phase-shift keying, and achieve low bit error rates with penalties less than 5 dB.
Modulation and coding for fast fading mobile satellite communication channels
NASA Technical Reports Server (NTRS)
Mclane, P. J.; Wittke, P. H.; Smith, W. S.; Lee, A.; Ho, P. K. M.; Loo, C.
1988-01-01
The performance of Gaussian baseband filtered minimum shift keying (GMSK) using differential detection in fast Rician fading, with a novel treatment of the inherent intersymbol interference (ISI) leading to an exact solution is discussed. Trellis-coded differentially coded phase shift keying (DPSK) with a convolutional interleaver is considered. The channel is the Rician Channel with the line-of-sight component subject to a lognormal transformation.
Wen, Hong; Wang, Longye; Xie, Ping; Song, Liang; Tang, Jie; Liao, Runfa
2017-01-01
In this paper, we propose an adaptive single differential coherent detection (SDCD) scheme for the binary phase shift keying (BPSK) signals in IEEE 802.15.4 Wireless Sensor Networks (WSNs). In particular, the residual carrier frequency offset effect (CFOE) for differential detection is adaptively estimated, with only linear operation, according to the changing channel conditions. It was found that the carrier frequency offset (CFO) and chip signal-to-noise ratio (SNR) conditions do not need a priori knowledge. This partly benefits from that the combination of the trigonometric approximation sin−1(x)≈x and a useful assumption, namely, the asymptotic or high chip SNR, is considered for simplification of the full estimation scheme. Simulation results demonstrate that the proposed algorithm can achieve an accurate estimation and the detection performance can completely meet the requirement of the IEEE 802.15.4 standard, although with a little loss of reliability and robustness as compared with the conventional optimal single-symbol detector. PMID:29278404
Zhang, Gaoyuan; Wen, Hong; Wang, Longye; Xie, Ping; Song, Liang; Tang, Jie; Liao, Runfa
2017-12-26
In this paper, we propose an adaptive single differential coherent detection (SDCD) scheme for the binary phase shift keying (BPSK) signals in IEEE 802.15.4 Wireless Sensor Networks (WSNs). In particular, the residual carrier frequency offset effect (CFOE) for differential detection is adaptively estimated, with only linear operation, according to the changing channel conditions. It was found that the carrier frequency offset (CFO) and chip signal-to-noise ratio (SNR) conditions do not need a priori knowledge. This partly benefits from that the combination of the trigonometric approximation sin - 1 ( x ) ≈ x and a useful assumption, namely, the asymptotic or high chip SNR, is considered for simplification of the full estimation scheme. Simulation results demonstrate that the proposed algorithm can achieve an accurate estimation and the detection performance can completely meet the requirement of the IEEE 802.15.4 standard, although with a little loss of reliability and robustness as compared with the conventional optimal single-symbol detector.
Nativ, Amit; Feldman, Haim; Shaked, Natan T
2018-05-01
We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.
Erden, Ayşe; Haliloğlu, Nuray; Genç, Yasemin; Erden, Ilhan
2014-01-01
The purpose of this article is to determine the added diagnostic value of T1-weighted gradient-echo in-phase images obtained during MRCP in the detection and differentiation of hepatolithiasis and intrahepatic pneumobilia. Intrahepatic bile ducts in 47 patients were scored in terms of their possibility of containing biliary stone and air. MRI was performed with a 1-T system for 32 patients and with a 3-T system for 15 patients. Two radiologists independently reviewed two sets of MRI scans: set 1 included T2-weighted MRCP images, and set 2 included T2-weighted MRCP images plus T1-weighted gradient-echo in-phase images. The diagnostic performances of set 1 and set 2 in the evaluation of the bile ducts containing air or stone and bile ducts containing neither of them were analyzed using the area under the receiver operating characteristic curve (AUC) for clustered data. The sensitivities and specificities of both image sets to detect intrahepatic stone or air were also calculated and compared. For the diagnosis of hepatolithiasis, the AUC obtained from set 2 (0.983) was significantly higher than that obtained from set 1 (0.879; p = 0.037). For the diagnosis of pneumobilia, the AUC obtained from set 2 (0.965) was also significantly higher than that of set 1 (0.765; p = 0.002). With use of percutaneous transhepatic cholangiography, ERCP, and CT as the reference standards, the sensitivity of set 2 (97.1%; 95% CI, 91.1-100%) was significantly higher than that of set 1 (74.3%; 95% CI, 56.7-91.9%) in detecting intrahepatic stones (p = 0.011). For the detection of pneumobilia, the sensitivity of set 2 (98.5%; 95% CI, 95.4-100%) was also significantly higher than that of set 1 (70.8%; 95% CI, 57.7-83.3%; p = 0.000). The addition of T1-weighted gradient-echo in-phase images to standard MRCP sequences improves the detection and differentiation of hepatolithiasis and intrahepatic pneumobilia.
Extraction of ECG signal with adaptive filter for hearth abnormalities detection
NASA Astrophysics Data System (ADS)
Turnip, Mardi; Saragih, Rijois. I. E.; Dharma, Abdi; Esti Kusumandari, Dwi; Turnip, Arjon; Sitanggang, Delima; Aisyah, Siti
2018-04-01
This paper demonstrates an adaptive filter method for extraction ofelectrocardiogram (ECG) feature in hearth abnormalities detection. In particular, electrocardiogram (ECG) is a recording of the heart's electrical activity by capturing a tracingof cardiac electrical impulse as it moves from the atrium to the ventricles. The applied algorithm is to evaluate and analyze ECG signals for abnormalities detection based on P, Q, R and S peaks. In the first phase, the real-time ECG data is acquired and pre-processed. In the second phase, the procured ECG signal is subjected to feature extraction process. The extracted features detect abnormal peaks present in the waveform. Thus the normal and abnormal ECG signal could be differentiated based on the features extracted.
NASA Astrophysics Data System (ADS)
Castrillón, Mario A.; Morero, Damián A.; Agazzi, Oscar E.; Hueda, Mario R.
2015-08-01
The joint iterative detection and decoding (JIDD) technique has been proposed by Barbieri et al. (2007) with the objective of compensating the time-varying phase noise and constant frequency offset experienced in satellite communication systems. The application of JIDD to optical coherent receivers in the presence of laser frequency fluctuations has not been reported in prior literature. Laser frequency fluctuations are caused by mechanical vibrations, power supply noise, and other mechanisms. They significantly degrade the performance of the carrier phase estimator in high-speed intradyne coherent optical receivers. This work investigates the performance of the JIDD algorithm in multi-gigabit optical coherent receivers. We present simulation results of bit error rate (BER) for non-differential polarization division multiplexing (PDM)-16QAM modulation in a 200 Gb/s coherent optical system that includes an LDPC code with 20% overhead and net coding gain of 11.3 dB at BER = 10-15. Our study shows that JIDD with a pilot rate ⩽ 5 % compensates for both laser phase noise and laser frequency fluctuation. Furthermore, since JIDD is used with non-differential modulation formats, we find that gains in excess of 1 dB can be achieved over existing solutions based on an explicit carrier phase estimator with differential modulation. The impact of the fiber nonlinearities in dense wavelength division multiplexing (DWDM) systems is also investigated. Our results demonstrate that JIDD is an excellent candidate for application in next generation high-speed optical coherent receivers.
Jadoul, A; Tanojo, H; Préat, V; Bouwstra, J A; Spies, F; Boddé, H E
1998-08-01
Application of high voltage pulses (HVP) to the skin has been shown to promote the transdermal drug delivery by a mechanism involving skin electroporation. The aim of this study was to detect potential changes in lipid phase and ultrastructure induced in human stratum corneum by various HVP protocols, using differential thermal analysis and freeze-fracture electron microscopy. Due to the time involved between the moment the electric field is switched off and the analysis, only "secondary" phenomena rather than primary events could be observed. A decrease in enthalpies for the phase transitions observed at 70 degrees C and 85 degrees C was detected by differential thermal analysis after HVP treatment. No changes in transition temperature could be seen. The freeze-fracture electron microscopy study revealed a dramatic perturbation of the lamellar ordering of the intercellular lipid after application of HVP. Most of the planes displayed rough surfaces. The lipid lamellae exhibited rounded off steps or a vanished stepwise order. There was no evidence for perturbation of the corneocytes content. In conclusion, the freeze-fracture electron microscopy and differential thermal analysis studies suggest that HVP application induces a general perturbation of the stratum corneum lipid ultrastructure.
Differential Si ring resonators for label-free biosensing
NASA Astrophysics Data System (ADS)
Taniguchi, Tomoya; Yokoyama, Shuhei; Amemiya, Yoshiteru; Ikeda, Takeshi; Kuroda, Akio; Yokoyama, Shin
2016-04-01
Differential Si ring optical resonator sensors have been fabricated. Their detection sensitivity was 10-3-10-2% for sucrose solution, which corresponds to a sensitivity of ˜1.0 ng/ml for prostate-specific antigen (PSA), which is satisfactory for practical use. In the differential sensing the input light is incident to two rings, and one of the outputs is connected to a π phase shifter then the two outputs are merged again. For the differential detection, not only is the common-mode noise canceled, resulting in high sensitivity, but also the temperature stability is much improved. A fluid channel is fabricated so that the detecting liquid flows to the detection ring and the reference liquid flows to the reference ring. We have proposed a method of obtaining a constant sensitivity for the integrated sensors even though the resonance wavelengths of the two rings of the differential sensor are slightly different. It was found that a region exists with a linear relationship between the differential output and the difference in the resonance wavelengths of the two rings. By intentionally differentiating the resonance wavelengths in this linear region, the sensors have a constant sensitivity. Many differential sensors with different ring spaces have been fabricated and the output scattering characteristics were statistically evaluated. As a result, a standard deviation of resonance wavelength σ = 8 × 10-3 nm was obtained for a ring space of 31 µm. From the width of the linear region and the standard deviation, it was estimated from the Gaussian distribution of the resonance wavelength that 93.8% of the devices have the same sensitivity.
Closed Loop solar array-ion thruster system with power control circuitry
NASA Technical Reports Server (NTRS)
Gruber, R. P. (Inventor)
1979-01-01
A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.
Chong, B E; Hamler, R L; Lubman, D M; Ethier, S P; Rosenspire, A J; Miller, F R
2001-03-15
Nonporous (NPS) RP-HPLC has been used to rapidly separate proteins from whole cell lysates of human breast cell lines. The nonporous separation involves the use of hard-sphere silica beads of 1.5-microm diameter coated with C18, which can be used to separate proteins ranging from 5 to 90 kDa. Using only 30-40 microg of total protein, the protein molecular weights are detectable on-line using an ESI-oaTOF MS. Of hundreds of proteins detected in this mass range, approxinately 75-80 are more highly expressed. The molecular weight profiles can be displayed as a mass map analogous to a virtual "1-D gel" and differentially expressed proteins can be compared by image analysis. The separated proteins can also be detected by UV absorption and differentially expressed proteins quantified. The eluting proteins can be collected in the liquid phase and the molecular weight and peptide maps determined by MALDI-TOF MS for identification. It is demonstrated that the expressed protein profiles change during neoplastic progression and that many oncoproteins are readily detected. It is also shown that the response of premalignant cancer cells to estradiol can be rapidly screened by this method, demonstrating significant changes in response to an external agent. Ultimately, the proteins can be studied by peptide mapping to search for posttranslational modifications of the oncoproteins accompanying progression.
NASA Astrophysics Data System (ADS)
Ushenko, Yu A.
2012-11-01
The complex technique of concerted polarization-phase and spatial-frequency filtering of blood plasma laser images is suggested. The possibility of obtaining the coordinate distributions of phases of linearly and circularly birefringent protein networks of blood plasma separately is presented. The statistical (moments of the first to fourth orders) and scale self-similar (logarithmic dependences of power spectra) structure of phase maps of different types of birefringence of blood plasma of two groups of patients-healthy people (donors) and those suffering from rectal cancer-is investigated. The diagnostically sensitive parameters of a pathological change of the birefringence of blood plasma polycrystalline networks are determined. The effectiveness of this technique for detecting change in birefringence in the smears of other biological fluids in diagnosing the appearance of cholelithiasis (bile), operative differentiation of the acute and gangrenous appendicitis (exudate), and differentiation of inflammatory diseases of joints (synovial fluid) is shown.
Laser-ranging long-baseline differential atom interferometers for space
NASA Astrophysics Data System (ADS)
Chiow, Sheng-wey; Williams, Jason; Yu, Nan
2015-12-01
High-sensitivity differential atom interferometers (AIs) are promising for precision measurements in science frontiers in space, including gravity-field mapping for Earth science studies and gravitational wave detection. Difficulties associated with implementing long-baseline differential AIs have previously included the need for a high optical power, large differential Doppler shifts, and narrow dynamic range. We propose a configuration of twin AIs connected by a laser-ranging interferometer (LRI-AI) to provide precise information of the displacements between the two AI reference mirrors and also to phase-lock the two independent interferometer lasers over long distances, thereby drastically improving the practical feasibility of long-baseline differential AI measurements. We show that a properly implemented LRI-AI can achieve equivalent functionality to the conventional differential AI measurement configuration.
Automated nystagmus analysis. [on-line computer technique for eye data processing
NASA Technical Reports Server (NTRS)
Oman, C. M.; Allum, J. H. J.; Tole, J. R.; Young, L. R.
1973-01-01
Several methods have recently been used for on-line analysis of nystagmus: A digital computer program has been developed to accept sampled records of eye position, detect fast phase components, and output cumulative slow phase position, continuous slow phase velocity, instantaneous fast phase frequency, and other parameters. The slow phase velocity is obtained by differentiation of the calculated cumulative position rather than the original eye movement record. Also, a prototype analog device has been devised which calculates the velocity of the slow phase component during caloric testing. Examples of clinical and research eye movement records analyzed with these devices are shown.
Crystal growth of cholesterol in hydrogels and its characterization
NASA Astrophysics Data System (ADS)
Manuel Bravo-Arredondo, J.; Moreno, A.; Mendoza, M. E.
2014-09-01
In this work, we report the crystallization of cholesterol in ethanol solution and in three different hydrogel media: tetramethyl orthosilane, sodium metasilicate, and poly(vinyl)alcohol, whose structures are similar to the gel-like polymer structure of mucin, which is found in the mucus present in bile stone formation. The monohydrated triclinic phase was identified in all the samples by means of X-ray powder diffraction. The characteristic polymorphic crystalline transition of the anhydrous cholesterol was detected by differential thermal analysis and modulated differential scanning calorimetry only in crystals grown in ethanol, sodium silicate, and tetramethyl orthosilane. Finally, hysteresis of the phase transition temperature was measured by modulated differential scanning calorimetry in crystals grown in ethanol. The biological implications of the crystallization of cholesterol for bile stones formation are discussed in the last part of this contribution.
Ahmad, Shakil; Moriconi, Federico; Naz, Naila; Sultan, Sadaf; Sheikh, Nadeem; Ramadori, Giuliano; Malik, Ihtzaz Ahmed
2013-01-01
Ferritin L (FTL) and Ferritin H (FTH) subunits are responsible for intercellular iron storage. We previously reported increasing amounts of liver cytoplasmic and nuclear iron content during acute phase response (APR). Aim of the present study is to demonstrate intracellular localization of ferritin subunits in liver compared with extra hepatic organs of rat under physiological and acute phase conditions. Rats were administered turpentine-oil (TO) intramuscularly to induce a sterile abscess (acute-phase-model) and sacrificed at different time points. Immunohistochemistry was performed utilizing horse-reddish-peroxidise conjugated secondary antibody on 4μm thick section. Liver cytoplasmic and nuclear protein were used for Western blot analysis. By means of immunohistology, FTL was detected in cytoplasm while a strong nuclear positivity for FTH was evident in the liver. Similarly, in heart, spleen and brain FTL was detected mainly in the cytoplasm while FTH demonstrated intense nuclear and a weak cytoplasmic expression. Western blot analysis of cytoplasmic and nuclear fractions from liver, heart, spleen and brain further confirmed mainly cytoplasmic expression of FTL in contrast to the nuclear and cytoplasmic expression of FTH. The data presented demonstrate the differential localization of FTL and FTH within hepatic and extra hepatic organs being FTL predominantly in the cytoplasm while FTH predominantly in nucleus.
NASA Astrophysics Data System (ADS)
Sierra, Heidy; Brooks, Dana; Dimarzio, Charles
2010-07-01
The extraction of 3-D morphological information about thick objects is explored in this work. We extract this information from 3-D differential interference contrast (DIC) images by applying a texture detection method. Texture extraction methods have been successfully used in different applications to study biological samples. A 3-D texture image is obtained by applying a local entropy-based texture extraction method. The use of this method to detect regions of blastocyst mouse embryos that are used in assisted reproduction techniques such as in vitro fertilization is presented as an example. Results demonstrate the potential of using texture detection methods to improve morphological analysis of thick samples, which is relevant to many biomedical and biological studies. Fluorescence and optical quadrature microscope phase images are used for validation.
Ensafi, Ali A; Khoddami, Elaheh; Rezaei, Behzad
2013-01-01
In this paper, we describe a new combination method based on polytetrafluorethylene (PTFE) film-based liquid three-phase micro extraction coupled with differential pulse voltammetry (DPV) for the micro extraction and quantification of atorvastatin calcium (ATC) at the ultra-trace level. Different factors affecting the liquid-three phases micro extraction of atorvastatin calcium, including organic solvent, pH of the donor and acceptor phases, concentration of salt, extraction time, stirring rate and electrochemical factors, were investigated, and the optimal extraction conditions were established. The final stable signal was achieved after a 50 min extraction time, which was used for analytical applications. An enrichment factor of 21 was achieved, and the relative standard deviation (RSD) of the method was 4.5% (n = 4). Differential pulse voltammetry exhibited two wide linear dynamic ranges of 20.0-1000.0 pmol L(-1) and 0.001-11.0 µmol L(-1) of ATC. The detection limit was found to be 8.1 pmol L(-1) ATC. Finally, the proposed method was used as a new combination method for the determination of atorvastatin calcium in real samples, such as human urine and plasma.
Blind ICA detection based on second-order cone programming for MC-CDMA systems
NASA Astrophysics Data System (ADS)
Jen, Chih-Wei; Jou, Shyh-Jye
2014-12-01
The multicarrier code division multiple access (MC-CDMA) technique has received considerable interest for its potential application to future wireless communication systems due to its high data rate. A common problem regarding the blind multiuser detectors used in MC-CDMA systems is that they are extremely sensitive to the complex channel environment. Besides, the perturbation of colored noise may negatively affect the performance of the system. In this paper, a new coherent detection method will be proposed, which utilizes the modified fast independent component analysis (FastICA) algorithm, based on approximate negentropy maximization that is subject to the second-order cone programming (SOCP) constraint. The aim of the proposed coherent detection is to provide robustness against small-to-medium channel estimation mismatch (CEM) that may arise from channel frequency response estimation error in the MC-CDMA system, which is modulated by downlink binary phase-shift keying (BPSK) under colored noise. Noncoherent demodulation schemes are preferable to coherent demodulation schemes, as the latter are difficult to implement over time-varying fading channels. Differential phase-shift keying (DPSK) is therefore the natural choice for an alternative modulation scheme. Furthermore, the new blind differential SOCP-based ICA (SOCP-ICA) detection without channel estimation and compensation will be proposed to combat Doppler spread caused by time-varying fading channels in the DPSK-modulated MC-CDMA system under colored noise. In this paper, numerical simulations are used to illustrate the robustness of the proposed blind coherent SOCP-ICA detector against small-to-medium CEM and to emphasize the advantage of the blind differential SOCP-ICA detector in overcoming Doppler spread.
Rojas, Alejandra; Diagne, Cheikh T; Stittleburg, Victoria D; Mohamed-Hadley, Alisha; de Guillén, Yvalena Arévalo; Balmaseda, Angel; Faye, Oumar; Faye, Ousmane; Sall, Amadou A; Harris, Eva; Pinsky, Benjamin A; Waggoner, Jesse J
2018-04-02
The differential diagnosis of dengue virus (DENV) and yellow fever virus (YFV) infections in endemic areas is complicated by nonspecific early clinical manifestations. In this study, we describe an internally controlled, multiplex real-time reverse transcription PCR (rRT-PCR) for the detection of DENV and YFV. The DENV-YFV assay demonstrated specific detection and had a dynamic range of 2.0-8.0 log 10 copies/μL of eluate for each DENV serotype and YFV. Clinical performance was similar to a published pan-DENV assay: 48/48 acute-phase samples from dengue cases were detected in both assays. For YFV detection, mock samples were prepared with nine geographically diverse YFV isolates over a range of concentrations. The DENV-YFV assay detected 62/65 replicates, whereas 54/65 were detected using a reference YFV rRT-PCR. Given the reemergence of DENV and YFV in areas around the world, the DENV-YFV assay should be a useful tool to narrow the differential diagnosis and provide early case detection.
Liu, Wanli; Bian, Zhengfu; Liu, Zhenguo; Zhang, Qiuzhao
2015-01-01
Differential interferometric synthetic aperture radar has been shown to be effective for monitoring subsidence in coal mining areas. Phase unwrapping can have a dramatic influence on the monitoring result. In this paper, a filtering-based phase unwrapping algorithm in combination with path-following is introduced to unwrap differential interferograms with high noise in mining areas. It can perform simultaneous noise filtering and phase unwrapping so that the pre-filtering steps can be omitted, thus usually retaining more details and improving the detectable deformation. For the method, the nonlinear measurement model of phase unwrapping is processed using a simplified Cubature Kalman filtering, which is an effective and efficient tool used in many nonlinear fields. Three case studies are designed to evaluate the performance of the method. In Case 1, two tests are designed to evaluate the performance of the method under different factors including the number of multi-looks and path-guiding indexes. The result demonstrates that the unwrapped results are sensitive to the number of multi-looks and that the Fisher Distance is the most suitable path-guiding index for our study. Two case studies are then designed to evaluate the feasibility of the proposed phase unwrapping method based on Cubature Kalman filtering. The results indicate that, compared with the popular Minimum Cost Flow method, the Cubature Kalman filtering-based phase unwrapping can achieve promising results without pre-filtering and is an appropriate method for coal mining areas with high noise. PMID:26153776
Gadoxetate Acid-Enhanced MR Imaging for HCC: A Review for Clinicians
Chanyaputhipong, Jendana; Low, Su-Chong Albert; Chow, Pierce K. H.
2011-01-01
Hepatocellular carcinoma (HCC) is increasingly being detected at an earlier stage, owing to the screening programs and regular imaging follow-up in high-risk populations. Small HCCs still pose diagnostic challenges on imaging due to decreased sensitivity and increased frequency of atypical features. Differentiating early HCC from premalignant or benign nodules is important as management differs and has implications on both the quality of life and the overall survival for the patients. Gadoxetate acid (Gd-EOB-DTPA, Primovist®, Bayer Schering Pharma) is a relatively new, safe and well-tolerated liver-specific contrast agent for magnetic resonance (MR) imaging of the liver that has combined perfusion- and hepatocyte-specific properties, allowing for the acquisition of both dynamic and hepatobiliary phase images. Its high biliary uptake and excretion improves lesion detection and characterization by increasing liver-to-lesion conspicuity in the added hepatobiliary phase imaging. To date, gadoxetate acid-enhanced MRI has been mostly shown to be superior to unenhanced MRI, computed tomography, and other types of contrast agents in the detection and characterization of liver lesions. This review article focuses on the evolving role of gadoxetate acid in the characterization of HCC, differentiating it from other mimickers of HCC. PMID:21994860
Xu, Yongjie; Li, Rui; Zhang, Kaili; Wu, Wei; Wang, Suying; Zhang, Pengpeng; Xu, Haixia
2018-06-14
HnRNPK is a multifunctional protein that participates in chromatin remodeling, transcrip-tion, RNA splicing, mRNA stability and translation. Here, we uncovered the function of hnRNPK in regulating the proliferation and differentiation of myoblasts. hnRNPK was mutated in the C2C12 myoblast cell line using the CRISPR/Cas9 system. A decreased proliferation rate was observed in hnRNPK-mutated cells, suggesting an impaired prolif-eration phenotype. Furthermore, increased G2/M phase, decreased S phase and increased sub-G1 phase cells were detected in the hnRNPK-mutated cell lines. The expression analysis of key cell cycle regulators indicated mRNA of Cyclin A2 was significantly in-creased in the mutant myoblasts compared to the control cells, while Cyclin B1, Cdc25b and Cdc25c were decreased sharply. In addition to the myoblast proliferation defect, the mutant cells exhibited defect in myotube formation. The myotube formation marker, my-osin heavy chain (MHC), was decreased sharply in hnRNPK-mutated cells compared to control myoblasts during differentiation. The deficiency in hnRNPK also resulted in the repression of Myog expression, a key myogenic regulator during differentiation. Together, our data demonstrate that hnRNPK is required for myoblast proliferation and differentia-tion and may be an essential regulator of myoblast function.
Rapid detection of contaminant bacteria in platelet concentrate using differential impedance.
Zhao, Z; Chalmers, A; Rieder, R
2014-08-01
Current FDA-approved culture-based methods for the bacterial testing of platelet concentrate (PC) can yield false-negative results attributed to Poisson-limited sampling errors incurred near the time of collection that result in undetectable bacterial concentrations. Testing PC at the point of issue (POI) extends the incubation period for any contaminant bacteria increasing the probability of detection. Data are presented from time-course experiments designed to simulate POI testing of bacterially contaminated PCs at different stages of growth using differential impedance sensing. Whole-blood-derived PCs were typically spiked with low numbers of bacteria (approximately 100 CFU/ml) and incubated under standard PC storage conditions. Each infected unit was evaluated every two hours over a 12-h period. All samples were treated with a chemical compound that induces stress in the bacterial cells only. The development of any bacterial stress was monitored by detecting changes in the dielectric properties of the PC using differential impedance. Differential impedance measurements and corresponding cell counts at the different time-points are presented for six organisms implicated in post-transfusion-septic reactions. All infected PCs were detected once contaminant bacteria reached concentrations ranging between 0·6 × 10(3) and 6 × 10(3) CFU/ml irrespective of the phase of growth. Results were obtained within 30 min after the start of the assay and without the need for cell lysis or centrifugation. Differential impedance sensing can detect bacterial contamination in PC rapidly at concentrations below clinical thresholds known to cause adverse effects. © 2014 International Society of Blood Transfusion.
Zhang, Hui; Taxipalati, Maierhaba; Que, Fei; Feng, Fengqin
2013-12-01
The microstructure transitions of a food-grade U-type microemulsion system containing glycerol monolaurate and propionic acid at a 1:1 mass ratio as oil phase and Tween 80 as surfactant were investigated along a water dilution line at a ratio of 80:20 mass% surfactant/oil phase, based on a previously studied phase diagram. From the water thermal behaviours detected by differential scanning calorimetry, three structural regions are identified along the dilution line. In the first region, all water molecules are confined to the water core of the reverse micelles, leading to the formation of w/o microemulsion. As the water content increases, the water gains mobility, transforms into bicontinuous in the second region, and finally the microemulsion become o/w in the third region. The thermal transition points coincide with the structural phase transitions by electrical conductivity measurements, indicating that the structural transitions occur at 35 and 65 mass% of water along the dilution line. Copyright © 2013 Elsevier Ltd. All rights reserved.
Electrochemical methods for monitoring of environmental carcinogens.
Barek, J; Cvacka, J; Muck, A; Quaiserová, V; Zima, J
2001-04-01
The use of modern electroanalytical techniques, namely differential pulse polarography, differential pulse voltammetry on hanging mercury drop electrode or carbon paste electrode, adsorptive stripping voltammetry and high performance liquid chromatography with electrochemical detection for the determination of trace amounts of carcinogenic N-nitroso compounds, azo compounds, heterocyclic compounds, nitrated polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines is discussed. Scope and limitations of these methods are described and some practical applications based on their combination with liquid-liquid or solid phase extraction are given.
Boşnak, Vuslat Keçik; Karaoğlan, İlkay; Sahin, Handan Haydaroğlu; Namiduru, Mustafa; Pehlivan, Mustafa; Okan, Vahap; Mete, Ayşe Özlem
2016-04-28
In this study, clinical, laboratory, radiological, and serological examinations of fascioliasis patients were analyzed, and data with a significant impact on differential diagnosis were evaluated. Clinical, radiological, and laboratory findings and treatment responses of a total of 22 fascioliasis patients, treated between October 2009 and September 2014, were evaluated. Nineteen patients were diagnosed with fascioliasis at the invasive phase and three patients at the chronic phase. Patients were followed up for clinical, laboratory, and radiology findings for a period of three months to one year after treatment. The most frequent complaints in both groups were abdominal pain, and the most common physical examination finding was epigastric tenderness. In the performed examination, an eosinophil elevation in whole blood count was detected in 19 patients (100%) in the hepatic phase, and in 2 patients (66.6%) in the biliary phase. The results of the Fasciola hepatica indirect hemagglutination assay (IHA) test ordered in the diagnosis were positive in all patients. Treatment with 10 mg/kg/day triclabendazole for two consecutive days was effective. Live parasites were extracted from patients in the biliary phase with endoscopic retrograde cholangiopancreatography. In the follow-ups, remission in IHA titer and clinical and radiological improvement was achieved in all patients. If hypereosinophilia is detected by peripheral smear in patients who are admitted with complaints such as abdominal pain, weakness, nausea, myalgia, and weight loss, radiological evaluation and serological tests should be performed and fascioliasis should be considered in the differential diagnosis.
Crystallization Kinetics of a Solid Oxide Fuel Cell Seal Glass by Differential Thermal Analysis
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Gamble, Eleanor A.
2005-01-01
Crystallization kinetics of a barium calcium aluminosilicate glass (BCAS), a sealant material for planar solid oxide fuel cells, have been investigated by differential thermal analysis (DTA). From variation of DTA peak maximum temperature with heating rate, the activation energy for glass crystallization was calculated to be 259 kJ/mol. Development of crystalline phases on thermal treatments of the glass at various temperatures has been followed by powder x-ray diffraction. Microstructure and chemical composition of the crystalline phases were investigated by scanning electron microscopy and energy dispersive spectroscopic (EDS) analysis. BaSiO3 and hexacelsian (BaAl2Si2O8) were the primary crystalline phases whereas monoclinic celsian (BaAl2Si2O8) and (Ba(x), Ca(y))SiO4 were also detected as minor phases. Needle-shaped BaSiO3 crystals are formed first, followed by the formation of other phases at longer times of heat treatments. The glass does not fully crystallize even after long term heat treatments at 750 to 900 C.
NASA Astrophysics Data System (ADS)
Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Pidkamin, L. Y.; Soltys, I. V.; Zhytaryuk, V. G.; Pavlyukovich, N.
2016-09-01
A model of generalized optical anisotropy of polycrystalline networks of albumin and globulin of human brain liquor has been suggested. The polarization-phase method of spatial and frequency differentiation of linear and circular birefringence coordinate distributions have been analytically substantiated. A set of criteria of the dynamics of necrotic changes of polarization-phase images of liquor polycrystalline films for determination of death coming prescription has been detected and substantiated.
Eliminating ambiguity in digital signals
NASA Technical Reports Server (NTRS)
Weber, W. J., III
1979-01-01
Multiamplitude minimum shift keying (mamsk) transmission system, method of differential encoding overcomes problem of ambiguity associated with advanced digital-transmission techniques with little or no penalty in transmission rate, error rate, or system complexity. Principle of method states, if signal points are properly encoded and decoded, bits are detected correctly, regardless of phase ambiguities.
NASA Astrophysics Data System (ADS)
Hirakawa, Satoru; Morimoto, Yoshiaki; Honda, Hisashi
2015-04-01
Electrical conductivity ( σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C x H (2 x+1) OSO 3Li ( x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C x H (2 x+1) OSO 3Na and n-C x H (2 x+1) OSO 3K ( x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (Δ S). For n-C 18 H 37 OSO 3Li and n-C 20 H 41 OSO 3Li salts, each melting point produced a small Δ S mp value compared with the total entropy change in the solid phases (Δ S tr1+Δ S tr2). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7Li NMR spectra of n-C 18 H 37 OSO 3Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals.
Inoue, Tatsuo; Kudo, Masatoshi; Komuta, Mina; Hayaishi, Sosuke; Ueda, Taisuke; Takita, Masahiro; Kitai, Satoshi; Hatanaka, Kinuyo; Yada, Norihisa; Hagiwara, Satoru; Chung, Hobyung; Sakurai, Toshiharu; Ueshima, Kazuomi; Sakamoto, Michiie; Maenishi, Osamu; Hyodo, Tomoko; Okada, Masahiro; Kumano, Seishi; Murakami, Takamichi
2012-09-01
We aimed to evaluate gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for the detection of hepatocellular carcinomas (HCCs) and dysplastic nodules (DNs) compared with dynamic multi-detector row computed tomography (MDCT), and to discriminate between HCCs and DNs. Eighty-six nodules diagnosed as HCC or DNs were retrospectively investigated. Gd-EOB-DTPA-enhanced MRI and dynamic MDCT were compared with respect to their diagnostic ability for hypervascular HCCs and detection sensitivity for hypovascular tumors. The ability of hepatobiliary images of Gd-EOB-DTPA-enhanced MRI to discriminate between these nodules was assessed. We also calculated the EOB enhancement ratio of the tumors. For hypervascular HCCs, the diagnostic ability of Gd-EOB-DTPA-enhanced MRI was significantly higher than that of MDCT for tumors less than 2 cm (p = 0.048). There was no difference in the detection of hypervascular HCCs between hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI (43/45: 96%) and dynamic MDCT (40/45: 89%), whereas the detection sensitivity of hypovascular tumors by Gd-EOB-DTPA-enhanced MRI was significantly higher than that by dynamic MDCT (39/41: 95% vs. 25/41: 61%, p = 0.001). EOB enhancement ratios were decreased in parallel with the degree of differentiation in DNs and HCCs, although there was no difference between DNs and hypovascular well-differentiated HCCs. The diagnostic ability of Gd-EOB-DTPA-enhanced MRI for hypervascular HCCs less than 2 cm was significantly higher than that of MDCT. For hypovascular tumors, the detection sensitivity of hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was significantly higher than that of dynamic Gd-EOB-DTPA-enhanced MRI and dynamic MDCT. It was difficult to distinguish between DNs and hypovascular well-differentiated HCCs based on the EOB enhancement ratio.
On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection.
Kongsuphol, Patthara; Liu, Yunxiao; Ramadan, Qasem
2016-10-01
Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.
Broadband pump-probe spectroscopy at 20-MHz modulation frequency.
Preda, Fabrizio; Kumar, Vikas; Crisafi, Francesco; Figueroa Del Valle, Diana Gisell; Cerullo, Giulio; Polli, Dario
2016-07-01
We introduce an innovative high-sensitivity broadband pump-probe spectroscopy system, based on Fourier-transform detection, operating at 20-MHz modulation frequency. A common-mode interferometer employing birefringent wedges creates two phase-locked delayed replicas of the broadband probe pulse, interfering at a single photodetector. A single-channel lock-in amplifier demodulates the interferogram, whose Fourier transform provides the differential transmission spectrum. Our approach combines broad spectral coverage with high sensitivity, due to high-frequency modulation and detection. We demonstrate its performances by measuring two-dimensional differential transmission maps of a carbon nanotubes sample, simultaneously acquiring the signal over the entire 950-1350 nm range with 2.7·10-6 rms noise over 1.5 s integration time.
Nucleic Acid Detection Methods
Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.
1998-05-19
The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.
NASA Astrophysics Data System (ADS)
Guo, X.; Mandelis, A.; Zinman, B.
2012-11-01
Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.
Arasaradnam, R P; Covington, J A; Harmston, C; Nwokolo, C U
2014-04-01
The detection of airborne gas phase biomarkers that emanate from biological samples like urine, breath and faeces may herald a new age of non-invasive diagnostics. These biomarkers may reflect status in health and disease and can be detected by humans and other animals, to some extent, but far more consistently with instruments. The continued advancement in micro and nanotechnology has produced a range of compact and sophisticated gas analysis sensors and sensor systems, focussed primarily towards environmental and security applications. These instruments are now increasingly adapted for use in clinical testing and with the discovery of new gas volatile compound biomarkers, lead naturally to a new era of non-invasive diagnostics. To review current sensor instruments like the electronic nose (e-nose) and ion mobility spectroscopy (IMS), existing technology like gas chromatography-mass spectroscopy (GC-MS) and their application in the detection of gas phase volatile compound biomarkers in medicine - focussing on gastroenterology. A systematic search on Medline and Pubmed databases was performed to identify articles relevant to gas and volatile organic compounds. E-nose and IMS instruments achieve sensitivities and specificities ranging from 75 to 92% in differentiating between inflammatory bowel disease, bile acid diarrhoea and colon cancer from controls. For pulmonary disease, the sensitivities and specificities exceed 90% in differentiating between pulmonary malignancy, pneumonia and obstructive airways disease. These sensitivity levels also hold true for diabetes (92%) and bladder cancer (90%) when GC-MS is combined with an e-nose. The accurate reproducible sensing of volatile organic compounds (VOCs) using portable near-patient devices is a goal within reach for today's clinicians. © 2014 John Wiley & Sons Ltd.
Solution combustion synthesis and characterization of nanosized bismuth ferrite
NASA Astrophysics Data System (ADS)
Sai Kumar, V. Sesha; Rao, K. Venkateswara; Krishnaveni, T.; Kishore Goud, A. Shiva; Reddy, P. Ranjith
2012-06-01
The present paper describes a simple method of nanosized BiFeO3 by the solution combustion synthesis using bismuth and iron nitrates as oxidizers and the combination fuel of citric acid and ammonium hydroxide, with fuel to oxidizer ratio (Ψ = 1) one. The X-ray Diffraction results indicated rhombohedral phase (R3m) with JCPDS data card no: 72-2035. The ferroelectric transition of the sample at 8310C was detected by differential thermal analysis. Thermal analysis was done by Thermal gravimetric-Differential thermal analyzer and obtained results were presented in this paper.
The variable stellar wind of Rigel probed at high spatial and spectral resolution
NASA Astrophysics Data System (ADS)
Chesneau, O.; Kaufer, A.; Stahl, O.; Colvinter, C.; Spang, A.; Dessart, L.; Prinja, R.; Chini, R.
2014-06-01
Context. Luminous BA-type supergiants are the brightest stars in the visible that can be observed in distant galaxies and are potentially accurate distance indicators. The impact of the variability of the stellar winds on the distance determination remains poorly understood. Aims: Our aim is to probe the inhomogeneous structures in the stellar wind using spectro-interferometric monitoring. Methods: We present a spatially resolved, high-spectral resolution (R = 12 000) K-band temporal monitoring of the bright supergiant β Orionis (Rigel, B8 Iab) using AMBER at the Very Large Telescope Interferometer (VLTI). Rigel was observed in the Brγ line and its nearby continuum once per month over 3 months in 2006-2007, and 5 months in 2009-2010. These unprecedented observations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signals are evidence of asymmetries that are interpreted as perturbations of the wind. Results: A systematic visibility decrease is observed across the Brγ line indicating that at a radius of about 1.25 R∗ the photospheric absorption is filled by emission from the wind. During the 2006-2007 period the Brγ and likely the continuum forming regions were larger than in the 2009-2010 epoch. Using CMFGEN we infer a mass-loss rate change of about 20% between the two epochs. We also find time variations in the differential visibilities and phases. The 2006-2007 period is characterised by noticeable variations in the differential visibilities in Doppler position and width and by weak variations in differential and closure phase. The 2009-2010 period is much quieter with virtually no detectable variations in the dispersed visibilities but a strong S-shaped signal is observed in differential phase coinciding with a strong ejection event discernible in the optical spectra. The differential phase signal that is sometimes detected is reminiscent of the signal computed from hydrodynamical models of corotating interaction regions. For some epochs the temporal evolution of the signal suggests the rotation of the circumstellar structures. Based on observations collected at the European Southern Observatory (ESO Programmes 078.D-0355 and 084.D-0393) and at the Observatorio Cerro Armazones (OCA) in Chile.Appendices are available in electronic form at http://www.aanda.orgReduced BESO data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A125
Lefebvre, P; Agadir, A; Cornic, M; Gourmel, B; Hue, B; Dreux, C; Degos, L; Chomienne, C
1995-04-07
All-trans retinoic acid (all-trans RA), the active metabolite of vitamin A, has been demonstrated to be an efficient alternative to chemotherapy in the treatment of acute promyelocytic leukemia (APL), the AML3 subtype of the FAB cytological classification. Complete remission is obtained by inducing terminal granulocytic differentiation of the leukemic cells. To study all-trans RA pharmacokinetics in patients with APL, a rapid, precise and selective high-performance liquid chromatographic (HPLC) assay was developed. This method is easy and shows good repeatability (C.V. = 8.41-12.44%), reproducibility (C.V. = 9.19-14.73%), accuracy (C.V. = 3.5-11%) and sensitivity with a detection limit of 5 pmol/ml. The analysis is performed using normal-phase HPLC in an isocratic mode with UV detection after solid-phase extraction on octadecyl (C18) columns. The mobile phase is hexane-dichloromethane-dioxane (78:18:4, v/v) containing 1% acetic acid.
Detection of ionized gas molecules in air by graphene and carbon nanotube networks
NASA Astrophysics Data System (ADS)
Hao, Ji; Li, Bo; Yung, Hyun Young; Liu, Fangze; Hong, Sanghyung; Jung, Yung Joon; Kar, Swastik
The liquid phase ions sensing by graphene and carbon nanotube has been demonstrated in many publications due to the minimum gate voltage easily shift induced by ionic gating effect, but it is still unclear for vapor phase ions sensing. Here we want to report that the ionized gas molecules in air can be also very sensitively detected by graphene and carbon nanotube networks under very low applied voltage, which shows the very high charge to current amplification factor, the value can be up to 108 A/C, and the direction of current-change can be used to differentiate the positive and negative ions. In further, the field effect of graphene device induced by vapor phase ions was discussed. NSF ECCS 1202376, NSF ECCS CAREER 1351424 and NSF DMREF 1434824, a Northeastern University Provost's Tier-1 seed Grant for interdisciplinary research, Technology Innovation Program (10050481) from Ministry of Trade, Industry & Energy of Republic of Korea.
Dharmalingam, Anitha; Pawar, Shwetal U; Parelkar, Sandesh V; Shetye, Suruchi S; Ghorpade, Mangala K; Tilve, Gundu H
2017-01-01
The differential cortical function obtained by Tc-99m EC is comparable to that of Tc-99m DMSA. However, identification of scars on Tc-99m EC images needs to be studied. The aim of the study is to evaluate role of Tc-99m EC for detection of scarring and differential cortical function by comparing with Tc-99m DMSA. Prospective observational study of recurrent UTI; minimum 6 weeks after acute episode; when urine examination is negative for pus cells. Forty-seven children with normal positioned kidneys underwent Tc-99m EC and DMSA scintigraphy. The DRF and cortical phase images of both studies in the same image matrix size were evaluated by two independent observers for scarring; Tc-99m DMSA was considered as the gold standard. MS Excel 2007 and GraphPad Instat V3.1 and ROC analysis. There was no significant difference in the detection of scarring using two studies with Cohen's kappa coefficient (κ) 0.932. The sensitivity and specificity of Tc-99m EC for detection of scarring was 98.75% and 99.15%, respectively. There was good agreement between the differential cortical function calculated using two studies. The summed Tc-99m EC images with an acceptable high image contrast allow detection of cortical scarring in patients with normal kidney positions. It is an excellent single-modality comprehensive investigational agent for renal parenchymal defects, function, and excretion evaluation with the added advantages of lower cost, convenience, and low radiation exposure to the child.
NASA Astrophysics Data System (ADS)
Sakagami, Takahide; Shiozawa, Daiki; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi
2017-05-01
Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to the evaluation of fatigue damage in short carbon fiber composites. The distributions of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damages was detected from distributions of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was clearly detected than ever by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the nature that carbon fiber show opposite phase thermoelastic temperature change.
Vector network analyzer ferromagnetic resonance spectrometer with field differential detection
NASA Astrophysics Data System (ADS)
Tamaru, S.; Tsunegi, S.; Kubota, H.; Yuasa, S.
2018-05-01
This work presents a vector network analyzer ferromagnetic resonance (VNA-FMR) spectrometer with field differential detection. This technique differentiates the S-parameter by applying a small binary modulation field in addition to the DC bias field to the sample. By setting the modulation frequency sufficiently high, slow sensitivity fluctuations of the VNA, i.e., low-frequency components of the trace noise, which limit the signal-to-noise ratio of the conventional VNA-FMR spectrometer, can be effectively removed, resulting in a very clean FMR signal. This paper presents the details of the hardware implementation and measurement sequence as well as the data processing and analysis algorithms tailored for the FMR spectrum obtained with this technique. Because the VNA measures a complex S-parameter, it is possible to estimate the Gilbert damping parameter from the slope of the phase variation of the S-parameter with respect to the bias field. We show that this algorithm is more robust against noise than the conventional algorithm based on the linewidth.
Phase transitions of sodium niobate powder and ceramics, prepared by solid state synthesis
NASA Astrophysics Data System (ADS)
Koruza, J.; Tellier, J.; Malič, B.; Bobnar, V.; Kosec, M.
2010-12-01
Phase transitions of sodium niobate, prepared by the solid state synthesis method, were examined using dielectric measurements, differential scanning calorimetry, and high temperature x-ray diffraction, in order to contribute to the clarification of its structural behavior below 400 °C. Four phase transitions were detected in the ceramic sample using dielectric measurements and differential scanning calorimetry and the obtained temperatures were in a good agreement with previous reports for the transitions of the P polymorph. The anomaly observed by dielectric measurements in the vicinity of 150 °C was frequency dependent and could be related to the dynamics of the ferroelectric nanoregions. The phase transitions of the as-synthesized NaNbO3 powder were investigated using differential scanning calorimetry and high temperature x-ray diffraction. The results show the existence of the Q polymorph at room temperature, not previously reported for the powder, which undergoes a transition to the R polymorph upon heating through a temperature region between 265 and 326.5 °C. This transition is mainly related to the displacement of Na into a more symmetric position and a minor change in the tilting system. The structures at room temperature, 250, 300, and 420 °C were refined by the Rietveld method and the evolution of the tilting system of the octahedral network and cationic displacement are reported.
High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller
NASA Astrophysics Data System (ADS)
Li, Yaoling; Wu, Zhong
2018-03-01
The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.
Ahn, Hee Jung; Chung, Jong-Hoon; Kim, Dong-Min; Yoon, Na-Ra; Kim, Choon-Mee
2018-03-05
Central diabetes insipidus (DI) was detected in a patient with hemorrhagic fever with renal syndrome (HFRS) who had been molecularly and serologically diagnosed with Hantaan virus infection. We recommend that clinicians differentiate central DI in HFRS patients with a persistent diuretic phase even when pituitary MRI findings are normal.
2009-02-01
is polarized by a structure perpendicular to this direction. Another result that confirms this geometry is a radio nebula along p.a. 156◦ ± 4...2000) detected a jetlike nebular structure oriented along p.a. = 156◦.5 ± 4◦. This nebula is perpendicular, within uncertainties, to the orbit
Detection of cocrystal formation based on binary phase diagrams using thermal analysis.
Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Teramura, Toshio; Terada, Katsuhide
2013-01-01
Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram. Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30 °C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy. When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected. These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.
Chieng, Norman; Trnka, Hjalte; Boetker, Johan; Pikal, Michael; Rantanen, Jukka; Grohganz, Holger
2013-09-15
The purpose of this study is to investigate the use of multivariate data analysis for powder X-ray diffraction-pair-wise distribution function (PXRD-PDF) data to detect phase separation in freeze-dried binary amorphous systems. Polymer-polymer and polymer-sugar binary systems at various ratios were freeze-dried. All samples were analyzed by PXRD, transformed to PDF and analyzed by principal component analysis (PCA). These results were validated by differential scanning calorimetry (DSC) through characterization of glass transition of the maximally freeze-concentrate solute (Tg'). Analysis of PXRD-PDF data using PCA provides a more clear 'miscible' or 'phase separated' interpretation through the distribution pattern of samples on a score plot presentation compared to residual plot method. In a phase separated system, samples were found to be evenly distributed around the theoretical PDF profile. For systems that were miscible, a clear deviation of samples away from the theoretical PDF profile was observed. Moreover, PCA analysis allows simultaneous analysis of replicate samples. Comparatively, the phase behavior analysis from PXRD-PDF-PCA method was in agreement with the DSC results. Overall, the combined PXRD-PDF-PCA approach improves the clarity of the PXRD-PDF results and can be used as an alternative explorative data analytical tool in detecting phase separation in freeze-dried binary amorphous systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Real Time Metrology Using Heterodyne Interferometry
NASA Astrophysics Data System (ADS)
Evans, Joseph T..., Jr.
1983-11-01
The Air Force Weapons Laboratory (AFWL) located at Albuquerque, NM has developed a digital heterodyne interferometer capable of real-time, closed loop analysis and control of adaptive optics. The device uses independent phase modulation of two orthogonal polarizations of an argon ion laser to produce a temporally phase modulated interferogram of the test object in a Twyman-Green interferometer. Differential phase detection under the control of a Data General minicomputer helps reconstruct the phase front without noise effects from amplitude modulation in the optical train. The system consists of the interferometer optics, phase detection circuitry, and the minicomputer, allowing for complete software control of the process. The software has been unified into a powerful package that performs automatic data acquisition, OPD reconstruction, and Zernike analysis of the resulting wavefront. The minicomputer has the capability to control external devices so that closed loop analysis and control is possible. New software under development will provide a framework of data acquisition, display, and storage packages which can be integrated with analysis and control packages customized to the user's needs. Preliminary measurements with the system show that it is noise limited by laser beam phase quality and vibration of the optics. Active measures are necessary to reduce the impact of these noise sources.
Wan, Bo; Fu, Guicui; Li, Yanruoyue; Zhao, Youhu
2016-08-10
The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM) theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC) tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects.
Han, Zhifeng; Liu, Jianye; Li, Rongbing; Zeng, Qinghua; Wang, Yi
2017-07-04
BeiDou system navigation messages are modulated with a secondary NH (Neumann-Hoffman) code of 1 kbps, where frequent bit transitions limit the coherent integration time to 1 millisecond. Therefore, a bit synchronization algorithm is necessary to obtain bit edges and NH code phases. In order to realize bit synchronization for BeiDou weak signals with large frequency deviation, a bit synchronization algorithm based on differential coherent and maximum likelihood is proposed. Firstly, a differential coherent approach is used to remove the effect of frequency deviation, and the differential delay time is set to be a multiple of bit cycle to remove the influence of NH code. Secondly, the maximum likelihood function detection is used to improve the detection probability of weak signals. Finally, Monte Carlo simulations are conducted to analyze the detection performance of the proposed algorithm compared with a traditional algorithm under the CN0s of 20~40 dB-Hz and different frequency deviations. The results show that the proposed algorithm outperforms the traditional method with a frequency deviation of 50 Hz. This algorithm can remove the effect of BeiDou NH code effectively and weaken the influence of frequency deviation. To confirm the feasibility of the proposed algorithm, real data tests are conducted. The proposed algorithm is suitable for BeiDou weak signal bit synchronization with large frequency deviation.
NASA Astrophysics Data System (ADS)
Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi
2007-11-01
A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.
Delay differential analysis of time series.
Lainscsek, Claudia; Sejnowski, Terrence J
2015-03-01
Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time compared with frequency-based methods such as the DFT and cross-spectral analysis.
Nucleic acid detection methods
Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.
1998-05-19
The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.
High Resolution Deformation Time Series Estimation for Distributed Scatterers Using Terrasar-X Data
NASA Astrophysics Data System (ADS)
Goel, K.; Adam, N.
2012-07-01
In recent years, several SAR satellites such as TerraSAR-X, COSMO-SkyMed and Radarsat-2 have been launched. These satellites provide high resolution data suitable for sophisticated interferometric applications. With shorter repeat cycles, smaller orbital tubes and higher bandwidth of the satellites; deformation time series analysis of distributed scatterers (DSs) is now supported by a practical data basis. Techniques for exploiting DSs in non-urban (rural) areas include the Small Baseline Subset Algorithm (SBAS). However, it involves spatial phase unwrapping, and phase unwrapping errors are typically encountered in rural areas and are difficult to detect. In addition, the SBAS technique involves a rectangular multilooking of the differential interferograms to reduce phase noise, resulting in a loss of resolution and superposition of different objects on ground. In this paper, we introduce a new approach for deformation monitoring with a focus on DSs, wherein, there is no need to unwrap the differential interferograms and the deformation is mapped at object resolution. It is based on a robust object adaptive parameter estimation using single look differential interferograms, where, the local tilts of deformation velocity and local slopes of residual DEM in range and azimuth directions are estimated. We present here the technical details and a processing example of this newly developed algorithm.
Wang, Shang; Li, Jiasong; Manapuram, Ravi Kiran; Menodiado, Floredes M; Ingram, Davis R; Twa, Michael D; Lazar, Alexander J; Lev, Dina C; Pollock, Raphael E; Larin, Kirill V
2012-12-15
We report on an optical noncontact method for the detection of soft-tissue tumors based on the measurement of their elasticity. A focused air-puff system is used to excite surface waves (SWs) on soft tissues with transient static pressure. A high-speed phase-sensitive optical coherence tomography system is used to measure the SWs as they propagate from the point of excitation. To evaluate the stiffness of soft tissues, the Young's modulus is quantified based on the group velocity of SWs. Pilot experiments were performed on ex vivo human myxoma and normal fat. Results demonstrate the feasibility of the proposed method to measure elasticity and differentiate soft-tissue tumors from normal tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stehly, G.R.; Hayton, W.L.
1988-08-01
The glucuronide and sulfate conjugates of pentachlorophenol (PCP) that were present in the bile and exposure water of goldfish (Carassius auratus) were used to develop methodology to quantify PCP and its metabolites. Reverse phase HPLC with radioactivity detection separated PCP and its metabolites, and was used to verify a method of quantification that used differential extraction and scintillation counting. Extractions of aqueous phase at pH 2 or 8, with butanol, ethyl acetate, or ether indicated that ether at pH 8 best separated PCP from its metabolites. The sulfate conjugate of PCP was the major metabolite produced when goldfish were exposedmore » to 125 micrograms UC-PCP/l. It was present primarily in the exposure water, but also appeared in the bile.« less
Electric machine differential for vehicle traction control and stability control
NASA Astrophysics Data System (ADS)
Kuruppu, Sandun Shivantha
Evolving requirements in energy efficiency and tightening regulations for reliable electric drivetrains drive the advancement of the hybrid electric (HEV) and full electric vehicle (EV) technology. Different configurations of EV and HEV architectures are evaluated for their performance. The future technology is trending towards utilizing distinctive properties in electric machines to not only to improve efficiency but also to realize advanced road adhesion controls and vehicle stability controls. Electric machine differential (EMD) is such a concept under current investigation for applications in the near future. Reliability of a power train is critical. Therefore, sophisticated fault detection schemes are essential in guaranteeing reliable operation of a complex system such as an EMD. The research presented here emphasize on implementation of a 4kW electric machine differential, a novel single open phase fault diagnostic scheme, an implementation of a real time slip optimization algorithm and an electric machine differential based yaw stability improvement study. The proposed d-q current signature based SPO fault diagnostic algorithm detects the fault within one electrical cycle. The EMD based extremum seeking slip optimization algorithm reduces stopping distance by 30% compared to hydraulic braking based ABS.
Johnston, Roger G.
1988-01-01
Interferometric apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer.
Apparatus and method for detection and characterization of particles using light scattered therefrom
Johnston, R.G.
1987-03-23
Apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer. 13 figs.
Cell cycle arrest and gene expression profiling of testis in mice exposed to fluoride.
Su, Kai; Sun, Zilong; Niu, Ruiyan; Lei, Ying; Cheng, Jing; Wang, Jundong
2017-05-01
Exposure to fluoride results in low reproductive capacity; however, the mechanism underlying the impact of fluoride on male productive system still remains obscure. To assess the potential toxicity in testis of mice administrated with fluoride, global genome microarray and real-time PCR were performed to detect and identify the altered transcriptions. The results revealed that 763 differentially expressed genes were identified, including 330 up-regulated and 433 down-regulated genes, which were involved in spermatogenesis, apoptosis, DNA damage, DNA replication, and cell differentiation. Twelve differential expressed genes were selected to confirm the microarray results using real-time PCR, and the result kept the same tendency with that of microarray. Furthermore, compared with the control group, more apoptotic spermatogenic cells were observed in the fluoride group, and the spermatogonium were markedly increased in S phase and decreased in G2/M phase by fluoride. Our findings suggested global genome microarray provides an insight into the reproductive toxicity induced by fluoride, and several important biological clues for further investigations. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1558-1565, 2017. © 2016 Wiley Periodicals, Inc.
Efficient Processing of Data for Locating Lightning Strikes
NASA Technical Reports Server (NTRS)
Medelius, Pedro J.; Starr, Stan
2003-01-01
Two algorithms have been devised to increase the efficiency of processing of data in lightning detection and ranging (LDAR) systems so as to enable the accurate location of lightning strikes in real time. In LDAR, the location of a lightning strike is calculated by solving equations for the differences among the times of arrival (DTOAs) of the lightning signals at multiple antennas as functions of the locations of the antennas and the speed of light. The most difficult part of the problem is computing the DTOAs from digitized versions of the signals received by the various antennas. One way (a time-domain approach) to determine the DTOAs is to compute cross-correlations among variously differentially delayed replicas of the digitized signals and to select, as the DTOAs, those differential delays that yield the maximum correlations. Another way (a frequency-domain approach) to determine the DTOAs involves the computation of cross-correlations among Fourier transforms of variously differentially phased replicas of the digitized signals, along with utilization of the relationship among phase difference, time delay, and frequency.
Studies of phase transitions in the aripiprazole solid dosage form.
Łaszcz, Marta; Witkowska, Anna
2016-01-05
Studies of the phase transitions in an active substance contained in a solid dosage form are very complicated but essential, especially if an active substance is classified as a BCS Class IV drug. The purpose of this work was the development of sensitive methods for the detection of the phase transitions in the aripiprazole tablets containing initially its form III. Aripiprazole exhibits polymorphism and pseudopolymorphism. Powder diffraction, Raman spectroscopy and differential scanning calorimetry methods were developed for the detection of the polymorphic transition between forms III and I as well as the phase transition of form III into aripiprazole monohydrate in tablets. The study involved the initial 10 mg and 30 mg tablets, as well as those stored in Al/Al blisters, a triplex blister pack and HDPE bottles (with and without desiccant) under accelerated and long term conditions. The polymorphic transition was not observed in the initial and stored tablets but it was visible on the DSC curve of the Abilify(®) 10 mg reference tablets. The formation of the monohydrate was observed in the diffractograms and Raman spectra in the tablets stored under accelerated conditions. The monohydrate phase was not detected in the tablets stored in the Al/Al blisters under long term conditions. The results showed that the Al/Al blisters can be recommended as the packaging of the aripiprazole tablets containing form III. Copyright © 2015 Elsevier B.V. All rights reserved.
Bit error rate performance of pi/4-DQPSK in a frequency-selective fast Rayleigh fading channel
NASA Technical Reports Server (NTRS)
Liu, Chia-Liang; Feher, Kamilo
1991-01-01
The bit error rate (BER) performance of pi/4-differential quadrature phase shift keying (DQPSK) modems in cellular mobile communication systems is derived and analyzed. The system is modeled as a frequency-selective fast Rayleigh fading channel corrupted by additive white Gaussian noise (AWGN) and co-channel interference (CCI). The probability density function of the phase difference between two consecutive symbols of M-ary differential phase shift keying (DPSK) signals is first derived. In M-ary DPSK systems, the information is completely contained in this phase difference. For pi/4-DQPSK, the BER is derived in a closed form and calculated directly. Numerical results show that for the 24 kBd (48 kb/s) pi/4-DQPSK operated at a carrier frequency of 850 MHz and C/I less than 20 dB, the BER will be dominated by CCI if the vehicular speed is below 100 mi/h. In this derivation, frequency-selective fading is modeled by two independent Rayleigh signal paths. Only one co-channel is assumed in this derivation. The results obtained are also shown to be valid for discriminator detection of M-ary DPSK signals.
Csiktusnádi Kiss, G A; Forgács, E; Cserháti, T; Candeias, M; Vilas-Boas, L; Bronze, R; Spranger, I
2000-08-11
The adsorption and desorption capacities of 11 different solid-phase extraction sorbents were tested for the preconcenration of pigments of various Hungarian red wines. The concentrates were evaluated by multiwavelengh spectrophotometry combined with a spectral mapping technique (SPM) and by reversed-phase high-performance liquid chromatography. The highest (10-fold) concentration of pigments was achieved on octadecylsilica sorbent. It can be used five times without losing adsorption and desorption characteristics. SPM indicated that multiwavelength spectrophotometry can be employed for the differentiation of red wines. Comparison of the chromatograms of pigments with and without preconcentration showed that preconcentration makes possible the separation and detection of pigments present in low concentration in red wines.
Identifying phase-space boundaries with Voronoi tessellations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, Dipsikha; Gainer, James S.; Kilic, Can
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here in this paper we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be usedmore » to corroborate a new physics discovery based on a cut-and-count analysis.« less
Identifying phase-space boundaries with Voronoi tessellations
Debnath, Dipsikha; Gainer, James S.; Kilic, Can; ...
2016-11-24
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here in this paper we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be usedmore » to corroborate a new physics discovery based on a cut-and-count analysis.« less
Axelrod, Noel; Radko, Anna; Lewis, Aaron; Ben-Yosef, Nissim
2004-04-10
A methodology is described for phase restoration of an object function from differential interference contrast (DIC) images. The methodology involves collecting a set of DIC images in the same plane with different bias retardation between the two illuminating light components produced by a Wollaston prism. These images, together with one conventional bright-field image, allows for reduction of the phase deconvolution restoration problem from a highly complex nonlinear mathematical formulation to a set of linear equations that can be applied to resolve the phase for images with a relatively large number of pixels. Additionally, under certain conditions, an on-line atomic force imaging system that does not interfere with the standard DIC illumination modes resolves uncertainties in large topographical variations that generally lead to a basic problem in DIC imaging, i.e., phase unwrapping. Furthermore, the availability of confocal detection allows for a three-dimensional reconstruction with high accuracy of the refractive-index measurement of the object that is to be imaged. This has been applied to reconstruction of the refractive index of an arrayed waveguide in a region in which a defect in the sample is present. The results of this paper highlight the synergism of far-field microscopies integrated with scanned probe microscopies and restoration algorithms for phase reconstruction.
Physical properties of new binary antiferroelectric liquid crystal mixtures
NASA Astrophysics Data System (ADS)
Fitas, Jakub; Jaworska-Gołąb, Teresa; Deptuch, Aleksandra; Tykarska, Marzena; Kurp, Katarzyna; Żurowska, Magdalena; Marzec, Monika
2018-02-01
Three newly prepared binary mixtures exhibiting chiral tilted smectic phases have been studied using differential scanning calorimetry, dielectric spectroscopy and electro-optic method, as well as X-ray diffraction. Broad temperature range of ferroelectric and antiferroelectric phases was detected in these mixtures and temperature dependence of spontaneous polarization, tilt angle and switching time were measured for all of them. It's occurred that all of the studied mixtures are orthoconic antiferroelectric liquid crystals. Based on the X-ray diffraction results, the temperature dependence of layer thickness in the paraelectric, ferroelectric and antiferroelectric phases was found. By using dielectric spectroscopy, Goldstone mode was identified in the ferroelectric phase, while antiphase fluctuations of azimuthal angle have been found in the antiferroelectric phase. Based on the results of the complementary methods, the transition temperatures were found as well as the order of the para-ferroelectric phase transition was determined as non-continuous one with critical parameter β equal to ca. 0.25.
Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi
2017-12-06
Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.
Determination of esters in glycerol phase after transesterification of vegetable oil.
Hájek, Martin; Skopal, Frantisek; Kwiecien, Jirí; Cernoch, Michal
2010-06-30
In biodiesel production, glycerol is formed as a side product and it is contained in the glycerol phase. This phase contains (besides glycerol): water, soaps, alcohol, traces of catalyst and glycerides and the remaining esters. In this paper, a new method for the determination of esters in the glycerol phase is introduced. The determination enables the minimization of the losses of biodiesel within the production process. It is based on the gradient RP-LC method (water and acetonitrile) with refractometric detection. The analysis is easy and the samples do not need any treatment (only dilution by water) and has a low detection limit. The results of this method were compared with the results of two other published methods: isocratic HPLC and GC. The disadvantage of these two methods is that they need extensive treatment of the sample, which takes many hours, and they are able to determine only the sum of esters. The new method is reliable, much faster and able to differentiate esters of almost each higher fatty acid (e.g. linoleic, linolenic, strearic alkyl ester) in the glycerol phase. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi
2008-01-01
A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase-shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise at the SOA output are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. It is also shown that Gaussian distribution can be useful as a good approximation of the total differential phase noise statistics in the whole operation range. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.
Anfodillo, Tommaso; Deslauriers, Annie; Menardi, Roberto; Tedoldi, Laura; Petit, Giai; Rossi, Sergio
2012-01-01
The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8–12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r2=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified. PMID:22016427
Anfodillo, Tommaso; Deslauriers, Annie; Menardi, Roberto; Tedoldi, Laura; Petit, Giai; Rossi, Sergio
2012-01-01
The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8-12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r(2)=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified.
Anatomical background noise power spectrum in differential phase contrast breast images
NASA Astrophysics Data System (ADS)
Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong
2015-03-01
In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.
Liu, Xin; Shu, Xuewen
2017-08-20
All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.
A simple method to measure critical angles for high-sensitivity differential refractometry.
Zilio, S C
2012-01-16
A total internal reflection-based differencial refractometer, capable of measuring the real and imaginary parts of the complex refractive index in real time, is presented. The device takes advantage of the phase difference acquired by s- and p-polarized light to generate an easily detectable minimum at the reflected profile. The method allows to sensitively measuring transparent and turbid liquid samples.
USDA-ARS?s Scientific Manuscript database
This study was undertaken to determine if changes in lipid phase behavior could be used to detect lost viability in lettuce (Lactuca sativa) seeds. We used seeds from the cultivar ‘Black Seeded Simpson’ that were purchased every 2-3 years since 1989 and stored in resealable plastic bags at constan...
1984-12-31
Code) Washington, DC 20375-5000 8a AEO UDN POSRN FIESMO 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (if aplicable ) Naa i ~ Proulion...pentane mobile phase was maintained at a flow rate of 6.0 ml/min with a Milton Roy Constametric pump operating in the 400-600 psi range. The injector was
NASA Astrophysics Data System (ADS)
Shao, Liyang; Zhang, Yunpeng; Li, Zonglei; Zhang, Zhiyong; Zou, Xihua; Luo, Bin; Pan, Wei; Yan, Lianshan
2016-11-01
Logarithmic detectors (LogDs) have been used in coherent Brillouin optical time-domain analysis (BOTDA) sensors to reduce the effect of phase fluctuation, demodulation complexities, and measurement time. However, because of the inherent properties of LogDs, a DC component at the level of hundreds of millivolts that prohibits high-gain signal amplification (SA) could be generated, resulting in unacceptable data acquisition (DAQ) inaccuracies and decoding errors in the process of prototype integration. By generating a reference light at a level similar to the probe light, differential detection can be applied to remove the DC component automatically using a differential amplifier before the DAQ process. Therefore, high-gain SA can be employed to reduce quantization errors. The signal-to-noise ratio of the weak Brillouin gain signal is improved from ˜11.5 to ˜21.8 dB. A BOTDA prototype is implemented based on the proposed scheme. The experimental results show that the measurement accuracy of the Brillouin frequency shift (BFS) is improved from ±1.9 to ±0.8 MHz at the end of a 40-km sensing fiber.
Pangerc, Urška; Jager, Franc
2015-08-01
In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).
Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis
Kim, Tae Kyoung; Jang, Hyun-Jung
2014-01-01
Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents are useful for the diagnosis of the nodules in liver cirrhosis. CEUS can be used as a problem-solving method for indeterminate nodules on computed tomography (CT) or magnetic resonance imaging (MRI) or as an initial diagnostic test for small newly detected liver nodules. CEUS has unique advantages over CT and MRI including no renal excretion of contrast, real-time imaging capability, and purely intravascular contrast. Hepatocellular carcinoma (HCC) is characterized by arterial-phase hypervascularity and later washout (negative enhancement). Benign nodules such as regenerative nodules or dysplastic nodules are usually isoechoic or slightly hypoechoic in the arterial phase and isoechoic in the late phase. However, there are occasional HCC lesions with atypical enhancement including hypovascular HCC and hypervascular HCC without washout. Cholangiocarcinomas are infrequently detected during HCC surveillance and mostly show rim-like or diffuse hypervascularity followed by rapid washout. Hemangiomas are often found at HCC surveillance and are easily diagnosed by CEUS. CEUS can be effectively used in the diagnostic work-up of small nodules detected at HCC surveillance. CEUS is also useful to differentiate malignant and benign venous thrombosis and to guide and monitor the local ablation therapy for HCC. PMID:24707142
Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis.
Kim, Tae Kyoung; Jang, Hyun-Jung
2014-04-07
Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents are useful for the diagnosis of the nodules in liver cirrhosis. CEUS can be used as a problem-solving method for indeterminate nodules on computed tomography (CT) or magnetic resonance imaging (MRI) or as an initial diagnostic test for small newly detected liver nodules. CEUS has unique advantages over CT and MRI including no renal excretion of contrast, real-time imaging capability, and purely intravascular contrast. Hepatocellular carcinoma (HCC) is characterized by arterial-phase hypervascularity and later washout (negative enhancement). Benign nodules such as regenerative nodules or dysplastic nodules are usually isoechoic or slightly hypoechoic in the arterial phase and isoechoic in the late phase. However, there are occasional HCC lesions with atypical enhancement including hypovascular HCC and hypervascular HCC without washout. Cholangiocarcinomas are infrequently detected during HCC surveillance and mostly show rim-like or diffuse hypervascularity followed by rapid washout. Hemangiomas are often found at HCC surveillance and are easily diagnosed by CEUS. CEUS can be effectively used in the diagnostic work-up of small nodules detected at HCC surveillance. CEUS is also useful to differentiate malignant and benign venous thrombosis and to guide and monitor the local ablation therapy for HCC.
NASA Astrophysics Data System (ADS)
Aurongzeb, Deeder
2010-11-01
Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin
Hydrogen in Martian Meteorites
NASA Technical Reports Server (NTRS)
Peslier, A. H.; Hervig, R.; Irving, T.
2017-01-01
Most volatile studies of Mars have targeted its surface via spacecraft and rover data, and have evidenced surficial water in polar caps and the atmosphere, in the presence of river channels, and in the detection of water bearing minerals. The other focus of Martian volatile studies has been on Martian meteorites which are all from its crust. Most of these studies are on hydrous phases like apatite, a late-stage phase, i.e. crystallizing near the end of the differentiation sequence of Martian basalts and cumulates. Moreover, calculating the water content of the magma a phosphate crystallized from is not always possible, and yet is an essential step to estimate how much water was present in a parent magma and its source. Water, however, is primarily dissolved in the interiors of differentiated planets as hydrogen in lattice defects of nominally anhydrous minerals (olivine, pyroxene, feldspar) of the crust and mantle. This hydrogen has tremendous influence, even in trace quantities, on a planet's formation, geodynamics, cooling history and the origin of its volcanism and atmosphere as well as its potential for life. Studies of hydrogen in nominally anhydrous phases of Martian meteorites are rare. Measuring water contents and hydrogen isotopes in well-characterized nominally anhydrous minerals of Martian meteorites is the goal of our study. Our work aims at deciphering what influences the distribution and origin of hydrogen in Martian minerals, such as source, differentiation, degassing and shock.
Differential expression of catalases in Vibrio parahaemolyticus under various stress conditions.
Lin, Ling-Chun; Lin, Guang-Huey; Wang, Zi-Li; Tseng, Yi-Hsiung; Yu, Mei-Shiuan
2015-10-01
Among antioxidant enzymes, catalases protect microorganisms by degrading hydrogen peroxide under oxidative stress. In this study, the activities of at least four Vibrio parahaemolyticus catalases (Kat1 to Kat4) were differentially detected during different growth stages and under various stress conditions using zymographic analysis. Our results showed that only Kat2 is stable at 55 °C. Kat1 and Kat2 respond to hydrogen peroxide during the early stationary and exponential growth phases, respectively and the response decreases upon entering the stationary phase. Kat3 and Kat4 are bifunctional, exhibiting both catalase and peroxidase activities and are only expressed during the stationary phase, under starvation or under stress at pH 5.5. Our study also shows that expression of Kat3 and Kat4 depends on RpoS. We confirm that both monofunctional and bifunctional catalases are expressed and function differentially under various stresses to contribute total catalase activities for the survival of V. parahaemolyticus. A comparative genomic study among Vibrio species revealed that only V. parahaemolyticus contains two copies of genes that encode monofunctional and bifunctional catalases. We propose that both types of catalases, whether evolved or acquired horizontally through long-term evolution, may play crucial protective roles in V. parahaemolyticus in response to environmental fluctuations. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Matsui, T.; Dolan, B.; Tao, W. K.; Rutledge, S. A.; Iguchi, T.; Barnum, J. I.; Lang, S. E.
2017-12-01
This study presents polarimetric radar characteristics of intense convective cores derived from observations as well as a polarimetric-radar simulator from cloud resolving model (CRM) simulations from Midlatitude Continental Convective Clouds Experiment (MC3E) May 23 case over Oklahoma and a Tropical Warm Pool-International Cloud Experiment (TWP-ICE) Jan 23 case over Darwin, Australia to highlight the contrast between continental and maritime convection. The POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a state-of-art T-matrix-Mueller-Matrix-based polarimetric radar simulator that can generate synthetic polarimetric radar signals (reflectivity, differential reflectivity, specific differential phase, co-polar correlation) as well as synthetic radar retrievals (precipitation, hydrometeor type, updraft velocity) through the consistent treatment of cloud microphysics and dynamics from CRMs. The Weather Research and Forecasting (WRF) model is configured to simulate continental and maritime severe storms over the MC3E and TWP-ICE domains with the Goddard bulk 4ICE single-moment microphysics and HUCM spectra-bin microphysics. Various statistical diagrams of polarimetric radar signals, hydrometeor types, updraft velocity, and precipitation intensity are investigated for convective and stratiform precipitation regimes and directly compared between MC3E and TWP-ICE cases. The result shows MC3E convection is characterized with very strong reflectivity (up to 60dBZ), slight negative differential reflectivity (-0.8 0 dB) and near-zero specific differential phase above the freezing levels. On the other hand, TWP-ICE convection shows strong reflectivity (up to 50dBZ), slight positive differential reflectivity (0 1.0 dB) and differential phase (0 0.8 dB/km). Hydrometeor IDentification (HID) algorithm from the observation and simulations detect hail-dominant convection core in MC3E, while graupel-dominant convection core in TWP-ICE. This land-ocean contrast agrees with the previous studies using the radar and radiometer signals from TRMM satellite climatology associated with warm-cloud depths and vertical structure of buoyancy.
An automated multi-scale network-based scheme for detection and location of seismic sources
NASA Astrophysics Data System (ADS)
Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.
2017-12-01
We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.
Antigens to detect the acute phase of toxoplasmosis in pregnant women: standardized comparison.
Costa, Juan Gabriel; Vilariño, María Julia
2018-05-01
A key element in any diagnostic technique is the antigen (Ag), a biomarker, but this is usually a protein that has a function to the parasite. Some biological aspects of the Ags and of the Toxoplasma gondii can influence the effectiveness of the diagnosis, as well as the antibody isotype and the characteristics of the assay. A large number of papers have assessed different proteins to distinguish the phases of infection, but the 'indices of effectiveness' differ among reports. This work presents for the first time a summary of all the Ags that have been evaluated, with standardized measurements of sensitivity and specificity. These values were calculated with information presented in the papers on Ag evaluations to differentiate the infection phases.
In vitro osteoblastic differentiation of human bone marrow cells in the presence of metal ions.
Morais, S; Dias, N; Sousa, J P; Fernandes, M H; Carvalho, G S
1999-02-01
For periods up to 21 days human bone marrow was cultured in control conditions that favor the proliferation and differentiation of osteoblastic cells. The effect of AISI 316L corrosion products and the corresponding major separate metal ions (Fe, Cr, and Ni) were studied in three different phases of the culture period in order to investigate the effects of metal ions in cell populations representative of osteoblastic cells in different stages of differentiation. Toxicity consequences of the presence of metal ions in bone marrow cultures were evaluated by biochemical parameters (enzymatic reduction of MTT, alkaline phosphatase activity, and total protein content), histochemical assays (identification of ALP-positive cells and Ca and phosphates deposits), and observation of the cultures by light and scanning electron microscopy. Culture media were analyzed for total and ionized Ca and P and also for metal ions (Fe, Cr, and Ni). The presence of AISI 316L corrosion products and Ni salt in bone marrow cultures during the first and second weeks of culture significantly disturbs the normal behavior of these cultures, interfering in the lag phase and exponential phase of cell growth and ALP expression. However, the presence of these species during the third week of culture, when expression of osteoblastic functions occurs (mineralization process), did not result in any detectable effect. Fe salt also disturbs the behavior of bone marrow cell cultures when present during the lag phase and proliferation phase, and a somewhat compromised response between the normal pattern (control cultures) and intense inhibition (AISI 316L corrosion products and Ni salt-added cultures) was observed. Fe did not affect the progression of the mineralization phase. Osteogenic cultures exposed to Cr salt (Cr3+) presented a pattern similar to the controls, indicating that this element does not interfere, in the concentration studied, in the osteoblastic differentiation of bone marrow cells. Quantification of metal ions in the culture media showed that Cr (originated from AISI 316L corrosion products but from not Cr3+ salt) and Ni (originated from AISI 316L corrosion products and Ni salt) appear to be retained by the bone marrow cultures. Copyright 1999 John Wiley & Sons, Inc.
Hetterich, Holger; Webber, Nicole; Willner, Marian; Herzen, Julia; Birnbacher, Lorenz; Hipp, Alexander; Marschner, Mathias; Auweter, Sigrid D; Habbel, Christopher; Schüller, Ulrich; Bamberg, Fabian; Ertl-Wagner, Birgit; Pfeiffer, Franz; Saam, Tobias
2016-09-01
To evaluate the potential of grating-based phase-contrast computed-tomography (gb-PCCT) to classify human carotid and coronary atherosclerotic plaques according to modified American Heart Association (AHA) criteria. Experiments were carried out at a laboratory-based set-up consisting of X-ray tube (40 kVp), grating-interferometer and detector. Eighteen human carotid and coronary artery specimens were examined. Histopathology served as the standard of reference. Vessel cross-sections were classified as AHA lesion type I/II, III, IV/V, VI, VII or VIII plaques by two independent reviewers blinded to histopathology. Conservative measurements of diagnostic accuracies for the detection and differentiation of plaque types were evaluated. A total of 127 corresponding gb-PCCT/histopathology sections were analyzed. Based on histopathology, lesion type I/II was present in 12 (9.5 %), III in 18 (14.2 %), IV/V in 38 (29.9 %), VI in 16 (12.6 %), VII in 34 (26.8 %) and VIII in 9 (7.0 %) cross-sections. Sensitivity, specificity and positive and negative predictive value were ≥0.88 for most analyzed plaque types with a good level of agreement (Cohen's kappa = 0.90). Overall, results were better in carotid (kappa = 0.97) than in coronary arteries (kappa = 0.85). Inter-observer agreement was high with kappa = 0.85, p < 0.0001. These results indicate that gb-PCCT can reliably classify atherosclerotic plaques according to modified AHA criteria with excellent agreement to histopathology. • Different atherosclerotic plaque types display distinct morphological features in phase-contrast CT. • Phase-contrast CT can detect and differentiate AHA plaque types. • Calcifications caused streak artefacts and reduced sensitivity in type VI lesions. • Overall agreement was higher in carotid than in coronary arteries.
Abdul-Wahid, Aws; Faubert, Gaétan
2008-05-01
During the course of a giardial infection, the host's immune system is presented with a variety of Giardia antigens as trophozoites differentiate, through encysting cells, to form the infective cysts. Previous studies examining the host's immune response during giardial infections have focused on trophozoite-derived antigens (Ags). In this study, we were interested to determine if the host's immune system reacts to cyst Ags during the acute and elimination phases, when there is cyst shedding. For this purpose, we used antigenic extracts from trophozoites (Troph), encysting cells (ENC), and purified giardial cyst walls (PCW), as well as purified recombinant cyst wall protein 2 (rCWP2). Comparative analysis of the parasite extracts using SDS-PAGE analysis and surface-enhanced laser desorption/ionization time of flight mass spectrometry resulted in the detection of 175 protein entities, of which 26 were Troph-specific proteins, 17 ENC-specific proteins, and 31 were PCW-specific proteins. On the other hand, we detected 34 proteins shared between Troph and ENC, 19 proteins that were shared between ENC and PCW, and 29 proteins that were common to Troph and PCW. Finally, we detected 19 proteins that were shared by all three extract samples. BALB/c mice were infected with 10(5)Giardia muris cysts and sacrificed either at the acute or elimination phases of infection (days 12 and 40, respectively), and lymphocytes were isolated from the Peyer's patches (PP). Using flow cytometry, we detected significant increases in the number of PP-derived CD4(+) and CD19(+), but not CD8(+) lymphocytes. Quantification of the number of mucosal IL-4 and IFN-gamma secreting T-lymphocytes by enzyme-linked immunosorbent spot assay showed that these cells reacted by secreting similar levels of IL-4 and IFN-gamma, regardless of the Ag or the phase of infection. Analysis of intestinal humoral immune responses by ELISA resulted in the detection of Ag-specific IgA and IgG intestinal antibodies. Regardless of the Ag tested, a trend was consistently observed where the concentration of local antibodies was found to be slightly increased by the acute phase, where we detected approximately 200microg/mg of specific IgA and approximately 300ng/ml of specific IgG in intestinal lavage of infected mice. By the elimination phase, the amount of specific antibodies was found to increase to approximately 600microg/mg of specific IgA and approximately 1300ng/ml of specific IgG antibodies. Finally, we tested the biological activity of these antibodies and found that they were able to reduce the ability of trophozoites to differentiate into cysts in vitro. Collectively, we believe these results demonstrate for the first time the existence of significant cellular and humoral immune responses against Giardia cyst Ags that may contribute to the reduction of cyst shedding in infected animals.
Wynwood, Sarah J.; Burns, Mary-Anne A.; Graham, Glenn C.; Weier, Steven L.; McKay, David B.; Craig, Scott B.
2015-01-01
A microsphere immunoassay (MIA) utilising Luminex xMap technology that is capable of determining leptospirosis IgG and IgM independently was developed. The MIA was validated using 200 human samples submitted for routine leptospirosis serology testing. The traditional microscopic agglutination (MAT) method (now 100 years old) suffers from a significant range of technical problems including a dependence on antisera which is difficult to source and produce, false positive reactions due to auto-agglutination and an inability to differentiate between IgG and IgM antibodies. A comparative validation method of the MIA against the MAT was performed and used to determine the ability of the MIA to detect leptospiral antibodies when compared with the MAT. The assay was able to determine samples in the reactive, equivocal and non-reactive ranges when compared to the MAT and was able to differentiate leptospiral IgG antibodies from leptospiral IgM antibodies. The MIA is more sensitive than the MAT and in true infections was able to detect low levels of antibody in the later stages of the acute phase as well as detect higher levels of IgM antibody earlier in the immune phase of the infection. The relatively low cost, high throughput platform and significantly reduced dependency on large volumes of rabbit antisera make this assay worthy of consideration for any microbiological assay that currently uses agglutination assays. PMID:25807009
An improved pi/4-QPSK with nonredundant error correction for satellite mobile broadcasting
NASA Technical Reports Server (NTRS)
Feher, Kamilo; Yang, Jiashi
1991-01-01
An improved pi/4-quadrature phase-shift keying (QPSK) receiver that incorporates a simple nonredundant error correction (NEC) structure is proposed for satellite and land-mobile digital broadcasting. The bit-error-rate (BER) performance of the pi/4-QPSK with NEC is analyzed and evaluated in a fast Rician fading and additive white Gaussian noise (AWGN) environment using computer simulation. It is demonstrated that with simple electronics the performance of a noncoherently detected pi/4-QPSK signal in both AWGN and fast Rician fading can be improved. When the K-factor (a ratio of average power of multipath signal to direct path power) of the Rician channel decreases, the improvement increases. An improvement of 1.2 dB could be obtained at a BER of 0.0001 in the AWGN channel. This performance gain is achieved without requiring any signal redundancy and additional bandwidth. Three types of noncoherent detection schemes of pi/4-QPSK with NEC structure, such as IF band differential detection, baseband differential detection, and FM discriminator, are discussed. It is concluded that the pi/4-QPSK with NEC is an attractive scheme for power-limited satellite land-mobile broadcasting systems.
Pi/4-QPSK modems for satellite sound/data broadcast systems
NASA Technical Reports Server (NTRS)
Liu, Chia-Liang; Feher, Kamilo
1991-01-01
The use of pi/4-quadrature phase-shift keying (QPSK) modems for satellite sound broadcast systems (SSBS) broadcasting to mobile or portable receivers is proposed. Three different differential detectors (including the FM-discriminator followed by integrate-sample-and-dump filter) and a novel coherent detector are discussed. The degradation caused by the frequency offset between the local oscillator (LO) and the unmodulated carrier (CR) in the baseband differential detector is studied. The performance of both coherently and differentially detected pi/4-QPSK in a Gaussian channel is also studied. It is shown that with a frequency offset of more than 3 percent of the symbol rate, the performance degradation is more than 1 dB at 0.0001. The out-of-band power of the nonlinearly amplified bandlimited pi/4-QPSK signals is reduced from -13 dB to -37 dB if a 2-dB output back-off amplifier is used instead of a hardlimiter. The performance of the pi/4-QPSK is equivalent to that of QPSK, although the pi/4-QPSK has the advantage of less spectrum restoration after nonlinear amplification. The coherent demodulator and differential decoder avoid the three-level detection and achieve the same bit-error-rate performance as DEQPSK with a simple circuit.
Detecting topological phases in silicene by anomalous Nernst effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yafang; Zhou, Xingfei; Jin, Guojun, E-mail: gjin@nju.edu.cn
2016-05-16
Silicene undergoes various topological phases under the interplay of intrinsic spin-orbit coupling, perpendicular electric field, and off-resonant light. We propose that the abundant topological phases can be distinguished by measuring the Nernst conductivity even at room temperature, and their phase boundaries can be determined by differentiating the charge and spin Nernst conductivities. By modulating the electric and light fields, pure spin polarized, valley polarized, and even spin-valley polarized Nernst currents can be generated. As Nernst conductivity is zero for linear polarized light, silicene can act as an optically controlled spin and valley field-effect transistor. Similar investigations can be extended frommore » silicene to germanene and stanene, and a comparison is made for the anomalous thermomagnetic figure of merits between them. These results will facilitate potential applications in spin and valley caloritronics.« less
NASA Astrophysics Data System (ADS)
Pott, J.-U.; Woillez, J.; Ragland, S.; Wizinowich, P. L.; Eisner, J. A.; Monnier, J. D.; Akeson, R. L.; Ghez, A. M.; Graham, J. R.; Hillenbrand, L. A.; Millan-Gabet, R.; Appleby, E.; Berkey, B.; Colavita, M. M.; Cooper, A.; Felizardo, C.; Herstein, J.; Hrynevych, M.; Medeiros, D.; Morrison, D.; Panteleeva, T.; Smith, B.; Summers, K.; Tsubota, K.; Tyau, C.; Wetherell, E.
2010-07-01
Recently, the Keck interferometer was upgraded to do self-phase-referencing (SPR) assisted K-band spectroscopy at R ~ 2000. This means, combining a spectral resolution of 150 km/s with an angular resolution of 2.7 mas, while maintaining high sensitiviy. This SPR mode operates two fringe trackers in parallel, and explores several infrastructural requirements for off-axis phase-referencing, as currently being implemented as the KI-ASTRA project. The technology of self-phasereferencing opens the way to reach very high spectral resolution in near-infrared interferometry. We present the scientific capabilities of the KI-SPR mode in detail, at the example of observations of the Be-star 48 Lib. Several spectral lines of the cirumstellar disk are resolved. We describe the first detection of Pfund-lines in an interferometric spectrum of a Be star, in addition to Br γ. The differential phase signal can be used to (i) distinguish circum-stellar line emission from the star, (ii) to directly measure line asymmetries tracing an asymetric gas density distribution, (iii) to reach a differential, astrometric precision beyond single-telescope limits sufficient for studying the radial disk structure. Our data support the existence of a radius-dependent disk density perturbation, typically used to explain slow variations of Be-disk hydrogen line profiles.
NASA Astrophysics Data System (ADS)
NOH, Y. J.; Miller, S. D.; Heidinger, A. K.
2015-12-01
Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising potential of the algorithm.
Amjadi, Fatemehsadat; Mehdizadeh, Mehdi; Ashrafi, Mahnaz; Nasrabadi, Davood; Taleahmad, Sara; Mirzaei, Mehdi; Gupta, Vivek; Salekdeh, Ghasem Hosseini; Aflatoonian, Reza
2018-04-21
What is the molecular basis of infertility related to uterine dysfunction in women with polycystic ovary syndrome (PCOS)? In this study, differences in protein expression between PCOS and normal endometrium were identified using a proteomic approach based on two-dimensional electrophoresis (2-DE) coupled with mass spectrometry (MS). The proteome of endometrium were analysed during the proliferative (on day 2 or 3 before ovulation, n = 6) and luteal phases (on day 3-5 after ovulation, n = 6) from healthy women and PCOS patients (12-14 days after spontaneous bleeding, n = 12). The differentially expressed proteins were categorized based on the biological process using the DAVID bioinformatics resources. Over 803 reproducible protein spots were detected on gels, and 150 protein spots showed different intensities between PCOS and normal women during the proliferative and luteal phases. MS analysis detected 70 proteins out of 150 spots. For four of the 70 proteins, 14-3-3 protein, annexin A5, SERPINA1 and cathepsin D, 2-DE results were validated and localized by Western blot and immunohistochemistry, respectively, and their gene expression profiles were confirmed by real-time quantitative PCR. The obtained results corresponded to the proteomic analysis. The differentially expressed proteins identified are known to be involved in apoptosis, oxidative stress, inflammation and the cytoskeleton. The processes related to the differentially expressed proteins play important roles in fecundity and fecundability. The present study may reveal the cause of various endometrial aberrations as a limiting factor for achieving pregnancy in PCOS women. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Differential phase measurements of D-region partial reflections
NASA Technical Reports Server (NTRS)
Wiersma, D. J.; Sechrist, C. F., Jr.
1972-01-01
Differential phase partial reflection measurements were used to deduce D region electron density profiles. The phase difference was measured by taking sums and differences of amplitudes received on an array of crossed dipoles. The reflection model used was derived from Fresnel reflection theory. Seven profiles obtained over the period from 13 October 1971 to 5 November 1971 are presented, along with the results from simultaneous measurements of differential absorption. Some possible sources of error and error propagation are discussed. A collision frequency profile was deduced from the electron concentration calculated from differential phase and differential absorption.
Differentially expressed regulatory genes in honey bee caste development
NASA Astrophysics Data System (ADS)
Hepperle, C.; Hartfelder, K.
2001-03-01
In the honey bee, an eminently fertile queen with up to 200 ovarioles per ovary monopolizes colony level reproduction. In contrast, worker bees have only few ovarioles and are essentially sterile. This phenotype divergence is a result of caste-specifically modulated juvenile hormone and ecdysteroid titers in larval development. In this study we employed a differential-display reverse transcription (DDRT)-PCR protocol to detect ecdysteroid-regulated gene expression during a critical phase of caste development. We identified a Ftz-F1 homolog and a Cut-like transcript. Ftz-F1 could be a putative element of the metamorphic ecdysone response cascade of bees, whereas Cut-like proteins are described as transcription factors involved in maintaining cellular differentiation states. The downregulation of both factors can be interpreted as steps in the metamorphic degradation of ovarioles in worker-bee ovaries.
Nguyen-Huynh, Anh; Wang, Ruikang K.; Jacques, Steven L.; Choudhury, Niloy; Nuttall, Alfred L.
2012-01-01
Abstract. We describe a novel application of spectral-domain phase-sensitive optical coherence tomography (SD PS-OCT) to detect the tiny motions of the middle ear structures, such as the tympanic membrane and ossicular chain, and their morphological features for differential diagnosis of CHL. This technique has the potential to provide meaningful vibration of ossicles with a vibration sensitivity of ∼0.5 nm at 1 kHz of acoustic stimulation. To the best of our knowledge, this is the first demonstration of depth-resolved vibration imaging of ossicles with a PS-OCT system at a nanometer scale. PMID:22734728
Phase jitter in a differential phase experiment.
NASA Technical Reports Server (NTRS)
Tanenbaum, B. S.; Connolly, D. J.; Austin, G. L.
1973-01-01
Austin (1971) had concluded that, because of the 'phase jitter,' the differential phase experiment is useful over a more limited height range than the differential absorption experiment. Several observations are presented to show that this conclusion is premature. It is pointed out that the logical basis of the differential absorption experiment also requires that the O- and X-mode echoes, at a given time, come from the same irregularities. Austin's calculations are believed to contain a systematic error above 80 km.
NASA Astrophysics Data System (ADS)
Robert, Clélia; Conan, Jean-Marc; Wolf, Peter
2016-06-01
Bidirectional ground-satellite laser links suffer from turbulence-induced scintillation and phase distortion. We study how turbulence impacts on coherent detection capacity and on the associated phase noise that restricts clock transfer precision. We evaluate the capacity to obtain a two-way cancellation of atmospheric effects despite the asymmetry between up and down link that limits the link reciprocity. For ground-satellite links, the asymmetry is induced by point-ahead angle and possibly the use, for the ground terminal, of different transceiver diameters, in reception and emission. The quantitative analysis is obtained thanks to refined end- to-end simulations under realistic turbulence and wind conditions as well as satellite cinematic. These temporally resolved simulations allow characterizing the coherent detection in terms of time series of heterodyne efficiency for different system parameters. We show that Tip/Tilt correction on ground is mandatory at reception for the down link and as a pre-compensation of the up link. Good correlation between up and down phase noise is obtained even with asymmetric apertures of the ground transceiver and in spite of pointing ahead angle. The reduction to less than 1 rad2 of the two-way differential phase noise is very promising for clock comparisons.
Differential Activity-Driven Instabilities in Biphasic Active Matter
NASA Astrophysics Data System (ADS)
Weber, Christoph A.; Rycroft, Chris H.; Mahadevan, L.
2018-06-01
Active stresses can cause instabilities in contractile gels and living tissues. Here we provide a generic hydrodynamic theory that treats these systems as a mixture of two phases of varying activity and different mechanical properties. We find that differential activity between the phases causes a uniform mixture to undergo a demixing instability. We follow the nonlinear evolution of the instability and characterize a phase diagram of the resulting patterns. Our study complements other instability mechanisms in mixtures driven by differential adhesion, differential diffusion, differential growth, and differential motion.
Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter
NASA Astrophysics Data System (ADS)
Watanabe, N.; Hashizume, J.; Goto, M.; Yamaguchi, M.; Tsujimura, T.; Aoki, S.
2013-10-01
An x-ray differential phase microscope with a Foucault knife-edge scanning filter was set up at the bending magnet source BL3C, Photon Factory. A reconstructed phase profile from the differential phase image of an aluminium wire at 5.36 keV was fairly good agreement with the numerical simulation. Phase tomography of a biological specimen, such as an Artemia cyst, could be successfully demonstrated.
Purification of selenium by zone refining
NASA Astrophysics Data System (ADS)
Burger, A.; Henderson, D. O.; Morgan, S. H.; Feng, J.; Silberman, E.
1990-11-01
We studied the purification of Se using zone refining, with emphasis on the efficiency of this technique in removing the Cu impurity, which is known to be related to a trapping center in CdSe. After 78 passes it was found that Cu accumulates at one end section of the ingot, while at the opposite end the level was below the detection limit of the atomic absorption spectroscopic analysis employed. Infrared spectroscopic data, differential solubility and differential scanning calorimetry measurements also indicate that the effective distribution coefficient, k, for the Cu solute, is less than 1. A model for the various phases present during zone melting is presented and the possibility of segregating impurities having k>1 is discussed.
NASA Technical Reports Server (NTRS)
Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey
2010-01-01
A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.
Toyota, Naoyuki; Nakamura, Yuko; Hieda, Masashi; Akiyama, Naoko; Terada, Hiroaki; Matsuura, Noriaki; Nishiki, Masayo; Kono, Hirotaka; Kohno, Hiroshi; Irei, Toshimitsu; Yoshikawa, Yukinobu; Kuraoka, Kazuya; Taniyama, Kiyomi; Awai, Kazuo
2013-09-01
The purpose of this study was to evaluate the diagnostic capability of gadoxetate disodium (Gd-EOB)-MRI for the detection of hepatocellular carcinoma (HCC) compared with multidetector CT (MDCT). Fifty patients with 57 surgically proven HCCs who underwent Gd-EOB-MRI and MDCT from March 2008 to June 2011 were evaluated. Two observers evaluated MR and CT on a lesion-by-lesion basis. We analyzed sensitivity by grading on a 5-point scale, the degree of arterial enhancement and the differences in histological grades in the diffusion-weighted images (DWI). The results showed that the sensitivity of Gd-EOB-MRI was higher than that of MDCT especially for HCCs that were 1 cm in diameter or smaller. The hepatobiliary phase was useful for the detecting of small HCC. We had few cases in which it was difficult to judge HCC in the arterial enhancement between MRI and MDCT. In the diffusion-weighted image, well differentiated HCC tended to show a low signal intensity, and poorly differentiated HCC tended to show a high signal intensity. In moderately differentiated HCC's, the mean diameter of the high signal intensity group was larger than that of the low signal intensity group (24.5 mm vs. 15.8 mm). In conclusion, Gd-EOB-MRI tended to show higher sensitivity compared to MDCT in the detection of HCC.
NASA Astrophysics Data System (ADS)
Li, Ke; Zambelli, Joseph; Bevins, Nicholas; Ge, Yongshuai; Chen, Guang-Hong
2013-06-01
By adding a Talbot-Lau interferometer to a conventional x-ray absorption computed tomography (CT) imaging system, both differential phase contrast (DPC) signal and absorption contrast signal can be simultaneously measured from the same set of CT measurements. The imaging performance of such multi-contrast x-ray CT imaging systems can be characterized with standard metrics such as noise variance, noise power spectrum, contrast-to-noise ratio, modulation transfer function (MTF), and task-based detectability index. Among these metrics, the measurement of the MTF can be challenging in DPC-CT systems due to several confounding factors such as phase wrapping and the difficulty of using fine wires as probes. To address these technical challenges, this paper discusses a viable and reliable method to experimentally measure the MTF of DPC-CT. It has been found that the spatial resolution of DPC-CT is degraded, when compared to that of the corresponding absorption CT, due to the presence of a source grating G0 in the Talbot-Lau interferometer. An effective MTF was introduced and experimentally estimated to describe the impact of the Talbot-Lau interferometer on the system MTF.
Practical nonlinear method for detection of respiratory and cardiac dysfunction in human subjects
NASA Astrophysics Data System (ADS)
Katz, Richard A.; Lawee, Michael S.; Newman, Anthony K.; Weiss, J. Woodrow; Chandra, Shalabh; Grimm, Richard A.; Thomas, James D.
1995-12-01
This research applies novel nonlinear signal detection techniques in studies of human subjects with respiratory and cardiac diseases. One of the studies concerns a breathing disorder during sleep, a disease called Obstructive Sleep Apnea (OSA). In a second study we investigate a disease of the heart, Atrial Fibrillation (AF). The former study involves nonlinear processing of the time sequences of sleep apnea recordings (cardio-respirograms) collected from patients with known obstructive sleep apnea, and from a normal control. In the latter study, we apply similar nonlinear metrics to Doppler flow measurements obtained by transesophageal echocardiography (TEE). One of our metrics, the 'chaotic radius' is used for tracking the position of points in phase space relative to some reference position. A second metric, the 'differential radius' provides a measure of the separation rate of contiguous (evolving) points in phase space. A third metric, the 'chaotic frequency' gives angular position of the phase space orbit as a function of time. All are useful for identifying change of physiologic condition that is not always apparent using conventional methods.
Differential dynamic microscopy of bidisperse colloidal suspensions.
Safari, Mohammad S; Poling-Skutvik, Ryan; Vekilov, Peter G; Conrad, Jacinta C
2017-01-01
Research tasks in microgravity include monitoring the dynamics of constituents of varying size and mobility in processes such as aggregation, phase separation, or self-assembly. We use differential dynamic microscopy, a method readily implemented with equipment available on the International Space Station, to simultaneously resolve the dynamics of particles of radius 50 nm and 1 μm in bidisperse aqueous suspensions. Whereas traditional dynamic light scattering fails to detect a signal from the larger particles at low concentrations, differential dynamic microscopy exhibits enhanced sensitivity in these conditions by accessing smaller wavevectors where scattering from the large particles is stronger. Interference patterns due to scattering from the large particles induce non-monotonic decay of the amplitude of the dynamic correlation function with the wavevector. We show that the position of the resulting minimum contains information on the vertical position of the particles. Together with the simple instrumental requirements, the enhanced sensitivity of differential dynamic microscopy makes it an appealing alternative to dynamic light scattering to characterize samples with complex dynamics.
Ziółkowska, Angelika; Wąsowicz, Erwin; Jeleń, Henryk H
2016-12-15
Among methods to detect wine adulteration, profiling volatiles is one with a great potential regarding robustness, analysis time and abundance of information for subsequent data treatment. Volatile fraction fingerprinting by solid-phase microextraction with direct analysis by mass spectrometry without compounds separation (SPME-MS) was used for differentiation of white as well as red wines. The aim was to differentiate between varieties used for wine production and to also differentiate wines by country of origin. The results obtained were compared to SPME-GC/MS analysis in which compounds were resolved by gas chromatography. For both approaches the same type of statistical procedure was used to compare samples: principal component analysis (PCA) followed by linear discriminant analysis (LDA). White wines (38) and red wines (41) representing different grape varieties and various regions of origin were analysed. SPME-MS proved to be advantageous in use due to better discrimination and higher sample throughput. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Lei; Wang, Wen-Ji; Chen, Rong-Jia; Qian, Jiang; Luo, Chuan-Qi; Zhang, Yong-Jin; Shen, Ying; Ye, Xiao-Feng; Gao, Qiao-Yun
2011-01-01
To investigate the characteristics of fundus fluorescein angiography (FFA) in metastatic choroidal carcinomas and determine the value of FFA in differentiating metastatic choroidal carcinomas from primary choroidal melanomas. It was a retrospective case series. The retrospective analysis of clinical data and FFA findings was performed in 23 eyes of 22 patients with metastatic choroidal carcinomas and 31 eyes of 31 patients with primary choroidal melanomas as the control. Ocular fundus findings of metastatic choroidal carcinomas were divided into three types: solitary flat (tumor thickness less than 3 mm), solitary elevated (tumor thickness more than 3 mm) or diffuse type. FFA of the three types showed hypofluorescence during the arterial phase and progressive hyperfluorescence during the subsequent phases. The border of the lesions revealed retinal capillary dilation during the arteriovenous phase and persistent pinpoint leakage throughout the angiogram. Retinal capillary dilation and pinpoint leakage were more frequently presented in the solitary flat type. Simultaneous visualization of retinal and tumor circulation (the so called double circulation) was more frequently presented in the solitary elevated type. Pinpoint leakage could be detected in 17 (73.91%) eyes of metastatic choroidal carcinomas and in 5 (16.13%) eyes of primary choroidal melanomas. The difference between the visibility of pinpoint leakage in metastatic choroidal carcinomas and primary choroidal melanomas was statistically significant (P = 0.0000). When pinpoint leakage of FFA was used to differentiate metastatic choroidal carcinomas from primary choroidal melanomas, the sensitivity, specificity, accuracy, positive and negative predictive values were 73.91%, 83.87%, 79.63%, 77.27%, 81.25% respectively. FFA is helpful for the diagnosis of metastatic choroidal carcinomas. Pinpoint leakage on the border of lesions has some value in differentiating metastatic choroidal carcinomas from primary choroidal melanomas.
Monitoring/Verification using DMS: TATP Example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan Weeks, Kevin Kyle, Manuel Manard
Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operations-management systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biologicalmore » materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. Fast GC is the leading field analytical method for gas phase separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.« less
Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, Vasily V.; Hall, Gregory E., E-mail: gehall@bnl.gov
We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method ismore » capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region.« less
Giovannelli, D; Abballe, F
2005-08-26
A method has been developed which allows simultaneous determination of three linear alkyl trimethylammonium salts. Dodecyltrimethylammonium chloride, tetradecyltrimethylammonium bromide and hexadecyltrimethylammonium chloride are widely used as main active ingredients of lysing reagents for blood cell analyzers which perform white blood cells differential determination into two or more sub-populations by impedance analysis. The ion-pair on styrene-divinyl benzene chromatographic phase looks like a suitable, reliable and long term stable tool for separation of such quaternary compounds. The detection based on suppressed conductivity was chosen because of the lack of significance chromophores. A micromembrane suppressor device compatible with high solvent concentration (up to 80%) was used in order to minimize the conductivity background before the detection. In the present work we show how the chemical post column derivatization makes the alkyl chain detectable also by UV direct detection at 210 nm.
Balanced detection for self-mixing interferometry to improve signal-to-noise ratio
NASA Astrophysics Data System (ADS)
Zhao, Changming; Norgia, Michele; Li, Kun
2018-01-01
We apply balanced detection to self-mixing interferometry for displacement and vibration measurement, using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The balanced signal obtained by enlarging the self-mixing signal, also by canceling of the common-due noises mainly due to disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the signal-to-noise ratio significantly improves, with almost twice signals enhancement and more than half noise decreasing. This method allows for more robust, longer-distance measurement systems, especially using fringe-counting.
Thermal luminescence spectroscopy chemical imaging sensor.
Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C
2012-10-01
The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.
Fatadin, Irshaad; Ives, David; Savory, Seb J
2013-04-22
The performance of a differential carrier phase recovery algorithm is investigated for the quadrature phase shift keying (QPSK) modulation format with an integrated tunable laser. The phase noise of the widely-tunable laser measured using a digital coherent receiver is shown to exhibit significant drift compared to a standard distributed feedback (DFB) laser due to enhanced low frequency noise component. The simulated performance of the differential algorithm is compared to the Viterbi-Viterbi phase estimation at different baud rates using the measured phase noise for the integrated tunable laser.
Bhowmik, Arka; Repaka, Ramjee; Mulaveesala, Ravibabu; Mishra, Subhash C
2015-07-01
A theoretical study on the quantification of surface thermal response of cancerous human skin using the frequency modulated thermal wave imaging (FMTWI) technique has been presented in this article. For the first time, the use of the FMTWI technique for the detection and the differentiation of skin cancer has been demonstrated in this article. A three dimensional multilayered skin has been considered with the counter-current blood vessels in individual skin layers along with different stages of cancerous lesions based on geometrical, thermal and physical parameters available in the literature. Transient surface thermal responses of melanoma during FMTWI of skin cancer have been obtained by integrating the heat transfer model for biological tissue along with the flow model for blood vessels. It has been observed from the numerical results that, flow of blood in the subsurface region leads to a substantial alteration on the surface thermal response of the human skin. The alteration due to blood flow further causes a reduction in the performance of the thermal imaging technique during the thermal evaluation of earliest melanoma stages (small volume) compared to relatively large volume. Based on theoretical study, it has been predicted that the method is suitable for detection and differentiation of melanoma with comparatively large volume than the earliest development stages (small volume). The study has also performed phase based image analysis of the raw thermograms to resolve the different stages of melanoma volume. The phase images have been found to be clearly individuate the different development stages of melanoma compared to raw thermograms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bashir, Mustafa R; Merkle, Elmar M; Smith, Alastair D; Boll, Daniel T
2012-02-01
To assess whether in vivo dual-ratio Dixon discrimination can improve detection of diffuse liver disease, specifically steatosis, iron deposition and combined disease over traditional single-ratio in/opposed phase analysis. Seventy-one patients with biopsy-proven (17.7 ± 17.0 days) hepatic steatosis (n = 16), iron deposition (n = 11), combined deposition (n = 3) and neither disease (n = 41) underwent MR examinations. Dual-echo in/opposed-phase MR with Dixon water/fat reconstructions were acquired. Analysis consisted of: (a) single-ratio hepatic region-of-interest (ROI)-based assessment of in/opposed ratios; (b) dual-ratio hepatic ROI assessment of in/opposed and fat/water ratios; (c) computer-aided dual-ratio assessment evaluating all hepatic voxels. Disease-specific thresholds were determined; statistical analyses assessed disease-dependent voxel ratios, based on single-ratio (a) and dual-ratio (b and c) techniques. Single-ratio discrimination succeeded in identifying iron deposition (I/O(Ironthreshold)<0.88) and steatosis (I/O(Fatthreshold>1.15)) from normal parenchyma, sensitivity 70.0%; it failed to detect combined disease. Dual-ratio discrimination succeeded in identifying abnormal hepatic parenchyma (F/W(Normalthreshold)>0.05), sensitivity 96.7%; logarithmic functions for iron deposition (I/O(Irondiscriminator)
Lidar/DIAL detection of bomb factories
NASA Astrophysics Data System (ADS)
Fiorani, Luca; Puiu, Adriana; Rosa, Olga; Palucci, Antonio
2013-10-01
One of the aims of the project BONAS (BOmb factory detection by Networks of Advanced Sensors) is to develop a lidar/DIAL (differential absorption lidar) to detect precursors employed in the manufacturing of improvised explosive devices (IEDs). At first, a spectroscopic study has been carried out: the infrared (IR) gas phase spectrum of acetone, one of the more important IED precursors, has been procured from available databases and checked with cell measurements. Then, the feasibility of a lidar/DIAL for the detection of acetone vapors has been shown in laboratory, simulating the experimental conditions of a field campaign. Eventually, having in mind measurements in a real scenario, an interferent study has been performed, looking for all known compounds that share with acetone IR absorption in the spectral band selected for its detection. Possible interfering species were investigated, simulating both urban and industrial atmospheres and limits of acetone detection in both environments were identified. This study confirmed that a lidar/DIAL can detect low concentration of acetone at considerable distances.
Coy, Heidi; Young, Jonathan R; Douek, Michael L; Brown, Matthew S; Sayre, James; Raman, Steven S
2017-07-01
To evaluate the performance of a novel, quantitative computer-aided diagnostic (CAD) algorithm on four-phase multidetector computed tomography (MDCT) to detect peak lesion attenuation to enable differentiation of clear cell renal cell carcinoma (ccRCC) from chromophobe RCC (chRCC), papillary RCC (pRCC), oncocytoma, and fat-poor angiomyolipoma (fp-AML). We queried our clinical databases to obtain a cohort of histologically proven renal masses with preoperative MDCT with four phases [unenhanced (U), corticomedullary (CM), nephrographic (NP), and excretory (E)]. A whole lesion 3D contour was obtained in all four phases. The CAD algorithm determined a region of interest (ROI) of peak lesion attenuation within the 3D lesion contour. For comparison, a manual ROI was separately placed in the most enhancing portion of the lesion by visual inspection for a reference standard, and in uninvolved renal cortex. Relative lesion attenuation for both CAD and manual methods was obtained by normalizing the CAD peak lesion attenuation ROI (and the reference standard manually placed ROI) to uninvolved renal cortex with the formula [(peak lesion attenuation ROI - cortex ROI)/cortex ROI] × 100%. ROC analysis and area under the curve (AUC) were used to assess diagnostic performance. Bland-Altman analysis was used to compare peak ROI between CAD and manual method. The study cohort comprised 200 patients with 200 unique renal masses: 106 (53%) ccRCC, 32 (16%) oncocytomas, 18 (9%) chRCCs, 34 (17%) pRCCs, and 10 (5%) fp-AMLs. In the CM phase, CAD-derived ROI enabled characterization of ccRCC from chRCC, pRCC, oncocytoma, and fp-AML with AUCs of 0.850 (95% CI 0.732-0.968), 0.959 (95% CI 0.930-0.989), 0.792 (95% CI 0.716-0.869), and 0.825 (95% CI 0.703-0.948), respectively. On Bland-Altman analysis, there was excellent agreement of CAD and manual methods with mean differences between 14 and 26 HU in each phase. A novel, quantitative CAD algorithm enabled robust peak HU lesion detection and discrimination of ccRCC from other renal lesions with similar performance compared to the manual method.
Posadas, Inmaculada; Bucci, Mariarosaria; Roviezzo, Fiorentina; Rossi, Antonietta; Parente, Luca; Sautebin, Lidia; Cirino, Giuseppe
2004-01-01
Injection of carrageenan 1% (50 μl) in the mouse paw causes a biphasic response: an early inflammatory response that lasts 6 h and a second late response that peaks at 72 h, declining at 96 h. Only mice 7- or 8-week old, weighing 32–34 g, displayed a consistent response in both phases. In 8-week-old mice, myeloperoxidase (MPO) levels are significantly elevated in the early phase at 6 h and reach their maximum at 24 h to decline to basal value at 48 h. Nitrate+nitrite (NOx) levels in the paw are maximal after 2 h and slowly decline thereafter in contrast to prostaglandin E2 levels that peak in the second phase at the 72 h point. Western blot analysis showed that inducible nitric oxide synthase (iNOS) is detectable at 6 h and cyclooxygenase 2 (COX-2) at 24 h point, respectively. Analysis of endothelial nitric oxide synthase (eNOS), iNOS and COX-2 expression at 6 and 24 h in 3–8-week-old mice demonstrated that both eNOS and iNOS expressions are dependent upon the age–weight of mice, as opposite to COX-2 that is present only in the second phase of the oedema and is not linked to mouse age–weight. Subplantar injection of carrageenan to C57BL/6J causes a biphasic oedema that is significantly reduced by about 20% when compared to CD1 mice. Interestingly, in these mice, iNOS expression is absent up to 6 h, as opposite to CD1, and becomes detectable at the 24 h point. Cyclooxygenase (COX-1) expression is upregulated between 4 and 24 h after carrageenan injection, whereas in CD1 mice COX-1 remains unchanged after irritant agent injection. MPO levels are maximal at the 24 h point and they are significantly lower, at 6 h point, than MPO levels detected in CD1 mice. In conclusion, mouse paw oedema is biphasic and age-weight dependent. The present results are the first report on the differential expressions of eNOS, iNOS, COX-1 and COX-2 in response to carrageenan injection in the two phases of the mouse paw oedema. PMID:15155540
Wang, J S; Wang, W J; Wang, T; Zhang, Y
2016-04-01
To investigate the expression of mRNA and proteins of β-catenin, TCF-4 (ICAT) and Wnt signaling pathway-related genes in the monocytic differentiation of acute myeloid leukemia HL-60 cells induced by a new steroidal drug NSC67657. Wright's staining and α-NBE staining were used to observe the differentiation of HL-60 cells after 5 days of 10 μmol/L NSC67657 treatment. Flow cytometry (FCM) was used to detect the differentiation and cell cycles. The expressions of mRNA and proteins of ICAT and Wnt signaling pathway-related factors, including β-catenin, TCF-4, c-myc, cyclin D1 and TCF-1 before and after differentiation, were detected by RT-PCR and Western blot. Morphological observation showed that NSC67657 induced monocytic differentiation of HL-60 cells. At 5 days after 10 μmol/L NSC67657 treatment, the number of CD14(+) HL-60 cells was (94.37±2.84)%, significantly higher than the (1.31±0.09)% in control group (P<0.01). The flow cytometry assay revealed that NSC67657 induced (76.46±2.83)% of G1/G0 phase arrest, significantly higher than that of (59.40±5.42)% in the control group (P<0.05), while the S phase cells were of (18.76±0.98)%, significantly lower than that of (34.38±2.61) % in the control group (P<0.05). The NSC67657 treatment also up-regulated the expression of ICAT mRNA and protein, and down-regulated the expression of β-catenin mRNA and protin (P<0.01 for all). However, the nuclear expression of β-catenin was down-regulated (P<0.01). The NSC67657 treatment induced nonsignificant alterations of TCF-4 mRNA, total protein and nuclear protein in the HL-60 cells (P>0.05 for all). The target genes of Wnt signaling pathway, including c-myc, cyclinD1 and TCF-1 mRNA and proteins in the HL-60 cells were significantly down-regulated after NSC67657 treatment (P<0.05). The new steroidal drug NSC67657 induces monocytic differentiation of HL-60 cells, and down-regulates the expression of β-catenin and target genes of Wnt signaling pathway. These results indicate that Wnt signaling pathway may be directly or indirectly involved in the monocytic differentiation process of HL-60 cells.
2012-08-01
techniques and STEAM imager. It couples the high-speed capability of the STEAM imager and differential phase contrast imaging of DIC / Nomarski microscopy...On 10 TPE chips, we obtained 9 homogenous and strong bonds, the failed bond being due to operator error and presence of air bubbles in the TPE...instruments, structural dynamics, and microelectromechanical systems (MEMS) via laser-scanning surface vibrometry , and observation of biomechanical motility
Pereira, R C; Costa-Pinto, A R; Frias, A M; Neves, N M; Azevedo, H S; Reis, R L
2017-06-01
Wharton's jelly stem cells (WJSCs) are a potential source of transplantable stem cells in cartilage-regenerative strategies, due to their highly proliferative and multilineage differentiation capacity. We hypothesized that a non-direct co-culture system with human articular chondrocytes (hACs) could enhance the potential chondrogenic phenotype of hWJSCs during the expansion phase compared to those expanded in monoculture conditions. Primary hWJSCs were cultured in the bottom of a multiwell plate separated by a porous transwell membrane insert seeded with hACs. No statistically significant differences in hWJSCs duplication number were observed under either of the culture conditions during the expansion phase. hWJSCs under co-culture conditions show upregulations of collagen type I and II, COMP, TGFβ1 and aggrecan, as well as of the main cartilage transcription factor, SOX9, when compared to those cultured in the absence of chondrocytes. Chondrogenic differentiation of hWJSCs, previously expanded in co-culture and monoculture conditions, was evaluated for each cellular passage using the micromass culture model. Cells expanded in co-culture showed higher accumulation of glycosaminoglycans (GAGs) compared to cells in monoculture, and immunohistochemistry for localization of collagen type I revealed a strong detection signal when hWJSCs were expanded under monoculture conditions. In contrast, type II collagen was detected when cells were expanded under co-culture conditions, where numerous round-shaped cell clusters were observed. Using a micromass differentiation model, hWJSCs, previously exposed to soluble factors secreted by hACs, were able to express higher levels of chondrogenic genes with deposition of cartilage extracellular matrix components, suggesting their use as an alternative cell source for treating degenerated cartilage. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Mochizuki, Toshiki; Taniguchi, Sayuri; Tsutsui, Haruhito; Min, Jun Zhe; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa
2013-04-22
L-Pyroglutamic acid (L-PGA) was evaluated as a chiral labeling reagent for the enantioseparation of chiral amines in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. Several amines and amino acid methyl esters were used as typical representatives of the chiral amines. Both enantiomers of the chiral amines were easily labeled with L-PGAS at room temperature for 60 min in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide and 1-hydroxy-1H-benzotriazole as the activation reagents. The resulting diastereomers were completely separated by reversed-phase chromatography using the small particle (1.7 μm) ODS column (Rs=1.6-6.8). A highly sensitive detection at a low-fmol level (1-4 fmol) was also obtained from the multiple reaction monitoring (MRM) chromatograms. Therefore, a high-throughput determination was achieved by the present UPLC-ESI-MS/MS method. An isotope labeling strategy using light and heavy L-PGAs for the differential analysis of chiral amines in different sample groups was also proposed in this paper. As a model study, the differential analysis of the R and S ratio of 1-phenylethylamine (PEA) was performed according to the proposed procedure using light and heavy reagents, i.e., L-PGA and L-PGA-d5. The R/S ratio of PEA, spiked at the different concentrations in rat plasma, was almost similar to the theoretical values. Consequently, the proposed strategy using light and heavy chiral labeling reagents seems to be applicable for the differential analysis of chiral amine enantiomers in different sample groups, such as healthy persons and disease patients. Copyright © 2013 Elsevier B.V. All rights reserved.
Coherent detection in optical fiber systems.
Ip, Ezra; Lau, Alan Pak Tao; Barros, Daniel J F; Kahn, Joseph M
2008-01-21
The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years.
Optoelectronic imaging of speckle using image processing method
NASA Astrophysics Data System (ADS)
Wang, Jinjiang; Wang, Pengfei
2018-01-01
A detailed image processing of laser speckle interferometry is proposed as an example for the course of postgraduate student. Several image processing methods were used together for dealing with optoelectronic imaging system, such as the partial differential equations (PDEs) are used to reduce the effect of noise, the thresholding segmentation also based on heat equation with PDEs, the central line is extracted based on image skeleton, and the branch is removed automatically, the phase level is calculated by spline interpolation method, and the fringe phase can be unwrapped. Finally, the imaging processing method was used to automatically measure the bubble in rubber with negative pressure which could be used in the tire detection.
Organic Phase Change Nanoparticles for in-Product Labeling of Agrochemicals.
Wang, Miao; Duong, Binh; Su, Ming
2015-10-28
There is an urgent need to develop in-product covert barcodes for anti-counterfeiting of agrochemicals. This paper reports a new organic nanoparticle-based in-product barcode system, in which a panel of organic phase change nanoparticles is added as a barcode into in a variety of chemicals (herein agrochemicals). The barcode is readout by detecting melting peaks of organic nanoparticles using differential scanning calorimetry. This method has high labeling capacity due to small sizes of nanoparticles, sharp melting peaks, and large scan range of thermal analysis. The in-product barcode can be effectively used to protect agrochemical products from being counterfeited due to its large coding capacity, technical readiness, covertness, and robustness.
Estrada-Hernández, María Gloria; Valenzuela-Soto, José Humberto; Ibarra-Laclette, Enrique; Délano-Frier, John Paul
2009-09-01
A suppression-subtractive-hybridization (SSH) strategy was used to identify genes whose expression was modified in response to virus-free whitefly Bemisia tabaci (Bt, biotype A) infestation in tomato (Solanum lycopersicum) plants. Thus, forward and reverse SSH gene libraries were generated at four points in the whitefly's life cycle, namely at (1) 2 days (adult feeding and oviposition: phase I); (2) 7 days (mobile crawler stage: phase II); (3) 12 days (second to third instar nymphal transition: phase III) and (4) 18 days (fourth instar nymphal stage: phase IV). The 169 genes with altered expression (up and downregulated) that were identified in the eight generated SSH libraries, together with 75 additional genes that were selected on the basis of their involvement in resistance responses against phytofagous insects and pathogens, were printed on a Nexterion(®) Slide MPX 16 to monitor their pattern of expression at the above phases. The results indicated that Bt infestation in tomato led to distinctive phase-specific expression/repression patterns of several genes associated predominantly with photosynthesis, senescence, secondary metabolism and (a)biotic stress. Most of the gene expression modifications were detected in phase III, coinciding with intense larval feeding, whereas fewer changes were detected in phases I and IV. These results complement previously reported gene expression profiles in Bt-infested tomato and Arabidopisis, and support and expand the opinion that Bt infestation leads to the downregulation of specific defense responses in addition to those controlled by jasmonic acid. Copyright © Physiologia Plantarum 2009.
Larkin, Kieran G; Fletcher, Peter A
2014-03-01
X-ray Talbot moiré interferometers can now simultaneously generate two differential phase images of a specimen. The conventional approach to integrating differential phase is unstable and often leads to images with loss of visible detail. We propose a new reconstruction method based on the inverse Riesz transform. The Riesz approach is stable and the final image retains visibility of high resolution detail without directional bias. The outline Riesz theory is developed and an experimentally acquired X-ray differential phase data set is presented for qualitative visual appraisal. The inverse Riesz phase image is compared with two alternatives: the integrated (quantitative) phase and the modulus of the gradient of the phase. The inverse Riesz transform has the computational advantages of a unitary linear operator, and is implemented directly as a complex multiplication in the Fourier domain also known as the spiral phase transform.
Larkin, Kieran G.; Fletcher, Peter A.
2014-01-01
X-ray Talbot moiré interferometers can now simultaneously generate two differential phase images of a specimen. The conventional approach to integrating differential phase is unstable and often leads to images with loss of visible detail. We propose a new reconstruction method based on the inverse Riesz transform. The Riesz approach is stable and the final image retains visibility of high resolution detail without directional bias. The outline Riesz theory is developed and an experimentally acquired X-ray differential phase data set is presented for qualitative visual appraisal. The inverse Riesz phase image is compared with two alternatives: the integrated (quantitative) phase and the modulus of the gradient of the phase. The inverse Riesz transform has the computational advantages of a unitary linear operator, and is implemented directly as a complex multiplication in the Fourier domain also known as the spiral phase transform. PMID:24688823
Synthesis, characterization and intramolecular cyclisation study of three new liquid crystals
NASA Astrophysics Data System (ADS)
Saïdat, B.; Guermouche, M. H.; Bayle, J.-P.
2004-12-01
Internal cyclization of three new phenyldiazene liquid crystals (R is an alkyl substituent with 4, 6 or 8 carbons) with activated methylene group in the ortho position to the diazo linkage was studied . The initial liquid crystals was synthesised and characterized by ^1H NMR, electrospray mass spectrometry and differential scanning calorimetry. The final compound was characterized by ^1H NMR and differential scanning calorimetry. The kinetic of cyclization was studied at different temperatures and followed by reversed phase HPLC and a UV detection. For all the temperatures used, it appeared that the cyclisation was a first order reaction for the three compounds. The Arrhenius plot (ln reaction constant k against 1000/T) gave the mean activation energy of the cyclisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matter, A.; Lopez, B.; Lagarde, S.
2009-12-01
The observable quantities in optical interferometry, which are the modulus and the phase of the complex visibility, may be corrupted by parasitic fringes superimposed on the genuine fringe pattern. These fringes are due to an interference phenomenon occurring from stray light effects inside an interferometric instrument. We developed an analytical approach to better understand this phenomenon when stray light causes cross talk between beams. We deduced that the parasitic interference significantly affects the interferometric phase and thus the associated observables including the differential phase and the closure phase. The amount of parasitic flux coupled to the piston between beams appearsmore » to be very influential in this degradation. For instance, considering a point-like source and a piston ranging from lambda/500 to lambda/5 in the L band (lambda = 3.5 mum), a parasitic flux of about 1% of the total flux produces a parasitic phase reaching at most one-third of the intrinsic phase. The piston, which can have different origins (instrumental stability, atmospheric perturbations, etc.), thus amplifies the effect of parasitic interference. According to the specifications of piston correction in space or at ground level (respectively lambda/500 approx 2 nm and lambda/30 approx 100 nm), the detection of hot Jupiter-like planets, one of the most challenging aims for current ground-based interferometers, limits parasitic radiation to about 5% of the incident intensity. This was evaluated by considering different types of hot Jupiter synthetic spectra. Otherwise, if no fringe tracking is used, the detection of a typical hot Jupiter-like system with a solar-like star would admit a maximum level of parasitic intensity of 0.01% for piston errors equal to lambda/15. If the fringe tracking specifications are not precisely observed, it thus appears that the allowed level of parasitic intensity dramatically decreases and may prevent the detection. In parallel, the calibration of the parasitic phase by a reference star, at this accuracy level, seems very difficult. Moreover, since parasitic phase is an object-dependent quantity, the use of a hypothetical phase abacus, directly giving the parasitic phase from a given parasitic flux level, is also impossible. Some instrumental solutions, implemented at the instrument design stage for limiting or preventing this parasitic interference, appear to be crucial and are presented in this paper.« less
Improving image quality in laboratory x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.
2017-03-01
Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.
Morita, Shin-ichi; Takanezawa, Sota; Hiroshima, Michio; Mitsui, Toshiyuki; Ozaki, Yukihiro; Sako, Yasushi
2014-01-01
Cellular differentiation proceeds along complicated pathways, even when it is induced by extracellular signaling molecules. One of the major reasons for this complexity is the highly multidimensional internal dynamics of cells, which sometimes causes apparently stochastic responses in individual cells to extracellular stimuli. Therefore, to understand cell differentiation, it is necessary to monitor the internal dynamics of cells at single-cell resolution. Here, we used a Raman and autofluorescence spectrum analysis of single cells to detect dynamic changes in intracellular molecular components. MCF-7 cells are a human cancer-derived cell line that can be induced to differentiate into mammary-gland-like cells with the addition of heregulin (HRG) to the culture medium. We measured the spectra in the cytoplasm of MCF-7 cells during 12 days of HRG stimulation. The Raman scattering spectrum, which was the major component of the signal, changed with time. A multicomponent analysis of the Raman spectrum revealed that the dynamics of the major components of the intracellular molecules, including proteins and lipids, changed cyclically along the differentiation pathway. The background autofluorescence signals of Raman scattering also provided information about the differentiation process. Using the total information from the Raman and autofluorescence spectra, we were able to visualize the pathway of cell differentiation in the multicomponent phase space. PMID:25418290
In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta).
Frada, Miguel J; Bidle, Kay D; Probert, Ian; de Vargas, Colomban
2012-06-01
The cosmopolitan coccolithophore Emiliania huxleyi is characterized by a strongly differentiated haplodiplontic life cycle consisting of a diploid phase, generally bearing coccoliths (calcified) but that can be also non-calcified, and a non-calcified biflagellated haploid phase. Given most studies have focused on the bloom-producing calcified phase, there is little-to-no information about non-calcified cells in nature. Using field mesocoms as experimental platforms, we quantitatively surveyed calcified and non-calcified cells using the combined calcareous detection fluorescent in situ hybridization (COD-FISH) method and qualitatively screened for haploid specific transcripts using reverse transcription-PCR during E. huxleyi bloom successions. Diploid, calcified cells formed dense blooms that were followed by the massive proliferation of E. huxleyi viruses (EhVs), which caused bloom demise. Non-calcified cells were also detected throughout the experiment, accounting for a minor fraction of the population but becoming progressively more abundant during mid-late bloom periods concomitant with EhV burst. Non-calcified cell growth also paralleled a distinct window of haploid-specific transcripts and the appearance of autotrophic flagellates morphologically similar to haploid cells, both of which are suggestive of meiosis and sexual life cycling during natural blooms of this prominent marine phytoplankton species. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
A novel DNA/histone H4 peptide complex detects autoantibodies in systemic lupus erythematosus sera.
Panza, Filomena; Alcaro, Maria Claudia; Petrelli, Fiorella; Angelotti, Francesca; Pratesi, Federico; Rovero, Paolo; Migliorini, Paola
2016-10-04
The detection of anti-dsDNA antibodies is critical for the diagnosis and follow-up of systemic lupus erythematosus (SLE) patients. The presently available assays are characterized by a non-optimal specificity (solid phase assays) or sensitivity (Crithidia Luciliae immunofluorescence test (CLIFT)). To overcome the limits of CLIFT and solid phase chromatin assays, we explored the diagnostic potential of an assay based on plasmid DNA containing a highly bent fragment of 211 bp from Crithidia Luciliae minicircles, complexed with histone peptides. Electrically neutral complexes of PK201/CAT plasmid (PK) DNA and histone 4 (H4) peptides were evaluated by electromobility shift assay. Complexes of H4 peptides and PK were absorbed to the solid phase to detect specific immunoglobulin G (IgG) in sera. Sera from 109 SLE patients, 100 normal healthy subjects, and 169 disease controls were tested. H4(14-34) containing the consensus sequence for DNA binding interacts with PK, retarding its migration. H4(14-34)/PK complexes were used to test sera by ELISA. Anti-H4-PK antibodies were detected in 56 % of SLE sera (more frequently in patients with skin or joint involvement) versus 5.9 % in disease controls; inhibition assays show that sera react with epitopes present on DNA or on the complex, not on the peptide. Antibody titer is correlated with European Consensus Lupus Activity Measurement (ECLAM) score and anti-complement component 1q (C1q) antibodies, negatively with C3 levels. Anti-H4-PK antibodies compared with CLIFT and solid phase dsDNA assays display moderate concordance. The H4/PK assay is a simple and reliable test which is useful for the differential diagnosis and evaluation of disease activity in SLE patients.
NASA Technical Reports Server (NTRS)
Drake, M. D.; Klingler, D. E.
1973-01-01
The use of PLZT ceramics with the 7/65/35 composition in block data composer (BDC) input devices for holographic memory systems has previously been described for operation in the strain biased, scattering, and edge effect modes. A new and promising mode of BDC operation is the differential phase mode in which each element of a matrix array BDC acts as a phase modulator. The phase modulation results from a phase difference in the optical path length between the electrically poled and depoled states of the PLZT. It is shown that a PLZT BDC can be used as a matrix-type phase modulator to record and process digital data by the differential phase mode in a holographic recording/processing system with readout contrast ratios of between 10:1 and 15:1. The differential phase mode has the advantages that strain bias is not required and that the thickness and strain variations in the PLZT are cancelled out.
Ma, Hai-long; Yu, Cong; Liu, Ying; Tan, Yi-ran; Qiao, Jin-ke; Yang, Xi; Wang, Li-zhen; Li, Jiang; Chen, Qiong; Chen, Fu-xiang; Zhang, Zhi-yuan; Zhong, Lai-ping
2015-03-01
Glutathione S transferase pi (GSTP1) is a member of phase II detoxification enzymes as a major regulator of cell signaling in response to stress, hypoxia, growth factors, and other stimuli. The clinical role of GSTP1 in cancer is still unclear. The aim of this study was to investigate the serum GSTP1 level in patients with oral squamous cell carcinoma (OSCC) and the GSTP1 expression in tissue samples from patients with OSCC and OSCC lines. One hundred and sixty-six patients with OSCC and 120 normal persons were used to screen potential serum peptide biomarkers using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Serum GSTP1 concentration was detected in 18 patients with OSCC and 18 normal persons using ELISA. Immunohistochemistry was used to detect GSTP1 expression in tissue samples from twenty-eight OSCC patients. Western blot and real-time PCR were used to detect GSTP1 expression in nine OSCC lines. Decreased GSTP1 concentration was found in the patients with OSCC compared with the normal persons by MALDI-TOF-MS, which was then confirmed by ELISA (P = 0.019). Decreased GSTP1 mRNA level and protein expression were also found in the OSCC lines. Decreased GSTP1 expression was found correlating with pathological differentiation grade in the tissue samples from OSCC patients, a lower GSTP1 expression indicating a poorer pathological differentiation grade (P = 0.041). These results suggest that decreased GSTP1 expression in patients with OSCC and a lower GSTP1 expression indicating a poorer pathological differentiation grade in OSCC tissue samples. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
System for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2003-01-01
An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.
Ivanovitch, Kenzo; Temiño, Susana
2017-01-01
During vertebrate heart development, two progenitor populations, first and second heart fields (FHF, SHF), sequentially contribute to longitudinal subdivisions of the heart tube (HT), with the FHF contributing the left ventricle and part of the atria, and the SHF the rest of the heart. Here, we study the dynamics of cardiac differentiation and morphogenesis by tracking individual cells in live analysis of mouse embryos. We report that during an initial phase, FHF precursors differentiate rapidly to form a cardiac crescent, while limited morphogenesis takes place. In a second phase, no differentiation occurs while extensive morphogenesis, including splanchnic mesoderm sliding over the endoderm, results in HT formation. In a third phase, cardiac precursor differentiation resumes and contributes to SHF-derived regions and the dorsal closure of the HT. These results reveal tissue-level coordination between morphogenesis and differentiation during HT formation and provide a new framework to understand heart development. PMID:29202929
Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).
Phillips, Zachary F; Chen, Michael; Waller, Laura
2017-01-01
We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.
Neupane, Lok Nath; Thirupathi, Ponnaboina; Jang, Sujung; Jang, Min Jung; Kim, Jung Hwa; Lee, Keun-Hyeung
2011-09-15
Fluorescent sensor (DMH) based on dipeptide was efficiently synthesized in solid phase synthesis. The dipeptide sensor shows sensitive response to Ag(I), Hg(II), and Cu(II) among 14 metal ions in 100% aqueous solution. The fluorescent sensor differentiates three heavy metal ions by response type; turn on response to Ag(I), ratiometric response to Hg(II), and turn off detection of Cu(II). The detection limits of the sensor for Ag(I) and Cu(II) were much lower than the EPA's drinking water maximum contaminant levels (MCL). Specially, DMH penetrated live cells and detected intracellular Ag(+) by turn on response. We described the fluorescent change, binding affinity, detection limit for the metal ions. The study of a heavy metal-responsive sensor based on dipeptide demonstrates its potential utility in the environment field. Copyright © 2011 Elsevier B.V. All rights reserved.
Xing, Fuyong; Yang, Lin
2016-01-01
Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literature. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast, fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation.
Portable spotter for fluorescent contaminants on surfaces
Schuresko, Daniel D.
1980-01-01
A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.
A search for the prewetting line. [in binary liquid system at vapor-liquid interface
NASA Technical Reports Server (NTRS)
Schmidt, J. W.; Moldover, M. R.
1986-01-01
This paper describes efforts to locate the prewetting line in a binary liquid system (isopropanol-perfluoromethylcyclohexane) at the vapor-liquid interface. Tight upper bounds were placed on the temperature separation (0.2 K) between the prewetting line and the line of bulk liquid phase separation. The prewetting line in systems at equilibrium was not detected. Experimental signatures indicative of the prewetting line occurred only in nonequilibrium situations. Several theories predict that the adsorption of one of the components (the fluorocarbon, in this case) at the liquid-vapor interface should increase abruptly, at a temperature sightly above the temperature at which the mixture separates into two liquid phases. A regular solution calculation indicates that this prewetting line should have been easily detectable with the instruments used in this experiment. Significant features of the experiment are: (1) low-gradient thermostatting, (2) in situ stirring, (3) precision ellipsometry from the vapor-liquid interface, (4) high resolution differential index of refraction measurements using a novel cell design, and (5) computer control.
Using chaotic forcing to detect damage in a structure
Moniz, L.; Nichols, J.; Trickey, S.; Seaver, M.; Pecora, D.; Pecora, L.
2005-01-01
In this work we develop a numerical test for Holder continuity and apply it and another test for continuity to the difficult problem of detecting damage in structures. We subject a thin metal plate with incremental damage to the plate changes, its filtering properties, and therefore the phase space trajectories of the response chaotic excitation of various bandwidths. Damage to the plate changes its filtering properties and therefore the phase space of the response. Because the data are multivariate (the plate is instrumented with multiple sensors) we use a singular value decomposition of the set of the output time series to reduce the embedding dimension of the response time series. We use two geometric tests to compare an attractor reconstructed from data from an undamaged structure to that reconstructed from data from a damaged structure. These two tests translate to testing for both generalized and differentiable synchronization between responses. We show loss of synchronization of responses with damage to the structure. ?? 2005 American Institute of Physics.
Using chaotic forcing to detect damage in a structure.
Moniz, L.; Nichols, J.; Trickey, S.; Seaver, M.; Pecora, D.; Pecora, L.
2005-01-01
In this work we develop a numerical test for Holder continuity and apply it and another test for continuity to the difficult problem of detecting damage in structures. We subject a thin metal plate with incremental damage to the plate changes, its filtering properties, and therefore the phase space trajectories of the response chaotic excitation of various bandwidths. Damage to the plate changes its filtering properties and therefore the phase space of the response. Because the data are multivariate (the plate is instrumented with multiple sensors) we use a singular value decomposition of the set of the output time series to reduce the embedding dimension of the response time series. We use two geometric tests to compare an attractor reconstructed from data from an undamaged structure to that reconstructed from data from a damaged structure. These two tests translate to testing for both generalized and differentiable synchronization between responses. We show loss of synchronization of responses with damage to the structure.
Fenaille, François; Visani, Piero; Fumeaux, René; Milo, Christian; Guy, Philippe A
2003-04-23
Two headspace techniques based on mass spectrometry detection (MS), electronic nose, and solid phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GC/MS) were evaluated for their ability to differentiate various infant formula powders based on changes of their volatiles upon storage. The electronic nose gave unresolved MS fingerprints of the samples gas phases that were further submitted to principal component analysis (PCA). Such direct MS recording combined to multivariate treatment enabled a rapid differentiation of the infant formulas over a 4 week storage test. Although MS-based electronic nose advantages are its easy-to-use aspect and its meaningful data interpretation obtained with a high throughput (100 samples per 24 h), its greatest disadvantage is that the present compounds could not be identified and quantified. For these reasons, a SPME-GC/MS measurement was also investigated. This technique allowed the identification of saturated aldehydes as the main volatiles present in the headspace of infant milk powders. An isotope dilution assay was further developed to quantitate hexanal as a potential indicator of infant milk powder oxidation. Thus, hexanal content was found to vary from roughly 500 and 3500 microg/kg for relatively non-oxidized and oxidized infant formulas, respectively.
Costa, Juan Gabriel; Vilariño, María Julia
2018-06-01
In this work we present a novel methodology to differentiate the phases of toxoplasmosis infection: the "semiquantitative Dot Blot". It is a simple technique that does not require expensive equipment, does not involve a long technique development, and can be used in a low-complexity laboratory. In this study, two recombinant sequences of Toxoplasma gondii GRA8 antigen were used, and specific IgG antibodies were detected in selected patient samples. This method makes it possible to obtain a score for each serum and define whether the patient is in the acute or chronic phase of the infection. The sensitivity and specificity results varied depending on the antigenic sequence used. With GRA8A, 62.1% and 72.7% were obtained, while with GRA8B, 82.8% and 72.1% were obtained, respectively. Although the sensitivity and specificity values were not close to 100%, they were similar to those reported with the same antigens in ELISA. Therefore, this quantitative technique would be a good alternative to ELISA. Copyright © 2018 Elsevier B.V. All rights reserved.
Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)
2017-01-01
We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023
Sekhavati, Farzad; Endele, Max; Rappl, Susanne; Marel, Anna-Kristina; Schroeder, Timm; Rädler, Joachim O
2015-02-01
The kinetics of stem and progenitor cell differentiation at the single-cell level provides essential clues to the complexity of the underlying decision-making circuits. In many hematopoietic progenitor cells, differentiation is accompanied by the expression of lineage-specific markers and by a transition from a non-adherent to an adherent state. Here, using the granulocyte-macrophage progenitor (GMP) as a model, we introduce a label-free approach that allows one to follow the course of this transition in hundreds of single cells in parallel. We trap single cells in patterned arrays of micro-wells and use phase-contrast time-lapse movies to distinguish non-adherent from adherent cells by an analysis of Brownian motion. This approach allowed us to observe the kinetics of induced differentiation of primary bone-marrow-derived GMPs into macrophages. The time lapse started 2 hours after addition of the cytokine M-CSF, and nearly 80% of the population had accomplished the transition within the first 20 h. The analysis of Brownian motion proved to be a sensitive and robust tool for monitoring the transition, and thus provides a high-throughput method for the study of cell differentiation at the single-cell level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, V.; Fitz, D.E.; Kouri, D.J.
1980-09-15
The effect of phase choice and partial wave parameter choice on CS and IOS inelastic degeneracy averaged differential cross sections is studied. An approximate simplified CS scattering amplitude for l-bar=1/2(l'+l) is derived and is shown to have a form which closely resembles the McGuire--Kouri scattering amplitude for odd ..delta..j transitions and reduces to it for even ..delta..j transitions. The choice of phase in the CS wave function is shown to result in different approximations which yield significantly different shapes for the degeneracy averaged differential cross section. Time reversal symmetry arguments are employed to select the proper phase choice. IOS calculationsmore » of the degeneracy averaged differential cross sections of He--CO, He--Cl and Ne--HD using l-bar=1/2(l+l') and the phase choice which ensures proper time reversal symmetry are found to correct the phase disagreement which was previously noted for odd ..delta..j transitions using l-bar=l or l' and either the time reversal phase or other phase choices.« less
Bohm, Katrin; Filomena, Angela; Schneiderhan-Marra, Nicole; Krause, Gérard; Sievers, Claudia
2017-10-13
Worldwide about 1.5 million clinical cases of hepatitis A virus (HAV) infections occur every year and increasingly countries are introducing HAV vaccination into the childhood immunization schedule with a single dose instead of the originally licenced two dose regimen. Diagnosis of acute HAV infection is determined serologically by anti-HAV-IgM detection using ELISA. Additionally anti-HAV-IgG can become positive during the early phase of symptoms, but remains detectable after infection and also after vaccination against HAV. Currently no serological marker allows the differentiation of HAV vaccinated individuals and those with a past infection with HAV. Such differentiation would greatly improve evaluation of vaccination campaigns and risk assessment of HAV outbreaks. Here we tested the HAV non-structural protein 2A, important for the capsid assembly, as a biomarker for the differentiation of the immune status in previously infected and vaccinated individuals. HAV antigens were recombinantly expressed as glutathione-S-transferase (GST) fusion proteins. Using glutathione tagged, magnetic fluorescent beads (Luminex®), the proteins were affinity purified and used in a multiplex serological assay. The multiplex HAV assay was validated using 381 reference sera in which the immune status HAV negative, vaccinated or infected was established using the Abbott ARCHITECT® HAVAb-IgM or IgG, the commercial HAV ELISA from Abnova and documentation in vaccination cards. HAV multiplex serology showed a sensitivity of 99% and specificity of 95% to detect anti-HAV IgG/IgM positive individuals. HAV biomarker 2A allowed the differentiation between previously infected and vaccinated individuals. HAV vaccinated individuals and previously infected individuals could be identified with 92% accuracy. HAV biomarker 2A can be used to differentiate between previously HAV-vaccinated and naturally infected individuals. Within a multiplex serological approach this assay can provide valuable novel information in the context of outbreak investigations, longitudinal population based studies and evaluations of immunization campaigns. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Seema; Simpson, David C.; Tolic, Nikola
We investigated the combination of weak anion exchange (WAX) fractionation and on-line reversed phase liquid chromatography (RPLC) separation using a 12 T FTICR mass spectrometer for the detection of intact proteins from a Shewanella oneidensis MR-1 cell lysate. 715 intact proteins were detected and the combined results from the WAX fractions and the unfractionated cell lysate were aligned using LC-MS features to facilitate protein abundance measurements. Protein identifications and post translational modifications were assigned for ~10% of the detected proteins by comparing intact protein mass measurements to proteins identified in peptide MS/MS analysis of an aliquot of the same fraction.more » Intact proteins were also detected for S. oneidensis lysates obtained from cells grown on 13C, 15N depleted media under aerobic and sub-oxic conditions. This work aimed at optimizing intact protein detection for profiling proteins at a level that incorporates their modification complement. The strategy can be readily applied for measuring differential protein abundances, and provides a platform for high-throughput selection of biologically relevant targets for further characterization.« less
Longitudinal fecal steroid excretion in maned wolves (Chrysocyon brachyurus).
Velloso, A L; Wasser, S K; Monfort, S L; Dietz, J M
1998-10-01
This study used a fecal steroid monitoring technique to evaluate reproductive cycles in male (4) and female (15) maned wolves, endangered South American canids. A radiolabeled testosterone infusion on a male revealed a fast and predominantly fecal route of excretion for this steroid. Testosterone was also excreted as eight unidentified metabolites, which was not the primary form of this steroid quantified in our assays. Fecal steroid concentrations (estradiol, E2; progestins, P; testosterone, T) in males and acyclic, nonpregnant (pseudo-pregnant), and pregnant females were monitored over four breeding seasons (October-January). Significant differences were detected between longitudinal P profiles of cyclic and acyclic females during estrus, luteal phase, and after birth/end of pseudo-pregnancy. Concentrations of P were also significantly higher in pregnant, compared to nonpregnant females, from proestrus to the end of the pregnant luteal phase. Although levels of T were higher in males than in females throughout the breeding season, no cyclicity in male fecal T concentrations was detected. Values of fecal P, T, and the ratio P/T were useful for differentiating gender and detecting pregnancy in females. Similarities to available data on other canids and the management and conservation implications of these findings were discussed. Copyright 1998 Academic Press.
NASA Astrophysics Data System (ADS)
Bethel, Kelly; Luttgen, Madelyn S.; Damani, Samir; Kolatkar, Anand; Lamy, Rachelle; Sabouri-Ghomi, Mohsen; Topol, Sarah; Topol, Eric J.; Kuhn, Peter
2014-02-01
Elevated levels of circulating endothelial cells (CECs) occur in response to various pathological conditions including myocardial infarction (MI). Here, we adapted a fluid phase biopsy technology platform that successfully detects circulating tumor cells in the blood of cancer patients (HD-CTC assay), to create a high-definition circulating endothelial cell (HD-CEC) assay for the detection and characterization of CECs. Peripheral blood samples were collected from 79 MI patients, 25 healthy controls and six patients undergoing vascular surgery (VS). CECs were defined by positive staining for DAPI, CD146 and von Willebrand Factor and negative staining for CD45. In addition, CECs exhibited distinct morphological features that enable differentiation from surrounding white blood cells. CECs were found both as individual cells and as aggregates. CEC numbers were higher in MI patients compared with healthy controls. VS patients had lower CEC counts when compared with MI patients but were not different from healthy controls. Both HD-CEC and CellSearch® assays could discriminate MI patients from healthy controls with comparable accuracy but the HD-CEC assay exhibited higher specificity while maintaining high sensitivity. Our HD-CEC assay may be used as a robust diagnostic biomarker in MI patients.
Thermally driven anomalous Hall effect transitions in FeRh
NASA Astrophysics Data System (ADS)
Popescu, Adrian; Rodriguez-Lopez, Pablo; Haney, Paul M.; Woods, Lilia M.
2018-04-01
Materials exhibiting controllable magnetic phase transitions are currently in demand for many spintronics applications. Here, we investigate from first principles the electronic structure and intrinsic anomalous Hall, spin Hall, and anomalous Nernst response properties of the FeRh metallic alloy which undergoes a thermally driven antiferromagnetic-to-ferromagnetic phase transition. We show that the energy band structures and underlying Berry curvatures have important signatures in the various Hall effects. Specifically, the suppression of the anomalous Hall and Nernst effects in the antiferromagnetic state and a sign change in the spin Hall conductivity across the transition are found. It is suggested that the FeRh can be used as a spin current detector capable of differentiating the spin Hall effect from other anomalous transverse effects. The implications of this material and its thermally driven phases as a spin current detection scheme are also discussed.
Alvarado, Magda E; Wasserman, Moisés
2010-03-01
The parasite Giardia intestinalis undergoes a differentiation process that allows it to infect its mammal host. That process is excystation. We examined the importance of protein phosphorylation during the passage from cyst to trophozoite. Cysts obtained from patients with giardiasis were excysted in vitro and the soluble cytoplasmic proteins were analyzed during the three phases of the process, using a specific staining for phosphoproteins. We found two phosphorylated proteins and identified them with MALDI-TOF as 14-3-3 and Hsp70. Modifications were detected in both proteins, which could indicate a role in differentiation of the parasite. In addition, the inhibition of serine-threonine kinases during excystation specifically affected the cytokinesis of the excyzoite, thus inhibiting the completion of trophozoite formation. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Diffractive Optical Analysis for Refractive Index Sensing using Transparent Phase Gratings
Kumawat, Nityanand; Pal, Parama; Varma, Manoj
2015-01-01
We report the implementation of a micro-patterned, glass-based photonic sensing element that is capable of label-free biosensing. The diffractive optical analyzer is based on the differential response of diffracted orders to bulk as well as surface refractive index changes. The differential read-out suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6 × 10−7 was achieved with this technique with scope for further improvement. PMID:26578408
Quantitative phase measurement for wafer-level optics
NASA Astrophysics Data System (ADS)
Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Huang, Lei; Zuo, Chao
2015-07-01
Wafer-level-optics now is widely used in smart phone camera, mobile video conferencing or in medical equipment that require tiny cameras. Extracting quantitative phase information has received increased interest in order to quantify the quality of manufactured wafer-level-optics, detect defective devices before packaging, and provide feedback for manufacturing process control, all at the wafer-level for high-throughput microfabrication. We demonstrate two phase imaging methods, digital holographic microscopy (DHM) and Transport-of-Intensity Equation (TIE) to measure the phase of the wafer-level lenses. DHM is a laser-based interferometric method based on interference of two wavefronts. It can perform a phase measurement in a single shot. While a minimum of two measurements of the spatial intensity of the optical wave in closely spaced planes perpendicular to the direction of propagation are needed to do the direct phase retrieval by solving a second-order differential equation, i.e., with a non-iterative deterministic algorithm from intensity measurements using the Transport-of-Intensity Equation (TIE). But TIE is a non-interferometric method, thus can be applied to partial-coherence light. We demonstrated the capability and disability for the two phase measurement methods for wafer-level optics inspection.
Zhu, Haitao; Demachi, Kazuyuki; Sekino, Masaki
2011-09-01
Positive contrast imaging methods produce enhanced signal at large magnetic field gradient in magnetic resonance imaging. Several postprocessing algorithms, such as susceptibility gradient mapping and phase gradient mapping methods, have been applied for positive contrast generation to detect the cells targeted by superparamagnetic iron oxide nanoparticles. In the phase gradient mapping methods, smoothness condition has to be satisfied to keep the phase gradient unwrapped. Moreover, there has been no discussion about the truncation artifact associated with the algorithm of differentiation that is performed in k-space by the multiplication with frequency value. In this work, phase gradient methods are discussed by considering the wrapping problem when the smoothness condition is not satisfied. A region-growing unwrapping algorithm is used in the phase gradient image to solve the problem. In order to reduce the truncation artifact, a cosine function is multiplied in the k-space to eliminate the abrupt change at the boundaries. Simulation, phantom and in vivo experimental results demonstrate that the modified phase gradient mapping methods may produce improved positive contrast effects by reducing truncation or wrapping artifacts. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Staśkiewicz, Beata; Staśkiewicz, Anna
2017-07-01
Hydrothermal method has been used to synthesized the layered hybrid compound NH3(CH2)3NH3CdBr4 of perovskite architecture. Structural, dielectric and dilatometric properties of the compound have been analyzed. Negative thermal expansion (NTE) effect in the direction perpendicular to the perovskite plane as well as an unusual phase sequence have been reported based on X-ray diffraction analysis. Electric permittivity measurements evidenced the phase transitions at Tc1=326/328 K and Tc2=368/369 K. Relative linear expansion measurements almost confirmed these temperatures of phase transitions. Anomalies of electric permittivity and expansion behavior connected with the phase transitions are detected at practically the same temperatures as those observed earlier in differential scanning calorimetry (DSC), infrared (IR), far infrared (FIR) and Raman spectroscopy studies. Mechanism of the phase transitions is explained. Relative linear expansion study was prototype to estimate critical exponent value β for continuous phase transition at Tc1. It has been inferred that there is a strong interplay between the distortion of the inorganic network, those hydrogen bonds and the intermolecular interactions of the organic component.
A colorimetric sensor array for detection of triacetone triperoxide vapor.
Lin, Hengwei; Suslick, Kenneth S
2010-11-10
Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an explosive of choice for terrorists in recent years. Owing to the lack of UV absorbance, fluorescence, or facile ionization, TATP is extremely difficult to detect directly. Techniques that are able to detect generally require expensive instrumentation, need extensive sample preparation, or cannot detect TATP in the gas phase. Here we report a simple and highly sensitive colorimetric sensor for the detection of TATP vapor with semiquantitative analysis from 50 ppb to 10 ppm. By using a solid acid catalyst to pretreat a gas stream, we have discovered that a colorimetric sensor array of redox sensitive dyes can detect even very low levels of TATP vapor from its acid decomposition products (e.g., H(2)O(2)) with limits of detection (LOD) below 2 ppb (i.e., <0.02% of its saturation vapor pressure). Common potential interferences (e.g., humidity, personal hygiene products, perfume, laundry supplies, volatile organic compounds, etc.) do not generate an array response, and the array can also differentiate TATP from other chemical oxidants (e.g., hydrogen peroxide, bleach, tert-butylhydroperoxide, peracetic acid).
Mochizuki, Toshiki; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa
2014-02-06
L-Pyroglutamic acid succinimidyl ester (L-PGA-OSu) and its isotopic variant (L-PGA[d5]-OSu) were newly synthesized and evaluated as the chiral labeling reagents for the enantioseparation of amino acids, in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The enantiomers of amino acids were easily labeled with the reagents at 60°C within 10 min in an alkaline medium containing triethylamine. Although all the diastereomers derived from 18 proteolytic amino acids could not be satisfactorily separated, the pairs of 9 amino acids were completely separated by reversed-phase chromatography using the small particle (1.7 μm) ODS column (Rs=1.95-8.05). The characteristic daughter ions, i.e., m/z 84.04 and m/z 89.04, were detected from all the derivatives by the collision induced dissociation of the protonated molecular ions. A highly sensitive detection at a low-fmol level (0.5-3.2 fmol) was also obtained from the selected reaction monitoring (SRM) chromatograms. An isotope labeling strategy using light and heavy L-PGA-OSu for the differential analysis of the DL-amino acids in different sample groups is also presented in this paper. The differential analysis of biological sample (i.e., human serum) and food product (i.e., yogurt) were tried to demonstrate the efficiency of the proposed method. The ratios of the DL-amino acids in human serum samples, spiked with the different concentrations of D-amino acids, were determined by the procedures using L-PGA-OSu and L-PGA[d5]-OSu. The D/L ratios in the two sample groups at different concentrations of amino acids were similar to the theoretical values. Furthermore, the ratios of D/L-alanine values in different yogurt products were comparable to the ratios obtained from the d/l values using only light reagent (i.e., L-PGA-OSu). Consequently, the proposed strategy is useful for the differential analysis not only in biological samples but also in food products. Copyright © 2013 Elsevier B.V. All rights reserved.
Rodrigues, Vasco; Laforge, Mireille; Campillo-Gimenez, Laure; Soundaramourty, Calaiselvy; Correia-de-Oliveira, Ana; Dinis-Oliveira, Ricardo Jorge; Ouaissi, Ali; Cordeiro-da-Silva, Anabela; Silvestre, Ricardo; Estaquier, Jérôme
2014-01-01
Leishmania infantum causes a chronic infectious disease named visceral leishmaniasis (VL). We employed a non-human primate model to monitor immune parameters over time and gain new insights into the disease. Rhesus macaques were infected with L. infantum and the T helper and B cell immunological profiles characterized during acute and chronic phases of infection. Parasite detection in visceral compartments during the acute phase was associated with differentiation of effector memory CD4 T cells and increased levels of Th1 transcripts. At the chronic phase, parasites colonized novel lymphoid niches concomitant with increased expression of IL10. Despite the occurrence of hypergammaglobulinemia, the production of parasite-specific IgG was poor, being confined to the acute phase and positively correlated with the frequency of an activated memory splenic B cell population. We noticed the expansion of a splenic CD4 T cell population expressing CXCR5 and Bcl-6 during acute infection that was associated with the differentiation of the activated memory B cell population. Moreover, the number of splenic germinal centers peaked at one month after infection, hence paralleling the production of specific IgG. However, at chronic infection these populations contracted impacting the production of parasite-specific IgG. Our study provides new insights into the immune events taking place in a physiologically relevant host and a mechanistic basis for the inefficient humoral response during VL. PMID:24763747
Yang, Yi; Tang, Xiangyang
2012-12-01
The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.
Differential phase acoustic microscope for micro-NDE
NASA Technical Reports Server (NTRS)
Waters, David D.; Pusateri, T. L.; Huang, S. R.
1992-01-01
A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.
D-region differential-phase measurements and ionization variability studies
NASA Technical Reports Server (NTRS)
Weiland, R. M.; Bowhill, S. A.
1978-01-01
Measurements of electron densities in the D region are made by the partial-reflection differential-absorption and differential-phase techniques. The differential-phase data are obtained by a hard-wired phase-measuring system. Electron-sensity profiles obtained by the two techniques on six occasions are plotted and compared. Electron-density profiles obtained at the same time on 30 occasions during the years 1975 through 1977 are averaged to form a single profile for each technique. The effect of varying the assumed collision-frequency profile on these averaged profiles is studied. Time series of D-region electron-sensity data obtained by 3.4 minute intervals on six days during the summer of 1977 are examined for wave-like disturbances and tidal oscillations.
Youth Oriented Activity Trackers: Comprehensive Laboratory- and Field-Based Validation
2017-01-01
Background Commercial activity trackers are growing in popularity among adults and some are beginning to be marketed to children. There is, however, a paucity of independent research examining the validity of these devices to detect physical activity of different intensity levels. Objectives The purpose of this study was to determine the validity of the output from 3 commercial youth-oriented activity trackers in 3 phases: (1) orbital shaker, (2) structured indoor activities, and (3) 4 days of free-living activity. Methods Four units of each activity tracker (Movband [MB], Sqord [SQ], and Zamzee [ZZ]) were tested in an orbital shaker for 5-minutes at three frequencies (1.3, 1.9, and 2.5 Hz). Participants for Phase 2 (N=14) and Phase 3 (N=16) were 6-12 year old children (50% male). For Phase 2, participants completed 9 structured activities while wearing each tracker, the ActiGraph GT3X+ (AG) research accelerometer, and a portable indirect calorimetry system to assess energy expenditure (EE). For Phase 3, participants wore all 4 devices for 4 consecutive days. Correlation coefficients, linear models, and non-parametric statistics evaluated the criterion and construct validity of the activity tracker output. Results Output from all devices was significantly associated with oscillation frequency (r=.92-.99). During Phase 2, MB and ZZ only differentiated sedentary from light intensity (P<.01), whereas the SQ significantly differentiated among all intensity categories (all comparisons P<.01), similar to AG and EE. During Phase 3, AG counts were significantly associated with activity tracker output (r=.76, .86, and .59 for the MB, SQ, and ZZ, respectively). Conclusions Across study phases, the SQ demonstrated stronger validity than the MB and ZZ. The validity of youth-oriented activity trackers may directly impact their effectiveness as behavior modification tools, demonstrating a need for more research on such devices. PMID:28724509
NASA Astrophysics Data System (ADS)
Xin, L.; Kawakatsu, H.; Takeuchi, N.
2017-12-01
Differential travel time residuals of PKPbc and PKPdf for the path from South Sandwich Islands (SSI) to Alaska are usually used to constrain anisotropy of the western hemisphere of the Earth's inner-core. For this polar path, it has been found that PKPbc-df differential residuals are generally anomalously larger than data that sample other regions, and also show strong lateral variation. Due to sparse distribution of seismic stations in Alaska in early times, previous researches have been unable to propose a good model to explain this particular data set. Using data recorded by the current dense stations in Alaska for SSI earthquakes, we reexamine the anomalous behavior of core phase PKPbc-df differential travel times and try to explain the origin. The data sample the inner-core for the polar paths, as well as the lowermost mantle beneath Alaska. Our major observations are: (1) fractional travel time residuals of PKPbc-df increase rapidly within 2° (up to 1%). (2) A clear shift of the residual pattern could be seen for earthquakes with different locations. (3) The residual shows systematic lateral variation: at northern part, no steep increase of residual can be seen. A sharp lateral structural boundary with a P-wave velocity contrast of about 3% at lowermost mantle beneath East Alaska is invoked to explain the steep increase of the observed residuals. By combining the effects of a uniformly anisotropic inner-core and the heterogeneity, the observed residual patterns could be well reproduced. This high velocity anomaly might be related with an ancient subducted slab. Lateral variation of the PKPbc-df residuals suggests that the heterogeneity layer is not laterally continuous and may terminate beneath Northeastern Alaska. We also conclude that core phases may be strongly affected by heterogeneities at lowermost mantle, and should be carefully treated if they are used to infer the inner-core structure.
Real-time estimation of ionospheric delay using GPS measurements
NASA Astrophysics Data System (ADS)
Lin, Lao-Sheng
1997-12-01
When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is able to estimate the sum of the satellite and receiver L1/L2 differential delay for each tracked GPS satellite. A 'UNSW grid-based algorithm' is proposed to improve the accuracy of real-time ionosphere modelling. The proposed algorithm is similar to the conventional grid-based algorithm. However, two modifications were made to the algorithm: (1) an 'exponential function' is adopted as the weighting function, and (2) the 'grid-based ionosphere model' estimated from the previous day is used to predict the ionospheric delay ratios between the grid point and reference points. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Simon, M. K.
1980-01-01
A technique is presented for generating phase plane plots on a digital computer which circumvents the difficulties associated with more traditional methods of numerical solving nonlinear differential equations. In particular, the nonlinear differential equation of operation is formulated.
Matenaar, Daniela; Fingerle, Marcus; Heym, Eva; Wirtz, Sarah; Hochkirch, Axel
2018-01-01
Vicariance and dispersal are two important processes shaping biodiversity patterns. The South African Cape Floristic Region (CFR) is known for its high biotic diversity and endemism. However, studies on the phylogeography of endemic invertebrates in this biodiversity hotspot are still scarce. Here, we present a phylogenetic study of the flightless grasshopper genus Betiscoides, which is endemic to the CFR and strongly associated with restio plants (Restionaceae). We hypothesized that the genus originated in the southwestern part of the CFR, that differentiation within the genus is mainly an effect of vicariance and that the three known species only represent a minor fraction of the real genetic diversity of the genus. We inferred the phylogeny based on sequences of three mitochondrial and two nuclear genes from 99 Betiscoides specimens collected across the CFR. Furthermore, we conducted a SDIVA analysis to detect distributions of ancestral nodes and the possible spatial origin of these lineages. Strong differentiation among genetic lineages was shown. The ancestor of this genus was most likely distributed in the southwestern CFR. Five major lineages were detected, three of which were ancestrally distributed in the southwestern CFR. The ancestors of the two other lineages were distributed in the northern and eastern margins of the CFR. A total of 24 divergent evolutionary lineages were found, reflecting the geographical isolation of restio-dominated fynbos habitats. Dispersal played a more prominent role than expected in differentiation of Betiscoides. While the five main lineages were separated during a first phase via dispersal, differentiation occurred later and on smaller spatial scale, predominantly driven by isolation in montane refugia (i.e. vicariance). Our study also suggests that flightless insect taxa likely show high levels of differentiation in biodiversity hotspots with their taxonomy often being incomplete. Copyright © 2017 Elsevier Inc. All rights reserved.
Guerrini, Alessandra; Lampronti, Ilaria; Bianchi, Nicoletta; Zuccato, Cristina; Breveglieri, Giulia; Salvatori, Francesca; Mancini, Irene; Rossi, Damiano; Potenza, Rocco; Chiavilli, Francesco; Sacchetti, Gianni; Gambari, Roberto; Borgatti, Monica
2009-05-27
Epicarps of Citrus bergamia fruits from organic farming were extracted with the objective of obtaining derived products differently rich in coumarins and psoralens. The extracts were chemically characterized by (1)H nuclear magnetic resonance (NMR), gas chromatography-flame ionization detection (GC-FID), gas chromatography-mass spectrometry (GC-MS), and high-pressure liquid chromatography (HPLC) for detecting and quantifying the main constituents. Both bergamot extracts and chemical standards corresponding to the main constituents detected were then assayed for their capacity to increase erythroid differentiation of K562 cells and expression of γ-globin genes in human erythroid precursor cells. Three experimental cell systems were employed: (a) the human leukemic K562 cell line, (b) K562 cell clones stably transfected with a pCCL construct carrying green-enhanced green fluorescence protein (EGFP) under the γ-globin gene promoter, and (c) the two-phase liquid culture of human erythroid progenitors isolated from healthy donors. The results suggest that citropten and bergapten are powerful inducers of differentiation and γ-globin gene expression in human erythroid cells. These data could have practical relevance, because pharmacologically mediated regulation of human γ-globin gene expression, with the consequent induction of fetal hemoglobin, is considered to be a potential therapeutic approach in hematological disorders, including β-thalassemia and sickle cell anemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatti, A.A.
1990-04-01
This paper examines the effects of primary and secondary fault quantities as well s of mutual couplings of neighboring circuits on the sensitivity of operation and threshold settings of a microcomputer based differential protection of UHV lines under selective phase switching. Microcomputer based selective phase switching allows the disconnection of minimum number of phases involved in a fault and requires the autoreclosing of these phases immediately after the extinction of secondary arc. During a primary fault a heavy current contribution to the healthy phases tends to cause an unwanted tripping. Faulty phases physically disconnected constitute an isolated fault which beingmore » coupled to the system affects the current and voltage levels of the healthy phases still retained in the system and may cause an unwanted tripping. The microcomputer based differential protection, appears to have poor performance when applied to uncompensated lines employing selective pole switching.« less
Generation and transmission of DPSK signals using a directly modulated passive feedback laser.
Karar, Abdullah S; Gao, Ying; Zhong, Kang Ping; Ke, Jian Hong; Cartledge, John C
2012-12-10
The generation of differential-phase-shift keying (DPSK) signals is demonstrated using a directly modulated passive feedback laser at 10.709-Gb/s, 14-Gb/s and 16-Gb/s. The quality of the DPSK signals is assessed using both noncoherent detection for a bit rate of 10.709-Gb/s and coherent detection with digital signal processing involving a look-up table pattern-dependent distortion compensator. Transmission over a passive link consisting of 100 km of single mode fiber at a bit rate of 10.709-Gb/s is achieved with a received optical power of -45 dBm at a bit-error-ratio of 3.8 × 10(-3) and a 49 dB loss margin.
Choice of phase in the CS and IOS approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snider, R.F.
1982-04-01
With the recognition that the angular momentum representations of unit position and momentum directional states must have different but uniquely related phases, the previously presented expression of scattering amplitude in terms of IOS angle dependent phase shifts must be modified. This resolves a major disagreement between IOS and close coupled degeneracy averaged differential cross sections. It is found that the phase factors appearing in the differential cross section have nothing to do with any particular choice of decoupling parameter. As a consequence, the differential cross section is relatively insensitive to the choice of CS decoupling parameter. The phase relations obtainedmore » are also in agreement with those deduced from the Born approximation.« less
Lu, Hangwen; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei
2016-01-01
Differential phase contrast (DPC) is a non-interferometric quantitative phase imaging method achieved by using an asymmetric imaging procedure. We report a pupil modulation differential phase contrast (PMDPC) imaging method by filtering a sample’s Fourier domain with half-circle pupils. A phase gradient image is captured with each half-circle pupil, and a quantitative high resolution phase image is obtained after a deconvolution process with a minimum of two phase gradient images. Here, we introduce PMDPC quantitative phase image reconstruction algorithm and realize it experimentally in a 4f system with an SLM placed at the pupil plane. In our current experimental setup with the numerical aperture of 0.36, we obtain a quantitative phase image with a resolution of 1.73μm after computationally removing system aberrations and refocusing. We also extend the depth of field digitally by 20 times to ±50μm with a resolution of 1.76μm. PMID:27828473
An Adherent Cell Differentiation and Cytotoxicity (ACDC) in vitro assay with mouse embryonic stem cells was used to screen the ToxCast Phase I chemical library for effects on cellular differentiation and cell number. The U.S. Environmental Protection Agency (EPA) established the ...
Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim
2015-01-01
Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.
NASA Astrophysics Data System (ADS)
Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim
2015-11-01
Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two-dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.
2013-06-01
couples the high-‐speed capability of the STEAM imager and differential phase... air bubbles in the TPE mix. Moreover, TPE chips were also successfully sealed to other substrates...dynamics, and microelectromechanical systems (MEMS) via laser-‐scanning surface vibrometry , and observation
NASA Astrophysics Data System (ADS)
Olivier, Chomette; Armante, Raymond; Crevoisier, Cyril; Delahaye, Thibault; Edouart, Dimitri; Gibert, Fabien; Nahan, Frédéric; Tellier, Yoann
2018-04-01
The MEthane Remote sensing Lidar missioN (MERLIN), currently in phase C, is a joint cooperation between France and Germany on the development of a spatial Integrated Path Differential Absorption (IPDA) LIDAR (LIght Detecting And Ranging) to conduct global observations of atmospheric methane. This presentation will focus on the status of a LIDAR mission data simulator and processor developed at LMD (Laboratoire de Météorologie Dynamique), Ecole Polytechnique, France, for MERLIN to assess the performances in realistic observational situations.
Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.
Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan
2018-05-16
Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Results from EDDAatCOSY: Spin Observables in Proton-Proton Elastic Scattering
NASA Astrophysics Data System (ADS)
Rohdjeß, Heiko
2003-07-01
Elastic proton-proton scattering as one of the fundamental hadronic reactions has been studied with the internal target experiment EDDA at the Cooler-Synchrotron COSY/Jülich. A precise measurement of differential cross section, analyzing power and three spin-correlation parameters over a large angular (θc.m. ≈ 35° - 90°) and energy (Tp ≈ 0.5 - 2.5 GeV) range has been carried out in the past years. By taking scattering data during the acceleration of the COSY beam, excitation functions were measured in small energy steps and consistent normalization with respect to luminosity and polarization. The experiment uses internal fiber targets and a polarized hydrogen atomic-beam target in conjunction with a double-layered, cylindrical scintillator hodoscope for particle detection. The results on differential cross sections and analyzing powers have been published and helped to improve phase shift solutions. Recently data taking with polarized beam and target has been completed. Preliminary results for the spin-correlation parameters A NN, ASS, and ASL are presented. The observable ASS has been measured the first time above 800 MeV and our results are in sharp contrast to phase-shift predictions at higher energies. Our analysis shows that some of the ambiguities in the direct reconstruction of scattering amplitudes which also show up as differences between available phase-shift solutions, will be reduced by these new measurements.
Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors.
Bohrer, Forest I; Colesniuc, Corneliu N; Park, Jeongwon; Schuller, Ivan K; Kummel, Andrew C; Trogler, William C
2008-03-26
The use of hydrogen peroxide as a precursor to improvised explosives has made its detection a topic of critical importance. Chemiresistor arrays comprised of 50 nm thick films of metallophthalocyanines (MPcs) are redox selective vapor sensors of hydrogen peroxide. Hydrogen peroxide is shown to decrease currents in cobalt phthalocyanine sensors while it increases currents in nickel, copper, and metal-free phthalocyanine sensors; oxidation and reduction of hydrogen peroxide via catalysis at the phthalocyanine surface are consistent with the pattern of sensor responses. This represents the first example of MPc vapor sensors being oxidized and reduced by the same analyte by varying the metal center. Consequently, differential analysis by redox contrast with catalytic amplification using a small array of sensors may be used to uniquely identify peroxide vapors. Metallophthalocyanine chemiresistors represent an improvement over existing peroxide vapor detection technologies in durability and selectivity in a greatly decreased package size.
Multivariate η-μ fading distribution with arbitrary correlation model
NASA Astrophysics Data System (ADS)
Ghareeb, Ibrahim; Atiani, Amani
2018-03-01
An extensive analysis for the multivariate ? distribution with arbitrary correlation is presented, where novel analytical expressions for the multivariate probability density function, cumulative distribution function and moment generating function (MGF) of arbitrarily correlated and not necessarily identically distributed ? power random variables are derived. Also, this paper provides exact-form expression for the MGF of the instantaneous signal-to-noise ratio at the combiner output in a diversity reception system with maximal-ratio combining and post-detection equal-gain combining operating in slow frequency nonselective arbitrarily correlated not necessarily identically distributed ?-fading channels. The average bit error probability of differentially detected quadrature phase shift keying signals with post-detection diversity reception system over arbitrarily correlated and not necessarily identical fading parameters ?-fading channels is determined by using the MGF-based approach. The effect of fading correlation between diversity branches, fading severity parameters and diversity level is studied.
Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia
2015-04-24
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.
Tunneling probe of fluctuating superconductivity in disordered thin films
NASA Astrophysics Data System (ADS)
Dentelski, David; Frydman, Aviad; Shimshoni, Efrat; Dalla Torre, Emanuele G.
2018-03-01
Disordered thin films close to the superconductor-insulator phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be revealed, for example, by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks, on both sides of the transition. Here we describe the insulating side in terms of a fluctuating superconducting field with finite-range correlations. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks.
Ard, Tyler; Carver, Frederick W; Holroyd, Tom; Horwitz, Barry; Coppola, Richard
2015-08-01
In typical magnetoencephalography and/or electroencephalography functional connectivity analysis, researchers select one of several methods that measure a relationship between regions to determine connectivity, such as coherence, power correlations, and others. However, it is largely unknown if some are more suited than others for various types of investigations. In this study, the authors investigate seven connectivity metrics to evaluate which, if any, are sensitive to audiovisual integration by contrasting connectivity when tracking an audiovisual object versus connectivity when tracking a visual object uncorrelated with the auditory stimulus. The authors are able to assess the metrics' performances at detecting audiovisual integration by investigating connectivity between auditory and visual areas. Critically, the authors perform their investigation on a whole-cortex all-to-all mapping, avoiding confounds introduced in seed selection. The authors find that amplitude-based connectivity measures in the beta band detect strong connections between visual and auditory areas during audiovisual integration, specifically between V4/V5 and auditory cortices in the right hemisphere. Conversely, phase-based connectivity measures in the beta band as well as phase and power measures in alpha, gamma, and theta do not show connectivity between audiovisual areas. The authors postulate that while beta power correlations detect audiovisual integration in the current experimental context, it may not always be the best measure to detect connectivity. Instead, it is likely that the brain utilizes a variety of mechanisms in neuronal communication that may produce differential types of temporal relationships.
Jiang, Wei; Wang, Shenliang; Yuen, Lik Hang; Kwon, Hyukin; Ono, Toshikazu
2013-01-01
Contamination of soil and groundwater by petroleum-based products is an extremely widespread and important environmental problem. Here we have tested a simple optical approach for detecting and identifying such industrial contaminants in soil samples, using a set of fluorescent DNA-based chemosensors in pattern-based sensing. We used a set of diverse industrial volatile chemicals to screen and identify a set of five short oligomeric DNA fluorophores on PEG-polystyrene microbeads that could differentiate the entire set after exposure to their vapors in air. We then tested this set of five fluorescent chemosensor compounds for their ability to respond with fluorescence changes when exposed to headgas over soil samples contaminated with one of ten different samples of crude oil, petroleum distillates, fuels, lubricants and additives. Statistical analysis of the quantitative fluorescence change data (as Δ(R,G,B) emission intensities) revealed that these five chemosensors on beads could differentiate all ten product mixtures at 1000 ppm in soil within 30 minutes. Tests of sensitivity with three of the contaminant mixtures showed that they could be detected and differentiated in amounts at least as low as one part per million in soil. The results establish that DNA-polyfluorophores may have practical utility in monitoring the extent and identity of environmental spills and leaks, while they occur and during their remediation. PMID:23878719
NASA Astrophysics Data System (ADS)
Vermeulen, Paul. A.; Momand, Jamo; Kooi, Bart J.
2014-07-01
The reversible amorphous-crystalline phase change in a chalcogenide material, specifically the Se1-xTex alloy, has been investigated for the first time using ultrafast differential scanning calorimetry. Heating rates and cooling rates up to 5000 K/s were used. Repeated reversible amorphous-crystalline phase switching was achieved by consecutively melting, melt-quenching, and recrystallizing upon heating. Using a well-conditioned method, the composition of a single sample was allowed to shift slowly from 15 at. %Te to 60 at. %Te, eliminating sample-to-sample variability from the measurements. Using Energy Dispersive X-ray Spectroscopy composition analysis, the onset of melting for different Te-concentrations was confirmed to coincide with the literature solidus line, validating the use of the onset of melting Tm as a composition indicator. The glass transition Tg and crystallization temperature Tc could be determined accurately, allowing the construction of extended phase diagrams. It was found that Tm and Tg increase (but Tg/Tm decrease slightly) with increasing Te-concentration. Contrarily, the Tc decreases substantially, indicating that the amorphous phase becomes progressively unfavorable. This coincides well with the observation that the critical quench rate to prevent crystallization increases about three orders of magnitude with increasing Te concentration. Due to the employment of a large range of heating rates, non-Arrhenius behavior was detected, indicating that the undercooled liquid SeTe is a fragile liquid. The activation energy of crystallization was found to increase 0.5-0.6 eV when the Te concentration increases from 15 to 30 at. % Te, but it ceases to increase when approaching 50 at. % Te.
Guthrie, Katherine A.; Cummings, Carrie L.; Sabo, Kathleen; Wood, Brent L.; Gooley, Ted; Yang, Taimei; Epping, Mirjam T.; Shou, Yaping; Pogosova-Agadjanyan, Era; Ladne, Paula; Stirewalt, Derek L.; Abkowitz, Janis L.; Radich, Jerald P.
2009-01-01
The preferentially expressed antigen in melanoma (PRAME) is expressed in several hematologic malignancies, but either is not expressed or is expressed at only low levels in normal hematopoietic cells, making it a target for cancer therapy. PRAME is a tumor-associated antigen and has been described as a corepressor of retinoic acid signaling in solid tumor cells, but its function in hematopoietic cells is unknown. PRAME mRNA expression increased with chronic myeloid leukemia (CML) disease progression and its detection in late chronic-phase CML patients before tyrosine kinase inhibitor therapy was associated with poorer therapeutic responses and ABL tyrosine kinase domain point mutations. In leukemia cell lines, PRAME protein expression inhibited granulocytic differentiation only in cell lines that differentiate along this lineage after all-trans retinoic acid (ATRA) exposure. Forced PRAME expression in normal hematopoietic progenitors, however, inhibited myeloid differentiation both in the presence and absence of ATRA, and this phenotype was reversed when PRAME was silenced in primary CML progenitors. These observations suggest that PRAME inhibits myeloid differentiation in certain myeloid leukemias, and that its function in these cells is lineage and phenotype dependent. Lastly, these observations suggest that PRAME is a target for both prognostic and therapeutic applications. PMID:19625708
Xing, Fuyong; Yang, Lin
2016-01-01
Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to inter-observer variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literatures. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast (DIC), fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation. PMID:26742143
[The effect of Foxc2 overexpression on the osteogenic properties of C3H10T1/2 cells].
Wang, Min-Jiao; Si, Jia-Wen; Li, Hong-Liang; Ouyang, Ning-Juan; Shen, Guo-Fang
2016-08-01
To investigate the effect of Foxc2 overexpression on osteogenic and adipogenic differentiation of C3H10T1/2 cells. C3H10T1/2 cells were transfected with plenti-Foxc2 and selected with puromycin for stable clones. The expression of Foxc2 was determined by real-time PCR and Western blot. Cell proliferation was detected by CCK-8 kit. Cell cycle and apoptosis were detected by flow cytometry. The level of osteogenic biomarkers Runx2, OPN, OCN and adipogenic biomarker PPARγ were quantified by real-time PCR and Western blot. Alkaline phosphatase (ALP) staining and oil red staining were conducted to evaluate the effect of Foxc2 overexpression on osteogenic and adipogenic differentiation. Statistical analysis was performed using SPSS 17.0 software package. C3H10T1/2-Foxc2 cell line was successfully constructed and verified by direct sequencing and Foxc2 overexpression in vitro. Cell proliferation was reduced and cell cycle was blocked in G1/G0 phase. Enhanced ALP staining and reduced oil red staining were observed in C3H10T1/2-Foxc2 cells as compared with the control. Foxc2 overexpression up-regulated Runx2, OPN, OCN during osteogenic differentiation and down-regulated PPARγduring adipogenic differentiation. C3H10T1/2 cell line stably expressing Foxc2 gene was successfully established, cell proliferation was reduced, osteogenesis biomarkers were up-regulated during the osteogenesis by overexpression Foxc2, PPARγwas down-regulated during adipogenesis.
NASA Astrophysics Data System (ADS)
Hutchison, Keith D.; Etherton, Brian J.; Topping, Phillip C.
1996-12-01
Quantitative assessments on the performance of automated cloud analysis algorithms require the creation of highly accurate, manual cloud, no cloud (CNC) images from multispectral meteorological satellite data. In general, the methodology to create ground truth analyses for the evaluation of cloud detection algorithms is relatively straightforward. However, when focus shifts toward quantifying the performance of automated cloud classification algorithms, the task of creating ground truth images becomes much more complicated since these CNC analyses must differentiate between water and ice cloud tops while ensuring that inaccuracies in automated cloud detection are not propagated into the results of the cloud classification algorithm. The process of creating these ground truth CNC analyses may become particularly difficult when little or no spectral signature is evident between a cloud and its background, as appears to be the case when thin cirrus is present over snow-covered surfaces. In this paper, procedures are described that enhance the researcher's ability to manually interpret and differentiate between thin cirrus clouds and snow-covered surfaces in daytime AVHRR imagery. The methodology uses data in up to six AVHRR spectral bands, including an additional band derived from the daytime 3.7 micron channel, which has proven invaluable for the manual discrimination between thin cirrus clouds and snow. It is concluded that while the 1.6 micron channel remains essential to differentiate between thin ice clouds and snow. However, this capability that may be lost if the 3.7 micron data switches to a nighttime-only transmission with the launch of future NOAA satellites.
[Effect of IGF-1 on proliferation and differentiation of primary human embryonic myoblasts].
Cen, Shiqiang; Zhang, Junmei; Huang, Fuguo; Yang, Zhiming; Xie, Huiqi
2008-01-01
To investigate the effect of IGF-1 on the growth of primary human embryonic myoblasts. The method of incorporation of 3H-TdR was used to evaluate the ability of proliferation of myoblasts. The count per minute (CPM) values of myoblasts at different concentrations (1, 2, 4, 8, 16 and 32 ng/mL) of IGF-1 were measured, and dose-effect curves were drawn to choose the optional concentration of IGF-1 to promote the proliferation. Then the experimental group of myoblasts received the addition of the optional concentration of IGF-1 in the growth medium, the control group just received the growth medium. The flow cytometry was used to detect the cell cycle. The method of incorporation of 3H-TdR was used to measure the peak-CPM. The myotube fusion rate was measured in myoblasts withdifferent concentrations (0, 5, 10, 15, 20, 25 and 30 ng/mL) of IGF-1 in fusion medium, the dose-effect curves were also drawn, so as to decided the optional concentration of IGF-1 in stimulating differentiation. Fusion medium with optional concentration of IGF-1 was used in experimental group, and the control group just with fusion medium. The fusion rate of myotube and the synthesis of creatine kinase (CK) were detected in both groups. The optional concentration of 5 ng/mL IGF-1 was chosen for stimulating proliferation. It was shown that the time of cell cycle of control was 96 hours, but that of the experimental group was reduced to 60 hours. The results of flow cytometry showed that the time of G1 phase, S phase and G2M phase was 70.03, 25.01 and 0.96 hours respectively in control group, and were 22.66, 16.47 and 20.87 hours respectively in experimental group. The time-CPM value curves showed that the peak-CPM emerged at 96 hours in control group and 48 hours in experimental group, whichwas in agreement with the results of the flow cytometry. The optional concentration stimulating proliferation was 20 ng/mL IGF-1. Compared with control, the quantity of CK was increased by 2,000 mU/mL and the fusion rate was elevated by 30% in experimental group. The concentrations of 20 ng/mL IGF-1 can elevat obviously the fusion rate and the quantity of CK. IGF-1 can enhance the proliferation and differentiation of myoblasts via inducing the number of myoblasts at G1 phase and increasing the number of myoblasts at S and G2M phases.
Jiang, Xiaolei; Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang
2015-01-01
X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm.
Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang
2015-01-01
X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm. PMID:26089971
Differential Characteristics Based Iterative Multiuser Detection for Wireless Sensor Networks
Chen, Xiaoguang; Jiang, Xu; Wu, Zhilu; Zhuang, Shufeng
2017-01-01
High throughput, low latency and reliable communication has always been a hot topic for wireless sensor networks (WSNs) in various applications. Multiuser detection is widely used to suppress the bad effect of multiple access interference in WSNs. In this paper, a novel multiuser detection method based on differential characteristics is proposed to suppress multiple access interference. The proposed iterative receive method consists of three stages. Firstly, a differential characteristics function is presented based on the optimal multiuser detection decision function; then on the basis of differential characteristics, a preliminary threshold detection is utilized to find the potential wrongly received bits; after that an error bit corrector is employed to correct the wrong bits. In order to further lower the bit error ratio (BER), the differential characteristics calculation, threshold detection and error bit correction process described above are iteratively executed. Simulation results show that after only a few iterations the proposed multiuser detection method can achieve satisfactory BER performance. Besides, BER and near far resistance performance are much better than traditional suboptimal multiuser detection methods. Furthermore, the proposed iterative multiuser detection method also has a large system capacity. PMID:28212328
Adaptive array technique for differential-phase reflectometry in QUEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idei, H., E-mail: idei@triam.kyushu-u.ac.jp; Hanada, K.; Zushi, H.
2014-11-15
A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effectmore » was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.« less
Scharmach, E; Hessel, S; Niemann, B; Lampen, A
2009-11-30
The human colon adenocarcinoma cell line Caco-2 is frequently used to study human intestinal metabolism and transport of xenobiotica. Previous studies have shown that both Caco-2 cells and human colon cells constitutively express the multigene family of detoxifying enzymes glutathione S-transferases (GSTs), particularly GST alpha and GST pi. GSTs may play a fundamental role in the molecular interplay between phase I, II enzymes and ABC-transporters. The gut fermentation product, butyrate, can modulate the potential for detoxification. The aim of this study was to investigate the basal expression of further cytosolic GSTs in Caco-2 cells during cell differentiation. In addition, a comparison was made with expression levels in MCF-7 and HepG2, two other cell types with barrier functions. Finally, the butyrate-mediated modulation of gene and protein expression was determined by real time PCR and western blot analysis. In Caco-2, gene and protein expression levels of GST alpha increased during cell differentiation. High levels of GSTO1 and GSTP1 were constantly expressed. No expression of GSTM5 and GSTT1 was detected. HepG2 expressed GSTO1 and MCF-7 GSTZ1 most intensively. No expression of GSTA5, GSTM5, or GSTP1 was detected in either cell. Incubation of Caco-2 cells with butyrate (5 mM) significantly induced GSTA1 and GSTM2 in proliferating Caco-2 cells. In differentiated cells, butyrate tended to increase GSTO1 and GSTP1. The results of this study show that a differentiation-dependent expression of GSTs in Caco-2 cells may reflect the in vivo situation and indicate the potential of butyrate to modify intestinal metabolism. GSTA1-A4 have been identified as good markers for cell differentiation. The Caco-2 cell line is a useful model for assessing the potential of food-related substances to modulate the GST expression pattern.
X-ray vector radiography of a human hand
NASA Astrophysics Data System (ADS)
Jud, Christoph; Braig, Eva; Dierolf, Martin; Eggl, Elena; Günther, Benedikt; Achterhold, Klaus; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Münzel, Daniela
2017-03-01
Grating based x-ray phase-contrast reveals differential phase-contrast (DPC) and dark-field contrast (DFC) on top of the conventional absorption image. X-ray vector radiography (XVR) exploits the directional dependence of the DFC and yields the mean scattering strength, the degree of anisotropy and the orientation of scattering structures by combining several DFC-projections. Here, we perform an XVR of an ex vivo human hand specimen. Conventional attenuation images have a good contrast between the bones and the surrounding soft tissue. Within the bones, trabecular structures are visible. However, XVR detects subtler differences within the trabecular structure: there is isotropic scattering in the extremities of the phalanx in contrast to anisotropic scattering in its body. The orientation changes as well from relatively random in the extremities to an alignment along the longitudinal trabecular orientation in the body. In the other bones measured, a similar behavior was found. These findings indicate a deeper insight into the anatomical configuration using XVR compared to conventional radiography. Since microfractures cause a discontinuous trabecular structure, XVR could help to detect so-called radiographically occult fractures of the trabecular bones.
NASA Astrophysics Data System (ADS)
Li, Gang; Zhao, Qing
2017-03-01
In this paper, a minimum entropy deconvolution based sinusoidal synthesis (MEDSS) filter is proposed to improve the fault detection performance of the regular sinusoidal synthesis (SS) method. The SS filter is an efficient linear predictor that exploits the frequency properties during model construction. The phase information of the harmonic components is not used in the regular SS filter. However, the phase relationships are important in differentiating noise from characteristic impulsive fault signatures. Therefore, in this work, the minimum entropy deconvolution (MED) technique is used to optimize the SS filter during the model construction process. A time-weighted-error Kalman filter is used to estimate the MEDSS model parameters adaptively. Three simulation examples and a practical application case study are provided to illustrate the effectiveness of the proposed method. The regular SS method and the autoregressive MED (ARMED) method are also implemented for comparison. The MEDSS model has demonstrated superior performance compared to the regular SS method and it also shows comparable or better performance with much less computational intensity than the ARMED method.
Nonlinear optical coupler using a doped optical waveguide
Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.
1994-01-01
An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.
DIF Trees: Using Classification Trees to Detect Differential Item Functioning
ERIC Educational Resources Information Center
Vaughn, Brandon K.; Wang, Qiu
2010-01-01
A nonparametric tree classification procedure is used to detect differential item functioning for items that are dichotomously scored. Classification trees are shown to be an alternative procedure to detect differential item functioning other than the use of traditional Mantel-Haenszel and logistic regression analysis. A nonparametric…
Fatigue Crack Detection via Load-Differential Guided Wave Methods (Preprint)
2011-11-01
AFRL-RX-WP-TP-2011-4362 FATIGUE CRACK DETECTION VIA LOAD- DIFFERENTIAL GUIDED WAVE METHODS (PREPRINT) Jennifer E. Michaels, Sang Jun Lee...November 2011 Technical Paper 1 November 2011 – 1 November 2011 4. TITLE AND SUBTITLE FATIGUE CRACK DETECTION VIA LOAD-DIFFERENTIAL GUIDED WAVE...document contains color. 14. ABSTRACT Detection of fatigue cracks originating from fastener holes is an important application for structural health
Weiss, J.M.; Mckay, A.J.; Derito, C.; Watanabe, C.; Thorn, K.A.; Madsen, E.L.
2004-01-01
TNT (trinitrotoluene) is a contaminant of global environmental significance, yet determining its environmental fate has posed longstanding challenges. To date, only differential extraction-based approaches have been able to determine the presence of covalently bound, reduced forms of TNT in field soils. Here, we employed thermal elution, pyrolysis, and gas chromatography/mass spectrometry (GC/MS) to distinguish between covalently bound and noncovalently bound reduced forms of TNT in soil. Model soil organic matter-based matrixes were used to develop an assay in which noncovalently bound (monomeric) aminodinitrotoluene (ADNT) and diaminonitrotoluene (DANT) were desorbed from the matrix and analyzed at a lower temperature than covalently bound forms of these same compounds. A thermal desorption technique, evolved gas analysis, was initially employed to differentiate between covalently bound and added 15N-labeled monomeric compounds. A refined thermal elution procedure, termed "double-shot analysis" (DSA), allowed a sample to be sequentially analyzed in two phases. In phase 1, all of an added 15N-labeled monomeric contaminant was eluted from the sample at relatively low temperature. In phase 2 during high-temperature pyrolysis, the remaining covalently bound contaminants were detected. DSA analysis of soil from the Louisiana Army Ammunition Plant (LAAP; ???5000 ppm TNT) revealed the presence of DANT, ADNT, and TNT. After scrutinizing the DSA data and comparing them to results from solvent-extracted and base/acid-hydrolyzed LAAP soil, we concluded that the TNT was a noncovalently bound "carryover" from phase 1. Thus, the pyrolysis-GC/MS technique successfully defined covalently bound pools of ADNT and DANT in the field soil sample.
Day and night: diurnal phase influences the response to chronic mild stress
Aslani, Shilan; Harb, Mazen R.; Costa, Patricio S.; Almeida, Osborne F. X.; Sousa, Nuno; Palha, Joana A.
2014-01-01
Chronic mild stress (CMS) protocols are widely used to create animal models of depression. Despite this, the inconsistencies in the reported effects may be indicative of crucial differences in methodology. Here, we considered the time of the diurnal cycle in which stressors are applied as a possible relevant temporal variable underlying the association between stress and behavior. Most laboratories test behavior during the light phase of the diurnal cycle, which corresponds to the animal's resting period. Here, rats stressed either in their resting (light phase) or active (dark phase) periods were behaviorally characterized in the light phase. When exposure to CMS occurred during the light phase of the day cycle, rats displayed signs of depressive and anxiety-related behaviors. This phenotype was not observed when CMS was applied during the dark (active) period. Interestingly, although no differences in spatial and reference memory were detected (Morris water maze) in animals in either stress period, those stressed in the light phase showed marked impairments in the probe test. These animals also showed significant dendritic atrophy in the hippocampal dentate granule neurons, with a decrease in the number of spines. Taken together, the observations reported demonstrate that the time in which stress is applied has differential effects on behavioral and neurostructural phenotypes. PMID:24672446
Lyle, R E; Corley, J D; McGehee, R E
1998-11-01
The potential of infant diet to influence fat cell development has largely been examined in clinical studies with conflicting results. In this study, the direct effects of two standard infant formulas, Enfamil and Similac, as well as human milk were examined using a well characterized model of adipocyte differentiation, the 3T3-L1 murine preadipocyte cell line. After exposure to a hormonal regimen of insulin, dexamethasone, and 1-methyl-3-isobutylmethylxanthine, these cells undergo a mitotic expansion phase followed by terminal differentiation. On d 4 of hormonal exposure, greater than 95% of 3T3-L1 cells exhibit the morphologic and biochemical characteristics of mature adipocytes. In this study, cells were exposed to control medium, or control medium supplemented with either 10% Enfamil, 10% Similac, 10% human milk (skim or whole), or the standard hormonal regimen. Oil Red O-detectable lipid accumulation, immunocytochemical cell proliferation assays, and activated expression of adipocyte differentiation-specific mRNAs by Northern blot analysis were used to assess the effects of treatment on adipocyte differentiation. Results from each level of assessment revealed that both Enfamil and human milk were as effective as the standard hormonal regimen at stimulating adipocyte differentiation. In contrast, results from treatment with Similac or human skim milk were indistinguishable from control unstimulated cells. This study, demonstrating that Enfamil and human milk are capable of independently inducing in vitro adipocyte differentiation, suggests that diet during infancy could influence body fat development.
Pabel, Sven-Olav; Pabel, Anne-Kathrin; Schmickler, Jan; Schulz, Xenia; Wiegand, Annette
2017-09-01
The aim of this study was to evaluate if differential learning in a preclinical dental course impacted the performance of dental students in a practical exam (preparation of a gold partial crown) immediately after the training session and 20 weeks later compared to conventional learning. This controlled study was performed in a preclinical course in operative dentistry at a dental school in Germany. Third-year students were trained in preparing gold partial crowns by using either the conventional learning (n=41) or the differential learning approach (n=32). The differential learning approach consisted of 20 movement exercises with a continuous change of movement execution during the learning session, while the conventional learning approach was mainly based on repetition, a methodological series of exercises, and correction of preparations during the training phase. Practical exams were performed immediately after the training session (T1) and 20 weeks later (T2, retention test). Preparations were rated by four independent and blinded examiners. At T1, no significant difference between the performance (exam passed) of the two groups was detected (conventional learning: 54.3%, differential learning: 68.0%). At T2, significantly more students passed the exam when trained by the differential learning approach (68.8%) than by the conventional learning approach (18.9%). Interrater reliability was moderate (Kappa: 0.57, T1) or substantial (Kappa: 0.67, T2), respectively. These results suggest that a differential learning approach can increase the manual skills of dental students.
Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound
Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth C.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.
2013-01-01
The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg/ml Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of 3-dimensional imaging of a 185 μL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi. PMID:24077004
Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound
NASA Astrophysics Data System (ADS)
Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth P.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.
2013-10-01
The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml-1 Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.
Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound.
Pope, Ava G; Wu, Gongting; McWhorter, Frances Y; Merricks, Elizabeth P; Nichols, Timothy C; Czernuszewicz, Tomasz J; Gallippi, Caterina M; Oldenburg, Amy L
2013-10-21
The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml(-1) Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.
Temperature-Modulated Array High-Performance Liquid Chromatography
Premstaller, Andreas; Xiao, Wenzhong; Oberacher, Herbert; O'Keefe, Matthew; Stern, David; Willis, Thomas; Huber, Christian G.; Oefner, Peter J.
2001-01-01
Using novel monolithic poly(styrene-divinylbenzene) capillary columns with an internal diameter of 0.2 mm, we demonstrate for the first time the feasibility of constructing high-performance liquid chromatography arrays for the detection of mutations by heteroduplex analysis under partially denaturing conditions. In one embodiment, such an array can be used to analyze one sample simultaneously at different temperatures to maximize the detection of mutations in DNA fragments containing multiple discrete melting domains. Alternatively, one may inject different samples onto columns kept at the same effective temperature. Further improvements in throughput can be obtained by means of laser-induced fluorescence detection and the differential labeling of samples with up to four different fluorophores. Major advantages of monolithic capillary high-performance liquid chromatographic arrays over their capillary electrophoretic analogs are the chemical inertness of the poly(styrene-divinylbenzene) stationary phase, the physical robustness of the column bed due to its covalent linkage to the inner surface of the fused silica capillary, and the feasibility to modify the stationary phase thereby allowing the separation of compounds not only on the principle of size exclusion, but also adsorption, distribution, and ion exchange. Analyses times are on the order of a few minutes and turnaround time is extremely short as there is no need for the replenishment of the separation matrix between runs. PMID:11691859
Ghaeli, Ima; de Moraes, Mariana A; Beppu, Marisa M; Lewandowska, Katarzyna; Sionkowska, Alina; Ferreira-da-Silva, Frederico; Ferraz, Maria P; Monteiro, Fernando J
2017-08-18
Miscibility is an important issue in biopolymer blends for analysis of the behavior of polymer pairs through the detection of phase separation and improvement of the mechanical and physical properties of the blend. This study presents the formulation of a stable and one-phase mixture of collagen and regenerated silk fibroin (RSF), with the highest miscibility ratio between these two macromolecules, through inducing electrostatic interactions, using salt ions. For this aim, a ternary phase diagram was experimentally built for the mixtures, based on observations of phase behavior of blend solutions with various ratios. The miscibility behavior of the blend solutions in the miscible zones of the phase diagram was confirmed quantitatively by viscosimetric measurements. Assessing the effects of biopolymer mixing ratio and salt ions, before and after dialysis of blend solutions, revealed the importance of ion-specific interactions in the formation of coacervate-based materials containing collagen and RSF blends that can be used in pharmaceutical, drug delivery, and biomedical applications. Moreover, the conformational change of silk fibroin from random coil to beta sheet, in solution and in the final solid films, was detected by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. Scanning electron microscopy (SEM) exhibited alterations of surface morphology for the biocomposite films with different ratios. Surface contact angle measurement illustrated different hydrophobic properties for the blended film surfaces. Differential scanning calorimetry (DSC) showed that the formation of the beta sheet structure of silk fibroin enhances the thermal stability of the final blend films. Therefore, the novel method presented in this study resulted in the formation of biocomposite films whose physico-chemical properties can be tuned by silk fibroin conformational changes by applying different component mixing ratios.
Contrast features of breast cancer in frequency-domain laser scanning mammography
NASA Astrophysics Data System (ADS)
Moesta, K. Thomas; Fantini, Sergio; Jess, Helge; Totkas, Susan; Franceschini, Maria-Angela; Kaschke, Michael; Schlag, Peter M.
1998-04-01
Frequency-domain optical mammography has been advocated to improve contrast and thus cancer detectability in breast transillumination. To the best of our knowledge, this report provides the first systematic clinical results of a frequency-domain laser scanning mammograph (FLM). The instrument provides monochromatic light at 690 and 810 nm, whose intensity is modulated at 110.0008 MHz, respectively. The breast is scanned by stepwise positioning of source and detector, and amplitude and phase for both wavelengths are measured by a photomultiplier tube using heterodyne detection. Images are formed representing amplitude or phase data on linear gray scales. Furthermore, various algorithms carrying on more than one signal were essayed. Twenty visible cancers out of 25 cancers in the first 59 investigations were analyzed for their quantitative contrast with respect to the whole breast or to defined reference areas. Contrast definitions refer to the signal itself, to the signal noise, or were based on nonparametric comparison. The amplitude signal provides better contrast than the phase signal. Ratio images between red and IR amplitudes gave variable results; in some cases the tumor contrast was canceled. The algorithms to determine (mu) a and (mu) sPRM from amplitude and phase data did not significantly improve upon objective contrast. The N algorithm, using the phase signal to flatten the amplitude signal did significantly improve upon contrast according to contrast definitions 1 and 2, however, did not improve upon nonparametric contrast. Thus, with the current instrumentation, the phase signal is helpful to correct for the complex and variable geometry of the breast. However, an independent informational content for tumor differentiation could not be determined. The flat field algorithm did greatly enhance optical contrast in comparison with amplitude or amplitude ratio images. Further evaluation of FLM will have to be based on the N-algorithm images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ke; Garrett, John; Chen, Guang-Hong
2013-11-15
Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objectsmore » (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD curves tended to be steeper. The CHO generated the best quantitative agreement with human observers with its CD curve overlapping with that of human observer. Statistical equivalence between CHO and humans can be claimed within 11% of the human observer results, including both the disk and lesion detection experiments.Conclusions: The model observer method can be used to accurately represent human observer performance with the stochastic DPC-CT noise for SKE tasks with sizes ranging from 8 to 128 pixels. The incorporation of the anatomical noise remains to be studied.« less
Differential transimpedance amplifier circuit for correlated differential amplification
Gresham, Christopher A [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger P [Tucson, AZ
2008-07-22
A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.
Pulmonary MRA: differentiation of pulmonary embolism from truncation artefact.
Bannas, Peter; Schiebler, Mark L; Motosugi, Utaroh; François, Christopher J; Reeder, Scott B; Nagle, Scott K
2014-08-01
Truncation artefact (Gibbs ringing) causes central signal drop within vessels in pulmonary magnetic resonance angiography (MRA) that can be mistaken for emboli, reducing diagnostic accuracy for pulmonary embolism (PE). We propose a quantitative approach to differentiate truncation artefact from PE. Twenty-eight patients who underwent pulmonary computed tomography angiography (CTA) for suspected PE were recruited for pulmonary MRA. Signal intensity drops within pulmonary arteries that persisted on both arterial-phase and delayed-phase MRA were identified. The percent signal loss between the vessel lumen and central drop was measured. CTA served as the reference standard for presence of pulmonary emboli. A total of 65 signal intensity drops were identified on MRA. Of these, 48 (74%) were artefacts and 17 (26%) were PE, as confirmed by CTA. Truncation artefacts had a significantly lower median signal drop than PE on both arterial-phase (26% [range 12-58%] vs. 85% [range 53-91%]) and delayed-phase MRA (26% [range 11-55%] vs. 77% [range 47-89%]), p < 0.0001 for both. Receiver operating characteristic (ROC) analyses revealed a threshold value of 51% (arterial phase) and 47% signal drop (delayed phase) to differentiate between truncation artefact and PE with 100% sensitivity and greater than 90% specificity. Quantitative signal drop is an objective tool to help differentiate truncation artefact and pulmonary embolism in pulmonary MRA. • Inexperienced readers may mistake truncation artefacts for emboli on pulmonary MRA • Pulmonary emboli have non-uniform signal drop • 51% (arterial phase) and 47% (delayed phase) cut-off differentiates truncation artefact from PE • Quantitative signal drop measurement enables more accurate pulmonary embolism diagnosis with MRA.
ERIC Educational Resources Information Center
Maria, Anton H.; Millam, Evan L.; Wright, Carrie L.
2011-01-01
As an aid for teaching phase equilibria to undergraduate students of igneous and metamorphic petrology, we have designed a laboratory exercise that allows them to create a phase diagram from data produced by differential scanning calorimetry. By preparing and analyzing samples of naphthalene and phenanthrene, students acquire hands-on insight into…
Diffraction-based BioCD biosensor for point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Choi, H.; Chang, C.; Savran, C.; Nolte, D.
2018-02-01
The BioCD platform technology uses spinning-disk interferometry to detect molecular binding to target molecular probes in biological samples. Interferometric configurations have included differential phase contrast and in-line quadrature detection. For the detection of extremely low analyte concentrations, nano- or microparticles can enhance the signal through background-free diffraction detection. Diffraction signal measurements on BioCD biosensors are achieved by forming gratings on a disc surface. The grating pattern was printed with biotinylated bovine serum albumin (BSA) and streptavidin coated beads were deployed. The diameter of the beads was 1 micron and strong protein bonding occurs between BSA and streptavidin-coated beads at the printed location. The wavelength for the protein binding detection was 635 nm. The periodic pattern on the disc amplified scattered light into the first-order diffraction position. The diffracted signal contains Mie scattering and a randomly-distributed-bead noise contributions. Variation of the grating pattern periodicity modulates the diffraction efficiency. To test multiple spatial frequencies within a single scan, we designed a fan-shaped grating to perform frequency filter multiplexing on a diffraction-based BioCD.
Two-step Raman spectroscopy method for tumor diagnosis
NASA Astrophysics Data System (ADS)
Zakharov, V. P.; Bratchenko, I. A.; Kozlov, S. V.; Moryatov, A. A.; Myakinin, O. O.; Artemyev, D. N.
2014-05-01
Two-step Raman spectroscopy phase method was proposed for differential diagnosis of malignant tumor in skin and lung tissue. It includes detection of malignant tumor in healthy tissue on first step with identification of concrete cancer type on the second step. Proposed phase method analyze spectral intensity alteration in 1300-1340 and 1640-1680 cm-1 Raman bands in relation to the intensity of the 1450 cm-1 band on first step, and relative differences between RS intensities for tumor area and healthy skin closely adjacent to the lesion on the second step. It was tested more than 40 ex vivo samples of lung tissue and more than 50 in vivo skin tumors. Linear Discriminant Analysis, Quadratic Discriminant Analysis and Support Vector Machine were used for tumors type classification on phase planes. It is shown that two-step phase method allows to reach 88.9% sensitivity and 87.8% specificity for malignant melanoma diagnosis (skin cancer); 100% sensitivity and 81.5% specificity for adenocarcinoma diagnosis (lung cancer); 90.9% sensitivity and 77.8% specificity for squamous cell carcinoma diagnosis (lung cancer).
Wavelength-switched phase interrogator for extrinsic Fabry-Perot interferometric sensors.
Xia, Ji; Xiong, Shuidong; Wang, Fuyin; Luo, Hong
2016-07-01
We report on phase interrogation of extrinsic Fabry-Perot interferometric (EFPI) sensors through a wavelength-switched unit with a polarization-maintaining fiber Bragg grating (PMFBG). The measurements at two wavelengths are first achieved in one total-optical path. The reflected peaks of the PMFBG with two natural wavelengths are in mutually perpendicular polarization detection, and they are switched through an electro-optic modulator at a high switching speed of 10 kHz. An ellipse fitting differential cross multiplication (EF-DCM) algorithm is proposed for interrogating the variation of the gap length of the EFPI sensors. The phase demodulation system has been demonstrated to recover a minimum phase of 0.42 μrad/Hz at the test frequency of 100 Hz with a stable intensity fluctuation level of ±0.8 dB. Three EFPI sensors with different cavity lengths are tested at the test frequency of 200 Hz, and the results indicate that the system can achieve the demodulation of EFPI sensors with different cavity lengths stably.
Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay
NASA Astrophysics Data System (ADS)
Pan, C.; Liu, Q. H.; Zheng, X.; He, Q. B.; Wu, Y. J.
2015-07-01
On 2013 December 14, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking the photos of each other. With the same beam VLBI (Very long baseline interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect a minor change of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in moving process, and lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.
Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay
NASA Astrophysics Data System (ADS)
Chao, Pan; Qing-hui, Liu; Xin, Zheng; Qing-bao, He; Ya-jun, Wu
2016-04-01
On 14th December 2013, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking pictures of each other. With the same beam VLBI (Very Long Baseline Interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect the minor changes of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in the moving process and the lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.
Sub-pm{{\\sqrt{Hz}^{-1}}} non-reciprocal noise in the LISA backlink fiber
NASA Astrophysics Data System (ADS)
Fleddermann, Roland; Diekmann, Christian; Steier, Frank; Tröbs, Michael; Heinzel, Gerhard; Danzmann, Karsten
2018-04-01
The future space-based gravitational wave detector laser interferometer space antenna (LISA) requires bidirectional exchange of light between its two optical benches on board of each of its three satellites. The current baseline foresees a polarization-maintaining single-mode fiber for this backlink connection. Phase changes which are common in both directions do not enter the science measurement, but differential (‘non-reciprocal’) phase fluctuations directly do and must thus be guaranteed to be small enough. We have built a setup consisting of a Zerodur baseplate with fused silica components attached to it using hydroxide-catalysis bonding and demonstrated the reciprocity of a polarization-maintaining single-mode fiber at the 1 pm \\sqrt{Hz}-1 level as is required for LISA. We used balanced detection to reduce the influence of parasitic optical beams on the reciprocity measurement and a fiber length stabilization to avoid nonlinear effects in our phase measurement system (phase meter). For LISA, a different phase meter is planned to be used that does not show this nonlinearity. We corrected the influence of beam angle changes and temperature changes on the reciprocity measurement in post-processing.
NASA Astrophysics Data System (ADS)
Vanacore, E.; Niu, F.
2007-12-01
This study analyzes SKS and SKKS waveforms recorded on the BOLIVAR array in Venezuela and the BANJO array in South America from earthquake sources located in Tonga and Alaska regions to characterize the lower mantle beneath the Galapagos Islands. The data analysis applies two independent methods, residual differential SKKS-SKS travel times and anisotropy measurements, to examine the historically unsampled region. The residual differential travel time observations were performed using 21 earthquakes from the Tonga trench with magnitudes greater than 5.5 Mw that were recorded on the Bolivar array. Only data that was deemed to have a high SNR for both the SKS and SKKS phases were retained for analysis. Significant positive values of differential travel time that indicate low velocity along the SKKS raypaths are detected east of ~\\m270° longitude. The anisotropy data set consists of 31 intermediate and deep focus earthquakes from the Tonga and Aleutian trenches recorded on the BOLIVAR and BANJO arrays respectively. The anisotropy fast axis angle and time lag of the two phases are calculated using the 1-layer cross-convolution method of Menke and Levin (2003) with a maximum time lag window of 3 seconds. We retain results with an amplitude normalized squared L2 norm value of 0.6 or less for analysis. Because the raypaths of the SKS and SKKS phases are similar in the upper mantle and sample different regions of the lower mantle, we attribute inconsistencies between the two anisotropy to difference of the mantle structure near the CMB. We define significant difference in the azimuth of the fast axis as any difference between the SKSac and SKKSac measurements greater than 15 degrees. The dataset is dominated by inconsistent fast axis azimuth measurements between the SKSac and SKKSac phases, but does not isolate a single geographic region. Comparison of the splitting time measurements yields that inconsistency between the two phases is more significant, greater than 0.5 s, in the Northeast portion of the sampled region bounded to the south and west at approximately \\m-3°S and \\m267° longitude. While the residual differential travel times and the anisotropy measurements do not conclusively show that there is a mantle plume source at the base of the mantle in this region, the data does indicate there the lower mantle beneath the Galapagos Islands has significant structure meriting further study.
Kita, T; Nishijo, H; Eifuku, S; Terasawa, K; Ono, T
1995-03-01
To elucidate spatial and cognitive function of the septal nuclei, neural activity was recorded from alert monkeys during performance of a place-dependent go/no-go (PGN) task. Response/reinforcement contingencies of given objects were conditional upon the location of a motorized, movable device (cab) containing a monkey in one of four places. The task was initiated by presentation of the outside view (place phase) followed by presentation of an object (object phase) selected from a total of four. A lever press was reinforced only if the correct object was seen in its corresponding place, and the same object was never reinforced in any of the other three places. Of 430 septal neurons recorded, the responses during the place phase in the four places were significantly different in 58 neurons. Responses of eight of these neurons were also place-differential during the object phase as well as the place phase. Furthermore, when the outside view was not presented before the object phase, differential responses in the object phase disappeared. Responses of 91 neurons in the object phase were differential in terms of go/no-go responses and reward availability. Of these 91 neurons, 72 were further tested on a place-independent asymmetrical go/no-go (AGN) task, which required no conditional discrimination. Forty-three neurons responded differentially only in the PGN task. It is thus concluded that this PGN-specific activity reflected conditional place-object relations. Of the remaining 29 neurons that responded differentially in both tasks, 21 were further tested by a place-independent symmetrical go/no-go task (no-go responses were also rewarded). Responses of 19 of these 21 neurons were related to the reward/nonreward contingency but not to the response contingency. The results suggest that septal nuclei are involved in integrating spatial information, conditional place-object relations, and reward/nonreward contingency.
McMullen, T P; Lewis, R N; McElhaney, R N
2000-01-01
We have examined the effects of cholesterol on the thermotropic phase behavior and organization of aqueous dispersions of a homologous series of linear disaturated phosphatidylserines by high-sensitivity differential scanning calorimetry and Fourier transform infrared spectroscopy. We find that the incorporation of increasing quantities of cholesterol progressively reduces the temperature, enthalpy, and cooperativity of the gel-to-liquid-crystalline phase transition of the host phosphatidylserine bilayer, such that a cooperative chain-melting phase transition is completely or almost completely abolished at 50 mol % cholesterol, in contrast to the results of previous studies. We are also unable to detect the presence of a separate anhydrous cholesterol or cholesterol monohydrate phase in our binary mixtures, again in contrast to previous reports. We further show that the magnitude of the reduction in the phase transition temperature induced by cholesterol addition is independent of the hydrocarbon chain length of the phosphatidylserine studied. This result contrasts with our previous results with phosphatidylcholine bilayers, where we found that cholesterol increases or decreases the phase transition temperature in a chain length-dependent manner (1993. Biochemistry, 32:516-522), but is in agreement with our previous results for phosphatidylethanolamine bilayers, where no hydrocarbon chain length-dependent effects were observed (1999. Biochim. Biophys. Acta, 1416:119-234). However, the reduction in the phase transition temperature by cholesterol is of greater magnitude in phosphatidylethanolamine as compared to phosphatidylserine bilayers. We also show that the addition of cholesterol facilitates the formation of the lamellar crystalline phase in phosphatidylserine bilayers, as it does in phosphatidylethanolamine bilayers, whereas the formation of such phases in phosphatidylcholine bilayers is inhibited by the presence of cholesterol. We ascribe the limited miscibility of cholesterol in phosphatidylserine bilayers reported previously to a fractional crystallization of the cholesterol and phospholipid phases during the removal of organic solvent from the binary mixture before the hydration of the sample. In general, the results of our studies to date indicate that the magnitude of the effect of cholesterol on the thermotropic phase behavior of the host phospholipid bilayer, and its miscibility in phospholipid dispersions generally, depend on the strength of the attractive interactions between the polar headgroups and the hydrocarbon chains of the phospholipid molecule, and not on the charge of the polar headgroups per se. PMID:11023909
Load-Differential Features for Automated Detection of Fatigue Cracks Using Guided Waves (Preprint)
2011-11-01
AFRL-RX-WP-TP-2011-4363 LOAD-DIFFERENTIAL FEATURES FOR AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) Jennifer E...AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...tensile loads open fatigue cracks and thus enhance their detectability using ultrasonic methods. Here we introduce a class of load-differential methods
Wang, Shukui; Liu, Xiangxiang; Pan, Bei; Sun, Li; Chen, Xiaoxiang; Zeng, Kaixuan; Hu, Xiuxiu; Xu, Tao; Xu, Mu
2018-05-08
Colorectal cancer (CRC) is one of the most common cancers worldwide usually with poor prognosis due to the advanced stage when diagnosed. This study aimed to investigate whether specific circulating exosomal miRNAs could act as biomarkers for early diagnosis of CRC. A total of 369 peripheral blood samples were included in this study. In the discovery phase, circulating exosomal miR-27a and miR-130a were selected after synthetical analysis of two GEO datasets and TCGA database. The differential expression and diagnostic utility of miR-27a and miR-130a panel were validated using quantitative reverse-transcriptase PCR (qRT-PCR) and Receiver operating characteristic (ROC) curve analysis in subsequent training phase, validation phase and external validation phase. The prognosis of circulating exosomal miR-27a and miR-130a were investigated using the Kaplan-Meier method. The expression of exosomal miR-27a and miR-130a in plasma significantly increased in CRC. The area under ROC curves (AUCs) of miR-27a (miR-130a) were 0.773 (0.742) in the training phase, 0.82 (0.787) in the validation phase, and 0.746 (0.697) in the external validation phase. The combination of two miRNAs presented higher diagnostic utility for CRC (AUCs = 0.846, 0.898 and 0.801 for the training, validation, and external validation phases, respectively). CRC patients with high expression of circulating exosomal miR-27a or miR-130a underwent poorer prognosis. We identified a circulating exosomal miRNAs panel for the detection of CRC. The exosomal miR-27a and miR-130a panel in plasma may act as a non-invasive biomarker for early detection and predicting prognosis of CRC. Copyright ©2018, American Association for Cancer Research.
Digital signal processing in the radio science stability analyzer
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
1995-01-01
The Telecommunications Division has built a stability analyzer for testing Deep Space Network installations during flight radio science experiments. The low-frequency part of the analyzer operates by digitizing wave signals with bandwidths between 80 Hz and 45 kHz. Processed outputs include spectra of signal, phase, amplitude, and differential phase; time series of the same quantities; and Allan deviation of phase and differential phase. This article documents the digital signal-processing methods programmed into the analyzer.
Human serum amyloid A genes are expressed in monocyte/macrophage cell lines.
Urieli-Shoval, S; Meek, R L; Hanson, R H; Eriksen, N; Benditt, E P
1994-09-01
Serum amyloid A (apoSAA) is a family of proteins found, mainly associated with high density lipoproteins, in the blood plasma of mammals and at least one avian species, the Pekin duck. These proteins are present in small amounts under normal circumstances, but their concentration is capable of rising 100- to 1,000-fold in situations involving tissue injury or infection. Like classic acute phase proteins they are produced in the liver; however, expression of one of the apoSAA genes is known to occur in activated macrophages of mice. We examined three human macrophage precursor cell lines (THP-1, U-937, and HL-60), before and after differentiation with phorbol 12-myristate 13-acetate or 1 alpha,25-dihydroxy-vitamin D3, for apoSAA messenger (m)-RNA expression and found that: 1) induction of steady-state apoSAA mRNA by lipopolysaccharide, interleukin-1, or interleukin-6 required the presence of the synthetic glucocorticoid dexamethasone; 2) the three known active genes, apoSAA1, apoSAA2, and apoSAA4, were induced in THP-1 cells, whereas the pseudogene apoSAA3 was not; 3) differentiated and undifferentiated THP-1 cells expressed apoSAA mRNA, but U-937 cells expressed apoSAA mRNA (low levels) only after phorbol 12-myristate 13-acetate differentiation and HL-60 cells did not express apoSAA mRNA whether differentiated or not; 4) apoSAA protein was detectable immunologically at a low level in lyophilized medium from induced THP-1 cells. Our findings are compatible with the hypotheses that 1) apoSAA gene expression in human monocytes/macrophages in vivo is differentiation dependent; 2) activated macrophages provide a local source of apoSAA at sites of tissue injury or inflammation; 3) apoSAA is induced in tissue macrophages by local stimuli, under conditions that may not evoke the systemic acute phase response.
Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.
Das, Mini; Liang, Zhihua
2014-09-15
Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J. A.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Do Valle Wemans, A.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrella, S.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration
2014-11-01
Measurements of fiducial and differential cross sections of Higgs boson production in the H → ZZ* → 4 ℓ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb-1 of pp collision data, produced at √{ s} = 8 TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found.
Rodriguez-Nogales, J M; Garcia, M C; Marina, M L
2006-02-03
A perfusion reversed-phase high performance liquid chromatography (RP-HPLC) method has been designed to allow rapid (3.4 min) separations of maize proteins with high resolution. Several factors, such as extraction conditions, temperature, detection wavelength and type and concentration of ion-pairing agent were optimised. A fine optimisation of the gradient elution was also performed by applying experimental design. Commercial maize products for human consumption (flours, precocked flours, fried snacks and extruded snacks) were characterised for the first time by perfusion RP-HPLC and their chromatographic profiles allowed a differentiation among products relating the different technological process used for their preparation. Furthermore, applying discriminant analysis makes it possible to group the samples according with the technological process suffered by maize products, obtaining a good prediction in 92% of the samples.
Collision induced unfolding of isolated proteins in the gas phase: past, present, and future.
Dixit, Sugyan M; Polasky, Daniel A; Ruotolo, Brandon T
2018-02-01
Rapidly characterizing the three-dimensional structures of proteins and the multimeric machines they form remains one of the great challenges facing modern biological and medical sciences. Ion mobility-mass spectrometry based techniques are playing an expanding role in characterizing these functional complexes, especially in drug discovery and development workflows. Despite this expansion, ion mobility-mass spectrometry faces many challenges, especially in the context of detecting small differences in protein tertiary structure that bear functional consequences. Collision induced unfolding is an ion mobility-mass spectrometry method that enables the rapid differentiation of subtly-different protein isoforms based on their unfolding patterns and stabilities. In this review, we summarize the modern implementation of such gas-phase unfolding experiments and provide an overview of recent developments in both methods and applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia
2015-01-01
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738
NASA Astrophysics Data System (ADS)
Bhooplapur, Sharad; Akbulut, Mehmetkan; Quinlan, Franklyn; Delfyett, Peter J.
2010-04-01
A novel scheme for recognition of electronic bit-sequences is demonstrated. Two electronic bit-sequences that are to be compared are each mapped to a unique code from a set of Walsh-Hadamard codes. The codes are then encoded in parallel on the spectral phase of the frequency comb lines from a frequency-stabilized mode-locked semiconductor laser. Phase encoding is achieved by using two independent spatial light modulators based on liquid crystal arrays. Encoded pulses are compared using interferometric pulse detection and differential balanced photodetection. Orthogonal codes eight bits long are compared, and matched codes are successfully distinguished from mismatched codes with very low error rates, of around 10-18. This technique has potential for high-speed, high accuracy recognition of bit-sequences, with applications in keyword searches and internet protocol packet routing.
HILDA/LIF urinary excretion during acute kidney rejection.
Taupin, J L; Morel, D; Moreau, J F; Gualde, N; Potaux, L; Bezian, J H
1992-03-01
Recently, a new lymphokine called HILDA (human interleukin for DA cells) has been described and cloned. This cytokine, initially described to be produced by alloreactive T lymphocyte clones grown from a rejected human kidney allograft, is identical to other factors termed D-factor, differentiation-inducing factor, differentiation inhibitory activity, hepatocyte-stimulating factor III, and leukemia inhibitory factor. HILDA/LIF induces various effects on neural, hemopoietic, embryonic cells as well as on bone remodeling and acute phase protein synthesis in hepatocyte. In this study we demonstrate the presence of HILDA/LIF in the urine but not in the serum of kidney graft recipients during acute rejection episodes, whereas this lymphokine was detectable neither in the serum nor in the urine of kidney transplanted patients with stable renal function. These data reinforce the notion of a possible role for this lymphokine in the inflammatory and/or the immune response.
NASA Technical Reports Server (NTRS)
Carey, L.D.; Petersen, W.A.; Deierling, W.
2009-01-01
The majority of lightning-related casualties typically occur during thunderstorm initiation (e.g., first flash) or dissipation (e.g., last flash). The physics of electrification and lightning production during thunderstorm initiation is fairly well understood. As such, the literature includes a number of studies presenting various radar techniques (using reflectivity and, if available, other dual-polarimetric parameters) for the anticipation of initial electrification and first lightning flash. These radar techniques have shown considerable skill at forecasting first flash. On the other hand, electrical processes and lightning production during thunderstorm dissipation are not nearly as well understood and few, if any, successful techniques have been developed to anticipate the last flash and subsequent cessation of lightning. One promising approach involves the use of dual-polarimetric radar variables to infer the presence of oriented ice crystals in lightning producing storms. In the absence of strong vertical electric fields, ice crystals fall with their largest (semi-major) axis in the horizontal associated with gravitational and aerodynamic forces. In thunderstorms, strong vertical electric fields (100-200 kV m(sup -1)) have been shown to orient small (less than 2 mm) ice crystals such that their semi-major axis is vertical (or nearly vertical). After a lightning flash, the electric field is typically relaxed and prior radar research suggests that ice crystals rapidly resume their preferred horizontal orientation. In active thunderstorms, the vertical electric field quickly recovers and the ice crystals repeat this cycle of orientation for each nearby flash. This change in ice crystal orientation from primarily horizontal to vertical during the development of strong vertical electric fields prior to a lightning flash forms the physical basis for anticipating lightning initiation and, potentially, cessation. Research has shown that radar reflectivity (Z) and other co-polar back-scattering radar measurements like differential reflectivity (Z(sub dr)) typically measured by operational dual-polarimetric radars are not sensitive to these changes in ice crystal orientation. However, prior research has demonstrated that oriented ice crystals cause significant propagation effects that can be routinely measured by most dual-polarimetric radars from X-band (3 cm) to S-band (10 cm) wavelengths using the differential propagation phase shift (often just called differential phase, phi(sub dp)) or its range derivative, the specific differential phase (K(sub dp)). Advantages of the differential phase include independence from absolute or relative power calibration, attenuation, differential attenuation and relative insensitivity to ground clutter and partial beam occultation effects (as long as the signal remains above noise). In research mode, these sorts of techniques have been used to anticipate initial cloud electrification, lightning initiation, and cessation. In this study, we develop a simplified model of ice crystal size, shape, orientation, dielectric, and associated radar scattering and propagation effects in order to simulate various idealized scenarios of ice crystals responding to a hypothetical electric field and their dual-polarimetric radar signatures leading up to lightning initiation and particularly cessation. The sensitivity of the K(sub dp) ice orientation signature to various ice properties and radar wavelength will be explored. Since K(sub dp) is proportional to frequency in the Rayleigh- Gans scattering regime, the ice orientation signatures should be more obvious at higher (lower) frequencies (wavelengths). As a result, simulations at radar wavelengths from 10 cm down to 1 cm (Ka-band) will be conducted. Resonance effects will be considered using the T-matrix method. Since most K(sub dp) Vbased observations have been shown at S-band, we will present ice orientation signatures from C-band (UAH/NASA ARMOR) and X-bd (UAH MAX) dual-polarimetric radars located in Northern Alabama. Issues related to optimal radar scanning for the detection of oriented ice will be discussed. Preliminary suggestions on how these differential phase signatures of oriented ice could contribute to lightning initiation and cessation algorithms will be presented.
Chechik, B E; Jason, J; Shore, A; Baker, M; Dosch, H M; Gelfand, E W
1979-12-01
Using a radioimmunoassay, increased levels of a human thymus/leukemia-associated antigen (HThy-L) have been detected in leukemic cells and plasma from most patients with E-rosette-positive acute lymphoblastic leukemia (ALL) and a number of patients with E-rosette-negative ALL, acute myeloblastic leukemia (AML), acute monomyelocytic leukemia (AMML), and acute undifferentiated leukemia (AVL). Low levels of HThy-L have been demonstrated in white cells from patients with chronic myelocytic leukemia (stable phase) and in mononuclear cells from patients with chronic lymphatic leukemia. The relationship between HThy-L and differentiation of hematopoietic cells is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaretski, E.; Yan, H.; Lauer, K.
2016-08-30
The Hard X-ray Nanoprobe (HXN) beamline at NSLS-II has been designed and constructed to enable imaging experiments with unprecedented spatial resolution and detection sensitivity. The HXN X-ray Microscope is a key instrument for the beamline, providing a suite of experimental capabilities which includes scanning fluorescence, diffraction, differential phase contrast and ptychography utilizing Multilayer Laue Lenses (MLL) and zoneplate (ZP) as nanofocusing optics. In this paper, we present technical requirements for the MLL-based scanning microscope, outline the development concept and present first ~15 x 15 nm 2 spatial resolution x-ray fluorescence images.
High-sensitivity density fluctuation detector
NASA Technical Reports Server (NTRS)
Azzazy, M.; Modarress, D.; Hoeft, T.
1987-01-01
A high-sensitivity differential interferometer has been developed to detect small density fluctuations over an optical path length of the order of the boundary layer thickness near transition. Two experimental configurations have been used to evaluate the performance of the interferometer: an open shear-layer configuration and a wind-tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold-wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations of the order of 0.001 of the laser wavelength.
Yamada, Kiyoyasu; Isobe, Satoshi; Suzuki, Susumu; Kinoshita, Kousuke; Yokouchi, Kazuhiko; Iwata, Hirokazu; Ohshima, Satoru; Hirai, Makoto; Sawada, Ken; Murohara, Toyoaki
2012-04-01
To differentiate acute from chronic damage to the myocardium in patients with myocardial infarction (MI) using DE and T2w MR. Short-axis T2w and DE MR images were acquired twice after the onset of MI in 36 patients who successfully underwent emergency coronary revascularisation. The areas of infarct and oedema were measured. The oedema-infarct ratio (O/I) of the left ventricular area was calculated by dividing the oedema by the infarct area. The oedema size on T2w MR was significantly larger than the infarct size on DE MR in the acute phase. Both the oedema size on T2w MR and the infarct size on DE MR in the acute phase were significantly larger than those in the chronic phase. The O/I was significantly greater in the acute phase compared with that in the chronic phase (P < 0.05). An analysis of relative cumulative frequency distributions revealed an O/I of 1.4 as a cut-off value for differentiating acute from chronic myocardial damage with the sensitivity, specificity, and accuracy of 85.1%, 82.7% and 83.9%, respectively. The oedema-infarct ratio may be a useful index in differentiating acute from chronic myocardial damage in patients with MI. MR can differentiate reversible from irreversible myocardial damage after myocardial infarction. MR is a useful modality to noninvasively differentiate the infarct stages. The O/I is an important index to decide therapeutic strategies.
Alpha phase determines successful lexical decision in noise.
Strauß, Antje; Henry, Molly J; Scharinger, Mathias; Obleser, Jonas
2015-02-18
Psychophysical target detection has been shown to be modulated by slow oscillatory brain phase. However, thus far, only low-level sensory stimuli have been used as targets. The current human electroencephalography (EEG) study examined the influence of neural oscillatory phase on a lexical-decision task performed for stimuli embedded in noise. Neural phase angles were compared for correct versus incorrect lexical decisions using a phase bifurcation index (BI), which quantifies differences in mean phase angles and phase concentrations between correct and incorrect trials. Neural phase angles in the alpha frequency range (8-12 Hz) over right anterior sensors were approximately antiphase in a prestimulus time window, and thus successfully distinguished between correct and incorrect lexical decisions. Moreover, alpha-band oscillations were again approximately antiphase across participants for correct versus incorrect trials during a later peristimulus time window (∼500 ms) at left-central electrodes. Strikingly, lexical decision accuracy was not predicted by either event-related potentials (ERPs) or oscillatory power measures. We suggest that correct lexical decisions depend both on successful sensory processing, which is made possible by the alignment of stimulus onset with an optimal alpha phase, as well as integration and weighting of decisional information, which is coupled to alpha phase immediately following the critical manipulation that differentiated words from pseudowords. The current study constitutes a first step toward characterizing the role of dynamic oscillatory brain states for higher cognitive functions, such as spoken word recognition. Copyright © 2015 the authors 0270-6474/15/353256-07$15.00/0.
NASA Astrophysics Data System (ADS)
Park, Hyong-Hu; Goo, Eun-Hoe; Im, In-Chul; Lee, Jae-Seung; Kim, Moon-Jib; Kwak, Byung-Joon; Chung, Woon-Kwan; Dong, Kyung-Rae
2012-12-01
The safety of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic-acid (Gd-EOB-DTPA) has been confirmed, but more study is needed to assess the diagnostic accuracy of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) in patients with a hepatocellular carcinoma (HCC) for whom surgical treatment is considered or with a metastatic hepatoma. Research is also needed to examine the rate of detection of hepatic lesions compared to multi-detector computed tomography (MDCT), which is used most frequently to localize and characterize a HCC. Gd-EOB-DTPA-enhanced MRI and iodine-enhanced MDCT imaging were compared for the preoperative detection of focal liver lesions. The clinical usefulness of each method was examined. The current study enrolled 79 patients with focal liver lesions who preoperatively underwent MRI and MDCT. In these patients, there was less than one month between the two diagnostic modalities. Imaging data were taken before and after contrast enhancement in both methods. To evaluate the images, we analyzed the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) in the lesions and the liver parenchyma. To compare the sensitivity of the two methods, we performed a quantitative analysis of the percentage signal intensity of the liver (PSIL) on a high resolution picture archiving and communication system (PACS) monitor (paired-samples t-test, p < 0.05). The enhancement was evaluated based on a consensus of four observers. The enhancement pattern and the morphological features during the arterial and the delayed phases were correlated between the Gd-EOB-DTPA-enhanced MRI findings and the iodine-enhanced MDCT by using an adjusted x2 test. The SNRs, CNRs, and PSIL all had a greater detection rate in Gd-EOB-DTPA enhanced MRI than in iodine-enhanced MDCT. Hepatocyte-selective uptake was observed 20 minutes after the injection in the focal nodular hyperplasia (FNH, 9/9), adenoma (9/10), and highly-differentiated HCC (grade G1, 27/30). Rim enhancement was detected in all metastases (30/30). During the arterial and the delayed phases, good overall agreement between the gadoxetic-acid-enhanced MR and CT was observed (x2 test, p < 0.05). For the preoperative detection of focal liver lesions, Gd-EOB-DTPA-enhanced MRI had a higher diagnostic value and higher detection rate than iodine-enhanced MDCT. The arterial and the delayed dynamic enhancement patterns, and the gadoxetic-acid-enhanced MR imaging can provide information on the possible degree of cellular differentiation of a HCC, adenoma or metastatic tumor.
Differential Rotation via Tracking of Coronal Bright Points.
NASA Astrophysics Data System (ADS)
McAteer, James; Boucheron, Laura E.; Osorno, Marcy
2016-05-01
The accurate computation of solar differential rotation is important both as a constraint for, and evidence towards, support of models of the solar dynamo. As such, the use of Xray and Extreme Ultraviolet bright points to elucidate differential rotation has been studied in recent years. In this work, we propose the automated detection and tracking of coronal bright points (CBPs) in a large set of SDO data for re-evaluation of solar differential rotation and comparison to other results. The big data aspects, and high cadence, of SDO data mitigate a few issues common to detection and tracking of objects in image sequences and allow us to focus on the use of CBPs to determine differential rotation. The high cadence of the data allows to disambiguate individual CBPs between subsequent images by allowing for significant spatial overlap, i.e., by the fact that the CBPs will rotate a short distance relative to their size. The significant spatial overlap minimizes the effects of incorrectly detected CBPs by reducing the occurrence of outlier values of differential rotation. The big data aspects of the data allows to be more conservative in our detection of CBPs (i.e., to err on the side of missing CBPs rather than detecting extraneous CBPs) while still maintaining statistically larger populations over which to study characteristics. The ability to compute solar differential rotation through the automated detection and tracking of a large population of CBPs will allow for further analyses such as the N-S asymmetry of differential rotation, variation of differential rotation over the solar cycle, and a detailed study of the magnetic flux underlying the CBPs.
Park, Hyun Jeong; Choi, Byung Ihn; Lee, Eun Sun; Park, Sung Bin; Lee, Jong Beum
2017-06-01
Rapid advances in liver imaging have improved the evaluation of hepatocarcinogenesis and early diagnosis and treatment of hepatocellular carcinoma (HCC). In this situation, detection of early-stage HCC in its development is important for the improvement of patient survival and optimal treatment strategies. Because early HCCs are considered precursors of progressed HCC, precise differentiation between a dysplastic nodule (DN), especially a high-grade DN, and early HCC is important. In clinical practice, these nodules are frequently called "borderline hepatic nodules." This article discusses radiological and pathological characteristics of these borderline hepatic nodules and offers an understanding of multistep hepatocarcinogenesis by focusing on the descriptions of the imaging changes in the progression of DN and early HCC. Detection and accurate diagnosis of borderline hepatic nodules are still a challenge with contrast enhanced ultrasonography, CT, and MRI with extracellular contrast agents. However, gadoxetic acid-enhanced MRI may be useful for improving the diagnosis of these borderline nodules. Since there is a net effect of incomplete neoangiogenesis and decreased portal venous flow in the early stage of hepatocarcinogenesis, borderline hepatic nodules commonly show iso- or hypovascularity. Therefore, precise differentiation of these nodules remains a challenging issue. In MRI using hepatobiliary contrast agents, signal intensity of HCCs on hepatobiliary phase (HBP) is regarded as a potential imaging biomarker. Borderline hepatic nodules are seen as nonhypervascular and hypointense nodules on the HBP, which is important for predicting tumor behavior and determining appropriate therapeutic strategies.
Gardner, Samantha; Gross, Sean M; David, Larry L; Klimek, John E; Rotwein, Peter
2015-10-01
The p38 MAP kinases play critical roles in skeletal muscle biology, but the specific processes regulated by these kinases remain poorly defined. Here we find that activity of p38α/β is important not only in early phases of myoblast differentiation, but also in later stages of myocyte fusion and myofibrillogenesis. By treatment of C2 myoblasts with the promyogenic growth factor insulin-like growth factor (IGF)-I, the early block in differentiation imposed by the p38 chemical inhibitor SB202190 could be overcome. Yet, under these conditions, IGF-I could not prevent the later impairment of muscle cell fusion, as marked by the nearly complete absence of multinucleated myofibers. Removal of SB202190 from the medium of differentiating myoblasts reversed the fusion block, as multinucleated myofibers were detected several hours later and reached ∼90% of the culture within 30 h. Analysis by quantitative mass spectroscopy of proteins that changed in abundance following removal of the inhibitor revealed a cohort of upregulated muscle-enriched molecules that may be important for both myofibrillogenesis and fusion. We have thus developed a model system that allows separation of myoblast differentiation from muscle cell fusion and should be useful in identifying specific steps regulated by p38 MAP kinase-mediated signaling in myogenesis. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Shorter, Joanne H.; Nelson, David D.; Zahniser, Mark S.; Parrish, Milton E.; Crawford, Danielle R.; Gee, Diane L.
2006-04-01
Although nitrogen dioxide (NO 2) has been previously reported to be present in cigarette smoke, the concentration estimates were derived from kinetic calculations or from measurements of aged smoke, where NO 2 was formed some time after the puff was taken. The objective of this work was to use tunable infrared laser differential absorption spectroscopy (TILDAS) equipped with a quantum cascade (QC) laser to determine if NO 2 could be detected and quantified in a fresh puff of cigarette smoke. A temporal resolution of ˜0.16 s allowed measurements to be taken directly as the NO 2 was formed during the puff. Sidestream cigarette smoke was sampled to determine if NO 2 could be detected using TILDAS. Experiments were conducted using 2R4F Kentucky Reference cigarettes with and without a Cambridge filter pad. NO 2 was detected only in the lighting puff of whole mainstream smoke (without a Cambridge filter pad), with no NO 2 detected in the subsequent puffs. The measurement precision was ˜1.0 ppbV Hz -1/2, which allows a detection limit of ˜0.2 ng in a 35 ml puff volume. More NO 2 was generated in the lighting puff using a match or blue flame lighter (29 ± 21 ng) than when using an electric lighter (9 ± 3 ng). In the presence of a Cambridge filter pad, NO 2 was observed in the gas phase mainstream smoke for every puff (total of 200 ± 30 ng/cigarette) and is most likely due to smoke chemistry taking place on the Cambridge filter pad during the smoke collection process. Nitrogen dioxide was observed continuously in the sidestream smoke starting with the lighting puff.
Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan
2018-06-15
Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.
Diffracting aperture based differential phase contrast for scanning X-ray microscopy.
Kaulich, Burkhard; Polack, Francois; Neuhaeusler, Ulrich; Susini, Jean; di Fabrizio, Enzo; Wilhein, Thomas
2002-10-07
It is demonstrated that in a zone plate based scanning X-ray microscope, used to image low absorbing, heterogeneous matter at a mesoscopic scale, differential phase contrast (DPC) can be implemented without adding any additional optical component to the normal scheme of the microscope. The DPC mode is simply generated by an appropriate positioning and alignment of microscope apertures. Diffraction from the apertures produces a wave front with a non-uniform intensity. The signal recorded by a pinhole photo diode located in the intensity gradient is highly sensitive to phase changes introduced by the specimen to be recorded. The feasibility of this novel DPC technique was proven with the scanning X-ray microscope at the ID21 beamline of the European Synchrotron Radiation facility (ESRF) operated at 6 keV photon energy. We observe a differential phase contrast, similar to Nomarski's differential interference contrast for the light microscope, which results in a tremendous increase in image contrast of up to 20 % when imaging low absorbing specimen.
Inan, Nagihan; Arslan, Arzu; Donmez, Muhammed; Sarisoy, Hasan Tahsin
2016-01-01
Background Imaging plays a critical role not only in the detection, but also in the characterization of lung masses as benign or malignant. Objectives To determine the diagnostic accuracy of dynamic magnetic resonance imaging (MRI) in the differential diagnosis of benign and malignant lung masses. Patients and Methods Ninety-four masses were included in this prospective study. Five dynamic series of T1-weighted spoiled gradient echo (FFE) images were obtained, followed by a T1-weighted FFE sequence in the late phase (5th minutes). Contrast enhancement patterns in the early (25th second) and late (5th minute) phase images were evaluated. For the quantitative evaluation, signal intensity (SI)-time curves were obtained and the maximum relative enhancement, wash-in rate, and time-to-peak enhancement of masses in both groups were calculated. Results The early phase contrast enhancement patterns were homogeneous in 78.2% of the benign masses, while heterogeneous in 74.4% of the malignant tumors. On the late phase images, 70.8% of the benign masses showed homogeneous enhancement, while most of the malignant masses showed heterogeneous enhancement (82.4%). During the first pass, the maximum relative enhancement and wash-in rate values of malignant masses were significantly higher than those of the benign masses (P = 0.03 and 0.04, respectively). The cutoff value at 15% yielded a sensitivity of 85.4%, specificity of 61.2%, and positive predictive value of 68.7% for the maximum relative enhancement. Conclusion Contrast enhancement patterns and SI-time curve analysis of MRI are helpful in the differential diagnosis of benign and malignant lung masses. PMID:27703654
Barba-Bon, Andrea; Costero, Ana M; Gil, Salvador; Martínez-Máñez, Ramón; Sancenón, Félix
2014-11-21
A novel colorimetric probe (P4) for the selective differential detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) was prepared. Probe P4 contains three reactive sites; i.e. (i) a nucleophilic phenol group able to undergo phosphorylation with nerve gases, (ii) a carbonyl group as a reactive site for cyanide; and (iii) a triisopropylsilyl (TIPS) protecting group that is known to react with fluoride. The reaction of P4 with DCNP in acetonitrile resulted in both the phosphorylation of the phenoxy group and the release of cyanide, which was able to react with the carbonyl group of P4 to produce a colour modulation from pink to orange. In contrast, phosphorylation of P4 with DFP in acetonitrile released fluoride that hydrolysed the TIPS group in P4 to yield a colour change from pink to blue. Probe P4 was able to discriminate between DFP and DCNP with remarkable sensitivity; limits of detection of 0.36 and 0.40 ppm for DCNP and DFP, respectively, were calculated. Besides, no interference from other organophosphorous derivatives or with presence of acid was observed. The sensing behaviour of P4 was also retained when incorporated into silica gel plates or onto polyethylene oxide membranes, which allowed the development of simple test strips for the colorimetric detection of DCNP and DFP in the vapour phase. P4 is the first probe capable of colorimetrically differentiating between a Tabun mimic (DCNP) and a Sarin and Soman mimic (DFP).
Cavaliere, Fabio; Nestola, Valeria; Amadio, Susanna; D'Ambrosi, Nadia; Angelini, Daniela F; Sancesario, Giuseppe; Bernardi, Giorgio; Volonté, Cinzia
2005-02-01
Extracellular nucleotides exert a variety of biological actions through different subtypes of P2 receptors. Here we characterized in the human neuroblastoma SH-SY5Y cells the simultaneous presence of various P2 receptors, belonging to the P2X ionotropic and P2Y metabotropic families. Western blot analysis detected the P2X1,2,4,5,6,7 and P2Y1,2,4,6, but not the P2X3 and P2Y12 receptors. We then investigated which biological effects were mediated by the P2Y4 subtype and its physiological pyrimidine agonist UTP. We found that neuronal differentiation of the SH-SY5Y cells with dibutiryl-cAMP increased the expression of the P2Y4 protein and that UTP itself was able to positively interfere with neuritogenesis. Moreover, transient transfection and activation of P2Y4 also facilitated neuritogenesis in SH-SY5Y cells, as detected by morphological phase contrast analysis and confocal examination of neurofilament proteins NFL. This was concurrent with increased transcription of immediate-early genes linked to differentiation such as cdk-5 and NeuroD6, and activity of AP-1 transcription family members such as c-fos, fos-B, and jun-D. Nevertheless, a prolonged activation of the P2Y4 receptor by UTP also induced cell death, both in naive, differentiated, and P2Y4-transfected SH-SY5Y cells, as measured by direct count of intact nuclei and cytofluorimetric analysis of damaged DNA. Taken together, our data indicate that the high expression and activation of the P2Y4 receptor participates in the neuronal differentiation and commitment to death of SH-SY5Y cells.
Digital image processing of nanometer-size metal particles on amorphous substrates
NASA Technical Reports Server (NTRS)
Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.
1989-01-01
The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.
Validation of Serum Markers for the Early Detection of Hepatocellular Carcinoma — EDRN Public Portal
Using the guidelines for cancer biomarker validation suggested by Pepe et al. (23), we propose to perform a Phase 2 study of DCP for the detection of early stage HCC. In this proposal, we plan to perform a larger case-control study to compare the sensitivity and specificity of DCP and AFP alone and in combination in differentiating patients with all stages of HCC and more importantly those with early HCC from patients with cirrhosis. We plan to enroll consecutive patients with HCC seen at 7 centers in the United States. Controls are frequency matched to cases (all center combined) using the following criteria: age (±10 years), gender (+10%) and etiology of liver disease (viral vs non-viral (+5%). Within each participating institution, there will be an equal number (+20%) of cases and controls.
Analysis of self-homodyne detection for 6-mode fiber with low-modal crosstalk
NASA Astrophysics Data System (ADS)
Guo, Meng; Hu, Guijun
2017-12-01
In this paper, we present an appropriate analysis on self-homodyne coherent system with 56 × 5 × 3 Gb / s WDM-PDM-MDM quadrature phase-shift keying (QPSK) signals using 6-mode weakly coupled few mode fiber. The mode division technology can effectively improve the spectral efficiency (SE) of self-homodyne detection. Of all the LP modes, LP01 mode is used to transmit the pilot tone (PT), while the others for signal channels. The influence of inter-mode crosstalk is analyzed. The proposed frequency domain MMA shows a better BER performance for intra-mode crosstalk elimination. The path-length misalignment's influence caused by mode differential group delay (MDGD) is also investigated. The system tolerance for different laser's line-width is compared as well as the influence of PT filter's bandwidth.
NASA Astrophysics Data System (ADS)
Silva, Guilherme Gregório; Mura, José Claudio; Paradella, Waldir Renato; Gama, Fabio Furlan; Temporim, Filipe Altoé
2017-04-01
Persistent scatterer interferometry (PSI) analysis of a large area is always a challenging task regarding the removal of the atmospheric phase component. This work presents an investigation of ground movement measurements based on a combination of differential SAR interferometry time-series (DTS) and PSI techniques, applied on a large area of extent with open pit iron mines located in Carajás (Brazilian Amazon Region), aiming at detecting linear and nonlinear ground movement. These mines have presented a history of instability, and surface monitoring measurements over sectors of the mines (pit walls) have been carried out based on ground-based radar and total station (prisms). Using a priori information regarding the topographic phase error and a phase displacement model derived from DTS, temporal phase unwrapping in the PSI processing and the removal of the atmospheric phases can be performed more efficiently. A set of 33 TerraSAR-X (TSX-1) images, acquired during the period from March 2012 to April 2013, was used to perform this investigation. The DTS analysis was carried out on a stack of multilook unwrapped interferograms using an extension of SVD to obtain the least-square solution. The height errors and deformation rates provided by the DTS approach were subtracted from the stack of interferograms to perform the PSI analysis. This procedure improved the capability of the PSI analysis for detecting high rates of deformation, as well as increased the numbers of point density of the final results. The proposed methodology showed good results for monitoring surface displacement in a large mining area, which is located in a rain forest environment, providing very useful information about the ground movement for planning and risk control.
1986-10-01
units and an aliphatic spacer containing eleven and respectively, ten methylene units were synthesized. Their phase behavior was studied by differential...scanning calorimetry and optical polarization microscopy, and compared with the phase behavior of the polysiloxanes and copolysiloxanes containing 4...containing eleven and respectively, ten methylene -units were synthesized. Their phase behavior was studied by differential * scanning calorimetry
Pulmonary MRA: Differentiation of pulmonary embolism from truncation artifact
Bannas, Peter; Schiebler, Mark L; Motosugi, Utaroh; François, Christopher J; Reeder, Scott B; Nagle, Scott K
2015-01-01
Purpose Truncation artifact (Gibbs ringing) causes central signal drop within vessels in pulmonary MRA that can be mistaken for emboli, reducing the diagnostic accuracy for pulmonary embolism (PE). We propose a quantitative approach to differentiate truncation artifact from PE. Methods Twenty-eight patients who underwent pulmonary CTA for suspected PE were recruited for pulmonary MRA. Signal intensity drops within pulmonary arteries that persisted on both arterial-phase and delayed-phase MRA were identified. The percent signal loss between the vessel lumen and central drop was measured. CTA served as the reference standard for presence of pulmonary emboli. Results A total of 65 signal intensity drops were identified on MRA. 48 (74%) of these were artifact and 17 (26%) were PE, as confirmed by CTA. Truncation artifacts had a significantly lower median signal drop than PE at both arterial-phase (26% [range 12–58%] vs. 85% [range 53–91%]) and at delayed-phase MRA (26% [range 11–55%] vs. 77% [range 47–89%]), p<0.0001 for both. ROC analyses revealed a threshold value of 51% (arterial-phase) and 47%-signal drop (delayed-phase) to differentiate between truncation artifact and PE with 100% sensitivity and >90% specificity. Conclusion Quantitative signal drop is an objective tool to help differentiate truncation artifact and pulmonary embolism in pulmonary MRA. PMID:24863886
Novel Formulations of Phase Change Materials—Epoxy Composites for Thermal Energy Storage
Alvarez Feijoo, Miguel Angel
2018-01-01
This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed. PMID:29373538
Novel Formulations of Phase Change Materials-Epoxy Composites for Thermal Energy Storage.
Arce, Maria Elena; Alvarez Feijoo, Miguel Angel; Suarez Garcia, Andres; Luhrs, Claudia C
2018-01-26
This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed.
Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter
2017-10-01
A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... of In Vitro Diagnostic Devices for the Detection or Detection and Differentiation of Influenza... of Influenza Viruses.'' FDA is issuing this guidance to inform industry and Agency staff of its... diagnostic devices intended for the detection or detection and differentiation of influenza viruses. DATES...
Figueira, José; Câmara, Hugo; Pereira, Jorge; Câmara, José S
2014-02-15
To gain insights on the effects of cultivar on the volatile metabolomic expression of different tomato (Lycopersicon esculentum L.) cultivars--Plum, Campari, Grape, Cherry and Regional, cultivated under similar edafoclimatic conditions, and to identify the most discriminate volatile marker metabolites related to the cultivar, the chromatographic profiles resulting from headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-qMS) analysis, combined with multivariate analysis were investigated. The data set composed by the 77 volatile metabolites identified in the target tomato cultivars, 5 of which (2,2,6-trimethylcyclohexanone, 2-methyl-6-methyleneoctan-2-ol, 4-octadecyl-morpholine, (Z)-methyl-3-hexenoate and 3-octanone) are reported for the first time in tomato volatile metabolomic composition, was evaluated by chemometrics. Firstly, principal component analysis was carried out in order to visualise data trends and clusters, and then, linear discriminant analysis in order to detect the set of volatile metabolites able to differentiate groups according to tomato cultivars. The results obtained revealed a perfect discrimination between the different Lycopersicon esculentum L. cultivars considered. The assignment success rate was 100% in classification and 80% in prediction ability by using "leave-one-out" cross-validation procedure. The volatile profile was able to differentiate all five cultivars and revealed complex interactions between them including the participation in the same biosynthetic pathway. The volatile metabolomic platform for tomato samples obtained by HS-SPME/GC-qMS here described, and the interrelationship detected among the volatile metabolites can be used as a roadmap for biotechnological applications, namely to improve tomato aroma and their acceptance in the final consumer, and for traceability studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Differential Resonant Ring YIG Tuned Oscillator
NASA Technical Reports Server (NTRS)
Parrott, Ronald A.
2010-01-01
A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n-p-n transistors. At the input of the oscillator s feedback loop is a pair of differentially connected n-p-n SiGe transistors that provides extremely high gain, and because they are bulk-effect devices, extremely low 1/f noise (leading to ultralow RF phase noise). The 1/f corner frequency for n-p-n SiGe transistors is approximately 500 Hz. The RF energy from the transistor s collector output is connected directly to the top-coupling loop (the excitation loop) of a single-sphere YIG tuned filter. A uniform magnetic field to bias the YIG must be at a right angle to any vector associated with an RF current in a coupling loop in order for the precession to interact with the RF currents.
NASA Astrophysics Data System (ADS)
Giacobbe, P.; Damasso, M.; Sozzetti, A.; Toso, G.; Perdoncin, M.; Calcidese, P.; Bernagozzi, A.; Bertolini, E.; Lattanzi, M. G.; Smart, R. L.
2012-08-01
We present the results of a year-long photometric monitoring campaign of a sample of 23 nearby (d < 60 pc), bright (J < 12) dM stars carried out at the Astronomical Observatory of the Autonomous Region of the Aosta Valley, in the western Italian Alps. This programme represents a 'pilot study' for a long-term photometric transit search for planets around a large sample of nearby M dwarfs, due to start with an array of identical 40-cm class telescopes by the Spring of 2012. In this study, we set out to (i) demonstrate the sensitivity to <4 R⊕ transiting planets with periods of a few days around our programme stars, through a two-fold approach that combines a characterization of the statistical noise properties of our photometry with the determination of transit detection probabilities via simulations; and (ii) where possible, improve our knowledge of some astrophysical properties (e.g. activity, rotation) of our targets by combining spectroscopic information and our differential photometric measurements. We achieve a typical nightly root mean square (RMS) photometric precision of ˜5 mmag, with little or no dependence on the instrumentation used or on the details of the adopted methods for differential photometry. The presence of correlated (red) noise in our data degrades the precision by a factor of ˜1.3 with respect to a pure white noise regime. Based on a detailed stellar variability analysis (i) we detected no transit-like events (an expected result, given the sample size); (ii) we determined photometric rotation periods of ˜0.47 and ˜0.22 d for LHS 3445 and GJ 1167A, respectively; (iii) these values agree with the large projected rotational velocities (˜25 and ˜33 km s-1, respectively) inferred for both stars based on the analysis of archival spectra; (iv) the estimated inclinations of the stellar rotation axes for LHS 3445 and GJ 1167A are consistent with those derived using a simple spot model; and (v) short-term, low-amplitude flaring events were recorded for LHS 3445 and LHS 2686. Finally, based on simulations of transit signals of given period and amplitude injected in the actual (nightly reduced) photometric data for our sample, we derive a relationship between transit detection probability and phase coverage. We find that, using the Box-fitting Least Squares search algorithm, even when the phase coverage approaches 100 per cent, there is a limit to the detection probability of ≈90 per cent. Around programme stars with phase coverage > 50 per cent, we would have had >80 per cent chances of detecting planets with P < 1 d inducing fractional transit depths > 0.5 per cent, corresponding to minimum detectable radii in the range ˜1.0-2.2 R⊕. These findings are illustrative of our high readiness level ahead of the main survey start.
Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal.
Mishra, Sanjay K; Bhatt, Rahul; Mohan, Devendra; Gupta, Arun Kumar; Sharma, Anurag
2009-11-20
The process of Zernike mode detection with a Shack-Hartmann wavefront sensor is computationally extensive. A holographic modal wavefront sensor has therefore evolved to process the data optically by use of the concept of equal and opposite phase bias. Recently, a multiplexed computer-generated hologram (CGH) technique was developed in which the output is in the form of bright dots that specify the presence and strength of a specific Zernike mode. We propose a wavefront sensor using the concept of phase biasing in the latter technique such that the output is a pair of bright dots for each mode to be sensed. A normalized difference signal between the intensities of the two dots is proportional to the amplitude of the sensed Zernike mode. In our method the number of holograms to be multiplexed is decreased, thereby reducing the modal cross talk significantly. We validated the proposed method through simulation studies for several cases. The simulation results demonstrate simultaneous wavefront detection of lower-order Zernike modes with a resolution better than lambda/50 for the wide measurement range of +/-3.5lambda with much reduced cross talk at high speed.
Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.
2015-01-01
Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an ‘activate high’ (8 MHz, 2 cycles), ‘listen low’ (1 MHz) scheme. Results show that the magnitude of the acoustic ‘signature’ increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques. PMID:24351961
Noise suppression for the differential detection in nuclear magnetic resonance gyroscope
NASA Astrophysics Data System (ADS)
Yang, Dan; Zhou, Binquan; Chen, LinLin; Jia, YuChen; Lu, QiLin
2017-10-01
The nuclear magnetic resonance gyroscope is based on spin-exchange optical pumping of noble gases to detect and measure the angular velocity of the carrier, but it would be challenging to measure the precession signal of noble gas nuclei directly. To solve the problem, the primary detection method utilizes alkali atoms, the precession of nuclear magnetization modulates the alkali atoms at the Larmor frequency of nuclei, relatively speaking, and it is easier to detect the precession signal of alkali atoms. The precession frequency of alkali atoms is detected by the rotation angle of linearly polarized probe light; and differential detection method is commonly used in NMRG in order to detect the linearly polarized light rotation angle. Thus, the detection accuracy of differential detection system will affect the sensitivity of the NMRG. For the purpose of further improvement of the sensitivity level of the NMRG, this paper focuses on the aspects of signal detection, and aims to do an error analysis as well as an experimental research of the linearly light rotation angle detection. Through the theoretical analysis and the experimental illustration, we found that the extinction ratio σ2 and DC bias are the factors that will produce detective noise in the differential detection method.
Wang, Xin; Ma, Feng-Xia; Lu, Shi-Hong; Chi, Ying; Chen, Fang; Li, Xue; Li, Juan-Juan; Du, Wen-Jing; Feng, Ying; Cui, Jun-Jie; Song, Bao-Quan; Han, Zhong-Chao
2014-06-01
This study was aimed to investigate the effects of rapamycin on biological function and autophagy of bone marrow mesenchymal stem cells (BM-MSC) from patients with aplastic anemia so as to provide experimental basis for the clinical treatment of aplastic anemia (AA) with rapamycin. BM-MSC were treated with different concentrations of rapamycin (0, 10, 50, 100 nmol/L) for 48 h, the expression of LC3B protein was detected by Western blot to observe the effect of rapamycin on cell autophagy; cell apoptosis and cell cycles were detected by flow cytometry; the proliferation of BM-MSC of AA patients was measured by cell counting kit-8; the adipogenic differentiation of BM-MSC were tested by oil red O staining after adipogenic induction for 2 weeks; the adipogenic related genes (LPL, CFD, PPARγ) were detected by real-time PCR. The results showed that the proliferation and adipogenesis of BM-MSC of AA patients were inhibited by rapamycin. Moreover, the autophagy and apoptosis of BM-MSC were increased by rapamycin in a dose-dependent way.Rapamycin arrested the BM-MSC in G0/G1 phase and prevented them into S phase (P < 0.05). It is concluded that rapamycin plays an critical role in inhibiting cell proliferation, cell cycles, and adipogenesis, these effects may be related with the autophagy activation and mTOR inhibition resulting from rapamycin.
Lachenmeier, Dirk W; Kroener, Lars; Musshoff, Frank; Madea, Burkhard
2004-01-01
A fully automated procedure using alkaline hydrolysis and headspace solid-phase microextraction (HS-SPME), followed by on-fiber derivatization and gas chromatographic-mass spectrometric (GC-MS) detection has been developed for determination of cannabinoids in hemp food samples. After addition of a deuterated internal standard, the sample was hydrolyzed with sodium hydroxide and submitted to direct HS-SPME. After absorption of analytes for on-fiber derivatization, the fiber was placed directly into the headspace of a second vial containing N-methyl- N-trimethylsilyltrifluoroacetamide (MSTFA), before GC-MS analysis. Linearity was good for Delta(9)-tetrahydrocannabinol (THC), cannabidiol, and cannabinol; regression coefficients were greater than 0.99. Depending on the characteristics of the matrix the detection limits obtained ranged between 0.01 and 0.17 mg kg(-1) and the precision between 0.4 and 11.8%. In comparison with conventional liquid-liquid extraction this automated HS-SPME-GC-MS procedure is substantially faster. It is easy to perform, solvent-free, and sample quantities are minimal, yet it maintains the same sensitivity and reproducibility. The applicability was demonstrated by analysis of 30 hemp food samples. Cannabinoids were detected in all of the samples and it was possible to differentiate between drug-type and fiber-type Cannabis sativa L. In comparison with other studies relatively low THC concentrations between 0.01 and 15.53 mg kg(-1) were determined.
Low dose reconstruction algorithm for differential phase contrast imaging.
Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni
2011-01-01
Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.
Cells of pea (Pisum sativum) that differentiate from G2 phase have extrachromosomal DNA.
Van't Hof, J; Bjerknes, C A
1982-01-01
Velocity sedimentation in an alkaline sucrose gradient of newly replicated chromosomal DNA revealed the presence of extrachromosomal DNA that was not replicated by differentiating cells in the elongation zone. The extrachromosomal DNA had a number average molecular weight of 12 X 10(6) to 15 X 10(6) and a weight average molecular weight of 25 X 10(6), corresponding to about 26 X 10(6) and 50 X 10(6) daltons, respectively, of double-stranded DNA. The molecules were stable, lasting at least 72 h after being formed. Concurrent measurements by velocity sedimentation, autoradiography, and cytophotometry of isolated nuclei indicated that the extrachromosomal molecules were associated with root-tip cells that stopped dividing and differentiated from G2 phase but not with those that stopped dividing and differentiated from G1 phase. PMID:7110135
Mogler, Lukas; Franz, Florian; Wilde, Maurice; Huppertz, Laura M; Halter, Sebastian; Angerer, Verena; Moosmann, Bjoern; Auwärter, Volker
2018-05-04
Synthetic cannabinoids (SCs) are a structurally diverse class of new psychoactive substances. Most SCs used for recreational purposes are based on indole or indazole core structures. EG-018 (naphthalen-1-yl(9-pentyl-9H-carbazol-3-yl)methanone), EG-2201 ((9-(5-fluoropentyl)-9H-carbazol-3-yl)(naphthalen-1-yl)methanone) and MDMB-CHMCZCA (methyl 2-(9-(cyclohexylmethyl)-9H-carbazole-3-carboxamido)-3,3-dimethylbutanoate) are three representatives of a structural subclass of SCs, characterized by a carbazole core system. In vitro and in vivo phase I metabolism studies were conducted to identify the most suitable metabolites for the detection of these substances in urine screening. Detection and characterization of metabolites were performed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-QToF-MS). Eleven in vivo metabolites were detected in urine samples positive for metabolites of EG-018 (n=8). A hydroxypentyl metabolite, most probably the 4-hydroxypentyl isomer, and an N-dealkylated metabolite mono-hydroxylated at the carbazole core system were most abundant. In vitro studies of EG-018 and EG-2201 indicated that oxidative defluorination of the 5-fluoropentyl side chain of EG-2201 as well as dealkylation led to common metabolites with EG-018. This has to be taken into account for interpretation of analytical findings. A differentiation between EG-018 and EG-2201 (n=1) uptake is possible by the detection of compound-specific in vivo phase I metabolites evaluated in this study. Out of 30 metabolites detected in urine samples of MDMB-CHMCZCA users (n=20), one metabolite mono-hydroxylated at the cyclohexyl methyl tail is considered the most suitable compound-specific consumption marker while a biotransformation product of mono-hydroxylation in combination with hydrolysis of the terminal methyl ester function provides best sensitivity due to its high abundance. This article is protected by copyright. All rights reserved.
ERIC Educational Resources Information Center
Martinez, L. M.; Videa, M.; Mederos, F.; Mesquita, J.
2007-01-01
The construction of a new highly-sensitive, computer-interfaced, differential thermal analysis (DTA) device, used for gathering different information about the chemical reactions, is described. The instrument provides a better understanding about the phase transitions, phase diagrams and many more concepts to the students.
Raman Spectral Observation of a "New Phase" Observed in Nickel Electrodes Cycled to Failure
NASA Technical Reports Server (NTRS)
Loyselle, P. L.; Shan, X.; Cornilsen, B. C.; Reid, M. A.
1991-01-01
A "new phase" is reported in nickel electrodes from Ni/H boilerplate cells which were cycled to failure in electrolyte of variable kOH concentration. Raman spectra clearly show the presence of this phase, and these spectra have been used to quantify the amounts present in these electrodes (in the volume sampled by the laser beam) Raman spectroscopy has been found to be capable of differentiating the various phases which can be present in nickel .This differentiation is possible because of the structural variation observed for these phases. Ten of twelve electrodes examined contain at least some of this new phase. The presence of this "new phase" correlates with cell failure, and it is proposed that the presence of this phase may play a role in early electrode failure.
Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.
Ly, Tony; Endo, Aki; Lamond, Angus I
2015-01-02
Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (
Gamma frequency SSVEP components differentiate children with febrile seizures from normal controls.
Birca, Ala; Carmant, Lionel; Lortie, Anne; Vannasing, Phetsamone; Lassonde, Maryse
2008-11-01
Gamma band electroencephalography (EEG) abnormalities have been reported in patients with epilepsy. We aimed to investigate whether patients with febrile seizures (FS) show abnormalities of the gamma frequency steady-state visual evoked potential (SSVEP) components evoked by intermittent photic stimulation (IPS). We analyzed the magnitude and phase alignment of the 50-100 Hz SSVEP components elicited by IPS from 12 FS patients, 5 siblings of FS patients, and 15 control children between 6 and 36 months of age. Patients with FS showed significantly higher SSVEP magnitude and phase alignment values when compared to both the siblings and control groups. Detected abnormalities could either represent the direct consequence of seizures or indicate a preexisting tendency to hypersynchrony in FS patients. Future prospective studies could assess whether SSVEP abnormalities are associated with complex rather than simple FS, or have a prognostic value for the development of epilepsy following FS.
NASA Technical Reports Server (NTRS)
Edmonds, Jessica
2015-01-01
Aurora Flight Sciences, in partnership with Draper Laboratory, has developed a miniaturized system to count white blood cells in microgravity environments. The system uses MEMS technology to simultaneously count total white blood cells, the five white blood cell differential subgroups, and various lymphocyte subtypes. The OILWBCS-MEMS detection technology works by immobilizing an array of white blood cell-specific antibodies on small, gold-coated membranes. When blood flows across the membranes, specific cells' surface protein antigens bind to their corresponding antibodies. This binding can be measured and correlated to cell counts. In Phase I, the partners demonstrated surface chemistry sensitivity and specificity for total white blood cells and two lymphocyte subtypes. In Phase II, a functional prototype demonstrated end-to-end operation. This rugged, miniaturized device requires minimal blood sample preparation and will be useful for both space flight and terrestrial applications.
Swobodnik, W; Klüppelberg, U; Wechsler, J G; Volz, M; Normandin, G; Ditschuneit, H
1985-05-03
This paper introduces a new method to detect the taurine and glycine conjugates of five different bile acids (cholic acid, deoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid and lithocholic acid) in human bile. Advantages of this method are sufficient separation of compounds within a short period of time and a high rate of reproducibility. Using a mobile phase gradient of acetonitrile and water, modified with tetrabutylammonium hydrogen sulphate (0.0075 mol/l), we were able to maximize the differentiation between ursodeoxycholic acid and lithocholic acid, which is of primary interest during conservative gallstone dissolution therapy. Use of this gradient reduced analysis time to less than 0.5 h. Recovery rates for this modified method ranged from 94% to 100%, and reproducibility was 98%, sufficient for routine clinical applications.
Ground settlement monitoring from temporarily persistent scatterers between two SAR acquisitions
Lei, Z.; Xiaoli, D.; Guangcai, F.; Zhong, L.
2009-01-01
We present an improved differential interferometric synthetic aperture radar (DInSAR) analysis method that measures motions of scatterers whose phases are stable between two SAR acquisitions. Such scatterers are referred to as temporarily persistent scatterers (TPS) for simplicity. Unlike the persistent scatterer InSAR (PS-InSAR) method that relies on a time-series of interferograms, the new algorithm needs only one interferogram. TPS are identified based on pixel offsets between two SAR images, and are specially coregistered based on their estimated offsets instead of a global polynomial for the whole image. Phase unwrapping is carried out based on an algorithm for sparse data points. The method is successfully applied to measure the settlement in the Hong Kong Airport area. The buildings surrounded by vegetation were successfully selected as TPS and the tiny deformation signal over the area was detected. ??2009 IEEE.
Magnetostructural phase transitions and magnetocaloric effects in MnNiGe1-xAlx
NASA Astrophysics Data System (ADS)
Samanta, Tapas; Dubenko, Igor; Quetz, Abdiel; Temple, Samuel; Stadler, Shane; Ali, Naushad
2012-01-01
The thermomagnetic and magnetocaloric properties of the MnNiGe1-xAlx system have been investigated by magnetization and differential scanning calorimetry (DSC) measurements. The presence of first-order magnetostructural transitions (MSTs) from hexagonal ferromagnetic to orthorhombic antiferromagnetic phases has been detected for x = 0.085 and 0.09 at 193 K and 186 K, respectively. The values of latent heat (L = 6.6 J/g) and corresponding total entropy changes (ΔST = 35 J/kg K) have been evaluated for the MST (x = 0.09) from DSC measurements. The magnetic entropy change for x = 0.09 (ΔSM = 17.6 J/kg K for 5 T) was found to be comparable with well-known giant magnetocaloric materials, such as Gd5Si2Ge2, MnFeP0.45As0.55, and Ni50Mn37Sn13.
Schoenlaub, Laura; Cherla, Rama; Zhang, Yan; Zhang, Guoquan
2016-12-01
Our recent study demonstrated that virulent Coxiella burnetii Nine Mile phase I (NMI) is capable of infecting and replicating within peritoneal B1a cells and that B1a cells play an important role in host defense against C. burnetii infection in mice. However, it remains unknown if avirulent Nine Mile phase II (NMII) can infect and replicate in B1a cells and whether NMI and NMII can differentially interact with B1a cells. In this study, we examined if NMI and NMII can differentially modulate host cell apoptotic signaling in B1a cells. The results showed that NMII induced dose-dependent cell death in murine peritoneal B1a cells but NMI did not, suggesting that NMI and NMII may differentially activate host cell apoptotic signaling in B1a cells. Western blotting indicated that NMII-induced B1a cell death was not dependent on either caspase-3 or PARP-1 cleavage, but cleavage of caspase-1 was detected in NMII-infected B1a cells. In addition, inhibition or deficiency of caspase-1 activity blocked NMII-induced B1a cell death. These results suggest that NMII induces a caspase-1-dependent pyroptosis in murine peritoneal B1a cells. We also found that heat-killed NMII and type 4 secretion system (T4SS) mutant NMII were unable to induce B1a cell death and that NMII infection did not induce cell death in peritoneal B1a cells from Toll-like receptor 2 (TLR-2)- or NLRP3 inflammasome-deficient mice. These data suggest that NMII-induced caspase-1-dependent pyroptosis may require its T4SS and activation of the TLR-2 and NLRP3 signaling pathways. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Kchaou, H.; Karoui, K.; Bulou, A.; Ben Rhaiem, A.
2017-04-01
[N(CH3)3H]CdCl3 between 295 and 433 K possesses four phases. Three phase transition at T1=416 K, T2=373 K and T3=330 K (on heating) and T1=410 K, T2=386 K and T3=322 K (on cooling) was determined by differential scanning calorimetry. Thermal hysteresis of these transitions ΔT1=6 K, ΔT2=13 K and ΔT3=8 K, indicating a first order character. The X-ray diffraction study at room temperature revealed an orthorhombic system with Pbnm space group. The vibrational characteristics have been measured at room temperature by infrared spectroscopy (400-3800 cm-1) and by polarized Raman spectroscopy (10-3800 cm-1) on microcrystals orientated with respect to the organic and inorganic sublattice. The structure of this compound was optimized by density functional theory (DFT) using B3LYP with LanL2DZ and LanL2MB basis sets. The temperature dependence of the Raman line shifts ν and the half-width Δν detect the phase transitions (T1, T2 and T3).
Method and apparatus for detecting irregularities on or in the wall of a vessel
Bowling, Michael Keith
2000-09-12
A method of detecting irregularities on or in the wall of a vessel by detecting localized spatial temperature differentials on the wall surface, comprising scanning the vessel surface with a thermal imaging camera and recording the position of the or each region for which the thermal image from the camera is indicative of such a temperature differential across the region. The spatial temperature differential may be formed by bacterial growth on the vessel surface; alternatively, it may be the result of defects in the vessel wall such as thin regions or pin holes or cracks. The detection of leaks through the vessel wall may be enhanced by applying a pressure differential or a temperature differential across the vessel wall; the testing for leaks may be performed with the vessel full or empty, and from the inside or the outside.
Orthopedic pathology of the lower extremities: scintigraphic evaluation in the thigh, knee, and leg.
Etchebehere, E C; Etchebehere, M; Gamba, R; Belangero, W; Camargo, E E
1998-01-01
Radionuclide imaging (RI) of the osseous and nonosseous structures of the thigh, knee, and leg provide important diagnostic and prognostic information upon which the orthopedic surgeon can base treatment planning and management decisions. 99mTc-MDP scintigraphy is essential in overuse injuries such as stress fractures and shin splints. RI is important in assessing complications of trauma. It is the only imaging modality able to assess the magnitude of physeal stimulus caused by femoral fractures and to predict a favorable or unfavorable outcome of leg length by semiquantitative analysis; SPECT imaging can detect and locate decreased metabolism associated with posttraumatic closure of the physeal plate to predict growth arrest and deformities. Three-phase bone imaging (TPBI) is essential to differentiate hypervascular from avascular nonunions and follow delayed union. In osteonecrosis of the knee, bone scintigraphy precedes radiography changes even in stage l of the disease. 99mTc-MDP and 99mTc-HIG imaging are powerful tools in determining the outcomes of osteoarthritis and rheumatoid arthritis, respectively. Bone scintigraphy can also detect chronic ligament and acute and chronic meniscal lesions. The combined use of TPBI, gallium-67 citrate imaging, and indium-111 or 99mTc-HMPAO labeled leukocytes is important to diagnose and differentiate acute from chronic osteomyelitis, and to detect infected knee prostheses. Thallium-201 chloride imaging and 99mTc-sestamibi imaging have an important role in the assessment of tumor response to chemotherapy and in the quantification of tumor viability.
Hammonds, J; Price, R; Donnelly, E; Pickens, D
2012-06-01
A laboratory-based phase-contrast radiography/tomosynthesis imaging system previously (Med. Phys. Vol. 38, 2353 May 2011) for improved detection of low-contrast soft-tissue masses was used to evaluate the sensitivity for detecting the presence of thin layers of corrosion on aluminum aircraft structures. The evaluation utilized a test object of aluminum (2.5 inch × 2.5 inch × 1/8 inch) on which different geometric patterns of 0.0038 inch thick anodized aluminum oxide was deposited. A circular area of radius 1 inch centered on the phantom's midpoint was milled to an approximate thickness of 0.022 inches. The x-ray source used for this investigation was a dual focal spot, tungsten anode x-ray tube. The focal used during the investigation has a nominal size of 0.010 mm. The active area of the imager is 17.1 cm × 23.9 cm (2016 × 2816 pixels) with a pixel pitch of 0.085 mm. X-ray tube voltages ranged from 20-40 kVp and source- to-object and object-to-image distances were varied from 20-100 cm. Performance of the phase-contrast mode was compared to conventional absorption-based radiography using contrast ratio and contrast-to-noise ratios (C/N). Phase-contrast performance was based on edge-enhancement index (EEI) and the edge-enhancement-to-noise (EE/N) ratio. for absorption-based radiography, the best C/N ratio was observed at the lowest kVp value (20 kVp). The optimum sampling angle for tomosynthesis was +/- 8 degrees. Comparing C/N to EE/N demonstrated the phase-contrast techniques improve the conspicuity of the oxide layer edges. This work provides the optimal parameters that a radiographic imaging system would need to differentiate the two different compounds of aluminum. Subcontractee from Positron Systems Inc. (Boise, Idaho) through United States Air Force grant (AF083-225). © 2012 American Association of Physicists in Medicine.
Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert
2014-04-24
Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic incoherent neutron scattering (IINS) spectra were calculated by the DFT method and quite a good agreement with the experimental data was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Aigbirhio, Franklin I.; Fryer, Tim D.; Menon, David K.; Warburton, Elizabeth A.; Baron, Jean-Claude
2015-01-01
Although late-phase (>35min post-administration) 11C-PiB-PET has good sensitivity in cerebral amyloid angiopathy (CAA), its specificity is poor due to frequently high uptake in healthy aged subjects. By detecting perfusion-like abnormalities, early-phase 11C-PiB-PET might add diagnostic value. Early-frame (1–6min) 11C-PiB-PET was obtained in 11 non-demented patients with probable CAA-related symptomatic lobar intracerebral haemorrhage (70±7yrs), 9 age-matched healthy controls (HCs) and 10 HCs <55yrs. There was a significant decrease in early-phase atrophy-corrected whole-cortex SUV relative to cerebellar vermis (SUVR) in the CAA vs age-matched HC group. None of the age-matched controls fell below the lower 95% confidence limit derived from the young HCs, while 6/11 CAA patients did (sensitivity = 55%, specificity = 100%). Combining both early- and late-phase 11C-PiB data did not change the sensitivity and specificity of late-phase PiB, but combined early- and late-phase positivity entails a very high suspicion of underlying Aβ-related clinical disorder, i.e., CAA or Alzheimer disease (AD). In order to clarify this ambiguity, we then show that the occipital/posterior cingulate ratio is markedly lower in CAA than in AD (N = 7). These pilot data suggest that early-phase 11C-PiB-PET may not only add to late-phase PiB-PET with respect to the unclear situation of late-phase positivity, but also help differentiate CAA from AD. PMID:26439113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu
Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on themore » paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging system implemented with Talbot interferometry, the authors evaluate and verify the derived analytic formulae and the proposed approach for phase retrieval and dewrapping. Results: According to theoretical analysis, the twin-peak phenomenon in PSC is a consequence of combined effects, including the inaccuracy in absorption grating G{sub 2}, mismatch between phase grating and x-ray source spectrum, and finite size of x-ray tube’s focal spot. The proposed approach is experimentally evaluated by scanning a phantom consisting of organic materials and a lab mouse. The preliminary data show that compared to scanning G{sub 2} over only one single nominal period and correcting the measured phase signal with an intuitive phase dewrapping method that is being used in the field, stepping G{sub 2} over twice its nominal period and dewrapping the measured phase signal with the proposed approach can significantly improve the quality of x-ray differential phase contrast imaging in both radiograph and CT. Conclusions: Using the phase retrieval and dewrapping methods proposed to deal with the phenomenon of twin peaks in PSCs and phase wrapping, the performance of grating-based x-ray differential phase contrast radiography and CT can be significantly improved.« less
Percival, J M; Thomas, G; Cock, T A; Gardiner, E M; Jeffrey, P L; Lin, J J; Weinberger, R P; Gunning, P
2000-11-01
The nonmuscle actin cytoskeleton consists of multiple networks of actin microfilaments. Many of these filament systems are bound by the actin-binding protein tropomyosin (Tm). We investigated whether Tm isoforms could be cell cycle regulated during G0 and G1 phases of the cell cycle in synchronised NIH 3T3 fibroblasts. Using Tm isoform-specific antibodies, we investigated protein expression levels of specific Tms in G0 and G1 phases and whether co-expressed isoforms could be sorted into different compartments. Protein levels of Tms 1, 2, 5a, 6, from the alpha Tm(fast) and beta-Tm genes increased approximately 2-fold during mid-late G1. Tm 3 levels did not change appreciably during G1 progression. In contrast, Tm 5NM gene isoform levels (Tm 5NM-1-11) increased 2-fold at 5 h into G1 and this increase was maintained for the following 3 h. However, Tm 5NM-1 and -2 levels decreased by a factor of three during this time. Comparison of the staining of the antibodies CG3 (detects all Tm 5NM gene products), WS5/9d (detects only two Tms from the Tm 5NM gene, Tm 5NM-1 and -2) and alpha(f)9d (detects specific Tms from the alpha Tm(fast) and beta-Tm genes) antibodies revealed 3 spatially distinct microfilament systems. Tm isoforms detected by alpha(f)9d were dramatically sorted from isoforms from the Tm 5NM gene detected by CG3. Tm 5NM-1 and Tm 5NM-2 were not incorporated into stress fibres, unlike other Tm 5NM isoforms, and marked a discrete, punctate, and highly polarised compartment in NIH 3T3 fibroblasts. All microfilament systems, excluding that detected by the WS5/9d antibody, were observed to coalign into parallel stress fibres at 8 h into G1. However, Tms detected by the CG3 and alpha(f)9d antibodies were incorporated into filaments at different times indicating distinct temporal control mechanisms. Microfilaments in NIH 3T3 cells containing Tm 5NM isoforms were more resistant to cytochalasin D-mediated actin depolymerisation than filaments containing isoforms from the alpha Tm(fast) and beta-Tm genes. This suggests that Tm 5NM isoforms may be in different microfilaments to alpha Tm(fast) and beta-Tm isoforms even when present in the same stress fibre. Staining of primary mouse fibroblasts showed identical Tm sorting patterns to those seen in cultured NIH 3T3 cells. Furthermore, we demonstrate that sorting of Tms is not restricted to cultured cells and can be observed in human columnar epithelial cells in vivo. We conclude that the expression and localisation of Tm isoforms are differentially regulated in G0 and G1 phase of the cell cycle. Tms mark multiple microfilament compartments with restricted tropomyosin composition. The creation of distinct microfilament compartments by differential sorting of Tm isoforms is observable in primary fibroblasts, cultured 3T3 cells and epithelial cells in vivo. Copyright 2000 Wiley-Liss, Inc.
Gyurcsányi, R E; Pergel, E; Nagy, R; Kapui, I; Lan, B T; Tóth, K; Bitter, I; Lindner, E
2001-05-01
Scanning electrochemical microscopy (SECM) supplemented with potentiometric measurements was used to follow the time-dependent buildup of a steady-state diffusion layer at the aqueous-phase boundary of lead ion-selective electrodes (ISEs). Differential pulse voltammetry is adapted to SECM for probing the local concentration profiles at the sample side of solvent polymeric membranes. Major factors affecting the membrane transport-related surface concentrations were identified from SECM data and the potentiometric transients obtained under different experimental conditions (inner filling solution composition, membrane thickness, surface pretreatment). The amperometrically determined surface concentrations correlated well with the lower detection limits of the lead ion-selective electrodes.
Ancient administrative handwritten documents: X-ray analysis and imaging
Albertin, F.; Astolfo, A.; Stampanoni, M.; Peccenini, Eva; Hwu, Y.; Kaplan, F.; Margaritondo, G.
2015-01-01
Handwritten characters in administrative antique documents from three centuries have been detected using different synchrotron X-ray imaging techniques. Heavy elements in ancient inks, present even for everyday administrative manuscripts as shown by X-ray fluorescence spectra, produce attenuation contrast. In most cases the image quality is good enough for tomography reconstruction in view of future applications to virtual page-by-page ‘reading’. When attenuation is too low, differential phase contrast imaging can reveal the characters from refractive index effects. The results are potentially important for new information harvesting strategies, for example from the huge Archivio di Stato collection, objective of the Venice Time Machine project. PMID:25723946
Skolnick, M L; Matzuk, T
1978-08-01
This paper describes a new real-time servo-controlled sector scanner that produces high-resolution images similar to phased-array systems, but possesses the simplicity of design and low cost best achievable in a mechanical sector scanner. Its unique feature is the transducer head which contains a single moving part--the transducer. Frame rates vary from 0 to 30 degrees and the sector angle from 0 to 60 degrees. Abdominal applications include: differentiation of vascular structures, detection of small masses, imaging of diagonally oriented organs. Survey scanning, and demonstration of regions difficult to image with contact scanners. Cardiac uses are also described.
NASA Astrophysics Data System (ADS)
Isaac, Aboagye Adjaye; Yongsheng, Cao; Fushen, Chen
2018-05-01
We present and compare the outcome of implicit and explicit labels using intensity modulation (IM), differential quadrature phase shift keying (DQPSK), and polarization division multiplexed (PDM-DQPSK). A payload bit rate of 1, 2, and 5 Gb/s is considered for IM implicit labels, while payloads of 40, 80, and 112 Gb/s are considered in DQPSK and PDM-DQPSK explicit labels by stimulating a 4-code 156-Mb/s SAC label. The generated label and payloads are observed by assessing the eye diagram, received optical power (ROP), and optical signal to noise ratio (OSNR).
Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Wenjuan; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697; Li, Rui
2014-03-24
We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.
Ancient administrative handwritten documents: X-ray analysis and imaging.
Albertin, F; Astolfo, A; Stampanoni, M; Peccenini, Eva; Hwu, Y; Kaplan, F; Margaritondo, G
2015-03-01
Handwritten characters in administrative antique documents from three centuries have been detected using different synchrotron X-ray imaging techniques. Heavy elements in ancient inks, present even for everyday administrative manuscripts as shown by X-ray fluorescence spectra, produce attenuation contrast. In most cases the image quality is good enough for tomography reconstruction in view of future applications to virtual page-by-page `reading'. When attenuation is too low, differential phase contrast imaging can reveal the characters from refractive index effects. The results are potentially important for new information harvesting strategies, for example from the huge Archivio di Stato collection, objective of the Venice Time Machine project.
Samuel L. Zelinka; Michael J. Lambrecht; Samuel V. Glass; Alex C. Wiedenhoeft; Daniel J. Yelle
2012-01-01
This paper examines phase transformations of water in wood and isolated wood cell wall components using differential scanning calorimetry with the purpose of better understanding "Type II water" or "freezable bound water" that has been reported for cellulose and other hydrophilic polymers. Solid loblolly pine (Pinus taeda...
An Exploration of Remote History Effects in Humans
ERIC Educational Resources Information Center
Okouchi, Hiroto
2007-01-01
One group of undergraduates responded under a fixed-ratio (FR) 25 schedule and a second group responded under a differential-reinforcement-of-low-rate (DRL) 5-s schedule (first history phase). Both groups of subjects were then exposed to a differential-reinforcement-of-other-behavior (DRO) 5-s schedule (second history phase), and finally to…
A 100-Gb/s noncoherent silicon receiver for PDM-DBPSK/DQPSK signals.
Klamkin, Jonathan; Gambini, Fabrizio; Faralli, Stefano; Malacarne, Antonio; Meloni, Gianluca; Berrettini, Gianluca; Contestabile, Giampiero; Potì, Luca
2014-01-27
An integrated noncoherent silicon receiver for demodulation of 100-Gb/s polarization-division multiplexed differential quadrature phase-shift keying and polarization-division multiplexed differential binary phase-shift keying signals is demonstrated. The receiver consists of a 2D surface grating coupler, four Mach-Zehnder delay interferometers and four germanium balanced photodetectors.
A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.
Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz
2012-09-10
Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.
Cross-correlation photothermal optical coherence tomography with high effective resolution.
Tang, Peijun; Liu, Shaojie; Chen, Junbo; Yuan, Zhiling; Xie, Bingkai; Zhou, Jianhua; Tang, Zhilie
2017-12-01
We developed a cross-correlation photothermal optical coherence tomography (CC-PTOCT) system for photothermal imaging with high lateral and axial resolution. The CC-PTOCT system consists of a phase-sensitive OCT system, a modulated pumping laser, and a digital cross-correlator. The pumping laser was used to induce the photothermal effect in the sample, causing a slight phase modulation of the OCT signals. A spatial phase differentiation method was employed to reduce phase accumulation. The noise brought by the phase differentiation method and the strong background noise were suppressed efficiently by the cross-correlator, which was utilized to extract the photothermal signals from the modulated signals. Combining the cross-correlation technique with spatial phase differentiation can improve both lateral and axial resolution of the PTOCT imaging system. Clear photothermal images of blood capillaries of a mouse ear in vivo were successfully obtained with high lateral and axial resolution. The experimental results demonstrated that this system can enhance the effective transverse resolution, effective depth resolution, and contrast of the PTOCT image effectively, aiding the ongoing development of the accurate 3D functional imaging.
Ultralow-phase-noise oscillators based on BAW resonators.
Li, Mingdong; Seok, Seonho; Rolland, Nathalie; Rolland, Paul; El Aabbaoui, Hassan; de Foucauld, Emeric; Vincent, Pierre; Giordano, Vincent
2014-06-01
This paper presents two 2.1-GHz low-phase noise oscillators based on BAW resonators. Both a single-ended common base structure and a differential Colpitts structure have been implemented in a 0.25-μm BiCMOS process. The detailed design methods including the realization, optimization, and test are reported. The differential Colpitts structure exhibits a phase noise 6.5 dB lower than the single-ended structure because of its good performance of power noise immunity. Comparison between the two structures is also carried out. The differential Colpitts structure shows a phase noise level of -87 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -162 dBc/Hz, with an output power close to -6.5 dBm and a core consumption of 21.6 mW. Furthermore, with the proposed optimization methods, both proposed devices have achieved promising phase noise performance compared with state-of-the-art oscillators described in the literature. Finally, we briefly present the application of the proposed BAW oscillator to a micro-atomic clock.
Carbonnelle, E
2009-01-01
Despite breakthroughs in the diagnosis and treatment of infectious diseases, meningitis still remains an important cause of mortality and morbidity. An accurate and rapid diagnosis of acute bacterial meningitis is essential for a good outcome. The gold-standard test for diagnosis is CSF analysis. Gram staining of CSF reveals bacteria in about 50 to 80 % of cases and cultures are positive in at best 80 % of cases. However, the sensitivity of both tests is less than 50 % in patients who are already on antibiotic treatment. CSF leukocyte count and concentration of protein and glucose lack specificity and sensitivity for the diagnosis of meningitis. Other biological tests are available for the diagnosis. Latex agglutination test were adapted for rapid and direct detection of soluble bacterial antigens in CSF of patients suspected with bacterial meningitis. This test is efficient in detecting antigens of most common central nervous system bateria but lacks sensibility. Furthermore, in the early phases of acute bacterial and viral meningitis, signs and symptoms are often non specific and it is not always possible to make a differential diagnosis. Markers like CRP, procalcitonin, or sTREM-1 may be very useful for the diagnosis and to differentiate between viral and bacterial meningitis. Bacterial meningitis diagnosis and management require various biological tests and a multidisciplinary approach.
Alsenaidy, Mohammad A.; Kim, Jae Hyun; Majumdar, Ranajoy; Weis, David D.; Joshi, Sangeeta B.; Tolbert, Thomas J.; Middaugh, C. Russell; Volkin, David B.
2013-01-01
The structural integrity and conformational stability of an IgG1 monoclonal antibody (mAb), after partial and complete enzymatic removal of the N-linked Fc glycan, was compared to the untreated mAb over a wide range of temperature (10° to 90°C) and solution pH (3 to 8) using circular dichroism, fluorescence spectroscopy, and static light scattering combined with data visualization employing empirical phase diagrams (EPDs). Subtle to larger stability differences between the different glycoforms were observed. Improved detection of physical stability differences was then demonstrated over narrower pH range (4.0-6.0) using smaller temperature increments, especially when combined with an alternative data visualization method (radar plots). Differential scanning calorimetry and differential scanning fluorimetry were then utilized and also showed an improved ability to detect differences in mAb glycoform physical stability. Based on these results, a two-step methodology was used in which mAb glycoform conformational stability is first screened with a wide variety of instruments and environmental stresses, followed by a second evaluation with optimally sensitive experimental conditions, analytical techniques and data visualization methods. With this approach, high-throughput biophysical analysis to assess relatively subtle conformational stability differences in protein glycoforms is demonstrated. PMID:24114789
Heusschen, Roy; Freitag, Nancy; Tirado-González, Irene; Barrientos, Gabriela; Moschansky, Petra; Muñoz-Fernández, Raquel; Leno-Durán, Ester; Klapp, Burghard F; Thijssen, Victor L J L; Blois, Sandra M
2013-01-01
Disruption of fetal-maternal tolerance mechanisms can contribute to pregnancy complications, including spontaneous abortion. Galectin-9 (LGALS9), a tandem repeat lectin associated with immune modulation, is expressed in the endometrium during the mid and late secretory phases and in decidua during human early pregnancy. However, the role of LGALS9 during pregnancy remains poorly understood. We used real-time PCR and immunohistochemical staining to analyze the expression of Lgals9/LGALS9 during mouse gestation as well as in human tissues obtained from normal pregnancy and spontaneous abortions. In mice, three Lgals9 splice variants were detected, the expression of which was differentially regulated during gestation. Furthermore, decidual Lgals9 expression was deregulated in a mouse model of spontaneous abortion, whereas placental levels did not change. We further found that the LGALS9 D5 isoform suppresses interferon gamma production by decidual natural killer cells. In human patients, six Lgals9 splice variants were detected, and a decrease in Lgals9 D5/10 was associated with spontaneous abortion. Altogether, these results show a differential regulation of Lgals9 isoform expression during normal and pathological pregnancies and designate Lgals9 as a potential marker for adverse pregnancy outcomes.
Cevallos-Cevallos, Juan Manuel; García-Torres, Rosalía; Etxeberria, Edgardo; Reyes-De-Corcuera, José Ignacio
2011-01-01
Citrus Huanglongbing (HLB) is considered the most destructive citrus disease worldwide. Symptoms-based detection of HLB is difficult due to similarities with zinc deficiency. To find metabolic differences between leaves from HLB-infected, zinc-deficient, and healthy 'Valencia' orange trees by using GC-MS based metabolomics. Analysis based on GC-MS methods for untargeted metabolite analysis of citrus leaves was developed and optimized. Sample extracts from healthy, zinc deficient, or HLB-infected sweet orange leaves were submitted to headspace solid phase micro-extraction (SPME) and derivatization treatments prior to GC-MS analysis. Principal components analysis achieved correct classification of all the derivatized liquid extracts. Analysis of variance revealed 6 possible biomarkers for HLB, of which 5 were identified as proline, β-elemene, (-)trans- caryophyllene, and α-humulene. Significant (P < 0.05) differences in oxo-butanedioic acid, arabitol, and neo-inositol were exclusively detected in samples from plants with zinc deficiency. Levels of isocaryophyllen, α-selinene, β-selinene, and fructose were significantly (P < 0.05) different in healthy leaves only. Results suggest the potential of using identified HLB biomarkers for rapid differentiation of HLB from zinc deficiency. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Aref, Seyed Hashem
2017-11-01
In this letter, the sensitivity to strain, curvature, and temperature of a sensor based on in-line fiber Mach-Zahnder interferometer (IFMZI) is studied and experimentally demonstrated. The sensing structure is simply a section of single mode fiber sandwiched between two abrupt tapers to achieve a compact IFMZI. The phase of interferometer changes with the measurand interaction, which is the basis for considering this structure for sensing. The physical parameter sensitivity of IFMZI sensor has been evaluated using differential white light interferometry (DWLI) technique as a phase read-out system. The differential configuration of the IFMZI sensor is used to achieve a high phase resolving power of ±0.062° for read-out interferometer by means of omission of phase noise of environment perturbations. The sensitivity of the sensor to the strain, curvature, and temperature has been measured 0.0199 degree/με, 757.00 degree/m-1, and 3.25 degree/°C, respectively.
Temperature differential detection device
Girling, P.M.
1986-04-22
A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.
Temperature differential detection device
Girling, Peter M.
1986-01-01
A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.
NASA Astrophysics Data System (ADS)
Yang, Qingsong; Cong, Wenxiang; Wang, Ge
2016-10-01
X-ray phase contrast imaging is an important mode due to its sensitivity to subtle features of soft biological tissues. Grating-based differential phase contrast (DPC) imaging is one of the most promising phase imaging techniques because it works with a normal x-ray tube of a large focal spot at a high flux rate. However, a main obstacle before this paradigm shift is the fabrication of large-area gratings of a small period and a high aspect ratio. Imaging large objects with a size-limited grating results in data truncation which is a new type of the interior problem. While the interior problem was solved for conventional x-ray CT through analytic extension, compressed sensing and iterative reconstruction, the difficulty for interior reconstruction from DPC data lies in that the implementation of the system matrix requires the differential operation on the detector array, which is often inaccurate and unstable in the case of noisy data. Here, we propose an iterative method based on spline functions. The differential data are first back-projected to the image space. Then, a system matrix is calculated whose components are the Hilbert transforms of the spline bases. The system matrix takes the whole image as an input and outputs the back-projected interior data. Prior information normally assumed for compressed sensing is enforced to iteratively solve this inverse problem. Our results demonstrate that the proposed algorithm can successfully reconstruct an interior region of interest (ROI) from the differential phase data through the ROI.
Klink, Vincent P.; Overall, Christopher C.; Alkharouf, Nadim W.; MacDonald, Margaret H.; Matthews, Benjamin F.
2010-01-01
Background. A comparative microarray investigation was done using detection call methodology (DCM) and differential expression analyses. The goal was to identify genes found in specific cell populations that were eliminated by differential expression analysis due to the nature of differential expression methods. Laser capture microdissection (LCM) was used to isolate nearly homogeneous populations of plant root cells. Results. The analyses identified the presence of 13,291 transcripts between the 4 different sample types. The transcripts filtered down into a total of 6,267 that were detected as being present in one or more sample types. A comparative analysis of DCM and differential expression methods showed a group of genes that were not differentially expressed, but were expressed at detectable amounts within specific cell types. Conclusion. The DCM has identified patterns of gene expression not shown by differential expression analyses. DCM has identified genes that are possibly cell-type specific and/or involved in important aspects of plant nematode interactions during the resistance response, revealing the uniqueness of a particular cell population at a particular point during its differentiation process. PMID:20508855
[Imaging origins and characteristics analysis of acute and chronic aspiration pneumonia].
Wang, Kang; Li, Ming; Wang, Xiongbiao; Qin, Jianmin; Wang, Zhi; Zhao, Zehua; Qin, Le; Hua, Yanqing
2014-11-11
To discuss about the pathologic and imaging origins and characteristics of CT scaning and X-ray radiography for acute and chronic aspiration pneumonia. Imaging data from 30 patients with aspiration pneumonia were retrospectively analyzed, CT scaning was performed in 27 patients, which PMVR reconstruction was performed in 21 cases;3 exammed by X-ray with 2 used by esophagography. Opaque bodies were detected in trachea by CT scaning in 12 patients.7 patients in acute phase rapidly developed into acute respiratory distress syndrome(ARDS). CT signs of 30 patients with acute and chronic aspiration pneumonia included: centrilobular nodules were detected in 2 cases with acute phase, 4 cases with subacute phase and 4 cases with chronic phase; the imaging of ground glass opacity were detected in 9 cases with acute phase, 2 cases with subacute phase and 3 cases with chronic phase; the imaging of bronchiectasis was detected in 8 cases with chronic phase, which mucilage embolism was detected in 3 of 8 cases; the imaging of atelectasis was detected in 6 cases with chronic phase; the imaging of sheeted consolidation was detected in 5 cases with chronic phase, 8 case with acute phase; the imaging of interstitial fibrosis was detected in 3 cases with chronic phase. Lesions of inferior lobe of right lung were detected in 9 cases with chronic phase, 4 cases with subacute phase, 11 case with acute phase;lesions of inferior lobe of left lung were detected in 6 cases with chronic phase and 3 cases with subacute group, 11 case with acute phase. The imaging features of acute and chronic aspiration pneumonia overlap with GGO and centrilobular nodules in every group. While the imaging features of atelectasis, bronchiectasis or mucilage embolism are found in chronic phase. The chest CT scaning may accurately evaluate the dynamic change of aspiration pneumonia.
Development of Simultaneous Beta-and-Coincidence-Gamma Imager for Plant Imaging Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Yuan-Chuan
2016-09-30
The goal of this project is to develop a novel imaging system that can simultaneously acquire beta and coincidence gamma images of positron sources in thin objects such as leaves of plants. This hybrid imager can be used to measure carbon assimilation in plants quantitatively and in real-time after C-11 labeled carbon-dioxide is administered. A better understanding of carbon assimilation, particularly under the increasingly elevated atmospheric CO 2 level, is extremely critical for plant scientists who study food crop and biofuel production. Phase 1 of this project is focused on the technology development with 3 specific aims: (1) develop amore » hybrid detector that can detect beta and gamma rays simultaneously; (2) develop an imaging system that can differentiate these two types of radiation and acquire beta and coincidence gamma images in real-time; (3) develop techniques to quantify radiotracer distribution using beta and gamma images. Phase 2 of this project is to apply technologies developed in phase 1 to study plants using positron-emitting radionuclide such as 11C to study carbon assimilation in biofuel plants.« less
Banerjee, Shubhadeep; Pal, Tapan K; Guha, Sujoy K
2012-03-01
To understand and maximize the therapeutic potential of poly(styrene-co-maleic acid) (SMA), a synthetic, pharmacologically-active co-polymer, its effect on conformation, phase behavior and stability of lipid matrix models of cell membranes were investigated. The modes of interaction between SMA and lipid molecules were also studied. While, attenuated total reflection-Fourier-transform infrared (ATR-FTIR) and static (31)P nuclear magnetic resonance (NMR) experiments detected SMA-induced conformational changes in the headgroup region, differential scanning calorimetry (DSC) studies revealed thermotropic phase behavior changes of the membranes. (1)H NMR results indicated weak immobilization of SMA within the bilayers. Molecular interpretation of the results indicated the role of hydrogen-bond formation and hydrophobic forces between SMA and zwitterionic phospholipid bilayers. The extent of membrane fluidization and generation of isotropic phases were affected by the surface charge of the liposomes, and hence suggested the role of electrostatic interactions between SMA and charged lipid headgroups. SMA was thus found to directly affect the structural integrity of model membranes. Copyright © 2011 Elsevier B.V. All rights reserved.
Glass transitions and physical aging of cassava starch - corn oil blends.
Pérez, Adriana; Sandoval, Aleida J; Cova, Aura; Müller, Alejandro J
2014-05-25
Glass transition temperatures and physical aging of amorphous cassava starch and their blends with corn oil were assessed by differential scanning calorimetry (DSC). Two enthalpic relaxation endotherms, well separated in temperature values, were exhibited by neat amorphous cassava starch with 10.6% moisture content, evidencing two amorphous regions within the starch with different degrees of mobility. The phase segregation of these two amorphous regions was favored by added corn oil at low moisture contents during storage. The presence of amylose-lipid complexes in this matrix, may also affect the molecular dynamics of these two amorphous regions at low moisture contents. Increasing moisture content, leads to a homogeneous amorphous phase, with an aging process characterized by a single enthalpic relaxation peak. In all cases, after deleting the thermal history of the samples only one glass transition temperature was detected (during DSC second heating runs) indicating that a single homogeneous amorphous phase was attained after erasing the effects of physical aging. Trends of the enthalpic relaxation parameters were also different at the two moisture contents considered in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lu, Yonggang; Aitken, Robert John; Lin, Minjie
2017-01-01
Galeolaria gemineoa is a sessile broadcast-spawning marine invertebrate, whose spermatozoa have been regarded as a sensitive indicator for water quality monitoring. In this study, 10 steps of spermiogenesis have been identified at the ultrastructural level and this differentiation process has been recapitulated in vitro up to the point of spermiogenesis (step 7-9 spermatids). On completion of the second meiosis, newly formed spermatids were detached from the seminiferous epithelium and released to the lumen of each germinal chamber. These spermatids were present in pairs and interconnected by a cytoplasmic bridge throughout the entire spermiogenic process. On the basis of morphological events such as formation of the acrosome, elongation of the flagellum, and condensation of the nucleus, spermiogenesis has been temporally divided into Golgi phase, acrosomal phase and maturation phase. During the Golgi phase, proacrosomal vesicles appeared at the posterior pole of the spermatids and gradually fused into a proacrosomal vacuole. Simultaneously, the distal centriole docked onto the plasma membrane and gave rise to a formative flagellum. The acrosomal phase was characterised by differentiation of the acrosome, condensation of the chromatin and formation of a mitochondrial sheath surrounding the initial portion of the flagellum. During the maturation phase, the fully differentiated acrosome migrated to the anterior pole and excess cytoplasm was extruded from the spermatids in the form of residual bodies. In addition, we successfully induced step 1-3 spermatids to differentiate into the step 7-9 spermatids in both male germinal fluid and 10% foetal bovine serum in RPMI 1640 medium, but failed to replicate this process in female or boiled male germinal fluids. This finding supports our concept that spermatid differentiation in this species is dependent on intrinsic developmental programming and does not require input from accompanying nurse cells.
Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells.
Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu
2016-08-01
Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.
Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells
NASA Astrophysics Data System (ADS)
Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu
2016-08-01
Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.
Evaluating linguistic equivalence of patient-reported outcomes in a cancer clinical trial.
Hahn, Elizabeth A; Bode, Rita K; Du, Hongyan; Cella, David
2006-01-01
In order to make meaningful cross-cultural or cross-linguistic comparisons of health-related quality of life (HRQL) or to pool international research data, it is essential to create unbiased measures that can detect clinically important differences. When HRQL scores differ between cultural/linguistic groups, it is important to determine whether this reflects real group differences, or is the result of systematic measurement variability. To investigate the linguistic measurement equivalence of a cancer-specific HRQL questionnaire, and to conduct a sensitivity analysis of treatment differences in HRQL in a clinical trial. Patients with newly diagnosed chronic myelogenous leukemia (n = 1049) completed serial HRQL assessments in an international Phase III trial. Two types of differential item functioning (uniform and non-uniform) were evaluated using item response theory and classical test theory approaches. A sensitivity analysis was conducted to compare HRQL between treatment arms using items without evidence of differential functioning. Among 27 items, nine (33%) did not exhibit any evidence of differential functioning in both linguistic comparisons (English versus French, English versus German). Although 18 items functioned differently, there was no evidence of systematic bias. In a sensitivity analysis, adjustment for differential functioning affected the magnitude, but not the direction or interpretation of clinical trial treatment arm differences. Sufficient sample sizes were available for only three of the eight language groups. Identification of differential functioning in two-thirds of the items suggests that current psychometric methods may be too sensitive. Enhanced methodologies are needed to differentiate trivial from substantive differential item functioning. Systematic variability in HRQL across different groups can be evaluated for its effect upon clinical trial results; a practice recommended when data are pooled across cultural or linguistic groups to make conclusions about treatment effects.
NASA Technical Reports Server (NTRS)
Zhi, J.; Sommerfeldt, D. W.; Rubin, C. T.; Hadjiargyrou, M.
2001-01-01
Osteoblast differentiation is a multistep process that involves critical spatial and temporal regulation of cellular processes marked by the presence of a large number of differentially expressed molecules. To identify key functional molecules, we used differential messenger RNA (mRNA) display and compared RNA populations isolated from the defined transition phases (proliferation, matrix formation, and mineralization) of the MC3T3-E1 osteoblast-like cell line. Using this approach, a complementary DNA (cDNA) fragment was isolated and identified as neuroleukin (NLK), a multifunctional cytokine also known as autocrine motility factor (AMF), phosphoglucose isomerase (PGI; phosphohexose isomerase [PHI]), and maturation factor (MF). Northern analysis showed NLK temporal expression during MC3T3-E1 cell differentiation with a 3.5-fold increase during matrix formation and mineralization. Immunocytochemical studies revealed the presence of NLK in MC3T3-E1 cells as well as in the surrounding matrix, consistent with a secreted molecule. In contrast, the NLK receptor protein was detected primarily on the cell membrane. In subsequent studies, a high level of NLK expression was identified in osteoblasts and superficial articular chondrocytes in bone of 1-, 4-, and 8-month-old normal mice, as well as in fibroblasts, proliferating chondrocytes, and osteoblasts within a fracture callus. However, NLK was not evident in hypertrophic chondrocytes or osteocytes. In addition, treatment of MC3T3 cells with 6-phosphogluconic acid (6PGA; a NLK inhibitor) resulted in diminishing alkaline phosphatase (ALP) activity and mineralization in MC3T3-E1 cells, especially during the matrix formation stage of differentiating cells. Taken together, these data show specific expression of NLK in discrete populations of bone and cartilage cells and suggest a possible role for this secreted protein in bone development and regeneration.
Flip-flops of FK Comae Berenices
NASA Astrophysics Data System (ADS)
Hackman, T.; Pelt, J.; Mantere, M. J.; Jetsu, L.; Korhonen, H.; Granzer, T.; Kajatkari, P.; Lehtinen, J.; Strassmeier, K. G.
2013-05-01
Context.FK Comae Berenices is a rapidly rotating magnetically active star, the light curve of which is modulated by cool spots on its surface. It was the first star where the "flip-flop" phenomenon was discovered. Since then, flip-flops in the spot activity have been reported in many other stars. Follow-up studies with increasing length have shown, however, that the phenomenon is more complex than was thought right after its discovery. Aims: Therefore, it is of interest to perform a more thorough study of the evolution of the spot activity in FK Com. In this study, we analyse 15 years of photometric observations with two different time series analysis methods, with a special emphasis on detecting flip-flop type events from the data. Methods: We apply the continuous period search and carrier fit methods on long-term standard Johnson-Cousins V-observations from the years 1995-2010. The observations were carried out with two automated photometric telescopes, Phoenix-10 and Amadeus T7 located in Arizona. Results: We identify complex phase behaviour in 6 of the 15 analysed data segments. We identify five flip-flop events and two cases of phase jumps, where the phase shift is Δφ < 0.4. In addition we see two mergers of spot regions and two cases where the apparent phase shifts are caused by spot regions drifting with respect to each other. Furthermore we detect variations in the rotation period corresponding to a differential rotation coefficient of |k| > 0.031. Conclusions: The flip-flop cannot be interpreted as a single phenomenon, where the main activity jumps from one active longitude to another. In some of our cases the phase shifts can be explained by differential rotation: two spot regions move with different angular velocity and even pass each other. Comparison between the methods show that the carrier fit utility is better in retrieving slow evolution especially from a low amplitude light curve, while the continuous period search is more sensitive in case of rapid changes. Based on data obtained with the Amadeus T7 Automatic Photoelectric Telescope (APT) at Fairborn Observatory, jointly operated by the University of Vienna and AIP, the Phoenix-10 APT at Mt. Hopkins, Arizona, and the Nordic Optical Telescope, Observatorio Roque de los Muchachos, La Palma, Canary Islands.The photometric observations are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/553/A40
NASA Astrophysics Data System (ADS)
Mehta, Shalin B.; Sheppard, Colin J. R.
2010-05-01
Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.
NASA Astrophysics Data System (ADS)
Yu, Wen-che
2016-04-01
The inner core boundary (ICB), where melting and solidification of the core occur, plays a crucial role in the dynamics of the Earth's interior. To probe temporal changes near the ICB beneath the eastern hemisphere, I analyze differential times of PKiKP (dt(PKiKP)), double differential times of PKiKP-PKPdf, and PKiKP coda waves from repeating earthquakes in the Southwest Pacific subduction zones. Most PKiKP differential times are within ±30 ms, comparable to inherent travel time uncertainties due to inter-event separations, and suggest no systematic changes as a function of calendar time. Double differential times measured between PKiKP codas and PKiKP main phases show promising temporal changes, with absolute values of time shifts of >50 ms for some observations. However, there are discrepancies among results from different seismographs in the same calendar time window. Negligible changes in PKiKP times, combined with changes in PKiKP coda wave times on 5 year timescales, favor a smooth inner core boundary with fine-scale structures present in the upper inner core. Differential times of PKiKP can be interpreted in the context of either melting based on translational convection, or growth based on thermochemical mantle-inner core coupling. Small dt(PKiKP) values with inherent uncertainties do not have sufficient resolution to distinguish the resultant longitudinal (melting) and latitudinal (growth) dependencies predicted on the basis of the two models on 5 year timescales.
Plasmonic trace sensing below the photon shot noise limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooser, Raphael C.; Lawrie, Benjamin J.
Plasmonic sensors are important detectors of biochemical trace compounds, but those that utilize optical readout are approaching their absolute limits of detection as defined by the Heisenberg uncertainty principle in both differential intensity and phase readout. However, the use of more general minimum uncertainty states in the form of squeezed light can push the noise floor in these sensors below the shot noise limit (SNL) in one analysis variable at the expense of another. Here, we demonstrate a quantum plasmonic sensor whose noise floor is reduced below the SNL in order to perform index of refraction measurements with sensitivities unobtainablemore » with classical plasmonic sensors. The increased signal-to-noise ratio can result in faster detection of analyte concentrations that were previously lost in the noise. As a result, these benefits are the hallmarks of a sensor exploiting quantum readout fields in order to manipulate the limits of the Heisenberg uncertainty principle.« less
High-resolution three-dimensional imaging radar
NASA Technical Reports Server (NTRS)
Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)
2010-01-01
A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.
Levy, Boaz
2006-10-01
Empirical studies have questioned the validity of the Faces subtest from the WMS-III for detecting impairment in visual memory, particularly among the elderly. A recent examination of the test norms revealed a significant age related floor effect already emerging on Faces I (immediate recall), implying excessive difficulty in the acquisition phase among unimpaired older adults. The current study compared the concurrent validity of the Faces subtest with an alternative measure between 16 Alzheimer's patients and 16 controls. The alternative measure was designed to facilitate acquisition by reducing the sequence of item presentation. Other changes aimed at increasing the retrieval challenge, decreasing error due to guessing and standardizing the administration. Analyses converged to indicate that the alternative measure provided a considerably greater differentiation than the Faces subtest between Alzheimer's patients and controls. Steps for revising the Faces subtest are discussed.
Plasmonic trace sensing below the photon shot noise limit
Pooser, Raphael C.; Lawrie, Benjamin J.
2015-12-09
Plasmonic sensors are important detectors of biochemical trace compounds, but those that utilize optical readout are approaching their absolute limits of detection as defined by the Heisenberg uncertainty principle in both differential intensity and phase readout. However, the use of more general minimum uncertainty states in the form of squeezed light can push the noise floor in these sensors below the shot noise limit (SNL) in one analysis variable at the expense of another. Here, we demonstrate a quantum plasmonic sensor whose noise floor is reduced below the SNL in order to perform index of refraction measurements with sensitivities unobtainablemore » with classical plasmonic sensors. The increased signal-to-noise ratio can result in faster detection of analyte concentrations that were previously lost in the noise. As a result, these benefits are the hallmarks of a sensor exploiting quantum readout fields in order to manipulate the limits of the Heisenberg uncertainty principle.« less
Protein mass analysis of histones.
Galasinski, Scott C; Resing, Katheryn A; Ahn, Natalie G
2003-09-01
Posttranslational modification of chromatin-associated proteins, including histones and high-mobility-group (HMG) proteins, provides an important mechanism to control gene expression, genome integrity, and epigenetic inheritance. Protein mass analysis provides a rapid and unbiased approach to monitor multiple chemical modifications on individual molecules. This review describes methods for acid extraction of histones and HMG proteins, followed by separation by reverse-phase chromatography coupled to electrospray ionization mass spectrometry (LC/ESI-MS). Posttranslational modifications are detected by analysis of full-length protein masses. Confirmation of protein identity and modification state is obtained through enzymatic digestion and peptide sequencing by MS/MS. For differentially modified forms of each protein, the measured intensities are semiquantitative and allow determination of relative abundance and stoichiometry. The method simultaneously detects covalent modifications on multiple proteins and provides a facile assay for comparing chromatin modification states between different cell types and/or cellular responses.
[Study on transformation mechanism of SOA from biogenic VOC under UV-B condition].
Li, Ying-Ying; Li, Xiang; Chen, Jian-Min
2011-12-01
A laboratory study was carried out to investigate the biogenic volatile organic compounds (BVOC) in a lab-made glass chamber. The secondary organic aerosol (SOA) products can be detected under the UV photooxidation of BVOC. Pelargonium x Citrenella was chosen as the target plant in this research because it can release a large amount of BVOCs. The predominant 7 alkene and ketol compounds were detected by using solid phase microextraction (SPME) sampling and gas chromatography/mass spectrometry (GC/MS) analysis. The photochemical experiment indicated that these BVOC can be rapidly oxidized into SOA under UV-B irradiation. A tandem differential mobility analyzer (TDMA) was used to measure the size distribution and the hygroscopicity of the SOA. The particle diameter was in the range of 50 nm to 320 nm. The high hygroscopicity of SOA was also obtained and the size increased from 1.05 to 1.11 during the wet experiment.
QCM gas phase detection with ceramic materials--VOCs and oil vapors.
Latif, Usman; Rohrer, Andreas; Lieberzeit, Peter A; Dickert, Franz L
2011-06-01
Titanate sol-gel layers imprinted with carbonic acids were used as sensitive layers on quartz crystal microbalance. These functionalized ceramics enable us detection of volatile organic compounds such as ethanol, n-propanol, n-butanol, n-hexane, n-heptane, n-/iso-octane, and n-decane. Variation of the precursors (i.e., tetrabutoxy titanium, tetrapropoxy titanium, tetraethoxy titanium) allows us to tune the sensitivity of the material by a factor of 7. Sensitivity as a function of precursors leads to selective inclusion of n-butanol vapors down to 1 ppm. The selectivity of materials is optimized to differentiate between isomers, e.g., n- and iso-octane. The results can be rationalized by correlating the sensor effects of hydrocarbons with the Wiener index. A mass-sensitive sensor based on titanate layer was also developed for monitoring emanation of degraded engine oil. Heating the sensor by a meander avoids vapor condensation. Thus, a continuously working oil quality sensor was designed.
Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo
2017-01-01
Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli (Brassica oleracea var. italica) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development. PMID:28392797
Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo
2017-01-01
Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli ( Brassica oleracea var. italica ) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.
Weak photoacoustic signal detection based on the differential duffing oscillator
NASA Astrophysics Data System (ADS)
Li, Chenjing; Xu, Xuemei; Ding, Yipeng; Yin, Linzi; Dou, Beibei
2018-04-01
In view of photoacoustic spectroscopy theory, the relationship between weak photoacoustic signal and gas concentration is described. The studies, on the principle of Duffing oscillator for identifying state transition as well as determining the threshold value, have proven the feasibility of applying the Duffing oscillator in weak signal detection. An improved differential Duffing oscillator is proposed to identify weak signals with any frequency and ameliorate the signal-to-noise ratio. The analytical methods and numerical experiments of the novel model are introduced in detail to confirm its superiority. Then the signal detection system of weak photoacoustic based on differential Duffing oscillator is constructed, it is the first time that the weak signal detection method with differential Duffing oscillator is applied triumphantly in photoacoustic spectroscopy gas monitoring technology.
REGULATION OF GEOGRAPHIC VARIABILITY IN HAPLOID:DIPLOD RATIOS OF BIPHASIC SEAWEED LIFE CYCLES(1).
da Silva Vieira, Vasco Manuel Nobre de Carvalho; Santos, Rui Orlando Pimenta
2012-08-01
The relative abundance of haploid and diploid individuals (H:D) in isomorphic marine algal biphasic cycles varies spatially, but only if vital rates of haploid and diploid phases vary differently with environmental conditions (i.e. conditional differentiation between phases). Vital rates of isomorphic phases in particular environments may be determined by subtle morphological or physiological differences. Herein, we test numerically how geographic variability in H:D is regulated by conditional differentiation between isomorphic life phases and the type of life strategy of populations (i.e. life cycles dominated by reproduction, survival or growth). Simulation conditions were selected using available data on H:D spatial variability in seaweeds. Conditional differentiation between ploidy phases had a small effect on the H:D variability for species with life strategies that invest either in fertility or in growth. Conversely, species with life strategies that invest mainly in survival, exhibited high variability in H:D through a conditional differentiation in stasis (the probability of staying in the same size class), breakage (the probability of changing to a smaller size class) or growth (the probability of changing to a bigger size class). These results were consistent with observed geographic variability in H:D of natural marine algae populations. © 2012 Phycological Society of America.
Frank, R; Schulze, L; Hellweg, R; Koehne, S; Roepke, S
2018-05-01
Although deficits in the recognition of emotional facial expressions are considered a hallmark of autism spectrum disorder (ASD), characterization of abnormalities in the differentiation of emotional expressions (e.g., sad vs. angry) has been rather inconsistent, especially in adults without intellectual impairments who may compensate for their deficits. In addition, previous research neglected the ability to detect emotional expressions (e.g., angry vs. neutral). The present study used a backward masking paradigm to investigate, a) the detection of emotional expressions, and b) the differentiation of emotional expressions in adults diagnosed with high functioning autism or Asperger syndrome (n = 23) compared to neurotypical controls (n = 25). Compensatory strategies were prevented by shortening the stimulus presentation time (33, 67, and 100 ms). In general, participants with ASD were significantly less accurate in detecting and differentiating emotional expressions compared to the control group. In the emotion differentiation task, individuals with ASD profited significantly less from an increase in presentation time. These results reinforce theoretical models that individuals with ASD have deficits in emotion recognition under time constraints. Furthermore, first evidence was provided that emotion detection and emotion differentiation are impaired in ASD. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hofemeier, Arne D; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F W; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara
2016-05-26
Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO4(3-) symmetric stretch vibrations at 959 cm(-1) assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue-implant-interfaces or disease diagnosis.
NASA Astrophysics Data System (ADS)
Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara
2016-05-01
Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43- symmetric stretch vibrations at 959 cm-1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue-implant-interfaces or disease diagnosis.
Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara
2016-01-01
Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43− symmetric stretch vibrations at 959 cm−1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue–implant-interfaces or disease diagnosis. PMID:27225821
Verkoczy, L K; Berinstein, N L
1998-10-01
Differential display PCR (DD RT-PCR) has been extensively used for analysis of differential gene expression, but continues to be hampered by technical limitations that impair its effectiveness. In order to isolate novel genes co-expressing with human RAG1, we have developed an effective, multi-tiered screening/purification approach which effectively complements the standard DD RT-PCR methodology. In 'primary' screens, standard DD RT-PCR was used, detecting 22 reproducible differentially expressed amplicons between clonally related cell variants with differential constitutive expression of RAG mRNAs. 'Secondary' screens used differential display (DD) amplicons as probes in low and high stringency northern blotting. Eight of 22 independent DD amplicons detected nine independent differentially expressed transcripts. 'Tertiary' screens used reconfirmed amplicons as probes in northern analysis of multiple RAG-and RAG+sources. Reconfirmed DD amplicons detected six independent RAG co-expressing transcripts. All DD amplicons reconfirmed by northern blot were a heterogeneous mixture of cDNAs, necessitating further purification to isolate single cDNAs prior to subcloning and sequencing. To effectively select the appropriate cDNAs from DD amplicons, we excised and eluted the cDNA(s) directly from regions of prior northern blots in which differentially expressed transcripts were detected. Sequences of six purified cDNA clones specifically detecting RAG co-expressing transcripts included matches to portions of the human RAG2 and BSAP regions and to four novel partial cDNAs (three with homologies to human ESTs). Overall, our results also suggest that even when using clonally related variants from the same cell line in addition to all appropriate internal controls previously reported, further screening and purification steps are still required in order to efficiently and specifically isolate differentially expressed genes by DD RT-PCR.
Fazii, P; Ciancaglini, E; Riario Sforza, G
2002-05-01
The aim of this study was to evaluate a differential staining method to distinguish gram-positive from gram-negative bacteria in fluorescence. The method is based on two fluorochromes, one acting in the wavelength of red, i.e. the acridine orange, and another acting in the wavelength of green, i.e. the fluorescein. With this method, gram-positive bacteria appear yellow and gram-negative bacteria appear green. In view of the importance of a rapid aetiological diagnosis in cases of septicaemia, the differential staining method in fluorescence was compared with Gram stain for the detection of bacteria in blood. Of 5,820 blood cultures entered into the study and identified by the Bactec 9120 fluorescent series instrument (Becton Dickinson Europe, France), 774 were positive. Of the 774 positive cultures, 689 yielded only a single organism. The differential staining method in fluorescence detected 626 of the 689 cultures, while Gram stain detected 468. On the basis of these results, the sensitivity of the differential staining method in fluorescence was 90.9%, while that of Gram stain was 67.9%. The difference between the two methods was statistically significant ( P<0.001). The differential fluorescent staining method was more sensitive than Gram stain in the detection of bacteria in blood cultures during the incubation period. This technique provides a rapid, simple and highly sensitive staining method that can be used in conjunction with subculture methods. Whereas subculture requires an incubation period of 18-24 h, the fluorescent staining technique can detect bacteria on the same day that smears are prepared and examined. The differential fluorescent staining method was also evaluated for its ability to detect microorganisms in cerebrospinal fluid and other clinical specimens. The microorganisms were easily detected, even when bacterial counts in the specimens were low.
Effects of loss on the phase sensitivity with parity detection in an SU(1,1) interferometer
NASA Astrophysics Data System (ADS)
Li, Dong; Yuan, Chun-Hua; Yao, Yao; Jiang, Wei; Li, Mo; Zhang, Weiping
2018-05-01
We theoretically study the effects of loss on the phase sensitivity of an SU(1,1) interferometer with parity detection with various input states. We show that although the sensitivity of phase estimation decreases in the presence of loss, it can still beat the shot-noise limit with small loss. To examine the performance of parity detection, the comparison is performed among homodyne detection, intensity detection, and parity detection. Compared with homodyne detection and intensity detection, parity detection has a slight better optimal phase sensitivity in the absence of loss, but has a worse optimal phase sensitivity with a significant amount of loss with one-coherent state or coherent $\\otimes$ squeezed state input.
Hawramy, Tahir Abdullah Hussein; Saeed, Kamal Ahmed; Qaradaghy, Seerwan Hama Sharif; Karboli, Taha Ahmed; Nore, Beston Faiek; Bayati, Noora Hisham Abood
2012-12-21
Fascioliasis is an often-neglected zoonotic disease and currently is an emerging infection in Iraq. Fascioliasis has two distinct phases, an acute phase, exhibiting the hepatic migratory stage of the fluke's life cycle, and a chronic biliary phase manifested with the presence of the parasite in the bile ducts through hepatic tissue. The incidence of Fascioliasis in Sulaimaniyah governorate was unexpected observation. We believe that shedding light on this disease in our locality will increase our physician awareness and experience in early detection, treatment in order to avoid unnecessary surgeries. We retrospectively evaluated this disease in terms of the demographic features, clinical presentations, and managements by reviewing the medical records of 18 patients, who were admitted to the Sulaimani Teaching Hospital and Kurdistan Centre for Gastroenterology and Hepatology. Patients were complained from hepatobiliary and/or upper gastrointestinal symptoms and diagnosed accidentally with Fascioliasis during hepatobiliary surgeries and ERCP by direct visualization of the flukes and stone analysis. Elevated liver enzymes, white blood cells count and eosinophilia were notable laboratory indices. The dilated CBD, gallstones, liver cysts and abscess were found common in radiological images. Fascioliasis diagnosed during conventional surgical CBD exploration and choledochodoudenostomy, open cholecystectomy, surgical drainage of liver abscess, ERCP and during gallstone analysis. Fascioliasis is indeed an emerging disease in our locality, but it is often underestimated and ignored. We recommend the differential diagnosis of patients suffering from Rt. Hypochondrial pain, fever and eosinophilia. The watercress ingestion was a common factor in patient's history.
Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells.
Tan, Chris Soon Heng; Go, Ka Diam; Bisteau, Xavier; Dai, Lingyun; Yong, Chern Han; Prabhu, Nayana; Ozturk, Mert Burak; Lim, Yan Ting; Sreekumar, Lekshmy; Lengqvist, Johan; Tergaonkar, Vinay; Kaldis, Philipp; Sobota, Radoslaw M; Nordlund, Pär
2018-03-09
Proteins differentially interact with each other across cellular states and conditions, but an efficient proteome-wide strategy to monitor them is lacking. We report the application of thermal proximity coaggregation (TPCA) for high-throughput intracellular monitoring of protein complex dynamics. Significant TPCA signatures observed among well-validated protein-protein interactions correlate positively with interaction stoichiometry and are statistically observable in more than 350 annotated human protein complexes. Using TPCA, we identified many complexes without detectable differential protein expression, including chromatin-associated complexes, modulated in S phase of the cell cycle. Comparison of six cell lines by TPCA revealed cell-specific interactions even in fundamental cellular processes. TPCA constitutes an approach for system-wide studies of protein complexes in nonengineered cells and tissues and might be used to identify protein complexes that are modulated in diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Experimental demonstration of tri-aperture Differential Synthetic Aperture Ladar
NASA Astrophysics Data System (ADS)
Zhao, Zhilong; Huang, Jianyu; Wu, Shudong; Wang, Kunpeng; Bai, Tao; Dai, Ze; Kong, Xinyi; Wu, Jin
2017-04-01
A tri-aperture Differential Synthetic Aperture Ladar (DSAL) is demonstrated in laboratory, which is configured by using one common aperture to transmit the illuminating laser and another two along-track receiving apertures to collect back-scattered laser signal for optical heterodyne detection. The image formation theory on this tri-aperture DSAL shows that there are two possible methods to reconstruct the azimuth Phase History Data (PHD) for aperture synthesis by following standard DSAL principle, either method resulting in a different matched filter as well as an azimuth image resolution. The experimental setup of the tri-aperture DSAL adopts a frequency chirped laser of about 40 mW in 1550 nm wavelength range as the illuminating source and an optical isolator composed of a polarizing beam-splitter and a quarter wave plate to virtually line the three apertures in the along-track direction. Various DSAL images up to target distance of 12.9 m are demonstrated using both PHD reconstructing methods.
A low noise interface circuit design of micro-machined gyroscope
NASA Astrophysics Data System (ADS)
Fu, Qiang; Di, Xipeng; Yin, Liang; Liu, Xiaowei
2017-07-01
The analyses of MEMS gyroscope interface circuit on thermal noise, 1/f noise and phase noise are made in this paper. A closed-loop differential driving circuit and a low-noise differential detecting circuit based on the high frequency modulation are designed to limit the noise. The interface chip is implemented in a standard 0.5 μm CMOS process. The test results show that the resolution of sensitive capacity can reach to 6.47 × 10-20 F at the bandwidth of 60 Hz. The measuring range is ± 200°/s and the nonlinearity is 310 ppm. The output noise density is 5.8^\\circ/({{h}}\\cdot \\sqrt{{Hz}}). The angular random walk (allen-variance) is 0.092^\\circ/\\sqrt{{{h}}} and the bias instability is 2.63°/h. Project supported by the National Natural Science Foundation of China (No. 61204121), the National Hi-Tech Research and Development Program of China (No. 2013AA041107), and the Fundamental Research Funds for the Central Universities (No. HIT.NSRIF.2013040).
Wang, Li; Zou, Zhi-Qiang; Wang, Kai; Yu, Ji-Guang; Liu, Xiang-Zhong
2016-01-01
The purpose of this study was to characterize roles of serum hepatitis B virus marker quantitation in differentiation of natural phases of HBV infection. A total of 184 chronic hepatitis B (CHB) patients were analyzed retrospectively. Patients were classified into four categories: immune tolerant phase (IT, n = 36), immune clearance phase (IC, n = 81), low-replicative phase (LR, n = 31), and HBeAg-negative hepatitis phase (ENH, n = 36), based on clinical, biochemical, serological, HBV DNA level and histological data. Hepatitis B surface antigen (HBsAg) quantitation in four phases were 4.7 ± 0.2, 3.8 ± 0.5, 2.5 ± 1.2 and 3.4 ± 0.4 log10 IU/mL, respectively. There were significant differences between IT and IC (p < 0.001) and between LR and ENH phases (p < 0.001). Quantitation of hepatitis B e antigen (HBeAg) in IT and IC phases are 1317.9 ± 332.9 and 673.4 ± 562.1 S/CO, respectively (p < 0.001). Hepatitis B core antibody (HBcAb) quantitation in the four groups were 9.48 ± 3.3, 11.7 ± 2.8, 11.2 ± 2.6 and 13.2 ± 2.9 S/CO, respectively. Area under receiver operating characteristic curve (AUCs) of HBsAg and HBeAg at cutoff values of 4.41 log10 IU/mL and 1118.96 S/CO for differentiation of IT and IC phases are 0.984 and 0.828, with sensitivity 94.4 and 85.2 %, specificity 98.7 and 75 %, respectively. AUCs of HBsAg and HBcAb at cutoff values of 3.4 log10 IU/mL and 10.5 S/CO for differentiation of LR and ENT phases are 0.796 and 0.705, with sensitivity 58.1 and 85.7 %, and specificity 94.4 and 46.2 %, respectively. HBsAg quantitation has high predictive value and HBeAg quantitation has moderate predictive value for discriminating IT and IC phase. HBsAg and HBcAb quantitations have moderate predictive values for differentiation of LR and ENH phase.
Interference Confocal Microscope Integrated with Spatial Phase Shifter.
Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian
2016-08-24
We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.
Wang, Ruolin; Liu, Wenhua; Du, Mi; Yang, Chengzhe; Li, Xuefen; Yang, Pishan
2018-03-01
In situ tissue engineering has become a novel strategy to repair periodontal/bone tissue defects. The choice of cytokines that promote the recruitment and proliferation, and potentiate and maintain the osteogenic differentiation ability of mesenchymal stem cells (MSCs) is the key point in this technique. Stromal cell‑derived factor‑1 (SDF‑1) and basic fibroblast growth factor (bFGF) have the ability to promote the recruitment, and proliferation of MSCs; however, the differential effect of SDF‑1 and bFGF pretreatment on MSC osteogenic differentiation potency remains to be explored. The present study comparatively observed osteogenic differentiation of bone morrow MSCs (BMMSCs) pretreated by bFGF or SDF‑1 in vitro. The gene and protein expression levels of alkaline phosphatase (ALP), runt related transcription factor 2 (Runx‑2) and bone sialoprotein (BSP) were detected using reverse transcription‑quantitative polymerase chain reaction and western blotting. The results showed that the expression of ALP mRNA on day 3, and BSP and Runx‑2 mRNA on day 7 in the bFGF pretreatment group was significantly higher than those in SDF‑1 pretreatment group. Expression levels of Runx‑2 mRNA, and ALP and Runx‑2 protein on day 3 in the SDF‑1 pretreatment group were higher than those in the bFGF pretreatment group. However, there was no significant difference in osteogenic differentiation ability on day 14 and 28 between the bFGF‑ or SDF‑1‑pretreatment groups and the control. In conclusion, bFGF and SDF‑1 pretreatment inhibits osteogenic differentiation of BMMSCs at the early stage, promotes it in the medium phase, and maintains it in the later stage during osteogenic induction, particularly at the mRNA level. Out of the two cytokines, bFGF appeared to have a greater effect on osteogenic differentiation.
Guarnieri, S; Pilla, R; Morabito, C; Sacchetti, S; Mancinelli, R; Fanò, G; Mariggiò, M A
2009-04-01
SH-SY5Y neuroblastoma cells, a model for studying neuronal differentiation, are able to differentiate into either cholinergic or dopaminergic/adrenergic phenotypes depending on media conditions. Using this system, we asked whether guanosine (Guo) or guanosine-5'-triphosphate (GTP) are able to drive differentiation towards one particular phenotype. Differentiation was determined by evaluating the frequency of cells bearing neurites and assessing neurite length after exposure to different concentrations of Guo or GTP for different durations. After 6 days, 0.3 mM Guo or GTP induced a significant increase in the number of cells bearing neurites and increased neurite length. Western blot analyses confirmed that purines induced differentiation; cells exposed to purines showed increases in the levels of GAP43, MAP2, and tyrosine hydroxylase. Proliferation assays and cytofluorimetric analyses indicated a significant anti-proliferative effect of purines, and a concentration-dependent accumulation of cells in S-phase, starting after 24 h of purine exposure and extending for up to 6 days. A transcriptional profile analysis using gene arrays showed that an up-regulation of cyclin E2/cdk2 evident after 24 h was responsible for S-phase entry, and a concurrent down-regulation of cell-cycle progression-promoting cyclin B1/B2 prevented S-phase exit. In addition, patch-clamp recordings revealed that 0.3 mM Guo or GTP, after 6 day incubation, significantly decreased Na(+) currents. In conclusion, we showed Guo- and GTP-induced cell-cycle arrest in neuroblastoma cells and suggest that this makes these cells more responsive to differentiation processes that favor the dopaminergic/adrenergic phenotype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez-Fuentes, Nayeli; Rodríguez-Hernández, Ana G.; Enríquez-Jiménez, Juana
Highlights: •Nukbone showed to be a good scaffold for adhesion, proliferation and differentiation of stem cells. •Nukbone induced osteoblastic differentiation of human mesenchymal stem cells. •Results showed that Nukbone offer an excellent option for bone tissue regeneration due to properties. -- Abstract: Bovine bone matrix Nukbone® (NKB) is an osseous tissue-engineering biomaterial that retains its mineral and organic phases and its natural bone topography and has been used as a xenoimplant for bone regeneration in clinics. There are not studies regarding its influence of the NKB in the behavior of cells during the repairing processes. The aim of this researchmore » is to demonstrate that NKB has an osteoinductive effect in human mesenchymal stem cells from amniotic membrane (AM-hMSCs). Results indicated that NKB favors the AM-hMSCs adhesion and proliferation up to 7 days in culture as shown by the scanning electron microscopy and proliferation measures using an alamarBlue assay. Furthermore, as demonstrated by reverse transcriptase polymerase chain reaction, it was detected that two gene expression markers of osteoblastic differentiation: the core binding factor and osteocalcin were higher for AM-hMSCs co-cultured with NKB in comparison with cultivated cells in absence of the biomaterial. As the results indicate, NKB possess the capability for inducing successfully the osteoblastic differentiation of AM-hMSC, so that, NKB is an excellent xenoimplant option for repairing bone tissue defects.« less
β-Catenin Dosage Is a Critical Determinant of Tracheal Basal Cell Fate Determination
Brechbuhl, Heather M.; Ghosh, Moumita; Smith, Mary Kathryn; Smith, Russell W.; Li, Bilan; Hicks, Douglas A.; Cole, Brook B.; Reynolds, Paul R.; Reynolds, Susan D.
2011-01-01
The purpose of this study was to determine whether β-catenin regulates basal cell fate determination in the mouse trachea. Analysis of TOPGal transgene reporter activity and Wnt/β-catenin pathway gene expression suggested a role for β-catenin in basal cell proliferation and differentiation after naphthalene-mediated Clara-like and ciliated cell depletion. However, these basal cell activities occurred simultaneously, limiting precise determination of the role(s) played by β-catenin. This issue was overcome by analysis of β-catenin signaling in tracheal air-liquid interface cultures. The cultures could be divided into two phases: basal cell proliferation and basal cell differentiation. A role for β-catenin in basal cell proliferation was indicated by activation of the TOPGal transgene on proliferation days 3 to 5 and by transient expression of Myc (alias c-myc). Another peak of TOPGal transgene activity was detected on differentiation days 2 to 10 and was associated with the expression of Axin 2. These results suggest a role for β-catenin in basal to ciliated and basal to Clara-like cell differentiation. Genetic stabilization of β-catenin in basal cells shortened the period of basal cell proliferation but had a minor effect on this process. Persistent β-catenin signaling regulated basal cell fate by driving the generation of ciliated cells and preventing the production of Clara-like cells. PMID:21703416
Optical signal monitoring in phase modulated optical fiber transmission systems
NASA Astrophysics Data System (ADS)
Zhao, Jian
Optical performance monitoring (OPM) is one of the essential functions for future high speed optical networks. Among the parameters to be monitored, chromatic dispersion (CD) is especially important since it has a significant impact on overall system performance. In this thesis effective CD monitoring approaches for phase-shift keying (PSK) based optical transmission systems are investigated. A number of monitoring schemes based on radio frequency (RF) spectrum analysis and delay-tap sampling are proposed and their performance evaluated. A method for dispersion monitoring of differential phase-shift keying (DPSK) signals based on RF power detection is studied. The RF power spectrum is found to increase with the increase of CD and decrease with polarization mode dispersion (PMD). The spectral power density dependence on CD is studied theoretically and then verified through simulations and experiments. The monitoring sensitivity for nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) and return-to-zero differential phase-shift keying (RZ-DPSK) based systems can reach 80ps/nm/dB and 34ps/nm/dB respectively. The scheme enables the monitoring of differential group delay (DGD) and CD simultaneously. The monitoring sensitivity of CD and DGD can reach 56.7ps/nm/dB and 3.1ps/dB using a bandpass filter. The effects of optical signal-to-noise ratio (OSNR), DGD, fiber nonlinearity and chirp on the monitoring results are investigated. Two RF pilot tones are employed for CD monitoring of DPSK signals. Specially selected pilot tone frequencies enable good monitoring sensitivity with minimum influence on the received signals. The dynamic range exceeding 35dB and monitoring sensitivity up to 9.5ps/nm/dB are achieved. Asynchronous sampling technique is employed for CD monitoring. A signed CD monitoring method for 10Gb/s NRZ-DPSK and RZ-DPSK systems using asynchronous delay-tap sampling technique is studied. The demodulated signals suffer asymmetric waveform distortion if there is a phase error (Deltaphi) in the delay interferometer (DI) and in the presence of residual CD. Using delay-tap sampling the scatter plots can reflect this signal distortion through their asymmetric characteristics. A distance ratio (DR) is defined to represent the change of the scatter plots which is directly related to the accumulated CD. The monitoring range can be up to +/-400ps/nm and to +/-720ps/nm for 10Gb/s NRZ-DPSK and RZ-DPSK signals with 450 phase error in DI. The monitoring sensitivity reaches +/-8ps/nm and CD polarity discrimination is realized. It is found that the signal degradation is related to the increment of the absolute value of CD or phase mismatch. The effect of different polarities of phase error on CD monitoring is also analyzed. The shoulders location depends on the sign of the product DLDeltaphi. If DLDeltaphi > 0, the shoulder will appear on trailing edge else the shoulder will appear on leading edge when DLDeltaphi < 0. The analysis shows that the phase error is identical to the frequency offset of optical source so a signed frequency offset monitoring is also demonstrated. The monitoring results show that the monitoring range can reach +/-2.2GHz and the monitoring sensitivity is around 27MHz. The effect of nonlinearity, OSNR and bandwidth of the lowpass filter on the proposed monitoring method has also been studied. The signed CD monitoring for 100Gb/s carrier suppressed return-to-zero differential quadrature phase-shift keying (CSRZ-DQPSK) system based on the delay-tap sampling technology is demonstrated. The monitoring range and monitoring resolution can goes up to +/-32ps/nm and +/-8ps/nm, respectively. A signed CD and optical carrier wavelength monitoring scheme using cross-correlation method for on-off keying (00K) wavelength division multiplexing (WDM) system is proposed and demonstrated. CD monitoring sensitivity is high and can be less than 10% of the bit period. Wavelength monitoring is implemented using the proposed approach. The monitoring results show that the sensitivity can reach up to 1.37ps/GHz.
On precise phase difference measurement approach using border stability of detection resolution.
Bai, Lina; Su, Xin; Zhou, Wei; Ou, Xiaojuan
2015-01-01
For the precise phase difference measurement, this paper develops an improved dual phase coincidence detection method. The measurement resolution of the digital phase coincidence detection circuits is always limited, for example, only at the nanosecond level. This paper reveals a new way to improve the phase difference measurement precision by using the border stability of the circuit detection fuzzy areas. When a common oscillator signal is used to detect the phase coincidence with the two comparison signals, there will be two detection fuzzy areas for the reason of finite detection resolution surrounding the strict phase coincidence. Border stability of fuzzy areas and the fluctuation difference of the two fuzzy areas can be even finer than the picoseconds level. It is shown that the system resolution obtained only depends on the stability of the circuit measurement resolution which is much better than the measurement device resolution itself.
Forzani, Erica S; Zhang, Haiqian; Chen, Wilfred; Tao, Nongjian
2005-03-01
We have built a high-resolution differential surface plasmon resonance (SPR) sensor for heavy metal ion detection. The sensor surface is divided into a reference and sensing areas, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. In the presence of metal ions, the differential signal changes due to specific binding of the metal ions onto the sensing area coated with properly selected peptides, which provides an accurate real-time measurement and quantification of the metal ions. Selective detection of Cu2+ and Ni2+ in the ppt-ppb range was achieved by coating the sensing surface with peptides NH2-Gly-Gly-His-COOH and NH2-(His)6-COOH. Cu2+ in drinking water was tested using this sensor.
Mercado, Karla P; Radhakrishnan, Kirthi; Stewart, Kyle; Snider, Lindsay; Ryan, Devin; Haworth, Kevin J
2016-05-01
Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeutic ultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions.
Mercado, Karla P.; Radhakrishnan, Kirthi; Stewart, Kyle; Snider, Lindsay; Ryan, Devin; Haworth, Kevin J.
2016-01-01
Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeutic ultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions. PMID:27250199
Kalra, Naveen; Duseja, Ajay; Das, Ashim; Dhiman, Radha Krishan; Virmani, Vivek; Chawla, Yogesh; Singh, Paramjee; Khandelwal, Niranjan
2009-01-01
Imaging modalities have a role in the diagnosis of patients with nonalcoholic fatty liver disease. Aim of the present study was to evaluate the role of chemical shift magnetic resonance imaging in assessing hepatic steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Chemical shift magnetic resonance imaging was done in 10 biopsy proven patients (7 females, mean age 41 +/- 9.2 years) with nonalcoholic fatty liver disease. Objective measurements of signal intensity (SI) were done and a ratio was calculated (SI out-of- phase liver/ SI out-of- phase kidney)/ (SI in- phase liver/ SI in-phase kidney). A lower ratio indicated a higher signal drop and hence higher fat content. The ratio was correlated with hepatic steatosis on histology (< 33% and > 33%). Patients were classified as having histological NASH or no NASH and MRI was assessed in diagnosing hepatic fibrosis as seen on liver histology. Six patients had > 33% hepatic steatosis on histology. Five patients (50%) had evidence of histological NASH. MRI was not helpful in differentiating patients with and without histological NASH. One patient amongst NASH patients did not have fibrosis, one had stage 1, 2 had stage 2 and one had stage 4 fibrosis. SI ratio ranged between 0.35-0.69 in 6 patients with steatosis > 33% and was in the range of 0.69-1.20 in four patients with steatosis < 33% on histology. Fibrotic changes seen in 4 patients on biopsy were not detected on MRI. Chemical shift MRI provides objective data on fat infiltration in patients with NAFLD without giving information about hepatic fibrosis.
Lippert, Julia F; Lacey, Steven E; Lopez, Ramon; Franke, John; Conroy, Lorraine; Breskey, John; Esmen, Nurtan; Liu, Li
2014-01-01
The U.S. Occupational Safety and Health Administration (OSHA) estimates that half a million health-care workers are exposed to laser surgical smoke each year. The purpose of this study was to establish a methodology to (1) estimate emission rates of laser-generated air contaminants (LGACs) using an emission chamber, and to (2) perform a screening study to differentiate the effects of three laser operational parameters. An emission chamber was designed, fabricated, and assessed for performance to estimate the emission rates of gases and particles associated with LGACs during a simulated surgical procedure. Two medical lasers (Holmium Yttrium Aluminum Garnet [Ho:YAG] and carbon dioxide [CO2]) were set to a range of plausible medical laser operational parameters in a simulated surgery to pyrolyze porcine skin generating plume in the emission chamber. Power, pulse repetition frequency (PRF), and beam diameter were evaluated to determine the effect of each operational parameter on emission rate using a fractional factorial design. The plume was sampled for particulate matter and seven gas phase combustion byproduct contaminants (benzene, ethylbenzene, toluene, formaldehyde, hydrogen cyanide, carbon dioxide, and carbon monoxide): the gas phase emission results are presented here. Most of the measured concentrations of gas phase contaminants were below their limit of detection (LOD), but detectable measurements enabled us to determine laser operation parameter influence on CO2 emissions. Confined to the experimental conditions of this screening study, results indicated that beam diameter was statistically significantly influential and power was marginally statistically significant to emission rates of CO2 when using the Ho:YAG laser but not with the carbon dioxide laser; PRF was not influential vis-a-vis emission rates of these gas phase contaminants.
Jensen, Jeanette H; Conley, Lene N; Hedegaard, Jakob; Nielsen, Mathilde; Young, Jette F; Oksbjerg, Niels; Hornshøj, Henrik; Bendixen, Christian; Thomsen, Bo
2012-07-01
Acute physical activity elicits changes in gene expression in skeletal muscles to promote metabolic changes and to repair exercise-induced muscle injuries. In the present time-course study, pigs were submitted to an acute bout of treadmill running until near exhaustion to determine the impact of unaccustomed exercise on global transcriptional profiles in porcine skeletal muscles. Using a combined microarray and candidate gene approach, we identified a suite of genes that are differentially expressed in muscles during postexercise recovery. Several members of the heat shock protein family and proteins associated with proteolytic events, such as the muscle-specific E3 ubiquitin ligase atrogin-1, were significantly upregulated, suggesting that protein breakdown, prevention of protein aggregation and stabilization of unfolded proteins are important processes for restoration of cellular homeostasis. We also detected an upregulation of genes that are associated with muscle cell proliferation and differentiation, including MUSTN1, ASB5 and CSRP3, possibly reflecting activation, differentiation and fusion of satellite cells to facilitate repair of muscle damage. In addition, exercise increased expression of the orphan nuclear hormone receptor NR4A3, which regulates metabolic functions associated with lipid, carbohydrate and energy homeostasis. Finally, we observed an unanticipated induction of the long non-coding RNA transcript NEAT1, which has been implicated in RNA processing and nuclear retention of adenosine-to-inosine edited mRNAs in the ribonucleoprotein bodies called paraspeckles. These findings expand the complexity of pathways affected by acute contractile activity of skeletal muscle, contributing to a better understanding of the molecular processes that occur in muscle tissue in the recovery phase.
Decisions that Make a Difference in Detecting Differential Item Functioning
ERIC Educational Resources Information Center
Sireci, Stephen G.; Rios, Joseph A.
2013-01-01
There are numerous statistical procedures for detecting items that function differently across subgroups of examinees that take a test or survey. However, in endeavouring to detect items that may function differentially, selection of the statistical method is only one of many important decisions. In this article, we discuss the important decisions…
ERIC Educational Resources Information Center
French, Brian F.; Maller, Susan J.
2007-01-01
Two unresolved implementation issues with logistic regression (LR) for differential item functioning (DIF) detection include ability purification and effect size use. Purification is suggested to control inaccuracies in DIF detection as a result of DIF items in the ability estimate. Additionally, effect size use may be beneficial in controlling…
Tissues viability and blood flow sensing based on a new nanophotonics method
NASA Astrophysics Data System (ADS)
Yariv, Inbar; Haddad, Menashe; Duadi, Hamootal; Motiei, Menachem; Fixler, Dror
2018-02-01
Extracting optical parameters of turbid medium (e.g. tissue) by light reflectance signals is of great interest and has many applications in the medical world, life science, material analysis and biomedical optics. The reemitted light from an irradiated tissue is affected by the light's interaction with the tissue components and contains the information about the tissue structure and physiological state. In this research we present a novel noninvasive nanophotonics technique, i.e., iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements. The reflectance based IMOPE was applied for tissue viability examination, detection of gold nanorods (GNRs) within the blood circulation as well as blood flow detection using the GNRs presence within the blood vessels. The basics of the IMOPE combine a simple experimental setup for recording light intensity images with an iterative Gerchberg-Saxton (G-S) algorithm for reconstructing the reflected light phase and computing its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. This work presents reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg).
Development of a Photon Counting System for Differential Lidar Signal Detection
NASA Technical Reports Server (NTRS)
Elsayed-Ali, Hani
1997-01-01
Photon counting has been chosen as a means to extend the detection range of current airborne DIAL ozone measurements. Lidar backscattered return signals from the on and off-line lasers experience a significant exponential decay. To extract further data from the decaying ozone return signals, photon counting will be used to measure the low light levels, thus extending the detection range. In this application, photon counting will extend signal measurement where the analog return signal is too weak. The current analog measurement range is limited to approximately 25 kilometers from an aircraft flying at 12 kilometers. Photon counting will be able to exceed the current measurement range so as to follow the mid-latitude model of ozone density as a function of height. This report describes the development of a photon counting system. The initial development phase begins with detailed evaluation of individual photomultiplier tubes. The PMT qualities investigated are noise count rates, single electron response peaks, voltage versus gain values, saturation effects, and output signal linearity. These evaluations are followed by analysis of two distinctive tube base gating schemes. The next phase is to construct and operate a photon counting system in a laboratory environment. The laboratory counting simulations are used to determine optimum discriminator setpoints and to continue further evaluations of PMT properties. The final step in the photon counting system evaluation process is the compiling of photon counting measurements on the existing ozone DIAL laser system.
Gatti, Davide; Galzerano, Gianluca; Laporta, Paolo; Longhi, Stefano; Janner, Davide; Guglierame, Andrea; Belmonte, Michele
2008-07-01
Optimal demodulation of differential phase-shift keying signals at 10 Gbit/s is experimentally demonstrated using a specially designed structured fiber Bragg grating composed by Fabry-Perot coupled cavities. Bit-error-rate measurements show that, as compared with a conventional Gaussian-shaped filter, our demodulator gives approximately 2.8 dB performance improvement.
Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S
2011-07-15
Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Jerzykiewicz, M.; Sterken, C.; Kubiak, M.
1988-03-01
Differential uvby observations of the well-known β Cephei star δ Cet, obtained on seven nights in 1981 and on one night in 1982, are presented and analysed. Contrary to a recent report, no variation in the shape of the light curves is found. However, a marginal night-to-night variation of the 1981 amplitudes is noted. It is then demonstrated that the amplitude variation was caused either by a secondary short-period component with an amplitude not exceeding 0m.0016, or by slow drifts in the differential magnitudes. In addition, it is shown that all available epochs of maximum light, except three unreliable ones, can be accounted for by a parabolic ephemeris which implies an increase of the period at a rate of 0.47 ± 0.09 sec/century. However, it is also shown that the epochs of maximum light from 1963 onwards can be satisfactorily represented with a constant period, equal to 0d.16113762 ± 0d.00000002. The available epochs of maximum radial-velocity are then examined. No compelling evidence for a variation of the phase lag between the light and radial-velocity curves is found. From modern radial-velocity data, a phase lag equal to 0.200 ± 0.005 is derived. Finally, it is shown that the available photometric observations are still not sufficient to detect a secular light amplitude change.
MOLECULAR CLASSIFICATION OF OUTCOMES FROM DENGUE VIRUS -3 INFECTIONS
Brasier, Allan R.; Zhao, Yingxin; Wiktorowicz, John E.; Spratt, Heidi M.; Nascimento, Eduardo J. M.; Cordeiro, Marli T.; Soman, Kizhake V.; Ju, Hyunsu; Recinos, Adrian; Stafford, Susan; Wu, Zheng; Marques, Ernesto T.A.; Vasilakis, Nikos
2015-01-01
Objectives Dengue virus (DENV) infection is a significant risk to over a third of the human population that causes a wide spectrum of illness, ranging from sub-clinical disease to intermediate syndrome of vascular complications called Dengue Fever Complicated (DFC) and severe, dengue hemorrhagic fever (DHF). Methods for discriminating outcomes will impact clinical trials and understanding disease pathophysiology. Study Design We integrated a proteomics discovery pipeline with a heuristics to develop a molecular classifier to identify an intermediate phenotype of DENV-3 infectious outcome. Results 121 differentially expressed proteins were identified in plasma from DHF vs dengue fever (DF), and informative candidates were selected using nonparametric statistics. These were combined with markers that measure complement activation, acute phase response, cellular leak, granulocyte differentiation and viral load. From this, we applied quantitative proteomics to select a 15 member panel of proteins that accurately predicted DF, DHF, and DFC using a Random Forest Classifier. The classifier primarily relied on acute phase (A2M), complement (CFD), platelet counts and cellular leak (TPM4) to produce an 86% accuracy of prediction with an area under the receiver operating curve of >0.9 for DHF and DFC vs DF. Conclusions Integrating discovery and heuristic approaches to sample distinct pathophysiological processes is a powerful approach in infectious disease. Early detection of intermediate outcomes of DENV-3 will speed clinical trials evaluating vaccines or drug interventions. PMID:25728087
Molecular classification of outcomes from dengue virus -3 infections.
Brasier, Allan R; Zhao, Yingxin; Wiktorowicz, John E; Spratt, Heidi M; Nascimento, Eduardo J M; Cordeiro, Marli T; Soman, Kizhake V; Ju, Hyunsu; Recinos, Adrian; Stafford, Susan; Wu, Zheng; Marques, Ernesto T A; Vasilakis, Nikos
2015-03-01
Dengue virus (DENV) infection is a significant risk to over a third of the human population that causes a wide spectrum of illness, ranging from sub-clinical disease to intermediate syndrome of vascular complications called dengue fever complicated (DFC) and severe, dengue hemorrhagic fever (DHF). Methods for discriminating outcomes will impact clinical trials and understanding disease pathophysiology. We integrated a proteomics discovery pipeline with a heuristics approach to develop a molecular classifier to identify an intermediate phenotype of DENV-3 infectious outcome. 121 differentially expressed proteins were identified in plasma from DHF vs dengue fever (DF), and informative candidates were selected using nonparametric statistics. These were combined with markers that measure complement activation, acute phase response, cellular leak, granulocyte differentiation and viral load. From this, we applied quantitative proteomics to select a 15 member panel of proteins that accurately predicted DF, DHF, and DFC using a random forest classifier. The classifier primarily relied on acute phase (A2M), complement (CFD), platelet counts and cellular leak (TPM4) to produce an 86% accuracy of prediction with an area under the receiver operating curve of >0.9 for DHF and DFC vs DF. Integrating discovery and heuristic approaches to sample distinct pathophysiological processes is a powerful approach in infectious disease. Early detection of intermediate outcomes of DENV-3 will speed clinical trials evaluating vaccines or drug interventions. Copyright © 2015 Elsevier B.V. All rights reserved.
Goren, A; Naccarato, T; Situm, M; Kovacevic, M; Lotti, T; McCoy, J
2017-01-01
Topical minoxidil is the only topical drug approved by the US Food and Drug Administration (FDA) for the treatment of androgenetic alopecia. However, the exact mechanism by which minoxidil stimulates anagen phase and promotes hair growth is not fully understood. In the late telegen phase of the hair follicle growth cycle, stem cells located in the bulge region differentiate and re-enter anagen phase, a period of growth lasting 2-6 years. In androgenetic alopecia, the anagen phase is shortened and a progressive miniaturization of hair follicles occurs, eventually leading to hair loss. Several studies have demonstrated that minoxidil increases the amount of intracellular Ca2+, which has been shown to up-regulate the enzyme adenosine triphosphate (ATP) synthase. A recent study demonstrated that ATP synthase, independent of its role in ATP synthesis, promotes stem cell differentiation. As such, we propose that minoxidil induced Ca2+ influx can increase stem cell differentiation and may be a key factor in the mechanism by which minoxidil facilitates hair growth. Based on our theory, we provide a roadmap for the development of a new class of drugs for the treatment of androgenetic alopecia.
Ölçer, İbrahim; Öncü, Ahmet
2017-06-05
Distributed vibration sensing based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ -OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ -OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems.
Ölçer, İbrahim; Öncü, Ahmet
2017-01-01
Distributed vibration sensing based on phase-sensitive optical time domain reflectometry (ϕ-OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ-OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ-OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems. PMID:28587240
Monitoring/Verification Using DMS: TATP Example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Kyle; Stephan Weeks
Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operationsmanagement systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biologicalmore » materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. GC is the leading analytical method for the separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.« less
[Detection of oil spills on water by differential polarization FTIR spectrometry].
Yuan, Yue-ming; Xiong, Wei; Fang, Yong-hua; Lan, Tian-ge; Li, Da-cheng
2010-08-01
Detection of oil spills on water, by traditional thermal remote sensing, is based on the radiance contrast between the large area of clean water and the polluted area of water. And the categories of oil spills can not be identified by analysing the thermal infrared image. In order to find out the extent of pollution and identify the oil contaminants, an approach to the passive detection of oil spills on water by differential polarization FTIR spectrometry is proposed. This approach can detect the contaminants by obtaining and analysing the subtracted spectrum of horizontal and vertical polarization intensity spectrum. In the present article, the radiance model of differential polarization FTIR spectrometry is analysed, and an experiment about detection of No. O diesel and SF96 film on water by this method is presented. The results of this experiment indicate that this method can detect the oil contaminants on water without radiance contrast with clean water, and it also can identify oil spills by analysing the spectral characteristic of differential polarization FTIR spectrum. So it well makes up for the shortage of traditional thermal remote sensing on detecting oil spills on water.
A Motion Detection Algorithm Using Local Phase Information
Lazar, Aurel A.; Ukani, Nikul H.; Zhou, Yiyin
2016-01-01
Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation achieved with a widely used optic flow algorithm. PMID:26880882
Differential pressure sensing system for airfoils usable in turbine engines
Yang, Wen-Ching; Stampahar, Maria E.
2005-09-13
A detection system for identifying airfoils having a cooling systems with orifices that are plugged with contaminants or with showerheads having a portion burned off. The detection system measures pressures at different locations and calculates or measures a differential pressure. The differential pressure may be compared with a known benchmark value to determine whether the differential pressure has changed. Changes in the differential pressure may indicate that one or more of the orifices in a cooling system of an airfoil are plugged or that portions of, or all of, a showerhead has burned off.
Differential Optical Synthetic Aperture Radar
Stappaerts, Eddy A.
2005-04-12
A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.
Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis
Yüksel, Melih; Power, Jeffrey J.; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike
2016-01-01
In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off. PMID:27375604
Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis.
Yüksel, Melih; Power, Jeffrey J; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike
2016-01-01
In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off.
Hemmingsen, Mette; Vedel, Søren; Skafte-Pedersen, Peder; Sabourin, David; Collas, Philippe; Bruus, Henrik; Dufva, Martin
2013-01-01
Introduction High cell density is known to enhance adipogenic differentiation of mesenchymal stem cells, suggesting secretion of signaling factors or cell-contact-mediated signaling. By employing microfluidic biochip technology, we have been able to separate these two processes and study the secretion pathways. Methods and results Adipogenic differentiation of human adipose-derived stem cells (ASCs) cultured in a microfluidic system was investigated under perfusion conditions with an adipogenic medium or an adipogenic medium supplemented with supernatant from differentiating ASCs (conditioned medium). Conditioned medium increased adipogenic differentiation compared to adipogenic medium with respect to accumulation of lipid-filled vacuoles and gene expression of key adipogenic markers (C/EBPα, C/EBPβ, C/EBPδ, PPARγ, LPL and adiponectin). The positive effects of conditioned medium were observed early in the differentiation process. Conclusions Using different cell densities and microfluidic perfusion cell cultures to suppress the effects of cell-released factors, we have demonstrated the significant role played by auto- or paracrine signaling in adipocyte differentiation. The cell-released factor(s) were shown to act in the recruitment phase of the differentiation process. PMID:23723991
Coherent detection and digital signal processing for fiber optic communications
NASA Astrophysics Data System (ADS)
Ip, Ezra
The drive towards higher spectral efficiency in optical fiber systems has generated renewed interest in coherent detection. We review different detection methods, including noncoherent, differentially coherent, and coherent detection, as well as hybrid detection methods. We compare the modulation methods that are enabled and their respective performances in a linear regime. An important system parameter is the number of degrees of freedom (DOF) utilized in transmission. Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency as it uses all four available DOF contained in the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Software based receivers benefit from the robustness of DSP, flexibility in design, and ease of adaptation to time-varying channels. Linear impairments, including chromatic dispersion (CD) and polarization-mode dispersion (PMD), can be compensated quasi-exactly using finite impulse response filters. In practical systems, sampling the received signal at 3/2 times the symbol rate is sufficient to enable an arbitrary amount of CD and PMD to be compensated for a sufficiently long equalizer whose tap length scales linearly with transmission distance. Depending on the transmitted constellation and the target bit error rate, the analog-to-digital converter (ADC) should have around 5 to 6 bits of resolution. Digital coherent receivers are naturally suited for the implementation of feedforward carrier recovery, which has superior linewidth tolerance than phase-locked loops, and does not suffer from feedback delay constraints. Differential bit encoding can be used to prevent catastrophic receiver failure due to cycle slips. In systems where nonlinear effects are concentrated mostly at fiber locations with small accumulated dispersion, nonlinear phase de-rotation is a low-complexity algorithm that can partially mitigate nonlinear effects. For systems with arbitrary dispersion maps, however, backpropagation is the only universal technique that can jointly compensate dispersion and fiber nonlinearity. Backpropagation requires solving the nonlinear Schrodinger equation at the receiver, and has high computational cost. Backpropagation is most effective when dispersion compensation fibers are removed, and when signal processing is performed at three times oversampling. Backpropagation can improve system performance and increase transmission distance. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gb/s should become practical in the near future.
Razani, Marjan; Luk, Timothy W.H.; Mariampillai, Adrian; Siegler, Peter; Kiehl, Tim-Rasmus; Kolios, Michael C.; Yang, Victor X.D.
2014-01-01
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus. PMID:24688822
NASA Astrophysics Data System (ADS)
Clark, L.; Brown, H. G.; Paganin, D. M.; Morgan, M. J.; Matsumoto, T.; Shibata, N.; Petersen, T. C.; Findlay, S. D.
2018-04-01
The rigid-intensity-shift model of differential-phase-contrast imaging assumes that the phase gradient imposed on the transmitted probe by the sample causes the diffraction pattern intensity to shift rigidly by an amount proportional to that phase gradient. This behavior is seldom realized exactly in practice. Through a combination of experimental results, analytical modeling and numerical calculations, using as case studies electron microscope imaging of the built-in electric field in a p-n junction and nanoscale domains in a magnetic alloy, we explore the breakdown of rigid-intensity-shift behavior and how this depends on the magnitude of the phase gradient and the relative scale of features in the phase profile and the probe size. We present guidelines as to when the rigid-intensity-shift model can be applied for quantitative phase reconstruction using segmented detectors, and propose probe-shaping strategies to further improve the accuracy.
Rotondano, Gianluca; Bianco, Maria Antonia; Sansone, Stefano; Prisco, Antonio; Meucci, Costantino; Garofano, Maria Lucia; Cipolletta, Livio
2012-03-01
The purpose of this study is to evaluate an endoscopic trimodal imaging (ETMI) system (high resolution, autofluorescence, and NBI) in the detection and differentiation of colorectal adenomas. A prospective randomised trial of tandem colonoscopies was carried out using the Olympus XCF-FH260AZI system. Each colonic segment was examined twice for lesions, once with HRE and once with AFI, in random order per patient. All detected lesions were assessed with NBI for pit pattern and with AFI for colour. All lesions were removed and sent for histology. Any lesion identified on the second examination was considered as missed by the first examination. Outcome measures are adenoma miss rates of AFI and HRE, and diagnostic accuracy of NBI and AFI for differentiating neoplastic from non-neoplastic lesions. Ninety-four patients underwent colonoscopy with ETMI (47 in each group). Among 47 patients examined with AFI first, 31 adenomas in 15 patients were detected initially [detection rate 0.66 (0.52-0.75)]. Subsequent HRE inspection identified six additional adenomas. Among 47 patients examined with HRE first, 29 adenomas in 14 patients were detected initially [detection rate 0.62 (0.53-0.79)]. Successive AFI yielded seven additional adenomas. Adenoma miss rates of AFI and HRE were 14% and 16.2%, respectively (p = 0.29). Accuracy of AFI alone for differentiation was lower than NBI (63% vs. 80%, p < 0.001). Combined use of AFI and NBI achieved improved accuracy for differentiation (84%), showing a trend for superiority compared with NBI alone (p = 0.064). AFI did not significantly reduce the adenoma miss rate compared with HRE. AFI alone had a disappointing accuracy for adenoma differentiation, which could be improved by combination of AFI and NBI.
Sierra, M B; Pedroni, V I; Buffo, F E; Disalvo, E A; Morini, M A
2016-06-01
Temperature dependence of the zeta potential (ZP) is proposed as a tool to analyze the thermotropic behavior of unilamellar liposomes prepared from binary mixtures of phosphatidylcholines in the absence or presence of ions in aqueous suspensions. Since the lipid phase transition influences the surface potential of the liposome reflecting a sharp change in the ZP during the transition, it is proposed as a screening method for transition temperatures in complex systems, given its high sensitivity and small amount of sample required, that is, 70% less than that required in the use of conventional calorimeters. The sensitivity is also reflected in the pre-transition detection in the presence of ions. Plots of phase boundaries for these mixed-lipid vesicles were constructed by plotting the delimiting temperatures of both main phase transition and pre-transition vs. the lipid composition of the vesicle. Differential scanning calorimetry (DSC) studies, although subject to uncertainties in interpretation due to broad bands in lipid mixtures, allowed the validation of the temperature dependence of the ZP method for determining the phase transition and pre-transition temperatures. The system chosen was dipalmitoylphosphatidylcholine/dimyristoyl phosphatidylcholine (DMPC/DPPC), the most common combination in biological membranes. This work may be considered as a starting point for further research into more complex lipid mixtures with functional biological importance. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bartlome, Richard; Fischer, Cornelia; Sigrist, Markus W.
2005-08-01
There is a great need for a low cost and sensitive method to measure infrared spectra of solid organic compounds in the gas phase. To record such spectra, we propose an optical parametric generator-based photoacoustic spectrometer, which emits in the mid-infrared fingerprint region between 3 and 4 microns. In this system, the sample is heated in a vessel before entering a home built photoacoustic cell, where the gaseous molecules are excited by a tunable laser source with a frequency repetition rate that matches the first longitudinal resonance frequency of the photocaoustic cell. In a first phase, we have focused on low-melting point stimulants such as Nikethamide, Mephentermine sulfate, Methylephedrine, Ephedrine and Pseudoephedrine. The vapor-phase spectra of these doping substances were measured between 2800 and 3100 cm-1, where fundamental C-H stretching vibrations take place. Our spectra show notable differences with commercially available condensed phase spectra. Our scheme enables to measure very low vapor pressures of low-melting point (<160 °C) solid organic compounds. Furthermore, the optical resolution of 8 cm-1 is good enough to distinguish closely related chemical structures such as the Ephedra alkaloids Ephedrine and Methylephedrine, but doesn't allow to differentiate diastereoisomeric pairs such as Ephedrine and Pseudoephedrine, two important neurotransmitters which reveal different biological activities. Therefore, higher resolution and a system capable of measuring organic compounds with higher melting points are required.
NASA Astrophysics Data System (ADS)
Gravity Collaboration; Abuter, R.; Accardo, M.; Amorim, A.; Anugu, N.; Ávila, G.; Azouaoui, N.; Benisty, M.; Berger, J. P.; Blind, N.; Bonnet, H.; Bourget, P.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cassaing, F.; Chapron, F.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; de Wit, W.; de Zeeuw, P. T.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; Dexter, J.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Fédou, P.; Finger, G.; Garcia, P.; Garcia Dabo, C. E.; Garcia Lopez, R.; Gendron, E.; Genzel, R.; Gillessen, S.; Gonte, F.; Gordo, P.; Grould, M.; Grözinger, U.; Guieu, S.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haussmann, F.; Henning, Th.; Hippler, S.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Klein, R.; Kok, Y.; Kolb, J.; Kulas, M.; Lacour, S.; Lapeyrère, V.; Lazareff, B.; Le Bouquin, J.-B.; Lèna, P.; Lenzen, R.; Lévêque, S.; Lippa, M.; Magnard, Y.; Mehrgan, L.; Mellein, M.; Mérand, A.; Moreno-Ventas, J.; Moulin, T.; Müller, E.; Müller, F.; Neumann, U.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Plewa, P. M.; Popovic, D.; Rabien, S.; Ramírez, A.; Ramos, J.; Rau, C.; Riquelme, M.; Rohloff, R.-R.; Rousset, G.; Sanchez-Bermudez, J.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Spyromilio, J.; Straubmeier, C.; Sturm, E.; Suarez, M.; Tristram, K. R. W.; Ventura, N.; Vincent, F.; Waisberg, I.; Wank, I.; Weber, J.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yazici, S.; Ziegler, D.; Zins, G.
2017-06-01
GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual-beam operation, and laser metrology. GRAVITY opens up to optical/infrared interferometry the techniques of phase referenced imaging and narrow angle astrometry, in many aspects following the concepts of radio interferometry. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase-tracking on stars as faint as mK ≈ 10 mag, phase-referenced interferometry of objects fainter than mK ≈ 15 mag with a limiting magnitude of mK ≈ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than ten microarcseconds (μas). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 μas when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic center supermassive black hole and its fast orbiting star S2 for phase referenced dual-beam observations and infrared wavefront sensing, the high mass X-ray binary BP Cru and the active galactic nucleus of PDS 456 for a few μas spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, ξ Tel and 24 Cap for high accuracy visibility observations, and η Car for interferometric imaging with GRAVITY.
Optical phase measuring sensors for automated rendezvous and capture
NASA Technical Reports Server (NTRS)
Metheny, Wayne; Malin, Mark
1991-01-01
A technique is described for sensing relative spatial orientations of approach and target vehicles, using optical phase mensuration (in the interferometric sense, as opposed to LIDAR), in place of the more conventional intensity, image, or transit time measurements. This approach permits the parameters to be measured with great accuracy with relatively simple, small sensors having no moving components. A suite of sensors operating on this principle can produce all desired data using either active detection on the target or passive retroreflection to the detectors on the approach vehicle. These optical phase measurements can be applied to determine bearing angle (location of the target vehicle in the approach vehicle coordinates), range, and attitude (orientation of the target vehicle with respect to the line-of-sight). The first two quantities require the approach vehicle to project a modulated interference pattern into space. The bearing angle is determined for a selected point on the target by measuring the phase of the interference pattern at that point using either a detector on the target or a retroreflector on the target and a detector at the transmitter. The range is found by measuring differential bearing angles to predetermined relative instrumentation sites. Two interferometers, a coarse and a fine ranger are required to resolve the 2pi ambiguity.
Study on dealkalization and settling performance of red mud.
Luo, Muxi; Qi, Xuejiao; Zhang, Yurui; Ren, Yufei; Tong, Jiacheng; Chen, Zining; Hou, Yiming; Yeerkebai, Nuerxiate; Wang, Hongtao; Feng, Shijin; Li, Fengting
2017-01-01
At present, the dealkalization and comprehensive utilization of red mud is a worldwide problem. Studies on the settling performance and phase transformation of red mud by HCl, CaO, and H 2 O leaching are limited. In this study, the characteristics of red mud were systematically analyzed. The average sizes of graded and initial red mud were 4.11 and 9.20 μm, respectively. X-ray diffraction (XRD), X-ray fluorescence spectra (XRF), and thermogravimetry-differential scanning calorimetry (TG-DSC) results indicated the different mineralogical phases, composition, and thermal behavior. The addition of HCl could neutralize the alkalization in the red mud slurry, and CaO could replace the Na and K. Notably, the pH of the red mud slurry had no obvious change with the increase in water washing times in a certain pH. Interestingly, soluble Al and Fe were not detected in the HCl-red mud and CaO-red mud. In addition, the settling ratio was used to express the settling performance of the red mud slurry. Their interaction mechanisms were proposed, which may include phase transformation and the changing of the size and surface area. The research provided a better understanding of the phase transformation and settling performance in the treatment of red mud by HCl, CaO, and H 2 O leaching.
NASA Astrophysics Data System (ADS)
Chen, Y.; Reeves, G.; Friedel, R. H.
2005-12-01
The source of relativistic electrons in the Earth's radiation belts in recovery phase of geomagnetic storms is still an open question which requires more observational analysis. To address this question, we first need to differentiate between two competing mechanisms, inward radial transport or in-situ energization. Recent work has focused on analysis of phase space density distribution for specific storms of interest. Here we expand on the results of earlier event studies by surveying the phase space density radial distribution and its temporal evolution during storms for a time period of 2 years (2001-2002). Data in this work are from the IES and HIST electron detectors on board POLAR, whose orbit crosses the outer part of outer radiation belt through equatorial plane almost every 18 hours during this period. The fact that detected electrons with given 1st and 2nd adiabatic invariants can cover L*~6-10, allows tracing the temporally evolving radial gradient which can help in determining the source of new electrons. Initial analysis of approximately 190 days suggests that the energization of relativistic electrons may result from a more complicated combination of radial transport and in-situ acceleration than is usually assumed.
Jaskolla, Thorsten W; Karas, Michael
2011-06-01
This work experimentally verifies and proves the two long since postulated matrix-assisted laser desorption/ionization (MALDI) analyte protonation pathways known as the Lucky Survivor and the gas phase protonation model. Experimental differentiation between the predicted mechanisms becomes possible by the use of deuterated matrix esters as MALDI matrices, which are stable under typical sample preparation conditions and generate deuteronated reagent ions, including the deuterated and deuteronated free matrix acid, only upon laser irradiation in the MALDI process. While the generation of deuteronated analyte ions proves the gas phase protonation model, the detection of protonated analytes by application of deuterated matrix compounds without acidic hydrogens proves the survival of analytes precharged from solution in accordance with the predictions from the Lucky Survivor model. The observed ratio of the two analyte ionization processes depends on the applied experimental parameters as well as the nature of analyte and matrix. Increasing laser fluences and lower matrix proton affinities favor gas phase protonation, whereas more quantitative analyte protonation in solution and intramolecular ion stabilization leads to more Lucky Survivors. The presented results allow for a deeper understanding of the fundamental processes causing analyte ionization in MALDI and may alleviate future efforts for increasing the analyte ion yield.
Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Weigle, David S; Kratz, Mario
2016-08-01
Sugar-sweetened beverage (SSB) consumption and low-grade chronic inflammation are both independently associated with type 2 diabetes and cardiovascular disease. Fructose, a major component of SSBs, may acutely trigger inflammation, which may be one link between SSB consumption and cardiometabolic disease. We sought to determine whether beverages sweetened with fructose, high-fructose corn syrup (HFCS), and glucose differentially influence systemic inflammation [fasting plasma C-reactive protein and interleukin-6 (IL-6) as primary endpoints] acutely and before major changes in body weight. Secondary endpoints included adipose tissue inflammation, intestinal permeability, and plasma fetuin-A as potential mechanistic links between fructose intake and low-grade inflammation. We conducted a randomized, controlled, double-blind, crossover design dietary intervention (the Diet and Systemic Inflammation Study) in 24 normal-weight to obese adults without fructose malabsorption. Participants drank 4 servings/d of fructose-, glucose-, or HFCS-sweetened beverages accounting for 25% of estimated calorie requirements while consuming a standardized diet ad libitum for three 8-d periods. Subjects consumed 116% of their estimated calorie requirement while drinking the beverages with no difference in total energy intake or body weight between groups as reported previously. Fasting plasma concentrations of C-reactive protein and IL-6 did not differ significantly at the end of the 3 diet periods. We did not detect a consistent differential effect of the diets on measures of adipose tissue inflammation except for adiponectin gene expression in adipose tissue (P = 0.005), which was lowest after the glucose phase. We also did not detect consistent evidence of a differential impact of these sugars on measures of intestinal permeability (lactulose:mannitol test, plasma zonulin, and plasma lipopolysaccharide-binding protein). Excessive amounts of fructose, HFCS, and glucose from SSBs consumed over 8 d did not differentially affect low-grade chronic systemic inflammation in normal-weight to obese adults. This trial was registered at clinicaltrials.gov as NCT01424306. © 2016 American Society for Nutrition.
Cromer, Gail; Breymeyer, Kara L; Roth, Christian L; Weigle, David S
2016-01-01
Background: Sugar-sweetened beverage (SSB) consumption and low-grade chronic inflammation are both independently associated with type 2 diabetes and cardiovascular disease. Fructose, a major component of SSBs, may acutely trigger inflammation, which may be one link between SSB consumption and cardiometabolic disease. Objective: We sought to determine whether beverages sweetened with fructose, high-fructose corn syrup (HFCS), and glucose differentially influence systemic inflammation [fasting plasma C-reactive protein and interleukin-6 (IL-6) as primary endpoints] acutely and before major changes in body weight. Secondary endpoints included adipose tissue inflammation, intestinal permeability, and plasma fetuin-A as potential mechanistic links between fructose intake and low-grade inflammation. Design: We conducted a randomized, controlled, double-blind, crossover design dietary intervention (the Diet and Systemic Inflammation Study) in 24 normal-weight to obese adults without fructose malabsorption. Participants drank 4 servings/d of fructose-, glucose-, or HFCS-sweetened beverages accounting for 25% of estimated calorie requirements while consuming a standardized diet ad libitum for three 8-d periods. Results: Subjects consumed 116% of their estimated calorie requirement while drinking the beverages with no difference in total energy intake or body weight between groups as reported previously. Fasting plasma concentrations of C-reactive protein and IL-6 did not differ significantly at the end of the 3 diet periods. We did not detect a consistent differential effect of the diets on measures of adipose tissue inflammation except for adiponectin gene expression in adipose tissue (P = 0.005), which was lowest after the glucose phase. We also did not detect consistent evidence of a differential impact of these sugars on measures of intestinal permeability (lactulose:mannitol test, plasma zonulin, and plasma lipopolysaccharide-binding protein). Conclusion: Excessive amounts of fructose, HFCS, and glucose from SSBs consumed over 8 d did not differentially affect low-grade chronic systemic inflammation in normal-weight to obese adults. This trial was registered at clinicaltrials.gov as NCT01424306. PMID:27357093
Multispectral autofluorescence diagnosis of non-melanoma cutaneous tumors
NASA Astrophysics Data System (ADS)
Borisova, Ekaterina; Dogandjiiska, Daniela; Bliznakova, Irina; Avramov, Latchezar; Pavlova, Elmira; Troyanova, Petranka
2009-07-01
Fluorescent analysis of basal cell carcinoma (BCC), squamous cell carcinoma (SCC), keratoacanthoma and benign cutaneous lesions is carried out under initial phase of clinical trial in the National Oncological Center - Sofia. Excitation sources with maximum of emission at 365, 380, 405, 450 and 630 nm are applied for better differentiation between nonmelanoma malignant cutaneous lesions fluorescence and spectral discrimination from the benign pathologies. Major spectral features are addressed and diagnostic discrimination algorithms based on lesions' emission properties are proposed. The diagnostic algorithms and evaluation procedures found will be applied for development of an optical biopsy clinical system for skin cancer detection in the frames of National Oncological Center and other university hospital dermatological departments in our country.
Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications
NASA Technical Reports Server (NTRS)
1989-01-01
This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.
Downie, John D; Hurley, Jason; Mauro, Yihong
2008-09-29
We experimentally demonstrate uncompensated 8-channel wavelength division multiplexing (WDM) and single channel transmission at 10.7 Gb/s over a 470 km hybrid fiber link with in-line semiconductor optical amplifiers (SOAs). Two different forms of the duobinary modulation format are investigated and compared. Maximum Likelihood Sequence Estimation (MLSE) receiver technology is found to significantly mitigate nonlinear effects from the SOAs and to enable the long transmission, especially for optical duobinary signals derived from differential phase shift keying (DPSK) signals directly detected after narrowband optical filter demodulation. The MLSE also helps to compensate for a non-optimal Fabry-Perot optical filter demodulator.
Detection of Uniform and Nonuniform Differential Item Functioning by Item-Focused Trees
ERIC Educational Resources Information Center
Berger, Moritz; Tutz, Gerhard
2016-01-01
Detection of differential item functioning (DIF) by use of the logistic modeling approach has a long tradition. One big advantage of the approach is that it can be used to investigate nonuniform (NUDIF) as well as uniform DIF (UDIF). The classical approach allows one to detect DIF by distinguishing between multiple groups. We propose an…
A Comparison of Two Area Measures for Detecting Differential Item Functioning.
ERIC Educational Resources Information Center
Kim, Seock-Ho; Cohen, Allan S.
1991-01-01
The exact and closed-interval area measures for detecting differential item functioning are compared for actual data from 1,000 African-American and 1,000 white college students taking a vocabulary test with items intentionally constructed to favor 1 set of examinees. No real differences in detection of biased items were found. (SLD)
Corral-Fernández, Nancy Elizabeth; Cortes-García, Juan Diego; Bruno, Rivas-Santiago; Romano-Moreno, Silvia; Medellín-Garibay, Susanna E; Magaña-Aquino, Martín; Salazar-González, Raúl A; González-Amaro, Roberto; Portales-Pérez, Diana Patricia
2017-07-01
Tuberculosis (Tb) is an infectious disease in which the immune system plays an important role. MicroRNAs are involved in the development and maintenance of CD4 + T lymphocyte subpopulations. miR-326 regulates the differentiation to Th17 cells and miR-29 correlates with the Th1 response. The aim of this study was to determine the role of microRNAs, Transcription Factors, and cytokines in Th differentiation before and after the directly observed treatment short-course (DOTS). Peripheral blood mononuclear cells and serum from Tb patients were collected at times 0 (before therapy), 2 (after the intensive phase), and 6 months (after the holding phase). The cells were cultivated in presence or absence of ESAT-6 (10 μg/ml) and CFP-10 (10 μg/ml). Transcription Factor and microRNA expressions were analyzed by qPCR and cytokine production in both serum and culture supernatant using ELISA. A decrease in Th1 response with a diminishing in the relative expression of TBET and miR-29a at 2 and 6 months after the anti-Tb therapy (p < 0.01) were found. The miR-326 levels decreased after the intensive phase of the DOTS scheme. However, subdivision of the Tb patients according to gender, showed increased levels of miR-29a and miR-155 in females after the intensive phase of the therapeutic treatment when compared to time 0 and similar increased levels of miR-326 at time 6 versus time 0. In contrast, we observed a decrease in miR-326 levels in males at 6 months when compared to before therapy (time 0). In addition, high production of IL-17 in the culture supernatant was found at 2 and 6 months (p < 0.05) while in serum IL-17 was decreased. A positive correlation between IL-17 and RORC2 at time 6 was detected (p = 0.0202, r = 0.7880). In conclusion, these data suggest a reduction in Th1 and an induction of Th17 response after the anti-Tb therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bear, Ashley; Monteiro, Antónia
2013-08-01
The differentiation of male and female characteristics in vertebrates and insects has long been thought to proceed via different mechanisms. Traditionally, vertebrate sexual development was thought to occur in two phases: a primary and a secondary phase, the primary phase involving the differentiation of the gonads, and the secondary phase involving the differentiation of other sexual traits via the influence of sex hormones secreted by the gonads. In contrast, insect sexual development was thought to depend exclusively on cell-autonomous expression of sex-specific genes. Recently, however, new evidence indicates that both vertebrates and insects rely on sex hormones as well as cell-autonomous mechanisms to develop sexual traits. Collectively, these new data challenge the traditional vertebrate definitions of primary and secondary sexual development, call for a redefinition of these terms, and indicate the need for research aimed at explaining the relative dependence on cell-autonomous versus hormonally guided sexual development in animals. © 2013 The Authors. BioEssays published by WILEY Periodicals, Inc.
Trellis coded multilevel DPSK system with doppler correction for mobile satellite channels
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Simon, Marvin K. (Inventor)
1991-01-01
A trellis coded multilevel differential phase shift keyed mobile communication system. The system of the present invention includes a trellis encoder for translating input signals into trellis codes; a differential encoder for differentially encoding the trellis coded signals; a transmitter for transmitting the differentially encoded trellis coded signals; a receiver for receiving the transmitted signals; a differential demodulator for demodulating the received differentially encoded trellis coded signals; and a trellis decoder for decoding the differentially demodulated signals.
Practical identification of moisture sources in building assemblies using infrared thermography
NASA Astrophysics Data System (ADS)
McIntosh, Gregory B.; Colantonio, Antonio
2015-05-01
Water, in its various phases, in any environment other than desert (hot or cold) conditions, is the single most destructive element that causes deterioration of materials and failure of building assemblies. It is the key element present in the formation of mold and fungi that lead to indoor air quality problems. Water is the primary element that needs to be managed in buildings to ensure human comfort, health and safety. Under the right thermodynamic conditions the detection of moisture in its various states is possible through the use of infrared thermography for a large variety of building assemblies and materials. The difficulty is that moisture is transient and mobile from one environment to another via air movement, vapor pressure or phase change. Building materials and enclosures provide both repositories and barriers to this moisture movement. In real life steady state conditions do not exist for moisture within building materials and enclosures. Thus the detection of moisture is in a constant state of transition. Sometimes you will see it and sometimes you will not. Understanding the limitations at the time of inspection will go a long way to mitigating unsatisfied clients or difficult litigation. Moisture detection can be observed by IRT via three physical mechanisms; latent heat absorption or release during phase change; a change in conductive heat transfer; and a change in thermal capacitance. Complicating the three methodologies is the factor of variable temperature differentials and variable mass air flow on, through and around surfaces being inspected. Building enclosures come in variable assembly types and are designed to perform differently in different environmental regions. Sources for moisture accumulation will vary for different environmental conditions. Detection methodologies will change for each assembly type in different ambient environments. This paper will look at the issue of the methodologies for detection of the presence of moisture and determination of the various sources from which it accumulates in building assemblies. The end objective for IRT based moisture detection inspections is not to just identify that moisture is present but to determine its extent and source. Accurate assessment of the source(s) and root cause of the moisture is critical to the development of a permanent solution to the problem.
The limit of detection for explosives in spectroscopic differential reflectometry
NASA Astrophysics Data System (ADS)
Dubroca, Thierry; Vishwanathan, Karthik; Hummel, Rolf E.
2011-05-01
In the wake of recent terrorist attacks, such as the 2008 Mumbai hotel explosion or the December 25th 2009 "underwear bomber", our group has developed a technique (US patent #7368292) to apply differential reflection spectroscopy to detect traces of explosives. Briefly, light (200-500 nm) is shone on a surface such as a piece of luggage at an airport. Upon reflection, the light is collected with a spectrometer combined with a CCD camera. A computer processes the data and produces in turn a differential reflection spectrum involving two adjacent areas of the surface. This differential technique is highly sensitive and provides spectroscopic data of explosives. As an example, 2,4,6, trinitrotoluene (TNT) displays strong and distinct features in differential reflectograms near 420 nm. Similar, but distinctly different features are observed for other explosives. One of the most important criteria for explosive detection techniques is the limit of detection. This limit is defined as the amount of explosive material necessary to produce a signal to noise ratio of three. We present here, a method to evaluate the limit of detection of our technique. Finally, we present our sample preparation method and experimental set-up specifically developed to measure the limit of detection for our technology. This results in a limit ranging from 100 nano-grams to 50 micro-grams depending on the method and the set-up parameters used, such as the detector-sample distance.
Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves
Vincent, Paul
2005-06-28
A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.
Wang, Jian; Hou, Peipei; Cai, Haiwen; Sun, Jianfeng; Wang, Shunan; Wang, Lijuan; Yang, Fei
2015-04-06
We propose an optically controlled phased array antenna (PAA) based on differential true time delay constructed optical beamforming network (OBFN). Differential true time delay is realized by stack integrated micro-optical components. Optically-controlled angle steering of radio frequency (RF) beams are realized and demonstrated by this configuration. Experimental results demonstrate that OBFN based PAA can accomplish RF-independent broadband beam steering without beam squint effect and can achieve continuous angle steering. In addition, multi-beams for different steering angles are acquired synchronously.
Leading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole Showers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dulat, Falko; Höche, Stefan; Prestel, Stefan
We compute the next-to-leading order corrections to soft-gluon radiation differentially in the one-emission phase space. We show that their contribution to the evolution of color dipoles can be obtained in a modified subtraction scheme, such that both one- and two-emission terms are amenable to Monte-Carlo integration. The two-loop cusp anomalous dimension is recovered naturally upon integration over the full phase space. We present two independent implementations of the new algorithm in the two event generators Pythia and Sherpa, and we compare the resulting fully differential simulation to the CMW scheme.
NASA Technical Reports Server (NTRS)
Coy, S. L.; Killeen, K.; Han, J.; Eiceman, G. A.; Kanik, I.; Kidd, R. D.
2011-01-01
Our goal is to develop a unique, miniaturized, solute analyzer based on microfluidics technology. The analyzer consists of an integrated microfluidics High Performance Liquid Chromatographic chip / Differential Mobility Spectrometer (?HPLCchip/ DMS) detection system
Singha, Debal Kanti; Mahata, Partha
2017-08-29
Herein, a mixed metal coordination polymer, {(H 2 pip)[Zn 1/3 Fe 2/3 (pydc-2,5) 2 (H 2 O)]·2H 2 O} 1 {where H 2 pip = piperazinediium and pydc-2,5 = pyridine-2,5-dicarboxylate}, was successfully synthesized using a hydrothermal technique. To confirm the structure and phase purity of 1, single crystals of an isomorphous pure Fe compound, {(H 2 pip)[Fe(pydc-2,5) 2 (H 2 O)]·2H 2 O} 1a, were synthesized based on similar synthetic conditions. Single crystal X-ray data of 1a confirmed the one-dimensional anionic metal-organic coordination polymer hydrogen bonded with protonated piprazine (piperazinediium) and lattice water molecules. The phase purity of 1 and 1a were confirmed via powder X-ray diffraction. Compound 1 was systematically characterized using IR, TGA, SEM, and EDX elemental mapping analysis. Compound 1 was used as a single source precursor for the preparation of nano-sized ZnFe 2 O 4 via thermal decomposition. The as-obtained ZnFe 2 O 4 was fully characterized using PXRD, SEM, TEM, and EDX elemental mapping analysis. It was found that ZnFe 2 O 4 was formed in its pure form with particle size in the nano-dimension. The aqueous dispersion of nano-sized ZnFe 2 O 4 exhibits a strong emission at 402 nm upon excitation at 310 nm. This emissive property was employed for luminescence-based detection of nitroaromatic explosives in an aqueous medium through luminescence quenching for the first time. Importantly, selective detections have been observed for phenolic nitroaromatics based on differential luminescence quenching behaviour along with a detection limit of 57 ppb for 2,4,6-trinitrophenol (TNP) in water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grocholski, Brent; Catalli, Krystle; Shim, Sang-Heon
The discovery of a phase transition in Mg-silicate perovskite (Pv) to postperovskite (pPv) at lowermost mantle pressure-temperature (P - T) conditions may provide an explanation for the discontinuous increase in shear wave velocity found in some regions at a depth range of 200 to 400 km above the core-mantle boundary, hereafter the D{double_prime} discontinuity. However, recent studies on binary and ternary systems showed that reasonable contents of Fe{sup 2+} and Al for pyrolite increase the thickness (width of the mixed phase region) of the Pv - pPv boundary (400-600 km) to much larger than the D{double_prime} discontinuity ({le} 70 km).more » These results challenge the assignment of the D{double_prime} discontinuity to the Pv - pPv boundary in pyrolite (homogenized mantle composition). Furthermore, the mineralogy and composition of rocks that can host a detectable Pv {yields} pPv boundary are still unknown. Here we report in situ measurements of the depths and thicknesses of the Pv {yields} pPv transition in multiphase systems (San Carlos olivine, pyrolitic, and midocean ridge basaltic compositions) at the P - T conditions of the lowermost mantle, searching for candidate rocks with a sharp Pv - pPv discontinuity. Whereas the pyrolitic mantle may not have a seismologically detectable Pv {yields} pPv transition due to the effect of Al, harzburgitic compositions have detectable transitions due to low Al content. In contrast, Al-rich basaltic compositions may have a detectable Pv - pPv boundary due to their distinct mineralogy. Therefore, the observation of the D{prime} discontinuity may be related to the Pv {yields} pPv transition in the differentiated oceanic lithosphere materials transported to the lowermost mantle by subducting slabs.« less
Dong, X. Y.; Li, W. H.; Zhu, J. L.; Liu, W. J.; Zhao, M. Q.; Luo, Y. W.; Chen, J. D.
2015-01-01
Canine distemper virus (CDV) is the cause of canine distemper (CD) which is a severe and highly contagious disease in dogs. In the present study, a duplex reverse transcription polymerase chain reaction (RT-PCR) method was developed for the detection and differentiation of wild-type and vaccine strains of CDV. Four primers were designed to detect and discriminate the two viruses by generating 638- and 781-bp cDNA products, respectively. Furthermore, the duplex RT-PCR method was used to detect 67 field samples suspected of CD from Guangdong province in China. Results showed that, 33 samples were to be wild-type-like. The duplex RT-PCR method exhibited high specificity and sensitivity which could be used to effectively detect and differentiate wild-type and vaccine CDV, indicating its use for clinical detection and epidemiological surveillance. PMID:27175171
Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambda-cyhalothrin.
Xu, Chao; Wang, Jiajia; Liu, Weiping; Daniel Sheng, G; Tu, Yunjie; Ma, Yun
2008-01-01
Chiral pollutants are receiving growing environmental concern due to differential biological activities of their enantiomers. In the present study, enantiomeric separation of the pyrethroid insecticide lambda-cyhalothrin (LCT) was investigated by high-performance liquid chromatography (HPLC) using the columns of Chiralpak AD (amylase tris[3,5-dimethyl-phenyl carbamate]), Chiralpak AS (amylase tris[(S)-1-phenyl carbamate]), Chiralcel OD (cellulose tris[3,5-dimethylphenyl carbamate]), and Chiralcel OJ (cellulose tris[4-methyl benzoate]) with different chiral stationary phases. The differential toxicities of the enantiomers in aquatic systems were evaluated using the acute zebrafish (Danio rerio) toxicity test and the zebrafish embryo test. The enantiomers of LCT were separated completely on all the columns tested and detected by circular dichroism at 236 nm. Better separations were achieved at lower temperatures (e.g., 20 degrees C) and lower levels of polar modifiers (=5%) in mobile phase. Ethanol was found to be a good modifier of the mobile phase for all the columns, although isopropanol acted better for the Chiralcel OD column. The (-)-enantiomer was >162 times more toxic than its antipode to zebrafish in the acute test. The embryo test indicated that the exposure to LCT enantioselectively induced crooked body, yolk sac edema, and pericardial edema and that the (-)-enantiomer was 7.2 times stronger than the (+)-enantiomer in 96-h mortality. The malformations were induced by the racemate and its (-)-enantiomer at lower concentrations tested (e.g., 50 microg L(-1)), whereas the (+)-enantiomer induced malformations at relatively higher concentrations (>/=100 microg L(-1)). These results suggest that the toxicological effects of chiral pesticides must be evaluated using their individual enantiomers.
Novel insight on photochemistry at interfaces: potential impact on Seconday Aerosol Formation?
NASA Astrophysics Data System (ADS)
Rossignol, S.; George, C.; Aregahegn, K.
2014-12-01
Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms cannot account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS), Differential Mobility Analyzer (DMA) and Condensation Particle Sizer (CPC), we identified that traces in the aerosol phase of glyoxal chemistry products, namely imidazole-2-carboxaldehyde (IC) are strong photo-sensitizers when irradiated with near-UV. In the presence of volatile organic compounds such as terpenes, this chemistry leads to a fast aerosol growth. Given the potential importance of this new photosensitized growth pathway for ambient OA, the related reaction mechanism was investigated at a molecular level. Bulk and flow tube experiments were performed to identify major products of the reaction of limonene with the triplet state of IC by direct (+/-)ESI-HRMS and UPLC/(+/-)HESI-HRMS analysis. Detection of recombination products of IC with limonene or with itself, in bulk and flow tube experiment ts, showed that IC is able to initiate a radical chemistry in the aerosol phase under realistic irradiation conditions. Furthermore, highly oxygenated limonene reaction products were detected, clearly explaining the observed OA growth. The chemistry of peroxy radicals derived from limonene upon addition of oxygen explains the formation of such low-volatile compounds without any traditional gas phase oxidant. These results demonstrate that, upon ageing, organic aerosols can produce photo-sensitizers which auto-photo-catalyse their SOA growth.
NASA Astrophysics Data System (ADS)
Wurster, K.
2008-12-01
In much of Sub-Saharan Africa, more than 75 percent of a rapidly growing urban population depends on charcoal as their primary source of energy for cooking. The high demand for charcoal has led many to believe that charcoal harvesting catalyzes widespread deforestation. The Senegalese government and international donors have initiated projects within protected areas to combat deforestation and created land management plans to sustainably harvest charcoal. To date, the effects of forest management techniques on forest sustainability are still in question. This research uses a multiphase approach integrating satellite analysis with field surveys to assess the effect of varying forest management strategies on forest regeneration and sustainability after charcoal harvesting. Phase I involved testing the Multiangle Imaging SpectroRadiometer (MISR) satellites capability in detecting structural changes in vegetative cover caused by charcoal harvesting and production. Analysis of the MISR derived k(red) parameter showed MISR can consistently differentiate between forest cover types and successfully differentiates between sites at pre- and post-charcoal harvest stages. Phase II conducted forestry and social surveys comparing and contrasting local effects of land management, land use, and charcoal production on forest regeneration. Phase III uses the local surveys to validate and train the regional remote sensing data to assess the effectiveness of land management in promoting forest regeneration and sustainability after charcoal harvesting. Combining detailed local knowledge with the regional capabilities of MISR provide valuable insight into the factors that control woodland regeneration and sustainability. Preliminary results from phases II and III indicate that both field and remotely sensed variations in forest cover, tree regeneration, and land use change does not vary when compared against land management type. Final results will provide managers with additional information to create more effective land management strategies that can be implemented across sub- Saharan Africa, ensuring the long-term sustainability of woodland ecosystems and local livelihoods.
Zhang, Jie; Xiao, Wendong; Zhang, Sen; Huang, Shoudong
2017-04-17
Device-free localization (DFL) is becoming one of the new technologies in wireless localization field, due to its advantage that the target to be localized does not need to be attached to any electronic device. In the radio-frequency (RF) DFL system, radio transmitters (RTs) and radio receivers (RXs) are used to sense the target collaboratively, and the location of the target can be estimated by fusing the changes of the received signal strength (RSS) measurements associated with the wireless links. In this paper, we will propose an extreme learning machine (ELM) approach for DFL, to improve the efficiency and the accuracy of the localization algorithm. Different from the conventional machine learning approaches for wireless localization, in which the above differential RSS measurements are trivially used as the only input features, we introduce the parameterized geometrical representation for an affected link, which consists of its geometrical intercepts and differential RSS measurement. Parameterized geometrical feature extraction (PGFE) is performed for the affected links and the features are used as the inputs of ELM. The proposed PGFE-ELM for DFL is trained in the offline phase and performed for real-time localization in the online phase, where the estimated location of the target is obtained through the created ELM. PGFE-ELM has the advantages that the affected links used by ELM in the online phase can be different from those used for training in the offline phase, and can be more robust to deal with the uncertain combination of the detectable wireless links. Experimental results show that the proposed PGFE-ELM can improve the localization accuracy and learning speed significantly compared with a number of the existing machine learning and DFL approaches, including the weighted K-nearest neighbor (WKNN), support vector machine (SVM), back propagation neural network (BPNN), as well as the well-known radio tomographic imaging (RTI) DFL approach.
Zhang, Jie; Xiao, Wendong; Zhang, Sen; Huang, Shoudong
2017-01-01
Device-free localization (DFL) is becoming one of the new technologies in wireless localization field, due to its advantage that the target to be localized does not need to be attached to any electronic device. In the radio-frequency (RF) DFL system, radio transmitters (RTs) and radio receivers (RXs) are used to sense the target collaboratively, and the location of the target can be estimated by fusing the changes of the received signal strength (RSS) measurements associated with the wireless links. In this paper, we will propose an extreme learning machine (ELM) approach for DFL, to improve the efficiency and the accuracy of the localization algorithm. Different from the conventional machine learning approaches for wireless localization, in which the above differential RSS measurements are trivially used as the only input features, we introduce the parameterized geometrical representation for an affected link, which consists of its geometrical intercepts and differential RSS measurement. Parameterized geometrical feature extraction (PGFE) is performed for the affected links and the features are used as the inputs of ELM. The proposed PGFE-ELM for DFL is trained in the offline phase and performed for real-time localization in the online phase, where the estimated location of the target is obtained through the created ELM. PGFE-ELM has the advantages that the affected links used by ELM in the online phase can be different from those used for training in the offline phase, and can be more robust to deal with the uncertain combination of the detectable wireless links. Experimental results show that the proposed PGFE-ELM can improve the localization accuracy and learning speed significantly compared with a number of the existing machine learning and DFL approaches, including the weighted K-nearest neighbor (WKNN), support vector machine (SVM), back propagation neural network (BPNN), as well as the well-known radio tomographic imaging (RTI) DFL approach. PMID:28420187
Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.
2016-01-01
ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885
NASA Astrophysics Data System (ADS)
Gao, Ying; Lin, Qingyang; Bijeljic, Branko; Blunt, Martin J.
2017-12-01
We imaged the steady state flow of brine and decane in Bentheimer sandstone. We devised an experimental method based on differential imaging to examine how flow rate impacts impact the pore-scale distribution of fluids during coinjection. This allows us to elucidate flow regimes (connected, or breakup of the nonwetting phase pathways) for a range of fractional flows at two capillary numbers, Ca, namely 3.0 × 10-7 and 7.5 × 10-6. At the lower Ca, for a fixed fractional flow, the two phases appear to flow in connected unchanging subnetworks of the pore space, consistent with conventional theory. At the higher Ca, we observed that a significant fraction of the pore space contained sometimes oil and sometimes brine during the 1 h scan: this intermittent occupancy, which was interpreted as regions of the pore space that contained both fluid phases for some time, is necessary to explain the flow and dynamic connectivity of the oil phase; pathways of always oil-filled portions of the void space did not span the core. This phase was segmented from the differential image between the 30 wt % KI brine image and the scans taken at each fractional flow. Using the grey scale histogram distribution of the raw images, the oil proportion in the intermittent phase was calculated. The pressure drops at each fractional flow at low and high flow rates were measured by high-precision differential pressure sensors. The relative permeabilities and fractional flow obtained by our experiment at the mm-scale compare well with data from the literature on cm-scale samples.
Characterization of Reversibly Immortalized Calvarial Mesenchymal Progenitor Cells.
Shenaq, Deana S; Teven, Chad M; Seitz, Iris A; Rastegar, Farbod; Greives, Matthew R; He, Tong-Chuan; Reid, Russell R
2015-06-01
Bone morphogenetic proteins (BMPs) play a sentinel role in osteoblastic differentiation, and their implementation into clinical practice can revolutionize cranial reconstruction. Preliminary data suggest a therapeutic role of adenoviral gene delivery of BMPs in murine calvarial defect healing. Poor transgene expression inherent in direct adenoviral therapy prompted investigation of cell-based strategies. To isolate and immortalize calvarial cells as a potential progenitor source for osseous tissue engineering. Cells were isolated from murine skulls, cultured, and transduced with a retroviral vector bearing the loxP-flanked SV40 large T antigen. Immortalized calvarial cells (iCALs) were evaluated via light microscopy, immunohistochemistry, and flow cytometry to determine whether the immortalization process altered cell morphology or progenitor cell profile. Immortalized calvarial cells were then infected with adenoviral vectors encoding BMP-2 or GFP and assessed for early and late stages of osteogenic differentiation. Immortalization of calvarial cells did not alter cell morphology as demonstrated by phase contrast microscopy. Mesenchymal progenitor cell markers CD166, CD73, CD44, and CD105 were detected at varying levels in both primary cells and iCALs. Significant elevations in alkaline phosphatase activity, osteocalcin mRNA transcription, and matrix mineralization were detected in BMP-2 treated iCALs compared with GFP-treated cells. Gross and histological analyses revealed ectopic bone production from treated cells compared with controls in an in vivo stem cell implantation assay. We have established an immortalized osteoprogenitor cell line from juvenile calvarial cells that retain a progenitor cell phenotype and can successfully undergo osteogenic differentiation upon BMP-2 stimulation. These cells provide a valuable platform to investigate the molecular mechanisms underlying intramembranous bone formation and to screen for factors/small molecules that can facilitate the healing of osseous defects in the craniofacial skeleton.
Two-wavelength spatial-heterodyne holography
Hanson, Gregory R.; Bingham, Philip R.; Simpson, John T.; Karnowski, Thomas P.; Voelkl, Edgar
2007-12-25
Systems and methods are described for obtaining two-wavelength differential-phase holograms. A method includes determining a difference between a filtered analyzed recorded first spatially heterodyne hologram phase and a filtered analyzed recorded second spatially-heterodyned hologram phase.
The neuronal differentiation process involves a series of antioxidant proteins.
Oh, J-E; Karlmark Raja, K; Shin, J-H; Hengstschläger, M; Pollak, A; Lubec, G
2005-11-01
Involvement of individual antioxidant proteins (AOXP) and antioxidants in the differentiation process has been already reported. A systematic search strategy for detecting differentially regulated AOXP in neuronal differentiation, however, has not been published so far. The aim of this study was to provide an analytical tool identifying AOXP and to generate a differentiation-related AOXP expressional pattern. The undifferentiated N1E-115 neuroblastoma cell line was switched into a neuronal phenotype by DMSO treatment and used for proteomic experiments: We used two-dimensional gel electrophoresis followed by unambiguous mass spectrometrical (MALDI-TOF-TOF) identification of proteins to generate a map of AOXP. 16 AOXP were unambiguously determined in both cell lines; catalase, thioredoxin domain-containing protein 4 and hypothetical glutaredoxin/glutathione S-transferase C terminus-containing protein were detectable in the undifferentiated cells only. Five AOXP were observed in both, undifferentiated and differentiated cells and thioredoxin, thioredoxin-like protein p19, thioredoxin reductase 1, superoxide dismutases (Mn and Cu-Zn), glutathione synthetase, glutathione S-transferase P1 and Mu1 were detected in differentiated cells exclusively. Herein a differential expressional pattern is presented that reveals so far unpublished antioxidant principles involved in neuronal differentiation by a protein chemical approach, unambiguously identifying AOXP. This finding not only shows concomitant determination of AOXP but also serves as an analytical tool and forms the basis for design of future studies addressing AOXP and differentiation per se.
Wang, Zheng Jia; Huang, Jian Qin; Huang, You Jun; Li, Zheng; Zheng, Bing Song
2012-08-01
Hickory (Carya cathayensis Sarg.) is an economically important woody plant in China, but its long juvenile phase delays yield. MicroRNAs (miRNAs) are critical regulators of genes and important for normal plant development and physiology, including flower development. We used Solexa technology to sequence two small RNA libraries from two floral differentiation stages in hickory to identify miRNAs related to flower development. We identified 39 conserved miRNA sequences from 114 loci belonging to 23 families as well as two novel and ten potential novel miRNAs belonging to nine families. Moreover, 35 conserved miRNA*s and two novel miRNA*s were detected. Twenty miRNA sequences from 49 loci belonging to 11 families were differentially expressed; all were up-regulated at the later stage of flower development in hickory. Quantitative real-time PCR of 12 conserved miRNA sequences, five novel miRNA families, and two novel miRNA*s validated that all were expressed during hickory flower development, and the expression patterns were similar to those detected with Solexa sequencing. Finally, a total of 146 targets of the novel and conserved miRNAs were predicted. This study identified a diverse set of miRNAs that were closely related to hickory flower development and that could help in plant floral induction.
Flight phasemeter on the Laser Ranging Interferometer on the GRACE Follow-On mission
NASA Astrophysics Data System (ADS)
Bachman, B.; de Vine, G.; Dickson, J.; Dubovitsky, S.; Liu, J.; Klipstein, W.; McKenzie, K.; Spero, R.; Sutton, A.; Ware, B.; Woodruff, C.
2017-05-01
As the first inter-spacecraft laser interferometer, the Laser Ranging Interferometer (LRI) on the GRACE Follow-On Mission will demonstrate interferometry technology relevant to the LISA mission. This paper focuses on the completed LRI Laser Ranging Processor (LRP), which includes heterodyne signal phase tracking at μ {{cycle/}}\\sqrt{{{Hz}}} precision, differential wavefront sensing, offset frequency phase locking and Pound-Drever-Hall laser stabilization. The LRI design has characteristics that are similar to those for LISA: 1064 nm NPRO laser source, science bandwidth in the mHz range, MHz-range intermediate frequency and Doppler shift, detected optical power of tens of picoWatts. Laser frequency stabilization has been demonstrated at a level below 30{{Hz/}}\\sqrt{{{Hz}}}, better than the LISA requirement of 300{{Hz/}}\\sqrt{{{Hz}}}. The LRP has completed all performance testing and environmental qualification and has been delivered to the GRACE Follow-On spacecraft. The LRI is poised to test the LISA techniques of tone-assisted time delay interferometry and arm-locking. GRACE Follow-On launches in 2017.
Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells
Ly, Tony; Endo, Aki; Lamond, Angus I
2015-01-01
Abstract Previously, we analyzed protein abundance changes across a ‘minimally perturbed’ cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/), an online, searchable resource. DOI: http://dx.doi.org/10.7554/eLife.04534.001 PMID:25555159
Sono-photoacoustic imaging of gold nanoemulsions: Part II. Real time imaging
Arnal, Bastien; Wei, Chen-Wei; Perez, Camilo; Nguyen, Thu-Mai; Lombardo, Michael; Pelivanov, Ivan; Pozzo, Lilo D.; O’Donnell, Matthew
2015-01-01
Photoacoustic (PA) imaging using exogenous agents can be limited by degraded specificity due to strong background signals. This paper introduces a technique called sono-photoacoustics (SPA) applied to perfluorohexane nanodroplets coated with gold nanospheres. Pulsed laser and ultrasound (US) excitations are applied simultaneously to the contrast agent to induce a phase-transition ultimately creating a transient microbubble. The US field present during the phase transition combined with the large thermal expansion of the bubble leads to 20–30 dB signal enhancement. Aqueous solutions and phantoms with very low concentrations of this agent were probed using pulsed laser radiation at diagnostic exposures and a conventional US array used both for excitation and imaging. Contrast specificity of the agent was demonstrated with a coherent differential scheme to suppress US and linear PA background signals. SPA shows great potential for molecular imaging with ultrasensitive detection of targeted gold coated nanoemulsions and cavitation-assisted theranostic approaches. PMID:25893170
Sensitive ultrasonic vibrometer for very low frequency applications.
Cretin, B; Vairac, P; Jachez, N; Pergaud, J
2007-08-01
Ultrasonic measurement of distance is a well-known low cost method but only a few vibrometers have been developed because sensitivity, spatial resolution, and bandwidth are not high or wide enough for standard laboratory applications. Nevertheless, compared to optical vibrometers, two interesting properties should be considered: very low frequency noise (0.1 Hz to 1 kHz) is reduced and the long wavelength enables rough surfaces to be investigated. Moreover, the ultrasonic probe is a differential sensor, without being a mechanical load for the vibrating structure as usual accelerometers based on contacting transducers are. The main specificity of the presented probe is its ultralow noise electronics including a 3/2 order phase locked loop which extracts the phase modulation related to the amplitude of the detected vibration. This article presents the main useful physical aspects and details of the actual probe. The given application is the measurement of the vibration of an isolated optical bench excited at very low frequency with an electromagnetic transducer.
Gagliardi, Assunta; Lamboglia, Egidio; Bianchi, Laura; Landi, Claudia; Armini, Alessandro; Ciolfi, Silvia; Bini, Luca; Marri, Laura
2016-03-01
The aim of this work was the functional and proteomic analysis of a mutant, W3110 Bgl(+) /10, isolated from a batch culture of an Escherichia coli K-12 strain maintained at room temperature without addition of nutrients for 10 years. When the mutant was evaluated in competition experiments in co-culture with the wild-type, it exhibited the growth advantage in stationary phase (GASP) phenotype. Proteomes of the GASP mutant and its parental strain were compared by using a 2DE coupled with MS approach. Several differentially expressed proteins were detected and many of them were successful identified by mass spectrometry. Identified expression-changing proteins were grouped into three functional categories: metabolism, protein synthesis, chaperone and stress responsive proteins. Among them, the prevalence was ascribable to the "metabolism" group (72%) for the GASP mutant, and to "chaperones and stress responsive proteins" group for the parental strain (48%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The 2nd phase of the LEANDRE program: Water-vapor DIAL measurement
NASA Technical Reports Server (NTRS)
Quaglia, P.; Bruneau, D.; Pelon, J.
1992-01-01
As a follow-on of the backscattered lidar, a differential absorption lidar (LEANDRE 2) is now being developed as part of the LEANDRE program for airborne meteorological studies. The primary measurement objective of LEANDRE 2 is water vapor. Pressure and temperature measurements are aimed at a second stage. The goals are to obtain a horizontal resolution of a few hundred meters for a vertical resolution of less than a hundred meters, with an absolute accuracy of 10 percent for humidity measurement. As compatibility is an important feature between the 2 first phases of LEANDRE, most of the LEANDRE 1 sub-system will be used and adapted for LEANDRE 2. For example, detection electronics, central computer, detectors and telescope will be the same. However, important modifications have to be done on the laser source, and spectral control has to be added. Most of the work is thus devoted to those developments, and the status is presented here.
NASA Astrophysics Data System (ADS)
Crosetto, M.; Budillon, A.; Johnsy, A.; Schirinzi, G.; Devanthéry, N.; Monserrat, O.; Cuevas-González, M.
2018-04-01
A lot of research and development has been devoted to the exploitation of satellite SAR images for deformation measurement and monitoring purposes since Differential Interferometric Synthetic Apertura Radar (InSAR) was first described in 1989. In this work, we consider two main classes of advanced DInSAR techniques: Persistent Scatterer Interferometry and Tomographic SAR. Both techniques make use of multiple SAR images acquired over the same site and advanced procedures to separate the deformation component from the other phase components, such as the residual topographic component, the atmospheric component, the thermal expansion component and the phase noise. TomoSAR offers the advantage of detecting either single scatterers presenting stable proprieties over time (Persistent Scatterers) and multiple scatterers interfering within the same range-azimuth resolution cell, a significant improvement for urban areas monitoring. This paper addresses a preliminary inter-comparison of the results of both techniques, for a test site located in the metropolitan area of Barcelona (Spain), where interferometric Sentinel-1 data were analysed.
From SED HI concept to Pleiades FM detection unit measurements
NASA Astrophysics Data System (ADS)
Renard, Christophe; Dantes, Didier; Neveu, Claude; Lamard, Jean-Luc; Oudinot, Matthieu; Materne, Alex
2017-11-01
The first flight model PLEIADES high resolution instrument under Thales Alenia Space development, on behalf of CNES, is currently in integration and test phases. Based on the SED HI detection unit concept, PLEIADES detection unit has been fully qualified before the integration at telescope level. The main radiometric performances have been measured on engineering and first flight models. This paper presents the results of performances obtained on the both models. After a recall of the SED HI concept, the design and performances of the main elements (charge coupled detectors, focal plane and video processing unit), detection unit radiometric performances are presented and compared to the instrument specifications for the panchromatic and multispectral bands. The performances treated are the following: - video signal characteristics, - dark signal level and dark signal non uniformity, - photo-response non uniformity, - non linearity and differential non linearity, - temporal and spatial noises regarding system definitions PLEIADES detection unit allows tuning of different functions: reference and sampling time positioning, anti-blooming level, gain value, TDI line number. These parameters are presented with their associated criteria of optimisation to achieve system radiometric performances and their sensitivities on radiometric performances. All the results of the measurements performed by Thales Alenia Space on the PLEIADES detection units demonstrate the high potential of the SED HI concept for Earth high resolution observation system allowing optimised performances at instrument and satellite levels.
USDA-ARS?s Scientific Manuscript database
A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G, Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay w...
ERIC Educational Resources Information Center
Drabinová, Adéla; Martinková, Patrícia
2017-01-01
In this article we present a general approach not relying on item response theory models (non-IRT) to detect differential item functioning (DIF) in dichotomous items with presence of guessing. The proposed nonlinear regression (NLR) procedure for DIF detection is an extension of method based on logistic regression. As a non-IRT approach, NLR can…
Differential surface stress sensor for detection of chemical and biological species
NASA Astrophysics Data System (ADS)
Kang, K.; Nilsen-Hamilton, M.; Shrotriya, P.
2008-10-01
We report a sensor consisting of two micromachined cantilevers (a sensing/reference pair) that is suitable for detection of chemical and biological species. The sensing strategy involves coating the sensing cantilever with receptors that have high affinities for the analyte. The presence of analyte is detected by determining the differential surface stress associated with its adsorption/absorption to the sensing cantilever. An interferometric technique is utilized to measure the differential bending of the sensing cantilever with respect to reference. Surface stress associated with hybridization of single stranded DNA is measured to demonstrate the unique advantages of the sensor.
Li, Qiuhong; Hutchins, Andrew P; Chen, Yong; Li, Shengbiao; Shan, Yongli; Liao, Baojian; Zheng, Dejin; Shi, Xi; Li, Yinxiong; Chan, Wai-Yee; Pan, Guangjin; Wei, Shicheng; Shu, Xiaodong; Pei, Duanqing
2017-05-03
Reprogramming has been shown to involve EMT-MET; however, its role in cell differentiation is unclear. We report here that in vitro differentiation of hESCs to hepatic lineage undergoes a sequential EMT-MET with an obligatory intermediate mesenchymal phase. Gene expression analysis reveals that Activin A-induced formation of definitive endoderm (DE) accompanies a synchronous EMT mediated by autocrine TGFβ signalling followed by a MET process. Pharmacological inhibition of TGFβ signalling blocks the EMT as well as DE formation. We then identify SNAI1 as the key EMT transcriptional factor required for the specification of DE. Genetic ablation of SNAI1 in hESCs does not affect the maintenance of pluripotency or neural differentiation, but completely disrupts the formation of DE. These results reveal a critical mesenchymal phase during the acquisition of DE, highlighting a role for sequential EMT-METs in both differentiation and reprogramming.
Melting and Vaporization of the 1223 Phase in the System (Tl-Pb-Ba-Sr-Ca-Cu-O)
Cook, L. P.; Wong-Ng, W.; Paranthaman, P.
1996-01-01
The melting and vaporization of the 1223 [(Tl,Pb):(Ba,Sr):Ca:Cu] oxide phase in the system (Tl-Pb-Ba-Sr-Ca-Cu-O) have been investigated using a combination of dynamic methods (differential thermal analysis, thermogravimetry, effusion) and post-quenching characterization techniques (powder x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectrometry). Vaporization rates, thermal events, and melt compositions were followed as a function of thallia loss from a 1223 stoichiometry. Melting and vaporization equilibria of the 1223 phase are complex, with as many as seven phases participating simultaneously. At a total pressure of 0.1 MPa the 1223 phase was found to melt completely at (980 ± 5) °C in oxygen, at a thallia partial pressure (pTl2O) of (4.6 ± 0.5) kPa, where the quoted uncertainties are standard uncertainties, i.e., 1 estimated standard deviation. The melting reaction involves five other solids and a liquid, nominally as follows: 1223→1212+(Ca,Sr)2CuO3+(Sr,Ca)CuO2+BaPbO3+(Ca,Sr)O+Liquid Stoichiometries of the participating phases have been determined from microchemical analysis, and substantial elemental substitution on the 1212 and 1223 crystallographic sites is indicated. The 1223 phase occurs in equilibrium with liquids from its melting point down to at least 935 °C. The composition of the lowest melting liquid detected for the bulk compositions of this study has been measured using microchemical analysis. Applications to the processing of superconducting wires and tapes are discussed. PMID:27805086
Novel characterization of the aerosol and gas-phase composition of aerosolized jet fuel.
Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W
2010-04-01
Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels. Aerosol composition and concentrations were calculated from the differential between measured total (aerosol and gas-phase) and measured gas-phase concentrations. Total samples were collected directly, whereas gas-phase only samples were collected behind a glass fiber filter to remove droplets. All samples were collected for 1 min at 400 ml min(-1) and quantified using thermal desorption-gas chromatography-mass spectrometry. This method was validated for the quantification of the vapor and droplet content from 4-h aerosolized jet fuel exposure to JP-8 and S-8 at total concentrations ranging from 200 to 1000 mg/m(3). Paired samples (gas-phase only and total) were collected every approximately 40 min. Calibrations were performed with neat fuel to calculate total concentration and also with a series of authentic standards to calculate specific compound concentrations. Accuracy was good when compared to an online GC-FID (gas chromatography-flame ionization detection) technique. Variability was 15% or less for total concentrations, the sum of all gas-phase compounds, and for most specific compound concentrations in both phases. Although validated for jet fuels, this method can be adapted to other hydrocarbon-based mixtures.
Single grating x-ray imaging for dynamic biological systems
NASA Astrophysics Data System (ADS)
Morgan, Kaye S.; Paganin, David M.; Parsons, David W.; Donnelley, Martin; Yagi, Naoto; Uesugi, Kentaro; Suzuki, Yoshio; Takeuchi, Akihisa; Siu, Karen K. W.
2012-07-01
Biomedical studies are already benefiting from the excellent contrast offered by phase contrast x-ray imaging, but live imaging work presents several challenges. Living samples make it particularly difficult to achieve high resolution, sensitive phase contrast images, as exposures must be short and cannot be repeated. We therefore present a single-exposure, high-flux method of differential phase contrast imaging [1, 2, 3] in the context of imaging live airways for Cystic Fibrosis (CF) treatment assessment [4]. The CF study seeks to non-invasively observe the liquid lining the airways, which should increase in depth in response to effective treatments. Both high spatial resolution and sensitivity are required in order to track micron size changes in a liquid that is not easily differentiated from the tissue on which it lies. Our imaging method achieves these goals by using a single attenuation grating or grid as a reference pattern, and analyzing how the sample deforms the pattern to quantitatively retrieve the phase depth of the sample. The deformations are mapped at each pixel in the image using local cross-correlations comparing each 'sample and pattern' image with a reference 'pattern only' image taken before the sample is introduced. This produces a differential phase image, which may be integrated to give the sample phase depth.
Meng, Mei; Jiang, Jun Mei; Liu, Hui; In, Cheng Yong; Zhu, Ju Ren
2005-01-01
To explore the effects of sodium phenylbutyrate on the proliferation, differentiation, cell cycle arrest and induction of the P(21WAF1/CIP1) anti-oncogene in human liver carcinoma cell lines Bel-7402 and HepG2. Bel-7402 and HepG2 human liver carcinoma cells were treated with sodium phenylbutyrate at different concentrations. Light microscopy was used to observe morphological changes in the carcinoma cells. Effects on the cell cycle were detected by using flow cytometry. P(21WAF1/CIP1) expression was determined by both reverse transcription-polymerase chain reaction and western blotting. Statistical analysis was performed by using one-way anova and Student's t-test. Sodium phenylbutyrate treatment caused time- and dose-dependent growth inhibition of Bel-7402 and HepG2 cells. This treatment also caused a decline in the proportion of S-phase cells and an increase in the proportion of G(0)/G(1) cells. Sodium phenylbutyrate increased the expression of P(21WAF1/CIP1). Sodium phenylbutyrate inhibits the proliferation of human liver carcinoma cells Bel-7402 and HepG2, induces partial differentiation, and increases the expression of P(21WAF1/CIP1).
Glycan reductive isotope labeling for quantitative glycomics.
Xia, Baoyun; Feasley, Christa L; Sachdev, Goverdhan P; Smith, David F; Cummings, Richard D
2009-04-15
Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed glycan reductive isotope labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [(12)C(6)]aniline and [(13)C(6)]aniline. These dual-labeled aniline-tagged glycans can be recovered by reverse-phase chromatography and can be quantified based on ultraviolet (UV) absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins, using this method. This technique allows linear relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of glycomics.
GLYCAN REDUCTIVE ISOTOPE LABELING (GRIL) FOR QUANTITATIVE GLYCOMICS
Xia, Baoyun; Feasley, Christa L.; Sachdev, Goverdhan P.; Smith, David F.; Cummings, Richard D.
2009-01-01
Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed Glycan Reductive Isotope Labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [12C6]-aniline and [13C6]-aniline. These dual-labeled aniline-tagged glycans can be recovered by reversed-phase chromatography and quantified based on UV-absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins using this method. This technique allows for linear, relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of Glycomics. PMID:19454239
Water-Rock Differentiation of Icy Bodies by Darcy law, Stokes law, and Two-Phase Flow
NASA Astrophysics Data System (ADS)
Neumann, Wladimir; Breuer, Doris; Spohn, Tilman
2016-10-01
The early Solar system produced a variety of bodies with different properties. Among the small bodies, objects that contain notable amounts of water ice are of particular interest. Water-rock separation on such worlds is probable and has been confirmed in some cases. We couple accretion and water-rock separation in a numerical model. The model is applicable to Ceres, icy satellites, and Kuiper belt objects, and is suited to assess the thermal metamorphism of the interior and the present-day internal structures. The relative amount of ice determines the differentiation regime according to porous flow or Stokes flow. Porous flow considers differentiation in a rock matrix with a small degree of ice melting and is typically modelled either with the Darcy law or two-phase flow. We find that for small icy bodies two-phase flow differs from the Darcy law. Velocities derived from two-phase flow are at least one order of magnitude smaller than Darcy velocities. The latter do not account for the matrix resistance against the deformation and overestimate the separation velocity. In the Stokes regime that should be used for large ice fractions, differentiation is at least four orders of magnitude faster than porous flow with the parameters used here.
Chemical contamination remote sensing
NASA Technical Reports Server (NTRS)
Carrico, J. P.; Phelps, K. R.; Webb, E. N.; Mackay, R. A.; Murray, E. R.
1986-01-01
A ground mobile laser test bed system was assembled to assess the feasibility of detection of various types of chemical contamination using Differential Scattering (DISC) and Differential Absorption (DIAL) Lidar techniques. Field experiments with the test bed system using chemical simulants were performed. Topographic reflection and range resolved DIAL detection of vapors as well as DISC detection of aerosols and surface contamination were achieved. Review of detection principles, design of the test bed system, and results of the experiments are discussed.
Moroncini, Francesca; Mazzoni, Serena; Belicchi, Marzia Laura Chiara; Villa, Chiara; Erratico, Silvia; Colombo, Elena; Calcaterra, Francesca; Brambilla, Lucia; Torrente, Yvan; Albertini, Gianni; Della Bella, Silvia
2014-01-01
Spatiotemporal interactions play important roles in tissue development and function, especially in stem cell-seeded bioscaffolds. Cells interact with the surface of bioscaffold polymers and influence material-driven control of cell differentiation. In vitro cultures of different human progenitor cells, that is, endothelial colony-forming cells (ECFCs) from a healthy control and a patient with Kaposi sarcoma (an angioproliferative disease) and human CD133+ muscle-derived stem cells (MSH 133+ cells), were seeded onto polyglycolic acid–polylactic acid scaffolds. Three-dimensional (3D) images were obtained by X-ray phase-contrast microtomography (micro-CT) and processed with the Modified Bronnikov Algorithm. The method enabled high spatial resolution detection of the 3D structural organization of cells on the bioscaffold and evaluation of the way and rate at which cells modified the construct at different time points from seeding. The different cell types displayed significant differences in the proliferation rate. In conclusion, X-ray synchrotron radiation phase-contrast micro-CT analysis proved to be a useful and sensitive tool to investigate the spatiotemporal pattern of progenitor cell organization on a bioscaffold. PMID:23879738
NASA Technical Reports Server (NTRS)
1973-01-01
An analysis of Very Low Frequency propagation in the atmosphere in the 10-14 kHz range leads to a discussion of some of the more significant causes of phase perturbation. The method of generating sky-wave corrections to predict the Omega phase is discussed. Composite Omega is considered as a means of lane identification and of reducing Omega navigation error. A simple technique for generating trapezoidal model (T-model) phase prediction is presented and compared with the Navy predictions and actual phase measurements. The T-model prediction analysis illustrates the ability to account for the major phase shift created by the diurnal effects on the lower ionosphere. An analysis of the Navy sky-wave correction table is used to provide information about spatial and temporal correlation of phase correction relative to the differential mode of operation.
Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.
Kang, Dongyel; Kupinski, Matthew A
2011-06-20
We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.
Morsczeck, C
2006-02-01
Recently, osteogenic precursor cells were isolated from human dental follicles, which differentiate into cementoblast- or osteoblast- like cells under in vitro conditions. However, mechanisms for osteogenic differentiation are not known in detail. Dental follicle cell long-term cultures supplemented with dexamethasone or with insulin resulted in mineralized nodules, whereas no mineralization or alkaline phosphatase activity was detected in the control culture without an osteogenic stimulus. A real-time reverse-transcriptase polymerase chain reaction (PCR) analysis was developed to investigate gene expression during osteogenic differentiation in vitro. Expression of the alkaline phosphatase (ALP) gene was detected during differentiation in the control culture and was similar to that in cultures with dexamethasone and insulin. DLX-3, DLX-5, runx2, and MSX-2 are differentially expressed during osteogenic differentiation in bone marrow mesenchymal stem cells. In dental follicle cells, gene expression of runx2, DLX-5, and MSX-2 was unaffected during osteogenic differentiation in vitro. Osteogenic differentiation appeared to be independent of MSX-2 expression; the same was true of runx2 and DLX-5, which were protagonists of osteogenic differentiation and osteocalcin promoter activity in bone marrow mesenchymal stem cells. Like in bone marrow-derived stem cells, DLX-3 gene expression was increased in dental follicle cells during osteogenic differentiation but similar to control cultures. However, gene expression of osterix was not detected in dental follicle cells during osteogenic differentiation; this gene is expressed during osteogenic differentiation in bone marrow stem cells. These real-time PCR results display molecular mechanisms in dental follicle precursor cells during osteogenic differentiation that are different from those in bone marrow-derived mesenchymal stem cells.
Is Domain Highlighting Actually Helpful in Identifying Phishing Web Pages?
Xiong, Aiping; Proctor, Robert W; Yang, Weining; Li, Ninghui
2017-06-01
To evaluate the effectiveness of domain highlighting in helping users identify whether Web pages are legitimate or spurious. As a component of the URL, a domain name can be overlooked. Consequently, browsers highlight the domain name to help users identify which Web site they are visiting. Nevertheless, few studies have assessed the effectiveness of domain highlighting, and the only formal study confounded highlighting with instructions to look at the address bar. We conducted two phishing detection experiments. Experiment 1 was run online: Participants judged the legitimacy of Web pages in two phases. In Phase 1, participants were to judge the legitimacy based on any information on the Web page, whereas in Phase 2, they were to focus on the address bar. Whether the domain was highlighted was also varied. Experiment 2 was conducted similarly but with participants in a laboratory setting, which allowed tracking of fixations. Participants differentiated the legitimate and fraudulent Web pages better than chance. There was some benefit of attending to the address bar, but domain highlighting did not provide effective protection against phishing attacks. Analysis of eye-gaze fixation measures was in agreement with the task performance, but heat-map results revealed that participants' visual attention was attracted by the highlighted domains. Failure to detect many fraudulent Web pages even when the domain was highlighted implies that users lacked knowledge of Web page security cues or how to use those cues. Potential applications include development of phishing prevention training incorporating domain highlighting with other methods to help users identify phishing Web pages.
2012-01-01
Background Fascioliasis is an often-neglected zoonotic disease and currently is an emerging infection in Iraq. Fascioliasis has two distinct phases, an acute phase, exhibiting the hepatic migratory stage of the fluke’s life cycle, and a chronic biliary phase manifested with the presence of the parasite in the bile ducts through hepatic tissue. The incidence of Fascioliasis in Sulaimaniyah governorate was unexpected observation. We believe that shedding light on this disease in our locality will increase our physician awareness and experience in early detection, treatment in order to avoid unnecessary surgeries. Findings We retrospectively evaluated this disease in terms of the demographic features, clinical presentations, and managements by reviewing the medical records of 18 patients, who were admitted to the Sulaimani Teaching Hospital and Kurdistan Centre for Gastroenterology and Hepatology. Patients were complained from hepatobiliary and/or upper gastrointestinal symptoms and diagnosed accidentally with Fascioliasis during hepatobiliary surgeries and ERCP by direct visualization of the flukes and stone analysis. Elevated liver enzymes, white blood cells count and eosinophilia were notable laboratory indices. The dilated CBD, gallstones, liver cysts and abscess were found common in radiological images. Fascioliasis diagnosed during conventional surgical CBD exploration and choledochodoudenostomy, open cholecystectomy, surgical drainage of liver abscess, ERCP and during gallstone analysis. Conclusion Fascioliasis is indeed an emerging disease in our locality, but it is often underestimated and ignored. We recommend the differential diagnosis of patients suffering from Rt. Hypochondrial pain, fever and eosinophilia. The watercress ingestion was a common factor in patient’s history. PMID:23259859
Defect imaging in composite structures
NASA Astrophysics Data System (ADS)
Fromme, Paul; Endrizzi, Marco; Olivo, Alessandro
2018-04-01
Carbon fiber laminate composites offer advantages including a good strength to weight ratio for aerospace structures. However, manufacturing imperfections and impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Incorrect ply lay-up during the manufacturing process can result in fiber misalignment or in-plane and out-of-plane waviness. Impact, such as bird strike, during the service life can lead to delamination and cracking, reducing the load carrying capacity of the structure. Both ultrasonic and X-ray techniques have a good track record for the nondestructive testing of composite structures; for the latter, phase-based approaches provide additional advantages due to their enhanced sensitivity. Bulk and guided ultrasonic waves propagating in the composite panel were employed for defect imaging. Ultrasonic immersion C-scans of a composite panel with barely visible impact damage were taken to characterize the size and shape of damage (delamination). The first antisymmetric A0 Lamb wave mode was excited experimentally using piezoelectric transducers and measured using a laser vibrometer. X-ray phase-contrast and dark field imaging, implemented through the edge-illumination (EI) approach, were used for the detailed visualization of the damages in the composite material. The Edge-illumination approach is multi-modal and provides three representations of the sample: absorption, differential phase and dark-field. The latter is of particular interest to detect cracks and voids of dimensions that are smaller than the actual spatial resolution of the imaging system. Application examples for carbon fiber composite plates with barely visible impact damage are shown.
Zhao, Chungui; Zhang, Yi; Chan, Zhuhua; Chen, Shicheng; Yang, Suping
2015-01-01
Arsenic (As) is widespread in the environment and causes numerous health problems. Rhodopseudomonas palustris has been regarded as a good model organism for studying arsenic detoxification since it was first demonstrated to methylate environmental arsenic by conversion to soluble or gaseous methylated species. However, the detailed arsenic resistance mechanisms remain unknown though there are at least three arsenic-resistance operons (ars1, ars2, and ars3) in R. palustris. In this study, we investigated how arsenic multi-operons contributed to arsenic detoxification in R. palustris. The expression of ars2 or ars3 operons increased with increasing environmental arsenite (As(III)) concentrations (up to 1.0 mM) while transcript of ars1 operon was not detected in the middle log-phase (55 h). ars2 operon was actively expressed even at the low concentration of As(III) (0.01 μM), whereas the ars3 operon was expressed at 1.0 μM of As(III), indicating that there was a differential regulation mechanism for the three arsenic operons. Furthermore, ars2 and ars3 operons were maximally transcribed in the early log-phase where ars2 operon was 5.4-fold higher than that of ars3 operon. A low level of ars1 transcript was only detected at 43 h (early log-phase). Arsenic speciation analysis demonstrated that R. palustris could reduce As(V) to As(III). Collectively, strain CGA009 detoxified arsenic by using arsenic reduction and methylating arsenic mechanism, while the latter might occur with the presence of higher concentrations of arsenic. PMID:26441915
Hoenicka, Hans; Lehnhardt, Denise; Nunna, Suneetha; Reinhardt, Richard; Jeltsch, Albert; Briones, Valentina; Fladung, Matthias
2016-02-01
Differentiation level but not transgene copy number influenced activation of a gene containment system in poplar. Heat treatments promoted CRE gene body methylation. The flower-specific transgene deletion was confirmed. Gene flow between genetic modified trees and their wild relatives is still motive of concern. Therefore, approaches for gene containment are required. In this study, we designed a novel strategy for achieving an inducible and flower-specific transgene removal from poplar trees but still expressing the transgene in the plant body. Hence, pollen carrying transgenes could be used for breeding purposes under controlled conditions in a first phase, and in the second phase genetic modified poplars developing transgene-free pollen grains could be released. This approach is based on the recombination systems CRE/loxP and FLP/frt. Both gene constructs contained a heat-inducible CRE/loxP-based spacer sequence for in vivo assembling of the flower-specific FLP/frt system. This allowed inducible activation of gene containment. The FLP/frt system was under the regulation of a flower-specific promoter, either CGPDHC or PTD. Our results confirmed complete CRE/loxP-based in vivo assembling of the flower-specific transgene excision system after heat treatment in all cells for up to 30 % of regenerants derived from undifferentiated tissue cultures. Degradation of HSP::CRE/loxP spacer after recombination but also persistence as extrachromosomal DNA circles were detected in sub-lines obtained after heat treatments. Furthermore, heat treatment promoted methylation of the CRE gene body. A lower methylation level was detected at CpG sites in transgenic sub-lines showing complete CRE/loxP recombination and persistence of CRE/loxP spacer, compared to sub-lines with incomplete recombination. However, our results suggest that low methylation might be necessary but not sufficient for recombination. The flower-specific FLP/frt-based transgene deletion was confirmed in 6.3 % of flowers.
2012-01-01
Background RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Results Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. Conclusions This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates. PMID:22985019
Robles, José A; Qureshi, Sumaira E; Stephen, Stuart J; Wilson, Susan R; Burden, Conrad J; Taylor, Jennifer M
2012-09-17
RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates.
Richards, K S; Arme, C
1984-12-01
A series of development stages (I-XI) have been devised to describe the development of the cyst wall of the metacestode of Hymenolepis diminuta. The cyst wall possesses tegumentary, muscular, fibrous and inner cyst tissues, the developmental rates and differentiation patterns of which are not identical. The tegumentary tissue differentiates posteriorly. Its microvillus-bearing distal cytoplasm remains simple until scolex retraction, after which rapid increase in depth followed by vacuolation occurs and basal membrane infoldings surround Phase 3 fibrogenesis fibrils. Senescence, which also affects the tegumentary cytons, then ensues. The muscle system development is posteriad and maturation, completed before scolex retraction, is followed by myocyton senescence. Posteriorly differentiated fibroblasts commence Phase 1 fibrogenesis after scolex retraction and the primary fibrous zone is fully established within approximately 6 days. Phase 2 and 3 fibrogenesis develop centrifugally, the fibrils of Phase 2 surrounding the tegumentary cytons and myocytons prior to their senescence, and those of Phase 3 lying more peripherally. The inner cyst tissue, established posteriorly, differentiates anteriorly, centripetally and early, the penultimate stage commencing just before scolex retraction, about 6 days after which the final maturation junctional complexes start development. Neither in vitro excystment nor infectivity of the definitive host can be satisfactorily achieved before the initial development of the primary fibrous zone. This may play a skeletal role during excystment, and is shown to be unaffected by the digestive enzymes which cause loss of cytoplasmic integrity in the outer regions of the cyst.
Triple-phase helical computed tomography in dogs with solid splenic masses
KUTARA, Kenji; SEKI, Mamiko; ISHIGAKI, Kumiko; TESHIMA, Kenji; ISHIKAWA, Chieko; KAGAWA, Yumiko; EDAMURA, Kazuya; NAKAYAMA, Tomohiro; ASANO, Kazushi
2017-01-01
We investigated the utility of triple-phase helical computed tomography (CT) in differentiating between benign and malignant splenic masses in dogs. Forty-two dogs with primary splenic masses underwent triple-phase helical CT scanning (before administration of contrast, and in the arterial phase, portal venous phase, and delayed phase) prior to splenectomy. Tissue specimens were sent for pathological diagnosis; these included hematomas (n=14), nodular hyperplasias (n=12), hemangiosarcomas (n=11), and undifferentiated sarcomas (n=5). The CT findings were compared with the histological findings. Nodular hyperplasia significantly displayed a homogeneous normal enhancement pattern in all phases. Hemangiosarcoma displayed 2 significant contrast-enhancement patterns, including a homogeneous pattern of poor enhancement in all phases, and a heterogeneous remarkable enhancement pattern in the arterial and portal venous phases. Hematoma and undifferentiated sarcoma displayed a heterogeneous normal enhancement pattern in all phases. The contrast-enhanced volumetric ratios of hematoma tended to be greater than those of undifferentiated sarcoma. Our study demonstrated that the characteristic findings on triple-phase helical CT could be useful for the preoperative differentiation of hematoma, nodular hyperplasia, hemangiosarcoma, and undifferentiated sarcoma in dogs. Triple-phase helical CT may be a useful diagnostic tool in dogs with splenic masses. PMID:28993600
Interactions between Genetic and Ecological Effects on the Evolution of Life Cycles.
Rescan, Marie; Lenormand, Thomas; Roze, Denis
2016-01-01
Sexual reproduction leads to an alternation between haploid and diploid phases, whose relative length varies widely across taxa. Previous genetical models showed that diploid or haploid life cycles may be favored, depending on dominance interactions and on effective recombination rates. By contrast, niche differentiation between haploids and diploids may favor biphasic life cycles, in which development occurs in both phases. In this article, we explore the interplay between genetical and ecological factors, assuming that deleterious mutations affect the competitivity of individuals within their ecological niche and allowing different effects of mutations in haploids and diploids (including antagonistic selection). We show that selection on a modifier gene affecting the relative length of both phases can be decomposed into a direct selection term favoring the phase with the highest mean fitness (due to either ecological differences or differential effects of mutations) and an indirect selection term favoring the phase in which selection is more efficient. When deleterious alleles occur at many loci and in the presence of ecological differentiation between haploids and diploids, evolutionary branching often occurs and leads to the stable coexistence of alleles coding for haploid and diploid cycles, while temporal variations in niche sizes may stabilize biphasic cycles.
Zhamanbaeva, G T; Murzakhmetova, M K; Tuleukhanov, S T; Danilenko, M P
2014-12-01
We studied the effects of ethanol extract from Hippophae rhamnoides L. leaves on the growth and differentiation of human acute myeloid leukemia cells (KG-1a, HL60, and U937). The extract of Hippophae rhamnoides L. leaves inhibited cell growth depending on the cell strain and extract dose. In a high concentration (100 μg/ml), the extract also exhibited a cytotoxic effect on HL60 cells. Hippophae rhamnoides L. leaves extract did not affect cell differentiation and did not modify the differentiating effect of calcitriol, active vitamin D metabolite. Inhibition of cell proliferation was paralleled by paradoxical accumulation of phase S cells (synthetic phase) with a reciprocal decrease in the count of G1 cells (presynthetic phase). The extract in a concentration of 100 μg/ml induced the appearance of cells with a subdiploid DNA content (sub-G1 phase cells), which indicated induction of apoptosis. The antiproliferative effect of Hippophae rhamnoides L. extract on acute myeloid leukemia cells was at least partially determined by activation of the S phase checkpoint, which probably led to deceleration of the cell cycle and apoptosis induction.