Sample records for differential reflectance microscope

  1. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope.

    PubMed

    Maitland, Kristen C; Gillenwater, Ann M; Williams, Michelle D; El-Naggar, Adel K; Descour, Michael R; Richards-Kortum, Rebecca R

    2008-11-01

    The purpose of this study was to determine whether in vivo images of oral mucosa obtained with a fiber optic confocal reflectance microscope could be used to differentiate normal and neoplastic tissues. We imaged 20 oral sites in eight patients undergoing surgery for squamous cell carcinoma. Normal and abnormal areas within the oral cavity were identified clinically, and real-time videos of each site were obtained in vivo using a fiber optic confocal reflectance microscope. Following imaging, each site was biopsied and submitted for histopathologic examination. We identified distinct features, such as nuclear irregularity and spacing, which can be used to qualitatively differentiate between normal and abnormal tissue. Representative confocal images of normal, pre-neoplastic, and neoplastic oral tissue are presented. Previous work using much larger microscopes has demonstrated the ability of confocal reflectance microscopy to image cellular and tissue architecture in situ. New advances in technology have enabled miniaturization of imaging systems for in vivo use.

  2. Quantitative surface topography determination by Nomarski reflection microscopy. 2: Microscope modification, calibration, and planar sample experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J.S.; Gordon, R.L.; Lessor, D.L.

    1980-09-01

    The application of reflective Nomarski differential interference contrast microscopy for the determination of quantitative sample topography data is presented. The discussion includes a review of key theoretical results presented previously plus the experimental implementation of the concepts using a commercial Momarski microscope. The experimental work included the modification and characterization of a commercial microscope to allow its use for obtaining quantitative sample topography data. System usage for the measurement of slopes on flat planar samples is also discussed. The discussion has been designed to provide the theoretical basis, a physical insight, and a cookbook procedure for implementation to allow thesemore » results to be of value to both those interested in the microscope theory and its practical usage in the metallography laboratory.« less

  3. Interference Confocal Microscope Integrated with Spatial Phase Shifter.

    PubMed

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-08-24

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.

  4. Multispectral detection of cutaneous lesions using spectroscopy and microscopy approaches

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Genova-Hristova, Ts.; Troyanova, P.; Pavlova, E.; Terziev, I.; Semyachkina-Glushkovskaya, O.; Lomova, M.; Genina, E.; Stanciu, G.; Tranca, D.; Avramov, L.

    2018-02-01

    Autofluorescence, diffuse-reflectance and transmission spectral, and microscopic measurements were made on different cutaneous neoplastic lesions, namely basal cell carcinoma, squamous cell carcinoma, malignant melanoma, and dysplastic and benign lesions related. Spectroscopic measurements were made on ex vivo tissue samples, and confocal microscopy investigations were made on thin tissue slices. Fluorescence spectra obtained reveal statistically significant differences between the different benign, dysplastic and malignant lesions by the level of emission intensity, as well by spectral shape, which are fingerprints applicable for differentiation algorithms. In reflectance mode the most significant differences are related to the influence of skin pigments - melanin and hemoglobin. Transmission spectroscopy mode gave complementary optical properties information about the tissue samples investigated to that one of reflectance and absorption spectroscopy. Using autofluorescence detection of skin lesions we obtain very good diagnostic performance for distinguishing of nonmelanoma lesions. Using diffuse reflectance and transmission spectroscopy we obtain significant tool for pigmented pathologies differentiation, but it is a tool with moderate sensitivity for non-melanoma lesions detection. One could rapidly increase the diagnostic accuracy of the received combined "optical biopsy" method when several spectral detection techniques are applied in common algorithm for lesions' differentiation. Specific spectral features observed in each type of lesion investigated on micro and macro level would be presented and discussed. Correlation between the spectral data received and the microscopic features observed would be discussed in the report.

  5. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes.

    PubMed

    Ishmukhametov, Robert R; Russell, Aidan N; Wheeler, Richard J; Nord, Ashley L; Berry, Richard M

    2016-02-08

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  6. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes

    NASA Astrophysics Data System (ADS)

    Ishmukhametov, Robert R.; Russell, Aidan N.; Wheeler, Richard J.; Nord, Ashley L.; Berry, Richard M.

    2016-02-01

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  7. Simple fiber-optic confocal microscopy with nanoscale depth resolution beyond the diffraction barrier.

    PubMed

    Ilev, Ilko; Waynant, Ronald; Gannot, Israel; Gandjbakhche, Amir

    2007-09-01

    A novel fiber-optic confocal approach for ultrahigh depth-resolution (

  8. Wide-field high spatial frequency domain imaging of tissue microstructure

    NASA Astrophysics Data System (ADS)

    Lin, Weihao; Zeng, Bixin; Cao, Zili; Zhu, Danfeng; Xu, M.

    2018-02-01

    Wide-field tissue imaging is usually not capable of resolving tissue microstructure. We present High Spatial Frequency Domain Imaging (HSFDI) - a noncontact imaging modality that spatially maps the tissue microscopic scattering structures over a large field of view. Based on an analytical reflectance model of sub-diffusive light from forward-peaked highly scattering media, HSFDI quantifies the spatially-resolved parameters of the light scattering phase function from the reflectance of structured light modulated at high spatial frequencies. We have demonstrated with ex vivo cancerous tissue to validate the robustness of HSFDI in significant contrast and differentiation of the microstructutral parameters between different types and disease states of tissue.

  9. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  10. Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy.

    PubMed

    Jiang, Shihong; Walker, John

    2010-01-20

    We report a differential fluorescence speckle confocal microscope that acquires an image in a fraction of a second by exploiting the very high frame rate of modern digital micromirror devices (DMDs). The DMD projects a sequence of predefined binary speckle patterns to the sample and modulates the intensity of the returning fluorescent light simultaneously. The fluorescent light reflecting from the DMD's "on" and "off" pixels is modulated by correlated speckle and anticorrelated speckle, respectively, to form two images on two CCD cameras in parallel. The sum of the two images recovers a widefield image, but their difference gives a near-confocal image in real time. Experimental results for both low and high numerical apertures are shown.

  11. Quantitative surface topography determination by Nomarski reflection microscopy I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lessor, D.L.; Hartman, J.S.; Gordon, R.L.

    1979-02-01

    The Nomarksi differential interference contrast microscope is examined as a tool for determination of metallic mirror surface topography. This discussion includes the development of an optical model for the Nomarski system, an examination of the key results of the model's application to sloped sample surfaces, and recommended procedures for implementation. The functional relationship is developed between image intensity and the component of surface slope along the Nomarski shear direction, the fixed parameters in the Nimarksi system, and the adjustable phase shifts related to Nomarski prism position. Equations are also developed to allow the determination of surface slope from relative imagemore » intensity when sample reflectively is uniform and slopes are small.« less

  12. Phase resolved and coherence gated en face reflection imaging of multilayered embryonal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Fukami, Tadashi; Iwai, Hidenao; Yamashita, Yutaka

    2012-03-01

    Embryonal carcinoma (EC) cells, which are cell lines derived from teratocarcinomas, have characteristics in common with stem cells and differentiate into many kinds of functional cells. Similar to embryonic stem (ES) cells, undifferentiated EC cells form multi-layered spheroids. In order to visualize the three-dimensional structure of multilayered EC cells without labeling, we employed full-field interference microscopy with the aid of a low-coherence quantitative phase microscope, which is a reflection-type interference microscope employing the digital holographic technique with a low-coherent light source. Owing to the low-coherency of the light-source (halogen lamp), only the light reflected from reflective surface at a specific sectioning height generates an interference image on the CCD camera. P19CL6 EC cells, derived from mouse teratocarcinomas, formed spheroids that are about 50 to 200 micrometers in diameter. Since the height of each cell is around 10 micrometers, it is assumed that each spheroid has 5 to 20 cell layers. The P19CL6 spheroids were imaged in an upright configuration and the horizontally sectioned reflection images of the sample were obtained by sequentially and vertically scanning the zero-path-length height. Our results show the threedimensional structure of the spheroids, in which plasma and nuclear membranes were distinguishably imaged. The results imply that our technique is further capable of imaging induced pluripotent stem (iPS) cells for the assessment of cell properties including their pluripotency.

  13. Transportable and vibration-free full-field low-coherent quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Yamada, Hidenao; Goto, Kentaro; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio

    2018-02-01

    We developed a transportable Linnik-type full-field low-coherent quantitative phase microscope that is able to compensate for optical path length (OPL) disturbance due to environmental mechanical noises. Though two-beam interferometers such as Linnik ones suffer from unstable OPL difference, we overcame this problem with a mechanical feedback system based on digital signal-processing that controls the OPL difference in sub-nanometer resolution precisely with a feedback bandwidth of 4 kHz. The developed setup has a footprint of 200 mm by 200 mm, a height of 500 mm, and a weight of 4.5 kilograms. In the transmission imaging mode, cells were cultured on a reflection-enhanced glass-bottom dish, and we obtained interference images sequentially while performing stepwise quarter-wavelength phase-shifting. Real-time image processing, including retrieval of the unwrapped phase from interference images and its background correction, along with the acquisition of interference images, was performed on a laptop computer. Emulation of the phase contrast (PhC) images and the differential interference contrast (DIC) images was also performed in real time. Moreover, our setup was applied for full-field cell membrane imaging in the reflection mode, where the cells were cultured on an anti-reflection (AR)-coated glass-bottom dish. The phase and intensity of the light reflected by the membrane revealed the outer shape of the cells independent of the refractive index. In this paper, we show imaging results on cultured cells in both transmission and reflection modes.

  14. Forensic Hair Differentiation Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    PubMed

    Manheim, Jeremy; Doty, Kyle C; McLaughlin, Gregory; Lednev, Igor K

    2016-07-01

    Hair and fibers are common forms of trace evidence found at crime scenes. The current methodology of microscopic examination of potential hair evidence is absent of statistical measures of performance, and examiner results for identification can be subjective. Here, attenuated total reflection (ATR) Fourier transform-infrared (FT-IR) spectroscopy was used to analyze synthetic fibers and natural hairs of human, cat, and dog origin. Chemometric analysis was used to differentiate hair spectra from the three different species, and to predict unknown hairs to their proper species class, with a high degree of certainty. A species-specific partial least squares discriminant analysis (PLSDA) model was constructed to discriminate human hair from cat and dog hairs. This model was successful in distinguishing between the three classes and, more importantly, all human samples were correctly predicted as human. An external validation resulted in zero false positive and false negative assignments for the human class. From a forensic perspective, this technique would be complementary to microscopic hair examination, and in no way replace it. As such, this methodology is able to provide a statistical measure of confidence to the identification of a sample of human, cat, and dog hair, which was called for in the 2009 National Academy of Sciences report. More importantly, this approach is non-destructive, rapid, can provide reliable results, and requires no sample preparation, making it of ample importance to the field of forensic science. © The Author(s) 2016.

  15. Characterization and identification of microorganisms by FT-IR microspectrometry

    NASA Astrophysics Data System (ADS)

    Ngo-Thi, N. A.; Kirschner, C.; Naumann, D.

    2003-12-01

    We report on a novel FT-IR approach for microbial characterization/identification based on a light microscope coupled to an infrared spectrometer which offers the possibility to acquire IR-spectra of microcolonies containing only few hundred cells. Microcolony samples suitable for FT-IR microspectroscopic measurements were obtained by a replica technique with a stamping device that transfers spatially accurate cells of microcolonies growing on solid culture plates to a special, IR-transparent or reflecting stamping plate. High quality spectra could be recorded either by applying the transmission/absorbance or the reflectance/absorbance mode of the infrared microscope. Signal to noise ratios higher than 1000 were obtained for microcolonies as small as 40 μm in diameter. Reproducibility levels were established that allowed species and strain identification. The differentiation and classification capacity of the FT-IR microscopic technique was tested for different selected microorganisms. Cluster and factor analysis methods were used to evaluate the complex spectral data. Excellent discrimination between bacteria and yeasts, and at the same time Gram-negative and Gram-positive bacterial strains was obtained. Twenty-two selected strains of different species within the genus Staphylococcus were repetitively measured and could be grouped into correct species cluster. Moreover, the results indicated that the method allows also identifications at the subspecies level. Additionally, the new approach allowed spectral mapping analysis of single colonies which provided spatially resolved characterization of growth heterogeneity within complex microbial populations such as colonies.

  16. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  17. Pathology and differential diagnosis of chronic, noninfectious gastritis.

    PubMed

    Polydorides, Alexandros D

    2014-03-01

    The histologic finding of chronic inflammation in an endoscopic mucosal biopsy of the stomach (chronic gastritis) is very common and usually reflects the presence of Helicobacter pylori infection. However, infectious organisms are not always present in biopsy material, and some cases of chronic gastritis do not result from H. pylori infection. Thus, the differential diagnosis of this finding is an important one for pathologists to keep in mind. This review presents the three most common and clinically significant causes of chronic, noninfectious gastritis, namely, autoimmune atrophic gastritis, lymphocytic gastritis, and gastric involvement in the setting of inflammatory bowel disease, especially Crohn disease. For each entity, a brief discussion of its etiology and pathogenesis, a review of the clinical and endoscopic features, and a description of the microscopic findings are presented in the context of the differential diagnosis of chronic gastritis with emphasis on helpful histopathologic hints and long-term sequelae. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Polarimetric discrimination of atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Raman, Prashant; Fuller, Kirk; Gregory, Don

    2012-06-01

    A polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection from 300 to 1100 nm has been constructed and tested. Exploratory research has been conducted which may lead to the standoff detection of bio-aerosols in the atmosphere. The polarization properties of bsubtilis (surrogate for anthrax spore) have been compared to ambient particulate matter species such as pollen, dust and soot (all sampled onto microscope slides) and differentiating features have been identified. The application of this technique for the discrimination of bio-aerosol from background clutter has been demonstrated.

  19. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas.

    PubMed

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas K

    2016-09-01

    This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system's fixed oblique angle of 30° are shown to be a hybridization of TE and TM modes. The models are validated with transmission spectroscopy at fixed points on fresh bovine muscle and fat tissues. Images based on the calculated absorption coefficient and index of refraction of bovine tissue are successfully compared with the terahertz magnitude and phase measured in the reflection mode. The validated techniques are extended to 20 and 30 μm slices of fixed human lobular carcinoma and infiltrating ductal carcinoma mounted on polystyrene microscope slides in order to investigate the terahertz differentiation of the carcinoma with non-cancerous tissue. Both transmission and reflection imaging show clear differentiation in carcinoma versus healthy tissue. However, when using the reflection mode, in the calculation of the thin tissue properties, the absorption is shown to be sensitive to small phase variations that arise due to deviations in slide and tissue thickness and non-ideal tissue adhesion. On the other hand, the results show that the transmission mode is much less sensitive to these phase variations. The results also demonstrate that reflection imaging provides higher resolution and more clear margins between cancerous and fibroglandular regions, cancerous and fatty regions, and fibroglandular and fatty tissue regions. In addition, more features consistent with high power pathology images are exhibited in the reflection mode images.

  20. Diffracting aperture based differential phase contrast for scanning X-ray microscopy.

    PubMed

    Kaulich, Burkhard; Polack, Francois; Neuhaeusler, Ulrich; Susini, Jean; di Fabrizio, Enzo; Wilhein, Thomas

    2002-10-07

    It is demonstrated that in a zone plate based scanning X-ray microscope, used to image low absorbing, heterogeneous matter at a mesoscopic scale, differential phase contrast (DPC) can be implemented without adding any additional optical component to the normal scheme of the microscope. The DPC mode is simply generated by an appropriate positioning and alignment of microscope apertures. Diffraction from the apertures produces a wave front with a non-uniform intensity. The signal recorded by a pinhole photo diode located in the intensity gradient is highly sensitive to phase changes introduced by the specimen to be recorded. The feasibility of this novel DPC technique was proven with the scanning X-ray microscope at the ID21 beamline of the European Synchrotron Radiation facility (ESRF) operated at 6 keV photon energy. We observe a differential phase contrast, similar to Nomarski's differential interference contrast for the light microscope, which results in a tremendous increase in image contrast of up to 20 % when imaging low absorbing specimen.

  1. Label-free detection of surface markers on stem cells by oblique-incidence reflectivity difference microscopy

    PubMed Central

    Lo, Kai-Yin; Sun, Yung-Shin; Landry, James P.; Zhu, Xiangdong; Deng, Wenbin

    2012-01-01

    Conventional fluorescent microscopy is routinely used to detect cell surface markers through fluorophore-conjugated antibodies. However, fluorophore-conjugation of antibodies alters binding properties such as strength and specificity of the antibody in ways often uncharacterized. The binding between antibody and antigen might not be in the native situation after such conjugation. Here, we present an oblique-incidence reflectivity difference (OI-RD) microscope as an effective method for label-free, real-time detection of cell surface markers and apply such a technique to analysis of Stage-Specific Embryonic Antigen 1 (SSEA1) on stem cells. Mouse stem cells express SSEA1 on their surfaces and the level of SSEA1 decreases when the cells start to differentiate. In this study, we immobilized mouse stem cells and non-stem cells (control) on a glass surface as a microarray and reacted the cell microarray with unlabeled SSEA1 antibodies. By monitoring the reaction with an OI-RD microscope in real time, we confirmed that the SSEA1 antibodies only bind to the surface of the stem cells while not to the surface of non-stem cells. From the binding curves, we determined the equilibrium dissociation constant (Kd) of the antibody with the SSEA1 markers on the stem cell surface. The results concluded that OI-RD microscope can be used to detect binding affinities between cell surface markers and unlabeled antibodies bound to the cells. The information could be another indicator to determine the cell stages. PMID:21781038

  2. An Introduction to Differentials Based on Hyperreal Numbers and Infinite Microscopes

    ERIC Educational Resources Information Center

    Henry, Valerie

    2010-01-01

    In this article, we propose to introduce the differential of a function through a non-classical way, lying on hyperreals and infinite microscopes. This approach is based on the developments of nonstandard analysis, wants to be more intuitive than the classical one and tries to emphasize the functional and geometric aspects of the differential. In…

  3. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  4. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    PubMed

    Woess, Claudia; Unterberger, Seraphin Hubert; Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with time. Cluster-analyses of data from Raman microscopic imaging reconstructed histo-anatomical features in comparison to the light microscopic image and finally, by application of principal component analyses (PCA), it was possible to see a clear distinction between forensic and archaeological bone samples. Hence, the spectral characterization of inorganic and organic compounds by the afore mentioned techniques, followed by analyses such as multivariate imaging analysis (MIAs) and principal component analyses (PCA), appear to be suitable for the post mortem interval (PMI) estimation of human skeletal remains.

  5. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains

    PubMed Central

    Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43−at 450 cm-1 and ν4PO43− from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with time. Cluster-analyses of data from Raman microscopic imaging reconstructed histo-anatomical features in comparison to the light microscopic image and finally, by application of principal component analyses (PCA), it was possible to see a clear distinction between forensic and archaeological bone samples. Hence, the spectral characterization of inorganic and organic compounds by the afore mentioned techniques, followed by analyses such as multivariate imaging analysis (MIAs) and principal component analyses (PCA), appear to be suitable for the post mortem interval (PMI) estimation of human skeletal remains. PMID:28334006

  6. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  7. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  8. Testing the link between population genetic differentiation and clade diversification in Costa Rican orchids.

    PubMed

    Kisel, Yael; Moreno-Letelier, Alejandra C; Bogarín, Diego; Powell, Martyn P; Chase, Mark W; Barraclough, Timothy G

    2012-10-01

    Species population genetics could be an important factor explaining variation in clade species richness. Here, we use newly generated amplified fragment length polymorphism (AFLP) data to test whether five pairs of sister clades of Costa Rican orchids that differ greatly in species richness also differ in average neutral genetic differentiation within species, expecting that if the strength of processes promoting differentiation within species is phylogenetically heritable, then clades with greater genetic differentiation should diversify more. Contrary to expectation, neutral genetic differentiation does not correlate directly with total diversification in the clades studied. Neutral genetic differentiation varies greatly among species and shows no heritability within clades. Half of the variation in neutral genetic differentiation among populations can be explained by ecological variables, and species-level traits explain the most variation. Unexpectedly, we find no isolation by distance in any species, but genetic differentiation is greater between populations occupying different niches. This pattern corresponds with those observed for microscopic eukaryotes and could reflect effective widespread dispersal of tiny and numerous orchid seeds. Although not providing a definitive answer to whether population genetics processes affect clade diversification, this work highlights the potential for addressing new macroevolutionary questions using a comparative population genetic approach. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  9. A hybrid scanning force and light microscope for surface imaging and three-dimensional optical sectioning in differential interference contrast.

    PubMed

    Stemmer, A

    1995-04-01

    The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.

  10. X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1991-01-01

    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.

  11. Water window imaging x ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.

  12. Imaging Schwarzschild multilayer X-ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Baker, Phillip C.; Shealy, David L.; Core, David B.; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.; Kerstetter, Ted

    1993-01-01

    We have designed, analyzed, fabricated, and tested Schwarzschild multilayer X-ray microscopes. These instruments use flow-polished Zerodur mirror substrates which have been coated with multilayers optimized for maximum reflectivity at normal incidence at 135 A. They are being developed as prototypes for the Water Window Imaging X-Ray Microscope. Ultrasmooth mirror sets of hemlite grade sapphire have been fabricated and they are now being coated with multilayers to reflect soft X-rays at 38 A, within the biologically important 'water window'. In this paper, we discuss the fabrication of the microscope optics and structural components as well as the mounting of the optics and assembly of the microscopes. We also describe the optical alignment, interferometric and visible light testing of the microscopes, present interferometrically measured performance data, and provide the first results of optical imaging tests.

  13. Application of Zen sitting principles to microscopic surgery seating.

    PubMed

    Noro, Kageyu; Naruse, Tetsuya; Lueder, Rani; Nao-I, Nobuhisa; Kozawa, Maki

    2012-03-01

    This paper describes the application of an alternative seating concept for surgeons that reflects the research of Zen sitting postures, which require Zazen meditators to maintain fixed postures for long durations. The aim of this alternative approach is to provide sitters with a seat pan with sacral support(1) that provides a more even distribution of seat pressures, induces forward pelvic rotation and improves lumbar, buttock and thigh support. This approach was applied to the development of a chair for microscopic surgery. The experimental chair is a seat pan that closely matches the three-dimensional contours of the user's buttocks. Seat comfort was evaluated by comparing both changes in pelvic tilt and seat pressure distributions using Regionally-Differentiated Pressure Maps (RDPM) with subjective ratings of surgeons while operating in prototype and conventional chairs. Findings include that the sacral support of the prototype chair prevents backward pelvic rotation, as seen in zazen (Zen sitting postures). Preliminary data suggests that the prototype provided greater sitting comfort and support for constrained operating postures than did the conventional chair. These findings support the selective application of concave-shaped seat pans that conform to users' buttocks and reflect Zen sitting principles. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Combined reflection and transmission microscope for telemedicine applications in field settings.

    PubMed

    Biener, Gabriel; Greenbaum, Alon; Isikman, Serhan O; Lee, Kelvin; Tseng, Derek; Ozcan, Aydogan

    2011-08-21

    We demonstrate a field-portable upright and inverted microscope that can image specimens in both reflection and transmission modes. This compact and cost-effective dual-mode microscope weighs only ∼135 grams (<4.8 ounces) and utilizes a simple light emitting diode (LED) to illuminate the sample of interest using a beam-splitter cube that is positioned above the object plane. This LED illumination is then partially reflected from the sample to be collected by two lenses, creating a reflection image of the specimen onto an opto-electronic sensor-array that is positioned above the beam-splitter cube. In addition to this, the illumination beam is also partially transmitted through the same specimen, which then casts lensfree in-line holograms of the same objects onto a second opto-electronic sensor-array that is positioned underneath the beam-splitter cube. By rapid digital reconstruction of the acquired lensfree holograms, transmission images (both phase and amplitude) of the same specimen are also created. We tested the performance of this field-portable microscope by imaging various micro-particles, blood smears as well as a histopathology slide corresponding to skin tissue. Being compact, light-weight and cost-effective, this combined reflection and transmission microscope might especially be useful for telemedicine applications in resource limited settings. This journal is © The Royal Society of Chemistry 2011

  15. Staining-free malaria diagnostics by multispectral and multimodality light-emitting-diode microscopy

    NASA Astrophysics Data System (ADS)

    Merdasa, Aboma; Brydegaard, Mikkel; Svanberg, Sune; Zoueu, Jeremie T.

    2013-03-01

    We report an accurate optical differentiation technique between healthy and malaria-infected erythrocytes by quasi-simultaneous measurements of transmittance, reflectance, and scattering properties of unstained blood smears using a multispectral and multimode light-emitting diode microscope. We propose a technique for automated imaging, identification, and counting of malaria-infected erythrocytes for real-time and cost-effective parasitaemia diagnosis as an effective alternative to the manual screening of stained blood smears, now considered to be the gold standard in malaria diagnosis. We evaluate the performance of our algorithm against manual estimations of an expert and show a spectrally resolved increased scattering from malaria-infected blood cells.

  16. Effect of Organic Substrates on the Photocatalytic Reduction of Cr(VI) by Porous Hollow Ga2O3 Nanoparticles

    PubMed Central

    Liu, Jin; Gan, Huihui; Wu, Hongzhang; Zhang, Xinlei; Zhang, Jun; Li, Lili; Wang, Zhenling

    2018-01-01

    Porous hollow Ga2O3 nanoparticles were successfully synthesized by a hydrolysis method followed by calcination. The prepared samples were characterized by field emission scanning electron microscope, transmission electron microscope, thermogravimetry and differential scanning calorimetry, UV-vis diffuse reflectance spectra and Raman spectrum. The porous structure of Ga2O3 nanoparticles can enhance the light harvesting efficiency, and provide lots of channels for the diffusion of Cr(VI) and Cr(III). Photocatalytic reduction of Cr(VI), with different initial pH and degradation of several organic substrates by porous hollow Ga2O3 nanoparticles in single system and binary system, were investigated in detail. The reduction rate of Cr(VI) in the binary pollutant system is markedly faster than that in the single Cr(VI) system, because Cr(VI) mainly acts as photogenerated electron acceptor. In addition, the type and concentration of organic substrates have an important role in the photocatalytic reduction of Cr(VI). PMID:29690548

  17. An orientation-independent DIC microscope allows high resolution imaging of epithelial cell migration and wound healing in a cnidarian model.

    PubMed

    Malamy, J E; Shribak, M

    2018-06-01

    Epithelial cell dynamics can be difficult to study in intact animals or tissues. Here we use the medusa form of the hydrozoan Clytia hemisphaerica, which is covered with a monolayer of epithelial cells, to test the efficacy of an orientation-independent differential interference contrast microscope for in vivo imaging of wound healing. Orientation-independent differential interference contrast provides an unprecedented resolution phase image of epithelial cells closing a wound in a live, nontransgenic animal model. In particular, the orientation-independent differential interference contrast microscope equipped with a 40x/0.75NA objective lens and using the illumination light with wavelength 546 nm demonstrated a resolution of 460 nm. The repair of individual cells, the adhesion of cells to close a gap, and the concomitant contraction of these cells during closure is clearly visualized. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  18. Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Hashizume, J.; Goto, M.; Yamaguchi, M.; Tsujimura, T.; Aoki, S.

    2013-10-01

    An x-ray differential phase microscope with a Foucault knife-edge scanning filter was set up at the bending magnet source BL3C, Photon Factory. A reconstructed phase profile from the differential phase image of an aluminium wire at 5.36 keV was fairly good agreement with the numerical simulation. Phase tomography of a biological specimen, such as an Artemia cyst, could be successfully demonstrated.

  19. Inverted follicular keratosis: dermoscopic and reflectance confocal microscopic features.

    PubMed

    Armengot-Carbo, M; Abrego, A; Gonzalez, T; Alarcon, I; Alos, L; Carrera, C; Malvehy, J; Puig, S

    2013-01-01

    Inverted follicular keratosis (IFK) is a rare benign tumor which usually appears as a firm papule on the face. The diagnosis is generally made by histopathology because the clinical appearance is difficult to differentiate from other lesions. Dermoscopic features of IFK have not been established to date. Herein we describe the dermoscopic findings of 4 cases of IFK. Radial peripheral hairpin vessels surrounded by a whitish halo arranged around a central white-yellowish amorphous area were observed in 3 cases, and glomerular vessels were present in the central area of one of them. The fourth case also presented a central white amorphous area but showed arborizing vessels. Reflectance confocal microscopy (available in 1 case) revealed a broadened honeycomb pattern, epidermal projections and hairpin and glomerular vessels. To our knowledge this is the first case series describing the dermoscopic features of inverted follicular keratosis and the first confocal microscopy description of this entity.

  20. Design of a normal incidence multilayer imaging X-ray microscope

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  1. [Phenotype-based primary screening for drugs promoting neuronal subtype differentiation in embryonic stem cells with light microscope].

    PubMed

    Gao, Yi-ning; Wang, Dan-ying; Pan, Zong-fu; Mei, Yu-qin; Wang, Zhi-qiang; Zhu, Dan-yan; Lou, Yi-jia

    2012-07-01

    To set up a platform for phenotype-based primary screening of drug candidates promoting neuronal subtype differentiation in embryonic stem cells (ES) with light microscope. Hanging drop culture 4-/4+ method was employed to harvest the cells around embryoid body (EB) at differentiation endpoint. Morphological evaluation for neuron-like cells was performed with light microscope. Axons for more than three times of the length of the cell body were considered as neuron-like cells. The compound(s) that promote neuron-like cells was further evaluated. Icariin (ICA, 10(-6)mol/L) and Isobavachin (IBA, 10(-7)mol/L) were selected to screen the differentiation-promoting activity on ES cells. Immunofluorescence staining with specific antibodies (ChAT, GABA) was used to evaluate the neuron subtypes. The cells treated with IBA showed neuron-like phenotype, but the cells treated with ICA did not exhibit the morphological changes. ES cells treated with IBA was further confirmed to be cholinergic and GABAergic neurons. Phenotypic screening with light microscope for molecules promoting neuronal differentiation is an effective method with advantages of less labor and material consuming and time saving, and false-positive results derived from immunofluorescence can be avoided. The method confirms that IBA is able to facilitate ES cells differentiating into neuronal cells, including cholinergic neurons and GABAergic neurons.

  2. Multipotential osteosarcoma with various mesenchymal differentiations in a young dog.

    PubMed

    Hoenerhoff, M J; Kiupel, M; Rosenstein, D; Pool, R R

    2004-05-01

    Apparently synchronous, aggressive, mixed mesenchymal tumors in the right tibia, right femur, left femur, and rib cage produced multiple microscopic metastases in the lungs and macroscopic metastases in the liver, kidney, and spleen in a 1.5-year-old, neutered male, mixed-breed dog. No primary soft tissue tumor mass was present. Microscopically, the neoplasm exhibited osteosarcomatous, chondrosarcomatous, liposarcomatous, leiomyosarcomatous, fibrosarcomatous, angiosarcomatous, and leukocytic differentiation and was diagnosed as a multipotential osteosarcoma with various mesenchymal differentiation. Immunohistochemically, the neoplasm was cytoplasmically immunoreactive for vimentin, osteonectin, osteocalcin, CD 18, CD 31, desmin, and muscle-specific actin. Oil Red O staining was positive within liposarcomatous areas. Skeletal metastases from a primary bone tumor are exceedingly rare in human and veterinary medicine. However, the history, clinical signs, location, microscopic and immunohistochemical features were similar to those described in aggressive, poorly differentiated osteosarcomas of children. In addition, the wide range of mesenchymal tissue differentiation of this neoplasm was unusual, and to the authors' knowledge, an osteosarcoma with this degree of multiple differentiation has not been previously reported in the dog.

  3. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    PubMed

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  4. Digital differential confocal microscopy based on spatial shift transformation.

    PubMed

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  5. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the nonpolarizing beam splitter were replaced by a polarizing one, then the specimen would be illuminated by s-polarized light. Upon reflection from the specimen, some of the s-polarized light would become p-polarized. Only the p-polarized light would contribute to the image on the CCD; in other words, the image would contain information on the polarization rotating characteristic of the specimen.

  6. Reflectance Spectra of Peacock Feathers and the Turning Angles of Melanin Rods in Barbules.

    PubMed

    Okazaki, Toshio

    2018-02-01

    I analyzed the association between the reflectance spectra and melanin rod arrangement in barbules of the eyespot of peacock feathers. The reflectance spectra from the yellow-green feather of the eyespot indicated double peaks of 430 and 540 nm. The maximum reflectance spectrum of the blue feather was 480 nm, and that of the dark blue feather was 420 nm. The reflectance spectra from brown feathers indicated double peaks of 490 and 610 nm. Transmission electron microscopic analysis confirmed that melanin rods were arranged fanwise in the outer layer toward the barbule tips. In addition, using polarized light microscope, I attempted to determine whether the turning angles of melanin rods in the barbules reflected different colors. The turning angle of the polarizing axis of the barbules was supported by that of the melanin rods, observed using transmission electron microscopic images. To compare the turning angle of melanin rods in the respective barbules, I calculated the opening width of the fanwise melanin rods by dividing the width of the barbules by the turning angle of the polarizing axis of barbules and obtained a positive correlation between the reflectance spectra and opening width of the fanwise melanin rods. Moreover, the widely spreading reflection from the barbules may occur because of the fanwise melanin rod arrangement.

  7. All-plastic, miniature, digital fluorescence microscope for three part white blood cell differential measurements at the point of care

    PubMed Central

    Forcucci, Alessandra; Pawlowski, Michal E.; Majors, Catherine; Richards-Kortum, Rebecca; Tkaczyk, Tomasz S.

    2015-01-01

    Three-part differential white blood cell counts are used for disease diagnosis and monitoring at the point-of-care. A low-cost, miniature achromatic microscope was fabricated for identification of lymphocytes, monocytes, and granulocytes in samples of whole blood stained with acridine orange. The microscope was manufactured using rapid prototyping techniques of diamond turning and 3D printing and is intended for use at the point-of-care in low-resource settings. The custom-designed microscope requires no manual adjustment between samples and was successfully able to classify three white blood cell types (lymphocytes, granulocytes, and monocytes) using samples of peripheral whole blood stained with acridine orange. PMID:26601006

  8. Differential conductance and defect states in the heavy-fermion superconductor CeCoIn 5

    DOE PAGES

    John S. Van Dyke; Davis, James C.; Morr, Dirk K.

    2016-01-22

    We demonstrate that the electronic band structure extracted from quasiparticle interference spectroscopy [Nat. Phys. 9, 468 (2013)] and the theoretically computed form of the superconducting gaps [Proc. Natl. Acad. Sci. USA 111, 11663 (2014)] can be used to understand the dI/dV line shape measured in the normal and superconducting state of CeCoIn5 [Nat. Phys. 9, 474 (2013)]. In particular, the dI/dV line shape, and the spatial structure of defect-induced impurity states, reflects the existence of multiple superconducting gaps of d x2–y2 symmetry. As a result, these results strongly support a recently proposed microscopic origin of the unconventional superconducting state.

  9. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  10. Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams.

    PubMed

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-09-09

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  11. Towards automated early cancer detection: Non-invasive, fluorescence-based approaches for quantitative assessment of cells and tissue to identify pre-cancers

    NASA Astrophysics Data System (ADS)

    Levitt, Jonathan Michael

    Cancer is the second leading cause of death globally, second only to heart disease. As in many diseases, patient survival is directly related to how early lesions are detected. Using conventional screening methods, the early changes associated with cancer, which occur on the microscopic scale, can easily go overlooked. Due to the inherent drawbacks of conventional techniques we present non-invasive, optically based methods to acquire high resolution images from live samples and assess cellular function associated with the onset of disease. Specifically, we acquired fluorescence images from NADH and FAD to quantify morphology and metabolic activity. We first conducted studies to monitor monolayers of keratinocytes in response to apoptosis which has been shown to be disrupted during cancer progression. We found that as keratinocytes undergo apoptosis there are populations of mitochondria that exhibit a higher metabolic activity that become progressively confined to a gradually smaller perinuclear region. To further assess the changes associated with early cancer growth we developed automated methods to rapidly quantify fluorescence images and extract morphological and metabolic information from life tissue. In this study, we simultaneously quantified mitochondrial organization, metabolic activity, nuclear size distribution, and the localization of the structural protein keratin, to differentiate between normal and pre-cancerous engineered tissues. We found the degree mitochondrial organization, as determined from the fractal derived Hurst parameter, was well correlated to level of cellular differentiation. We also found that the metabolic activity in the pre-cancerous cells was greater and more consistent throughout tissue depths in comparison to normal tissue. Keratin localization, also quantified from the fluorescence images, we found it to be confined to the uppermost layers of normal tissue while it was more evenly distributed in the precancerous tissues. To allow for evaluation of the early cancerous changes in vivo, we developed video-rate confocal reflectance/multi-photon fluorescence microscope as a clinical prototype. This device was specifically designed to rapidly acquire and assess non-invasively acquire fluorescence images using the automated methods we have developed. We have demonstrated the ability of this microscope to simultaneously acquire fluorescence, confocal reflectance, and second-harmonic generation images as well as assess blood flow in vivo.

  12. Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue: A hyperspectral microscopic imaging analysis

    NASA Astrophysics Data System (ADS)

    Li, Qingli; Liu, Hongying; Wang, Yiting; Sun, Zhen; Guo, Fangmin; Zhu, Jianzhong

    2014-12-01

    Histological observation of dual-stained colon sections is usually performed by visual observation under a light microscope, or by viewing on a computer screen with the assistance of image processing software in both research and clinical settings. These traditional methods are usually not sufficient to reliably differentiate spatially overlapping chromogens generated by different dyes. Hyperspectral microscopic imaging technology offers a solution for these constraints as the hyperspectral microscopic images contain information that allows differentiation between spatially co-located chromogens with similar but different spectra. In this paper, a hyperspectral microscopic imaging (HMI) system is used to identify methyl green and nitrotetrazolium blue chloride in dual-stained colon sections. Hyperspectral microscopic images are captured and the normalized score algorithm is proposed to identify the stains and generate the co-expression results. Experimental results show that the proposed normalized score algorithm can generate more accurate co-localization results than the spectral angle mapper algorithm. The hyperspectral microscopic imaging technology can enhance the visualization of dual-stained colon sections, improve the contrast and legibility of each stain using their spectral signatures, which is helpful for pathologist performing histological analyses.

  13. In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens.

    PubMed

    Carlson, Kristen; Chidley, Matthew; Sung, Kung-Bin; Descour, Michael; Gillenwater, Ann; Follen, Michele; Richards-Kortum, Rebecca

    2005-04-01

    For in vivo optical diagnostic technologies to be distributed to the developed and developing worlds, optical imaging systems must be constructed of inexpensive components. We present a fiber-optic confocal reflectance microscope with a cost-effective injection-molded plastic miniature objective lens for in vivo imaging of human tissues in near real time. The measured lateral resolution is less than 2.2 microm, and the measured axial resolution is 10 microm. Confocal images of ex vivo cervical tissue biopsies and in vivo human lip taken at 15 frames/s demonstrate the microscope's capability of imaging cell morphology and tissue architecture.

  14. Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues.

    PubMed

    Sung, Kung-Bin; Liang, Chen; Descour, Michael; Collier, Tom; Follen, Michele; Richards-Kortum, Rebecca

    2002-10-01

    We have built a fiber-optic confocal reflectance microscope capable of imaging human tissues in near real time. Miniaturization of the objective lens and the mechanical components for positioning and axially scanning the objective enables the device to be used in inner organs of the human body. The lateral resolution is 2 micrometers and axial resolution is 10 micrometers. Confocal images of fixed tissue biopsies and the human lip in vivo have been obtained at 15 frames/s without any fluorescent stains. Both cell morphology and tissue architecture can be appreciated from images obtained with this microscope.

  15. Effect of surface roughness and subsurface damage on grazing-incidence x-ray scattering and specular reflectance.

    PubMed

    Lodha, G S; Yamashita, K; Kunieda, H; Tawara, Y; Yu, J; Namba, Y; Bennett, J M

    1998-08-01

    Grazing-incidence specular reflectance and near-specular scattering were measured at Al-K(alpha) (1.486-keV, 8.34-?) radiation on uncoated dielectric substrates whose surface topography had been measured with a scanning probe microscope and a mechanical profiler. Grazing-incidence specular reflectance was also measured on selected substrates at the Cu-K(alpha) (8.047-keV, 1.54-?) wavelength. Substrates included superpolished and conventionally polished fused silica; SiO(2) wafers; superpolished and precision-ground Zerodur; conventionally polished, float-polished, and precision-ground BK-7 glass; and superpolished and precision-ground silicon carbide. Roughnesses derived from x-ray specular reflectance and scattering measurements were in good agreement with topographic roughness values measured with a scanning probe microscope (atomic force microscope) and a mechanical profiler that included similar ranges of surface spatial wavelengths. The specular reflectance was also found to be sensitive to the density of polished surface layers and subsurface damage down to the penetration depth of the x rays. Density gradients and subsurface damage were found in the superpolished fused-silica and precision-ground Zerodur samples. These results suggest that one can nondestructively evaluate subsurface damage in transparent materials using grazing-incidence x-ray specular reflectance in the 1.5-8-keV range.

  16. Experiments on terahertz 3D scanning microscopic imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Qi

    2016-10-01

    Compared with the visible light and infrared, terahertz (THz) radiation can penetrate nonpolar and nonmetallic materials. There are many studies on the THz coaxial transmission confocal microscopy currently. But few researches on the THz dual-axis reflective confocal microscopy were reported. In this paper, we utilized a dual-axis reflective confocal scanning microscope working at 2.52 THz. In contrast with the THz coaxial transmission confocal microscope, the microscope adopted in this paper can attain higher axial resolution at the expense of reduced lateral resolution, revealing more satisfying 3D imaging capability. Objects such as Chinese characters "Zhong-Hua" written in paper with a pencil and a combined sheet metal which has three layers were scanned. The experimental results indicate that the system can extract two Chinese characters "Zhong," "Hua" or three layers of the combined sheet metal. It can be predicted that the microscope can be applied to biology, medicine and other fields in the future due to its favorable 3D imaging capability.

  17. Shack-Hartmann reflective micro profilometer

    NASA Astrophysics Data System (ADS)

    Gong, Hai; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb

    2018-01-01

    We present a quantitative phase imaging microscope based on a Shack-Hartmann sensor, that directly reconstructs the optical path difference (OPD) in reflective mode. Comparing with the holographic or interferometric methods, the SH technique needs no reference beam in the setup, which simplifies the system. With a preregistered reference, the OPD image can be reconstructed from a single shot. Also, the method has a rather relaxed requirement on the illumination coherence, thus a cheap light source such as a LED is feasible in the setup. In our previous research, we have successfully verified that a conventional transmissive microscope can be transformed into an optical path difference microscope by using a Shack-Hartmann wavefront sensor under incoherent illumination. The key condition is that the numerical aperture of illumination should be smaller than the numerical aperture of imaging lens. This approach is also applicable to characterization of reflective and slightly scattering surfaces.

  18. The mapping and differentiation of biological and environmental elemental signatures in the fossil remains of a 50 million year old bird

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egerton, Victoria M.; Wogelius, Roy A.; Norell, Mark A.

    The preservation of fossils reflects the interplay of inorganic and organic chemical processes, which should be clearly differentiated to make interpretations about the biology of extinct organisms. A new coliiformes bird (mouse bird) from the ~50 million year old Green River Formation (Wyoming, USA) has here been analysed using synchrotron X-ray fluorescence and environmental scanning electron microscopy with an attached X-ray energy dispersive system (ESEM-EDS). The concentration and distribution of 16 elements (Si, P, S, Cl, K, Ca, Ti, Mg, Fe, Ni, Cu, Zn, As, Br, Ba, Hg) has been mapped for individual points on the sample. S, Cu andmore » Zn map distinctly within visibly preserved feathers and X-ray Absorption Spectroscopy (XAS) shows that S and Cu within the feathers are organically bound in a similar manner to modern feathers. The morphological preservation of the feathers, on both macro- and microscopic scales, is variable throughout the fossil and the differences in the lateral microfacies have resulted in a morphological preservation gradient. This study clearly differentiates endogenous organic remains from those representing exogenous overprinted geochemical precipitates and illustrates the chemical complexity of the overall taphonomic process.« less

  19. The mapping and differentiation of biological and environmental elemental signatures in the fossil remains of a 50 million year old bird

    DOE PAGES

    Egerton, Victoria M.; Wogelius, Roy A.; Norell, Mark A.; ...

    2015-01-22

    The preservation of fossils reflects the interplay of inorganic and organic chemical processes, which should be clearly differentiated to make interpretations about the biology of extinct organisms. A new coliiformes bird (mouse bird) from the ~50 million year old Green River Formation (Wyoming, USA) has here been analysed using synchrotron X-ray fluorescence and environmental scanning electron microscopy with an attached X-ray energy dispersive system (ESEM-EDS). The concentration and distribution of 16 elements (Si, P, S, Cl, K, Ca, Ti, Mg, Fe, Ni, Cu, Zn, As, Br, Ba, Hg) has been mapped for individual points on the sample. S, Cu andmore » Zn map distinctly within visibly preserved feathers and X-ray Absorption Spectroscopy (XAS) shows that S and Cu within the feathers are organically bound in a similar manner to modern feathers. The morphological preservation of the feathers, on both macro- and microscopic scales, is variable throughout the fossil and the differences in the lateral microfacies have resulted in a morphological preservation gradient. This study clearly differentiates endogenous organic remains from those representing exogenous overprinted geochemical precipitates and illustrates the chemical complexity of the overall taphonomic process.« less

  20. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  1. Application of differential interference contrast with inverted microscopes to the in vitro perfused nephron.

    PubMed

    Horster, M; Gundlach, H

    1979-12-01

    The study of in vitro perfused individual nephron segments requires a microscope which provides: (1) easy access to the specimen for measurement of cellular solute flux and voltage; (2) an image with high resolution and contrast; (3) optical sectioning of the object at different levels; and (4) rapid recording of the morphological phenomena. This paper describes an example of commercially available apparatus meeting the above requirements, and illustrates its efficiency. The microscope is of the inverted type (Zeiss IM 35) equipped with differential-interference-contrast (DIC) with a long working distance, and an automatically controlled camera system. The microscopic image exhibits cellular and intercellular details in the unstained transporting mammalian nephron segments despite their tubular structure and great thickness and makes obvious function-structure correlations (e.g. cell volume changes); luminal and contraluminal cell borders are well resolved for controlled microelectrode impalement.

  2. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  3. Living Matter Observations with a Novel Hyperspectral Supercontinuum Confocal Microscope for VIS to Near-IR Reflectance Spectroscopy

    PubMed Central

    Bertani, Francesca R.; Ferrari, Luisa; Mussi, Valentina; Botti, Elisabetta; Costanzo, Antonio; Selci, Stefano

    2013-01-01

    A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 μm wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage. With this apparatus we collect each single scanning point as a whole spectrum by combining two linear spectral detector arrays, one CCD for the visible range, and one InGaAs infrared array, simultaneously available at the sensor output channel of the home made instrument. This microscope has been developed for biomedical analysis of human skin and other similar applications. Results are shown illustrating the technical performances of the instrument and the capability in extracting information about the composition and the structure of different parts or compartments in biological samples as well as in solid statematter. A complete spectroscopic fingerprinting of samples at microscopic level is shown possible by using statistical analysis on raw data or analytical reflectance models based on Abelés matrix transfer methods. PMID:24233077

  4. Multispectral assessment of skin malformations using a modified video-microscope

    NASA Astrophysics Data System (ADS)

    Bekina, A.; Diebele, I.; Rubins, U.; Zaharans, J.; Derjabo, A.; Spigulis, J.

    2012-10-01

    A simplified method is proposed for alternative clinical diagnostics of skin malformations. A modified digital microscope, additionally equipped with a fourcolour LED (450 nm, 545 nm, 660 nm and 940 nm) subsequent illumination system, was applied for assessment of skin cancerous lesions and cutaneous inflammations. Multispectral image analysis was performed to map distributions of skin erythema index, bilirubin index, melanoma/nevus differentiation parameter, and fluorescence indicator. The skin malformation monitoring has shown that it is possible to differentiate melanoma from other pathologies.

  5. Wakata performs microscopic analysis of the NanoRacks Module-38 Petri Dishes

    NASA Image and Video Library

    2014-01-13

    ISS038-E-029082 (12 Jan. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, performs microscopic analysis of the NanoRacks Module-38 Petri Dishes, using Celestron Reflective Microscope, in the Kibo laboratory of the International Space Station. These Module-38 experiments are designed by students as part of a competition sponsored by the International Space School Educational Trust (ISSET). This experiment examines three-dimensional growth of slime mold in petri dishes utilizing the NanoRacks Microscopes Facility.

  6. Dual-mode optical microscope based on single-pixel imaging

    NASA Astrophysics Data System (ADS)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  7. Microtextured metals for stray-light suppression in the Clementine startracker

    NASA Technical Reports Server (NTRS)

    Johnson, E. A.

    1993-01-01

    Anodized blacks for suppressing stray light in optical systems can now be replaced by microscopically textured metal surfaces. An application of these black surfaces to the Clementine star-tracker navigational system, which will be launched in early 1994 to examine the Moon, en route to intercept an asteroid, is detailed. Rugged black surfaces with Lambertian BRDF less than 10(exp -2) srad(sup -1) are critical for suppressing stray light in the star-tracker optical train. Previously available materials spall under launch vibrations to contaminate mirrors and lenses. Microtextured aluminum is nearly as dark, but much less fragile. It is made by differential ion beam sputtering, which generates light-trapping pores and cones slightly smaller than the wavelength to be absorbed. This leaves a sturdy but light-absorbing surface that can survive challenging conditions without generating debris or contaminants. Both seeded ion beams and plasma immersion (from ECR plasmas) extraction can produce these microscopic textures without fragile interfaces. Process parameters control feature size, spacing, and optical effects (THR, BRDF). Both broad and narrow absorption bands can be engineered with tuning for specific wavelengths and applications. Examples are presented characterized by FTIR in reflection librators (0.95 normal emissivity), heat rejection, and enhanced nucleate boiling.

  8. Infrared microscope inspection apparatus

    DOEpatents

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  9. Infrared microscope inspection apparatus

    DOEpatents

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  10. Design and analysis of multilayer x ray/XUV microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1990-01-01

    The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view.

  11. Liposomes self-assembled from electrosprayed composite microparticles

    NASA Astrophysics Data System (ADS)

    Yu, Deng-Guang; Yang, Jun-He; Wang, Xia; Tian, Feng

    2012-03-01

    Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way.

  12. Enhancement of graphene visibility on transparent substrates by refractive index optimization.

    PubMed

    Gonçalves, Hugo; Alves, Luís; Moura, Cacilda; Belsley, Michael; Stauber, Tobias; Schellenberg, Peter

    2013-05-20

    Optical reflection microscopy is one of the main imaging tools to visualize graphene microstructures. Here is reported a novel method that employs refractive index optimization in an optical reflection microscope, which greatly improves the visibility of graphene flakes. To this end, an immersion liquid with a refractive index that is close to that of the glass support is used in-between the microscope lens and the support improving the contrast and resolution of the sample image. Results show that the contrast of single and few layer graphene crystals and structures can be enhanced by a factor of 4 compared to values commonly achieved with transparent substrates using optical reflection microscopy lacking refractive index optimization.

  13. A simple water-immersion condenser for imaging living brain slices on an inverted microscope.

    PubMed

    Prusky, G T

    1997-09-05

    Due to some physical limitations of conventional condensers, inverted compound microscopes are not optimally suited for imaging living brain slices with transmitted light. Herein is described a simple device that converts an inverted microscope into an effective tool for this application by utilizing an objective as a condenser. The device is mounted on a microscope in place of the condenser, is threaded to accept a water immersion objective, and has a slot for a differential interference contrast (DIC) slider. When combined with infrared video techniques, this device allows an inverted microscope to effectively image living cells within thick brain slices in an open perfusion chamber.

  14. Design and Construction of a Multi-wavelength, Micromirror Total Internal Reflectance Fluorescence Microscope

    PubMed Central

    Larson, Joshua; Kirk, Matt; Drier, Eric A.; O’Brien, William; MacKay, James F.; Friedman, Larry; Hoskins, Aaron

    2015-01-01

    Colocalization Single Molecule Spectroscopy (CoSMoS) has proven to be a useful method for studying the composition, kinetics, and mechanisms of complex cellular machines. Key to the technique is the ability to simultaneously monitor multiple proteins and/or nucleic acids as they interact with one another. Here we describe a protocol for constructing a CoSMoS micromirror Total Internal Reflection Fluorescence Microscope (mmTIRFM). Design and construction of a scientific microscope often requires a number of custom components and a significant time commitment. In our protocol, we have streamlined this process by implementation of a commercially available microscopy platform designed to accommodate the optical components necessary for a mmTIRFM. The mmTIRF system eliminates the need for machining custom parts by the end-user and facilitates optical alignment. Depending on the experience-level of the microscope builder, these time-savings and the following protocol can enable mmTIRF construction to be completed within two months. PMID:25188633

  15. Design and construction of a multiwavelength, micromirror total internal reflectance fluorescence microscope.

    PubMed

    Larson, Joshua; Kirk, Matt; Drier, Eric A; O'Brien, William; MacKay, James F; Friedman, Larry J; Hoskins, Aaron A

    2014-10-01

    Colocalization single-molecule spectroscopy (CoSMoS) has proven to be a useful method for studying the composition, kinetics and mechanisms of complex cellular machines. Key to the technique is the ability to simultaneously monitor multiple proteins and/or nucleic acids as they interact with one another. Here we describe a protocol for constructing a CoSMoS micromirror total internal reflection fluorescence microscope (mmTIRFM). Design and construction of a scientific microscope often requires a number of custom components and a substantial time commitment. In our protocol, we have streamlined this process by implementation of a commercially available microscopy platform designed to accommodate the optical components necessary for an mmTIRFM. The mmTIRF system eliminates the need for machining custom parts by the end user and facilitates optical alignment. Depending on the experience level of the microscope builder, these time savings and the following protocol can enable mmTIRF construction to be completed within 2 months.

  16. Analysis of biological time-lapse microscopic experiment from the point of view of the information theory.

    PubMed

    Štys, Dalibor; Urban, Jan; Vaněk, Jan; Císař, Petr

    2011-06-01

    We report objective analysis of information in the microscopic image of the cell monolayer. The process of transfer of information about the cell by the microscope is analyzed in terms of the classical Shannon information transfer scheme. The information source is the biological object, the information transfer channel is the whole microscope including the camera chip. The destination is the model of biological system. The information contribution is analyzed as information carried by a point to overall information in the image. Subsequently we obtain information reflection of the biological object. This is transformed in the biological model which, in information terminology, is the destination. This, we propose, should be constructed as state transitions in individual cells modulated by information bonds between the cells. We show examples of detected cell states in multidimensional state space. This space is reflected as colour channel intensity phenomenological state space. We have also observed information bonds and show examples of them.

  17. Analysis of biological time-lapse microscopic experiment from the point of view of the information theory.

    PubMed

    Stys, Dalibor; Urban, Jan; Vanek, Jan; Císar, Petr

    2010-07-01

    We report objective analysis of information in the microscopic image of the cell monolayer. The process of transfer of information about the cell by the microscope is analyzed in terms of the classical Shannon information transfer scheme. The information source is the biological object, the information transfer channel is the whole microscope including the camera chip. The destination is the model of biological system. The information contribution is analyzed as information carried by a point to overall information in the image. Subsequently we obtain information reflection of the biological object. This is transformed in the biological model which, in information terminology, is the destination. This, we propose, should be constructed as state transitions in individual cells modulated by information bonds between the cells. We show examples of detected cell states in multidimensional state space reflected in space an colour channel intensity phenomenological state space. We have also observed information bonds and show examples of them. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Performance evaluation of the Sysmex XN-1000 hematology analyzer in assessment of the white blood cell count differential in pediatric specimens.

    PubMed

    Becker, P-H; Fenneteau, O; Da Costa, L

    2016-02-01

    The automated XN-1000 hematology analyzer enables to perform a blood cell count and a leukocyte differential. When abnormal cells were detected, a flag was generated by the analyzer and a manual microscopic examination of the corresponding blood film was performed. We compared the white blood cell differentials provided by the automated hematology analyzer XN-1000 in a pediatric population (n = 765) with those obtained through microscopic examination by cytologists and those obtained using a previous version of this analyzer, the XE-2100. Leukocytes count as well as flags sensitivity and specificity was analyzed. The leukocytes count provided by the analyzer is in good accordance with the differential obtained by manual count in children older than 3 months. The sensitivity for blast detection is 99% and the detection of reactive cells is 63%. The flag specificity remains low (<35%) for blood samples collected from infants between 8 days and 2 years of age, but increases up to 67% thereafter. The results obtained with the XN-1000 analyzer show an improvement in comparison with those obtained with the XE-2100 analyzer. The automated WBC differential provided by the XN-1000 analyzer in the pediatric setting is accurate, but a meticulous microscopic examination of blood smears remains necessary for infants up to 3 months of age to validate the analyzer flags. © 2015 John Wiley & Sons Ltd.

  19. In vivo Diagnosis of Cervical Intraepithelial Neoplasia Using 337-nm- Excited Laser-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Ramanujam, N.; Mitchell, M. F.; Mahadevan, A.; Warren, S.; Thomsen, S.; Silva, E.; Richards-Kortum, R.

    1994-10-01

    Laser-induced fluorescence at 337-nm excitation was used in vivo to differentiate neoplastic [cervical intraepithelial neoplasia (CIN)], nonneoplastic abnormal (inflammation and human papilloma viral infection), and normal cervical tissues. A colposcope (low-magnification microscope used to view the cervix with reflected light) was used to identify 66 normal and 49 abnormal (5 inflammation, 21 human papilloma virus infection, and 23 CIN) sites on the cervix in 28 patients. These sites were then interrogated spectroscopically. A two-stage algorithm was developed to diagnose CIN. The first stage differentiated histologically abnormal tissues from colposcopically normal tissues with a sensitivity, specificity, and positive predictive value of 92%, 90%, and 88%, respectively. The second stage differentiated preneoplastic and neoplastic tissues from nonneoplastic abnormal tissues with a sensitivity, specificity, and positive predictive value of 87%, 73%, and 74%, respectively. Spectroscopic differences were consistent with a decrease in the absolute contribution of collagen fluorescence, an increase in the absolute contribution of oxyhemoglobin attenuation, and an increase in the relative contribution of reduced nicotinamide dinucleotide phosphate [NAD(P)H] fluorescence as tissue progresses from normal to abnormal in the same patient. These results suggest that in vivo fluorescence spectroscopy of the cervix can be used to diagnose CIN at colposcopy.

  20. The application of dermal papillary rings in dermatology by in vivo confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Xiang, W. Z.; Xu, A. E.; Xu, J.; Bi, Z. G.; Shang, Y. B.; Ren, Q. S.

    2010-08-01

    Confocal laser scanning microscopy (CLSM) allows noninvasive visualization of human skin in vivo, without needing to fix or section the tissue. Melanocytes and pigmented keratinocytes at the level of the basal layer form bright dermal papillary rings which are readily amenable to identify in confocal images. Our purpose was to explore the role of dermal papillary rings in assessment of lesion location, the diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. Seventy-one patients were imaged with the VivaScope 1500 reflectance confocal microscope provided by Lucid, Inc. The results indicate that dermal papillary rings can assess the location of lesion; the application of dermal papillary rings can provide diagnostic support and differential diagnosis for vitiligo, nevus depigmentosus, tinea versicolor, halo nevus, common nevi, and assess the therapeutic efficacy of NBUVB phototherapy plus topical 0.1 percent tacrolimus ointment for vitiligo. In conclusion, our findings indicate that the dermal papillary rings play an important role in the assessment the location of lesion, diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. CLSM may be a promising tool for noninvasive examination in dermatology. However, larger studies are needed to expand the application of dermal papillary rings in dermatology.

  1. The differential equation of an arbitrary reflecting surface

    NASA Astrophysics Data System (ADS)

    Melka, Richard F.; Berrettini, Vincent D.; Yousif, Hashim A.

    2018-05-01

    A differential equation describing the reflection of a light ray incident upon an arbitrary reflecting surface is obtained using the law of reflection. The derived equation is written in terms of a parameter and the value of this parameter determines the nature of the reflecting surface. Under various parametric constraints, the solution of the differential equation leads to the various conic surfaces but is not generally solvable. In addition, the dynamics of the light reflections from the conic surfaces are executed in the Mathematica software. Our derivation is the converse of the traditional approach and our analysis assumes a relation between the object distance and the image distance. This leads to the differential equation of the reflecting surface.

  2. Microscopic analysis of "iron spot" on blue-and-white porcelain from Jingdezhen imperial kiln in early Ming dynasty (14th-15th century).

    PubMed

    Wang, Wenxuan; Zhu, Jian; Jiang, Jianxin; Xu, Changqing; Wu, Shurong; Guan, Li; Zhang, Zhaoxia; Wu, Menglei; Du, Jingnan

    2016-11-01

    "Sumali," as an imported cobalt ore from overseas, was a sort of precious and valuable pigment used for imperial kilns only, which produces characteristic "iron spot" to blue-and-white porcelain in early Ming Dynasty (A.D. 14th-15th century). Although there were some old studies on it, the morphology and formation of iron spot has not been fully investigated and understood. Therefore, five selected samples with typical spot from Jingdezhen imperial kiln in Ming Yongle periods (A.D. 1403-1424) were analyzed by various microscopic analysis including 3D digital microscope, SEM-EDS and EPMA. According to SEM images, samples can be divided into three groups: un-reflected "iron spot" without crystals, un-reflected "iron spot" with crystals and reflected "iron spot" with crystals. Furthermore, 3D micro-images revealed that "iron spots" separate out dendritic or snow-shaped crystals of iron only on and parallel to the surface of glaze for which "iron spot" show strong metallic luster. Combining with microscopic observation and microanalysis on crystallization and non-crystallization areas, it indicates that firing oxygen concentration is the ultimate causation of forming reflective iron spot which has a shallower distribution below the surface and limits crystals growing down. More details about characters of "iron spot" used "Sumali" were found and provided new clues to coloration, formation mechanism and porcelain producing technology of imperial kiln from 14th to 15th centuries of China. © 2016 Wiley Periodicals, Inc.

  3. Measurement of anchoring coefficient of homeotropically aligned nematic liquid crystal using a polarizing optical microscope in reflective mode

    NASA Astrophysics Data System (ADS)

    Baek, Sang-In; Kim, Sung-Jo; Kim, Jong-Hyun

    2015-09-01

    Although the homeotropic alignment of liquid crystals is widely used in LCD TVs, no easy method exists to measure its anchoring coefficient. In this study, we propose an easy and convenient measurement technique in which a polarizing optical microscope is used in the reflective mode with an objective lens having a low depth of focus. All measurements focus on the reflection of light near the interface between the liquid crystal and alignment layer. The change in the reflected light is measured by applying an electric field. We model the response of the director of the liquid crystal to the electric field and, thus, the change in reflectance. By adjusting the extrapolation length in the calculation, we match the experimental and calculated results and obtain the anchoring coefficient. In our experiment, the extrapolation lengths were 0.31 ± 0.04 μm, 0.32 ± 0.08 μm, and 0.23 ± 0.05 μm for lecithin, AL-64168, and SE-5662, respectively.

  4. Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells

    PubMed Central

    Sun, Chen; Kitamura, Takashi; Yamamoto, Jun; Martin, Jared; Pignatelli, Michele; Kitch, Lacey J.; Schnitzer, Mark J.; Tonegawa, Susumu

    2015-01-01

    Entorhinal–hippocampal circuits in the mammalian brain are crucial for an animal’s spatial and episodic experience, but the neural basis for different spatial computations remain unknown. Medial entorhinal cortex layer II contains pyramidal island and stellate ocean cells. Here, we performed cell type-specific Ca2+ imaging in freely exploring mice using cellular markers and a miniature head-mounted fluorescence microscope. We found that both oceans and islands contain grid cells in similar proportions, but island cell activity, including activity in a proportion of grid cells, is significantly more speed modulated than ocean cell activity. We speculate that this differential property reflects island cells’ and ocean cells’ contribution to different downstream functions: island cells may contribute more to spatial path integration, whereas ocean cells may facilitate contextual representation in downstream circuits. PMID:26170279

  5. Chemical imaging of structured SAMs with a novel SFG microscope

    NASA Astrophysics Data System (ADS)

    Hoffmann, Dominik M. P.; Kuhnke, Klaus; Kern, Klaus

    2002-11-01

    We present a newly developed microscope for sum frequency generation (SFG) imaging of opaque and reflecting interfaces. The sample is viewed at an angle of 60° with respect to the surface normal in order to increase the collected SFG intensity. Our setup is designed to keep the whole field of view (FOV) in focus and to compensate for the distortion usually related to oblique imaging by means of a blazed grating. The separation of the SFG intensity and the reflected visible beam is accomplished by a suitable combination of spectral filters. The sum frequency microscope (SFM) is capable of in-situ chemically selective imaging by tuning the IR-beam to vibrational transitions of the respective molecules. The SFM is applied to imaging of structured self-assembled monolayers (SAM) of thiol molecules on a gold surface.

  6. Scanning Microscopes Using X Rays and Microchannels

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the image sensor consists predominantly of radiation that was launched along the longitudinal direction of the microchannels. Therefore, most of the radiation arriving at each pixel on the sensor must have traveled along a straight line from a corresponding location on the specimen. Thus, there is a one-to-one mapping from a point on a specimen to a pixel in the image sensor, so that the output of the image sensor contains image information equivalent to that from a microscope.

  7. Real-time, non-invasive microscopic confirmation of clinical diagnosis of bullous pemphigoid using in vivo reflectance confocal microscopy.

    PubMed

    Ardigò, M; Agozzino, M; Amorosi, B; Moscarella, E; Cota, C; de Abreu, L; Berardesca, E

    2014-05-01

    Bullous pemphigoid is an autoimmune disease affecting prevalently the elder. In vivo reflectance confocal microscopy is a non-invasive technique for real-time imaging of the skin with cellular-level resolution. No previous data has been reported about confocal microscopy of bullous pemphigoid. Aim of this preliminary study is the evaluation of the potential of in vivo reflectance confocal microscopy for real-time, microscopical confirmation of clinical bullous pemphigoid diagnosis. A total of nine lesions from patients affected by pemphigoid underwent in vivo reflectance confocal microscopy before histological examination. In our preliminary study, confocal microscopy showed high grade of correspondence to histopathology. In particular, presence of sub-epidermal cleft and variable amount of oedema of the upper dermis associated with inflammatory cells infiltration were seen as prevalent confocal features in the bullous lesions considered. Differently, in urticarial lesions, no specific features could be appreciated at confocal analysis beside the presence of signs of spongiosis and perivascular inflammation. Confocal microscopy seems to be useful for in vivo, microscopical confirmation of the clinical suspect of bullous pemphigoid and for biopsy site selection in urticarial lesions to obtain a more significant specimen for histopathological examination. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The approach to reflection x-ray microscopy below the critical angles

    NASA Astrophysics Data System (ADS)

    Artyukov, Igor A.; Busarov, Alexander; Popov, Nikolay L.; Vinogradov, Alexander V.

    2017-05-01

    There is a quest for new knowledge and methods to study various materials and processes on surfaces and interfaces at the nanoscale. It concerns ablation, phase transitions, physical and chemical transformations, dissolution, selforganization etc. Obviously, to achieve an appropriate resolution it is necessary to use a corresponding wavelength . Higher resolution can be obtained with shorter wavelengths. On the other hand, in surface modification, ablation, study of buried interfaces etc. the penetration length of radiation into the materials, which depends on the wavelength and angle of incidence, plays important role... Considering these factors the experimental studies in nano-physics and nanotechnology are usually carried out using X-ray radiation with a photon energy of 0.1-10 keV. As far as surfaces and films are investigated, it is reasonable to use an X-ray microscope operating in the reflection mode. However, in this spectral range a substantial portion of the radiation is reflected only at small grazing angles (e.g. <= 10°). Thus, the idea of grazing incidence reflection-mode X-ray microscope has been developed. In this paper, we consider one of possible schemes of such an X-ray microscope. Our analysis and simulation is based on the extension of the Fresnel propagation theory to tilted object problems.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gofron, K. J., E-mail: kgofron@bnl.gov; Cai, Y. Q.; Coburn, D. S.

    A novel on-axis X-ray microscope with 3 µm resolution, 3x magnification, and a working distance of 600 mm for in-situ sample alignment and X-ray beam visualization for the Inelastic X-ray Scattering (IXS) beamline at NSLS-II is presented. The microscope uses reflective optics, which minimizes dispersion, and allows imaging from Ultraviolet (UV) to Infrared (IR) with specifically chosen objective components (coatings, etc.). Additionally, a portable high resolution X-ray microscope for KB mirror alignment and X-ray beam characterization was developed.

  10. Differential phase measurements of D-region partial reflections

    NASA Technical Reports Server (NTRS)

    Wiersma, D. J.; Sechrist, C. F., Jr.

    1972-01-01

    Differential phase partial reflection measurements were used to deduce D region electron density profiles. The phase difference was measured by taking sums and differences of amplitudes received on an array of crossed dipoles. The reflection model used was derived from Fresnel reflection theory. Seven profiles obtained over the period from 13 October 1971 to 5 November 1971 are presented, along with the results from simultaneous measurements of differential absorption. Some possible sources of error and error propagation are discussed. A collision frequency profile was deduced from the electron concentration calculated from differential phase and differential absorption.

  11. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  12. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  13. Fly artifact documentation of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) - a forensically important blowfly species in Malaysia.

    PubMed

    Zuha, R M; Supriyani, M; Omar, B

    2008-04-01

    Analysis on fly artifacts produced by forensically important blowfly, Chrysomya megacephala (Fabricius) (Diptera:Calliphoridae), revealed several unique patterns. They can be divided into fecal spots, regurgitation spots and swiping stains. The characteristics of fecal spots are round with three distinct levels of pigmentation; creamy, brownish and darkly pigmented. Matrix of the spots appears cloudy. The round spots are symmetrical and non-symmetrical, delineated by irregular and darker perimeter which only visible in fairly colored fecal spots. Diameter of these artifacts ranged from 0.5 mm to 4 mm. Vomit or regurgitation spots are determined by the presence of craters due to sucking activity of blowflies and surrounded by thickly raised and darker colored perimeter. The size of these specks ranged from 1 mm to 2 mm. Matrix of the spots displays irregular surface and reflective under auxiliary microscope light. Swiping stains due to defecation by flies consists of two distinguishable segments, the body and tail. It can be seen as a tear drop-like, sperm-like, snake-like and irregular tadpole-like stain. The direction of body and tail is inconsistent and length ranged between 4.8 mm to 9.2 mm. A finding that should be highlighted in this observation is the presence of crater on tadpole-like swiping stain which is apparent by its raised border characteristic and reflective under auxiliary microscope light. The directionality of this darkly brown stain is random. This unique mix of regurgitation and swiping stain has never been reported before. Highlighting the features of artifacts produced by flies would hopefully add our understanding in differentiating them from blood spatters produced from victims at crime scenes.

  14. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis.

    PubMed

    DePianto, Daryle J; Chandriani, Sanjay; Abbas, Alexander R; Jia, Guiquan; N'Diaye, Elsa N; Caplazi, Patrick; Kauder, Steven E; Biswas, Sabyasachi; Karnik, Satyajit K; Ha, Connie; Modrusan, Zora; Matthay, Michael A; Kukreja, Jasleen; Collard, Harold R; Egen, Jackson G; Wolters, Paul J; Arron, Joseph R

    2015-01-01

    There is microscopic spatial and temporal heterogeneity of pathological changes in idiopathic pulmonary fibrosis (IPF) lung tissue, which may relate to heterogeneity in pathophysiological mediators of disease and clinical progression. We assessed relationships between gene expression patterns, pathological features, and systemic biomarkers to identify biomarkers that reflect the aggregate disease burden in patients with IPF. Gene expression microarrays (N=40 IPF; 8 controls) and immunohistochemical analyses (N=22 IPF; 8 controls) of lung biopsies. Clinical characterisation and blood biomarker levels of MMP3 and CXCL13 in a separate cohort of patients with IPF (N=80). 2940 genes were significantly differentially expressed between IPF and control samples (|fold change| >1.5, p<0.05). Two clusters of co-regulated genes related to bronchiolar epithelium or lymphoid aggregates exhibited substantial heterogeneity within the IPF population. Gene expression in bronchiolar and lymphoid clusters corresponded to the extent of bronchiolisation and lymphoid aggregates determined by immunohistochemistry in adjacent tissue sections. Elevated serum levels of MMP3, encoded in the bronchiolar cluster, and CXCL13, encoded in the lymphoid cluster, corresponded to disease severity and shortened survival time (p<10(-7) for MMP3 and p<10(-5) for CXCL13; Cox proportional hazards model). Microscopic pathological heterogeneity in IPF lung tissue corresponds to specific gene expression patterns related to bronchiolisation and lymphoid aggregates. MMP3 and CXCL13 are systemic biomarkers that reflect the aggregate burden of these pathological features across total lung tissue. These biomarkers may have clinical utility as prognostic and/or surrogate biomarkers of disease activity in interventional studies in IPF. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Application of a reflective microscope objective for multiphoton microscopy.

    PubMed

    Kabir, Mohammad M; Choubal, Aakash M; Toussaint, Kimani C

    2018-04-20

    Reflective objectives (ROs) mitigate chromatic aberration across a broad wavelength range. Yet, a systematic performance characterisation of ROs has not been done. In this paper, we compare the performance of a 0.5 numerical-aperture (NA) reflective objective (RO) with a 0.55 NA standard glass objective (SO), using two-photon fluorescence (TPF) and second-harmonic generation (SHG). For experiments spanning ∼1 octave in the visible and NIR wavelengths, the SO leads to defocusing errors of 25-40% for TPF images of subdiffraction fluorescent beads and 10-12% for SHG images of collagen fibres. The corresponding error for the RO is ∼4% for both imaging modalities. This work emphasises the potential utility of ROs for multimodal multiphoton microscopy applications. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  16. Spectroscopic identification of individual fluorophores using photoluminescence excitation spectra.

    PubMed

    Czerski, J; Colomb, W; Cannataro, F; Sarkar, S K

    2018-01-25

    The identity of a fluorophore can be ambiguous if other fluorophores or nonspecific fluorescent impurities have overlapping emission spectra. The presence of overlapping spectra makes it difficult to differentiate fluorescent species using discrete detection channels and unmixing of spectra. The unique absorption and emission signatures of fluorophores provide an opportunity for spectroscopic identification. However, absorption spectroscopy may be affected by scattering, whereas fluorescence emission spectroscopy suffers from signal loss by gratings or other dispersive optics. Photoluminescence excitation spectra, where excitation is varied and emission is detected at a fixed wavelength, allows hyperspectral imaging with a single emission filter for high signal-to-background ratio without any moving optics on the emission side. We report a high throughput method for measuring the photoluminescence excitation spectra of individual fluorophores using a tunable supercontinuum laser and prism-type total internal reflection fluorescence microscope. We used the system to measure and sort the photoluminescence excitation spectra of individual Alexa dyes, fluorescent nanodiamonds (FNDs), and fluorescent polystyrene beads. We used a Gaussian mixture model with maximum likelihood estimation to objectively separate the spectra. Finally, we spectroscopically identified different species of fluorescent nanodiamonds with overlapping spectra and characterized the heterogeneity of fluorescent nanodiamonds of varying size. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  17. Fourier Transform Infrared Spectroscopy Part III. Applications.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  18. Spectroscopy of reflection-asymmetric nuclei with relativistic energy density functionals

    NASA Astrophysics Data System (ADS)

    Xia, S. Y.; Tao, H.; Lu, Y.; Li, Z. P.; Nikšić, T.; Vretenar, D.

    2017-11-01

    Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra, and transition rates in 14 isotopic chains: Xe, Ba, Ce, Nd, Sm, Gd, Rn, Ra, Th, U, Pu, Cm, Cf, and Fm, are systematically analyzed using a theoretical framework based on a quadrupole-octupole collective Hamiltonian (QOCH), with parameters determined by constrained reflection-asymmetric and axially symmetric relativistic mean-field calculations. The microscopic QOCH model based on the PC-PK1 energy density functional and δ -interaction pairing is shown to accurately describe the empirical trend of low-energy quadrupole and octupole collective states, and predicted spectroscopic properties are consistent with recent microscopic calculations based on both relativistic and nonrelativistic energy density functionals. Low-energy negative-parity bands, average octupole deformations, and transition rates show evidence for octupole collectivity in both mass regions, for which a microscopic mechanism is discussed in terms of evolution of single-nucleon orbitals with deformation.

  19. PHOTONICS AND NANOTECHNOLOGY Microscopic theory of optical properties of composite media with chaotically distributed nanoparticles

    NASA Astrophysics Data System (ADS)

    Shalin, A. S.

    2010-12-01

    The boundary problem of light reflection and transmission by a film with chaotically distributed nanoinclusions is considered. Based on the proposed microscopic approach, analytic expressions are derived for distributions inside and outside the nanocomposite medium. Good agreement of the results with exact calculations and (at low concentrations of nanoparticles) with the integral Maxwell-Garnett effective-medium theory is demonstrated. It is shown that at high nanoparticle concentrations, averaging the dielectric constant in volume as is done within the framework of the effective-medium theory yields overestimated values of the optical film density compared to the values yielded by the proposed microscopic approach. We also studied the dependence of the reflectivity of a system of gold nanoparticles on their size, the size dependence of the plasmon resonance position along the wavelength scale, and demonstrated a good agreement with experimental data.

  20. Reflecting microscope system with a 0.99 numerical aperture designed for three-dimensional fluorescence imaging of individual molecules at cryogenic temperatures

    PubMed Central

    Inagawa, H.; Toratani, Y.; Motohashi, K.; Nakamura, I.; Matsushita, M.; Fujiyoshi, S.

    2015-01-01

    We have developed a cryogenic fluorescence microscope system, the core of which is a reflecting objective that consists of spherical and aspherical mirrors. The use of an aspherical mirror allows the reflecting objective to have a numerical aperture (NA) of up to 0.99, which is close to the maximum possible NA of 1.03 in superfluid helium. The performance of the system at a temperature of 1.7 K was tested by recording a three-dimensional fluorescence image of individual quantum dots using excitation wavelengths (λex) of 532 nm and 635 nm. At 1.7 K, the microscope worked with achromatic and nearly diffraction-limited performance. The 1/e2 radius (Γ) of the point spread function of the reflecting objective in the lateral (xy) direction was 0.212 ± 0.008 μm at λex = 532 nm and was less than 1.2 times the simulated value for a perfectly polished objective. The radius Γ in the axial (z) direction was 0.91 ± 0.04 μm at λex = 532 nm and was less than 1.4 times the simulated value of Γ. The chromatic aberrations between the two wavelengths were one order of magnitude smaller than Γ in each direction. PMID:26239746

  1. A LEGO Mindstorms Brewster angle microscope

    NASA Astrophysics Data System (ADS)

    Fernsler, Jonathan; Nguyen, Vincent; Wallum, Alison; Benz, Nicholas; Hamlin, Matthew; Pilgram, Jessica; Vanderpoel, Hunter; Lau, Ryan

    2017-09-01

    A Brewster Angle Microscope (BAM) built from a LEGO Mindstorms kit, additional LEGO bricks, and several standard optics components, is described. The BAM was built as part of an undergraduate senior project and was designed, calibrated, and used to image phospholipid, cholesterol, soap, and oil films on the surface of water. A BAM uses p-polarized laser light reflected off a surface at the Brewster angle, which ideally yields zero reflectivity. When a film of different refractive index is added to the surface a small amount of light is reflected, which can be imaged in a microscope camera. Films of only one molecule (approximately 1 nm) thick, a monolayer, can be observed easily in the BAM. The BAM was used in a junior-level Physical Chemistry class to observe phase transitions of a monolayer and the collapse of a monolayer deposited on the water surface in a Langmuir trough. Using a photometric calculation, students observed a change in thickness of a monolayer during a phase transition of 7 Å, which was accurate to within 1 Å of the value determined by more advanced methods. As supplementary material, we provide a detailed manual on how to build the BAM, software to control the BAM and camera, and image processing software.

  2. Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics.

    PubMed

    Amos, W B; Reichelt, S; Cattermole, D M; Laufer, J

    2003-05-01

    In this paper, differential phase imaging (DPC) with transmitted light is implemented by adding a suitable detection system to a standard commercially available scanning confocal microscope. DPC, a long-established method in scanning optical microscopy, depends on detecting the intensity difference between opposite halves or quadrants of a split photodiode detector placed in an aperture plane. Here, DPC is compared with scanned differential interference contrast (DIC) using a variety of biological specimens and objective lenses of high numerical aperture. While DPC and DIC images are generally similar, DPC seems to have a greater depth of field. DPC has several advantages over DIC. These include low cost (no polarizing or strain-free optics are required), absence of a double scanning spot, electronically variable direction of shading and the ability to image specimens in plastic dishes where birefringence prevents the use of DIC. DPC is also here found to need 20 times less laser power at the specimen than DIC.

  3. On the Application of Pattern Recognition and AI Technique to the Cytoscreening of Vaginal Smears by Computer

    NASA Astrophysics Data System (ADS)

    Bow, Sing T.; Wang, Xia-Fang

    1989-05-01

    In this paper the concepts of pattern recognition, image processing and artificial intelligence are applied to the development of an intelligent cytoscreening system to differentiate the abnormal cytological objects from the normal ones in vaginal smears. To achieve this goal,work listed below are involved: 1. Enhancement of the microscopic images of the smears; 2. Elevation of the qualitative differentiation under the microscope by cytologists to a quantitative differentiation plateau on the epithelial cells, ciliated cells, vacuolated cells, foreign-body-giant cells, plasma cells, lymph cells, white blood cells, red blood cells, etc. These knowledges are to be inputted into our intelligent cyto-screening system to ameliorate machine differentiation; 3. Selection of a set of effective features to characterize the cytological objects onto various regions of the multiclustered by computer algorithms; and 4. Systematical summarization of the knowledge that a gynecologist has and the way he/she follows when dealing with a case.

  4. Homomorphic filtering textural analysis technique to reduce multiplicative noise in the 11Oba nano-doped liquid crystalline compounds

    NASA Astrophysics Data System (ADS)

    Madhav, B. T. P.; Pardhasaradhi, P.; Manepalli, R. K. N. R.; Pisipati, V. G. K. M.

    2015-07-01

    The compound undecyloxy benzoic acid (11Oba) exhibits nematic and smectic-C phases while a nano-doped undecyloxy benzoic acid with ZnO exhibits the same nematic and smectic-C phases with reduced clearing temperature as expected. The doping is done with 0.5% and 1% ZnO molecules. The clearing temperatures are reduced by approximately 4 ° and 6 °, respectively (differential scanning calorimeter data). While collecting the images from a polarizing microscope connected with hot stage and camera, the illumination and reflectance combined multiplicatively and the image quality was reduced to identify the exact phase in the compound. A novel technique of homomorphic filtering is used in this manuscript through which multiplicative noise components of the image are separated linearly in the frequency domain. This technique provides a frequency domain procedure to improve the appearance of an image by gray level range compression and contrast enhancement.

  5. Selective colors reflection from stratified aragonite calcium carbonate plates of mollusk shells.

    PubMed

    Lertvachirapaiboon, Chutiparn; Parnklang, Tewarak; Pienpinijtham, Prompong; Wongravee, Kanet; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2015-08-01

    An interaction between the incident light and the structural architecture within the shell of Asian green mussel (Perna viridis) induces observable pearlescent colors. In this paper, we investigate the influence of the structural architecture on the expressed colors. After a removal of the organic binder, small flakes from crushed shells show vivid rainbow reflection under an optical microscope. An individual flake expresses vivid color under a bright-field illumination while become transparent under a dark-field illumination. The expressed colors of the aragonite flakes are directly associated with its structural architecture. The flakes with aragonite thickness of 256, 310, and 353 nm, respectively, appear blue, green, and red under an optical microscope. The spectral simulation corroborates the experimentally observed optical effects as the flakes with thicker aragonite layers selectively reflected color with longer wavelengths. Flakes with multiple aragonite thicknesses expressed multi-color as the upper aragonite layers allow reflected colors from the lower layers to be observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope.

    PubMed

    Mathew, Manoj; Santos, Susana I C O; Zalvidea, Dobryna; Loza-Alvarez, Pablo

    2009-07-01

    In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans.

  7. Mechanical design of a precision linear flexural stage for 3D x-ray diffraction microscope at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Shu, D.; Liu, W.; Kearney, S.; Anton, J.; Tischler, J. Z.

    2015-09-01

    The 3-D X-ray diffraction microscope is a new nondestructive tool for the three-dimensional characterization of mesoscopic materials structure. A flexural-pivot-based precision linear stage has been designed to perform a wire scan as a differential aperture for the 3-D diffraction microscope at the Advanced Photon Source, Argonne National Laboratory. The mechanical design and finite element analyses of the flexural stage, as well as its initial mechanical test results with laser interferometer are described in this paper.

  8. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    NASA Astrophysics Data System (ADS)

    Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.

    2014-03-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  9. How Prior Knowledge and Colour Contrast Interfere Visual Search Processes in Novice Learners: An Eye Tracking Study

    ERIC Educational Resources Information Center

    Sonmez, Duygu; Altun, Arif; Mazman, Sacide Guzin

    2012-01-01

    This study investigates how prior content knowledge and prior exposure to microscope slides on the phases of mitosis effect students' visual search strategies and their ability to differentiate cells that are going through any phases of mitosis. Two different sets of microscope slide views were used for this purpose; with high and low colour…

  10. Organotypic culture of human amnion cells in air-liquid interface as a potential substitute for skin regeneration.

    PubMed

    Fatimah, Simat Siti; Chua, Kienhui; Tan, Geok Chin; Azmi, Tengku Ibrahim; Tan, Ay Eeng; Abdul Rahman, Hayati

    2013-08-01

    The aim of the present study was to evaluate the effects of air-liquid interface on the differentiation potential of human amnion epithelial cells (HAECs) to skin-like substitute in organotypic culture. HAECs at passage 1-2 were seeded onto a fibrin layer populated with human amnion mesenchymal cells to form the organotypic cultures. The organotypic HAECs were then cultured for 7, 14 and 21 d in two types of culture system: the submerged culture and the air-liquid interface culture. Cell morphogenesis was examined under the light and electron microscopes (transmission and scanning) and analyzed by immunohistochemistry. Organotypic HAECs formed a single layer epithelium after 3 wk in submerged as well as air-liquid interface cultures. Ultrastructurally, desmosomes were observed in organotypic HAECs cultured in the air-liquid interface but not in the submerged culture. The presence of desmosomes marked the onset of early epidermal differentiation. Organotypic HAECs were positive against anti-CK18 and anti-CK14 in both the submerged and the air-liquid interface cultures. The co-expression of CK14 and CK18 suggested that differentiation of HAECs into skin may follow the process of embryonic skin development. However, weak expression of CK14 was observed after 2 and 3 wk of culture in air-liquid interface. CK10, involucrin, type IV collagen and laminin-5 expression was absent in organotypic HAECs. This observation reflects the initial process of embryonic epidermal differentiation and stratification. Results from the present study suggest that the air-liquid interface could stimulate early differentiation of organotypic HAECs to epidermal cells, with a potential use for skin regeneration. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Second-harmonic patterned polarization-analyzed reflection confocal microscope

    NASA Astrophysics Data System (ADS)

    Okoro, Chukwuemeka; Toussaint, Kimani C.

    2017-08-01

    We introduce the second-harmonic patterned polarization-analyzed reflection confocal (SPPARC) microscope-a multimodal imaging platform that integrates Mueller matrix polarimetry with reflection confocal and second-harmonic generation (SHG) microscopy. SPPARC microscopy provides label-free three-dimensional (3-D), SHG-patterned confocal images that lend themselves to spatially dependent, linear polarimetric analysis for extraction of rich polarization information based on the Mueller calculus. To demonstrate its capabilities, we use SPPARC microscopy to analyze both porcine tendon and ligament samples and find differences in both circular degree-of-polarization and depolarization parameters. Moreover, using the collagen-generated SHG signal as an endogenous counterstain, we show that the technique can be used to provide 3-D polarimetric information of the surrounding extrafibrillar matrix plus cells or EFMC region. The unique characteristics of SPPARC microscopy holds strong potential for it to more accurately and quantitatively describe microstructural changes in collagen-rich samples in three spatial dimensions.

  12. Differential polarization laser scanning microscopy: biological applications

    NASA Astrophysics Data System (ADS)

    Steinbach, G.; Besson, F.; Pomozi, I.; Garab, G.

    2005-09-01

    With the aid of a differential polarization (DP) apparatus, developed in our laboratory and attached to our laser scanning confocal microscope, we can measure the magnitude and spatial distribution of 8 different DP quantities: linear and circular dichroism (LD&CD), linear and circular anisotropy of the emission (R and CPL, confocal), fluorescence detected dichroisms (FDLD&FDCD, confocal), linear birefringence (LB), and the degree of polarization of fluorescence emission (P, confocal). The attachment uses high frequency modulation and subsequent demodulation, via lock-in amplifier, of the detected intensity values, and records and displays pixel-by-pixel the measured DP quantity. These microscopic DP data carry important physical information on the molecular architecture of anisotropically organized samples. Microscopic DP measurements are thought to be of particular importance in biology. In most biological samples anisotropy is difficult to determine with conventional, macroscopic DP measurements and microscopic variations are of special significance. In this paper, we describe the method of LB imaging. Using magnetically oriented isolated chloroplasts trapped in polyacrylamide gel, we demonstrate that LB can be determined with high sensitivity and good spatial resolution. Granal thylakoid membranes in edge-aligned orientation exhibited strong LB, with large variations in its sign and magnitude. In face-aligned position LB was considerably weaker, and tended to vanish when averaged for the whole image. The strong local variations are attributed to the inherent heterogeneity of the membranes, i.e. to their internal differentiation into multilamellar, stacked membranes (grana), and single thylakoids (stroma membranes). Further details and applications of our DP-LSM will be published elsewhere.

  13. Ophthalmic applications of confocal microscopy: diagnostics, refractive surgery, and eye banking

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1990-11-01

    Confocal microscopy of ocular tissue provides two advantages over traditional imaging techniques: increased range and transverse resolution and increased contrast. The semitransparent cornea and ocular lens in the living eye can be optically sectioned and observed by reflected light confocal microscopy. Within the cornea we observed various cell components nerve fibers nerve cell bodies and fibrous networks. The confocal microscopic images from the in-situ ocular lens show the lens capsule the lens epithelium and the individual lens fibrils. All of the reflected light confocal microscopic images have high contrast and high resolution. Some of the applications of confocal imaging in ophthalmology include: diagnostics of the cornea and the ocular lens examination prior to and after refractive surgery examination of intraocular lenses (IOL) and examination of eye bank material. Other ophthalmic uses of confocal imaging include: studies of wound healing therapeutics and the effects of contact lenses on the cornea. The proposed features of a clinical confocal microscope are reviewed. 2.

  14. Design, Fabrication and Testing of Multilayer Coated X-Ray Optics for the Water Window Imaging X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.

  15. On-Orbit Gradiometry with the scientific instrument of the French Space Mission MICROSCOPE

    NASA Astrophysics Data System (ADS)

    Foulon, B.; Baghi, Q.; Panet, I.; Rodrigues, M.; Metris, G.; Touboul, P.

    2017-12-01

    The MICROSCOPE mission is fully dedicated to the in-orbit test of the universality of free fall, the so-called Weak Equivalence Principle (WEP). Based on a CNES Myriade microsatellite launched on the 25th of April 2016, MICROSCOPE is a CNES-ESA-ONERA-CNRS-OCA mission, the scientific objective of which is to test of the Equivalence Principle with an extraordinary accuracy at the level of 10-15. The measurement will be obtained from the T-SAGE (Twin Space Accelerometer for Gravitational Experimentation) instrument constituted by two ultrasensitive differential accelerometers. One differential electrostatic accelerometer, labeled SU-EP, contains, at its center, two proof masses made of Titanium and Platinum and is used for the test. The twin accelerometer, labeled SU-REF, contains two Platinum proof masses and is used as a reference instrument. Separated by a 17 cm-length arm, they are embarked in a very stable and soft environment on board a satellite equipped with a drag-free control system and orbiting on a sun synchronous circular orbit at 710 km above the Earth. In addition to the WEP test, this configuration can be interesting for various applications, and one of the proposed ideas is to use MICROSCOPE data for the measurement of Earth's gravitational gradient. Considering the gradiometer formed by the inner Platinum proof-masses of the two differential accelerometers and the arm along the Y-axis of the instrument which is perpendicular to the orbital plane, possibly 3 components of the gradient can be measured: Txy, Tyy and Tzy. Preliminary studies suggest that the errors can be lower than 10mE. Taking advantage of its higher altitude with respect to GOCE, the low frequency signature of Earth's potential seen by MICROSCOPE could provide an additional observable in gradiometry to discriminate between different models describing the large scales of the mass distribution in the Earth's deep mantle. The poster will shortly present the MICROSCOPE mission configuration. It will detail the actual in-flight performances of the accelerometers and of the attitude and position control, in order to evaluate the gradiometer error budget according to the satellite pointing mode configuration.

  16. Pupil engineering for a confocal reflectance line-scanning microscope

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2011-03-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current confocal point-scanning systems are large, complex, and expensive. A confocal line-scanning microscope, utilizing a of linear array detector can be simpler, smaller, less expensive, and may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A line scanner may be implemented with a divided-pupil, half used for transmission and half for detection, or with a full-pupil using a beamsplitter. The premise is that a confocal line-scanner with either a divided-pupil or a full-pupil will provide high resolution and optical sectioning that would be competitive to that of the standard confocal point-scanner. We have developed a confocal line-scanner that combines both divided-pupil and full-pupil configurations. This combined-pupil prototype is being evaluated to determine the advantages and limitations of each configuration for imaging skin, and comparison of performance to that of commercially available standard confocal point-scanning microscopes. With the combined configuration, experimental evaluation of line spread functions (LSFs), contrast, signal-to-noise ratio, and imaging performance is in progress under identical optical and skin conditions. Experimental comparisons between divided-pupil and full-pupil LSFs will be used to determine imaging performance. Both results will be compared to theoretical calculations using our previously reported Fourier analysis model and to the confocal point spread function (PSF). These results may lead to a simpler class of confocal reflectance scanning microscopes for clinical and surgical dermatology.

  17. Influence of Capping Ligand and Synthesis Method on Structure and Morphology of Aqueous Phase Synthesized CuInSe2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ram Kumar, J.; Ananthakumar, S.; Moorthy Babu, S.

    2017-01-01

    A facile route to synthesize copper indium diselenide (CuInSe2) nanoparticles in aqueous medium was developed using mercaptoacetic acid (MAA) as capping agent. Two different mole ratios (5 and 10) of MAA were used to synthesize CuInSe2 nanoparticles at room temperature, as well as hydrothermal (high temperature) method. Powder x-ray diffraction analysis reveals that the nanoparticles exhibit chalcopyrite phase and the crystallinity increases with increasing the capping ratio. Raman analysis shows a strong band at 233 cm-1 due to the combination of B2 (E) modes. Broad absorption spectra were observed for the synthesized CuInSe2 nanoparticles. The effective surface capping by MAA on the nanoparticles surface was confirmed through attenuated total reflection-Fourier transform infrared spectral analysis. The thermal stability of the synthesized samples was analyzed through thermogravimetric analysis-differential scanning calorimetry. The change in morphology of the synthesized samples was analyzed through scanning electron microscope and it shows that the samples prepared at room temperature are spherical in shape, whereas hydrothermally synthesized samples were found to have nanorod- and nanoflake-like structures. Transmission electron microscope analysis further indicates larger grains for the hydrothermally prepared samples with 10 mol ratio of MAA. Comparative analyses were made for synthesizing CuInSe2 nanoparticles by two different methods to explore the role of ligand and influence of temperature.

  18. Effects of hydrogen peroxide on the light reflectance and morphology of bovine enamel.

    PubMed

    Kwon, Y H; Huo, M S; Kim, K H; Kim, S K; Kim, Y J

    2002-05-01

    The purpose of this study was to examine the effects of a bleaching agent (30% hydrogen peroxide) on the surface of bovine enamel using a scanning electron microscope and a UV-VIS-NIR spectrophotometer. Five non-carious bovine incisors were bleached for 0, 1, 2 and 3 days using 30% hydrogen peroxide. The light reflectance spectrum was measured using a spectrophotometer with diffuse reflectance mode. Colour values and colour differences in the teeth were evaluated from the reflectance measurements with the CIE L*a*b* colour coordinate system. Surface alterations in the bleached and unbleached teeth were studied using a scanning electron microscope. The change of reflectance in the teeth was related to the change of colour. Most reflectance change occurred within a 1-day bleaching, and this result was confirmed by a CIE L*a*b* colour coordinate system. The colour differences in the bleached teeth were significant enough to be perceived by the observer's eye. The comparison of bleached to unbleached bovine enamel revealed that the bleached surface showed non-uniform slight morphological alterations, and it developed varying degrees of surface porosity. This study indicates that the bleached bovine teeth showed apparent colour differences as well as slight morphological alterations after bleaching.

  19. On-line transmission electron microscopic image analysis of chromatin texture for differentiation of thyroid gland tumors.

    PubMed

    Kriete, A; Schäffer, R; Harms, H; Aus, H M

    1987-06-01

    Nuclei of the cells from the thyroid gland were analyzed in a transmission electron microscope by direct TV scanning and on-line image processing. The method uses the advantages of a visual-perception model to detect structures in noisy and low-contrast images. The features analyzed include area, a form factor and texture parameters from the second derivative stage. Three tumor-free thyroid tissues, three follicular adenomas, three follicular carcinomas and three papillary carcinomas were studied. The computer-aided cytophotometric method showed that the most significant differences were the statistics of the chromatin texture features of homogeneity and regularity. These findings document the possibility of an automated differentiation of tumors at the ultrastructural level.

  20. Design of an all-optical fractional-order differentiator with terahertz bandwidth based on a fiber Bragg grating in transmission.

    PubMed

    Liu, Xin; Shu, Xuewen

    2017-08-20

    All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.

  1. Tissue differentiation by diffuse reflectance spectroscopy for automated oral and maxillofacial laser surgery: ex vivo pilot study

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Schmidt, Michael; Douplik, Alexandre

    2010-02-01

    Remote laser surgery lacks of haptic feedback during the laser ablation of tissue. Hence, there is a risk of iatrogenic damage or destruction of anatomical structures like nerves or salivary glands. Diffuse reflectance spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from seven various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the seven tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerves and salivary glands as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating tissues as guidance for oral and maxillofacial laser surgery by means of diffuse reflectance.

  2. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm.

  3. Novel flowcytometry-based approach of malignant cell detection in body fluids using an automated hematology analyzer

    PubMed Central

    Tabe, Yoko; Takemura, Hiroyuki; Kimura, Konobu; Takahashi, Toshihiro; Yang, Haeun; Tsuchiya, Koji; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Ohsaka, Akimichi

    2018-01-01

    Morphological microscopic examinations of nucleated cells in body fluid (BF) samples are performed to screen malignancy. However, the morphological differentiation is time-consuming and labor-intensive. This study aimed to develop a new flowcytometry-based gating analysis mode “XN-BF gating algorithm” to detect malignant cells using an automated hematology analyzer, Sysmex XN-1000. XN-BF mode was equipped with WDF white blood cell (WBC) differential channel. We added two algorithms to the WDF channel: Rule 1 detects larger and clumped cell signals compared to the leukocytes, targeting the clustered malignant cells; Rule 2 detects middle sized mononuclear cells containing less granules than neutrophils with similar fluorescence signal to monocytes, targeting hematological malignant cells and solid tumor cells. BF samples that meet, at least, one rule were detected as malignant. To evaluate this novel gating algorithm, 92 various BF samples were collected. Manual microscopic differentiation with the May-Grunwald Giemsa stain and WBC count with hemocytometer were also performed. The performance of these three methods were evaluated by comparing with the cytological diagnosis. The XN-BF gating algorithm achieved sensitivity of 63.0% and specificity of 87.8% with 68.0% for positive predictive value and 85.1% for negative predictive value in detecting malignant-cell positive samples. Manual microscopic WBC differentiation and WBC count demonstrated 70.4% and 66.7% of sensitivities, and 96.9% and 92.3% of specificities, respectively. The XN-BF gating algorithm can be a feasible tool in hematology laboratories for prompt screening of malignant cells in various BF samples. PMID:29425230

  4. Novel flowcytometry-based approach of malignant cell detection in body fluids using an automated hematology analyzer.

    PubMed

    Ai, Tomohiko; Tabe, Yoko; Takemura, Hiroyuki; Kimura, Konobu; Takahashi, Toshihiro; Yang, Haeun; Tsuchiya, Koji; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Ohsaka, Akimichi

    2018-01-01

    Morphological microscopic examinations of nucleated cells in body fluid (BF) samples are performed to screen malignancy. However, the morphological differentiation is time-consuming and labor-intensive. This study aimed to develop a new flowcytometry-based gating analysis mode "XN-BF gating algorithm" to detect malignant cells using an automated hematology analyzer, Sysmex XN-1000. XN-BF mode was equipped with WDF white blood cell (WBC) differential channel. We added two algorithms to the WDF channel: Rule 1 detects larger and clumped cell signals compared to the leukocytes, targeting the clustered malignant cells; Rule 2 detects middle sized mononuclear cells containing less granules than neutrophils with similar fluorescence signal to monocytes, targeting hematological malignant cells and solid tumor cells. BF samples that meet, at least, one rule were detected as malignant. To evaluate this novel gating algorithm, 92 various BF samples were collected. Manual microscopic differentiation with the May-Grunwald Giemsa stain and WBC count with hemocytometer were also performed. The performance of these three methods were evaluated by comparing with the cytological diagnosis. The XN-BF gating algorithm achieved sensitivity of 63.0% and specificity of 87.8% with 68.0% for positive predictive value and 85.1% for negative predictive value in detecting malignant-cell positive samples. Manual microscopic WBC differentiation and WBC count demonstrated 70.4% and 66.7% of sensitivities, and 96.9% and 92.3% of specificities, respectively. The XN-BF gating algorithm can be a feasible tool in hematology laboratories for prompt screening of malignant cells in various BF samples.

  5. A multi-modal stereo microscope based on a spatial light modulator.

    PubMed

    Lee, M P; Gibson, G M; Bowman, R; Bernet, S; Ritsch-Marte, M; Phillips, D B; Padgett, M J

    2013-07-15

    Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing). We report the development of a microscope sharing many of the previously demonstrated capabilities, within a holographic implementation of a stereo microscope. Furthermore, we use the SLM to combine stereo microscopy with a refocusing filter and with a darkfield filter. The instrument is built around a custom inverted microscope and equipped with an SLM which gives various imaging modes laterally displaced on the same camera chip. In addition, there is a wide angle camera for visualisation of a larger region of the sample.

  6. A colinear backscattering Mueller matrix microscope for reflection Muller matrix imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Yao, Yue; Zhu, Yuanhuan; Ma, Hui

    2018-02-01

    In a recent attempt, we developed a colinear backscattering Mueller matrix microscope by adding polarization state generator (PSG) and polarization state analyzer (PSA) into the illumination and detection optical paths of a commercial metallurgical microscope. It is found that specific efforts have to be made to reduce the artifacts due to the intrinsic residual polarizations of the optical system, particularly the dichroism due to the 45 degrees beam splitter. In this paper, we present a new calibration method based on numerical reconstruction of the instrument matrix to remove the artifacts introduced by beam splitter. Preliminary tests using a mirror as a standard sample show that the maximum Muller matrix element error of the colinear backscattering Muller matrix microscope can be reduced to a few percent.

  7. Communication Applications for Deformable Mirror Devices.

    DTIC Science & Technology

    1997-06-01

    is mean deflection [after Rhoadarmer. 1994] 4.5 Improved interference microscope system for micromirror characterization [after Michalicek. et...identical hexagonal micromirrors [after Michalicek. et al.. 1995] 4.7 (a) Optical system design for micromirror array (or DMD ) interfacing...constructive and destructive interference between the reflective and nonreflective portions of the element (about 75% of the element is reflective

  8. Differentiated Coaching: Fostering Reflection with Teachers

    ERIC Educational Resources Information Center

    Stover, Katie; Kissel, Brian; Haag, Karen; Shoniker, Rebecca

    2011-01-01

    Literacy coaches inspire teacher reflection and promote a culture of ongoing professional learning. This article illustrates the role of literacy coaches, describes how coaches differentiate support for a diverse group of teachers, and explains how teacher reflection can be a catalyst for change and professional growth. The authors, current and…

  9. Differentiating Amino Acid Residues and Side Chain Orientations in Peptides Using Scanning Tunneling Microscopy

    PubMed Central

    Claridge, Shelley A.; Thomas, John C.; Silverman, Miles A.; Schwartz, Jeffrey J.; Yang, Yanlian; Wang, Chen; Weiss, Paul S.

    2014-01-01

    Single-molecule measurements of complex biological structures such as proteins are an attractive route for determining structures of the large number of important biomolecules that have proved refractory to analysis through standard techniques such as X-ray crystallography and nuclear magnetic resonance. We use a custom-built low-current scanning tunneling microscope to image peptide structure at the single-molecule scale in a model peptide that forms β sheets, a structural motif common in protein misfolding diseases. We successfully differentiate between histidine and alanine amino acid residues, and further differentiate side chain orientations in individual histidine residues, by correlating features in scanning tunneling microscope images with those in energy-optimized models. Beta sheets containing histidine residues are used as a model system due to the role histidine plays in transition metal binding associated with amyloid oligomerization in Alzheimer’s and other diseases. Such measurements are a first step toward analyzing peptide and protein structures at the single-molecule level. PMID:24219245

  10. Fluorescence-guided tumor visualization using a custom designed NIR attachment to a surgical microscope for high sensitivity imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kittle, David S.; Patil, Chirag G.; Mamelak, Adam; Hansen, Stacey; Perry, Jeff; Ishak, Laura; Black, Keith L.; Butte, Pramod V.

    2016-03-01

    Current surgical microscopes are limited in sensitivity for NIR fluorescence. Recent developments in tumor markers attached with NIR dyes require newer, more sensitive imaging systems with high resolution to guide surgical resection. We report on a small, single camera solution enabling advanced image processing opportunities previously unavailable for ultra-high sensitivity imaging of these agents. The system captures both visible reflectance and NIR fluorescence at 300 fps while displaying full HD resolution video at 60 fps. The camera head has been designed to easily mount onto the Zeiss Pentero microscope head for seamless integration into surgical procedures.

  11. Fluorescence excitation and imaging of single molecules near dielectric-coated and bare surfaces: a theoretical study.

    PubMed

    Axelrod, Daniel

    2012-08-01

    Microscopic fluorescent samples of interest to cell and molecular biology are commonly embedded in an aqueous medium near a solid surface that is coated with a thin film such as a lipid multilayer, collagen, acrylamide, or a cell wall. Both excitation and emission of fluorescent single molecules near film-coated surfaces are strongly affected by the proximity of the coated surface, the film thickness, its refractive index and the fluorophore's orientation. For total internal reflection excitation, multiple reflections in the film can lead to resonance peaks in the evanescent intensity versus incidence angle curve. For emission, multiple reflections arising from the fluorophore's near field emission can create a distinct intensity pattern in both the back focal plane and the image plane of a high aperture objective. This theoretical analysis discusses how these features can be used to report film thickness and refractive index, and fluorophore axial position and orientation. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.

  12. Visualizing substructure of Ca2+ waves by total internal reflection fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bai, Yongqiang; Tang, Aihui; Wang, Shiqiang; Zhu, Xing

    2005-02-01

    Total internal reflection fluorescence microscope is a new optical microscopic system based on near-field optical theory. Its character of illumination by evanescent wave, together with the great signal-to-noise ratio and temporal resolution achieved by high quality CCD, allows us to analyze the spatiotemporal details of local Ca2+ dynamics within the nanoscale microdomain surrounding different Ca2+ channels. We have recently constructed a versatile objective TIRFM equipped with a high numerical aperture (NA=1.45) objective. Using fluo-4 as the Ca2+ indicator, we visualized the near-membrane profiles of Ca2+ waves and elementary Ca2+ sparks generated by Ca2+ release channels in rat ventricular myocytes. Different from those detected using conventional and confocal microscopy, Ca2+ waves observed with TIRFM exhibited fine inhomogenous substructures composed of fluctuating Ca2+ sparks. The anfractuous routes of spark recruitment suggested that the propagation of Ca2+ waves is much more complicated than previously imagined. We believe that TIRFM will provide a unique tool for dissecting the microscopic mechanisms of intracellular Ca2+ signaling.

  13. Dermoscopic and reflectance confocal microscopic features of exogenous ochronosis.

    PubMed

    Gil, Inmaculada; Segura, Sonia; Martínez-Escala, Estela; Lloreta, Josep; Puig, Susana; Vélez, Mariano; Pujol, Ramón M; Herrero-González, Josep E

    2010-09-01

    Exogenous ochronosis presents as an acquired asymptomatic hyperpigmentation on photoexposed areas, predominantly over bony prominences, and is caused by the topical application of several skin-lightening agents. We describe a 63-year-old Hispanic woman who developed exogenous ochronosis lesions on her face after using topical bleaching creams containing hydroquinone, 2% to 3%, and oxybenzone, 2%, for several years. Dermoscopy revealed irregular brown-gray globular, annular, and arciform structures that corresponded to focal deposition of ochronotic pigment on the dermis. These deposits correlated with multiple banana-shaped nonrefractile structures seen using reflectance confocal microscopy. Histopathologic sections revealed the deposition of a banana-shaped, yellow to brown material in the papillary and middle dermis. Ultrastructural examination revealed an amorphous electron-dense material mostly located in the core of elastic fibers and also in smaller amounts in the interstitium with prominent degenerative changes in the elastic fibers. A good correlation was observed between the results of both noninvasive techniques and the diagnostic histologic features of this condition. We characterized by means of dermoscopy, reflectance confocal microscopy, and electronic microscopy a case of exogenous ochronosis. To our knowledge, this is the first description of reflectance confocal microscopic findings in this condition. Dermoscopy and reflectance confocal microscopy are proved to be useful noninvasive techniques for the diagnosis of this pigmentary disorder.

  14. Primary clear cell carcinoma of parotid gland: Case report and review of literature.

    PubMed

    Rodríguez, Marta Saldaña; Reija, Maria Fe García; Rodilla, Irene González

    2013-01-01

    Clear cell carcinoma (CCC) is a rare low-grade carcinoma that represents only 1% to 2% of all salivary glands tumors. The finding of a clear cell tumor in a parotid gland involves the necessity of differential diagnosis between primary clear cell parotid tumors and metastases, mainly from kidney. The biological behavior is not very aggressive and development, which is very slow, is usually asymptomatic and indeed, the tumor often reaches considerable dimensions before being diagnosed. The treatment of choice is the surgical excision. There are rare cases of local recurrence and distant metastases. The aim of this article is to report a primary CCC in the parotid gland that microscopically closely resembled a metastatic CCC of renal origin, making microscopic differentiation difficult.

  15. Primary clear cell carcinoma of parotid gland: Case report and review of literature

    PubMed Central

    Rodríguez, Marta Saldaña; Reija, Maria Fe García; Rodilla, Irene González

    2013-01-01

    Clear cell carcinoma (CCC) is a rare low-grade carcinoma that represents only 1% to 2% of all salivary glands tumors. The finding of a clear cell tumor in a parotid gland involves the necessity of differential diagnosis between primary clear cell parotid tumors and metastases, mainly from kidney. The biological behavior is not very aggressive and development, which is very slow, is usually asymptomatic and indeed, the tumor often reaches considerable dimensions before being diagnosed. The treatment of choice is the surgical excision. There are rare cases of local recurrence and distant metastases. The aim of this article is to report a primary CCC in the parotid gland that microscopically closely resembled a metastatic CCC of renal origin, making microscopic differentiation difficult. PMID:23798840

  16. Image formation of thick three-dimensional objects in differential-interference-contrast microscopy.

    PubMed

    Trattner, Sigal; Kashdan, Eugene; Feigin, Micha; Sochen, Nir

    2014-05-01

    The differential-interference-contrast (DIC) microscope is of widespread use in life sciences as it enables noninvasive visualization of transparent objects. The goal of this work is to model the image formation process of thick three-dimensional objects in DIC microscopy. The model is based on the principles of electromagnetic wave propagation and scattering. It simulates light propagation through the components of the DIC microscope to the image plane using a combined geometrical and physical optics approach and replicates the DIC image of the illuminated object. The model is evaluated by comparing simulated images of three-dimensional spherical objects with the recorded images of polystyrene microspheres. Our computer simulations confirm that the model captures the major DIC image characteristics of the simulated object, and it is sensitive to the defocusing effects.

  17. Feedback effects in optical communication systems: characteristic curve for single-mode InGaAsP lasers.

    PubMed

    Brivio, F; Reverdito, C; Sacchi, G; Chiaretti, G; Milani, M

    1992-08-20

    An experimental analysis of InGaAsP injection lasers shows an unexpected decrease of the differential quantum efficiency as a function of injected current when optical power is fed back into the active cavity of a diode inserted into a long transmission line. To investigate the response of laser diodes to optical feedback, we base our analysis on a microscopic model, resulting in a set of coupled equations that include the microscopic parameters that characterize the material and the device. This description takes into account the nonlinear dependence of the interband carrier lifetime on the level of optical feedback. Good agreement between the analytical description and experimental data is obtained for threshold current and differential quantum efficiency as functions of the feedback ratio.

  18. Differential dynamic microscopy to characterize Brownian motion and bacteria motility

    NASA Astrophysics Data System (ADS)

    Germain, David; Leocmach, Mathieu; Gibaud, Thomas

    2016-03-01

    We have developed a lab module for undergraduate students, which involves the process of quantifying the dynamics of a suspension of microscopic particles using Differential Dynamic Microscopy (DDM). DDM is a relatively new technique that constitutes an alternative method to more classical techniques such as dynamic light scattering (DLS) or video particle tracking (VPT). The technique consists of imaging a particle dispersion with a standard light microscope and a camera and analyzing the images using a digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM in the textbook case of colloids under Brownian motion, where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biological systems such as motile bacteria.

  19. Classification of lymphoid neoplasms: the microscope as a tool for disease discovery

    PubMed Central

    Harris, Nancy Lee; Stein, Harald; Isaacson, Peter G.

    2008-01-01

    In the past 50 years, we have witnessed explosive growth in the understanding of normal and neoplastic lymphoid cells. B-cell, T-cell, and natural killer (NK)–cell neoplasms in many respects recapitulate normal stages of lymphoid cell differentiation and function, so that they can be to some extent classified according to the corresponding normal stage. Likewise, the molecular mechanisms involved the pathogenesis of lymphomas and lymphoid leukemias are often based on the physiology of the lymphoid cells, capitalizing on deregulated normal physiology by harnessing the promoters of genes essential for lymphocyte function. The clinical manifestations of lymphomas likewise reflect the normal function of lymphoid cells in vivo. The multiparameter approach to classification adopted by the World Health Organization (WHO) classification has been validated in international studies as being highly reproducible, and enhancing the interpretation of clinical and translational studies. In addition, accurate and precise classification of disease entities facilitates the discovery of the molecular basis of lymphoid neoplasms in the basic science laboratory. PMID:19029456

  20. Optical properties of azobenzene-functionalized self-assembled monolayers: Intermolecular coupling and many-body interactions

    NASA Astrophysics Data System (ADS)

    Cocchi, Caterina; Moldt, Thomas; Gahl, Cornelius; Weinelt, Martin; Draxl, Claudia

    2016-12-01

    In a joint theoretical and experimental work, the optical properties of azobenzene-functionalized self-assembled monolayers (SAMs) are studied at different molecular packing densities. Our results, based on density-functional and many-body perturbation theory, as well as on differential reflectance (DR) spectroscopy, shed light on the microscopic mechanisms ruling photo-absorption in these systems. While the optical excitations are intrinsically excitonic in nature, regardless of the molecular concentration, in densely packed SAMs intermolecular coupling and local-field effects are responsible for a sizable weakening of the exciton binding strength. Through a detailed analysis of the character of the electron-hole pairs, we show that distinct excitations involved in the photo-isomerization at low molecular concentrations are dramatically broadened by intermolecular interactions. Spectral shifts in the calculated DR spectra are in good agreement with the experimental results. Our findings represent an important step forward to rationalize the excited-state properties of these complex materials.

  1. Electron and Cooper-pair transport across a single magnetic molecule explored with a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Brand, J.; Gozdzik, S.; Néel, N.; Lado, J. L.; Fernández-Rossier, J.; Kröger, J.

    2018-05-01

    A scanning tunneling microscope is used to explore the evolution of electron and Cooper-pair transport across single Mn-phthalocyanine molecules adsorbed on Pb(111) from tunneling to contact ranges. Normal-metal as well as superconducting tips give rise to a gradual transition of the Bardeen-Cooper-Schrieffer energy gap in the tunneling range into a zero-energy resonance close to and at contact. Supporting transport calculations show that in the normal-metal-superconductor junctions this resonance reflects the merging of in-gap Yu-Shiba-Rusinov states as well as the onset of Andreev reflection. For the superconductor-superconductor contacts, the zero-energy resonance is rationalized in terms of a finite Josephson current that is carried by phase-dependent Andreev and Yu-Shiba-Rusinov levels.

  2. Imaging Research With Non-Periodic Multilayers for Inertial Confinement Fusion Diagnostic Experiments

    NASA Astrophysics Data System (ADS)

    L. Wang, F.; Mu, B. Z.; Wang, Z. S.; Gu, C. S.; Zhang, Z.; Qin, S. J.; Chen, L. Y.

    A grazing Kirkpatrick-Baez (K-B) microscope was designed for hard x-ray (8keV; Cu Ka radiation) imaging in Inertial Confinement Fusion (ICF) diagnostic experiments. Ray tracing software was used to simulate optical system performance. The optimized theoretical resolution of K-B microscope was about 2 micron and better than 10 micron in 200 micron field of view. Tungsten and boron carbide were chosen as multilayer materials and the multilayer was deposited onto the silicon wafer substrate and the reflectivity was measured by x-ray diffraction (XRD). The reflectivity of supermirror was about 20 % in 0.3 % of bandwidth. 8keV Cu target x-ray tube source was used in x-ray imaging experiments and the magnification of 1x and 2x x-ray images were obtained.

  3. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability.

    PubMed

    Hasan, Md Mehedi; Alam, Mohammad Wajih; Wahid, Khan A; Miah, Sayem; Lukong, Kiven Erique

    2016-01-01

    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size.

  4. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability

    PubMed Central

    Hasan, Md. Mehedi; Wahid, Khan A.; Miah, Sayem; Lukong, Kiven Erique

    2016-01-01

    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size. PMID:27977709

  5. Design of small confocal endo-microscopic probe working under multiwavelength environment

    NASA Astrophysics Data System (ADS)

    Kim, Young-Duk; Ahn, MyoungKi; Gweon, Dae-Gab

    2010-02-01

    Recently, optical imaging system is widely used in medical purpose. By using optical imaging system specific diseases can be easily diagnosed at early stage because optical imaging system has high resolution performance and various imaging method. These methods are used to get high resolution image of human body and can be used to verify whether the cell is infected by virus. Confocal microscope is one of the famous imaging systems which is used for in-vivo imaging. Because most of diseases are accompanied with cellular level changes, doctors can diagnosis at early stage by observing the cellular image of human organ. Current research is focused in the development of endo-microscope that has great advantage in accessibility to human body. In this research, I designed small probe that is connected to confocal microscope through optical fiber bundle and work as endo-microscope. And this small probe is mainly designed to correct chromatic aberration to use various laser sources for both fluorescence type and reflection type confocal images. By using two kinds of laser sources at the same time we demonstrated multi-modality confocal endo-microscope.

  6. A System Approach to Navy Medical Education and Training. Appendix 25. Competency Curricula for Clinical Laboratory Assistant and Medical Laboratory Technician.

    DTIC Science & Technology

    1974-08-31

    morphology 10I I Platelet morphology Estimating platelet numbers Normal values Use of oil immersion microscope Use of differential cell tabulator i 1...by use of impregnated discs on the surface of media (Mueller Hinton) seeded with test organism, or by bacteria or serum tube dilution methods...result Physiologic incompatibilities of test results Use and operation of refractometer , urinometer and centrifuge microscope Recognition of

  7. Soft tissue differentiation by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Nkenke, Emeka; Tangermann-Gerk, Katja; Schmidt, Michael; Adler, Werner; Douplik, Alexandre

    2009-07-01

    Laser surgery gives the possibility to work remotely which leads to high precision, little trauma and high level sterility. However these advantages are coming with the lack of haptic feedback during the laser ablation of tissue. Therefore additional means are required to control tissue-specific ablation during laser surgery supporting the surgeon regardless of experience and skills. Diffuse Reflectance Spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from four various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the four tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerve as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating soft tissues as guidance for tissue-specific laser surgery by means of the diffuse reflectance.

  8. Surface plasmon resonance microscopy: achieving a quantitative optical response

    PubMed Central

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-01-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542

  9. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope.

    PubMed

    Dong, Yang; Qi, Ji; He, Honghui; He, Chao; Liu, Shaoxiong; Wu, Jian; Elson, Daniel S; Ma, Hui

    2017-08-01

    Polarization imaging has been recognized as a potentially powerful technique for probing the microstructural information and optical properties of complex biological specimens. Recently, we have reported a Mueller matrix microscope by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission-light microscope, and applied it to differentiate human liver and cervical cancerous tissues with fibrosis. In this paper, we apply the Mueller matrix microscope for quantitative detection of human breast ductal carcinoma samples at different stages. The Mueller matrix polar decomposition and transformation parameters of the breast ductal tissues in different regions and at different stages are calculated and analyzed. For more quantitative comparisons, several widely-used image texture feature parameters are also calculated to characterize the difference in the polarimetric images. The experimental results indicate that the Mueller matrix microscope and the polarization parameters can facilitate the quantitative detection of breast ductal carcinoma tissues at different stages.

  10. Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing

    PubMed Central

    Wang, Zhaojun; Lei, Ming; Yao, Baoli; Cai, Yanan; Liang, Yansheng; Yang, Yanlong; Yang, Xibin; Li, Hui; Xiong, Daxi

    2015-01-01

    Autofocusing is a routine technique in redressing focus drift that occurs in time-lapse microscopic image acquisition. To date, most automatic microscopes are designed on the distance detection scheme to fulfill the autofocusing operation, which may suffer from the low contrast of the reflected signal due to the refractive index mismatch at the water/glass interface. To achieve high autofocusing speed with minimal motion artifacts, we developed a compact multi-band fluorescent microscope with an electrically tunable lens (ETL) device for autofocusing. A modified searching algorithm based on equidistant scanning and curve fitting is proposed, which no longer requires a single-peak focus curve and then efficiently restrains the impact of external disturbance. This technique enables us to achieve an autofocusing time of down to 170 ms and the reproductivity of over 97%. The imaging head of the microscope has dimensions of 12 cm × 12 cm × 6 cm. This portable instrument can easily fit inside standard incubators for real-time imaging of living specimens. PMID:26601001

  11. [Expression profiles of the exosomal miRNAs in the chronic hepatitis B patients with persistently normal ALT].

    PubMed

    Li, Ronghua; Fu, Xiaoyu; Tang, Yujing; Fu, Lei; Tan, Deming; Ouyang, Yi; Peng, Shifang

    2018-05-28

    To investigate expression profiles of the plasma exosomal miRNAs of the chronic hepatitis B (CHB) patients with persistently normal alamine aminotransferase (PNALT) for the first time and try to find exosomal miRNAs which could reflect liver inflammation better. 
 Methods: Five CHB patients with liver tissue inflammation grade ≥A2 of PNALT and 5 CHB patients with liver tissue inflammation grade

  12. High temporal and spatial resolution studies of bone cells using real-time confocal reflection microscopy.

    PubMed

    Boyde, A; Vesely, P; Gray, C; Jones, S J

    1994-01-01

    Chick and rat bone-derived cells were mounted in sealed coverslip-covered chambers; individual osteoclasts (but also osteoblasts) were selected and studied at 37 degrees C using three different types of high-speed scanning confocal microscopes: (1) A Noran Tandem Scanning Microscope (TSM) was used with a low light level, cooled CCD camera for image transfer to a Noran TN8502 frame store-based image analysing computer to make time lapse movie sequences using 0.1 s exposure periods, thus losing some of the advantage of the high frame rate of the TSM. Rapid focus adjustment using computer controlled piezo drivers permitted two or more focus planes to be imaged sequentially: thus (with additional light-source shuttering) the reflection confocal image could be alternated with the phase contrast image at a different focus. Individual cells were followed for up to 5 days, suggesting no significant irradiation problem. (2) Exceptional temporal and spatial resolution is available in video rate laser confocal scanning microscopes (VRCSLMs). We used the Noran Odyssey unitary beam VRCSLM with an argon ion laser at 488 nm and acousto-optic deflection (AOD) on the line axis: this instrument is truly and adjustably confocal in the reflection mode. (3) We also used the Lasertec 1LM11 line scan instrument, with an He-Ne laser at 633 nm, and AOD for the frame scan. We discuss the technical problems and merits of the different approaches. The VRCSLMs documented rapid, real-time oscillatory motion: all the methods used show rapid net movement of organelles within bone cells. The interference reflection mode gives particularly strong contrasts in confocal instruments. Phase contrast and other interference methods used in the microscopy of living cells can be used simultaneously in the TSM.

  13. Operating microscopes: past, present, and future.

    PubMed

    Uluç, Kutluay; Kujoth, Gregory C; Başkaya, Mustafa K

    2009-09-01

    The operating microscope is a fixture of modern surgical facilities, and it is a critically important factor in the success of many of the most complex and difficult surgical interventions used in medicine today. The rise of this key surgical tool reflects advances in understanding the principles of optics and vision that have occurred over centuries. The development of reading spectacles in the late 13th century led to the construction of early compound microscopes in the 16th and 17th centuries by Lippershey, Janssen, Galileo, Hooke, and others. Perhaps surprisingly, Leeuwenhoek's simple microscopes of this era offered improved performance over his contemporaries' designs. The intervening years saw improvements that reduced the spherical and chromatic aberrations present in compound microscopes. By the late 19th century, Carl Zeiss and Ernst Abbe ushered the compound microscope into the beginnings of the modern era of commercial design and production. The introduction of the microscope into the operating room by Nylén in 1921 initiated a revolution in surgical practice that gained momentum throughout the 1950s with multiple refinements, the introduction of the Zeiss OPMI series, and Kurze's application of the microscope to neurosurgery in 1957. Many of the refinements of the last 50 years have greatly improved the handling and practical operation of the surgical microscope, considerations which are equally important to its optical performance. Today's sophisticated operating microscopes allow for advanced real-time angiographic and tumor imaging. In this paper the authors discuss what might be found in the operating rooms of tomorrow.

  14. A novel tracing method for the segmentation of cell wall networks.

    PubMed

    De Vylder, Jonas; Rooms, Filip; Dhondt, Stijn; Inze, Dirk; Philips, Wilfried

    2013-01-01

    Cell wall networks are a common subject of research in biology, which are important for plant growth analysis, organ studies, etc. In order to automate the detection of individual cells in such cell wall networks, we propose a new segmentation algorithm. The proposed method is a network tracing algorithm, exploiting the prior knowledge of the network structure. The method is applicable on multiple microscopy modalities such as fluorescence, but also for images captured using non invasive microscopes such as differential interference contrast (DIC) microscopes.

  15. [THE MICROSCOPIC ALGAE AS HUMAN PATHOGENS].

    PubMed

    Roman, Manuel Casal

    2014-01-01

    Some microscopic algae can cause different infectious diseases in humans, including skin, bone, and disseminated. These little-known emerging disease are more severe in immunocompromised patients. The confirmatory microbiological diagnosis must be done differential with yeast-like fungi that can be confused. Anti-fungal drugs and surgery, being quite frequent treatment failure have been used in the treatment. Given the increase of immunosuppression in the current medicine and new possibilities of microbiological diagnostics, it is logical that these diseases tend to increase, by which all physician should know them.

  16. High throughput pyrosequencing technology for molecular differential detection of Babesia vogeli, Hepatozoon canis, Ehrlichia canis and Anaplasma platys in canine blood samples.

    PubMed

    Kaewkong, Worasak; Intapan, Pewpan M; Sanpool, Oranuch; Janwan, Penchom; Thanchomnang, Tongjit; Kongklieng, Amornmas; Tantrawatpan, Chairat; Boonmars, Thidarut; Lulitanond, Viraphong; Taweethavonsawat, Piyanan; Chungpivat, Sudchit; Maleewong, Wanchai

    2014-06-01

    Canine babesiosis, hepatozoonosis, ehrlichiosis, and anaplasmosis are tick-borne diseases caused by different hemopathogens. These diseases are causes of morbidity and mortality in dogs. The classic method for parasite detection and differentiation is based on microscopic observation of blood smears. The limitations of the microscopic method are that its performance requires a specially qualified person with professional competence, and it is ineffective in differentiating closely related species. This study applied PCR amplification with high throughput pyrosequencing for molecular differential detection of the following 4 hemoparasites common to tropical areas in dog blood samples: Babesia vogeli, Hepatozoon canis, Ehrlichia canis, and Anaplasma platys. PCR was initially used to amplify specific target regions of the ribosomal RNA genes of each parasite using 2 primer pairs that included 18S rRNA for protozoa (B. vogeli and H. canis) and 16S rRNA for rickettsia (E. canis and A. platys). Babesia vogeli and H. canis were discriminated using 9 nucleotide positions out of 30 base pairs, whereas E. canis and A. platys were differentiated using 15 nucleotide positions out of 34 base pairs that were determined from regions adjacent to 3' ends of the sequencing primers. This method provides a challenging alternative for a rapid diagnosis and surveillance of these tick-borne diseases in canines. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Optimization of the imaging response of scanning microwave microscopy measurements

    NASA Astrophysics Data System (ADS)

    Sardi, G. M.; Lucibello, A.; Kasper, M.; Gramse, G.; Proietti, E.; Kienberger, F.; Marcelli, R.

    2015-07-01

    In this work, we present the analytical modeling and preliminary experimental results for the choice of the optimal frequencies when performing amplitude and phase measurements with a scanning microwave microscope. In particular, the analysis is related to the reflection mode operation of the instrument, i.e., the acquisition of the complex reflection coefficient data, usually referred as S11. The studied configuration is composed of an atomic force microscope with a microwave matched nanometric cantilever probe tip, connected by a λ/2 coaxial cable resonator to a vector network analyzer. The set-up is provided by Keysight Technologies. As a peculiar result, the optimal frequencies, where the maximum sensitivity is achieved, are different for the amplitude and for the phase signals. The analysis is focused on measurements of dielectric samples, like semiconductor devices, textile pieces, and biological specimens.

  18. Apertureless scanning microscope probe as a detector of semiconductor laser emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunaevskiy, Mikhail, E-mail: Mike.Dunaeffsky@mail.ioffe.ru; National Research University of Information Technologies, Mechanics and Optics; Dontsov, Anton

    2015-04-27

    An operating semiconductor laser has been studied using a scanning probe microscope. A shift of the resonance frequency of probe that is due to its heating by laser radiation has been analyzed. The observed shift is proportional to the absorbed radiation and can be used to measure the laser near field or its output power. A periodical dependence of the measured signal has been observed as a function of distance between the probe and the surface of the laser due to the interference of the outgoing and cantilever-reflected waves. Due to the multiple reflections resulting in the interference, the lightmore » absorption by the probe cantilever is greatly enhanced compared with a single pass case. Interaction of infrared emission of a diode laser with different probes has been studied.« less

  19. Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.

    PubMed

    Das, Shankar P; Yoshimori, Akira

    2013-10-01

    Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.

  20. Fine needle aspiration (FNA) of synovial sarcoma--a comparative histological-cytological study of 15 cases, including immunohistochemical, electron microscopic and cytogenetic examination and DNA-ploidy analysis.

    PubMed

    Akerman, M; Willén, H; Carlén, B; Mandahl, N; Mertens, F

    1996-06-01

    A retrospective study of 25 FNAs (11 aspirates from primary tumours and 14 from recurrencies and metastases) from 15 synovial sarcomas was performed. The cytological findings were correlated with the histopathology and the value of immunohistochemical and electron microscopic examination as well as DNA-ploidy and cytogenetic analysis for diagnosis were assessed. A reproducible cellular pattern with a reliable diagnosis of spindle cell sarcoma was possible provided that the aspirates were cell rich. However, a true biphasic pattern indicative of synovial sarcoma was only seen in one of the 25 specimens. Electron microscopic examination of the aspirates was a valuable adjunctive diagnostic method, whereas immunocytochemistry and DNA-ploidy analysis were not. Immunohistochemical, electron microscopic and cytogenetic analysis were all valuable ancillary methods when performed on surgical specimens. Malignant haemangiopericytoma and fibrosarcoma were the most important differential diagnoses in the FNA specimens.

  1. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE PAGES

    Nazaretski, E.; Yan, H.; Lauer, K.; ...

    2017-10-05

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  2. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, E.; Yan, H.; Lauer, K.

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  3. Comparisons between conventional optical imaging and parametric indirect microscopic imaging on human skin detection

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.

  4. Note: Tandem Kirkpatrick-Baez microscope with sixteen channels for high-resolution laser-plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Wang, Zhanshan; Wei, Lai; Liu, Dongxiao; Cao, Leifeng; Gu, Yuqiu

    2018-03-01

    Multi-channel Kirkpatrick-Baez (KB) microscopes, which have better resolution and collection efficiency than pinhole cameras, have been widely used in laser inertial confinement fusion to diagnose time evolution of the target implosion. In this study, a tandem multi-channel KB microscope was developed to have sixteen imaging channels with the precise control of spatial resolution and image intervals. This precise control was created using a coarse assembly of mirror pairs with high-accuracy optical prisms, followed by precise adjustment in real-time x-ray imaging experiments. The multilayers coated on the KB mirrors were designed to have substantially the same reflectivity to obtain a uniform brightness of different images for laser-plasma temperature analysis. The study provides a practicable method to achieve the optimum performance of the microscope for future high-resolution applications in inertial confinement fusion experiments.

  5. Advantages of using newly developed quartz contact lens with slit illumination from operating microscope.

    PubMed

    Kiyokawa, Masatoshi; Sakuma, Toshiro; Hatano, Noriko; Mizota, Atsushi; Tanaka, Minoru

    2009-06-01

    The purpose of this article is to report the characteristics and advantages of using a newly designed quartz contact lens with slit illumination from an operating microscope for intraocular surgery. The new contact lens is made of quartz. The lens is convex-concave and is used in combination with slit illumination from an operating microscope. The optical properties of quartz make this lens less reflective with greater transmittance. The combination of a quartz contact lens with slit illumination provided a brighter and wider field of view than conventional lenses. This system enabled us to perform bimanual vitrectomy and scleral buckling surgery without indirect ophthalmoscope. Small intraocular structures in the posterior pole or in the periphery were detected more easily. In conclusion, the newly designed quartz lens with slit beam illumination from an operating microscope provided a bright, clear and wide surgical field, and allowed intraocular surgery to be performed more easily.

  6. In vivo cellular imaging with microscopes enabled by MEMS scanners

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  7. Reflecting Solutions of High Order Elliptic Differential Equations in Two Independent Variables Across Analytic Arcs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Carleton, O.

    1972-01-01

    Consideration is given specifically to sixth order elliptic partial differential equations in two independent real variables x, y such that the coefficients of the highest order terms are real constants. It is assumed that the differential operator has distinct characteristics and that it can be factored as a product of second order operators. By analytically continuing into the complex domain and using the complex characteristic coordinates of the differential equation, it is shown that its solutions, u, may be reflected across analytic arcs on which u satisfies certain analytic boundary conditions. Moreover, a method is given whereby one can determine a region into which the solution is extensible. It is seen that this region of reflection is dependent on the original domain of difinition of the solution, the arc and the coefficients of the highest order terms of the equation and not on any sufficiently small quantities; i.e., the reflection is global in nature. The method employed may be applied to similar differential equations of order 2n.

  8. Far-infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Zhao, Jianbao; Billinghurst, Brant

    2017-06-01

    Far-infrared is a particularly useful technique for studies on lattice modes as they generally appear in the Far-infrared region. Far-infrared is also an important tool for gathering information on the electrical transport properties of metallic materials and the band gap of semiconductors. This poster will describe the horizontal microscope that has recently been built in the Far-infrared beamline at the Canadian Light Source Inc. (CLS). This microscope is specially designed for high-pressure Far-infrared absorbance and reflectance spectroscopic studies. The numerical aperture (0.5) and the long working distance (82.1 mm) in the microscope are good fits for Diamond Anvil Cell (DAC). The spectra are recorded using liquid helium cooled Si bolometer or Ge:Cu detector. The pressure in the DAC can be determined by using the fluorescence spectrometer available onsite. The Far-infrared beamline at CLS is a state-of-the-art synchrotron facility, offering significantly more brightness than conventional sources. Because of the high brightness of the synchrotron radiation, we can obtain the Far-infrared reflectance/absorbance spectra on the small samples with more throughput than with a conventional source. The Far-infrared beamline is open to users through peer review.

  9. Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells.

    PubMed

    Trache, Andreea; Meininger, Gerald A

    2005-01-01

    A novel hybrid imaging system is constructed integrating atomic force microscopy (AFM) with a combination of optical imaging techniques that offer high spatial resolution. The main application of this instrument (the NanoFluor microscope) is the study of mechanotransduction with an emphasis on extracellular matrix-integrin-cytoskeletal interactions and their role in the cellular responses to changes in external chemical and mechanical factors. The AFM allows the quantitative assessment of cytoskeletal changes, binding probability, adhesion forces, and micromechanical properties of the cells, while the optical imaging applications allow thin sectioning of the cell body at the coverslip-cell interface, permitting the study of focal adhesions using total internal reflection fluorescence (TIRF) and internal reflection microscopy (IRM). Combined AFM-optical imaging experiments show that mechanical stimulation at the apical surface of cells induces a force-generating cytoskeletal response, resulting in focal contact reorganization on the basal surface that can be monitored in real time. The NanoFluor system is also equipped with a novel mechanically aligned dual camera acquisition system for synthesized Forster resonance energy transfer (FRET). The integrated NanoFluor microscope system is described, including its characteristics, applications, and limitations.

  10. Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy.

    PubMed

    Chidley, Matthew D; Carlson, Kristen D; Richards-Kortum, Rebecca R; Descour, Michael R

    2006-04-10

    The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.

  11. Tumor diagnostics using fiber optical IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Winter, Harald; Bindig, Uwe; Waesche, Wolfgang; Liebold, K.; Roggan, Andre; Frege, P.; Gross, U. M.; Mueller, G.

    1999-04-01

    Aim of the project is the development of an in vivo endoscopic method to differentiate between cancerous from healthy tissue. The method is based on IR spectra in which each diseased state of the tissue has its own characteristic pattern as already shown in previous experiments. Two regions (1245 - 1195) cm-1 and (1045 - 995) cm-1 within the fingerprint (less than 1500 cm-1) region were selected for analysis. This paper will present the technical design of the laboratory set up and outcome of the development as well as the experiments. Two lead-salt diode lasers were used as excitation sources. The IR-radiation was transmitted via silverhalide fibers to the tissue to be investigated. On the detection side another IR fiber was used to transmit the signal to an MCT-detector (Mercury-Cadmium-Telluride). Measurement modes are Attenuated Total Reflectance (ATR) and diffuse Reflection/Remission. Spatial resolution was 100 X 100 micrometer2. The tissue used for these experiments was human colon carcinoma under humidity conditions. Samples were mapped using a stepper motor powered x/y/z-translation stage with a resolution of 1 micrometer. Results were compared with measurements carried out using a FTIR-interferometer and an FTIR-microscope in the region from 4000 - 900 cm-1. Soft- and Hardware control of the experiment is done using Labwindows/CVI (National Instruments, USA).

  12. Polarized Light Corridor Demonstrations.

    ERIC Educational Resources Information Center

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  13. Optical spatial differentiator based on subwavelength high-contrast gratings

    NASA Astrophysics Data System (ADS)

    Dong, Zhewei; Si, Jiangnan; Yu, Xuanyi; Deng, Xiaoxu

    2018-04-01

    An optical spatial differentiator based on subwavelength high-contrast gratings (HCGs) is proposed experimentally. The spatial differentiation property of the subwavelength HCG is analyzed by calculating its spatial spectral transfer function based on the periodic waveguide theory. By employing the FDTD solutions, the performance of the subwavelength HCG spatial differentiator was investigated numerically. The subwavelength HCG differentiator with the thickness at the nanoscale was fabricated on the quartz substrate by electron beam lithography and Bosch deep silicon etching. Observed under an optical microscope with a CCD camera, the spatial differentiation of the incident field profile was obtained by the subwavelength HCG differentiator in transmission without Fourier lens. By projecting the images of slits, letter "X," and a cross on the subwavelength HCG differentiator, edge detections of images were obtained in transmission. With the nanoscale HCG structure and simple optical implementation, the proposed optical spatial differentiator provides the prospects for applications in optical computing systems and parallel data processing.

  14. Differential diagnosis of periapical cyst using collagen birefringence pattern of the cyst wall.

    PubMed

    Ji, Hyo Jin; Park, Se-Hee; Cho, Kyung-Mo; Lee, Suk Keun; Kim, Jin Woo

    2017-05-01

    Periapical lesions, including periapical cyst (PC), periapical granuloma (PG), and periapical abscess (PA), are frequently affected by chemical/physical damage during root canal treatment or severe bacterial infection, and thus, the differential diagnosis of periapical lesions may be difficult due to the presence of severe inflammatory reaction. The aim of this study was to make differential diagnosis among PC, PG, and PA under polarizing microscope. The collagen birefringence patterns of 319 cases of PC ( n = 122), PG ( n = 158), and PA ( n = 39) obtained using a polarizing microscope were compared. In addition, 6 cases of periodontal fibroma (PF) were used as positive controls. Collagen birefringence was condensed with a thick, linear band-like pattern in PC, but was short and irregularly scattered in PG, and scarce or absent in PA. PF showed intense collagen birefringence with a short, palisading pattern but no continuous band-like pattern. The linear band-like birefringence in PC was ascribed to pre-existing expansile tensile stress of the cyst wall. In this study all PCs ( n = 122) were distinguishable from PGs and PAs by their characteristic birefringence, despite the absence of lining epithelium ( n = 20). Therefore, the authors suggest that the presence of linear band-like collagen birefringence of the cyst wall aids the diagnostic differentiation of PC from PG and PA.

  15. Algorithms for differentiating between images of heterogeneous tissue across fluorescence microscopes.

    PubMed

    Chitalia, Rhea; Mueller, Jenna; Fu, Henry L; Whitley, Melodi Javid; Kirsch, David G; Brown, J Quincy; Willett, Rebecca; Ramanujam, Nimmi

    2016-09-01

    Fluorescence microscopy can be used to acquire real-time images of tissue morphology and with appropriate algorithms can rapidly quantify features associated with disease. The objective of this study was to assess the ability of various segmentation algorithms to isolate fluorescent positive features (FPFs) in heterogeneous images and identify an approach that can be used across multiple fluorescence microscopes with minimal tuning between systems. Specifically, we show a variety of image segmentation algorithms applied to images of stained tumor and muscle tissue acquired with 3 different fluorescence microscopes. Results indicate that a technique called maximally stable extremal regions followed by thresholding (MSER + Binary) yielded the greatest contrast in FPF density between tumor and muscle images across multiple microscopy systems.

  16. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope

    PubMed Central

    Nazin, G. V.; Wu, S. W.; Ho, W.

    2005-01-01

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends. PMID:15956189

  17. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.

    PubMed

    Nazin, G V; Wu, S W; Ho, W

    2005-06-21

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.

  18. Calibrated thermal microscopy of the tool-chip interface in machining

    NASA Astrophysics Data System (ADS)

    Yoon, Howard W.; Davies, Matthew A.; Burns, Timothy J.; Kennedy, M. D.

    2000-03-01

    A critical parameter in predicting tool wear during machining and in accurate computer simulations of machining is the spatially-resolved temperature at the tool-chip interface. We describe the development and the calibration of a nearly diffraction-limited thermal-imaging microscope to measure the spatially-resolved temperatures during the machining of an AISI 1045 steel with a tungsten-carbide tool bit. The microscope has a target area of 0.5 mm X 0.5 mm square region with a < 5 micrometers spatial resolution and is based on a commercial InSb 128 X 128 focal plane array with an all reflective microscope objective. The minimum frame image acquisition time is < 1 ms. The microscope is calibrated using a standard blackbody source from the radiance temperature calibration laboratory at the National Institute of Standards and Technology, and the emissivity of the machined material is deduced from the infrared reflectivity measurements. The steady-state thermal images from the machining of 1045 steel are compared to previous determinations of tool temperatures from micro-hardness measurements and are found to be in agreement with those studies. The measured average chip temperatures are also in agreement with the temperature rise estimated from energy balance considerations. From these calculations and the agreement between the experimental and the calculated determinations of the emissivity of the 1045 steel, the standard uncertainty of the temperature measurements is estimated to be about 45 degree(s)C at 900 degree(s)C.

  19. Combination of hand-held probe and microscopy for fluorescence guided surgery in the brain tumor marginal zone.

    PubMed

    Richter, Johan C O; Haj-Hosseini, Neda; Hallbeck, Martin; Wårdell, Karin

    2017-06-01

    Visualization of the tumor is crucial for differentiating malignant tissue from healthy brain during surgery, especially in the tumor marginal zone. The aim of the study was to introduce a fluorescence spectroscopy-based hand-held probe (HHF-probe) for tumor identification in combination with the fluorescence guided resection surgical microscope (FGR-microscope), and evaluate them in terms of diagnostic performance and practical aspects of fluorescence detection. Eighteen operations were performed on 16 patients with suspected high-grade glioma. The HHF-probe and the FGR-microscope were used for detection of protoporphyrin (PpIX) fluorescence induced by 5-aminolevulinic acid (5-ALA) and evaluated against histopathological analysis and visual grading done through the FGR-microscope by the surgeon. A ratio of PpIX fluorescence intensity to the autofluorescence intensity (fluorescence ratio) was used to quantify the spectra detected by the probe. Fluorescence ratio medians (range 0 - 40) measured by the probe were related to the intensity of the fluorescence in the FGR-microscope, categorized as "none" (0.3, n=131), "weak" (1.6, n=34) and "strong" (5.4, n=28). Of 131 "none" points in the FGR-microscope, 88 (67%) exhibited fluorescence with the HHF-probe. For the tumor marginal zone, the area under the receiver operator characteristics (ROC) curve was 0.49 for the FGR-microscope and 0.65 for the HHF-probe. The probe was integrated in the established routine of tumor resection using the FGR-microscope. The HHF-probe was superior to the FGR-microscope in sensitivity; it detected tumor remnants after debulking under the FGR-microscope. The combination of the HHF-probe and the FGR-microscope was beneficial especially in the tumor marginal zone. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Ectopic decidua and metastatic squamous carcinoma: presentation in a single pelvic lymph node.

    PubMed

    Cobb, C J

    1988-06-01

    The presence of ectopic decidua in pelvic lymph nodes from patients with squamous carcinoma of the cervix makes evaluation for metastatic disease difficult due to the light microscopic similarity between decidua and sheets of squamous epithelial cells. A patient is present in whom decidualized endometriosis was intimately associated with metastatic moderately differentiate squamous carcinoma in a single pelvic lymph node. This phenomenon afforded an excellent opportunity to study the unique morphologic features that distinguish these two entities. A prior report of this kind was not found. In the absence of obvious squamous differentiation (i.e., intercellular bridges, dyskeratosis, and keratin "pearl" formation), as is frequently the case with squamous carcinoma of the cervix, the light microscopic features that are most useful in distinguishing squamous carcinoma from decidua include the presence of well-defined nests of cohesive cells, nuclear hyperchromasia, and cellular pleomorphism.

  1. Characterization of grain boundary conductivity of spin-sprayed ferrites using scanning microwave microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, J.; Nicodemus, T.; Zhuang, Y., E-mail: yan.zhuang@wright.edu

    2014-05-07

    Grain boundary electrical conductivity of ferrite materials has been characterized using scanning microwave microscope. Structural, electrical, and magnetic properties of Fe{sub 3}O{sub 4} spin-sprayed thin films onto glass substrates for different length of growth times were investigated using a scanning microwave microscope, an atomic force microscope, a four-point probe measurement, and a made in house transmission line based magnetic permeameter. The real part of the magnetic permeability shows almost constant between 10 and 300 MHz. As the Fe{sub 3}O{sub 4} film thickness increases, the grain size becomes larger, leading to a higher DC conductivity. However, the loss in the Fe{sub 3}O{submore » 4} films at high frequency does not increase correspondingly. By measuring the reflection coefficient s{sub 11} from the scanning microwave microscope, it turns out that the grain boundaries of the Fe{sub 3}O{sub 4} films exhibit higher electric conductivity than the grains, which contributes loss at radio frequencies. This result will provide guidance for further improvement of low loss ferrite materials for high frequency applications.« less

  2. Scanning optical microscope with long working distance objective

    DOEpatents

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  3. Chiral Majorana fermion modes regulated by a scanning tunneling microscope tip

    NASA Astrophysics Data System (ADS)

    Zhou, Yan-Feng; Hou, Zhe; Zhang, Ying-Tao; Sun, Qing-Feng

    2018-03-01

    The Majorana fermion can be described by a real wave function with only two phases (zero and π ) which provide a controllable degree of freedom. We propose a strategy to regulate the phase of the chiral Majorana state by coupling with a scanning tunneling microscope tip in a system consisting of a quantum anomalous Hall insulator coupled with a superconductor. With the change in the chemical potential, the chiral Majorana state can be tuned alternately between zero and π , in which the perfect normal tunneling and perfect crossed Andreev reflection appear, respectively. The perfect crossed Andreev reflection, by which a Cooper pair can be split into two electrons going into different terminals completely, leads to a pumping current and distinct quantized resistances. These findings may provide a signature of Majorana fermions and pave a feasible avenue to regulate the phase of the Majorana state.

  4. Morphological observation and characterization of the Pseudoregma bambucicola with the scanning electron microscope.

    PubMed

    Nong, Xiang; Zeng, Xuemei; Yang, Yaojun; Liang, Zi; Tang, Mei; Liao, Lejuan; Luo, Chaobing

    2017-11-01

    Both leica microscopic camera system and scanning electron microscopy was used to observe and characterize the feet, back, abdomen, antennae and mouthparts of the Pseudoregma bambucicola from the bamboo, Bambusa multiplex . The possible functions of all the external morphological characteristics of the P. bambucicola were described and discussed in detail, which offers a basis for further enriching the biology, phylogeny and ecological niche of the P. bambucicola . Moreover, the morphological results should contribute to morphological identification and differentiation of the P. bambucicola from other aphids in the same family.

  5. Authentication of Valeriana procera Kunth and comparative account of five Valeriana species.

    PubMed

    Joshi, Vaishali C; Navarrete, Andres; Khan, Ikhlas A

    2005-01-01

    Valeriana procera Kunth (Mexican Valerian) is a commercially important species, sometimes used as a substitute for Valeriana officinalis L., an important sedative in herbal medicine. A detailed macroscopic and microscopic account was provided for V. procera Kunth and a comparison was made between the wild and cultivated samples of V. procera Kunth. Macro- and microscopic comparative analyses were performed to differentiate V. procera Kunth from V. officinalis L. and other commercially important Valerian species such as V. jatamansi Jones, Valeriana edulis Nutt, and V. sitchensis Bong.

  6. Cutaneous perivascular epithelioid cell tumors: A review on an infrequent neoplasm

    PubMed Central

    Llamas-Velasco, Mar; Requena, Luis; Mentzel, Thomas

    2016-01-01

    “Perivascular epithelioid cutaneous” cell tumors (PEComa) are a family of mesenchymal tumors with shared microscopic and immunohistochemical properties: They exhibit both smooth muscle cell and melanocytic differentiation. Non-neoplastic counterpart of PEComa’s cells are unknown, as well as the relationship between extracutaneous PEComa and primary cutaneous ones. We will review the clinical setting, histopathologic features, chromosomal abnormalities, differential diagnosis and treatment options for cutaneous PEComa. PMID:27019799

  7. A rapid method for concentrating sedimentary organic matter for vitrinite reflectance analysis.

    USGS Publications Warehouse

    Barker, C.E.

    1982-01-01

    The tecnique discussed in this paper utilizes crushing, high-speed blending, and ultrasonic treatment to mechanically disaggregate rock and release the sedimentary organic matter (OM) in a suitable heavy liquid. This new method can provide freeze-dried concentrated OM in approximately 8 to 24 hours (longer time is necessary for removing carbonate). Under optimal conditions, it is possible to concentrate the OM and prepare a hardened epoxy microscope slide in about 24 hours. Subsequent grinding, polishing, and drying allows microscopic examination of the organic concentrate the next day.-from Author

  8. Fluorescence microscopy.

    PubMed

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  9. Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner

    PubMed Central

    Liu, Jonathan T. C.; Mandella, Michael J.; Ra, Hyejun; Wong, Larry K.; Solgaard, Olav; Kino, Gordon S.; Piyawattanametha, Wibool; Contag, Christopher H.; Wang, Thomas D.

    2007-01-01

    The first, to our knowledge, miniature dual-axes confocal microscope has been developed, with an outer diameter of 10 mm, for subsurface imaging of biological tissues with 5–7 μm resolution. Depth-resolved en face images are obtained at 30 frames per second, with a field of view of 800 × 100 μm, by employing a two-dimensional scanning microelectromechanical systems mirror. Reflectance and fluorescence images are obtained with a laser source at 785 nm, demonstrating the ability to perform real-time optical biopsy. PMID:17215937

  10. Fluorescence Microscopy

    PubMed Central

    Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.

    2016-01-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114

  11. Integration of a Spectral Domain Optical Coherence Tomography System into a Surgical Microscope for Intraoperative Imaging

    PubMed Central

    Ehlers, Justis P.; Tao, Yuankai K.; Farsiu, Sina; Maldonado, Ramiro; Izatt, Joseph A.

    2011-01-01

    Purpose. To demonstrate an operating microscope-mounted spectral domain optical coherence tomography (MMOCT) system for human retinal and model surgery imaging. Methods. A prototype MMOCT system was developed to interface directly with an ophthalmic surgical microscope, to allow SDOCT imaging during surgical viewing. Nonoperative MMOCT imaging was performed in an Institutional Review Board–approved protocol in four healthy volunteers. The effect of surgical instrument materials on MMOCT imaging was evaluated while performing retinal surface, intraretinal, and subretinal maneuvers in cadaveric porcine eyes. The instruments included forceps, metallic and polyamide subretinal needles, and soft silicone-tipped instruments, with and without diamond dusting. Results. High-resolution images of the human retina were successfully obtained with the MMOCT system. The optical properties of surgical instruments affected the visualization of the instrument and the underlying retina. Metallic instruments (e.g., forceps and needles) showed high reflectivity with total shadowing below the instrument. Polyamide material had a moderate reflectivity with subtotal shadowing. Silicone instrumentation showed moderate reflectivity with minimal shadowing. Summed voxel projection MMOCT images provided clear visualization of the instruments, whereas the B-scans from the volume revealed details of the interactions between the tissues and the instrumentation (e.g., subretinal space cannulation, retinal elevation, or retinal holes). Conclusions. High-quality retinal imaging is feasible with an MMOCT system. Intraoperative imaging with model eyes provides high-resolution depth information including visualization of the instrument and intraoperative tissue manipulation. This study demonstrates a key component of an interactive platform that could provide enhanced information for the vitreoretinal surgeon. PMID:21282565

  12. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging.

    PubMed

    Ehlers, Justis P; Tao, Yuankai K; Farsiu, Sina; Maldonado, Ramiro; Izatt, Joseph A; Toth, Cynthia A

    2011-05-16

    To demonstrate an operating microscope-mounted spectral domain optical coherence tomography (MMOCT) system for human retinal and model surgery imaging. A prototype MMOCT system was developed to interface directly with an ophthalmic surgical microscope, to allow SDOCT imaging during surgical viewing. Nonoperative MMOCT imaging was performed in an Institutional Review Board-approved protocol in four healthy volunteers. The effect of surgical instrument materials on MMOCT imaging was evaluated while performing retinal surface, intraretinal, and subretinal maneuvers in cadaveric porcine eyes. The instruments included forceps, metallic and polyamide subretinal needles, and soft silicone-tipped instruments, with and without diamond dusting. High-resolution images of the human retina were successfully obtained with the MMOCT system. The optical properties of surgical instruments affected the visualization of the instrument and the underlying retina. Metallic instruments (e.g., forceps and needles) showed high reflectivity with total shadowing below the instrument. Polyamide material had a moderate reflectivity with subtotal shadowing. Silicone instrumentation showed moderate reflectivity with minimal shadowing. Summed voxel projection MMOCT images provided clear visualization of the instruments, whereas the B-scans from the volume revealed details of the interactions between the tissues and the instrumentation (e.g., subretinal space cannulation, retinal elevation, or retinal holes). High-quality retinal imaging is feasible with an MMOCT system. Intraoperative imaging with model eyes provides high-resolution depth information including visualization of the instrument and intraoperative tissue manipulation. This study demonstrates a key component of an interactive platform that could provide enhanced information for the vitreoretinal surgeon.

  13. Versatile microfluidic total internal reflection (TIR)-based devices: application to microbeads velocity measurement and single molecule detection with upright and inverted microscope.

    PubMed

    Le, Nam Cao Hoai; Yokokawa, Ryuji; Dao, Dzung Viet; Nguyen, Thien Duy; Wells, John C; Sugiyama, Susumu

    2009-01-21

    A poly(dimethylsiloxane) (PDMS) chip for Total Internal Reflection (TIR)-based imaging and detection has been developed using Si bulk micromachining and PDMS casting. In this paper, we report the applications of the chip on both inverted and upright fluorescent microscopes and confirm that two types of sample delivery platforms, PDMS microchannel and glass microchannel, can be easily integrated depending on the magnification of an objective lens needed to visualize a sample. Although any device configuration can be achievable, here we performed two experiments to demonstrate the versatility of the microfluidic TIR-based devices. The first experiment was velocity measurement of Nile red microbeads with nominal diameter of 500 nm in a pressure-driven flow. The time-sequenced fluorescent images of microbeads, illuminated by an evanescent field, were cross-correlated by a Particle Image Velocimetry (PIV) program to obtain near-wall velocity field of the microbeads at various flow rates from 500 nl/min to 3000 nl/min. We then evaluated the capabilities of the device for Single Molecule Detection (SMD) of fluorescently labeled DNA molecules from 30 bp to 48.5 kbp and confirm that DNA molecules as short as 1105 bp were detectable. Our versatile, integrated device could provide low-cost and fast accessibility to Total Internal Reflection Fluorescent Microscopy (TIRFM) on both conventional upright and inverted microscopes. It could also be a useful component in a Micro-Total Analysis System (micro-TAS) to analyze nanoparticles or biomolecules near-wall transport or motion.

  14. A mini-microscope for in situ monitoring of cells.

    PubMed

    Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R; Hamilton, Geraldine A; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E; Khademhosseini, Ali

    2012-10-21

    A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost.

  15. A mini-microscope for in situ monitoring of cells†‡

    PubMed Central

    Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R.; Hamilton, Geraldine A.; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E.

    2013-01-01

    A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost. PMID:22911426

  16. Ultrastructural characterization of pulmonary neoplasms. II. The role of electron microscopy in characterization of uncommon epithelial pulmonary neoplasms, metastatic neoplasms to and from lung, and other tumors, including mesenchymal neoplasms.

    PubMed

    Herrera, G A; Alexander, C B; Jones, J M

    1985-01-01

    Ultrastructural analysis through better resolution adds significant information to the evaluation and classification of primary pulmonary neoplasms. Light microscopy is limited in the evaluation of lung neoplasms. In some cases the light microscopic appearance may be entirely misleading, whereas in others it is inconclusive. Immunocytochemistry provides information on cytoplasmic differentiation of various tumors and hence more data on their corresponding phenotypes. The data from immunocytochemistry without corresponding objective electron microscopic evaluation may be very difficult to interpret. Correlation of historical, gross, light, electron microscopic, and immunocytochemical data is essential for a final accurate diagnosis (fig. 20). Fine needle aspiration of pulmonary neoplasms is becoming very fashionable and a diagnosis, including type of neoplasm, is expected on the basis of examination of a limited number of cells which further emphasizes the importance of ultrastructural characterization in helping to establish an accurate diagnosis [63-69]. The current classification of pulmonary neoplasms may need to be modified in the near future to incorporate the newly created data [70-72]. At the present time, there appears to be, at least, a need for a 'double standard', as Sobin [73] has suggested, which would permit the evaluation of the biologic significance of the ultrastructural and immunocytochemical findings (as applied to classification of neoplasms) in an effort to derive meaningful clinicopathologic correlations. Figure 20 emphasizes the additive role which should be played by the various diagnostic modalities to enable a morphologic assessment which would be an accurate predictor of biologic behavior. With an accurate assessment of biologic behavior, a more appropriate and rational approach for therapy is possible. There is also an important role for ultrastructural analysis in metastatic pleural and pulmonary neoplasms, primarily adenocarcinomas, as well as in the differential diagnosis of pulmonary neoplasms versus other tumors that may be similar in histological appearance. The role of ultrastructure in mesenchymal neoplasms is also crucial in defining specific neoplastic cell populations and in some cases in the differentiation from other non-mesenchymal tumors. It seems that routine electron microscopic examination of pulmonary neoplasms provides additional information that may be of great value in the management of patients and in understanding the differentiation, and perhaps histogenesis, of pulmonary neoplasms.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. A Photomicrography Primer.

    ERIC Educational Resources Information Center

    Davidson, Michael W.

    1991-01-01

    Describes techniques and equipment which allows school microscopes to perform crossed-polarized light microscopy, reflected light microscopy, and photomicrography. Provides information on using chemicals from a high school stockroom to view crystals, viewing integrated circuits, and capturing images on film. Lists possible independent student…

  18. Servo-controlled intravital microscope system

    NASA Technical Reports Server (NTRS)

    Mansour, M. N.; Wayland, H. J.; Chapman, C. P. (Inventor)

    1975-01-01

    A microscope system is described for viewing an area of a living body tissue that is rapidly moving, by maintaining the same area in the field-of-view and in focus. A focus sensing portion of the system includes two video cameras at which the viewed image is projected, one camera being slightly in front of the image plane and the other slightly behind it. A focus sensing circuit for each camera differentiates certain high frequency components of the video signal and then detects them and passes them through a low pass filter, to provide dc focus signal whose magnitudes represent the degree of focus. An error signal equal to the difference between the focus signals, drives a servo that moves the microscope objective so that an in-focus view is delivered to an image viewing/recording camera.

  19. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Hao; Yang, Haw

    2018-03-01

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  20. Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction.

    PubMed

    Ichikawa, Tetsuo; Hayasaki, Yoshio; Fujita, Keiji; Nagao, Kan; Murata, Masayo; Kawano, Takanori; Chen, JianRong

    2006-12-01

    The purpose of this study was to evaluate the feasibility of using a femtosecond pulse laser processing technique to store information on a dental prosthesis. Commercially pure titanium plates were processed by a femtosecond pulse laser system. The processed surface structure was observed with a reflective illumination microscope, scanning electron microscope, and atomic force microscope. Processed area was an almost conical pit with a clear boundary. When laser pulse energy was 2 microJ, the diameter and depth were approximately 10microm and 0.2 microm respectively--whereby both increased with laser pulse energy. Further, depth of pit increased with laser pulse number without any thermal effect. This study showed that the femtosecond pulse processing system was capable of recording personal identification and optional additional information on a dental prosthesis.

  1. Acoustic imaging microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-10-17

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  2. CW laser use in biomedical research and practice

    NASA Astrophysics Data System (ADS)

    Matthopoulos, D. P.

    2003-04-01

    The communication of humans with their surrouding is achieved through their senses and the related organs. Visual communication using the eyes is made possible because the various sources of light, natural i.e. the sun or the lightning, or artificial such as Lasers, emit electromagnetic radiation which is either reflected or scattered by surfaces. This radiation received by eyes is processed in the brain where the images of the environment are developed. The luminous processing can be either macro- or microscopic. The macroscopic processing is the result of light coming from the sun or from wide range lamps, while the microscopic results from light coming from wide range lamps, mercury lamps, lasers or electron beam. The microscopic processing is the subject we are dealing with in this presentation.

  3. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.

    PubMed

    Li, Hao; Yang, Haw

    2018-03-28

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  4. [THE CHARACTERISTICS OF MORPHOLOGY OF BIOFILM OF PERIODONTIUM UNDER INFLAMMATORY DISEASES OF GUMS (CHRONIC CATARRHAL GINGIVITIS, CHRONIC PERIODONTITIS, CANDIDA-ASSOCIATED PERIODONTITIS) ACCORDING RESULTS OF ELECTRONIC MICROSCOPY].

    PubMed

    Ippolitov, E V; Didenko, L V; Tzarev, V N

    2015-12-01

    The study was carried out to analyze morphology of biofilm of periodontium and to develop electronic microscopic criteria of differentiated diagnostic of inflammatory diseases of gums. The scanning electronic microscopy was applied to analyze samples of bioflm of periodont from 70 patients. Including ten patients with every nosologic form of groups with chronic catarrhal periodontitis. of light, mean and severe degree, chronic catarrhal gingivitis, Candida-associated paroperiodontitis and 20 healthy persons with intact periodontium. The analysis was implemented using dual-beam scanning electronic microscope Quanta 200 3D (FEI company, USA) and walk-through electronic micJEM 100B (JEOL, Japan). To detect marker DNA of periodont pathogenic bacteria in analyzed samples the kit of reagentsfor polymerase chain reaction "MultiDent-5" ("GenLab", Russia). The scanning electronic microscopy in combination with transmission electronic microscopy and polymerase chain reaction permits analyzing structure, composition and degree of development of biofilm of periodontium and to apply differentiated diagnostic of different nosologic forms of inflammatory diseases of periodontium, including light form of chronic periodontitis and gingivitis. The electronic microscopical indications of diseases ofperiodontium of inflammatory character are established: catarrhal gingivitis, (coccal morphological alternate), chronic periodontitis (bacillary morphological alternate), Candida-associated periodontitis (Candida morphological alternate of biofilm ofperiodontium).

  5. Selection of the best features for leukocytes classification in blood smear microscopic images

    NASA Astrophysics Data System (ADS)

    Sarrafzadeh, Omid; Rabbani, Hossein; Talebi, Ardeshir; Banaem, Hossein Usefi

    2014-03-01

    Automatic differential counting of leukocytes provides invaluable information to pathologist for diagnosis and treatment of many diseases. The main objective of this paper is to detect leukocytes from a blood smear microscopic image and classify them into their types: Neutrophil, Eosinophil, Basophil, Lymphocyte and Monocyte using features that pathologists consider to differentiate leukocytes. Features contain color, geometric and texture features. Colors of nucleus and cytoplasm vary among the leukocytes. Lymphocytes have single, large, round or oval and Monocytes have singular convoluted shape nucleus. Nucleus of Eosinophils is divided into 2 segments and nucleus of Neutrophils into 2 to 5 segments. Lymphocytes often have no granules, Monocytes have tiny granules, Neutrophils have fine granules and Eosinophils have large granules in cytoplasm. Six color features is extracted from both nucleus and cytoplasm, 6 geometric features only from nucleus and 6 statistical features and 7 moment invariants features only from cytoplasm of leukocytes. These features are fed to support vector machine (SVM) classifiers with one to one architecture. The results obtained by applying the proposed method on blood smear microscopic image of 10 patients including 149 white blood cells (WBCs) indicate that correct rate for all classifiers are above 93% which is in a higher level in comparison with previous literatures.

  6. Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing

    NASA Astrophysics Data System (ADS)

    Kim, Honghyuk; Guan, Yingxin; Babcock, Susan E.; Kuech, Thomas F.; Mawst, Luke J.

    2018-03-01

    Laser diodes employing a strain-compensated GaAs1-xBix/GaAs1-yPy single quantum well (SQW) active region were grown by organometallic vapor phase epitaxy (OMVPE). High resolution x-ray diffraction, room temperature photoluminescence, and real-time optical reflectance measurements during the OMVPE growth were used to find the optimum process window for the growth of the active region material. Systematic post-growth in situ thermal anneals of various lengths were carried out in order to investigate the impacts of thermal annealing on the laser device performance characteristics. While the lowest threshold current density was achieved after the thermal annealing for 30 min at 630 °C, a gradual decrease in the external differential quantum efficiency was observed as the annealing time increases. It was observed that the temperature sensitivities of the threshold current density increase while those of lasing wavelength and slope efficiency remain nearly constant with increasing annealing time. Z-contrast scanning transmission electron microscopic) analysis revealed inhomogeneous Bi distribution within the QW active region.

  7. Direct penetration of spin-triplet superconductivity into a ferromagnet in Au/SrRuO3/Sr2RuO4 junctions

    NASA Astrophysics Data System (ADS)

    Anwar, M. S.; Lee, S. R.; Ishiguro, R.; Sugimoto, Y.; Tano, Y.; Kang, S. J.; Shin, Y. J.; Yonezawa, S.; Manske, D.; Takayanagi, H.; Noh, T. W.; Maeno, Y.

    2016-10-01

    Efforts have been ongoing to establish superconducting spintronics utilizing ferromagnet/superconductor heterostructures. Previously reported devices are based on spin-singlet superconductors (SSCs), where the spin degree of freedom is lost. Spin-polarized supercurrent induction in ferromagnetic metals (FMs) is achieved even with SSCs, but only with the aid of interfacial complex magnetic structures, which severely affect information imprinted to the electron spin. Use of spin-triplet superconductors (TSCs) with spin-polarizable Cooper pairs potentially overcomes this difficulty and further leads to novel functionalities. Here, we report spin-triplet superconductivity induction into a FM SrRuO3 from a leading TSC candidate Sr2RuO4, by fabricating microscopic devices using an epitaxial SrRuO3/Sr2RuO4 hybrid. The differential conductance, exhibiting Andreev-reflection features with multiple energy scales up to around half tesla, indicates the penetration of superconductivity over a considerable distance of 15 nm across the SrRuO3 layer without help of interfacial complex magnetism. This demonstrates potential utility of FM/TSC devices for superspintronics.

  8. Dual-systems and the development of reasoning: competence-procedural systems.

    PubMed

    Overton, Willis F; Ricco, Robert B

    2011-03-01

    Dual-system, dual-process, accounts of adult cognitive processing are examined in the context of a self-organizing relational developmental systems approaches to cognitive growth. Contemporary adult dual-process accounts describe a linear architecture of mind entailing two split-off, but interacting systems; a domain general, content-free 'analytic' system (system 2) and a domain specific highly contextualized 'heuristic' system (system 1). In the developmental literature on deductive reasoning, a similar distinction has been made between a domain general competence (reflective, algorithmic) system and a domain specific procedural system. In contrast to the linear accounts offered by empiricist, nativist, and/or evolutionary explanations, the dual competence-procedural developmental perspective argues that the mature systems emerge through developmental transformations as differentiations and intercoordinations of an early relatively undifferentiated action matrix. This development, whose microscopic mechanism is action-in-the-world, is characterized as being embodied, nonlinear, and epigenetic. WIREs Cogni Sci 2011 2 231-237 DOI: 10.1002/wcs.120 For further resources related to this article, please visit the WIREs website. © 2010 John Wiley & Sons, Ltd.

  9. Eating patterns, diet quality and energy balance: from the macro- to the microscopic.

    PubMed

    Lowe, Michael R

    2014-07-01

    As a discussant for the 2013 IBRC Symposium on Eating Patterns, Diet Quality and Energy Balance at Purdue University, I describe here several reflections I had on the papers as a whole. I initially focus on the keynote address by Dr. Leonard. His address suggested that the evolutionary development of Homo sapiens during the past 2 million years may have "prepared" humans to seek and consume food beyond their immediate energy needs, a predisposition that may have rendered humans particularly vulnerable to modern food environments. Additional observations include: 1) the importance of differentiating between a given appetitive variable (e.g., snacking) as a potential cause versus consequence of an outcome of interest (e.g., obesity), 2) the need to move beyond research on the consummatory phase of appetite to the anticipatory phase of appetite, and 3) the opportunity that exists to take the many obesogenic nutritional influences documented in the symposium and "turn them on their heads" to facilitate, rather than undermine, long-term weight control. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. AC/DC electrical conduction and dielectric properties of PMMA/PVAc/C60 down-shifting nanocomposite films

    NASA Astrophysics Data System (ADS)

    El-Bashir, S. M.; Alwadai, N. M.; AlZayed, N.

    2018-02-01

    Polymer nanocomposite films were prepared by doping fullerene C60 in polymer blend composed of polymethacrylate/polyvinyl acetate blends (PMMA/PVAc) using solution cast technique. The films were characterized by differential scanning calorimeter (DSC), Transmission electron microscope (TEM), DC/AC electrical conductivity and dielectric measurements in the frequency range (100 Hz- 1 MHz). The glass transition temperature, Tg, was increased by increasing the concentration of fullerene C60; this property reflects the increase of thermal stability by increasing the nanofiller content. The DC and AC electrical conductivities were enhanced by increasing C60 concentration due to the electron hopping or tunneling between filled and empty localized states above Tg. The relaxation time was determined from the αβ -relaxations and found to be attenuated by increasing the temperature as a typical behavior of amorphous polymers. The calculated values of thermodynamic parameters revealed the increase of molecular stability by increasing the doping concentration; this feature supports the application of PMMA/PVAc/C60 nanocomposite films in a wide scale of solar energy conversion applications such as luminescent down-shifting (LDS) coatings for photovoltaic cells.

  11. Direct Reconstruction of Two-Dimensional Currents in Thin Films from Magnetic-Field Measurements

    NASA Astrophysics Data System (ADS)

    Meltzer, Alexander Y.; Levin, Eitan; Zeldov, Eli

    2017-12-01

    An accurate determination of microscopic transport and magnetization currents is of central importance for the study of the electric properties of low-dimensional materials and interfaces, of superconducting thin films, and of electronic devices. Current distribution is usually derived from the measurement of the perpendicular component of the magnetic field above the surface of the sample, followed by numerical inversion of the Biot-Savart law. The inversion is commonly obtained by deriving the current stream function g , which is then differentiated in order to obtain the current distribution. However, this two-step procedure requires filtering at each step and, as a result, oversmooths the solution. To avoid this oversmoothing, we develop a direct procedure for inversion of the magnetic field that avoids use of the stream function. This approach provides enhanced accuracy of current reconstruction over a wide range of noise levels. We further introduce a reflection procedure that allows for the reconstruction of currents that cross the boundaries of the measurement window. The effectiveness of our approach is demonstrated by several numerical examples.

  12. Direct penetration of spin-triplet superconductivity into a ferromagnet in Au/SrRuO3/Sr2RuO4 junctions

    PubMed Central

    Anwar, M. S.; Lee, S. R.; Ishiguro, R.; Sugimoto, Y.; Tano, Y.; Kang, S. J.; Shin, Y. J.; Yonezawa, S.; Manske, D.; Takayanagi, H.; Noh, T. W.; Maeno, Y.

    2016-01-01

    Efforts have been ongoing to establish superconducting spintronics utilizing ferromagnet/superconductor heterostructures. Previously reported devices are based on spin-singlet superconductors (SSCs), where the spin degree of freedom is lost. Spin-polarized supercurrent induction in ferromagnetic metals (FMs) is achieved even with SSCs, but only with the aid of interfacial complex magnetic structures, which severely affect information imprinted to the electron spin. Use of spin-triplet superconductors (TSCs) with spin-polarizable Cooper pairs potentially overcomes this difficulty and further leads to novel functionalities. Here, we report spin-triplet superconductivity induction into a FM SrRuO3 from a leading TSC candidate Sr2RuO4, by fabricating microscopic devices using an epitaxial SrRuO3/Sr2RuO4 hybrid. The differential conductance, exhibiting Andreev-reflection features with multiple energy scales up to around half tesla, indicates the penetration of superconductivity over a considerable distance of 15 nm across the SrRuO3 layer without help of interfacial complex magnetism. This demonstrates potential utility of FM/TSC devices for superspintronics. PMID:27782151

  13. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui

    2015-12-01

    Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue

    NASA Astrophysics Data System (ADS)

    He, Jinping; Wang, Nan; Tsurui, Hiromichi; Kato, Masashi; Iida, Machiko; Kobayashi, Takayoshi

    2016-07-01

    Skin cancer is one of the most common cancers. Melanoma accounts for less than 2% of skin cancer cases but causes a large majority of skin cancer deaths. Early detection of malignant melanoma remains the key factor in saving lives. However, the melanoma diagnosis is still clinically challenging. Here, we developed a confocal photothermal microscope for noninvasive, label-free, three-dimensional imaging of melanoma. The axial resolution of confocal photothermal microscope is ~3 times higher than that of commonly used photothermal microscope. Three-dimensional microscopic distribution of melanin in pigmented lesions of mouse skin is obtained directly with this setup. Classic morphometric and fractal analysis of sixteen 3D images (eight for benign melanoma and eight for malignant) showed a capability of pathology of melanoma: melanin density and size become larger during the melanoma growth, and the melanin distribution also becomes more chaotic and unregulated. The results suggested new options for monitoring the melanoma growth and also for the melanoma diagnosis.

  15. Josephson flux-flow oscillator: The microscopic tunneling approach

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Koshelets, V. P.; Kusmartsev, F. V.

    2017-07-01

    We elaborate a theoretical description of large Josephson junctions which is based on Werthamer's microscopic tunneling theory. The model naturally incorporates coupling of electromagnetic radiation to the tunnel currents and, therefore, is particularly suitable for description of the self-coupling effect in Josephson junction. In our numerical calculations we treat the arising integro-differential equation, which describes temporal evolution of the superconducting phase difference coupled to the electromagnetic field, by the Odintsov-Semenov-Zorin algorithm. This allows us to avoid evaluation of the time integrals at each time step while taking into account all the memory effects. To validate the obtained microscopic model of large Josephson junction we focus our attention on the Josephson flux-flow oscillator. The proposed microscopic model of flux-flow oscillator does not involve the phenomenological damping parameter, rather the damping is taken into account naturally in the tunnel current amplitudes calculated at a given temperature. The theoretically calculated current-voltage characteristics is compared to our experimental results obtained for a set of fabricated flux-flow oscillators of different lengths.

  16. Simultaneous imaging/reflectivity measurements to assess diagnostic mirror cleaning.

    PubMed

    Skinner, C H; Gentile, C A; Doerner, R

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We describe a technique to assess the efficacy of mirror cleaning techniques and detect any damage to the mirror surface. The method combines microscopic imaging and reflectivity measurements in the red, green, and blue spectral regions and at selected wavelengths. The method has been applied to laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150-420 nm thick. It is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber.

  17. Measured reflectance suppressed by thin-film interference of crude oil smeared on glass - as on vitrinite in coal or petroliferous rocks

    USGS Publications Warehouse

    Bostick, Neely

    2011-01-01

    The tool of measuring "vitrinite reflectance" under a microscope has great value in petroleum exploration and coal utilization, and the reflectance is a simple number, such as 1.4% Ro, with some slight variations depending on technique. Sample collection, preparation and measurement are simple and many sedimentary rocks yield vitrinite. However, the reported number can lead one astray if its origin and quality are not fully understood. I analyze here just one factor, "smear" of crude oil on the polished surface (from the sample), which may reduce reflectance because of thin-film interference. Some other causes of error are listed in an addendum to this note.

  18. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  19. Label-free imaging of intracellular motility by low-coherent quantitative phase microscope in reflection geometry

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka

    2011-11-01

    We demonstrate tomographic imaging of intracellular activity of living cells by a low-coherent quantitative phase microscope. The intracellular organelles, such as the nucleus, nucleolus, and mitochondria, are moving around inside living cells, driven by the cellular physiological activity. In order to visualize the intracellular motility in a label-free manner we have developed a reflection-type quantitative phase microscope which employs the phase shifting interferometric technique with a low-coherent light source. The phase shifting interferometry enables us to quantitatively measure the intensity and phase of the optical field, and the low-coherence interferometry makes it possible to selectively probe a specific sectioning plane in the cell volume. The results quantitatively revealed the depth-resolved fluctuations of intracellular surfaces so that the plasma membrane and the membranes of intracellular organelles were independently measured. The transversal and the vertical spatial resolutions were 0.56 μm and 0.93 μm, respectively, and the mechanical sensitivity of the phase measurement was 1.2 nanometers. The mean-squared displacement was applied as a statistical tool to analyze the temporal fluctuation of the intracellular organelles. To the best of our knowledge, our system visualized depth-resolved intracellular organelles motion for the first time in sub-micrometer resolution without contrast agents.

  20. Atmospheric scanning electron microscope for correlative microscopy.

    PubMed

    Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J

    2012-01-01

    The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Laboratory observations and simulations of phase reddening

    NASA Astrophysics Data System (ADS)

    Schröder, S. E.; Grynko, Ye.; Pommerol, A.; Keller, H. U.; Thomas, N.; Roush, T. L.

    2014-09-01

    The visible reflectance spectrum of many Solar System bodies changes with changing viewing geometry for reasons not fully understood. It is often observed to redden (increasing spectral slope) with increasing solar phase angle, an effect known as phase reddening. Only once, in an observation of the martian surface by the Viking 1 lander, was reddening observed up to a certain phase angle with bluing beyond, making the reflectance ratio as a function of phase angle shaped like an arch. However, in laboratory experiments this arch-shape is frequently encountered. To investigate this, we measured the bidirectional reflectance of particulate samples of several common rock types in the 400-1000 nm wavelength range and performed ray-tracing simulations. We confirm the occurrence of the arch for surfaces that are forward scattering, i.e. are composed of semi-transparent particles and are smooth on the scale of the particles, and for which the reflectance increases from the lower to the higher wavelength in the reflectance ratio. The arch shape is reproduced by the simulations, which assume a smooth surface. However, surface roughness on the scale of the particles, such as the Hapke and van Horn (Hapke, B., van Horn, H. [1963]. J. Geophys. Res. 68, 4545-4570) fairy castles that can spontaneously form when sprinkling a fine powder, leads to monotonic reddening. A further consequence of this form of microscopic roughness (being indistinct without the use of a microscope) is a flattening of the disk function at visible wavelengths, i.e. Lommel-Seeliger-type scattering. The experiments further reveal monotonic reddening for reflectance ratios at near-IR wavelengths. The simulations fail to reproduce this particular reddening, and we suspect that it results from roughness on the surface of the particles. Given that the regolith of atmosphereless Solar System bodies is composed of small particles, our results indicate that the prevalence of monotonic reddening and Lommel-Seeliger-type scattering for these bodies results from microscopic roughness, both in the form of structures built by the particles and roughness on the surface of the particles themselves. It follows from the singular Viking 1 observation that the surface in front of the lander was composed of semi-transparent particles, and was smooth on the scale of the particle size.

  2. Confocal reflectance quantitative phase microscope system for cellular membranes dynamics study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; Yaqoob, Zahid; So, Peter T. C.

    2017-02-01

    Quantitative phase microscopy (QPM) techniques developed so far primarily belongs to high speed transmitted light based systems that has enough sensitivity to resolve membrane fluctuations and dynamics, but has no depth resolution. Therefore, most biomechanics studies using QPM today is confined to simple cells, such as RBCs, without internal organelles. An important instrument that will greatly extend the biomedical applications of QPM is to develop next generation microscope with 3D capability and sufficient temporal resolution to study biomechanics of complex eukaryotic cells including the mechanics of their internal compartments. For eukaryotic cells, the depth sectioning capability is critical and should be sufficient to distinguish nucleic membrane fluctuations from plasma membrane fluctuations. Further, this microscope must provide high temporal resolution since typical eukaryotes membranes are substantially stiffer than RBCs. A confocal reflectance quantitative phase microscope is presented based on multi-pinhole scanning, with the capabilities of higher temporal resolution and sensitivity for nucleic and plasma membranes of eukaryotic cells. System hardware is developed based on an array of confocal pinhole generated by using the `ON' state of subset of micro-mirrors of digital micro-mirror device (DMD, from Texas Instruments) and high-speed raster scanning provides 14ms imaging speed in wide-field mode. A common path interferometer is integrated at the imaging arm for detection of specimens' quantitative phase information. Theoretical investigation of quantitative phase reconstructed from system is investigated and application of system is presented for dimensional fluctuations measurements of both cellular plasma and nucleic membranes of embryonic stem cells.

  3. Scatter of fatigue data owing to material microscopic effects

    NASA Astrophysics Data System (ADS)

    Tang, XueSong

    2014-01-01

    A common phenomenon of fatigue test data reported in the open literature such as S-N curves exhibits the scatter of points for a group of same specimens under the same loading condition. The reason is well known that the microstructure is different from specimen to specimen even in the same group. Specifically, a fatigue failure process is a multi-scale problem so that a fatigue failure model should have the ability to take the microscopic effect into account. A physically-based trans-scale crack model is established and the analytical solution is obtained by coupling the micro- and macro-scale. Obtained is the trans-scale stress intensity factor as well as the trans-scale strain energy density (SED) factor. By taking this trans-scale SEDF as a key controlling parameter for the fatigue crack propagation from micro- to macro-scale, a trans-scale fatigue crack growth model is proposed in this work which can reflect the microscopic effect and scale transition in a fatigue process. The fatigue test data of aluminum alloy LY12 plate specimens is chosen to check the model. Two S-N experimental curves for cyclic stress ratio R=0.02 and R=0.6 are selected. The scattering test data points and two S-N curves for both R=0.02 and R=0.6 are exactly re-produced by application of the proposed model. It is demonstrated that the proposed model is able to reflect the multiscaling effect in a fatigue process. The result also shows that the microscopic effect has a pronounced influence on the fatigue life of specimens.

  4. Differential diagnosis of periapical cyst using collagen birefringence pattern of the cyst wall

    PubMed Central

    2017-01-01

    Objectives Periapical lesions, including periapical cyst (PC), periapical granuloma (PG), and periapical abscess (PA), are frequently affected by chemical/physical damage during root canal treatment or severe bacterial infection, and thus, the differential diagnosis of periapical lesions may be difficult due to the presence of severe inflammatory reaction. The aim of this study was to make differential diagnosis among PC, PG, and PA under polarizing microscope. Materials and Methods The collagen birefringence patterns of 319 cases of PC (n = 122), PG (n = 158), and PA (n = 39) obtained using a polarizing microscope were compared. In addition, 6 cases of periodontal fibroma (PF) were used as positive controls. Results Collagen birefringence was condensed with a thick, linear band-like pattern in PC, but was short and irregularly scattered in PG, and scarce or absent in PA. PF showed intense collagen birefringence with a short, palisading pattern but no continuous band-like pattern. The linear band-like birefringence in PC was ascribed to pre-existing expansile tensile stress of the cyst wall. Conclusions In this study all PCs (n = 122) were distinguishable from PGs and PAs by their characteristic birefringence, despite the absence of lining epithelium (n = 20). Therefore, the authors suggest that the presence of linear band-like collagen birefringence of the cyst wall aids the diagnostic differentiation of PC from PG and PA. PMID:28503476

  5. Polarimetric Radar Characteristics of Simulated and Observed Intense Convection Between Continental and Maritime Environment

    NASA Astrophysics Data System (ADS)

    Matsui, T.; Dolan, B.; Tao, W. K.; Rutledge, S. A.; Iguchi, T.; Barnum, J. I.; Lang, S. E.

    2017-12-01

    This study presents polarimetric radar characteristics of intense convective cores derived from observations as well as a polarimetric-radar simulator from cloud resolving model (CRM) simulations from Midlatitude Continental Convective Clouds Experiment (MC3E) May 23 case over Oklahoma and a Tropical Warm Pool-International Cloud Experiment (TWP-ICE) Jan 23 case over Darwin, Australia to highlight the contrast between continental and maritime convection. The POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a state-of-art T-matrix-Mueller-Matrix-based polarimetric radar simulator that can generate synthetic polarimetric radar signals (reflectivity, differential reflectivity, specific differential phase, co-polar correlation) as well as synthetic radar retrievals (precipitation, hydrometeor type, updraft velocity) through the consistent treatment of cloud microphysics and dynamics from CRMs. The Weather Research and Forecasting (WRF) model is configured to simulate continental and maritime severe storms over the MC3E and TWP-ICE domains with the Goddard bulk 4ICE single-moment microphysics and HUCM spectra-bin microphysics. Various statistical diagrams of polarimetric radar signals, hydrometeor types, updraft velocity, and precipitation intensity are investigated for convective and stratiform precipitation regimes and directly compared between MC3E and TWP-ICE cases. The result shows MC3E convection is characterized with very strong reflectivity (up to 60dBZ), slight negative differential reflectivity (-0.8 0 dB) and near-zero specific differential phase above the freezing levels. On the other hand, TWP-ICE convection shows strong reflectivity (up to 50dBZ), slight positive differential reflectivity (0 1.0 dB) and differential phase (0 0.8 dB/km). Hydrometeor IDentification (HID) algorithm from the observation and simulations detect hail-dominant convection core in MC3E, while graupel-dominant convection core in TWP-ICE. This land-ocean contrast agrees with the previous studies using the radar and radiometer signals from TRMM satellite climatology associated with warm-cloud depths and vertical structure of buoyancy.

  6. Comparison of the diagnostic performance of microscopic examination with nested polymerase chain reaction for optimum malaria diagnosis in Upper Myanmar.

    PubMed

    Kang, Jung-Mi; Cho, Pyo-Yun; Moe, Mya; Lee, Jinyoung; Jun, Hojong; Lee, Hyeong-Woo; Ahn, Seong Kyu; Kim, Tae Im; Pak, Jhang Ho; Myint, Moe Kyaw; Lin, Khin; Kim, Tong-Soo; Na, Byoung-Kuk

    2017-03-16

    Accurate diagnosis of Plasmodium infection is crucial for prompt malaria treatment and surveillance. Microscopic examination has been widely applied as the gold standard for malaria diagnosis in most part of malaria endemic areas, but its diagnostic value has been questioned, particularly in submicroscopic malaria. In this study, the diagnostic performance of microscopic examination and nested polymerase chain reaction (PCR) was evaluated to establish optimal malaria diagnosis method in Myanmar. A total of 1125 blood samples collected from residents in the villages and towns located in Naung Cho, Pyin Oo Lwin, Tha Beik Kyin townships and Mandalay of Upper Myanmar were screened by microscopic examination and species-specific nested PCR method. Among the 1125 blood samples, 261 samples were confirmed to be infected with malaria by microscopic examination. Evaluation of the 1125 samples by species-specific nested PCR analysis revealed that the agreement between microscopic examination and nested PCR was 87.3% (261/299). Nested PCR successfully detected 38 Plasmodium falciparum or Plasmodium vivax infections, which were missed in microscopic examination. Microscopic examinations also either misdiagnosed the infected Plasmodium species, or did not detect mixed infections with different Plasmodium species in 31 cases. The nested PCR method is more reliable than conventional microscopic examination for the diagnosis of malaria infections, and this is particularly true in cases of mixed infections and submicroscopic infections. Given the observed higher sensitivity and specificity of nested PCR, the molecular method holds enormous promise in malaria diagnosis and species differentiation, and can be applied as an effective monitoring tool for malaria surveillance, control and elimination in Myanmar.

  7. Quantitative X-ray Differential Interference Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function. A new illumination apparatus required for the transfer function analysis under partially coherent illumination is also proposed. Such a characterization is essential for a proper selection of DIC optics for various transparent samples under study. Finally, optical elements used for x-ray DIC microscopy are highly absorptive and high brilliance x-ray sources such as synchrotrons are generally needed for image contrast. To extend the use of x-ray DIC microscopy to a wider variety of applications, a high efficiency large numerical aperture optical element consisting of high reflective Bragg reflectors is proposed. Using Bragg reflectors, which have 70% ˜99% reflectivity at extreme ultraviolet and soft x-rays for all angles of glancing incidence, the first order focusing efficiency is expected to increase by ˜ 8 times compared to that of a typical Fresnel zone-plate. This thesis contributes to current nanoscale x-ray phase contrast imaging research and provides new insights for biological, material, and magnetic sciences

  8. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    PubMed

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  9. Solitary Fibrous Tumor of Retromolar Pad; a Rare Challenging Case

    PubMed Central

    Lotfi, Ali; Mokhtari, Sepideh; Moshref, Mohammad; Shahla, Maryam; Atarbashi Moghadam, Saede

    2017-01-01

    Solitary fibrous tumor has a wide spectrum of histopathologic features and many tumors show similar microscopic features. This similarity poses diagnostic challenges to the pathologists and immunohistochemical analysis is required in many cases. Moreover, it is a rare entity in orofacial region which consequently would make its diagnosis more challenging in oral cavity. The knowledge of various microscopic patterns of this tumor contributes to a proper diagnosis and prevents unnecessary treatment. This study reports a case of solitary fibrous tumor in the retromolar pad area and discusses its various histological features and differential diagnoses. PMID:28620640

  10. Nm-scale spatial resolution x-ray imaging with MLL nanofocusing optics: instrumentational requirements and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, E.; Yan, H.; Lauer, K.

    2016-08-30

    The Hard X-ray Nanoprobe (HXN) beamline at NSLS-II has been designed and constructed to enable imaging experiments with unprecedented spatial resolution and detection sensitivity. The HXN X-ray Microscope is a key instrument for the beamline, providing a suite of experimental capabilities which includes scanning fluorescence, diffraction, differential phase contrast and ptychography utilizing Multilayer Laue Lenses (MLL) and zoneplate (ZP) as nanofocusing optics. In this paper, we present technical requirements for the MLL-based scanning microscope, outline the development concept and present first ~15 x 15 nm 2 spatial resolution x-ray fluorescence images.

  11. Development of Nomarski microscopy for quantitative determination of surface topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J. S.; Gordon, R. L.; Lessor, D. L.

    1979-01-01

    The use of Nomarski differential interference contrast (DIC) microscopy has been extended to provide nondestructive, quantitative analysis of a sample's surface topography. Theoretical modeling has determined the dependence of the image intensity on the microscope's optical components, the sample's optical properties, and the sample's surface orientation relative to the microscope. Results include expressions to allow the inversion of image intensity data to determine sample surface slopes. A commercial Nomarski system has been modified and characterized to allow the evaluation of the optical model. Data have been recorded with smooth, planar samples that verify the theoretical predictions.

  12. Observation of Phase Objects by Using an X-ray Microscope with a Foucault Knife-Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, N.; Sasaya, T.; Imai, Y.

    2011-09-09

    An x-ray microscope with a zone plate was assembled at the synchrotron radiation source of BL3C, Photon Factory. A Foucault knife-edge was set at the back focal plate of the objective zone plate and phase retrieval was tested by scanning the knife-edge. A preliminary result shows that scanning the knife-edge during exposure was effective for phase retrieval. Phase-contrast tomography was investigated using differential projection images calculated from two Schlieren images with the oppositely oriented knife-edges. Fairly good reconstruction images of polystyrene beads and spores could be obtained.

  13. Rheological and structural properties of sea cucumber Stichopus japonicus during heat treatment

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Xue, Dongmei; Zhang, Zhaohui; Xu, Jiachao; Xue, Changhu

    2005-07-01

    Changes in tissue structure, rheological properties and water content of raw and heated sea cucumber meat were studied. Sea cucumber Stichopus japonicus was heated at 25°C , 70°C and 100°C water for 5 min. The structural changes were observed using a light microscope and the rheological parameters (rupture strength, adhesive strength and deformation) determined using a texture meter. Microscopic photograph revealed that the structural change of heated meat was greater than that of raw meat. The rupture strength, adhesive strength and deformation of raw meat were smaller than those of the heated meat. Meanwhile, rheological parameters showed positive correlation with heating temperature. These changes are mainly caused by thermal denaturation and gelatinization of collagen during heating. These changes were also evidenced in observations using a light microscope and differential scanning calorimetry.

  14. Compact divided-pupil line-scanning confocal microscope for investigation of human tissues

    NASA Astrophysics Data System (ADS)

    Glazowski, Christopher; Peterson, Gary; Rajadhyaksha, Milind

    2013-03-01

    Divided-pupil line-scanning confocal microscopy (DPLSCM) can provide a simple and low-cost approach for imaging of human tissues with pathology-like nuclear and cellular detail. Using results from a multidimensional numerical model of DPLSCM, we found optimal pupil configurations for improved axial sectioning, as well as control of speckle noise in the case of reflectance imaging. The modeling results guided the design and construction of a simple (10 component) microscope, packaged within the footprint of an iPhone, and capable of cellular resolution. We present the optical design with experimental video-images of in-vivo human tissues.

  15. Differential geometry-based solvation and electrolyte transport models for biomolecular modeling: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Guowei; Baker, Nathan A.

    2016-11-11

    This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, electrostatic potential, ion density, electron density, etc. Recently, differential geometry theory has been used to define the surfaces that separate the microscopic (solute) domains for biomolecules from the macroscopic (solvent) domains. In thesemore » approaches, the microscopic domains are modeled with atomistic or quantum mechanical descriptions, while continuum mechanics models (including fluid mechanics, elastic mechanics, and continuum electrostatics) are applied to the macroscopic domains. This multiphysics description is integrated through an energy functional formalism and the resulting Euler-Lagrange equation is employed to derive a variety of governing partial differential equations for different solvation and transport processes; e.g., the Laplace-Beltrami equation for the solvent-solute interface, Poisson or Poisson-Boltzmann equations for electrostatic potentials, the Nernst-Planck equation for ion densities, and the Kohn-Sham equation for solute electron density. Extensive validation of these models has been carried out over hundreds of molecules, including proteins and ion channels, and the experimental data have been compared in terms of solvation energies, voltage-current curves, and density distributions. We also propose a new quantum model for electrolyte transport.« less

  16. Negative differential conductance in InAs wire based double quantum dot induced by a charged AFM tip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, A. A., E-mail: azhukov@issp.ac.ru; Volk, Ch.; Winden, A.

    We investigate the conductance of an InAs nanowire in the nonlinear regime in the case of low electron density where the wire is split into quantum dots connected in series. The negative differential conductance in the wire is initiated by means of a charged atomic force microscope tip adjusting the transparency of the tunneling barrier between two adjoining quantum dots. We confirm that the negative differential conductance arises due to the resonant tunneling between these two adjoining quantum dots. The influence of the transparency of the blocking barriers and the relative position of energy states in the adjoining dots onmore » a decrease of the negative differential conductance is investigated in detail.« less

  17. Structure and physicochemical properties of starches in lotus (Nelumbo nucifera Gaertn.) rhizome

    PubMed Central

    Yu, Huaguang; Cheng, Libao; Yin, Jingjing; Yan, Shunjun; Liu, Kejun; Zhang, Fengmin; Xu, Bin; Li, Liangjun

    2013-01-01

    The type and content of starch are believed to be the most critical factors in determining the storage and processing quality of lotus rhizome species, and the intention of this study is to survey the structure and properties of starches isolated from rhizomes of two lotus cultivars using X-ray powder diffraction, solid-state nuclear magnetic resonance spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscope, differential scanning calorimetry, and rapid viscosity analyzer (RVA). Starch in rhizome of cultivar Meirenhong exhibited C-type X-ray diffraction pattern, while starch in rhizome of cultivar Wawalian showed A-type pattern. 13C cross-polarization magic-angle spinning nuclear magnetic resonance (13C CP-MAS NMR) also confirmed the polymorphs. The relative crystallinity of two starches was quantitatively estimated from two methods and compared. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results indicated that the external regions of the starch granules had a great level of ordered structure. Starch granules in Meirenhong showed oval-shaped granules, while starch granules in Wawalian were elongated and oval in shape with relatively large size. Gelatinization temperatures of starch in Meirenhong and Wawalian were 330.5 and 342.4 K, respectively, and the gelatinization temperature range of Meirenhong was significantly wider than that of Wawalian. Starch in rhizome of cultivar Meirenhong showed lower pasting temperature, lower hot and cool viscosities, lower setback, and higher peak viscosity and breakdown than those of Wawalian in RVA pasting profiles at 6% starch concentration. PMID:24804031

  18. Theoretical and experimental analyses of the performance of two-color laser ranging systems

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Gardner, C. S.

    1985-01-01

    The statistical properties of the signals reflected from the retroreflector equipped satellites were studied. It is found that coherence interference between pulse reflections from retroreflectors of different ranges on the array platform is the primary cause of signal fluctuations. The performance of a cross-correlation technique to estimate the differential propagation time is analyzed by considering both shot noise and speckle. For the retroreflector arrays, timing performance is dominated by interference induced speckle, and the differential propagation time cannot be resolved to better than the pulse widths of the received signals. The differential timing measurements obtained over a horizontal path are analyzed. The ocean-reflected pulse measurements obtained from the airborne two-color laser altimeter experiment are presented.

  19. Ultra high frequency imaging acoustic microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-05-23

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  20. Optomechanical design and tolerance of a microscope objective at 121.6 nm

    NASA Astrophysics Data System (ADS)

    Keyes, Derek S.; Jota, Thiago S.; Gao, Weichuan; Luepke, Dakota; Densmore, Victor; Kim, Young-Sik; Kim, Gun-Hee; Milster, Thomas D.

    2015-08-01

    By utilizing the Hydrogen-Lyman-α (HLA) source at 121.6 nm, we hope to achieve an intrinsic resolution of 247 nm at 0.3 numerical aperture (NA) and 92 nm at 0.8 NA. The motivation for 121.6 nm microscopy is the existence of a transparent window in the air absorption spectrum at that wavelength, which allows for the sample to be in air while the microscope is in an enclosed nitrogen environment. The microscope objective consists of two reflective optics and a LiF window, and it has been designed to demonstrate diffraction limited performance over a 160μm full field at 121.6 nm. The optomechanical design consists of mechanical subcells for each optical component, precision spacers and a barrel bore, which allow for submicron control of tolerance parameters.

  1. Screening small-molecule compound microarrays for protein ligands without fluorescence labeling with a high-throughput scanning microscope.

    PubMed

    Fei, Yiyan; Landry, James P; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S

    2010-01-01

    We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm x 4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is capable of measuring kinetics as well as endpoints of protein-ligand reactions simultaneously. We present the experimental results on solution-phase protein reactions with small-molecule compound microarrays synthesized from one-bead, one-compound combinatorial chemistry and immobilized on a streptavidin-functionalized glass slide.

  2. Screening small-molecule compound microarrays for protein ligands without fluorescence labeling with a high-throughput scanning microscope

    PubMed Central

    Fei, Yiyan; Landry, James P.; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S.

    2010-01-01

    We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm×4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is capable of measuring kinetics as well as endpoints of protein-ligand reactions simultaneously. We present the experimental results on solution-phase protein reactions with small-molecule compound microarrays synthesized from one-bead, one-compound combinatorial chemistry and immobilized on a streptavidin-functionalized glass slide. PMID:20210464

  3. Utilization of nuclear structural proteins for targeted therapy and detection of proliferative and differentiation disorders

    DOEpatents

    Lelievre, Sophie; Bissell, Mina

    2001-01-01

    The localization of nuclear apparatus proteins (NUMA) is used to identify tumor cells and different stages in the tumor progression and differentiation processes. There is a characteristic organization of NuMA in tumor cells and in phenotypically normal cells. NuMA distribution patterns are significantly less diffuse in proliferating non-malignant cells compared to malignant cells. The technique encompasses cell immunostaining using a NuMA specific antibody, and microscopic analysis of NuMA distribution within each nucleus.

  4. [Leukopenia/neutropenia].

    PubMed

    Bargetzi, M J

    2006-01-01

    The first step in evaluating leukopenia is the analysis of the different leukocyte subpopulations. The automated total blood cell count gives a first impression of the decreased leukocyte subtype and if erythrocytes and/or platelets are involved. Microscopic interpretation of the blood smear verifies the automated differential and allows a statement on the morphology of the individual cells. Differential diagnosis of the decreased leukocyte subpopulation is vast and in many cases leukopenia is only an epiphenomenona of a systemic disease. Therefore therapy is always directed towards the underlying disorder.

  5. Screening and identification of proteins mediating senna induced gastrointestinal motility enhancement in mouse colon

    PubMed Central

    Wang, Xin; Zhong, Yue-Xia; Lan, Mei; Zhang, Zong-You; Shi, Yong-Quan; Lu, Ju; Ding, Jie; Wu, Kai-Cun; Jin, Jian-Ping; Pan, Bo-Rong; Fan, Dai Min

    2002-01-01

    AIM: To isolate the proteins involved in pharmacologic action of senna extract (SE) from mouse gastrointestinal tract and to explore the molecular mechanism of gastrointestinal motility change induced by SE. METHODS: SE was administrated to mice by different routes. Gastrointestinal motility of mice was observed using cathartic, gastrointestinal propellant movement experiments and X-ray analysis. Mouse model for gastrointestinal motility enhancement was established through continuous gastric administration of SE at progressively increased dose. At 3 h and week 3, 4, 6 and 10, morphological changes of gastrointestinal tissues were found under light microscope. Ultrastructural changes of intestinal and colonic tissues at week 6 were observed under transmission electron microscope. The colonic proteomic changes in model mice were examined by two-dimension polyacrylamide gel electrophoresis with immobilized pH gradient isoelectric focusing to screen the differentially expressed proteins, and their molecular masses and isoelectric points were determined. Two N-terminal sequences of the samples were also determined by mass spectrometry. RESULTS: SE (0.3 g) caused diarrhea after gastric administration in 1-6 h and enhanced gastrointestinal propellant (65.1% ± 7.5%; 45.8% ± 14.6%,P < 0.01) in mice, but intramuscular and hypodermic injection had no cathartic effect. X-ray analysis of gastrointestinal motility demonstrated that gastric administration of SE enhanced gastric evacuation and gastrointestinal transferring function. At 3 h and week 3 and 4 after gastric administration of SE, light microscopic examination revealed no apparent change in gastrointestinal mucosal tissues, but transmission electron microscopic examination revealed inflammatory changes in whole layer of intestinal and colonic wall. Twenty differential proteins were detected in the colonic tissues of the model mice by two-dimensional electrophoresis, and the N-terminal amino acid sequences of two proteins were determined. CONCLUSION: SE causes diarrhea and enhances gastrointestinal motility through digestive tract administration. Long-term gastric administration of SE induces inflammatory changes and cell damage in the whole gastrointestinal tract. The differential proteins screened from the colonic tissues of the model mice might mediate the enhancing effect of SE on gastrointestinal motility. PMID:11833095

  6. Squamous cell carcinoma of the breast as a clinical diagnostic challenge

    PubMed Central

    Jakubowska, Katarzyna; Kańczuga-Koda, Luiza; Kisielewski, Wojciech; Koda, Mariusz; Famulski, Waldemar

    2018-01-01

    Squamous cell carcinoma (SqCC) of the breast should be differentiated between the primary skin keratinizing squamous carcinoma and squamous metaplastic cancer. In the current study, the cases of two patients who were diagnosed with SqCC originated from skin and the breast were discussed. A fine-needle aspiration biopsy confirmed the presence of atypical squamous cells. In both cases, the microscopic examination of the surgical specimen revealed a malignant neoplasm differentiated into SqCC characterized by keratinizing cancer cells with abundant eosiphilic cytoplasm with large, hyperchromatic vesicular nuclei. Immunohistochemical studies showed negative for progesterone and estrogen receptors and human epidermal growth factor receptor 2. Moreover, negative expression of cytokeratin 7 and 20 was confirmed. The diagnosis of the both tumors was established based on the detailed analysis of clinical, macroscopical and microscopical information. SqCC localized in the breast is a great diagnostic challenge in pathomorphology and more attention should be paid for analysis of such lesions in daily practice. PMID:29556390

  7. Microscopic quantification of bacterial invasion by a novel antibody-independent staining method.

    PubMed

    Agerer, Franziska; Waeckerle, Stephanie; Hauck, Christof R

    2004-10-01

    Microscopic discrimination between extracellular and invasive, intracellular bacteria is a valuable technique in microbiology and immunology. We describe a novel fluorescence staining protocol, called FITC-biotin-avidin (FBA) staining, which allows the differentiation between extracellular and intracellular bacteria and is independent of specific antibodies directed against the microorganisms. FBA staining of eukaryotic cells infected with Gram-negative bacteria of the genus Neisseria or the Gram-positive pathogen Staphylococcus aureus are employed to validate the novel technique. The quantitative evaluation of intracellular pathogens by the FBA staining protocol yields identical results compared to parallel samples stained with conventional, antibody-dependent methods. FBA staining eliminates the need for cell permeabilization resulting in robust and rapid detection of invasive microbes. Taken together, FBA staining provides a reliable and convenient alternative for the differential detection of intracellular and extracellular bacteria and should be a valuable technical tool for the quantitative analysis of the invasive properties of pathogenic bacteria and other microorganisms.

  8. Improving confocal microscopy with solid-state semiconductor excitation sources

    NASA Astrophysics Data System (ADS)

    Sivers, Nelson L.

    To efficiently excite the fluorescent dyes used in imaging biological samples with a confocal microscope, the wavelengths of the exciting laser must be near the fluorochrome absorption peak. However, this causes imaging problems when the fluorochrome absorption and emission spectra overlap significantly, i.e. have small Stokes shifts, which is the case for most fluorochromes that emit in the red to infrared. As a result, the reflected laser excitation cannot be distinguished from the information-containing fluorescence signal. However, cryogenically cooling the exciting laser diode enabled the laser emission wavelengths to be tuned to shorter wavelengths, decreasing the interference between the laser and the fluorochrome's fluorescence. This reduced the amount of reflected laser light in the confocal image. However, the cooled laser diode's shorter wavelength signal resulted in slightly less efficient fluorochrome excitation. Spectrophotometric analysis showed that as the laser diodes were cooled, their output power increased, which more than compensated for the lower fluorochrome excitation and resulted in significantly more intense fluorescence. Thus, by tuning the laser diode emission wavelengths away from the fluorescence signal, less reflected laser light and more fluorescence information reached the detector, creating images with better signal to noise ratios. Additionally, new, high, luminous flux, light-emitting diodes (LEDs) are now powerful enough to create confocal fluorescence signals comparable to those produced by the traditional laser excitation sources in fluorescence confocal microscopes. The broader LED spectral response effectively excited the fluorochrome, yet was spectrally limited enough for standard filter sets to separate the LED excitation from the fluorochrome fluorescence signal. Spectrophotometric analysis of the excitation and fluorescence spectra of several fluorochromes showed that high-powered, LED-induced fluorescence contained the same spectral information and could be more intense than that produced by lasers. An alternative, LED-based, confocal microscope is proposed in this thesis that would be capable of exciting multiple fluorochromes in a single specimen, producing images of several distinct cellular components simultaneously. The inexpensive, LED-based, confocal microscope would require lower peak excitation intensities to produce fluorescence signals equal to those produced by laser excitation, reducing cellular damage and slowing fluorochrome photobleaching.

  9. Silvical characteristics of white ash (Fraxinus americana)

    Treesearch

    Jonathan W. Wright

    1959-01-01

    White ash (Fraxinus americana L.) derives its common name from the white under-surface of the leaf; the white effect is created by microscopic papillae with a high light-reflecting capacity. The specific name americana was given to the species because of its range in America.

  10. Stress Measurement by Geometrical Optics

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Rossnagel, S. M.

    1986-01-01

    Fast, simple technique measures stresses in thin films. Sample disk bowed by stress into approximately spherical shape. Reflected image of disk magnified by amount related to curvature and, therefore, stress. Method requires sample substrate, such as cheap microscope cover slide, two mirrors, laser light beam, and screen.

  11. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black

    NASA Astrophysics Data System (ADS)

    Liu, Lidong; Duan, Yuping; Ma, Lixin; Liu, Shunhua; Yu, Zhen

    2010-11-01

    To prevent serious electromagnetic interference, a single-layer wave-absorbing coating employing complex absorbents composed of carbonyl-iron powder (CIP) and carbon black (CB) with epoxy resin as matrix was prepared. The morphologies of CIP and CB were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. The electromagnetic parameters of CIP and CB were measured in the frequency range of 2-18 GHz by transmission/reflection technology, and the electromagnetic loss mechanisms of the two particles were discussed, respectively. The microwave absorption properties of the coatings were investigated by measuring reflection loss (RL) using arch method. The effects of CIP ratio, CB content and thickness on the microwave absorption properties were discussed, respectively. The results showed that the higher thickness, CIP or CB content could make the absorption band shift towards the lower frequency range. Significantly, the wave-absorbing coating could be applied in different frequency ranges according to actual demand by controlling the content of CIP or CB in composites.

  12. Optical anisotropy and domain structure of multiferroic Ni-Mn-Ga and Co-Ni-Ga Heusler-type alloys

    NASA Astrophysics Data System (ADS)

    Ivanova, A. I.; Gasanov, O. V.; Kaplunova, E. I.; Kalimullina, E. T.; Zalyotov, A. B.; Grechishkin, R. M.

    2015-03-01

    A study is made of the reflectance anisotropy of martensitic and magnetic domains in ferromagnetic shape memory alloys (FSMA) Ni-Mn-Ga and Co-Ni-Ga. The reflectance of metallographic sections of these alloys was measured in the visible with the aid of standard inverted polarized light microscope with a 360° rotatable specimen stage. Calculations are presented for the estimation of image contrast values between neighboring martensite twins. Qualitative and quantitative observations and angular measurements in reflected polarized light proved to be useful for the analysis of specific features of the martensite microstructure of multiferroic materials.

  13. A mirror for lab-based quasi-monochromatic parallel x-rays

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu

    2014-09-01

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  14. Zn1-xCdxSe/ZnSe multiple quantum well photomodulators

    NASA Astrophysics Data System (ADS)

    Tang, Jiuyao; Kawakami, Yoichi; Fujita, Shizuo; Fujita, Shigeo

    1996-10-01

    ZnCdSe/ZnSe multiple quantum well (MQW) transmission and reflection photomodulators operating at room temperature were fabricated employing quantum-confined Stark effect on the exciton absorption. Samples were grown on p-type GaAs substrates by MBE with an i-Zn0.87Cd0.13Se/ZnSe MQW heterostructure sandwiched by a ZnSe p-n junction. The transmission modulator was constructed with a Zn0.87Cd0.13Se/ZnSe MQW glued onto a piece of ITO film-covered glass with silver paste and epoxy. To avoid absorption in GaAs substrates, a window with a diameter of about 2 mm was opened using a selective etch. For the reflective use an Al mirror was deposited on the glass back surface, the device then operates in reflection with the light to be modulated making a double pass through the active quantum well region, thereby increasing the modulation amplitude. Measurement results are given in this paper for transmission, reflection, differential transmission, differential absorption, and differential reflection as a function of the incident photon wavelength and the applied field.

  15. Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, Cheng; Hoover, Richard B.

    1994-01-01

    This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.

  16. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers.

    PubMed

    Zhao, Shiye; Zhu, Lixin; Li, Daoji

    2016-04-15

    The level of contamination by microscopic anthropogenic litter (0.5-5mm) in terrestrial ecosystems is not well understood. After chemical digestion in 10% KOH, microscopic anthropogenic litter from the gastrointestinal tracts of 17 terrestrial birds was identified and categorized under a stereomicroscope based on its physical properties and melting tests. In total, 364 items from 16 birds were identified as microscopic anthropogenic litter, ranging in size from 0.5 to 8.5mm. No relationship between plastic load and body condition was found. Natural fibers, plastic fibers and fragmented plastics represented, respectively, 37.4% (136 items), 54.9% (200 items) and 7.7% (28 items) of total litter items. Small sample sizes limited our ability to draw strong conclusions about the metabolism of natural fibers, but the decline in the proportion of natural fibers from the esophagus to stomach to intestine suggested that they may be digestible. Particles smaller than 5mm represented more than 90% of the total number of pollutant items. Particles with colors in the mid-tones and fibrous shapes were overwhelmingly common particles. The results reflect pollution by microscopic anthropogenic litter in the terrestrial ecosystem of the study area. Microscopic natural fibers, which may disperse and adsorb chemical pollutants differently from microplastic and may pose an even greater risk, are in urgent need of further research. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Video-mosaicking of in vivo reflectance confocal microscopy images for noninvasive examination of skin lesion (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kose, Kivanc; Gou, Mengran; Yelamos, Oriol; Cordova, Miguel A.; Rossi, Anthony; Nehal, Kishwer S.; Camps, Octavia I.; Dy, Jennifer G.; Brooks, Dana H.; Rajadhyaksha, Milind

    2017-02-01

    In this report we describe a computer vision based pipeline to convert in-vivo reflectance confocal microscopy (RCM) videos collected with a handheld system into large field of view (FOV) mosaics. For many applications such as imaging of hard to access lesions, intraoperative assessment of MOHS margins, or delineation of lesion margins beyond clinical borders, raster scan based mosaicing techniques have clinically significant limitations. In such cases, clinicians often capture RCM videos by freely moving a handheld microscope over the area of interest, but the resulting videos lose large-scale spatial relationships. Videomosaicking is a standard computational imaging technique to register, and stitch together consecutive frames of videos into large FOV high resolution mosaics. However, mosaicing RCM videos collected in-vivo has unique challenges: (i) tissue may deform or warp due to physical contact with the microscope objective lens, (ii) discontinuities or "jumps" between consecutive images and motion blur artifacts may occur, due to manual operation of the microscope, and (iii) optical sectioning and resolution may vary between consecutive images due to scattering and aberrations induced by changes in imaging depth and tissue morphology. We addressed these challenges by adapting or developing new algorithmic methods for videomosaicking, specifically by modeling non-rigid deformations, followed by automatically detecting discontinuities (cut locations) and, finally, applying a data-driven image stitching approach that fully preserves resolution and tissue morphologic detail without imposing arbitrary pre-defined boundaries. We will present example mosaics obtained by clinical imaging of both melanoma and non-melanoma skin cancers. The ability to combine freehand mosaicing for handheld microscopes with preserved cellular resolution will have high impact application in diverse clinical settings, including low-resource healthcare systems.

  18. Quantitative orientation-independent differential interference contrast (DIC) microscopy

    NASA Astrophysics Data System (ADS)

    Shribak, Michael; LaFountain, James; Biggs, David; Inoué, Shinya

    2007-02-01

    We describe a new DIC technique, which records phase gradients within microscopic specimens independently of their orientation. The proposed system allows the generation of images representing the distribution of dry mass (optical path difference) in the specimen. Unlike in other forms of interference microscopes, this approach does not require a narrow illuminating cone. The orientation-independent differential interference contrast (OI-DIC) system can also be combined with orientation-independent polarization (OI-Pol) measurements to yield two complementary images: one showing dry mass distribution (which is proportional to refractive index) and the other showing distribution of birefringence (due to structural or internal anisotropy). With a model specimen used for this work -- living spermatocytes from the crane fly, Nephrotoma suturalis --- the OI-DIC image clearly reveals the detailed shape of the chromosomes while the polarization image quantitatively depicts the distribution of the birefringent microtubules in the spindle, both without any need for staining or other modifications of the cell. We present examples of a pseudo-color combined image incorporating both orientation-independent DIC and polarization images of a spermatocyte at diakinesis and metaphase of meiosis I. Those images provide clear evidence that the proposed technique can reveal fine architecture and molecular organization in live cells without perturbation associated with staining or fluorescent labeling. The phase image was obtained using optics having a numerical aperture 1.4, thus achieving a level of resolution never before achieved with any interference microscope.

  19. Non-invasive Differentiation of Kidney Stone Types using X-ray Dark-Field Radiography

    PubMed Central

    Scherer, Kai; Braig, Eva; Willer, Konstantin; Willner, Marian; Fingerle, Alexander A.; Chabior, Michael; Herzen, Julia; Eiber, Matthias; Haller, Bernhard; Straub, Michael; Schneider, Heike; Rummeny, Ernst J.; Noël, Peter B.; Pfeiffer, Franz

    2015-01-01

    Treatment of renal calculi is highly dependent on the chemical composition of the stone in question, which is difficult to determine using standard imaging techniques. The objective of this study is to evaluate the potential of scatter-sensitive X-ray dark-field radiography to differentiate between the most common types of kidney stones in clinical practice. Here, we examine the absorption-to-scattering ratio of 118 extracted kidney stones with a laboratory Talbot-Lau Interferometer. Depending on their chemical composition, microscopic growth structure and morphology the various types of kidney stones show strongly varying, partially opposite contrasts in absorption and dark-field imaging. By assessing the microscopic calculi morphology with high resolution micro-computed tomography measurements, we illustrate the dependence of dark-field signal strength on the respective stone type. Finally, we utilize X-ray dark-field radiography as a non-invasive, highly sensitive (100%) and specific (97%) tool for the differentiation of calcium oxalate, uric acid and mixed types of stones, while additionally improving the detectability of radio-lucent calculi. We prove clinical feasibility of the here proposed method by accurately classifying renal stones, embedded within a fresh pig kidney, using dose-compatible measurements and a quick and simple visual inspection. PMID:25873414

  20. "Missing perikymata"--fact or fiction? A study on chimpanzee (Pan troglodytes verus) canines.

    PubMed

    Kierdorf, Horst; Witzel, Carsten; Kierdorf, Uwe; Skinner, Matthew M; Skinner, Mark F

    2015-06-01

    Recently, a lower than expected number of perikymata between repetitive furrow-type hypoplastic defects has been reported in chimpanzee canines from the Fongoli site, Senegal (Skinner and Pruetz: Am J Phys Anthropol 149 (2012) 468-482). Based on an observation in a localized enamel fracture surface of a canine of a chimpanzee from the Taï Forest (Ivory Coast), these authors inferred that a nonemergence of striae of Retzius could be the cause for the "missing perikymata" phenomenon in the Fongoli chimpanzees. To check this inference, we analyzed the structure of outer enamel in three chimpanzee canines. The teeth were studied using light-microscopic and scanning-electron microscopic techniques. Our analysis of the specimen upon which Skinner and Pruetz (Am J Phys Anthropol 149 (2012) 468-482) had made their original observation does not support their hypothesis. We demonstrate that the enamel morphology described by them is not caused by a nonemergence of striae of Retzius but can be attributed to structural variations in outer enamel that result in a differential fracture behavior. Although rejecting the presumed existence of nonemergent striae of Retzius, our study provided evidence that, in furrow-type hypoplastic defects, a pronounced tapering of Retzius increments can occur, with the striae of Retzius forming acute angles with the outer enamel surface. We suggest that in such cases the outcrop of some striae of Retzius is essentially unobservable at the enamel surface, causing too low perikymata counts. The pronounced tapering of Retzius increments in outer enamel presumably reflects a mild to moderate disturbance of the function of late secretory ameloblasts. © 2015 Wiley Periodicals, Inc.

  1. Polarized Light Microscopy in Reproductive and Developmental Biology

    PubMed Central

    KOIKE-TANI, MAKI; TANI, TOMOMI; MEHTA, SHALIN B.; VERMA, AMITABH; OLDENBOURG, RUDOLF

    2016-01-01

    SUMMARY The polarized light microscope reveals orientational order in native molecular structures inside living cells, tissues, and whole organisms. It is a powerful tool used to monitor and analyze the early developmental stages of organisms that lend themselves to microscopic observations. In this article, we briefly discuss the components specific to a traditional polarizing microscope and some historically important observations on: chromosome packing in the sperm head, the first zygote division of the sea urchin, and differentiation initiated by the first asymmetric cell division in the sand dollar. We then introduce the LC-PolScope and describe its use for measuring birefringence and polarized fluorescence in living cells and tissues. Applications range from the enucleation of mouse oocytes to analyzing the polarized fluorescence of the water strider acrosome. We end with new results on the birefringence of the developing chick brain, which we analyzed between developmental stages of days 12–20. PMID:23901032

  2. Isotope analysis in the transmission electron microscope.

    PubMed

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-10-10

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  3. High-resolution resonant and nonresonant fiber-scanning confocal microscope.

    PubMed

    Hendriks, Benno H W; Bierhoff, Walter C J; Horikx, Jeroen J L; Desjardins, Adrien E; Hezemans, Cees A; 't Hooft, Gert W; Lucassen, Gerald W; Mihajlovic, Nenad

    2011-02-01

    We present a novel, hand-held microscope probe for acquiring confocal images of biological tissue. This probe generates images by scanning a fiber-lens combination with a miniature electromagnetic actuator, which allows it to be operated in resonant and nonresonant scanning modes. In the resonant scanning mode, a circular field of view with a diameter of 190 μm and an angular frequency of 127 Hz can be achieved. In the nonresonant scanning mode, a maximum field of view with a width of 69 μm can be achieved. The measured transverse and axial resolutions are 0.60 and 7.4 μm, respectively. Images of biological tissue acquired in the resonant mode are presented, which demonstrate its potential for real-time tissue differentiation. With an outer diameter of 3 mm, the microscope probe could be utilized to visualize cellular microstructures in vivo across a broad range of minimally-invasive procedures.

  4. Growth Angle: A Microscopic View

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Croll, Arne; Volz, Martin P.

    2017-01-01

    A microscopic continuum mechanical model of the growth angle is proposed. It is based on the van der Waals type framework that is used for surface force phenomena. The obtained augmented Laplace type integro-differential equations are, in general, difficult to analyze. Here we focused primarily on the particular case of equal melt and crystal surface energies. We derived an approximate equation for the meniscus shape, and obtained an analytical relationship between the contact and the growth angle. Interestingly, the same result can be obtained using the macroscopic model of Herring. The case of a macroscopically sharp corner is also considered. For this case, the macroscopic angle is not defined and it can be any angle between the contact angles of both flat surfaces. The microscopic model yields the smooth shape for the meniscus that also is not unique, but depends on the initial position of the meniscus.

  5. An orientation-independent DIC microscope allows high resolution imaging of epithelial cell migration and wound healing in a Cnidarian model

    PubMed Central

    Malamy, Jocelyn; Shribak, Michael

    2017-01-01

    Epithelial cell dynamics can be difficult to study in intact animals or tissues. Here we use the medusa form of the hydrozoan Clytia hemisphaerica, which is covered with a monolayer of epithelial cells, to test the efficacy of an orientation-independent differential interference contrast (OI-DIC) microscope for in vivo imaging of wound healing. OI-DIC provides an unprecedented resolution phase image of epithelial cells closing a wound in a live, non-transgenic animal model. In particular, the OI-DIC microscope equipped with a 40×/0.75NA objective lens and using the illumination light with wavelength 546 nm demonstrated a resolution of 460 nm. The repair of individual cells, the adhesion of cells to close a gap, and the concomitant contraction of these cells during closure is clearly visualized. PMID:29345317

  6. Mechanical characterization at material interfaces through dark field Brillouin microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fiore, Antonio; Scarcelli, Giuliano

    2017-02-01

    Brillouin microscopy allows high-resolution mapping of the mechanical properties of a sample by measuring the spectra of acoustically induced light scattering therein, and thus has been widely investigated for biomedical application. Measuring the Brillouin spectral shift is challenging when the light is focused onto the interfaces between two materials of different refractive index, because a sizeable portion of the incident light is Fresnel-reflected into the Brillouin spectrometer. To address this need, here, we designed a Brillouin confocal microscope in which the specular reflection at the interface between two materials is physically rejected without significant loss to the Brillouin signal. To achieve this goal, we illuminate the sample with a small-diameter Gaussian beam focused by a high numerical aperture objective lens. In the collection path, the beam reflected from the sample has the same diameter as the incident beam, while the scattered light beam is as large as the clear aperture of the microscope objective. Therefore, using a small blocking filter allows to efficiently reject the reflected light. We calculated the tradeoff between extinction improvement and signal loss when the diameter of the blocking filter is changed. Experimentally, we demonstrated extinction improvement of over 60dB with only 30% signal loss while achieving submicron resolutions. This innovation can be useful for in vivo measurements of the cornea to avoid artifacts in the epithelium and anterior portions of the stroma, as well as to investigate cells cultured on glass coverslips without necessity of index-matching materials.

  7. Analysis of thin-film polymers using attenuated total internal reflection-Raman microspectroscopy.

    PubMed

    Tran, Willie; Tisinger, Louis G; Lavalle, Luis E; Sommer, André J

    2015-01-01

    Two methods commonly employed for molecular surface analysis and thin-film analysis of microscopic areas are attenuated total reflection infrared (ATR-IR) microspectroscopy and confocal Raman microspectroscopy. In the former method, the depth of the evanescent probe beam can be controlled by the wavelength of light, the angle of incidence, or the refractive index of the internal reflection element. Because the penetration depth is proportional to the wavelength of light, one could interrogate a smaller film thickness by moving from the mid-infrared region to the visible region employing Raman spectroscopy. The investigation of ATR Raman microspectroscopy, a largely unexplored technique available to Raman microspectroscopy, was carried out. A Renishaw inVia Raman microscope was externally modified and used in conjunction with a solid immersion lens (SIL) to perform ATR Raman experiments. Thin-film polymer samples were analyzed to explore the theoretical sampling depth for experiments conducted without the SIL, with the SIL, and with the SIL using evanescent excitation. The feasibility of micro-ATR Raman was examined by collecting ATR spectra from films whose thickness measured from 200 to 60 nm. Films of these thicknesses were present on a much thicker substrate, and features from the underlying substrate did not become visible until the thin film reached a thickness of 68 nm.

  8. NiCrNx interlayer thickness dependence of spectral performance and environmental durability of protected-silver mirrors

    NASA Astrophysics Data System (ADS)

    Xu, Xu; Li, Bincheng; He, Wenyan; Wang, Changjun; Wei, Ming

    2018-04-01

    Gemini-style protected-silver mirror (Sub / NiCrNx / Ag / NiCrNx / SiNx / Air) is a suitable choice for optical instruments requiring both long-term environmental durability and high broadband reflectance. Three Gemini-style protected-silver mirrors with NiCrNx interlayer thicknesses between 0.1 and 0.6 nm were prepared by magnetron sputtering, and the dependences of spectral properties and environmental durability of these protected-silver mirrors on the thickness of NiCrNx interlayer between the silver layer and SiNx layer were investigated in-depth. The reflectance, transmittance and total scattering loss measurements, optical microscope, and scanning electron microscope imaging were employed to characterize the spectral properties and surface morphology, and accelerated environmental tests, including humidity test and salt fog test, were applied to investigate the environmental durability. The experimental results showed that both optical and corrosion-resistant properties of protected-silver mirrors were NiCrNx interlayer thickness dependent, and an optimum NiCrNx interlayer thickness should be ˜0.3 nm for Gemini-style protected-silver mirrors to have reasonably both high reflectance in a broadband spectral range from visible to far infrared and good corrosion resistance for long-lifetime applications in harsh environments.

  9. Wing Scale Orientation Alters Reflection Directions in the Green Hairstreak Chrysozephyrus smaragdinus (Lycaenidae; Lepidoptera).

    PubMed

    Imafuku, Michio; Ogihara, Naomichi

    2016-12-01

    There have been only a few reports on the directional reflection of light by butterfly wings. Here, we systematically investigated this phenomenon in a lycaenid butterfly, Chrysozephyrus smaragdinus,in which males have bright green wings based on structural coloration. We used a device that measures intensities of light in hemispherical space by vertical shifting of a sensor and horizontal rotation of the stage carrying the wing, which is illuminated from the top, to determine the direction of light reflected by the fore- and hindwings. The orientation and curvature of wing scales were also examined microscopically. The forewing of this species reflected light shone from the top largely forward, whereas the hindwing reflected it slightly forward. This difference was attributed to the tilt angles of the wing scales. Light reflection by the forewing was relatively weak, and widely scattered, whereas that by the hindwing was rather concentrated, resulting in higher reflectance. This difference was attributed to difference in the curvature of the wing scales on the two wings.

  10. Standoff detection of explosives: a challenging approach for optical technologies

    NASA Astrophysics Data System (ADS)

    Désilets, S.; Hô, N.; Mathieu, P.; Simard, J. R.; Puckrin, E.; Thériault, J. M.; Lavoie, H.; Théberge, F.; Babin, F.; Gay, D.; Forest, R.; Maheux, J.; Roy, G.; Châteauneuf, M.

    2011-06-01

    Standoff detection of explosives residues on surfaces at few meters was made using optical technologies based on Raman scattering, Laser-Induced Breakdown Spectroscopy (LIBS) and passive standoff FTIR radiometry. By comparison, detection and analysis of nanogram samples of different explosives was made with a microscope system where Raman scattering from a micron-size single point illuminated crystal of explosive was observed. Results from standoff detection experiments using a telescope were compared to experiments using a microscope to find out important parameters leading to the detection. While detection and spectral identification of the micron-size explosive particles was possible with a microscope, standoff detection of these particles was very challenging due to undesired light reflected and produced by the background surface or light coming from other contaminants. Results illustrated the challenging approach of detecting at a standoff distance the presence of low amount of micron or submicron explosive particles.

  11. Label-Free, High Resolution, Multi-Modal Light Microscopy for Discrimination of Live Stem Cell Differentiation Status.

    PubMed

    Zhang, Jing; Moradi, Emilia; Somekh, Michael G; Mather, Melissa L

    2018-01-15

    A label-free microscopy method for assessing the differentiation status of stem cells is presented with potential application for characterization of therapeutic stem cell populations. The microscopy system is capable of characterizing live cells based on the use of evanescent wave microscopy and quantitative phase contrast (QPC) microscopy. The capability of the microscopy system is demonstrated by studying the differentiation of live immortalised neonatal mouse neural stem cells over a 15 day time course. Metrics extracted from microscope images are assessed and images compared with results from endpoint immuno-staining studies to illustrate the system's performance. Results demonstrate the potential of the microscopy system as a valuable tool for cell biologists to readily identify the differentiation status of unlabelled live cells.

  12. Imaging pigment chemistry in melanocytic conjunctival lesions with pump-probe microscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Vajzovic, Lejla; Robles, Francisco E.; Cummings, Thomas J.; Mruthyunjaya, Prithvi; Warren, Warren S.

    2013-03-01

    We extend nonlinear pump-probe microscopy, recently demonstrated to image the microscopic distribution of eumelanin and pheomelanin in unstained skin biopsy sections, to the case of melanocytic conjunctival lesions. The microscopic distribution of pigmentation chemistry serves as a functional indicator of melanocyte activity. In these conjunctival specimens (benign nevi, primary acquired melanoses, and conjunctival melanoma), we have observed pump-probe spectroscopic signatures of eumelanin, pheomelanin, hemoglobin, and surgical ink, in addition to important structural features that differentiate benign from malignant lesions. We will also discuss prospects for an in vivo `optical biopsy' to provide additional information before having to perform invasive procedures.

  13. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    PubMed

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  14. Using Color and Grayscale Images to Teach Histology to Color-Deficient Medical Students

    ERIC Educational Resources Information Center

    Rubin, Lindsay R.; Lackey, Wendy L.; Kennedy, Frances A.; Stephenson, Robert B.

    2009-01-01

    Examination of histologic and histopathologic microscopic sections relies upon differential colors provided by staining techniques, such as hematoxylin and eosin, to delineate normal tissue components and to identify pathologic alterations in these components. Given the prevalence of color deficiency (commonly called "color blindness")…

  15. Mapping flexible protein domains at subnanometer resolution with the atomic force microscope.

    PubMed

    Müller, D J; Fotiadis, D; Engel, A

    1998-06-23

    The mapping of flexible protein domains with the atomic force microscope is reviewed. Examples discussed are the bacteriorhodopsin from Halobacterium salinarum, the head-tail-connector from phage phi29, and the hexagonally packed intermediate layer from Deinococcus radiodurans which all were recorded in physiological buffer solution. All three proteins undergo reversible structural changes that are reflected in standard deviation maps calculated from aligned topographs of individual protein complexes. Depending on the lateral resolution (up to 0.8 nm) flexible surface regions can ultimately be correlated with individual polypeptide loops. In addition, multivariate statistical classification revealed the major conformations of the protein surface.

  16. Microscopic video observation of capillary vessel systems using diffuse back lighting

    NASA Astrophysics Data System (ADS)

    Sakai, Minako; Arai, Hiroki; Iwai, Toshiaki

    2017-04-01

    We have been developing a simple and practical video microscopy system based on absorption spectra of biological substance to perform spectroscopic observation of living tissues. The diffuse backlighting effect is actively used in the developed system, which is generated by multiple light scattering in the tissue. It is demonstrated that the light specularly reflected from the skin surface can be completely suppressed in the microscopic observation and the biological activity of the capillary vessel systems distributed under the skin can be successfully observed. As a result, we can confirm the effectiveness of the video microscopy system using diffuse backlighting and the applicability of our developed system.

  17. Fiber optic light collection system for scanning-tunneling-microscope-induced light emission.

    PubMed

    Watkins, Neil J; Long, James P; Kafafi, Zakya H; Mäkinen, Antti J

    2007-05-01

    We report a compact light collection scheme suitable for retrofitting a scanning tunneling microscope (STM) for STM-induced light emission experiments. The approach uses a pair of optical fibers with large core diameters and high numerical apertures to maximize light collection efficiency and to moderate the mechanical precision required for alignment. Bench tests indicate that efficiency reduction is almost entirely due to reflective losses at the fiber ends, while losses due to fiber misalignment have virtually been eliminated. Photon-map imaging with nanometer features is demonstrated on a stepped Au(111) surface with signal rates exceeding 10(4) counts/s.

  18. Use of digital micromirror devices as dynamic pinhole arrays for adaptive confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, Paolo; Wilding, Dean; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel

    2018-02-01

    In this work, we present a new confocal laser scanning microscope capable to perform sensorless wavefront optimization in real time. The device is a parallelized laser scanning microscope in which the excitation light is structured in a lattice of spots by a spatial light modulator, while a deformable mirror provides aberration correction and scanning. A binary DMD is positioned in an image plane of the detection optical path, acting as a dynamic array of reflective confocal pinholes, images by a high performance cmos camera. A second camera detects images of the light rejected by the pinholes for sensorless aberration correction.

  19. Label-free hyperspectral dark-field microscopy for quantitative scatter imaging

    NASA Astrophysics Data System (ADS)

    Cheney, Philip; McClatchy, David; Kanick, Stephen; Lemaillet, Paul; Allen, David; Samarov, Daniel; Pogue, Brian; Hwang, Jeeseong

    2017-03-01

    A hyperspectral dark-field microscope has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy is demonstrated with a uniform scattering phantom, namely a solution of polystyrene microspheres. A Monte Carlo-based inverse model was used to calculate the reduced scattering coefficients of samples of different microsphere concentrations from wavelength-dependent backscattered signal measured by the dark-field microscope. The results are compared to the measurement results from a NIST double-integrating sphere system for validation. Ongoing efforts involve quantitative mapping of scattering and absorption coefficients in samples with spatially heterogeneous optical properties.

  20. Characterisation of a resolution enhancing image inversion interferometer.

    PubMed

    Wicker, Kai; Sindbert, Simon; Heintzmann, Rainer

    2009-08-31

    Image inversion interferometers have the potential to significantly enhance the lateral resolution and light efficiency of scanning fluorescence microscopes. Self-interference of a point source's coherent point spread function with its inverted copy leads to a reduction in the integrated signal for off-axis sources compared to sources on the inversion axis. This can be used to enhance the resolution in a confocal laser scanning microscope. We present a simple image inversion interferometer relying solely on reflections off planar surfaces. Measurements of the detection point spread function for several types of light sources confirm the predicted performance and suggest its usability for scanning confocal fluorescence microscopy.

  1. Response of spectral reflectances and vegetation indices on varying Juniper cone densities

    USDA-ARS?s Scientific Manuscript database

    Juniper trees are widely distributed throughout the world and are common sources of allergies when microscopic pollen grains are transported by wind and inhaled. In this study, we investigated the spectral influences of pollen discharging male juniper cones within a juniper canopy. This was done thr...

  2. Deciphering the Origin of Plume-Textured Geodes.

    ERIC Educational Resources Information Center

    Garlick, George Donald; Jones, Francis Tucker

    1990-01-01

    Presented is an interpretation of the inward and outward growth and formation of plume textured geodes available from southern Brazil. Field occurrence, morphology of vesicles, growth history, closure of the agate shell, microscopic features, coherent reflection of light from convoluted surfaces, and accessory minerals of the inner cavity are…

  3. Quantitative evaluation method for differentiation of C2C12 myoblasts by ultrasonic microscopy

    NASA Astrophysics Data System (ADS)

    Takanashi, Kyoichi; Washiya, Mamoru; Ota, Kazuki; Yoshida, Sachiko; Hozumi, Naohiro; Kobayashi, Kazuto

    2017-07-01

    Cell differentiation was evaluated by ultrasonic microscopy. However, there were some regions that showed a lower acoustic impedance than the culture liquid. It was considered that, in such regions, the cells were not perfectly in contact with the film substrate. Hence, a waveform analysis was performed, and compensated acoustic impedances in such regions were in a reasonable range of values. By the same analysis, the displacements of partially floated cells were also successfully calculated. The elapsed day transitions of the compensated acoustic impedances and displacements were successfully evaluated. In the process of differentiation, actin fibers comprising the cytoskeleton are supposed to loosen in order to induce cellular fusion. In addition, the progress in cell differentiation accompanied by a change into a three-dimensional structure can partially be assessed by the displacement between a cell and a cultured film. Hence, we believe that cell differentiation can be evaluated using an ultrasonic microscope.

  4. Chromatic X-ray magnifying method and apparatus by Bragg reflective planes on the surface of Abbe sphere

    DOEpatents

    Thoe, Robert S.

    1991-01-01

    Method and apparatus for producing sharp, chromatic, magnified images of X-ray emitting objects, are provided. The apparatus, which constitutes an X-ray microscope or telescope, comprises a connected collection of Bragg reflecting planes, comprised of either a bent crystal or a synthetic multilayer structure, disposed on and adjacent to a locus determined by a spherical surface. The individual Bragg planes are spatially oriented to Bragg reflect radiation from the object location toward the image location. This is accomplished by making the Bragg planes spatially coincident with the surfaces of either a nested series of prolate ellipsoids of revolution, or a nested series of spheres. The spacing between the Bragg reflecting planes can be tailored to control the wavelengths and the amount of the X-radiation that is Bragg reflected to form the X-ray image.

  5. An automatic detection software for differential reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Yuksel, Seniha Esen; Dubroca, Thierry; Hummel, Rolf E.; Gader, Paul D.

    2012-06-01

    Recent terrorist attacks have sprung a need for a large scale explosive detector. Our group has developed differential reflection spectroscopy which can detect explosive residue on surfaces such as parcel, cargo and luggage. In short, broad band ultra-violet and visible light is shone onto a material (such as a parcel) moving on a conveyor belt. Upon reflection off the surface, the light intensity is recorded with a spectrograph (spectrometer in combination with a CCD camera). This reflected light intensity is then subtracted and normalized with the next data point collected, resulting in differential reflection spectra in the 200-500 nm range. Explosives show spectral finger-prints at specific wavelengths, for example, the spectrum of 2,4,6, trinitrotoluene (TNT) shows an absorption edge at 420 nm. Additionally, we have developed an automated software which detects the characteristic features of explosives. One of the biggest challenges for the algorithm is to reach a practical limit of detection. In this study, we introduce our automatic detection software which is a combination of principal component analysis and support vector machines. Finally we present the sensitivity and selectivity response of our algorithm as a function of the amount of explosive detected on a given surface.

  6. Dielectric multilayer beam splitter with differential phase shift on transmission and reflection for division-of-amplitude photopolarimeter.

    PubMed

    Yuan, Wenjia; Shen, Weidong; Zhang, Yueguang; Liu, Xu

    2014-05-05

    Dielectric multilayer beam splitter with differential phase shift on transmission and reflection for division-of-amplitude photopolarimeter (DOAP) was presented for the first time to our knowledge. The optimal parameters for the beam splitter are Tp = 78.9%, Ts = 21.1% and Δr - Δt = π/2 at 532nm at an angle of incidence of 45°. Multilayer anti-reflection coating with low phase shift was applied to reduce the backside reflection. Different design strategies that can achieve all optimal targets at the wavelength were tested. Two design methods were presented to optimize the differential phase shift. The samples were prepared by ion beam sputtering (IBS). The experimental results show good agreement with those of the design. The ellipsometric parameters of samples were measured in reflection (ψr, Δr) = (26.5°, 135.1°) and (28.2°, 133.5°), as well as in transmission (ψt, Δt) = (62.5°, 46.1°) and (63.5°, 46°) at 532.6nm. The normalized determinant of instrument matrix to evaluate the performance of samples is respectively 0.998 and 0.991 at 532.6nm.

  7. The structural basis for enhanced silver reflectance in Koi fish scale and skin.

    PubMed

    Gur, Dvir; Leshem, Ben; Oron, Dan; Weiner, Steve; Addadi, Lia

    2014-12-10

    Fish have evolved biogenic multilayer reflectors composed of stacks of intracellular anhydrous guanine crystals separated by cytoplasm, to produce the silvery luster of their skin and scales. Here we compare two different variants of the Japanese Koi fish; one of them with enhanced reflectivity. Our aim is to determine how biology modulates reflectivity, and from this to obtain a mechanistic understanding of the structure and properties governing the intensity of silver reflectance. We measured the reflectance of individual scales with a custom-made microscope, and then for each individual scale we characterized the structure of the guanine crystal/cytoplasm layers using high-resolution cryo-SEM. The measured reflectance and the structural-geometrical parameters were used to calculate the reflectance of each scale, and the results were compared to the experimental measurements. We show that enhanced reflectivity is obtained with the same basic guanine crystal/cytoplasm stacks, but the structural arrangement between the stack, inside the stacks, and relative to the scale surface is varied when reflectivity is enhanced. Finally, we propose a model that incorporates the basic building block parameters, the crystal orientation inside the tissue, and the resulting reflectance and explains the mechanistic basis for reflectance enhancement.

  8. Reflectance confocal microscopy of oral epithelial tissue using an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Jabbour, Joey M.; Malik, Bilal H.; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A.; Cheng, Yi-Shing L.; Wright, John M.; Maitland, Kristen C.

    2014-02-01

    We present the use of a commercially available electrically tunable lens to achieve axial scanning in a reflectance confocal microscope. Over a 255 μm axial scan range, the lateral and axial resolutions varied from 1-2 μm and 4-14 μm, respectively, dependent on the variable focal length of the tunable lens. Confocal imaging was performed on normal human biopsies from the oral cavity ex vivo. Sub-cellular morphologic features were seen throughout the depth of the epithelium while axially scanning using the focus tunable lens.

  9. Salt-melt synthesis of B2O3, P2O5 and V2O5 modified high-alumina mullite nanocomposites with promising photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Kool, Arpan; Thakur, Pradip; Bagchi, Biswajoy; Hoque, Nur Amin; Banerjee, Somtirtha; Das, Sukhen

    2017-10-01

    High-alumina mullite (Al4.8Si1.2O9.6) nanowhiskers have been prepared by mechano-chemical activation of Al2(SO4)3-Na2SO4 molten salt mixture in the presence of B2O3, P2O5 and V2O5 as additives. Thermal evolution of the precursors has been studied by differential thermal analyzer and thermogravimetric analyzer (DTA-TG). The effect of additives on the phase formation and morphology of mullite is investigated using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FESEM). Mullite whiskers with submicron sized length and diameter in the nanoscale range were obtained after calcining at 1000 °C. These nanowhiskers decomposed when sintered at 1400 °C with consequent formation of dense alumina platelets. Owing to formation of defect related structures of mullite, UV photoluminescence peaks for mullite reflected at 285, 298, 310, 325, 347, 362 and 379 nm while visible photoluminescence peaks appeared at 407, 424, 436 and 460 nm.

  10. Review of Current Applications of Immunohistochemistry in Pediatric Nonneoplastic Gastrointestinal, Hepatobiliary, and Pancreatic Lesions

    PubMed Central

    de Nanassy, Joseph; El Demellawy, Dina

    2017-01-01

    Immunohistochemical (IHC) stains are widely used by pathologists for a variety of considerations in the diagnostic workup of pediatric nonneoplastic lesions in gastrointestinal (GI), hepatic, biliary, and pancreatic lesions. The pathologic changes cover a wide range and types of presentations, including inflammatory (bacterial and viral), metaplastic, posttransplant lymphoproliferative, autoimmune, metabolic, degenerative, developmental, and genetic conditions, among others. The everyday practical value of IHC stains covers primary identification, confirmation, differential, and/or exclusionary roles in the hands and eyes and minds of the practitioners. This article is intended to review and discuss the currently available IHC stains for a variety of pediatric GI, hepatobiliary, and pancreatic lesions as encountered in the day-to-day practice of pathologists and clinicians. It reflects the most recent methods and types of IHC stains with the stated aim of helping to provide a quick reference for diagnostic considerations and thereby facilitate the workup of a broad range of GI and related conditions in a pediatric population. The tables provide a handy reference on a wide range of IHC stains for commonly encountered lesions covering a variety of pediatric GI, hepatobiliary, and pancreatic conditions that are amenable to light microscopic diagnostic interpretation. PMID:28469406

  11. Electricity generating capacity and performance deterioration of a microbial fuel cell fed with beer brewery wastewater.

    PubMed

    Köroğlu, Emre Oğuz; Özkaya, Bestamin; Denktaş, Cenk; Çakmakci, Mehmet

    2014-12-01

    This study focused on using beer brewery wastewater (BBW) to evaluate membrane concentrate disposal and production of electricity in microbial fuel cells. In the membrane treatment of BBW, the membrane permeate concentration was 570 ± 30 mg/L corresponding to a chemical oxygen demand (COD) removal efficiency of 75 ± 5%, and the flux values changed between 160 and 40 L/m(2)-h for all membrane runs. For electricity production from membrane concentrate, the highest current density in the microbial fuel cell (MFC) was observed to be 1950 mA/m(2) according to electrode surface area with 36% COD removal efficiency and 2.48% CE with 60% BBW membrane concentrate. The morphologies of the cation exchange membrane and the MFC deterioration were studied using a scanning electron microscope (SEM), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). A decrease in the thermal stability of the sulfonate (-SO3H) groups was demonstrated and morphological changes were detected in the SEM analysis. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Characterization of Sr-substituted W-type hexagonal ferrites synthesized by sol-gel autocombustion method

    NASA Astrophysics Data System (ADS)

    Ahmad, Mukhtar; Grössinger, R.; Kriegisch, M.; Kubel, F.; Rana, M. U.

    2013-04-01

    The magnetic and microwave characterization of single phase hexaferrites of entirely new composition Ba1-xSrxCo2AlFe15O27 (x=0.2-1.0) for application in a microwave absorber, have been reported. The samples synthesized by sol-gel method were investigated by differential thermal analyzer, Fourier transform infrared spectroscope, X-ray diffractometer, field emission gun scanning electron microscope, vibrating sample magnetometer and vector network analyzer. Platelet grains exhibit well defined hexagonal shape which is a better shape for microwave absorption. M-H loops for a selected sample were measured for a temperature range of 4.2-400 K. Moreover M-H loops for all Sr-substituted samples were also measured at room temperature up to a maximum applied field of 9 T. Saturation magnetization values were calculated by the law of approach to saturation. The room temperature coercivity for all the samples is found to be a few hundred oersteds which is necessary for electromagnetic materials and makes these ferrites ideal for microwave devices, security, switching and sensing applications. The complex permittivity, permeability and reflection losses of a selected ferrite-epoxy composite were also investigated over a frequency range of 0.5-13 GHz.

  13. Specimen illumination apparatus with optical cavity for dark field illumination

    DOEpatents

    Pinkel, Daniel; Sudar, Damir; Albertson, Donna

    1999-01-01

    An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.

  14. Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries

    NASA Astrophysics Data System (ADS)

    Morales Escalante, José A.; Gamba, Irene M.

    2018-06-01

    We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.

  15. Differentiation of three biotypes of Malassezia species on human normal skin. correspondence with M. globosa, M. sympodialis and M. restricta.

    PubMed

    Aspiroz, C; Moreno, L A; Rezusta, A; Rubio, C

    1999-01-01

    One hundred and twenty lipid dependent Malassezia spp. isolates were obtained from the clinically normal skin of 38 healthy adult volunteers by swabbing three different body sites (back, chest and scalp). Ninety-six percent of these strains could be grouped into three biotypes on the basis of microscopic, cultural, metabolic and biochemical (catalase, esculin and lipase (C-14)) characteristics. The differential features were simple to determine and easily reproduced. Moreover, the three biotypes were referable to the species M. globosa (biotype 1), M. sympodialis (biotype 2) and M. restricta (biotype 3). Based on their microscopic features, cultural properties and body site locations, we suggest that biotype 1 /M. globosa corresponds to the description of Pityrosporum orbiculare (round yeast cells with a narrow base, very frequently found on the upper trunk), and biotype 3/M. restricta corresponds to the concept of P. ovale (oval yeast cells with a broad budding base, located mainly on the scalp). Pleomorphic biotype 2/M. sympodialis, most frequently found in the back, does not clearly fit into any of the Pityrosporum species.

  16. A scanning acoustic microscope discriminates cancer cells in fluid

    NASA Astrophysics Data System (ADS)

    Miura, Katsutoshi; Yamamoto, Seiji

    2015-10-01

    Scanning acoustic microscopy (SAM) discriminates lesions in sections by assessing the speed of sound (SOS) or attenuation of sound (AOS) through tissues within a few minutes without staining; however, its clinical use in cytological diagnosis is unknown. We applied a thin layer preparation method to observe benign and malignant effusions using SAM. Although SAM is inferior in detecting nuclear features than light microscopy, it can differentiate malignant from benign cells using the higher SOS and AOS values and large irregular cell clusters that are typical features of carcinomas. Moreover, each single malignant cell exhibits characteristic cytoplasmic features such as a large size, irregular borders and secretory or cytoskeletal content. By adjusting the observation range, malignant cells are differentiated from benign cells easily using SAM. Subtle changes in the functional and structural heterogeneity of tumour cells were pursuable with a different digital data of SAM. SAM can be a useful tool for screening malignant cells in effusions before light microscopic observation. Higher AOS values in malignant cells compared with those of benign cells support the feasibility of a novel sonodynamic therapy for malignant effusions.

  17. Mapping optical path length and image enhancement using quantitative orientation-independent differential interference contrast microscopy

    PubMed Central

    Shribak, Michael; Larkin, Kieran G.; Biggs, David

    2017-01-01

    Abstract. We describe the principles of using orientation-independent differential interference contrast (OI-DIC) microscopy for mapping optical path length (OPL). Computation of the scalar two-dimensional OPL map is based on an experimentally received map of the OPL gradient vector field. Two methods of contrast enhancement for the OPL image, which reveal hardly visible structures and organelles, are presented. The results obtained can be used for reconstruction of a volume image. We have confirmed that a standard research grade light microscope equipped with the OI-DIC and 100×/1.3 NA objective lens, which was not specially selected for minimum wavefront and polarization aberrations, provides OPL noise level of ∼0.5  nm and lateral resolution if ∼300  nm at a wavelength of 546 nm. The new technology is the next step in the development of the DIC microscopy. It can replace standard DIC prisms on existing commercial microscope systems without modification. This will allow biological researchers that already have microscopy setups to expand the performance of their systems. PMID:28060991

  18. Unconditionally marginal stability of harmonic electron hole equilibria in current-driven plasmas

    NASA Astrophysics Data System (ADS)

    Schamel, Hans

    2018-06-01

    Two forms of the linearized eigenvalue problem with respect to linear perturbations of a privileged cnoidal electron hole as a structural nonlinear equilibrium element are established. Whereas its integral form involves integrations along the characteristics or unperturbed particle orbits, the differential form has to cope with a differential operator of infinite order. Both are hence faced with difficulties to obtain a solution. A first successful attempt is, however, made by addressing a single harmonic wave as a nonlinear equilibrium structure. By this microscopic nonlinear approach, its marginal stability against linear perturbations in both linear stability regimes, the sub- and super-critical one, is shown independent of the mobility of ions and in favor with recent observations. Responsible for vanishing damping (growth) is the microscopic distortion of the resonant distribution function. The macroscopic form of the trapping nonlinearity—the 3/2 power term of the electrostatic potential in the density—which disappears in the monochromatic harmonic wave limit is consequently necessary for the occurrence of a nonlinear plasma instability in the sub-critical regime.

  19. A numerical analysis of the Born approximation for image formation modeling of differential interference contrast microscopy for human embryos

    NASA Astrophysics Data System (ADS)

    Trattner, Sigal; Feigin, Micha; Greenspan, Hayit; Sochen, Nir

    2008-03-01

    The differential interference contrast (DIC) microscope is commonly used for the visualization of live biological specimens. It enables the view of the transparent specimens while preserving their viability, being a non-invasive modality. Fertility clinics often use the DIC microscope for evaluation of human embryos quality. Towards quantification and reconstruction of the visualized specimens, an image formation model for DIC imaging is sought and the interaction of light waves with biological matter is examined. In many image formation models the light-matter interaction is expressed via the first Born approximation. The validity region of this approximation is defined in a theoretical bound which limits its use to very small specimens with low dielectric contrast. In this work the Born approximation is investigated via the Helmholtz equation, which describes the interaction between the specimen and light. A solution on the lens field is derived using the Gaussian Legendre quadrature formulation. This numerical scheme is considered both accurate and efficient and has shortened significantly the computation time as compared to integration methods that required a great amount of sampling for satisfying the Whittaker - Shannon sampling theorem. By comparing the numerical results with the theoretical values it is shown that the theoretical bound is not directly relevant to microscopic imaging and is far too limiting. The numerical exhaustive experiments show that the Born approximation is inappropriate for modeling the visualization of thick human embryos.

  20. Influence of Environmental Changes on Physiology and Development of Polar Vascular Plants

    NASA Astrophysics Data System (ADS)

    Giełwanowska, Irena; Pastorczyk, Marta; Kellmann-Sopyła, Wioleta

    2011-01-01

    Polar vascular plants native to the Arctic and the Antarctic geobotanical zone have been growing and reproducing effectively under difficult environmental conditions, colonizing frozen ground areas formerly covered by ice. Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the anatomical and ultrastructural observations of vegetative and generative tissue in Cerastium arcticum, Colobanthus quitensis, Silene involucrata, plants from Caryophyllaceae and Deschampsia antarctica, Poa annua and Poa arctica, from Poaceae family. In the studies, special attention was paid to plants coming from diversity habitats where stress factors operated with clearly different intensity. In all examinations plants, differences in anatomy were considerable. In Deschampsia antarctica the adaxial epidermis of hairgrass leaves from a humid microhabitat, bulliform cells differentiated. Mesophyll was composed of cells of irregular shapes and resembled aerenchyma. The ultrastructural observations of mesophyll in all plants showed tight adherence of chloroplasts, mitochondria and peroxisomes, surface deformations of these organelles and formation of characteristic outgrowths and pocket concavities filled with cytoplasm with vesicles and organelles by chloroplasts. In reproduction biology of examined Caryophyllaceae and Poaceae plants growing in natural conditions, in the Arctic and in the Antarctic, and in a greenhouse in Olsztyn showed that this plant develops two types of bisexual flowers. Almost all ovules developed and formed seeds with a completely differentiated embryo both under natural conditions in the Arctic and the Antarctic and in a greenhouse in Olsztyn.

  1. Influence of Environmental Changes on Physiology and Development of Polar Vascular Plants

    NASA Astrophysics Data System (ADS)

    Giełwanowska, Irena; Pastorczyk, Marta; Kellmann-Sopyła, Wioleta

    2011-01-01

    Polar vascular plants native to the Arctic and the Antarctic geobotanical zone have been growing and reproducing effectively under difficult environmental conditions, colonizing frozen ground areas formerly covered by ice. Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the anatomical and ultrastructural observations of vegetative and generative tissue in Cerastium arcticum, Colobanthus quitensis, Silene involucrata, plants from Caryophyllaceae and Deschampsia antarctica, Poa annua and Poa arctica, from Poaceae family. In the studies, special attention was paid to plants coming from diversity habitats where stress factors operated with clearly different intensity. In all examinations plants, differences in anatomy were considerable. In Deschampsia antarctica the adaxial epidermis of hairgrass leaves from a humid microhabitat, bulliform cells differentiated. Mesophyll was composed of cells of irregular shapes and resembled aerenchyma. The ultrastructural observations of mesophyll in all plants showed tight adherence of chloroplasts, mitochondria and peroxisomes, surface deformations of these organelles and formation of characteristic outgrowths and pocket concavities filled with cytoplasm with vesicles and organelles by chloroplasts. In reproduction biology of examined Caryophyllaceae and Poaceae plants growing in natural conditions, in the Arctic and in the Antarctic, and in a greenhouse in Olsztyn showed that this plant develops two types of bisexual flowers. Almost all ovules developed and formed seeds with a completely differentiated embryo both under natural conditions in the Arctic and the Antarctic and in a greenhouse in Olsztyn.

  2. [Pitfalls in the histopathological diagnostics of endometrial carcinoma and its precursors : Clinically relevant differential diagnoses, avoidance of false positive diagnoses].

    PubMed

    Kommoss, F; Lax, S F

    2016-11-01

    Making an incorrect histopathological diagnosis of an endometrial lesion may lead to unwanted loss of fertility and therapy-associated morbidity; therefore, endometrial carcinomas need to be correctly typed and differentiated from hyperplastic precursors, benign lesions and artifacts. Typical diagnostic pitfalls are described in this article. Misdiagnosing endometrial lesions can be avoided by paying thorough attention to gross as well as microscopic features and by taking crucial differential diagnoses into consideration. These are, in particular, well-differentiated endometrioid adenocarcinoma of the endometrium versus atypical endometrial hyperplasia, myoinvasive endometrioid adenocarcinoma versus atypical polypoid adenomyoma and endometrioid carcinoma versus serous carcinoma of the endometrium with a predominantly glandular pattern. It is also important to consider the possibility of a false positive diagnosis of atypical endometrial hyperplasia or carcinoma in cases of biopsy-induced artifacts.

  3. Samples from Differentiated Asteroids; Regolithic Achondrites

    NASA Technical Reports Server (NTRS)

    Herrin J. S.; Ross, A. J.; Cartwright, J. A.; Ross, D. K.; Zolensky, Michael E.; Jenniskens, P.

    2011-01-01

    Differentiated and partially differentiated asteroids preserve a glimpse of planet formation frozen in time from the early solar system and thus are attractive targets for future exploration. Samples of such asteroids arrive to Earth in the form of achondrite meteorites. Many achondrites, particularly those thought to be most representative of asteroidal regolith, contain a diverse assortment of materials both indigenous and exogenous to the original igneous parent body intermixed at microscopic scales. Remote sensing spacecraft and landers would have difficulty deciphering individual components at these spatial scales, potentially leading to confusing results. Sample return would thus be much more informative than a robotic probe. In this and a companion abstract [1] we consider two regolithic achondrite types, howardites and (polymict) ureilites, in order to evaluate what materials might occur in samples returned from surfaces of differentiated asteroids and what sampling strategies might be prudent.

  4. Fourier transform infrared spectroscopy imaging of live epithelial cancer cells under non-aqueous media.

    PubMed

    Soh, JunYi; Chueng, Adeline; Adio, Aminat; Cooper, Alan J; Birch, Brian R; Lwaleed, Bashir A

    2013-04-01

    Fourier transform infrared (FT-IR) imaging is increasingly being applied to biomedical specimens, but strong IR absorption by water complicates live cell imaging. This study investigates the viability of adherent epithelial cells maintained for short periods under mineral oils in order to facilitate live cell spectroscopy using FT-IR with subsequent imaging. The MGH-U1 urothelial or CaCo2 colorectal cancer cell lines were grown on plastic surfaces or mid-range infrared transparent windows. Medium in established cultures was replaced with paraffin mineral oil, or Fluorolube, for up to 2 h, and viability assessed by supravital staining. Drug handling characteristics were also assessed. Imaging of preparations was attempted by reflectance and transmission using a Varian FT-IR microscope. Cells covered by mineral oil remained viable for 2 h, with recovery into normal medium possible. MTT ((3-(4,5-dimethylthlazol-2-yl)-2,5-diphenyl tetrazolium) conversion to crystalline formazan and differential patterns of drug uptake were maintained. The combination of a calcium fluoride substrate, Fluorolube oil, and transmission optics proved best for spectroscopy. Spectral features were used to obtain images of live cells. The viability of cells overlaid with IR transparent oils was assessed as part of a technique to optimise conditions for FT-IR imaging. Images of untreated cells were obtained using both reflectance and transmission. This represents an effective means of imaging live cells by IR spectroscopy, and also means that imaging is not necessarily a terminal event. It also increases options for producing images based on real-time biochemistry in a range of in vitro experimental and 'optical biopsy' contexts.

  5. Concept and setup for intraoperative imaging of tumorous tissue via Attenuated Total Reflection spectrosocopy with Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Geiger, Florian B.; Koerdel, Martin; Schick, Anton; Heimann, Axel; Matiasek, Kaspar; Herkommer, Alois M.

    2015-03-01

    A major challenge in tumor surgery is the differentiation between normal and malignant tissue. Since an incompletely resected tumor easily leads to recidivism, the gold standard is to remove malignant tissue with a sufficient safety margin and send it to pathology for examination with patho-histological techniques (rapid section diagnosis). This approach, however, exhibits several disadvantages: The removal of additional tissue (safety margin) means additional stress to the patient; the correct interpretation of proper tumor excision relies on the pathologist's experience and the waiting time between resection and pathological result can be more than 45 minutes. This last aspect implies unnecessary occupation of cost-intensive operating room staff as well as longer anesthesia for the patient. Various research groups state that hyperspectral imaging in the mid-infrared, especially in the so called "fingerprint region", allows spatially resolved discrimination between normal and malignant tissue. All these experiments, though, took place in a laboratory environment and were conducted on dried, ex vivo tissue and on a microscopic scale. It is therefore our aim to develop a system incorporating the following properties: Intraoperatively and in vivo applicable, measurement time shorter than one minute, based on mid infrared spectroscopy, providing both spectral and spatial information and no use of external fluorescence markers. Theoretical assessment of different concepts and experimental studies show that a setup based on a tunable Quantum Cascade Laser and Attenuated Total Reflection seems feasible for in vivo tissue discrimination via imaging. This is confirmed by experiments with a first demonstrator.

  6. Effect of erythropoietin on mesenchymal stem cell differentiation and secretion in vitro in an acute kidney injury microenvironment.

    PubMed

    Liu, N M; Tian, J; Wang, W W; Han, G F; Cheng, J; Huang, J; Zhang, J Y

    2013-02-28

    We investigated the effect of erythropoietin (EPO) on differentiation and secretion of bone marrow-derived mesenchymal stem cells in an acute kidney injury microenvironment. Acute kidney injury mouse models were prepared. Both renal cortices were then immediately collected to produce the ischemia/reperfusion kidney homogenate supernatant. The morphological and ultrastructural changes in the cells were observed using an inverted microscope and a transmission electron microscope. Cytokeratin-18 was detected using flow cytometry. Bone morphogenetic protein-7 levels, hepatocyte growth factor, and vascular endothelial growth factor in the culture medium were detected using an enzyme-linked immunosorbent assay. The cells had high CD29 and CD44 expression, as well as low CD34 and CD45 expression. More round and oval cells with cobble-like appearances were observed after EPO treatment. In addition, an increase in the number of rough endoplasmic reticula, lysosomes, and mitochondria was observed in the cytoplasm; the intercellular junction peculiar to epithelial cells was also seen on the cell surface. After treatment with ischemia/reperfusion kidney homogenate supernatant, cytokeratin-18 expression increased significantly and EPO could magnify its expression. Bone morphogenetic protein-7 levels, hepatocyte growth factor, and vascular endothelial growth factor levels after treatment with ischemia/reperfusion kidney homogenate supernatant significantly decreased, whereas EPO increased the cytokine secretion. The acute kidney injury microenvironment can induce the bone marrow-derived mesenchymal stem cells to partially differentiate into renal tubular epithelium-shaped cells, but weaken their secretion function. EPO intervention can boost up their differentiation function and reverse their low secretion effect.

  7. Thermodynamics of urban population flows.

    PubMed

    Hernando, A; Plastino, A

    2012-12-01

    Orderliness, reflected via mathematical laws, is encountered in different frameworks involving social groups. Here we show that a thermodynamics can be constructed that macroscopically describes urban population flows. Microscopic dynamic equations and simulations with random walkers underlie the macroscopic approach. Our results might be regarded, via suitable analogies, as a step towards building an explicit social thermodynamics.

  8. Eukaryotic cell flattening

    NASA Astrophysics Data System (ADS)

    Bae, Albert; Westendorf, Christian; Erlenkamper, Christoph; Galland, Edouard; Franck, Carl; Bodenschatz, Eberhard; Beta, Carsten

    2010-03-01

    Eukaryotic cell flattening is valuable for improving microscopic observations, ranging from bright field to total internal reflection fluorescence microscopy. In this talk, we will discuss traditional overlay techniques, and more modern, microfluidic based flattening, which provides a greater level of control. We demonstrate these techniques on the social amoebae Dictyostelium discoideum, comparing the advantages and disadvantages of each method.

  9. X-ray/EUV optics for astronomy, microscopy, polarimetry, and projection lithography; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1991-01-01

    Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.

  10. The rheo-Raman microscope: Simultaneous chemical, conformational, mechanical, and microstructural measures of soft materials

    NASA Astrophysics Data System (ADS)

    Kotula, Anthony P.; Meyer, Matthew W.; De Vito, Francesca; Plog, Jan; Hight Walker, Angela R.; Migler, Kalman B.

    2016-10-01

    The design and performance of an instrument capable of simultaneous Raman spectroscopy, rheology, and optical microscopy are described. The instrument couples a Raman spectrometer and optical microscope to a rotational rheometer through an optically transparent base, and the resulting simultaneous measurements are particularly advantageous in situations where flow properties vary due to either chemical or conformational changes in molecular structure, such as in crystallization, melting, gelation, or curing processes. Instrument performance is demonstrated on two material systems that show thermal transitions. First, we perform steady state rotational tests, Raman spectroscopy, and polarized reflection microscopy during a melting transition in a cosmetic emulsion. Second, we perform small amplitude oscillatory shear measurements along with Raman spectroscopy and polarized reflection microscopy during crystallization of a high density polyethylene. The instrument can be applied to study structure-property relationships in a variety of soft materials including thermoset resins, liquid crystalline materials, colloidal suspensions undergoing sol-gel processes, and biomacromolecules. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

  11. Application of reflectance confocal microscopy to evaluate skin damage after irradiation with an yttrium-scandium-gallium-garnet (YSGG) laser.

    PubMed

    Yue, Xueping; Wang, Hongwei; Li, Qing; Li, Linfeng

    2017-02-01

    The objective of this study was to observe the characteristics of the skin after irradiation with a 2790-nm yttrium-scandium-gallium-garnet (YSGG) laser using reflectance confocal microscopy (RCM). A 2790-nm YSGG laser was used to irradiate fresh foreskin (four doses, at spot density 3) in vitro. The characteristics of microscopic ablative columns (MAC), thermal coagulation zone (TCZ), and microscopic treatment zones (MTZ) were observed immediately after irradiation using digital microscope and RCM. The characteristics of MAC, TCZ, and MTZ with variations in pulse energy were comparatively analyzed. After irradiation, MAC, TCZ, and MTZ characteristics and undamaged skin between MTZs can be observed by RCM. The depth and width of MTZ obviously increased with the increase in pulse energy. At 80, 120, and 160 mJ/microbeam (MB), the MTZ actual area and proportion were about two times that of the theoretical value and three times at 200 mJ/MB. With increases in depth, the single MAC gradually decreased in a fingertip-shaped model, with TCZ slowly increasing, and MTZ slightly decreasing in a columnar shape. RCM was able to determine the characteristics of thermal injury on the skin after the 2790-nm YSGG laser irradiation with different pulse energies. Pulse energy higher than 200 mJ/MB may have much larger thermal injury and side effect. RCM could be used in the clinic in future.

  12. Measurement of the coagulation dynamics of bovine liver using the modified microscopic Beer-Lambert law.

    PubMed

    Terenji, Albert; Willmann, Stefan; Osterholz, Jens; Hering, Peter; Schwarzmaier, Hans-Joachim

    2005-06-01

    During heating, the optical properties of biological tissues change with the coagulation state. In this study, we propose a technique, which uses these changes to monitor the coagulation process during laser-induced interstitial thermotherapy (LITT). Untreated and coagulated (water bath, temperatures between 35 degrees C and 90 degrees C for 20 minutes.) samples of bovine liver tissue were examined using a Nd:YAG (lambda = 1064 nm) frequency-domain reflectance spectrometer. We determined the time integrated intensities (I(DC)) and the phase shifts (Phi) of the photon density waves after migration through the tissue. From these measured quantities, the time of flight (TOF) of the photons and the absorption coefficients of the samples were derived using the modified microscopic Beer-Lambert law. The absorption coefficients of the liver samples decreased significantly with the temperature in the range between 50 degrees C and 70 degrees C. At the same time, the TOF of the investigated photos was found increased indicating an increased scattering. The coagulation dynamics could be well described using the Arrhenius formalism with the activation energy of 106 kJ/mol and the frequency factor of 1.59 x 10(13)/second. Frequency-domain reflectance spectroscopy in combination with the modified microscopic Beer-Lambert (MBL) is suitable to measure heat induced changes in the absorption and scattering properties of bovine liver in vitro. The technique may be used to monitor the coagulation dynamics during local thermo-coagulation in vivo. Copyright 2005 Wiley-Liss, Inc.

  13. Reflectance confocal microscopy of optical phantoms

    PubMed Central

    Jacques, Steven L.; Wang, Bo; Samatham, Ravikant

    2012-01-01

    A reflectance confocal scanning laser microscope (rCSLM) operating at 488-nm wavelength imaged three types of optical phantoms: (1) 100-nm-dia. polystyrene microspheres in gel at 2% volume fraction, (2) solid polyurethane phantoms (INO BiomimicTM), and (3) common reflectance standards (SpectralonTM). The noninvasive method measured the exponential decay of reflected signal as the focus (zf) moved deeper into the material. The two experimental values, the attenuation coefficient μ and the pre-exponential factor ρ, were mapped into the material optical scattering properties, the scattering coefficient μs and the anisotropy of scattering g. Results show that μs varies as 58, 8–24, and 130–200 cm-1 for phantom types (1), (2) and (3), respectively. The g varies as 0.112, 0.53–0.67, and 0.003–0.26, respectively. PMID:22741065

  14. Study of factors affecting the appearance of colors under microscopes

    NASA Astrophysics Data System (ADS)

    Zakizadeh, Roshanak; Martinez-Garcia, Juan; Raja, Kiran B.; Siakidis, Christos

    2013-11-01

    The variation of colors in microscopy systems can be quite critical for some users. To address this problem, a study is conducted to analyze how different factors such as size of the sample, intensity of the microscope's light source and the characteristics of the material like chroma and saturation can affect the color appearance through the eyepiece of the microscope. To study the changes in colors considering these factors, the spectral reflectance of 24 colors of GretagMacbeth Classic ColorChecker® and Mini ColorChecker® which are placed under a Nikon ECLIPSE MA200 microscope®2 using dark filed and bright field illuminations which result in different intensity levels, is measured using a spectroradiometer®3 which was placed in front of the eyepiece of the microscope. The results are compared with the original data from N. Ohta1. The evaluation is done by observing the shift in colors in the CIE 1931 Chromaticity Diagram and the CIELAB space, also by applying a wide set of color-difference formulas, namely: CIELAB, CMC, BFD, CIE94, CIEDE2000, DIN99d and DIN99b. Furthermore, to emphasize on the color regions in which the highest difference is observed, the authors have obtained the results from another microscope; Olympus SZX10®4, which in this case the measurement is done by mounting the spectroradiometer to the camera port of the microscope. The experiment leads to some interesting results, among which is the consistency in the highest difference observed considering different factors or how the change in saturation of the samples of the same hue can affect the results.

  15. The Evolution of the Social Roletaking and Guided Reflection Framework in Teacher Education: Recent Theory and Quantitative Synthesis of Research.

    ERIC Educational Resources Information Center

    Reiman, Alan J.

    1999-01-01

    Addresses the lack of theory and directing constructs for reflective practice in teacher education, reviewing Vygotskyian and Piagetian theoretical tenets, relating them to a developmental action/reflection framework for adult learners, and summarizing a taxonomy for differentiating reflection according to adult learners' needs. Summarizes the…

  16. Silencing tumor necrosis factor-alpha in vitro from small interfering RNA-decorated titanium nanotube array can facilitate osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Wang, Zhenlin; Hu, Zhiqiang; Zhang, Dawei; Zhuo, Mengchuan; Cheng, Jiwei; Xu, Xingping; Xing, Yongming; Fan, Jie

    2016-01-01

    Titanium implants are known for their bone bonding ability. However, the osseointegration may be severely disturbed in the inflammation environment. In order to enhance osseointegration of the implant in an inflamed environment, the small interfering RNA (siRNA) targeting tumor necrosis factor alpha (TNF-α) was used to functionalize titanium surface for gene silencing. The chitosan-tripolyphosphate-hyaluronate complexes were used to formulate nanoparticles (NPs) with siRNA, which were adsorbed directly by the anodized titanium surface. The surface characterization was analyzed by scanning electron microscope, atomic force microscopy, as well as contact angle measurement. The fluorescence microscope was used to monitor the degradation of the layer. The coculture system was established with mesenchymal stem cells (MSCs) grown directly on functionalized titanium surface and RAW264.7 cells (preactivated by lipopolysaccharide) grown upside in a transwell chamber. The transfection and knockdown efficiency of TNF-α in RAW264.7 cells were determined by fluorescence microscope, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. The cytoskeleton and osteogenic differentiation of MSCs were also analyzed. Regular vertical aligned nanotubes (~100 nm diameter and ~300 nm length) were generated after anodization of polished titanium. After loading with NPs, the nanotubes were filled and covered by a layer of amorphous particles. The surface topography changed and wettability decreased after covering with NPs. As expected, a burst degradation of the film was observed, which could provide sufficient NPs in the released supernatant and result in transfection and knockdown effects in RAW264.7 cells. The cytoskeleton arrangement of MSCs was elongated and the osteogenic differentiation was also significantly improved on NPs loading surface. In conclusion, the siRNA decorated titanium implant could simultaneously suppress inflammation and improve osteogenesis, which may be suitable for peri-implant bone formation under inflammatory conditions.

  17. Effect of silica nanoparticle filler on microscopic polymer α-relaxation dynamics

    NASA Astrophysics Data System (ADS)

    Saito, Makina; Mashita, Ryo; Kishimoto, Hiroyuki; Masuda, Ryo; Yoda, Yoshitaka; Seto, Makoto

    2017-11-01

    Tyre rubber has been continuously developed to improve its performance, but the microscopic mechanisms behind these improvements, e.g. by adding nanoparticles to the rubber, are still not fully understood. We study the microscopic polymer dynamics of a rubber nanocomposite system consisting of polymer polybutadiene with 20 volume% of silica nanoparticles with diameters of 100 nm via quasi-elastic scattering experiments using gamma-ray time-domain interferometry. The result shows that the presence of silica nanoparticles caused the inter-chain α-relaxation dynamics to slow down in a shallowly supercooled state suggesting that the presence of the nanoparticles that came in contact with the polymer controlled the timescale of the polymer's α-relaxation dynamics. Conversely, the presence of nanoparticles less affects the dynamics in a lower temperature region near T g. It is consistent with the result of the differential scanning calorimetry study showing negligible T g difference among the pure polymer and the nanocomposite system. It also shows that the quasi-elastic scattering experiment can be used to reveal the polymer dynamics in nanocomposites and is appropriate for characterising their microscopic dynamics for the purpose of improving tyre performance.

  18. Invasion of Solanum tuberosum L. by Aspergillus terreus: a microscopic and proteomics insight on pathogenicity.

    PubMed

    Louis, Bengyella; Waikhom, Sayanika Devi; Roy, Pranab; Bhardwaj, Pardeep Kumar; Singh, Mohendro Wakambam; Chandradev, Sharma K; Talukdar, Narayan Chandra

    2014-06-10

    Aspergillus terreus is one of the most harmful filamentous fungal pathogen of humans, animals and plants. Recently, researchers have discovered that A. terreus can cause foliar blight disease in potato (Solanum tuberosum L.). We used light and scanning electron microscopy, and performed proteomics analysis in an attempt to dissect the invasion process of A. terreus in this important crop. Microscopic study revealed that invasion of leaf tissue is marked by rapid germination of A. terreus phialidic conidia (PC) by 4 h after inoculation. By 8 h after inoculation, primary germ tubes from PC differentiated into irregular protuberance, often displayed stomata atropism, and failed to penetrate via the epidermal cells. Colonization of leaf tissues was associated with high rate of production of accessory conidia (AC). These analyses showed the occurrence of a unique opposing pattern of AC, tissue-specific and produced on melanized colonizing hyphae during the infection of leaf tissue. A significant proteome change hallmarked by differential expression of class I patatin, lipoxygenase, catalase-peroxidase complex, and cysteine proteinase inhibitor were observed during tuber colonization. These proteins are often involved in signal transduction pathways and crosstalk in pathogenic responses. A. terreus abundantly produced AC and multipolar germinating PC to invade potato leaf tissue. Additionally, A. terreus differentially induced enzymes in potato tuber during colonization which facilitates rapid disease development.

  19. Invasion of Solanum tuberosum L. by Aspergillus terreus: a microscopic and proteomics insight on pathogenicity

    PubMed Central

    2014-01-01

    Background Aspergillus terreus is one of the most harmful filamentous fungal pathogen of humans, animals and plants. Recently, researchers have discovered that A. terreus can cause foliar blight disease in potato (Solanum tuberosum L.). We used light and scanning electron microscopy, and performed proteomics analysis in an attempt to dissect the invasion process of A. terreus in this important crop. Results Microscopic study revealed that invasion of leaf tissue is marked by rapid germination of A. terreus phialidic conidia (PC) by 4 h after inoculation. By 8 h after inoculation, primary germ tubes from PC differentiated into irregular protuberance, often displayed stomata atropism, and failed to penetrate via the epidermal cells. Colonization of leaf tissues was associated with high rate of production of accessory conidia (AC). These analyses showed the occurrence of a unique opposing pattern of AC, tissue-specific and produced on melanized colonizing hyphae during the infection of leaf tissue. A significant proteome change hallmarked by differential expression of class I patatin, lipoxygenase, catalase-peroxidase complex, and cysteine proteinase inhibitor were observed during tuber colonization. These proteins are often involved in signal transduction pathways and crosstalk in pathogenic responses. Conclusion A. terreus abundantly produced AC and multipolar germinating PC to invade potato leaf tissue. Additionally, A. terreus differentially induced enzymes in potato tuber during colonization which facilitates rapid disease development. PMID:24917207

  20. Open-source do-it-yourself multi-color fluorescence smartphone microscopy

    PubMed Central

    Sung, Yulung; Campa, Fernando; Shih, Wei-Chuan

    2017-01-01

    Fluorescence microscopy is an important technique for cellular and microbiological investigations. Translating this technique onto a smartphone can enable particularly powerful applications such as on-site analysis, on-demand monitoring, and point-of-care diagnostics. Current fluorescence smartphone microscope setups require precise illumination and imaging alignment which altogether limit its broad adoption. We report a multi-color fluorescence smartphone microscope with a single contact lens-like add-on lens and slide-launched total-internal-reflection guided illumination for three common tasks in investigative fluorescence microscopy: autofluorescence, fluorescent stains, and immunofluorescence. The open-source, simple and cost-effective design has the potential for do-it-yourself fluorescence smartphone microscopy. PMID:29188104

  1. Structure and optical properties of TiO2 thin films deposited by ALD method

    NASA Astrophysics Data System (ADS)

    Szindler, Marek; Szindler, Magdalena M.; Boryło, Paulina; Jung, Tymoteusz

    2017-12-01

    This paper presents the results of study on titanium dioxide thin films prepared by atomic layer deposition method on a silicon substrate. The changes of surface morphology have been observed in topographic images performed with the atomic force microscope (AFM) and scanning electron microscope (SEM). Obtained roughness parameters have been calculated with XEI Park Systems software. Qualitative studies of chemical composition were also performed using the energy dispersive spectrometer (EDS). The structure of titanium dioxide was investigated by X-ray crystallography. A variety of crystalline TiO2 was also confirmed by using the Raman spectrometer. The optical reflection spectra have been measured with UV-Vis spectrophotometry.

  2. Design and analysis of metal-dielectric nonpolarizing beam splitters in a glass cube.

    PubMed

    Shi, Jin Hui; Guan, Chun Ying; Wang, Zheng Ping

    2009-06-20

    A novel design of a 25-layer metal-dielectric nonpolarizing beam splitter in a cube is proposed by use of the optimization method and is theoretically investigated. The simulations of the reflectance and differential phases induced by reflection and transmission are presented. The simulation results reveal that both the amplitude and the phase characteristics of the nonpolarizing beam splitter could realize the design targets, the differences between the simulated and the target reflectance of 50% are less than 2%, and the differential phases are less than 3 degrees in the range of 530 nm-570 nm for both p and s components.

  3. Multi-wavelength metal-dielectric nonpolarizing beam splitters in the near-infrared range

    NASA Astrophysics Data System (ADS)

    Hui Shi, Jin; Ping Wang, Zheng; Ying Guan, Chun; Yang, Jun; Shu Fu, Tian

    2011-04-01

    A 21-layer multi-wavelength metal-dielectric nonpolarizing cube beam splitter was designed by use of an optimization method and theoretically investigated in the near-infrared range. The angular dependence of the reflectance and differential phases induced by reflection and transmission were presented. The simulation results revealed that the non-polarizing effect could be achieved for both the amplitude and phase characteristics at 1310 and 1550 nm. The differences between the simulated and the target reflectance of 50% are less than 2% and differential phases are less than 5°in the range 1300-1320 nm and 1540-1550 nm for both p- and s-components.

  4. Sensing of Streptococcus mutans by microscopic imaging ellipsometry

    NASA Astrophysics Data System (ADS)

    Khaleel, Mai Ibrahim; Chen, Yu-Da; Chien, Ching-Hang; Chang, Yia-Chung

    2017-05-01

    Microscopic imaging ellipsometry is an optical technique that uses an objective and sensing procedure to measure the ellipsometric parameters Ψ and Δ in the form of microscopic maps. This technique is well known for being noninvasive and label-free. Therefore, it can be used to detect and characterize biological species without any impact. Microscopic imaging ellipsometry was used to measure the optical response of dried Streptococcus mutans cells on a glass substrate. The ellipsometric Ψ and Δ maps were obtained with the Optrel Multiskop system for specular reflection in the visible range (λ=450 to 750 nm). The Ψ and Δ images at 500, 600, and 700 nm were analyzed using three different theoretical models with single-bounce, two-bounce, and multibounce light paths to obtain the optical constants and height distribution. The obtained images of the optical constants show different aspects when comparing the single-bounce analysis with the two-bounce or multibounce analysis in detecting S. mutans samples. Furthermore, the height distributions estimated by two-bounce and multibounce analyses of S. mutans samples were in agreement with the thickness values measured by AFM, which implies that the two-bounce and multibounce analyses can provide information complementary to that obtained by a single-bounce light path.

  5. Microscopic relaxations in a protein sustained down to 160 K in a non-glass forming organic solvent

    DOE PAGES

    Mamontov, Eugene; O'Neil, Hugh

    2016-05-03

    In this paper, we have studied microscopic dynamics of a protein in carbon disulfide, a non-glass forming solvent, down to its freezing temperature of ca. 160 K. We have utilized quasielastic neutron scattering. A comparison of lysozyme hydrated with water and dissolved in carbon disulfide reveals a stark difference in the temperature dependence of the protein's microscopic relaxation dynamics induced by the solvent. In the case of hydration water, the common protein glass-forming solvent, the protein relaxation slows down in response to a large increase in the water viscosity on cooling down, exhibiting a well-known protein dynamical transition. The dynamicalmore » transition disappears in non-glass forming carbon disulfide, whose viscosity remains a weak function of temperature all the way down to freezing at just below 160 K. The microscopic relaxation dynamics of lysozyme dissolved in carbon disulfide is sustained down to the freezing temperature of its solvent at a rate similar to that measured at ambient temperature. Finally, our results demonstrate that protein dynamical transition is not merely solvent-assisted, but rather solvent-induced, or, more precisely, is a reflection of the temperature dependence of the solvent's glass-forming dynamics.« less

  6. Differentiated and Medullary Thyroid Cancer: Surgical Management of Cervical Lymph Nodes

    PubMed Central

    Asimakopoulos, P.; Nixon, I.J.; Shaha, A.R.

    2017-01-01

    Thyroid cancer metastasises to the central and lateral compartments of the neck frequently and early. The impact of nodal metastases on outcome is affected by the histological subtype of the primary tumour and the patient’s age, as well as the size, number and location of those metastases. The impact of extranodal extension has recently been highlighted as an important prognosticating factor. Although clinically evident nodal disease in the lateral neck compartments has a significant impact on both survival and recurrence, microscopic metastases to the central or the lateral neck in well-differentiated thyroid cancer do not significantly affect outcome. Here we discuss the surgical management of neck metastases in well-differentiated and medullary thyroid carcinoma. PMID:28094086

  7. Molecular differentiation of Entamoeba spp. in a rural community of Loja province, South Ecuador.

    PubMed

    Levecke, B; Dreesen, L; Barrionuevo-Samaniego, M; Ortiz, W Benitez; Praet, N; Brandt, J; Dorny, P

    2011-12-01

    Although previous epidemiological surveys in Ecuador indicate the presence of Entamoeba histolytica, prevalence data of this parasite remain scarce. Most of the studies were based on microscopic examination, which does not allow a morphological differentiation from the non-pathogenic Ent. dispar and Ent. moshkovskii. In the present study, 674 stool samples from a South Ecuadorian rural community were screened for Entamoeba spp. Subsequently, molecular identification was performed on 101 samples containing Ent. histolytica/Ent. dispar/Ent. moshkovskii cysts. The study indicated the absence of Ent. histolytica in this South Ecuadorian community and confirmed the difficulty of differentiating Entamoeba spp. based on morphological features. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  8. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope

    NASA Astrophysics Data System (ADS)

    Meyer, Stephanie A.; Ozbay, Baris N.; Potcoava, Mariana; Salcedo, Ernesto; Restrepo, Diego; Gibson, Emily A.

    2016-06-01

    We performed stimulated emission depletion (STED) imaging of isolated olfactory sensory neurons (OSNs) using a custom-built microscope. The STED microscope uses a single pulsed laser to excite two separate fluorophores, Atto 590 and Atto 647N. A gated timing circuit combined with temporal interleaving of the different color excitation/STED laser pulses filters the two channel detection and greatly minimizes crosstalk. We quantified the instrument resolution to be ˜81 and ˜44 nm, for the Atto 590 and Atto 647N channels. The spatial separation between the two channels was measured to be under 10 nm, well below the resolution limit. The custom-STED microscope is incorporated onto a commercial research microscope allowing brightfield, differential interference contrast, and epifluorescence imaging on the same field of view. We performed immunolabeling of OSNs in mice to image localization of ciliary membrane proteins involved in olfactory transduction. We imaged Ca2+-permeable cyclic nucleotide gated (CNG) channel (Atto 594) and adenylyl cyclase type III (ACIII) (Atto 647N) in distinct cilia. STED imaging resolved well-separated subdiffraction limited clusters for each protein. We quantified the size of each cluster to have a mean value of 88±48 nm and 124±43 nm, for CNG and ACIII, respectively. STED imaging showed separated clusters that were not resolvable in confocal images.

  9. Reflectance confocal microscope for imaging oral tissues in vivo, potentially with line scanning as a low-cost approach for clinical use

    NASA Astrophysics Data System (ADS)

    Peterson, Gary; Abeytunge, Sanjeewa; Eastman, Zachary; Rajadhyaksha, Milind

    2012-02-01

    Reflectance confocal microscopy with a line scanning approach potentially offers a smaller, simpler and less expensive approach than traditional methods of point scanning for imaging in living tissues. With one moving mechanical element (galvanometric scanner), a linear array detector and off-the-shelf optics, we designed a compact (102x102x76mm) line scanning confocal reflectance microscope (LSCRM) for imaging human tissues in vivo in a clinical setting. Custom-designed electronics, based on field programmable gate array (FPGA) logic has been developed. With 405 nm illumination and a custom objective lens of numerical aperture 0.5, lateral resolution was measured to be 0.8 um (calculated 0.64 um). The calculated optical sectioning is 3.2 um. Preliminary imaging shows nuclear and cellular detail in human skin and oral epithelium in vivo. Blood flow is also visualized in the deeper connective tissue (lamina propria) in oral mucosa. Since a line is confocal only in one dimension (parallel) but not in the other, the detection is more sensitive to multiply scattered out of focus background noise than in the traditional point scanning configuration. Based on the results of our translational studies thus far, a simpler, smaller and lower-cost approach based on a LSCRM appears to be promising for clinical imaging.

  10. White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

    NASA Astrophysics Data System (ADS)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2017-02-01

    A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.

  11. Telepresence in neurosurgery: the integrated remote neurosurgical system.

    PubMed

    Kassell, N F; Downs, J H; Graves, B S

    1997-01-01

    This paper describes the Integrated Remote Neurosurgical System (IRNS), a remotely-operated neurosurgical microscope with high-speed communications and a surgeon-accessible user interface. The IRNS will allow high quality bidirectional mentoring in the neurosurgical suite. The research goals of this effort are twofold: to develop a clinical system allowing a remote neurosurgeon to lend expertise to the OR-based neurosurgical team and to provide an integrated training environment. The IRNS incorporates a generic microscope/transport model, Called SuMIT (Surgical Manipulator Interface Translator). Our system is currently under test using the Zeiss MKM surgical transport. A SuMIT interface is also being constructed for the Robotics Research 1607. The IRNS Remote Planning and Navigation Workstation incorporates surgical planning capabilities, real-time, 30 fps video from the microscope and overhead video camera. The remote workstation includes a force reflecting handcontroller which gives the remote surgeon an intuitive way to position the microscope head. Bidirectional audio, video whiteboarding, and image archiving are also supported by the remote workstation. A simulation mode permits pre-surgical simulation, post-surgical critique, and training for surgeons without access to an actual microscope transport system. The components of the IRNS are integrated using ATM switching to provide low latency data transfer. The research, along with the more sophisticated systems that will follow, will serve as a foundation and test-bed for extending the surgeon's skills without regard to time zone or geographic boundaries.

  12. Measuring the complex optical conductivity of graphene by Fabry-Pérot reflectance spectroscopy [Determination of the optical index for few-layer graphene by reflectivity spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito

    Here, we have experimentally studied the optical refractive index of few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a coherent supercontinuum laser source measured the reflectivity of an exfoliated graphene flake on a Si/SiO 2 substrate, containing monolayer, bilayer and trilayer areas, as the wavelength of the laser was varied from 545nm to 710nm. The complex refractive index of few-layer graphene, n-ik, was extracted from the reflectivity contrast to the bare substrate and the Fresnel reflection theory. Since the SiO 2 thickness enters to the modeling as a parameter, it was precisely measured atmore » the location of the sample. It was found that a common constant optical index cannot explain the wavelength-dependent reflectivity data for single-, double- and three-layer graphene simultaneously, but rather each individual few-layer graphene possesses a unique optical index whose complex values were precisely and accurately determined from the experimental data.« less

  13. Measuring the complex optical conductivity of graphene by Fabry-Pérot reflectance spectroscopy [Determination of the optical index for few-layer graphene by reflectivity spectroscopy

    DOE PAGES

    Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito; ...

    2016-09-29

    Here, we have experimentally studied the optical refractive index of few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a coherent supercontinuum laser source measured the reflectivity of an exfoliated graphene flake on a Si/SiO 2 substrate, containing monolayer, bilayer and trilayer areas, as the wavelength of the laser was varied from 545nm to 710nm. The complex refractive index of few-layer graphene, n-ik, was extracted from the reflectivity contrast to the bare substrate and the Fresnel reflection theory. Since the SiO 2 thickness enters to the modeling as a parameter, it was precisely measured atmore » the location of the sample. It was found that a common constant optical index cannot explain the wavelength-dependent reflectivity data for single-, double- and three-layer graphene simultaneously, but rather each individual few-layer graphene possesses a unique optical index whose complex values were precisely and accurately determined from the experimental data.« less

  14. Well-Differentiated Papillary Mesothelioma of the Tunica Vaginalis: A Case Study and Review of the Literature

    PubMed Central

    Acikalin, Arbil; Zeren, Handan; Gonlusen, Gulfılız; Zorludemir, Suzan; Izol, Volkan

    2014-01-01

    Well-differentiated papillary mesothelioma is an uncommon tumor of the testes that usually presents as a hydrocele. Here, we present the case of one patient who did not have a history of asbestos exposure. The tumor was localized in the tunica vaginalis and was composed of three pedunculated masses macroscopically. Microscopically, branching papillary structures with focal coagulative necrosis were present. In addition to immunohistochemistry, simian virus 40 DNA was also tested by polymerase chain reaction. This report presents one case of this rare entity, its clinical and macroscopic features, and follow-up results. PMID:25013421

  15. Polarization-correlation diagnostics and differentiation of cholelithiasis in patients with chronic cholecystitis combined with diabetes mellitus type 2

    NASA Astrophysics Data System (ADS)

    Marchuk, Yu F.; Fediv, O. I.; Ivashchuk, I. O.; Andriychuk, D. R.

    2011-09-01

    The principles of optical modeling of human bile polycrystalline structure are described. The main types of polycrystalline structures are detailed. It has been proposed and founded the scenarios of formation of bile microscopic images polarization structure in coherent radiation. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of intensity of laser images of bile smears of cholelithiasis patients in combination with other pathologies. The diagnostic criteria of the cholelithiasis nascency and its severity degree differentiation are determined.

  16. Eddy-Current Inspection Of Tab Seals On Beverage Cans

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1994-01-01

    Eddy-current inspection system monitors tab seals on beverage cans. Device inspects all cans at usual production rate of 1,500 to 2,000 cans per minute. Automated inspection of all units replaces visual inspection by microscope aided by mass spectrometry. System detects defects in real time. Sealed cans on conveyor pass near one of two coils in differential eddy-current probe. Other coil in differential eddy-current probe positioned near stationary reference can on which tab seal is known to be of acceptable quality. Signal of certain magnitude at output of probe indicates defective can, automatically ejected from conveyor.

  17. Efficacy of direct Gram stain in differentiating staphylococci from streptococci in blood cultures positive for gram-positive cocci.

    PubMed Central

    Agger, W A; Maki, D G

    1978-01-01

    A preponderance of clusters seen on direct Gram stain of blood cultures positive for gram-positive cocci was 98% sensitive and 100% specific for identification of staphylococcal species or of Peptococcus. A preponderance of chains, pairs, or both was 100% sensitive and 98% specific for identifying streptococci. Further presumptive identification of either staphylococci or streptococci based on microscopic morphology was unreliable. The direct Gram stain is highly reliable for differentiating staphylococci from streptococci and should be of considerable value to clinicians selecting initial antimicrobial therapy. PMID:75888

  18. Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy

    PubMed Central

    1981-01-01

    Video cameras with contrast and black level controls can yield polarized light and differential interference contrast microscope images with unprecedented image quality, resolution, and recording speed. The theoretical basis and practical aspects of video polarization and differential interference contrast microscopy are discussed and several applications in cell biology are illustrated. These include: birefringence of cortical structures and beating cilia in Stentor, birefringence of rotating flagella on a single bacterium, growth and morphogenesis of echinoderm skeletal spicules in culture, ciliary and electrical activity in a balancing organ of a nudibranch snail, and acrosomal reaction in activated sperm. PMID:6788777

  19. Polarization-correlation diagnostics and differentiation of cholelithiasis in patients with chronic cholecystitis combined with diabetes mellitus type 2

    NASA Astrophysics Data System (ADS)

    Marchuk, Yu F.; Fediv, O. I.; Ivashchuk, I. O.; Andriychuk, D. R.

    2012-01-01

    The principles of optical modeling of human bile polycrystalline structure are described. The main types of polycrystalline structures are detailed. It has been proposed and founded the scenarios of formation of bile microscopic images polarization structure in coherent radiation. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of intensity of laser images of bile smears of cholelithiasis patients in combination with other pathologies. The diagnostic criteria of the cholelithiasis nascency and its severity degree differentiation are determined.

  20. Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections.

    PubMed

    Kuepper, Claus; Kallenbach-Thieltges, Angela; Juette, Hendrik; Tannapfel, Andrea; Großerueschkamp, Frederik; Gerwert, Klaus

    2018-05-16

    A feasibility study using a quantum cascade laser-based infrared microscope for the rapid and label-free classification of colorectal cancer tissues is presented. Infrared imaging is a reliable, robust, automated, and operator-independent tissue classification method that has been used for differential classification of tissue thin sections identifying tumorous regions. However, long acquisition time by the so far used FT-IR-based microscopes hampered the clinical translation of this technique. Here, the used quantum cascade laser-based microscope provides now infrared images for precise tissue classification within few minutes. We analyzed 110 patients with UICC-Stage II and III colorectal cancer, showing 96% sensitivity and 100% specificity of this label-free method as compared to histopathology, the gold standard in routine clinical diagnostics. The main hurdle for the clinical translation of IR-Imaging is overcome now by the short acquisition time for high quality diagnostic images, which is in the same time range as frozen sections by pathologists.

  1. Digital photography for the light microscope: results with a gated, video-rate CCD camera and NIH-image software.

    PubMed

    Shaw, S L; Salmon, E D; Quatrano, R S

    1995-12-01

    In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.

  2. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish.

    PubMed

    Kim, Dal Hyung; Kim, Jungsoo; Marques, João C; Grama, Abhinav; Hildebrand, David G C; Gu, Wenchao; Li, Jennifer M; Robson, Drew N

    2017-11-01

    Calcium imaging with cellular resolution typically requires an animal to be tethered under a microscope, which substantially restricts the range of behaviors that can be studied. To expand the behavioral repertoire amenable to imaging, we have developed a tracking microscope that enables whole-brain calcium imaging with cellular resolution in freely swimming larval zebrafish. This microscope uses infrared imaging to track a target animal in a behavior arena. On the basis of the predicted trajectory of the animal, we applied optimal control theory to a motorized stage system to cancel brain motion in three dimensions. We combined this motion-cancellation system with differential illumination focal filtering, a variant of HiLo microscopy, which enabled us to image the brain of a freely swimming larval zebrafish for more than an hour. This work expands the repertoire of natural behaviors that can be studied with cellular-resolution calcium imaging to potentially include spatial navigation, social behavior, feeding and reward.

  3. Local Order-Disorder Transition Driving by Structural Heterogeneity in a Benzyl Functionalized Ionic Liquid.

    PubMed

    Faria, Luiz F O; Paschoal, Vitor H; Lima, Thamires A; Ferreira, Fabio F; Freitas, Rafael S; Ribeiro, Mauro C C

    2017-10-26

    A local order-disorder transition has been disclosed in the thermophysical behavior of the ionic liquid 1-benzyl-3-methylimidazolium dicyanamide, [Bzmim][N(CN) 2 ], and its microscopic nature revealed by spectroscopic techniques. Differential scanning calorimetry and specific heat measurements show a thermal event of small enthalpy variation taking place in the range 250-260 K, which is not due to crystallization or melting. Molecular dynamic simulations and X-ray diffraction measurements have been used to discuss the segregation of domains in the liquid structure of [Bzmim][N(CN) 2 ]. Raman and NMR spectroscopy measurements as a function of temperature indicate that the microscopic origin of the event observed in the calorimetric measurements comes from structural rearrangement involving the benzyl group. The results indicate that the characteristic structural heterogeneity allow for rearrangements within local domains implying the good glass-forming ability for the low viscosity ionic liquid [Bzmim][N(CN) 2 ]. This work sheds light on our understanding of the microscopic origin behind complex thermal behavior of ionic liquids.

  4. An atomic force microscope for the study of the effects of tip sample interactions on dimensional metrology

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Koenders, Ludger; Wolff, Helmut

    2007-02-01

    An atomic force microscope (AFM) has been developed for studying interactions between the AFM tip and the sample. Such interactions need to be taken into account when making quantitative measurements. The microscope reported here has both the conventional beam deflection system and a fibre optical interferometer for measuring the movement of the cantilever. Both can be simultaneously used so as to not only servo control the tip movements, but also detect residual movement of the cantilever. Additionally, a high-resolution homodyne differential optical interferometer is used to measure the vertical displacement between the cantilever holder and the sample, thereby providing traceability for vertical height measurements. The instrument is compatible with an x-ray interferometer, thereby facilitating high resolution one-dimensional scans in the X-direction whose metrology is based on the silicon d220 lattice spacing (0.192 nm). This paper concentrates on the first stage of the instrument's development and presents some preliminary results validating the instrument's performance and showing its potential.

  5. A high-resolution multimode digital microscope system.

    PubMed

    Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry

    2013-01-01

    This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.

  6. A surface science compatible epifluorescence microscope for inspection of samples under ultra high vacuum and cryogenic conditions.

    PubMed

    Marquardt, Christian; Paulheim, Alexander; Rohbohm, Nils; Merkel, Rudolf; Sokolowski, Moritz

    2017-08-01

    We modified an epi-illumination light microscope and mounted it on an ultra high vacuum chamber for investigating samples used in a surface science experiment. For easy access and bake out, all optical components are placed outside the vacuum and the sample is imaged through a glass window. The microscope can be operated in reflection brightfield or epifluorescence mode to image the sample surface or fluorescent dye molecules adsorbed on it. The homemade sample mounting was made compatible for the use under the microscope; sample temperatures as low as 6 K can be achieved. The performance of the microscope is demonstrated on two model samples: Brightfield-images of a well-prepared Ag(100) surface show a macroscopic corrugation of the surface, although low energy electron diffraction data indicate a highly ordered crystalline surface. The surface shows macroscopic protrusions with flat regions, about 20-200 μm in diameter, in between. Fluorescence images of diluted 3,4,9,10-perylene tetracarboxylicacid dianhydride (PTCDA) molecules adsorbed on an ultrathin epitaxial KCl film on the Ag(100) surface show a shading effect at surface protrusions due to an inclined angle of incidence of the PTCDA beam during deposition. For some preparations, the distribution of the fluorescence intensity is inhomogeneous and shows a dense network of bright patches about 5 μm in diameter related to the macroscopic corrugation of the surface. We propose that such a light microscope can aid many surface science experiments, especially those dealing with epitaxial growth or fluorescent materials.

  7. Differential Impact of Close Surgical Margin on Local Recurrence According to Primary Tumor Size in Oral Squamous Cell Carcinoma.

    PubMed

    Jang, Jeon Yeob; Choi, Nayeon; Ko, Young-Hyeh; Chung, Man Ki; Son, Young-Ik; Baek, Chung-Hwan; Baek, Kwan-Hyuck; Jeong, Han-Sin

    2017-06-01

    The extent of surgical safety margin (gross tumor border to resection margin) in oral cancer surgery remains unclear, and no study has determined the differential impact of close surgical margin and microscopic extension according to primary tumor size in oral cancers. We retrospectively analyzed the clinical data of 325 patients with surgically treated oral cavity squamous cell carcinomas to determine the effect of a close surgical margin (<5 mm) (cSM 5 ) on local recurrence. In addition, the depth of microscopic tumor infiltration was determined in 90 available surgical specimens. The cSM 5 was not related to the risk of local tumor recurrence in early-stage oral cancer, while it significantly increased the rate of local tumor recurrence in resectable advanced-stage oral cancers (hazard ratio 3.157, 95 % confidence interval 1.050-9.407, p = 0.041). Addition of postoperative adjuvant radiation to early-stage tumors with cSM 5 did not further reduce the local recurrence rate compared to surgery alone. The depth of microscopic tumor extension from the gross tumor border was significantly associated with primary tumor thickness (ρ = 0.390, p < 0.001) and tumor sizes (ρ = 0.308, p = 0.003), which was a median (range) of 0.84 (0.14-2.32) mm in T1, 1.06 (0.20-4.34) mm in T2, and 1.77 (0.13-4.70) mm in T3-4. The cSM 5 was a significant risk factor for local recurrence only in advanced oral cancers, but not in early-stage tumors, where microscopic tumor extension was not beyond 3 mm in T1 tumors. Thus, the extent of surgical safety margin can be redefined according to the primary tumor size.

  8. Simple and cost-effective hardware and software for functional brain mapping using intrinsic optical signal imaging.

    PubMed

    Harrison, Thomas C; Sigler, Albrecht; Murphy, Timothy H

    2009-09-15

    We describe a simple and low-cost system for intrinsic optical signal (IOS) imaging using stable LED light sources, basic microscopes, and commonly available CCD cameras. IOS imaging measures activity-dependent changes in the light reflectance of brain tissue, and can be performed with a minimum of specialized equipment. Our system uses LED ring lights that can be mounted on standard microscope objectives or video lenses to provide a homogeneous and stable light source, with less than 0.003% fluctuation across images averaged from 40 trials. We describe the equipment and surgical techniques necessary for both acute and chronic mouse preparations, and provide software that can create maps of sensory representations from images captured by inexpensive 8-bit cameras or by 12-bit cameras. The IOS imaging system can be adapted to commercial upright microscopes or custom macroscopes, eliminating the need for dedicated equipment or complex optical paths. This method can be combined with parallel high resolution imaging techniques such as two-photon microscopy.

  9. Design and fabrication of x-ray Kirkpatrick-Baez microscope for ICF

    NASA Astrophysics Data System (ADS)

    Mu, Baozhong; Wang, Zhanshan; Huang, Shengling; Yi, Shengzhen; Shen, Zhengxiang

    2007-12-01

    A hard x-ray (8 keV, Kα line of Cu) Kirkpatrick-Baez (KB) microscope was designed for the diagnostics of inertial confinement fusion (ICF). Three main parts including optical design, fabrication of multilayers, and alignment method were discussed in this paper. According to the deduced equation of aberration in whole field, an optical system was designed, which gives attention to not only spatial resolution but also the collection efficiency. Tungsten (W) and boron carbide (B4C) were chosen as multilayer materials and the non-periodic multilayer with 40 layers was deposited. The measured reflectivity by XRD is better than 18% in the bandwidth range of about 0.3%. Super accurately alignment is another difficulty in the application of KB microscope. To meet the requirements of pointing and co-focusing, a binocular laser pointer which is flexible enough was designed. Finally, an 8keV x-ray tube was used as source in x-ray imaging experiment and images with magnification of 2× were obtained.

  10. PISA Mathematics and Reading Performance Differences of Mainstream European and Turkish Immigrant Students

    ERIC Educational Resources Information Center

    Arikan, Serkan; van de Vijver, Fons J. R.; Yagmur, Kutlay

    2017-01-01

    Lower reading and mathematics performance of Turkish immigrant students as compared to mainstream European students could reflect differential learning outcomes, differential socioeconomic backgrounds of the groups, differential mainstream language proficiency, and/or test bias. Using PISA reading and mathematics scores of these groups, we…

  11. Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium.

    PubMed

    FitzGerald, Paul; Sun, Ning; Shibata, Brad; Hess, John F

    2016-01-01

    The differentiated lens fiber cell assembles a filamentous cytoskeletal structure referred to as the beaded filament (BF). The BF requires CP49 (bfsp2) and filensin (bfsp1) for assembly, both of which are highly divergent members of the large intermediate filament (IF) family of proteins. Thus far, these two proteins have been reported only in the differentiated lens fiber cell. For this reason, both proteins have been considered robust markers of fiber cell differentiation. We report here that both proteins are also expressed in the mouse lens epithelium, but only after 5 weeks of age. Localization of CP49 was achieved with immunocytochemical probing of wild-type, CP49 knockout, filensin knockout, and vimentin knockout mice, in sections and in the explanted lens epithelium, at the light microscope and electron microscope levels. The relationship between CP49 and other cytoskeletal elements was probed using fluorescent phalloidin, as well as with antibodies to vimentin, GFAP, and α-tubulin. The relationship between CP49 and the aggresome was probed with antibodies to γ-tubulin, ubiquitin, and HDAC6. CP49 and filensin were expressed in the mouse lens epithelium, but only after 5 weeks of age. At the light microscope level, these two proteins colocalize to a large tubular structure, approximately 7 × 1 μm, which was typically present at one to two copies per cell. This structure is found in the anterior and anterolateral lens epithelium, including the zone where mitosis occurs. The structure becomes smaller and largely undetectable closer to the equator where the cell exits the cell cycle and commits to fiber cell differentiation. This structure bears some resemblance to the aggresome and is reactive with antibodies to HDAC6, a marker for the aggresome. However, the structure does not colocalize with antibodies to γ-tubulin or ubiquitin, also markers for the aggresome. The structure also colocalizes with actin but appears to largely exclude vimentin and α-tubulin. In the CP49 and filensin knockouts, this structure is absent, confirming the identity of CP49 and filensin in this structure, and suggesting a requirement for the physiologic coassembly of CP49 and filensin. CP49 and filensin have been considered robust markers for mouse lens fiber cell differentiation. The data reported here, however, document both proteins in the mouse lens epithelium, but only after 5 weeks of age, when lens epithelial growth and mitotic activity have slowed. Because of this, CP49 and filensin must be considered markers of differentiation for both fiber cells and the lens epithelium in the mouse. In addition, to our knowledge, no other protein has been shown to emerge so late in the development of the mouse lens epithelium, suggesting that lens epithelial differentiation may continue well into post-natal life. If this structure is related to the aggresome, it is a rare, or perhaps unique example of a large, stable aggresome in wild-type tissue.

  12. [Forensic medical evaluation of stab-incised wounds caused by knives with point defects].

    PubMed

    Krupin, K N; Leonov, S V

    2011-01-01

    The present experimental study allowed to characterize specific signs of stab-incised wounds caused by knives with operational point defects. Diagnostic coefficients calculated for these macro- and microscopic features facilitate differential diagnostics of the injuries and make it possible to identify a concrete stabbing/cutting weapon with which the wound was inflicted..

  13. Tropical sea snail shells: Possible exotic sources for ceramic biomaterial synthesis

    NASA Astrophysics Data System (ADS)

    Oktar, F. N.; Kiyici, I. A.; Gökçe, H.; Aǧaogulları, D.; Kayali, E. S.

    2013-12-01

    In this study, chemical and structural properties of sea snail shell based bioceramic materials (i.e. hydroxyapatite, whitlockite and other phases) are produced by using mechano-chemical (ultrasonic) conversion method. For this purpose, differential thermal and gravimetric analysis (DTA/TG), X-ray diffraction, infra-red (IR) and scanning electron microscope (SEM) studies are performed.

  14. Cecal vascular hamartoma causing recurrent colic in an Arabian mare.

    PubMed

    Nolf, Marie; Maninchedda, Ugo; Belluco, Sara; Lepage, Olivier; Cadoré, Jean-Luc

    2014-06-01

    A 5-year-old mare was treated for recurrent colic and weight loss by surgical removal of an intraluminal cecal mass. Microscopic examination revealed vascular hamartoma. A 6-month follow-up showed an improvement in the general condition of the mare. Vascular hamartoma should be one of the differential diagnoses for weight loss and colic.

  15. A Study of Classroom Inquiry and Reflection among Preservice Teachers Candidates

    ERIC Educational Resources Information Center

    Duquette, Cheryll; Dabrowski, Leah

    2016-01-01

    The purpose of this study was to explore the experiences of four preservice teachers who used classroom inquiry and reflection to solve problems when implementing differentiated instruction in elementary classrooms during a practicum. Data from classroom observations, individual reflections, and discussions with a teacher educator were analyzed…

  16. Availability of a library of infrared (2.1-25.0 microns) mineral spectra

    NASA Technical Reports Server (NTRS)

    Salisbury, John W.; Vergo, Norma; Walter, Louis S.

    1989-01-01

    All previously published libraries of infrared mineral spectra are in the form of transmitance. Reflectance spectra are, however, more useful for remote sensing and some potential laboratory applications, such as the use of an infrared microscope for mineral identification on polished sections. This note points out that construction of a new library of infrared (2.1-25.0 microns) mineral spectra is in progress. Both transmittance and reflectance measurements of a selection of 63 different, well-characterized minerals have been published to date. These data are available in both hard copy and digital form.

  17. Picosecond absorption relaxation measured with nanosecond laser photoacoustics

    PubMed Central

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2010-01-01

    Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural—including strongly scattering and nonfluorescent—materials. PMID:21079726

  18. Picosecond absorption relaxation measured with nanosecond laser photoacoustics.

    PubMed

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2010-10-18

    Picosecond absorption relaxation-central to many disciplines-is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural-including strongly scattering and nonfluorescent-materials.

  19. The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE).

    PubMed

    Szczepankiewicz, Filip; van Westen, Danielle; Englund, Elisabet; Westin, Carl-Fredrik; Ståhlberg, Freddy; Lätt, Jimmy; Sundgren, Pia C; Nilsson, Markus

    2016-11-15

    The structural heterogeneity of tumor tissue can be probed by diffusion MRI (dMRI) in terms of the variance of apparent diffusivities within a voxel. However, the link between the diffusional variance and the tissue heterogeneity is not well-established. To investigate this link we test the hypothesis that diffusional variance, caused by microscopic anisotropy and isotropic heterogeneity, is associated with variable cell eccentricity and cell density in brain tumors. We performed dMRI using a novel encoding scheme for diffusional variance decomposition (DIVIDE) in 7 meningiomas and 8 gliomas prior to surgery. The diffusional variance was quantified from dMRI in terms of the total mean kurtosis (MK T ), and DIVIDE was used to decompose MK T into components caused by microscopic anisotropy (MK A ) and isotropic heterogeneity (MK I ). Diffusion anisotropy was evaluated in terms of the fractional anisotropy (FA) and microscopic fractional anisotropy (μFA). Quantitative microscopy was performed on the excised tumor tissue, where structural anisotropy and cell density were quantified by structure tensor analysis and cell nuclei segmentation, respectively. In order to validate the DIVIDE parameters they were correlated to the corresponding parameters derived from microscopy. We found an excellent agreement between the DIVIDE parameters and corresponding microscopy parameters; MK A correlated with cell eccentricity (r=0.95, p<10 -7 ) and MK I with the cell density variance (r=0.83, p<10 -3 ). The diffusion anisotropy correlated with structure tensor anisotropy on the voxel-scale (FA, r=0.80, p<10 -3 ) and microscopic scale (μFA, r=0.93, p<10 -6 ). A multiple regression analysis showed that the conventional MK T parameter reflects both variable cell eccentricity and cell density, and therefore lacks specificity in terms of microstructure characteristics. However, specificity was obtained by decomposing the two contributions; MK A was associated only to cell eccentricity, and MK I only to cell density variance. The variance in meningiomas was caused primarily by microscopic anisotropy (mean±s.d.) MK A =1.11±0.33 vs MK I =0.44±0.20 (p<10 -3 ), whereas in the gliomas, it was mostly caused by isotropic heterogeneity MK I =0.57±0.30 vs MK A =0.26±0.11 (p<0.05). In conclusion, DIVIDE allows non-invasive mapping of parameters that reflect variable cell eccentricity and density. These results constitute convincing evidence that a link exists between specific aspects of tissue heterogeneity and parameters from dMRI. Decomposing effects of microscopic anisotropy and isotropic heterogeneity facilitates an improved interpretation of tumor heterogeneity as well as diffusion anisotropy on both the microscopic and macroscopic scale. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Transcriptional profiling of murine osteoblast differentiation based on RNA-seq expression analyses.

    PubMed

    Khayal, Layal Abo; Grünhagen, Johannes; Provazník, Ivo; Mundlos, Stefan; Kornak, Uwe; Robinson, Peter N; Ott, Claus-Eric

    2018-04-11

    Osteoblastic differentiation is a multistep process characterized by osteogenic induction of mesenchymal stem cells, which then differentiate into proliferative pre-osteoblasts that produce copious amounts of extracellular matrix, followed by stiffening of the extracellular matrix, and matrix mineralization by hydroxylapatite deposition. Although these processes have been well characterized biologically, a detailed transcriptional analysis of murine primary calvaria osteoblast differentiation based on RNA sequencing (RNA-seq) analyses has not previously been reported. Here, we used RNA-seq to obtain expression values of 29,148 genes at four time points as murine primary calvaria osteoblasts differentiate in vitro until onset of mineralization was clearly detectable by microscopic inspection. Expression of marker genes confirmed osteogenic differentiation. We explored differential expression of 1386 protein-coding genes using unsupervised clustering and GO analyses. 100 differentially expressed lncRNAs were investigated by co-expression with protein-coding genes that are localized within the same topologically associated domain. Additionally, we monitored expression of 237 genes that are silent or active at distinct time points and compared differential exon usage. Our data represent an in-depth profiling of murine primary calvaria osteoblast differentiation by RNA-seq and contribute to our understanding of genetic regulation of this key process in osteoblast biology. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Normal incidence reflectance of ion beam deposited SiC films in the EUV

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Osantowski, John F.; Herzig, Howard; Gum, Jeffrey S.; Toft, Albert R.

    1988-01-01

    Results are presented from an experimental investigation of the normal-incidence reflectance at 58.4, 92.0, and 121.6 nm wavelength of 30- and 80-nm-thick SiC films produced by ion-beam deposition on unheated 5 x 5-cm microscope slides. The films were deposited in the 2-m evaporator described by Bradford et al. (1969) with chamber base pressure 1 microtorr, operating pressure 40 microtorr, and a 50-62-mA 750-eV Ar ion beam; the reflectance measurements were obtained in the reflector-monochromator system described by Osantowski (1974). Reflectances of over 30 percent were found at 92 and 121.6 nm, almost equal to those of polished CVD films of SiC and degrading only slightly after aging for 4 months. It is suggested that ion-beam deposition may be the best low-temperature technique for coating EUV optics for space astronomy.

  2. Microscopic iron metal on glass and minerals - A tool for studying regolith maturity

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Morris, R. V.; Lauer, H. V., Jr.; Mckay, D. S.

    1993-01-01

    A novel method of producing mixtures of glass or minerals with iron metal is presented. A portion of the Fe(2+) in basaltic glass and minerals can be reduced to metal in a few hours at 1100 C and an oxygen fugacity well below the iron-wustite buffer. Part of the iron metals forms rounded submicrometer blebs on the surfaces and in some cases within the grains. A concentration of such blebs equivalent to 20-30 percent of a grain's surface area can totally dominate the reflectance spectra of basaltic glass, pyroxene, and olivine. The production of optically opaque iron metal blebs, combined with the decline in Fe(2+), affects the glass and mineral reflectance spectra in three ways: by lowering the overall reflectivity, reducing the spectral contrast of absorption features, and producing a continuum with a general rise in reflectivity toward longer wavelengths.

  3. Optical Estimation of the 3D Shape of a Solar Illuminated, Reflecting Satellite Surface

    NASA Astrophysics Data System (ADS)

    Antolin, J.; Yu, Z.; Prasad, S.

    2016-09-01

    The spatial distribution of the polarized component of the power reflected by a macroscopically smooth but microscopically roughened curved surface under highly directional illumination, as characterized by an appropriate bi-directional reflectance distribution function (BRDF), carries information about the three-dimensional (3D) shape of the surface. This information can be exploited to recover the surface shape locally under rather general conditions whenever power reflectance data for at least two different illumination or observation directions can be obtained. We present here two different parametric approaches for surface reconstruction, amounting to the recovery of the surface parameters that are either the global parameters of the family to which the surface is known a priori to belong or the coefficients of a low-order polynomial that can be employed to characterize a smoothly varying surface locally over the observed patch.

  4. Study on Hyperspectral Characteristics and Estimation Model of Soil Mercury Content

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Dong, Zhenyu; Sun, Zenghui; Ma, Hongchao; Shi, Lei

    2017-12-01

    In this study, the mercury content of 44 soil samples in Guan Zhong area of Shaanxi Province was used as the data source, and the reflectance spectrum of soil was obtained by ASD Field Spec HR (350-2500 nm) Comparing the reflection characteristics of different contents and the effect of different pre-treatment methods on the establishment of soil heavy metal spectral inversion model. The first order differential, second order differential and reflectance logarithmic transformations were carried out after the pre-treatment of NOR, MSC and SNV, and the sensitive bands of reflectance and mercury content in different mathematical transformations were selected. A hyperspectral estimation model is established by regression method. The results of chemical analysis show that there is a serious Hg pollution in the study area. The results show that: (1) the reflectivity decreases with the increase of mercury content, and the sensitive regions of mercury are located at 392 ~ 455nm, 923nm ~ 1040nm and 1806nm ~ 1969nm. (2) The combination of NOR, MSC and SNV transformations combined with differential transformations can improve the information of heavy metal elements in the soil, and the combination of high correlation band can improve the stability and prediction ability of the model. (3) The partial least squares regression model based on the logarithm of the original reflectance is better and the precision is higher, Rc2 = 0.9912, RMSEC = 0.665; Rv2 = 0.9506, RMSEP = 1.93, which can achieve the mercury content in this region Quick forecast.

  5. A hyperspectral imaging system for the evaluation of the human iris spectral reflectance

    NASA Astrophysics Data System (ADS)

    Di Cecilia, Luca; Marazzi, Francesco; Rovati, Luigi

    2017-02-01

    According to previous studies, the measurement of the human iris pigmentation can be exploited to detect certain eye pathological conditions in their early stage. In this paper, we propose an instrument and a method to perform hyperspectral quantitative measurements of the iris spectral reflectance. The system is based on a simple imaging setup, which includes a monochrome camera mounted on a standard ophthalmic microscope movement controller, a monochromator, and a flashing LED-based slit lamp. To assure quantitative measurements, the system is properly calibrated against a NIST reflectance standard. Iris reflectance images can be obtained in the spectral range 495-795 nm with a resolution of 25 nm. Each image consists of 1280 x 1024 pixels having a spatial resolution of 18 μm. Reflectance spectra can be calculated both from discrete areas of the iris and as the average of the whole iris surface. Preliminary results suggest that hyperspectral imaging of the iris can provide much more morphological and spectral information with respect to conventional qualitative colorimetric methods.

  6. Plasmodium species differentiation by non-expert on-line volunteers for remote malaria field diagnosis.

    PubMed

    Ortiz-Ruiz, Alejandra; Postigo, María; Gil-Casanova, Sara; Cuadrado, Daniel; Bautista, José M; Rubio, José Miguel; Luengo-Oroz, Miguel; Linares, María

    2018-01-30

    Routine field diagnosis of malaria is a considerable challenge in rural and low resources endemic areas mainly due to lack of personnel, training and sample processing capacity. In addition, differential diagnosis of Plasmodium species has a high level of misdiagnosis. Real time remote microscopical diagnosis through on-line crowdsourcing platforms could be converted into an agile network to support diagnosis-based treatment and malaria control in low resources areas. This study explores whether accurate Plasmodium species identification-a critical step during the diagnosis protocol in order to choose the appropriate medication-is possible through the information provided by non-trained on-line volunteers. 88 volunteers have performed a series of questionnaires over 110 images to differentiate species (Plasmodium falciparum, Plasmodium ovale, Plasmodium vivax, Plasmodium malariae, Plasmodium knowlesi) and parasite staging from thin blood smear images digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Visual cues evaluated in the surveys include texture and colour, parasite shape and red blood size. On-line volunteers are able to discriminate Plasmodium species (P. falciparum, P. malariae, P. vivax, P. ovale, P. knowlesi) and stages in thin-blood smears according to visual cues observed on digitalized images of parasitized red blood cells. Friendly textual descriptions of the visual cues and specialized malaria terminology is key for volunteers learning and efficiency. On-line volunteers with short-training are able to differentiate malaria parasite species and parasite stages from digitalized thin smears based on simple visual cues (shape, size, texture and colour). While the accuracy of a single on-line expert is far from perfect, a single parasite classification obtained by combining the opinions of multiple on-line volunteers over the same smear, could improve accuracy and reliability of Plasmodium species identification in remote malaria diagnosis.

  7. Evaluation of cell count and classification capabilities in body fluids using a fully automated Sysmex XN equipped with high-sensitive Analysis (hsA) mode and DI-60 hematology analyzer system.

    PubMed

    Takemura, Hiroyuki; Ai, Tomohiko; Kimura, Konobu; Nagasaka, Kaori; Takahashi, Toshihiro; Tsuchiya, Koji; Yang, Haeun; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Tabe, Yoko; Ohsaka, Akimichi

    2018-01-01

    The XN series automated hematology analyzer has been equipped with a body fluid (BF) mode to count and differentiate leukocytes in BF samples including cerebrospinal fluid (CSF). However, its diagnostic accuracy is not reliable for CSF samples with low cell concentration at the border between normal and pathologic level. To overcome this limitation, a new flow cytometry-based technology, termed "high sensitive analysis (hsA) mode," has been developed. In addition, the XN series analyzer has been equipped with the automated digital cell imaging analyzer DI-60 to classify cell morphology including normal leukocytes differential and abnormal malignant cells detection. Using various BF samples, we evaluated the performance of the XN-hsA mode and DI-60 compared to manual microscopic examination. The reproducibility of the XN-hsA mode showed good results in samples with low cell densities (coefficient of variation; % CV: 7.8% for 6 cells/μL). The linearity of the XN-hsA mode was established up to 938 cells/μL. The cell number obtained using the XN-hsA mode correlated highly with the corresponding microscopic examination. Good correlation was also observed between the DI-60 analyses and manual microscopic classification for all leukocyte types, except monocytes. In conclusion, the combined use of cell counting with the XN-hsA mode and automated morphological analyses using the DI-60 mode is potentially useful for the automated analysis of BF cells.

  8. A quantitative microscopic approach to predict local recurrence based on in vivo intraoperative imaging of sarcoma tumor margins

    PubMed Central

    Mueller, Jenna L.; Fu, Henry L.; Mito, Jeffrey K.; Whitley, Melodi J.; Chitalia, Rhea; Erkanli, Alaattin; Dodd, Leslie; Cardona, Diana M.; Geradts, Joseph; Willett, Rebecca M.; Kirsch, David G.; Ramanujam, Nimmi

    2015-01-01

    The goal of resection of soft tissue sarcomas located in the extremity is to preserve limb function while completely excising the tumor with a margin of normal tissue. With surgery alone, one-third of patients with soft tissue sarcoma of the extremity will have local recurrence due to microscopic residual disease in the tumor bed. Currently, a limited number of intraoperative pathology-based techniques are used to assess margin status; however, few have been widely adopted due to sampling error and time constraints. To aid in intraoperative diagnosis, we developed a quantitative optical microscopy toolbox, which includes acriflavine staining, fluorescence microscopy, and analytic techniques called sparse component analysis and circle transform to yield quantitative diagnosis of tumor margins. A series of variables were quantified from images of resected primary sarcomas and used to optimize a multivariate model. The sensitivity and specificity for differentiating positive from negative ex vivo resected tumor margins was 82% and 75%. The utility of this approach was tested by imaging the in vivo tumor cavities from 34 mice after resection of a sarcoma with local recurrence as a bench mark. When applied prospectively to images from the tumor cavity, the sensitivity and specificity for differentiating local recurrence was 78% and 82%. For comparison, if pathology was used to predict local recurrence in this data set, it would achieve a sensitivity of 29% and a specificity of 71%. These results indicate a robust approach for detecting microscopic residual disease, which is an effective predictor of local recurrence. PMID:25994353

  9. How to Implement Differentiated Instruction? Adjust, Adjust, Adjust: North Carolina Project Begins with Encouragement from Administrators

    ERIC Educational Resources Information Center

    Lewis, Sylvia G.; Batts, Kelly

    2005-01-01

    To help teachers meet the diverse needs of individual students, North Topsail Elementary School in North Carolina developed a differentiated instruction program. North Topsail began its change with staff focusing on the principles of Accelerated Schools, including differentiation. Teachers reflected, developed a vision, and set priorities for…

  10. Reflectivity retrieval in a networked radar environment

    NASA Astrophysics Data System (ADS)

    Lim, Sanghun

    Monitoring of precipitation using a high-frequency radar system such as X-band is becoming increasingly popular due to its lower cost compared to its counterpart at S-band. Networks of meteorological radar systems at higher frequencies are being pursued for targeted applications such as coverage over a city or a small basin. However, at higher frequencies, the impact of attenuation due to precipitation needs to be resolved for successful implementation. In this research, new attenuation correction algorithms are introduced to compensate the attenuation impact due to rain medium. In order to design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to obtain that data set is through theoretical models. Methodologies for generating realistic range profiles of radar variables at attenuating frequencies such as X-band for rain medium are presented here. Fundamental microphysical properties of precipitation, namely size and shape distribution information, are used to generate realistic profiles of X-band starting with S-band observations. Conditioning the simulation from S-band radar measurements maintains the natural distribution of microphysical parameters associated with rainfall. In this research, data taken by the CSU-CHILL radar and the National Center for Atmospheric Research S-POL radar are used to simulate X-band radar variables. Three procedures to simulate the radar variables at X-band and sample applications are presented. A new attenuation correction algorithm based on profiles of reflectivity, differential reflectivity, and differential propagation phase shift is presented. A solution for specific attenuation retrieval in rain medium is proposed that solves the integral equations for reflectivity and differential reflectivity with cumulative differential propagation phase shift constraint. The conventional rain profiling algorithms that connect reflectivity and specific attenuation can retrieve specific attenuation values along the radar path assuming a constant intercept parameter of the normalized drop size distribution. However, in convective storms, the drop size distribution parameters can have significant variation along the path. In this research, a dual-polarization rain profiling algorithm for horizontal-looking radars incorporating reflectivity as well as differential reflectivity profiles is developed. The dual-polarization rain profiling algorithm has been evaluated with X-band radar observations simulated from drop size distribution derived from high-resolution S-band measurements collected by the CSU-CHILL radar. The analysis shows that the dual-polarization rain profiling algorithm provides significant improvement over the current algorithms. A methodology for reflectivity and attenuation retrieval for rain medium in a networked radar environment is described. Electromagnetic waves backscattered from a common volume in networked radar systems are attenuated differently along the different paths. A solution for the specific attenuation distribution is proposed by solving the integral equation for reflectivity. The set of governing integral equations describing the backscatter and propagation of common resolution volume are solved simultaneously with constraints on total path attenuation. The proposed algorithm is evaluated based on simulated X-band radar observations synthesized from S-band measurements collected by the CSU-CHILL radar. Retrieved reflectivity and specific attenuation using the proposed method show good agreement with simulated reflectivity and specific attenuation.

  11. Nuclear-Recoil Differential Cross Sections for the Two Photon Double Ionization of Helium

    NASA Astrophysics Data System (ADS)

    Abdel Naby, Shahin; Ciappina, M. F.; Lee, T. G.; Pindzola, M. S.; Colgan, J.

    2013-05-01

    In support of the reaction microscope measurements at the free-electron laser facility at Hamburg (FLASH), we use the time-dependent close-coupling method (TDCC) to calculate fully differential nuclear-recoil cross sections for the two-photon double ionization of He at photon energy of 44 eV. The total cross section for the double ionization is in good agreement with previous calculations. The nuclear-recoil distribution is in good agreement with the experimental measurements. In contrast to the single-photon double ionization, maximum nuclear recoil triple differential cross section is obtained at small nuclear momenta. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.

  12. Bidirectional negative differential thermal resistance in three-segment Frenkel-Kontorova lattices.

    PubMed

    Ou, Ya-Li; Lu, Shi-Cai; Hu, Cai-Tian; Ai, Bao-Quan

    2016-12-14

    By coupling three nonlinear 1D lattice segments, we demonstrate a thermal insulator model, where the system acts like an insulator for large temperature bias and a conductor for very small temperature bias. We numerically investigate the parameter range of the thermal insulator and find that the nonlinear response (the role of on-site potential), the weakly coupling interaction between each segment, and the small system size collectively contribute to the appearance of bidirectional negative differential thermal resistance (BNDTR). The corresponding exhibition of BNDTR can be explained in terms of effective phonon-band shifts. Our results can provide a new perspective for understanding the microscopic mechanism of negative differential thermal resistance and also would be conducive to further developments in designing and fabricating thermal devices and functional materials.

  13. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    PubMed

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  14. Use Of The Diamond Cell In An Industrial Laboratory

    NASA Astrophysics Data System (ADS)

    Barbour, Rachael L.; Stephens, J. D.; Cameron, David G.

    1989-12-01

    The traditional method for recording the IR spectra of solids has been KBr pellet transmission spectroscopy. This technique has several disadvantages: sample preparation time, matrix contamination, spectral distortion, ion exchange, a limited spectral range, scattering, loss of sample integrity during grinding, etc. In recent years, diffuse reflectance, ATR, photoacoustic reflectance, and external reflectance have been used increasingly, facilitated by the high SNR of FT instruments. In many cases, the diamond cell is an attractive alternative to all of these. The spectral range is -100 -1 to the UV, excluding the 2200-2000 cm -1 region. Spectral distortion, usually a great problem with inorganics, is greatly reduced as a result of sample homogeneity (from a spectral point of view) and refractive index matching. There is no matrix contamination: scattering, background slope, and all absorption bands are from the sample. There is no ion exchange. The sample size requirements are minimal. Finally, sample preparation requires the somewhat lost. but powerful, art of microscopic examination. In some instances, there may be sample orientation or pressure induced phase changes associated with the use of the diamond cell. A common misconception is that an IR microscope is needed to use the diamond cell. In fact, ~5 minutes will suffice without a beam condenser; 1 minute is all that is needed with one. In part, this is because one usually has excellent control of the optical thickness; with experience, the cell can easily be assembled to give bands in the 0.7-1.5 absorbance range, and making the sample thinner merely involves pressing the diamonds together. Given the above, the microscope should only be used for inhomogeneous samples as one loses all information below 700 cm-1, the region of greatest value when studying inorganics. We also note that the cell can readily be moved from a mid-IR to a far-IR bench. We have moved to the point where this is the dominant sampling technique, with ATR being the next most important. Diffuse reflectance and KBr pellets are seldom used. The cell has been used on inorganics (mid and far IR) including extremely small pure mineral samples selected by hand. It is also used for polymers, polymer inclusions, filter deposits, pure (and not so puce) organics, and general "what is this stuff" samples. Examples of a wide variety of analyses will be given.

  15. Laser interferometry force-feedback sensor for an interfacial force microscope

    DOEpatents

    Houston, Jack E.; Smith, William L.

    2004-04-13

    A scanning force microscope is provided with a force-feedback sensor to increase sensitivity and stability in determining interfacial forces between a probe and a sample. The sensor utilizes an interferometry technique that uses a collimated light beam directed onto a deflecting member, comprising a common plate suspended above capacitor electrodes situated on a substrate forming an interference cavity with a probe on the side of the common plate opposite the side suspended above capacitor electrodes. The probe interacts with the surface of the sample and the intensity of the reflected beam is measured and used to determine the change in displacement of the probe to the sample and to control the probe distance relative to the surface of the sample.

  16. Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1998-10-01

    The problem of three-dimensional visualization of a human lens in vivo has been solved by a technique of volume rendering a transformed series of 60 rotated Scheimpflug (a dual slit reflected light microscope) digital images. The data set was obtained by rotating the Scheimpflug camera about the optic axis of the lens in 3 degree increments. The transformed set of optical sections were first aligned to correct for small eye movements, and then rendered into a volume reconstruction with volume rendering computer graphics techniques. To help visualize the distribution of lens opacities (cataracts) in the living, human lens the intensity of light scattering was pseudocolor coded and the cataract opacities were displayed as a movie.

  17. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Hunt, Allen G.; Skaggs, Todd H.; Jarvis, Nicholas

    2017-06-01

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have been developed based on different approaches, such as the bundle of capillary tubes model, pedotransfer functions, etc. In this study, we apply concepts from critical path analysis, an upscaling technique first developed in the physics literature, to estimate saturated hydraulic conductivity at the core scale from microscopic pore throat characteristics reflected in capillary pressure data. With this new model, we find Ksat estimations to be within a factor of 3 of the average measured saturated hydraulic conductivities reported by Rawls et al. (1982) for the eleven USDA soil texture classes.

  18. A cell-free assay to determine the stoichiometry of plasma membrane proteins.

    PubMed

    Trigo, Cesar; Vivar, Juan P; Gonzalez, Carlos B; Brauchi, Sebastian

    2013-04-01

    Plasma membrane receptors, transporters, and ion channel molecules are often found as oligomeric structures that participate in signaling cascades essential for cell survival. Different states of protein oligomerization may play a role in functional control and allosteric regulation. Stochastic GFP-photobleaching (SGP) has emerged as an affordable and simple method to determine the stoichiometry of proteins at the plasma membrane. This non-invasive optical approach can be useful for total internal reflection of fluorescence microscopy (TIRFM), where signal-to-noise ratio is very high at the plasma membrane. Here, we report an alternative methodology implemented on a standard laser scanning confocal microscope (LSCM). The simplicity of our method will allow for its implementation in any epifluorescence microscope of choice.

  19. Optimal pupil design for confocal microscopy

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2010-02-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current instruments are large, complex, and expensive. A simpler, confocal line-scanning microscope may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A confocal reflectance microscope may use a beamsplitter, transmitting and detecting through the pupil, or a divided pupil, or theta configuration, with half used for transmission and half for detection. The divided pupil may offer better sectioning and contrast. We present a Fourier optics model and compare the on-axis irradiance of a confocal point-scanning microscope in both pupil configurations, optimizing the profile of a Gaussian beam in a circular or semicircular aperture. We repeat both calculations with a cylindrical lens which focuses the source to a line. The variable parameter is the fillfactor, h, the ratio of the 1/e2 diameter of the Gaussian beam to the diameter of the full aperture. The optimal values of h, for point scanning are 0.90 (full) and 0.66 for the half-aperture. For line-scanning, the fill-factors are 1.02 (full) and 0.52 (half). Additional parameters to consider are the optimal location of the point-source beam in the divided-pupil configuration, the optimal line width for the line-source, and the width of the aperture in the divided-pupil configuration. Additional figures of merit are field-of-view and sectioning. Use of optimal designs is critical in comparing the experimental performance of the different configurations.

  20. Implementation of cost-effective diffuse light source mechanism to reduce specular reflection and halo effects for resistor-image processing

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Sheng; Wang, Jeng-Yau

    2015-09-01

    Light source plays a significant role to acquire a qualified image from objects for facilitating the image processing and pattern recognition. For objects possessing specular surface, the phenomena of reflection and halo appearing in the acquired image will increase the difficulty of information processing. Such a situation may be improved by the assistance of valuable diffuse light source. Consider reading resistor via computer vision, due to the resistor's specular reflective surface it will face with a severe non-uniform luminous intensity on image yielding a higher error rate in recognition without a well-controlled light source. A measurement system including mainly a digital microscope embedded in a replaceable diffuse cover, a ring-type LED embedded onto a small pad carrying a resistor for evaluation, and Arduino microcontrollers connected with PC, is presented in this paper. Several replaceable cost-effective diffuse covers made by paper bowl, cup and box inside pasted with white paper are presented for reducing specular reflection and halo effects and compared with a commercial diffuse some. The ring-type LED can be flexibly configured to be a full or partial lighting based on the application. For each self-made diffuse cover, a set of resistors with 4 or 5 color bands are captured via digital microscope for experiments. The signal-to-noise ratio from the segmented resistor-image is used for performance evaluation. The detected principal axis of resistor body is used for the partial LED configuration to further improve the lighting condition. Experimental results confirm that the proposed mechanism can not only evaluate the cost-effective diffuse light source but also be extended as an automatic recognition system for resistor reading.

  1. Rapid skin profiling with non-contact full-field optical coherence tomography: study of patients with diabetes mellitus type I

    NASA Astrophysics Data System (ADS)

    Zakharov, P.; Talary, M. S.; Kolm, I.; Caduff, A.

    2009-07-01

    The application of the full-field optical coherence tomography (OCT) microscope to the characterisation of skin morphology is described. An automated procedure for analysis and interpretation of the OCT data has been developed which provides measures of the laterally averaged depth profiles of the skin reflectance. The skin at the dorsal side of the upper arm of 22 patients with Type 1 Diabetes Mellitus has been characterised in a non-contact way. The OCT signal profile was compared with the optical histological data obtained with a commercial confocal microscope (CM). The highest correlation to the epidermal thickness (ET) obtained using CM was found for the distance from the entrance OCT peak to the first minimum of the reflection profile (R2=0.657, p<0.0001). The distance to the second OCT reflection peak was found to be less correlated to ET (R2=0.403, p=0.0009). A further analysis was undertaken to explore the relation between the subjects' demographical data and the OCT reflection profile. The distance to the second OCT peak demonstrated a correlation with a marginal statistical significance for the body-mass index (positive correlation with p=0.01) and age (negative correlation with p=0.062). At the same time the amplitude of the OCT signal, when compensated for signal attenuation with depth, is negatively correlated with age (p<0.0002). We suggest that this may be an effect of photo degradation of the dermal collagen. In the patient population studied, no relation could be determined between the measured skin morphology and the duration of diabetes or concentration of glycated haemoglobin in the blood.

  2. Reflection of a shock wave from a thermally accommodating wall - Molecular simulation.

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.

    1973-01-01

    Reflection of a plane shock wave from a wall has been simulated on a microscopic scale using a direct simulation Monte Carlo technique of the type developed by Bird. A monatomic gas model representing argon was used to describe the fluid medium and a simple one-parameter accommodation coefficient model was used to describe the gas-surface interaction. The influence of surface accommodation was studied parametrically by varying the accommodation coefficient from zero to one. Results are presented showing the temporal variations of flow field density, and mass, momentum, and energy fluxes to the wall during the shock wave reflection process. The energy flux was used to determine the wall temperature history. Comparisons with experiment are found to be satisfactory where data are available.

  3. Superresolution confocal technology for displacement measurements based on total internal reflection.

    PubMed

    Kuang, Cuifang; Ali, M Yakut; Hao, Xiang; Wang, Tingting; Liu, Xu

    2010-10-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  4. The limit of detection for explosives in spectroscopic differential reflectometry

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Vishwanathan, Karthik; Hummel, Rolf E.

    2011-05-01

    In the wake of recent terrorist attacks, such as the 2008 Mumbai hotel explosion or the December 25th 2009 "underwear bomber", our group has developed a technique (US patent #7368292) to apply differential reflection spectroscopy to detect traces of explosives. Briefly, light (200-500 nm) is shone on a surface such as a piece of luggage at an airport. Upon reflection, the light is collected with a spectrometer combined with a CCD camera. A computer processes the data and produces in turn a differential reflection spectrum involving two adjacent areas of the surface. This differential technique is highly sensitive and provides spectroscopic data of explosives. As an example, 2,4,6, trinitrotoluene (TNT) displays strong and distinct features in differential reflectograms near 420 nm. Similar, but distinctly different features are observed for other explosives. One of the most important criteria for explosive detection techniques is the limit of detection. This limit is defined as the amount of explosive material necessary to produce a signal to noise ratio of three. We present here, a method to evaluate the limit of detection of our technique. Finally, we present our sample preparation method and experimental set-up specifically developed to measure the limit of detection for our technology. This results in a limit ranging from 100 nano-grams to 50 micro-grams depending on the method and the set-up parameters used, such as the detector-sample distance.

  5. [Keratosis palmoplantaris maculosa seu papulosa (Davies-Colley) simulating multiple cornua cutanea].

    PubMed

    Schreiber, D; Stücker, M; Hoffmann, K; Bacharach-Buhles, M; Altmeyer, P

    1997-08-01

    Patient with extensive keratosis palmoplantaris maculosa seu papulosa (Davies-Colley) presented with multiple cutaneous horns. The clinical picture, the histology, the electro microscopic examination, the negative tumor screening and the viral classification in the tissue allowed the differentiation from other palmoplantar keratoses. The patient was treated successfully using a combination of acitretin with physical and chemical measures.

  6. Sensitivity of the halo nuclei-12C elastic scattering at incident nucleon energy 800 MeV to the halo density distribution

    NASA Astrophysics Data System (ADS)

    Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Hosny, H.; Salama, T. N. E.

    2017-10-01

    In the framework of Glauber optical limit approximation where Coulomb effect is taken into account, the elastic scattering differential cross section for halo nuclei with {}^{12}{C} at 800 MeV/N has been calculated. Its sensitivity to the halo densities and the root mean square of the core and halo is the main goal of the current study. The projectile nuclei are taken to be one-neutron and two-neutron halo. The calculations are carried out for Gaussian-Gaussian, Gaussian-Oscillator and Gaussian-2 s phenomenological densities for each considered projectile in the mass number range 6-29. Also included a comparison between the obtained results of phenomenological densities and the results within the microscopic densities LSSM of {}6{He} and {}^{11}{Li} and microscopic densities GCM of {}^{11}{Be} where the density of the target nucleus {}^{12}{C} obtained from electron-{}^{12}{C} scattering is used. The zero range approximation is considered in the calculations. We found that the sensitivity of elastic scattering differential cross section to the halo density is clear if the nucleus appears as two clear different clusters, core and halo.

  7. On the Antiquity of Cancer: Evidence for Metastatic Carcinoma in a Young Man from Ancient Nubia (c. 1200BC)

    PubMed Central

    Binder, Michaela; Roberts, Charlotte; Spencer, Neal; Antoine, Daniel; Cartwright, Caroline

    2014-01-01

    Cancer, one of the world’s leading causes of death today, remains almost absent relative to other pathological conditions, in the archaeological record, giving rise to the conclusion that the disease is mainly a product of modern living and increased longevity. This paper presents a male, young-adult individual from the archaeological site of Amara West in northern Sudan (c. 1200BC) displaying multiple, mainly osteolytic, lesions on the vertebrae, ribs, sternum, clavicles, scapulae, pelvis, and humeral and femoral heads. Following radiographic, microscopic and scanning electron microscopic (SEM) imaging of the lesions, and a consideration of differential diagnoses, a diagnosis of metastatic carcinoma secondary to an unknown soft tissue cancer is suggested. This represents the earliest complete example in the world of a human who suffered metastatic cancer to date. The study further draws its strength from modern analytical techniques applied to differential diagnoses and the fact that it is firmly rooted within a well-documented archaeological and historical context, thus providing new insights into the history and antiquity of the disease as well as its underlying causes and progression. PMID:24637948

  8. [Structure of newly formed capillaries of the rabbit cornea (electron microscopic study)].

    PubMed

    Gurina, O Iu; Karaganov, Ia L

    1984-08-01

    Owing to a complex application of topical analysis and tracer technique, it is possible to carry out a light optic and electron microscopic investigation of newly formed capillaries growing in the rabbit cornea after its chemical burn. The ultrastructural analysis demonstrates certain polymorphism of morphological organization of endotheliocyte in the newly formed capillaries. There is a rather elevated amount of free ribosomes, mitochondria, microtubules and microfilaments in cytoplasm. The granular endoplasmic reticulum and Golgi complex are hypertrophied. Weibel--Palade bodies appear. Taking into account certain morpho-functional peculiarities of endothelial cells along the course of the growing capillaries, on the 8th day of growth three zone are distinguished: 1--area of nondifferentiated endothelium (apex of the capillary), 2--transitional zone, 3--zone of relatively differentiated endothelium situating in the place where the capillary gets off the parental vessel. According to the zones distinguished, the ways of trans-endothelial transport of molecules are investigated. In formation of the capillary barrier-transport function an important role belongs to polymorphism of the endothelial cells along the course of the growing capillary which is determined by differentiation degree of these cells depending on their participation in permeability.

  9. Comparison of skin responses from macroscopic and microscopic UV challenges

    NASA Astrophysics Data System (ADS)

    Seo, InSeok; Bargo, Paulo R.; Chu, Melissa; Ruvolo, Eduardo; Kollias, Nikiforos

    2011-03-01

    The minimal erythema dose induced by solar-simulated radiation is a useful measure of UV sensitivity of skin. Most skin phototests have been conducted by projecting a flat field of UV radiation onto the skin in an area greater than 15 cm × 15 cm with an increment of radiation doses. In this study, we investigated the responses of human skin to solar-simulated radiation of different field sizes. Twelve human subjects of skin phototype I-IV were exposed to solar-simulated radiation (SSR) on their upper inner arm or on their lower back with a series of doses in increments of 20% in order to determine the threshold dose to induce a minimal perceptible erythema response (MED). Each dose was delivered with a liquid light guide (8 mm diameter on the back or 6 mm on the upper inner arm) and with quartz optical fibers of 200 μm diameter. The resulting skin responses were evaluated visually and investigated with a reflectance confocal microscope and imaging. The erythema response to the microscopic challenge was always diffuse with no clear boundaries extending to several times the exposed site diameter at doses greater than 2 MED. The skin returned to normal appearance from the microscopic challenge after two weeks of exposure while change in appearance for the larger areas persisted for several weeks to months. This new modality of testing provides the possibility to study skin at the microscopic level with a rapid recovery following challenge.

  10. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-06-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  11. Electrolyte solutions at curved electrodes. II. Microscopic approach

    NASA Astrophysics Data System (ADS)

    Reindl, Andreas; Bier, Markus; Dietrich, S.

    2017-04-01

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  12. Electrolyte solutions at curved electrodes. II. Microscopic approach.

    PubMed

    Reindl, Andreas; Bier, Markus; Dietrich, S

    2017-04-21

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  13. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    PubMed Central

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-01-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625

  14. Fluorescence (Multiwave) Confocal Microscopy.

    PubMed

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Quantum shot noise in tunnel junctions

    NASA Technical Reports Server (NTRS)

    Ben-Jacob, E.; Mottola, E.; Schoen, G.

    1983-01-01

    The current and voltage fluctuations in a normal tunnel junction are calculated from microscopic theory. The power spectrum can deviate from the familiar Johnson-Nyquist form when the self-capacitance of the junction is small, at low temperatures permitting experimental verification. The deviation reflects the discrete nature of the charge transfer across the junction and should be present in a wide class of similar systems.

  16. Development and Optical Testing of the Camera, Hand Lens, and Microscope Probe with Scannable Laser Spectroscopy (CHAMP-SLS)

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S.; Gursel, Yekta; Sepulveda, Cesar A.; Anderson, Mark; La Baw, Clayton; Johnson, Kenneth R.; Deans, Matthew; Beegle, Luther; Boynton, John

    2008-01-01

    Conducting high resolution field microscopy with coupled laser spectroscopy that can be used to selectively analyze the surface chemistry of individual pixels in a scene is an enabling capability for next generation robotic and manned spaceflight missions, civil, and military applications. In the laboratory, we use a range of imaging and surface preparation tools that provide us with in-focus images, context imaging for identifying features that we want to investigate at high magnification, and surface-optical coupling that allows us to apply optical spectroscopic analysis techniques for analyzing surface chemistry particularly at high magnifications. The camera, hand lens, and microscope probe with scannable laser spectroscopy (CHAMP-SLS) is an imaging/spectroscopy instrument capable of imaging continuously from infinity down to high resolution microscopy (resolution of approx. 1 micron/pixel in a final camera format), the closer CHAMP-SLS is placed to a feature, the higher the resultant magnification. At hand lens to microscopic magnifications, the imaged scene can be selectively interrogated with point spectroscopic techniques such as Raman spectroscopy, microscopic Laser Induced Breakdown Spectroscopy (micro-LIBS), laser ablation mass-spectrometry, Fluorescence spectroscopy, and/or Reflectance spectroscopy. This paper summarizes the optical design, development, and testing of the CHAMP-SLS optics.

  17. Method to deterministically study photonic nanostructures in different experimental instruments.

    PubMed

    Husken, B H; Woldering, L A; Blum, C; Vos, W L

    2009-01-01

    We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the nanostructure is made during the fabrication of the structure. These maps are made using a series of micrographs with successively decreasing magnifications. The graphs reveal intrinsic and characteristic geometric features that can subsequently be used in different setups to act as markers. As an illustration, we probe surface cavities with radii of 65 nm on a silica opal photonic crystal with various setups: a focused ion beam workstation; a scanning electron microscope (SEM); a wide field optical microscope and a confocal microscope. We use cross-correlation techniques to recover a small area imaged with the SEM in a large area photographed with the optical microscope, which provides a possible avenue to automatic searching. We show how both structural and optical reflectivity data can be obtained from one and the same nanostructure. Since our approach does not use artificial grids or markers, it is of particular interest for samples whose structure is not known a priori, like samples created solely by self-assembly. In addition, our method is not restricted to conducting samples.

  18. Transmission acoustic microscopy investigation

    NASA Astrophysics Data System (ADS)

    Maev, Roman; Kolosov, Oleg; Levin, Vadim; Lobkis, Oleg

    The nature of acoustic contrast, i.e. the connection of the amplitude and phase of the output signal of the acoustic microscope with the local values of the acoustic parameters of the sample (density, elasticity, viscosity) is a central problem of acoustic microscopy. A considerable number of studies have been devoted to the formation of the output signal of the reflection scanning acoustic microscope. For the transmission acoustic microscope (TAM) this problem has remained almost unstudied. Experimental investigation of the confocal system of the TAM was carried out on an independently manufactured laboratory mockup of the TAM with the working frequency of the 420 MHz. Acoustic lenses with the radius of curvature of about 500 microns and aperture angle of 45 deg were polished out in the end faces of two cylindrical sound conductors made from Al2O3 single crystals with an axis parallel to the axis C of the crystal (the length of the sound conductor is 20 mm; diameter, 6 mm). At the end faces of the sound conductor, opposite to the lenses, CdS transducers with a diameter of 2 mm were disposed. The electric channel of the TAM provided a possibility for registering the amplitude of the microscope output signal in the case of the dynamic range of the 50 dB.

  19. In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph

    NASA Astrophysics Data System (ADS)

    Ulrich, Martina; Klemp, Marisa; Darvin, Maxim E.; König, Karsten; Lademann, Jürgen; Meinke, Martina C.

    2013-06-01

    The standard diagnostic procedure for basal cell carcinoma (BCC) is invasive tissue biopsy with time-consuming histological examination. To reduce the number of biopsies, noninvasive optical methods have been developed providing high-resolution skin examination. We present direct comparison of a reflectance confocal microscope (RLSM) and a multiphoton tomograph (MPT) for BCC diagnosis. Both systems are applied to nine patients prior to surgery, and the results are analyzed, including histological results. Both systems prove suitable for detecting typical characteristics of BCC in various stages. The RLSM allows large horizontal overview images to be obtained, enabling the investigator to find the regions of interest quickly, e.g., BCC nests. Elongated cells and palisading structures are easily recognized using both methods. Due to the higher resolution, changes in nucleus diameter or cytoplasm could be visualized with the MPT. Therefore, the nucleus diameter, nucleus/cytoplasm ratio, and cell density are estimated for normal and BCC cells using the MPT. The nucleus of elongated BCC cells is significantly longer than other measured normal skin cells, whereas the cell density and nucleus/cytoplasm ratio of BCC cannot be significantly distinguished from granular cells.

  20. Crystal Structure, Magnetic and Optical Properties of Mn-Doped BiFeO₃ by Hydrothermal Synthesis.

    PubMed

    Zhang, Ning; Wei, Qinhua; Qin, Laishun; Chen, Da; Chen, Zhi; Niu, Feng; Wang, Jiangying; Huanag, Yuexiang

    2017-01-01

    In this paper, Mn doped BiFeO₃ were firstly synthesized by hydrothermal process. The influence of Mn doping on structural, optical and magnetic properties of BiFeO₃ was studied. The different amounts of Mn doping in BiFeO₃ were characterized by X-ray diffraction, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscope, UV-Vis diffuse reflectance spectroscopy and magnetic measurements. The X-ray diffraction (XRD) patterns confirmed the formation of pure phase rhombohedral structure in BiFe(1−x) Mn (x) O₃ (x = 0.01, 0.03, 0.05, 0.07) samples. The morphologies and chemical compositions of as-prepared samples could be observed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscope (EDS). A relative large saturated magnetization (Ms) of 0.53 emu/g for x = 0.07 sample was obtained at room temperature, which is considered to be Mn ions doping. UV-Vis diffuse reflectance spectroscopy showed strong absorption of light in the range of 200–1000 nm, indicating the optical band gap in the visible region for these samples. This implied that BiFe(1−x) Mn(x)O₃ may be a potential photocatalyst for utilizing solar energy.

  1. The role of coherence of mind and reflective functioning in understanding binge-eating disorder and co-morbid overweight.

    PubMed

    Maxwell, Hilary; Tasca, Giorgio A; Grenon, Renee; Faye, Megan; Ritchie, Kerri; Bissada, Hany; Balfour, Louise

    2017-08-01

    Coherence of mind and reflective functioning may impact negative affect and interpersonal functioning over and above the effects of symptoms of depression and interpersonal problems that contribute to symptoms of binge-eating disorder (BED) and overweight/obesity. Matched samples of overweight women with BED and overweight and normal weight women without BED completed the Adult Attachment Interview, a measure of depressive symptoms, and a measure of interpersonal problems. Greater symptoms of depression distinguished women with BED from the matched comparison samples. Greater interpersonal problems differentiated women with BED from overweight women without BED. Coherence of Mind scores did not differentiate the samples. However, lower Reflective Functioning scores did distinguish both women with BED and overweight women without BED from normal weight women. Lower reflective functioning may lead to binge eating independent of depressive symptoms and interpersonal problems.

  2. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  3. Microscopic relaxations in a protein sustained down to 160K in a non-glass forming organic solvent.

    PubMed

    Mamontov, E; O'Neill, H

    2017-01-01

    We have studied microscopic dynamics of a protein in carbon disulfide, a non-glass forming solvent, down to its freezing temperature of ca. 160K. We have utilized quasielastic neutron scattering. A comparison of lysozyme hydrated with water and dissolved in carbon disulfide reveals a stark difference in the temperature dependence of the protein's microscopic relaxation dynamics induced by the solvent. In the case of hydration water, the common protein glass-forming solvent, the protein relaxation slows down in response to a large increase in the water viscosity on cooling down, exhibiting a well-known protein dynamical transition. The dynamical transition disappears in non-glass forming carbon disulfide, whose viscosity remains a weak function of temperature all the way down to freezing at just below 160K. The microscopic relaxation dynamics of lysozyme dissolved in carbon disulfide is sustained down to the freezing temperature of its solvent at a rate similar to that measured at ambient temperature. Our results demonstrate that protein dynamical transition is not merely solvent-assisted, but rather solvent-induced, or, more precisely, is a reflection of the temperature dependence of the solvent's glass-forming dynamics. We hypothesize that, if the long debated idea regarding the direct link between the microscopic relaxations and the biological activity in proteins is correct, then not only the microscopic relaxations, but also the activity, could be sustained in proteins all the way down to the freezing temperature of a non-glass forming solvent with a weak temperature dependence of its viscosity. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Nonocclusal dental microwear analysis of 300,000-year-old Homo heilderbergensis teeth from Sima de los Huesos (Sierra de Atapuerca, Spain).

    PubMed

    Pérez-Pérez, A; Bermúdez De Castro, J M; Arsuaga, J L

    1999-04-01

    Casts of nonocclusal enamel surfaces of 190 teeth from the Middle Pleistocene site of Sima de los Huesos have been micrographed by scanning electron microscopy. Microscopic analyses of striation density and length by orientation show distinct patterns of intrapopulation variability. Significant differences in the number and length of the striations by orientation are found between maxillary and mandibular teeth. This probably reflects differences in the mechanical forces involved in the process of chewing food. Significant differences are present between isolated and in situ teeth that could be caused by postdepositional processes differentially affecting the isolated teeth. In addition, a distinct and very unusual striation pattern is observed in a sample of teeth that can be explained only by a strong nondietary, most probably postmortem abrasion of the enamel surfaces. These teeth have a very high density of scratches, shorter in length than those found on other teeth, that are not indicative of dietary habits. No known depositional process may account for the presence of such postmortem wear since heavy transportation of materials within the clayish sediments has been discarded for the site. Despite this, a characteristic dietary striation pattern can be observed in most of the teeth analyzed. Most likely the diet of the Homo heidelbergensis hominids from Sima de los Huesos was highly abrasive, probably with a large dependence on hard, poorly processed plant foods, such as roots, stems, and seeds. A highly significant sex-related difference in the striation pattern can also be observed in the teeth analyzed, suggesting a differential consistency in the foods eaten by females and males.

  5. Collagenous spherulosis presenting as a mass of the breast.

    PubMed

    Jan, Yee-Jee; Li, Mu-Chun; Ho, William L

    2002-10-01

    Collagenous spherulosis (CS) is a rare benign lesion which typically presents as an incidental microscopic finding accompanying other breast lesions. Pathologists who are not familiar with this entity occasionally misdiagnose CS as adenoid cystic carcinoma (ACC), cribriform ductal carcinoma in situ (C-DCIS), or atypical intraductal hyperplasia (AIH), especially when it presents as a mass. It is of utmost importance to differentiate benign CS from its malignant mimics in order to avoid unnecessary treatment. We report an unusual case of CS manifested as a mass in the right breast of a 45-year-old female and discuss the problems of differential diagnosis and histogenesis.

  6. Peripheral ossifying fibroma of oral cavity: histopathologic differential diagnoses.

    PubMed

    Shamim, Thorakkal

    2012-01-01

    Peripheral ossifying fibroma is a benign neoplasm that usuallydevelops from gingiva, presenting as an exophytic smooth surfaced pink or red nodular mass that is sessile or is less frequently seen on a pedicle. From the Indian perspective, it is usually noticed in 5th-6th decades of life with female predilection. Microscopically, the tumour shows stratified squamous epithelium and highly cellular fibrous stroma, sparse endothelial proliferation with fibroblasts and dystrophic calcifications. It has to be differentiated histopathologically from pyogenic granuloma, fibroma, peripheral giant cell granuloma, peripheral odontogenic fibroma and fibrous hyperplasia. A case of peripheral ossifying fibroma of maxillary gingiva in a 55-year-old Indian woman is reported.

  7. An evaluation of meaningful learning in a high school chemistry course

    NASA Astrophysics Data System (ADS)

    Bross, April J.

    This study utilized an action research methodology to examine students' understandings of science knowledge, and meaningful learning using the SLD (Science Lecture Demonstration) and laboratory instructional method in a high school chemistry classroom. This method was a modification of the Science Lecture Demonstration Method as developed by Majerich and Schmuckler (2004, in press), the modification due to the addition of a laboratory component. The participants in this study represented a convenience sample which included one class of twenty-two, middle to high socio-economic status students (Mean family income over $75,000/year in 2005 U.S. dollars) in an honors chemistry course at a public high school in the state of New Jersey. These participants included nine girls and thirteen boys. The results of this study indicated what the students' understandings of science knowledge were, how the understandings differed among students, and to what extent those understandings were indicative of meaningful learning. These results were obtained by careful analysis of student generated concept maps, narratives from demonstration quizzes, laboratory reports, and test questions, as well as a teacher/researcher reflection upon the classroom experience. A simple taxonomy for analyzing students' understandings of science knowledge was developed, based upon the work of Majerich (2004). Findings indicated that the students' understanding of science knowledge, as well as the extent of meaningful learning that occurs in the chemistry classroom may be influenced by the roles of: explicit directions, pre-existing knowledge from elementary and middle school science classes, using examples vs. non-examples, macroscopic vs. microscopic views of nature, time for reflection, and everyday vs. scientific language. Results obtained from high school student responses confirmed Novak's observation of elementary students' lack of differentiation between the terms vapor and gas (Novak, 1998).

  8. Effects of Space Weathering on Reflectance Spectra of Ureilites: First Studies

    NASA Technical Reports Server (NTRS)

    Goodrich, C. A.; Gillis-Davis, J.; Cloutis, E.; Applin, D.; Takir, D.; Hibbitts, C.; Christoffersen, R.; Fries, M.; Klima, R.; Decker, S.

    2018-01-01

    Ureilites are differentiated meteorites (ultramafic rocks interpreted to be mantle residues) that contain as much carbon as the most carbon-rich carbonaceous chondrites (CCs). Reflectance spectra of ureilites are similar to those of some CCs. Hence, ureilitic asteroids may accidentally be categorized as primitive because their spectra could resemble those of C-complex asteroids, which are thought to be CC-like. We began spectral studies of progressively laser-weathered ureilites with the goals of predicting UV-VIS-IR spectra of ureilitic asteroids, and identifying features that could distinguish differentiated from primitive dark asteroids. Space weathering has not previously been studied for ureilites, and, based on space weathering studies of CCs and other C-rich materials, it could significantly alter their reflectance spectra.

  9. Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering.

    PubMed

    Hwang, Dusun; Yoon, Dong-Jin; Kwon, Il-Bum; Seo, Dae-Cheol; Chung, Youngjoo

    2010-05-10

    A novel method for auto-correction of fiber optic distributed temperature sensor using anti-Stokes Raman back-scattering and its reflected signal is presented. This method processes two parts of measured signal. One part is the normal back scattered anti-Stokes signal and the other part is the reflected signal which eliminate not only the effect of local losses due to the micro-bending or damages on fiber but also the differential attenuation. Because the beams of the same wavelength are used to cancel out the local variance in transmission medium there is no differential attenuation inherently. The auto correction concept was verified by the bending experiment on different bending points. (c) 2010 Optical Society of America.

  10. Use of thermal neutron reflection method for chemical analysis of bulk samples

    NASA Astrophysics Data System (ADS)

    Papp, A.; Csikai, J.

    2014-09-01

    Microscopic, σβ, and macroscopic, Σβ, reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σβ values are additive even for bulk samples in the z=0.5-8 cm interval and so the σβmol(z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ~1000 cm3 dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously.

  11. Availability of a library of infrared (2.1-25.0 μm) mineral spectra

    USGS Publications Warehouse

    Salisbury, John W.; Walter, Louis S.; Vergo, Norma

    1989-01-01

    All previously published libraries of infrared mineral spectra are in the form of transmittance.  Reflectance spectra are, however, more useful for remote sensing and some potential laboratory applications, such as the use of an infrared microscope for mineral identification on polished sections. This note points out that construction of a new library of infrared (2.1-25.0 μm) mineral spectra is in progress. Both transmittance and reflectance measurements of a selection of 63 different, well-characteized minerals have been published to date. These data are available in both hard copy and digital form.

  12. Minimum Surface-Effect Microgripper Design for Force-Reflective Telemanipulation of a Microscopic Environment

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Celanovic, Nikola

    1996-01-01

    This paper describes the fundamental physical motivations for minimum surface effect design, and presents a microgripper that incorporates a piezoelectric ceramic actuator and a flexure-based structure and transmission. The microgripper serves effectively as a one degree-of-freedom prototype of minimum surface effect micromanipulator design. Data is presented that characterizes the microgripper performance under both pure position and pure force control, followed by a discussion of the attributes and limitations of flexure-based design. The microgripper is interfaced with a force-reflective macrogripper, and the pair controlled with a hybrid position/force scheme. Data is presented that illustrates the effective operation of the telerobotic pair.

  13. Fabrication of gradient optical filter containing anisotropic Bragg nanostructure.

    PubMed

    Cho, Bomin; Um, Sungyong; Woo, Hee-Gweon; Sohn, Honglae

    2011-08-01

    New gradient optical filters containing asymmetric Bragg structure were prepared from the distributed Bragg reflector (DBR) porous silicon (PSi). Anisotropic DBR PSi displaying a rainbow-colored reflection was generated by using an asymmetric etching configuration. Flexible anisotropic DBR PSi composite films were obtained by casting of polymer solution onto anisotropic DBR PSi thin films. The surface and cross-sectional images images of anisotropic DBR PSi composite films obtained with cold field emission scanning electron microscope indicated that the average pore size and the thickness of porous layer decreased as the lateral distance increased. As lateral distance increased, the reflection resonance shifted to shorter wavelength.

  14. Intraoperative assessment of laryngeal pathologies with optical coherence tomography integrated into a surgical microscope.

    PubMed

    Englhard, Anna S; Betz, Tom; Volgger, Veronika; Lankenau, Eva; Ledderose, Georg J; Stepp, Herbert; Homann, Christian; Betz, Christian S

    2017-07-01

    Endoscopic examination followed by tissue biopsy is the gold standard in the evaluation of lesions of the upper aerodigestive tract. However, it can be difficult to distinguish between healthy mucosa, dysplasia, and invasive carcinoma. Optical coherence tomography (OCT) is a non-invasive technique which acquires high-resolution, cross-sectional images of tissue in vivo. Integrated into a surgical microscope, it allows the intraoperative evaluation of lesions simultaneously with microscopic visualization. In a prospective case series, we evaluated the use of OCT integrated into a surgical microscope during microlaryngoscopy to help differentiating various laryngeal pathologies. 33 patients with laryngeal pathologies were examined with an OCT- microscope (OPMedT iOCT-camera, HS Hi-R 1000G-microscope, Haag-Streit Surgical GmbH, Wedel, Germany) during microlaryngoscopy. The suspected intraoperative diagnoses were compared to the histopathological reports of subsequent tissue biopsies. Hands-free non-contact OCT revealed high-resolution images of the larynx with a varying penetration depth of up to 1.2 mm and an average of 0.6 mm. Picture quality was variable. OCT showed disorders of horizontal tissue layering in dysplasias with a disruption of the basement membrane in carcinomas. When comparing the suspected diagnosis during OCT-supported microlaryngoscopy with histology, 79% of the laryngeal lesions could be correctly identified. Premalignant lesions were difficult to diagnose and falsely classified as carcinoma. OCT integrated into a surgical microscope seems to be a promising adjunct tool to discriminate pathologies of the upper aerodigestive tract intraoperatively. However, picture quality and penetration depth were variable. Although premalignant lesions were difficult to diagnose, the system proved overall helpful for the intraoperative discrimination of benign and malignant tumors. Further studies will be necessary to define its value in the future. Lasers Surg. Med. 49:490-497, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Photocatalytic equipment with nitrogen-doped titanium dioxide for air cleaning and disinfecting

    NASA Astrophysics Data System (ADS)

    Son Le, Thanh; Buu Ngo, Quoc; Dung Nguyen, Viet; Chau Nguyen, Hoai; Hien Dao, Trong; Tin Tran, Xuan; Kabachkov, E. N.; Balikhin, I. L.

    2014-03-01

    Nitrogen-doped TiO2 nanoparticle photocatalysts were synthesized by a sol-gel procedure using tetra-n-butyl orthotitanate as a titanium precursor and urea as a nitrogen source. Systematic studies for the preparation parameters and their impact on the material's structure were carried out by multiple techniques: thermogravimetric and differential scanning calorimetric analysis, x-ray diffraction, scanning electron microscope, transmission electron microscopy, energy dispersive x-ray spectroscopy and UV-Vis diffuse reflectance spectrophotometry showed that the nitrogen-doped TiO2 calcined at 500 °C for 3 h exhibited a spherical form with a particle size about 15-20 nm and crystal phase presented a mixture of 89.12% anatase. The obtained product was deposited on a porous quartz tube (D = 74 mm l = 418 mm) to manufacture an air photocatalytic cleaner as a prototype of the TIOKRAFT company's equipment. The created air cleaner was able to remove 60% of 10 ppm acetone within 390 min and degrade 98.5% of bacteria (total aerobic bacteria and fungi, 300 cfu m-3) within 120 min in a 10 m3 box. These photodegradation activities of N-TiO2 are higher than that of the commercial nano-TiO2 (Skyspring Inc., USA, particle size of 5-10 nm).

  16. Non-hazardous anticancerous and antibacterial colloidal 'green' silver nanoparticles.

    PubMed

    Barua, Shaswat; Konwarh, Rocktotpal; Bhattacharya, Satya Sundar; Das, Pallabi; Devi, K Sanjana P; Maiti, Tapas K; Mandal, Manabendra; Karak, Niranjan

    2013-05-01

    Poly(ethylene glycol) stabilized colloidal silver nanoparticles were prepared using the reductive potency of the aqueous extract of Thuja occidentalis leaves under ambient conditions. The nanoparticles were well dispersed within a narrow size spectrum (7-14 nm) and displayed characteristic surface plasmon resonance peak at around 420 nm and Bragg's reflection planes of fcc structure. MTT assay revealed the dose-dependent cytocompatibility and toxicity of the nanoparticles with the L929 normal cell line. On the other hand, the antiproliferative action of the nanoparticles was evaluated on HeLa cell (cancerous cells) line. Fluorescence and phase contrast microscopic imaging indicated the appearance of multinucleate stages with aggregation and nuclear membrane disruption of the HeLa cells post treatment with the nanoparticles. The interaction at the prokaryotic level was also assessed via differential antibacterial efficacy against Staphylococcus aureus (MTCC 3160) and Escherichia coli (MTCC 40). Under these perspectives, it is also necessary to observe the environmental impact of the prepared silver nanoparticles. Hence, the dose dependent toxicity of silver nanoparticles was evaluated upon the earthworm species Eisenia fetida. Neither the survival nor the reproduction was affected by the addition of silver nanoparticles up to 1000 ppm. Thus these 'green' silver nanoparticles have promising potential as future materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides.

    PubMed

    Zamuner, Annj; Brun, Paola; Scorzeto, Michele; Sica, Giuseppe; Castagliuolo, Ignazio; Dettin, Monica

    2017-09-01

    Engineered scaffolds for bone tissue regeneration are designed to promote cell adhesion, growth, proliferation and differentiation. Recently, covalent and selective functionalization of glass and titanium surfaces with an adhesive peptide (HVP) mapped on [351-359] sequence of human Vitronectin allowed to selectively increase osteoblast attachment and adhesion strength in in vitro assays, and to promote osseointegration in in vivo studies. For the first time to our knowledge, in this study we investigated the resistance of adhesion sequences to proteolytic digestion: HVP was completely cleaved after 5 h. In order to overcome the enzymatic degradation of the native peptide under physiological conditions we synthetized three analogues of HVP sequence. A retro-inverted peptide D-2HVP, composed of D amino acids, was completely stable in serum-containing medium. In addition, glass surfaces functionalized with D-2HVP increased human osteoblast adhesion as compared to the native peptide and maintained deposition of calcium. Interestingly, D-2HVP increased expression of IBSP, VTN and SPP1 genes as compared to HVP functionalized surfaces. Total internal reflection fluorescence microscope analysis showed cells with numerous filopodia spread on D-2HVP-functionalized surfaces. Therefore, the D-2HVP sequence is proposed as new osteoblast adhesive peptide with increased bioactivity and high proteolytic resistance.

  18. Control designs and stability analyses for Helly’s car-following model

    NASA Astrophysics Data System (ADS)

    Rosas-Jaimes, Oscar A.; Quezada-Téllez, Luis A.; Fernández-Anaya, Guillermo

    Car-following is an approach to understand traffic behavior restricted to pairs of cars, identifying a “leader” moving in front of a “follower”, which at the same time, it is assumed that it does not surpass to the first one. From the first attempts to formulate the way in which individual cars are affected in a road through these models, linear differential equations were suggested by author like Pipes or Helly. These expressions represent such phenomena quite well, even though they have been overcome by other more recent and accurate models. However, in this paper, we show that those early formulations have some properties that are not fully reported, presenting the different ways in which they can be expressed, and analyzing them in their stability behaviors. Pipes’ model can be extended to what it is known as Helly’s model, which is viewed as a more precise model to emulate this microscopic approach to traffic. Once established some convenient forms of expression, two control designs are suggested herein. These regulation schemes are also complemented with their respective stability analyses, which reflect some important properties with implications in real driving. It is significant that these linear designs can be very easy to understand and to implement, including those important features related to safety and comfort.

  19. Reflected stochastic differential equation models for constrained animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  20. In-vivo Reflectance Measurements from Human Skin

    NASA Astrophysics Data System (ADS)

    Delgado, J. A.; Cornejo, A.; Cunill, M.; Báez, J. J.; Matos, R.; Anasagasti, L.; Santiago, C.

    2006-09-01

    We evaluate the potential of using a standard commercial spectrophotometer, specifically designed to meet the growing requirement for color control in the digital-imaging application field, to perform in-vivo diffuse reflectance measurements from adult human skin. We report and discuss diffuse reflectance spectra for three practical situations: a) reflectance versus skin type, b) reflectance from normal skin with different grade of solar exposition, c) reflectance from normal skin versus reflectance from seborrheic keratosis. Results show, that using the above spectrophotometer we can easily differentiate two sites of different solar exposition. Besides, significant differences are found in the normal skin diffuse reflectance for patients with different skin types.

  1. Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium

    PubMed Central

    Sun, Ning; Shibata, Brad; Hess, John F.

    2016-01-01

    Purpose The differentiated lens fiber cell assembles a filamentous cytoskeletal structure referred to as the beaded filament (BF). The BF requires CP49 (bfsp2) and filensin (bfsp1) for assembly, both of which are highly divergent members of the large intermediate filament (IF) family of proteins. Thus far, these two proteins have been reported only in the differentiated lens fiber cell. For this reason, both proteins have been considered robust markers of fiber cell differentiation. We report here that both proteins are also expressed in the mouse lens epithelium, but only after 5 weeks of age. Methods Localization of CP49 was achieved with immunocytochemical probing of wild-type, CP49 knockout, filensin knockout, and vimentin knockout mice, in sections and in the explanted lens epithelium, at the light microscope and electron microscope levels. The relationship between CP49 and other cytoskeletal elements was probed using fluorescent phalloidin, as well as with antibodies to vimentin, GFAP, and α-tubulin. The relationship between CP49 and the aggresome was probed with antibodies to γ-tubulin, ubiquitin, and HDAC6. Results CP49 and filensin were expressed in the mouse lens epithelium, but only after 5 weeks of age. At the light microscope level, these two proteins colocalize to a large tubular structure, approximately 7 × 1 μm, which was typically present at one to two copies per cell. This structure is found in the anterior and anterolateral lens epithelium, including the zone where mitosis occurs. The structure becomes smaller and largely undetectable closer to the equator where the cell exits the cell cycle and commits to fiber cell differentiation. This structure bears some resemblance to the aggresome and is reactive with antibodies to HDAC6, a marker for the aggresome. However, the structure does not colocalize with antibodies to γ-tubulin or ubiquitin, also markers for the aggresome. The structure also colocalizes with actin but appears to largely exclude vimentin and α-tubulin. In the CP49 and filensin knockouts, this structure is absent, confirming the identity of CP49 and filensin in this structure, and suggesting a requirement for the physiologic coassembly of CP49 and filensin. Conclusions CP49 and filensin have been considered robust markers for mouse lens fiber cell differentiation. The data reported here, however, document both proteins in the mouse lens epithelium, but only after 5 weeks of age, when lens epithelial growth and mitotic activity have slowed. Because of this, CP49 and filensin must be considered markers of differentiation for both fiber cells and the lens epithelium in the mouse. In addition, to our knowledge, no other protein has been shown to emerge so late in the development of the mouse lens epithelium, suggesting that lens epithelial differentiation may continue well into post-natal life. If this structure is related to the aggresome, it is a rare, or perhaps unique example of a large, stable aggresome in wild-type tissue. PMID:27559293

  2. [Morphological pathology of classic Kaposi's sarcoma. Ultrastructural studies and reflections on histogenesis].

    PubMed

    Holzhausen, H J; Stiller, D; Sachs, M

    1988-01-01

    Histological and electron-microscopic studies were conducted into biopsy material from cases of what is called the classical type of idiopathic Kaposi's sarcoma without acquired immunodeficiency syndrome. Ultrastructural analysis was conducted, with the view to characterizing a possible progenitor cell from which the angioblastic and fibroblastic elements were likely to originate. The biopsy material had been obtained from two males, aged 86 or 83 years, who had been afflicted with the disease for 18 or 8 years. The nodular lesions were typical of Kaposi's sarcoma and were, histologically, made up of variable mixtures of vascular and spindle cell elements. The angiomatous structures were a capillary meshwork or sinusoidal patterns lined by atypical endothelial cells. The spindle cell areas contained large numbers of slit-like spaces which were without endothelial lining but were stuffed with erythrocytes. Flattened endothelioid cells were recordable from semi-thin-sections of some clefts. Haemosiderin was, typically, deposited in places. Electron microscopically, the endothelial cells of vascular channels exhibited varying amounts of characteristic organelles, such as Weibel-Palade bodies, microfilaments and pinocytotic vesicles as well as basal membranes. Cells with typical endothelial markers, too, were detectable in solid sprouts or in capillary-like differentiations with narrow or small lumina. The spindle cell tumour areas consisted of fibroblastic cells with plenty of rough endoplasmic reticulum and surrounded by material of basal membrane nature. Also visible were solid, sprout-type multilayer cell complexes surrounded by basal membranes which exhibited undifferentiated or primitive cellular forms, endothelioid and pericytic. Transitional forms from these complexes to the above vascular tumours or the spindle-cell formations were detectable. These ultrastructural findings might be interpreted to the effect that an angioblastically determined mesenchymal cell, a so-called endothelioblast, was thinkable and was discussed as the precursor cell of atypical vascular and spindle cell proliferation in Kaposi's sarcoma.

  3. In Vitro Tissue Differentiation using Dynamics of Tissue Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chiang; Phillips, Paul J.

    2002-03-01

    Dynamics of tissue mechanical properties of various human tissue types were studied at macroscopic as well as microscopic level in vitro. This study was conducted to enable the development of a feedback system based on dynamics of tissue mechanical properties for intraoperative guidance for tumor treatment (e.g., RF ablation of liver tumor) and noninvasive tumor localization. Human liver tissues, including normal, cancerous, and cirrhotic tissues, were obtained from patients receiving liver transplant or tumor resection at Vanderbilt University Medical Center with the approval of the Vanderbilt Institutional Review Board. Tissue samples, once resected from the patients, were snap-frozen using liquid nitrogen and stored at -70 oC. Measurements of the mechanical properties of these tissue samples were conducted at the University of Tennessee at Knoxville. Dynamics of tissue mechanical properties were measured from both native and thermally coagulated tissue samples at macroscopic and microscopic level. Preliminary results suggest the dynamics of mechanical properties of normal liver tissues are very different from those of cancerous liver tissues. The correlation between the dynamics of mechanical properties at macroscopic level and those at microscopic level is currently under investigation.

  4. Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope

    PubMed Central

    Isailovic, Dragan; Xu, Yang; Copus, Tyler; Saraswat, Suraj; Nauli, Surya M.

    2011-01-01

    A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were spatially separated by the fluorescence spectra of the fluorophores present in them, providing detailed multi-colored spectral images of cells. Additionally, the grating-based spectral microscope enabled measurement of scattering and absorption spectra of unlabeled cells and stained tissue sections using darkfield and brightfield or DIC spectral microscopy, respectively. The presented spectral imaging methodology provides a readily affordable approach for multimodal spectral characterization of biological cells and other specimens. PMID:21639978

  5. Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Falak, P.; Hassanzadeh-Tabrizi, S. A.; Saffar-Teluri, A.

    2017-11-01

    In the present research, a magnetic ZnO-ZnFe2O4 binary nanocomposite was synthesized by a one-step microemulsion method. The characteristics of the synthesized powders were characterized using various analytical instruments including X-ray diffraction, scanning electron microscope, transmission electron microscope, thermogravimetric and differential thermal analysis, vibrating sample magnetometer, and ultraviolet-visible spectroscopy. The results of transmission electron microscope proved that the synthesized nanoparticles have irregular morphologies and the average particle size is about 20 nm. The photocatalytic investigation of ZnO-ZnFe2O4 nanoparticles was carried out using methylene blue solution under UV light. The synthesized nanoparticles showed enhanced photocatalytic performance in comparison with the ZnO nanoparticles more than 40%. The magnetization saturation value of ZnO-ZnFe2O4 nanoparticles was about 5.8 emu/g, which was high enough to be magnetically removed by applying a magnetic field. The results showed that the magnetization and coercivity of the samples reduced by increasing calcination temperature.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int; Martins, Marco

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discussmore » sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.« less

  7. Development of Models for High Precision Simulation of the Space Mission Microscope

    NASA Astrophysics Data System (ADS)

    Bremer, Stefanie; List, Meike; Selig, Hanns; Lämmerzahl, Claus

    MICROSCOPE is a French space mission for testing the Weak Equivalence Principle (WEP). The mission goal is the determination of the Eötvös parameter with an accuracy of 10-15. This will be achieved by means of two high-precision capacitive differential accelerometers, that are built by the French institute ONERA. At the German institute ZARM drop tower tests are carried out to verify the payload performance. Additionally, the mission data evaluation is prepared in close cooperation with the French partners CNES, ONERA and OCA. Therefore a comprehensive simulation of the real system including the science signal and all error sources is built for the development and testing of data reduction and data analysis algorithms to extract the WEP violation signal. Currently, the High Performance Satellite Dynamics Simulator (HPS), a cooperation project of ZARM and the DLR Institute of Space Systems, is adapted to the MICROSCOPE mission for the simulation of test mass and satellite dynamics. Models of environmental disturbances like solar radiation pressure are considered, too. Furthermore detailed modeling of the on-board capacitive sensors is done.

  8. Upright Imaging of Drosophila Egg Chambers

    PubMed Central

    Manning, Lathiena; Starz-Gaiano, Michelle

    2015-01-01

    Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective. PMID:25867882

  9. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)

    PubMed Central

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023

  10. The complex pericentriolar material 1 protein allows differentiation between myonuclei and nuclei of satellite cells of the skeletal muscle.

    PubMed

    Brunn, Anna

    2018-05-27

    The original article by Winje et al., entitled "Specific labelling of myonuclei by an antibody against pericentriolar material 1 (PCM1) on skeletal muscle tissue sections" 1 , sheds new light on the issue of heterogeneity of skeletal muscle and, thus, the problem to reliably distinguish between myonuclei versus nuclei of satellite cells of the skeletal muscle which are intimately associated. At the light microscopical level this differentiation is particularly difficult since only nuclei inside the muscle fiber are defined as true myonuclei. This is a major problem in analyses that use tissue homogenates, while in situ immunohistochemical studies using appropriate antibodies usually allow differentiation of cell populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Visualizing individual microtubules by bright field microscopy

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Medina, Braulio; Block, Steven M.

    2010-11-01

    Microtubules are slender (˜25 nm diameter), filamentous polymers involved in cellular structure and organization. Individual microtubules have been visualized via fluorescence imaging of dye-labeled tubulin subunits and by video-enhanced, differential interference-contrast microscopy of unlabeled polymers using sensitive CCD cameras. We demonstrate the imaging of unstained microtubules using a microscope with conventional bright field optics in conjunction with a webcam-type camera and a light-emitting diode illuminator. The light scattered by microtubules is image-processed to remove the background, reduce noise, and enhance contrast. The setup is based on a commercial microscope with a minimal set of inexpensive components, suitable for implementation in a student laboratory. We show how this approach can be used in a demonstration motility assay, tracking the gliding motions of microtubules driven by the motor protein kinesin.

  12. Controlled surface-induced flows from the motion of self-assembled colloidal walkers.

    PubMed

    Sing, Charles E; Schmid, Lothar; Schneider, Matthias F; Franke, Thomas; Alexander-Katz, Alfredo

    2010-01-12

    Biological flows at the microscopic scale are important for the transport of nutrients, locomotion, and differentiation. Here, we present a unique approach for creating controlled, surface-induced flows inspired by a ubiquitous biological system, cilia. Our design is based on a collection of self-assembled colloidal rotors that "walk" along surfaces in the presence of a rotating magnetic field. These rotors are held together solely by magnetic forces that allow for reversible assembly and disassembly of the chains. Furthermore, rotation of the magnetic field allows for straightforward manipulation of the shape and motion of these chains. This system offers a simple and versatile approach for designing microfluidic devices as well as for studying fundamental questions in cooperative-driven motion and transport at the microscopic level.

  13. The Microscope Mission and Pre-Flight Performance Verification

    NASA Astrophysics Data System (ADS)

    Hudson, D.; Touboul, P.; Rodrigues, M.

    2006-04-01

    Recent developments in fundamental physics have renewed interest in disproving the equivalence principle. The MICROSCOPE mission will be the first test to capitalize on the advantages of space to achieve an accuracy of 10-15, more than two orders of magnitude better than current ground based results. It is a joint CNES, ONERA, and Observatoire de la Côte d'Azur mission in the CNES Myriade microsatellite program. The principle of the test is to place two masses of different material on precisely the same orbit and measure any difference in the forces required to maintain the common orbit. The test is performed by a differential electrostatic accelerometer containing two concentric cylindrical test masses. This paper will present both an overview of the mission, and a description of the accelerometer development and performance verification.

  14. Prediction of Soil pH Hyperspectral Spectrum in Guanzhong Area of Shaanxi Province Based on PLS

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Cheng, Jie; Tong, Wei; Wei, Jing

    2017-12-01

    The soil pH of Fufeng County, Yangling County and Wugong County in Shaanxi Province was studied. The spectral reflectance was measured by ASD Field Spec HR portable terrain spectrum, and its spectral characteristics were analyzed. The first deviation of the original spectral reflectance of the soil, the second deviation, the logarithm of the reciprocal logarithm, the first order differential of the reciprocal logarithm and the second order differential of the reciprocal logarithm were used to establish the soil pH Spectral prediction model. The results showed that the correlation between the reflectance spectra after SNV pre-treatment and the soil pH was significantly improved. The optimal prediction model of soil pH established by partial least squares method was a prediction model based on the first order differential of the reciprocal logarithm of spectral reflectance. The principal component factor was 10, the decision coefficient Rc2 = 0.9959, the model root means square error RMSEC = 0.0076, the correction deviation SEC = 0.0077; the verification decision coefficient Rv2 = 0.9893, the predicted root mean square error RMSEP = 0.0157, The deviation of SEP = 0.0160, the model was stable, the fitting ability and the prediction ability were high, and the soil pH can be measured quickly.

  15. Fluorescence and reflectance properties of hemoglobin-pigmented skin disorders

    NASA Astrophysics Data System (ADS)

    Troyanova, P.; Borisova, E.; Avramov, L.

    2007-06-01

    There has been growing interest in clinical application of laser-induced autofluorescence (LIAF) and reflectance spectroscopy (RS) to differentiate disease from normal surrounding tissue, including skin pathologies. Pigmented cutaneous lesions diagnosis plays important role in clinical practice, as malignant melanoma, which is characterized with greatest mortality from all skin cancer types, must be carefully discriminated form other colorized pathologies. The goals of this work were investigation of cutaneous hemoglobin-pigmented lesions (heamangioma, angiokeratoma, and fibroma) by the methods of LIAFS and RS. Spectra from healthy skin areas near to the lesion were detected to be used posteriori in analysis. Fluorescence and reflectance of cutaneous hemoglobin-pigmented lesions are used to develop criterion for differentiation from other pigmented pathologies. Origins of the spectral features obtained are discussed and determination of lesion types is achieved using selected spectral features. The spectral results, obtained were used to develop multispectral diagnostic algorithms based on the most prominent spectral features from the fluorescence and reflectance spectra of the lesions investigated. In comparison between normal skin and different cutaneous lesion types and between lesion types themselves sensitivities and specificities higher than 90 % were achieved. These results show a perspective possibility to differentiate hemoglobin-pigmented lesions from other pigmented pathologies using non-invasive and real time discrimination procedure.

  16. Getting Personalization Right!

    ERIC Educational Resources Information Center

    DeWaters, Carrie

    2017-01-01

    In today's differentiated classroom, each individual student receives from their teacher student-centered instruction and customized assignments to reflect their skills and knowledge. Teachers differentiate their assignments so each of their students may access the Common Core State Standards, interact with complex nonfiction texts, integrate…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene; O'Neil, Hugh

    In this paper, we have studied microscopic dynamics of a protein in carbon disulfide, a non-glass forming solvent, down to its freezing temperature of ca. 160 K. We have utilized quasielastic neutron scattering. A comparison of lysozyme hydrated with water and dissolved in carbon disulfide reveals a stark difference in the temperature dependence of the protein's microscopic relaxation dynamics induced by the solvent. In the case of hydration water, the common protein glass-forming solvent, the protein relaxation slows down in response to a large increase in the water viscosity on cooling down, exhibiting a well-known protein dynamical transition. The dynamicalmore » transition disappears in non-glass forming carbon disulfide, whose viscosity remains a weak function of temperature all the way down to freezing at just below 160 K. The microscopic relaxation dynamics of lysozyme dissolved in carbon disulfide is sustained down to the freezing temperature of its solvent at a rate similar to that measured at ambient temperature. Finally, our results demonstrate that protein dynamical transition is not merely solvent-assisted, but rather solvent-induced, or, more precisely, is a reflection of the temperature dependence of the solvent's glass-forming dynamics.« less

  18. Performance evaluation of a quasi-microscope for planetary landers

    NASA Technical Reports Server (NTRS)

    Burcher, E. E.; Huck, F. O.; Wall, S. D.; Woehrle, S. B.

    1977-01-01

    Spatial resolutions achieved with cameras on lunar and planetary landers have been limited to about 1 mm, whereas microscopes of the type proposed for such landers could have obtained resolutions of about 1 um but were never accepted because of their complexity and weight. The quasi-microscope evaluated in this paper could provide intermediate resolutions of about 10 um with relatively simple optics that would augment a camera, such as the Viking lander camera, without imposing special design requirements on the camera of limiting its field of view of the terrain. Images of natural particulate samples taken in black and white and in color show that grain size, shape, and texture are made visible for unconsolidated materials in a 50- to 500-um size range. Such information may provide broad outlines of planetary surface mineralogy and allow inferences to be made of grain origin and evolution. The mineralogical descriptions of single grains would be aided by the reflectance spectra that could, for example, be estimated from the six-channel multispectral data of the Viking lander camera.

  19. Laser shock wave assisted patterning on NiTi shape memory alloy surfaces

    NASA Astrophysics Data System (ADS)

    Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Karaca, Haluk E.; Er, Ali O.

    2017-02-01

    An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning electron microscope (SEM) and optical microscope images of square pattern with different sizes were studied. One dimensional profile analysis shows that the depth of the patterned sample initially increase linearly with the laser energy until 125 mJ/pulse where the plasma further absorbs and reflects the laser beam. In addition, light the microscope image show that the surface of NiTi alloy was damaged due to the high power laser energy which removes the graphite layer.

  20. Thinking Differentially: A Response to Issues in Differential Response

    ERIC Educational Resources Information Center

    Fluke, John D.; Merkel-Holguin, Lisa; Schene, Patricia

    2013-01-01

    This is a response to the document by Hughes et al. in this issue that offers a critique of the status of differential response (DR). We find the document to be helpful in intent, but do not find that it reflects scientifically sound methods, and contains many mischaracterizations of the status, impetus, research, and evaluation of DR to date. We…

  1. Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment?

    USGS Publications Warehouse

    Adkison, Milo D.

    1995-01-01

    Morphological, behavioral, and life-history differences between Pacific salmon (Oncorhynchus spp.) populations are commonly thought to reflect local adaptation, and it is likewise common to assume that salmon populations separated by small distances are locally adapted. Two alternatives to local adaptation exist: random genetic differentiation owing to genetic drift and founder events, and genetic homogeneity among populations, in which differences reflect differential trait expression in differing environments. Population genetics theory and simulations suggest that both alternatives are possible. With selectively neutral alleles, genetic drift can result in random differentiation despite many strays per generation. Even weak selection can prevent genetic drift in stable populations; however, founder effects can result in random differentiation despite selective pressures. Overlapping generations reduce the potential for random differentiation. Genetic homogeneity can occur despite differences in selective regimes when straying rates are high. In sum, localized differences in selection should not always result in local adaptation. Local adaptation is favored when population sizes are large and stable, selection is consistent over large areas, selective diffeentials are large, and straying rates are neither too high nor too low. Consideration of alternatives to local adaptation would improve both biological research and salmon conservation efforts.

  2. Microscopic study of spin cut-off factors of nuclear level densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholami, M.; Kildir, M.; Behkami, A. N.

    Level densities and spin cut-off factors have been investigated within the microscopic approach based on the BCS Hamiltonian. In particular, the spin cut-off parameters have been calculated at neutron binding energies over a large range of nuclear mass using the BCS theory. The spin cut-off parameters {sigma}{sup 2}(E) have also been obtained from the Gilbert and Cameron expression and from rigid body calculations. The results were compared with their corresponding macroscopic values. It was found that the values of {sigma}{sup 2}(E) did not increase smoothly with A as expected based on macroscopic theory. Instead, the values of {sigma}{sup 2}(E) showmore » structure reflecting the angular momentum of the shell model orbitals near the Fermi energy.« less

  3. Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang

    2011-12-01

    A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.

  4. Shape selection of twist-nematic-elastomer ribbons

    PubMed Central

    Sawa, Yoshiki; Ye, Fangfu; Urayama, Kenji; Takigawa, Toshikazu; Gimenez-Pinto, Vianney; Selinger, Robin L. B.; Selinger, Jonathan V.

    2011-01-01

    How microscopic chirality is reflected in macroscopic scale to form various chiral shapes, such as straight helicoids and spiral ribbons, and how the degree of macroscopic chirality can be controlled are a focus of studies on the shape formation of many biomaterials and supramolecular systems. This article investigates both experimentally and theoretically how the chiral arrangement of liquid crystal mesogens in twist-nematic-elastomer films induces the formation of helicoids and spiral ribbons because of the coupling between the liquid crystalline order and the elasticity. It is also shown that the pitch of the formed ribbons can be tuned by temperature variation. The results of this study will facilitate the understanding of physics for the shape formation of chiral materials and the designing of new structures on basis of microscopic chirality. PMID:21464276

  5. High angular and spectral selectivity of purple emperor (Lepidoptera: Apatura iris and A. ilia) butterfly wings.

    PubMed

    Pantelić, Dejan; Curčić, Srećko; Savić-Šević, Svetlana; Korać, Aleksandra; Kovačević, Aleksander; Curčić, Božidar; Bokić, Bojana

    2011-03-28

    The iridescent features of the butterfly species Apatura iris (Linnaeus, 1758) and A. ilia (Denis & Schiffermüller, 1775) were studied. We recognized the structural color of scales only on the dorsal side of both the fore and hind wings of males of both of the aforementioned butterfly species. The scale dimensions and microstructure were analyzed by a scanning electron microscope (SEM) and transmission electron microscope (TEM). The optical properties were measured and it was found that the peak reflectivity is around 380 nm, with a spectral width (full width at half maximum) of approximately 50 nm in both species. The angular selectivity is high and a purple iridescent color is observed within the angular range of only 18 degrees in both species.

  6. Ex vivo measurement of postmortem tissue changes in the crystalline lens by Brillouin spectroscopy and confocal reflectance microscopy.

    PubMed

    Reiss, Stephan; Sperlich, K; Hovakimyan, M; Martius, P; Guthoff, R F; Stolz, H; Stachs, O

    2012-08-01

    Use of Brillouin spectroscopy in ophthalmology enables noninvasive, spatially resolved determination of the rheological properties of crystalline lens tissue. Furthermore, the Brillouin shift correlates with the protein concentration inside the lens. In vitro measurements on extracted porcine lenses demonstrate that results obtained with Brillouin spectroscopy depend strongly on time after death. The intensity of the Brillouin signal decreases significantly as early as 5 h postmortem. Moreover, the fluctuation of the Brillouin frequency shift inside the lens increases with postmortem time. Images of lens tissue taken with a confocal reflectance microscope between measurements reveal a degenerative aging process. These tissue changes correlate with our results from Brillouin spectroscopy. It is concluded that only in vivo measurements appropriately reflect the rheological properties of the eye lens and its protein concentration.

  7. Chiral mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk; Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk; The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spacedmore » by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.« less

  8. Back focal plane microscopic ellipsometer with internal reflection geometry

    NASA Astrophysics Data System (ADS)

    Otsuki, Soichi; Murase, Norio; Kano, Hiroshi

    2013-05-01

    A back focal plane (BFP) ellipsometer is presented to measure a thin film on a cover glass using an oil-immersion high-numerical-aperture objective lens. The internal reflection geometry lowers the pseudo Brewster angle (ϕB) to the range over which the light distribution is observed in BFP of the objective. A calculation based on Mueller matrix was developed to compute ellipsometric parameters from the intensity distribution on BFP. The center and radius of the partial reflection region below the critical angle were determined and used to define a polar coordinate on BFP. Harmonic components were computed from the intensities along the azimuth direction and transformed to ellipsometric parameters at multiple incident angles around ϕB. The refractive index and thickness of the film and the contributions of the objective effect were estimated at the same time by fitting.

  9. A reflection TIE system for 3D inspection of wafer structures

    NASA Astrophysics Data System (ADS)

    Yan, Yizhen; Qu, Weijuan; Yan, Lei; Wang, Zhaomin; Zhao, Hongying

    2017-10-01

    A reflection TIE system consisting of a reflecting microscope and a 4f relay system is presented in this paper, with which the transport of intensity equation (TIE) is applied to reconstruct the three-dimensional (3D) profile of opaque micro objects like wafer structures for 3D inspection. As the shape of an object can affect the phases of waves, the 3D information of the object can be easily acquired with the multiple phases at different refocusing planes. By electronically controlled refocusing, multi-focal images can be captured and used in solving TIE to obtain the phase and depth of the object. In order to validate the accuracy and efficiency of the proposed system, the phase and depth values of several samples are calculated, and the experimental results is presented to demonstrate the performance of the system.

  10. Focus control system for stretched-membrane mirror module

    DOEpatents

    Butler, B.L.; Beninga, K.J.

    1991-05-21

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length. 13 figures.

  11. Focus control system for stretched-membrane mirror module

    DOEpatents

    Butler, Barry L.; Beninga, Kelly J.

    1991-01-01

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length.

  12. Phytoplankton bloom along the coast of Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This MODIS true-color image, acquired March 4, 2002, shows a phytoplankton bloom along the coast of Namibia. Phytoplankton is a microscopic organism that utilizes chlorophyll, which sunlight reflects off of to create this intense blue-green color in the water. Also prominent in this image is the Skeleton Coast Game Park, which runs along Namibia's northern coast and here glows a beautiful coral-orange color.

  13. Site-Dependent Fluorescence Decay of Malachite Green Doped in Onion Cell

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Hiroki; Sekine, Masaya; Suzuki, Yuji; Hattori, Toshiaki

    1999-03-01

    Time-resolved fluorescence measurements of malachite green dye moleculesdoped in onion cells were carried out.The fluorescence decay time was dependent on the individual cell and on theposition of the dye in a cell, which reflect the microscopic dynamics of each boundsite.Upon cooling, the decay time increased and this increase was accelerated ataround the freezing point of the onion cell.

  14. Reflective and refractive objects for mixed reality.

    PubMed

    Knecht, Martin; Traxler, Christoph; Winklhofer, Christoph; Wimmer, Michael

    2013-04-01

    In this paper, we present a novel rendering method which integrates reflective or refractive objects into a differential instant radiosity (DIR) framework usable for mixed-reality (MR) applications. This kind of objects are very special from the light interaction point of view, as they reflect and refract incident rays. Therefore they may cause high-frequency lighting effects known as caustics. Using instant-radiosity (IR) methods to approximate these high-frequency lighting effects would require a large amount of virtual point lights (VPLs) and is therefore not desirable due to real-time constraints. Instead, our approach combines differential instant radiosity with three other methods. One method handles more accurate reflections compared to simple cubemaps by using impostors. Another method is able to calculate two refractions in real-time, and the third method uses small quads to create caustic effects. Our proposed method replaces parts in light paths that belong to reflective or refractive objects using these three methods and thus tightly integrates into DIR. In contrast to previous methods which introduce reflective or refractive objects into MR scenarios, our method produces caustics that also emit additional indirect light. The method runs at real-time frame rates, and the results show that reflective and refractive objects with caustics improve the overall impression for MR scenarios.

  15. Microscopical and functional aspects of calcium-transport and deposition in terrestrial isopods.

    PubMed

    Ziegler, Andreas; Fabritius, Helge; Hagedorn, Monica

    2005-01-01

    Terrestrial isopods (Crustacea) are excellent model organisms to study epithelial calcium-transport and the regulation of biomineralization processes. They molt frequently and resorb cuticular CaCO(3) before the molt to prevent excessive loss of Ca(2+) ions when the old cuticle is shed. The resorbed mineral is stored in CaCO(3) deposits within the ecdysial gap of the first four anterior sternites. After the molt, the deposits are quickly resorbed to mineralise the posterior part of the new cuticle. The deposits contain numerous small spherules composed of an organic matrix and amorphous CaCO(3), which has a high solubility and, therefore, facilitates quick mobilization of Ca(2+) and HCO(3)(-) ions. During the formation and resorption of the deposits large amounts of Ca(2+), HCO(3)(-) and H(+) are transported across the anterior sternal epithelial cells. Within the last years, various light and electron microscopical techniques have been used to characterize the CaCO(3) deposits and the cellular mechanisms involved in biomineralization. The work on the CaCO(3) deposits includes studies on the ultrastructure of the deposits, the sequence of events during deposit formation and dissolution, and the mineral composition of the sternal deposits. The differentiation of the anterior sternal epithelial cells and the mechanisms of epithelial ion transport required for the mineralization and demineralisation of the deposits was studied using various analytical light and electron microscopical techniques including polarized light microscopy, immunocytochemistry, electron microprobe analysis, electron energy loss spectroscopy and electron spectroscopic imaging. Comparative analysis of deposit morphology and the differentiation of the sternal epithelia provide information on the evolution of CaCO(3) deposit formation in relation to the degree of adaptation to terrestrial environments.

  16. Real-time PCR assay in differentiating Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii infections in Orang Asli settlements in Malaysia.

    PubMed

    Lau, Yee Ling; Anthony, Claudia; Fakhrurrazi, Siti Aminah; Ibrahim, Jamaiah; Ithoi, Init; Mahmud, Rohela

    2013-08-28

    Amebiasis caused by Entamoeba histolytica is the third leading cause of death worldwide. This pathogenic amoeba is morphologically indistinguishable from E. dispar and E. moshkovskii, the non-pathogenic species. Polymerase chain reaction is the current method of choice approved by World Health Organization. Real-time PCR is another attractive molecular method for diagnosis of infectious diseases as post-PCR analyses are eliminated and turnaround times are shorter. The present work aimed to compare the results of Entamoeba species identification using the real-time assay against the established nested PCR method. In this study, a total of 334 human faecal samples were collected from different Orang Asli settlements. Faecal samples were processed by direct wet smear and formalin ethyl acetate concentration methods followed by iodine staining and was microscopically examined for Entamoeba species and other intestinal parasites. Microscopically positive samples were then subject to nested PCR and real-time PCR. The overall prevalence of Entamoeba infection was 19.5% (65/334). SK Posh Piah recorded highest Entamoeba prevalence (63.3%) while Kampung Kemensah had the lowest prevalence (3.7%) of Entamoeba. Microscopically positive samples were then tested by real-time PCR and nested PCR for the presence of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii infection. Real-time PCR showed higher Entamoeba detection (86.2%) compared to nested PCR (80%), although the McNemar test value showed no significant difference between the two methods (p = 0.221). This study is the first in Malaysia to report the use of real-time PCR in identifying and differentiating the three Entamoeba infections. It is also proven to be more effective compared to the conventional nested PCR molecular method.

  17. Real-time PCR assay in differentiating Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii infections in Orang Asli settlements in Malaysia

    PubMed Central

    2013-01-01

    Background Amebiasis caused by Entamoeba histolytica is the third leading cause of death worldwide. This pathogenic amoeba is morphologically indistinguishable from E. dispar and E. moshkovskii, the non-pathogenic species. Polymerase chain reaction is the current method of choice approved by World Health Organization. Real-time PCR is another attractive molecular method for diagnosis of infectious diseases as post-PCR analyses are eliminated and turnaround times are shorter. The present work aimed to compare the results of Entamoeba species identification using the real-time assay against the established nested PCR method. Methods In this study, a total of 334 human faecal samples were collected from different Orang Asli settlements. Faecal samples were processed by direct wet smear and formalin ethyl acetate concentration methods followed by iodine staining and was microscopically examined for Entamoeba species and other intestinal parasites. Microscopically positive samples were then subject to nested PCR and real-time PCR. Results The overall prevalence of Entamoeba infection was 19.5% (65/334). SK Posh Piah recorded highest Entamoeba prevalence (63.3%) while Kampung Kemensah had the lowest prevalence (3.7%) of Entamoeba. Microscopically positive samples were then tested by real-time PCR and nested PCR for the presence of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii infection. Real-time PCR showed higher Entamoeba detection (86.2%) compared to nested PCR (80%), although the McNemar test value showed no significant difference between the two methods (p = 0.221). Conclusions This study is the first in Malaysia to report the use of real-time PCR in identifying and differentiating the three Entamoeba infections. It is also proven to be more effective compared to the conventional nested PCR molecular method. PMID:23985047

  18. Detection of explosives by differential hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Brown, Gregory; Hummel, Rolf E.

    2014-02-01

    Our team has pioneered an explosives detection technique based on hyperspectral imaging of surfaces. Briefly, differential reflectometry (DR) shines ultraviolet (UV) and blue light on two close-by areas on a surface (for example, a piece of luggage on a moving conveyer belt). Upon reflection, the light is collected with a spectrometer combined with a charge coupled device (CCD) camera. A computer processes the data and produces in turn differential reflection spectra taken from these two adjacent areas on the surface. This differential technique is highly sensitive and provides spectroscopic data of materials, particularly of explosives. As an example, 2,4,6-trinitrotoluene displays strong and distinct features in differential reflectograms near 420 and 250 nm, that is, in the near-UV region. Similar, but distinctly different features are observed for other explosives. Finally, a custom algorithm classifies the collected spectral data and outputs an acoustic signal if a threat is detected. This paper presents the complete DR hyperspectral imager which we have designed and built from the hardware to the software, complete with an analysis of the device specifications.

  19. Development of remote sensing techniques capable of delineating soils as an aid to soil survey

    NASA Technical Reports Server (NTRS)

    Coleman, T. L.; Montgomery, O. L.

    1988-01-01

    Eighty-one benchmark soils from Alabama, Georgia, Florida, Tennessee, and Mississippi were evaluated to determine the feasibility of spectrally differentiating among soil categories. Relationships among spectral properties that occur between soils and within soils were examined, using discriminant analysis. Soil spectral data were obtained from air-dried samples using an Exotech Model 20C field spectroradiometer (0.37 to 2.36 microns). Differentiating among the orders, suborders, great groups, and subgroups using reflectance spectra achieved varying percentages of accuracy. Six distinct reflectance curve forms were developed from the air-dried samples based on the shape and presence or absence of adsorption bands. Iron oxide and organic matter content were the dominant soil parameters affecting the spectral characteristics for differentiating among and between these soils.

  20. Photon theory hypothesis about photon tunneling microscope's subwavelength resolution

    NASA Astrophysics Data System (ADS)

    Zhu, Yanbin; Ma, Junfu

    1995-09-01

    The foundation for the invention of the photon scanning tunneling microscope (PSTM) are the near field scanning optical microscope, the optical fiber technique, the total internal reflection, high sensitive opto-electronic detecting technique and computer technique etc. Recent research results show the subwavelength resolution of 1 - 3 nm is obtained. How to explain the PSTM has got such high subwavelength resolution? What value is the PSTM's limiting of subwavelength resolution? For resolving these problems this paper presented a photon theory hypothesis about PSTM that is based on the following two basic laws: (1) Photon is not only a carrier bringing energy and optical information, but also is a particle occupied fixed space size. (2) When a photon happened reflection, refraction, scattering, etc., only changed its energy and optical information carried, its particle size doesn't change. g (DOT) pphoton equals constant. Using these two basic laws to PSTM, the `evanescent field' is practically a weak photon distribution field and the detecting fiber tip diameter is practically a `gate' which size controlled the photon numbers into fiber tip. Passing through some calculation and inference, the following three conclusions can be given: (1) Under the PSTM's detection system sensitivity is high enough, the diameter D of detecting fiber tip and the near field detecting distance Z are the two most important factors to decide the subwavelength resolution of PSTM. (2) The limiting of PSTM's resolution will be given upon the conditions of D equals pphoton and Z equals pphoton, where pphoton is one photon size. (2) The final resolution limit R of PSTM will be lim R equals pphoton, D yields pphoton, Z yields pphoton.

  1. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications.

    PubMed

    Mudanyali, Onur; Tseng, Derek; Oh, Chulwoo; Isikman, Serhan O; Sencan, Ikbal; Bishara, Waheb; Oztoprak, Cetin; Seo, Sungkyu; Khademhosseini, Bahar; Ozcan, Aydogan

    2010-06-07

    Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing approximately 46 grams with dimensions smaller than 4.2 cm x 4.2 cm x 5.8 cm that achieves sub-cellular resolution over a large field of view of approximately 24 mm(2). This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.

  2. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 200 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. [Effects of Tetrandrine Prenatal Intervention on Alveolar Epithelial Cells Type I Differentiation in Rat Model of Nitrofen-induced Congenital Diaphragmatic Hernia].

    PubMed

    Xiao, Bin; Xu, Chang; Liu, Min; Ji, Yi; Yang Li-xun; Li, Tai-ming; Jiang, Jun; He, Tao-zhen

    2016-03-01

    To investigate the effects of Tetrandrine (TET) prenatal intervention on the differentiation of alveolar epithelial cells type I (AEC I) in rat model of Nitrofen-induced congenital diaphragmatic hernia (CDH). Timed-pregnant Sprague-Dawley rats were divided into three groups, namely control, CDH and TET group on day 9.5 of gestation. The rats in TET group and CDH group were given 125 mg of Nitrofen by gavage one time, while the rats in control group were given the same dose of seed fat. After that, the rats in TET group was given 30 mg/kg of TET by gavage once a day for three days from day 18.5 of gestation, while the rats in CDH and control group were given the same dose of normal saline. On day 21.5 of gestation, all fetuses were delivered by cesarean, the lungs of fetuses were histologically evaluated by microscope and electron microscope. The expressions of type I cell-specific protein (RT140) and thyroid transcription factor 1 (TTF1) in alveolar fluid content were analyzed by RT-PCR and immunohistochemistry staining. To detect the number of AEC I and AEC II of each group by transmission electron microscopy and calculate the percentage of AEC I and AEC II (I/II%). The microscope and electron microscope study found the lungs of fetuses in CDH group showed marked hypoplasia, in contrast to the improvement of hypoplasia in TET fetuses. The pulmonary alveolar area had significant difference statistically (P < 0.01) in each group, which present as control > TET > CDH. I/II% had significant difference statistically (P < 0.01) in each group, which present as control > TET > CDH. The expression level of TTF1 was up-regulated in both CDH and TET groups, and it was higher in CDH group (P < 0.01). The expression level of RT140 were down-regulated in CDH and TET groups, which was lower in CDH group (P < 0.01). The development of AEC I was interfered in CDH rat model, TET prenatal treatment could improve the lung development of CDH.

  4. The effects of biodegradable poly(lactic-co-glycolic acid)-based microspheres loaded with quercetin on stemness, viability and osteogenic differentiation potential of stem cell spheroids.

    PubMed

    Lee, H; Nguyen, T T; Kim, M; Jeong, J-H; Park, J-B

    2018-05-31

    Quercetin has been reported to exert many beneficial effects on the protection against various diseases, such as diabetes, cancer, and inflammation. The aim of this study is to evaluate the potential osteogenic differentiation ability of mesenchymal stem cells in the presence of quercetin. Quercetin-loaded poly(lactic-co-glycolic acid) microspheres were prepared using an electrospraying technique. Characterization of the microspheres was evaluated with a scanning electron microscope and release profile. Three-dimensional cell spheroids were fabricated using silicon elastomer-based concave microwells. Qualitative results of cellular viability were seen under a confocal microscope, and quantitative cellular viability was evaluated using the Cell Counting Kit-8 assay. The alkaline phosphatase activity and Alizarin Red S staining were performed. A quantitative real-time polymerase chain reaction and a western blot analysis were performed. Spheroids were well formed irrespective of quercetin concentration. Most of the cells in spheroids emitted green fluorescence, and the morphology was round without significant changes. The application of quercetin-loaded microspheres produced a significant increase in the alkaline phosphatase activity. The real-time polymerase chain reaction results showed a significant increase in Runx2, and western blot results showed higher expression of Runx2 protein expression. Biodegradable microspheres loaded with quercetin produced prolonged release profiles with increased mineralization. Microspheres loaded with quercetin can be used for the enhancement of osteoblastic differentiation in cell therapy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. A novel microscopic method for analyzing Gram-stained vaginal smears in the diagnosis of disorders of vaginal microflora.

    PubMed

    Nenadić, Dane B; Pavlović, Miloš D; Motrenko, Tatjana

    2015-08-01

    The Nugent's score is still the gold standard in the great majority of studies dealing with the assessment of vaginal flora and the diagnosis of bacterial vaginosis (BV). The aim of this study was to show that the analysis of Gram-stained vaginal samples under microscope at the magnification of x200 (a novel microscopic method--NMM), as a fast and simple tool, easily applicable in everyday practice, better reflects complexity of vaginal microflora than the Nugent's methodology (x1000). Gram-stained vaginal smears from 394 asymptomatic pregnant women (24-28 week of pregnancy) were classified according to the Nugent's microscopic criteria (immersion, magnification x1000). The smears were then reexamined under immersion but at magnification x200. All samples were classified into 6 groups according to semiquanititative assessment of numbers (cellularity) and the ratio of rod (length < 1.5 microm) and small bacterial (< 1.5 microm) forms: hypercellular (normal full--NF), moderately cellular (normal mid-NM), hypocellular (normal empty--NE), bacterial vaginosis full (BVF), bacterial vaginosis mid (BVM), and bacterial vaginosis empty (BVE). Also yeasts, coccae, bifido and lepto bacterial forms as well polymorphonuclear (PMN) leukocytes were identified. According to the Nugent's scoring, BV was found in 78, intermediate findings in 63, and yeasts in 48 patients. By our criteria BV was confirmed in 88 patients (37 BVF, 24 BVM, and 27 BVN). Generally, both tools proved to be highly concordant for the diagnosis of BV (Lin's concordance correlation coefficient = 0.9852). In 40% of the women mixed flora was found: yeasts in 126 (32%), coccae in 145 (37%), bifido forms in 32 (8%) and lepto forms in 20 (5%). Almost a half of BV patients had also yeasts (39/88). Elevated PMN numbers were found in 102 (33%) patients with normal and in 36 (41%) women with BV. The newly described methodology is simpler to apply and much better reflects diversity of vaginal microflora. In this way it may be more valuable to molecular biologists and their attempts based on quantitative polymerase chain reaction (PCR) to define formulas for molecular diagnosis of bacterial vaginosis.

  6. Robust and irreversible development in cell society as a general consequence of intra-inter dynamics

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko; Furusawa, Chikara

    2000-05-01

    A dynamical systems scenario for developmental cell biology is proposed, based on numerical studies of a system with interacting units with internal dynamics and reproduction. Diversification, formation of discrete and recursive types, and rules for differentiation are found as a natural consequence of such a system. “Stem cells” that either proliferate or differentiate to different types stochastically are found to appear when intra-cellular dynamics are chaotic. Robustness of the developmental process against microscopic and macroscopic perturbations is shown to be a natural consequence of such intra-inter dynamics, while irreversibility in developmental process is discussed in terms of the gain of stability, loss of diversity and chaotic instability.

  7. Non-Clostridium perfringens infectious agents producing necrotic enteritis-like lesions in poultry.

    PubMed

    Uzal, F A; Sentíes-Cué, C G; Rimoldi, G; Shivaprasad, H L

    2016-06-01

    Necrotic enteritis (NE) produced by Clostridium perfringens is amongst the most prevalent enteric diseases of chickens and turkeys. However, several other bacterial, parasitic and viral agents can cause clinical signs, gross and microscopic lesions in poultry very similar to those of NE and the diseases produced by those agents need to be differentiated from NE. The main differential diagnoses for C. perfringens NE include bacterial (Clostridium colinum, Clostridium sordellii, Clostridium difficile, Pasteurella multocida, Brachyspira spp.), parasitic (Eimeria spp., Histomonas meleagridis) and viral (Duck Herpesvirus type 1, Avian Paramyxovirus type 1) diseases. Confirmation of the diagnosis of these diseases requires identification of the aetiological agents by morphological, cultural and/or molecular methods.

  8. Micron-Scale Differential Scanning Calorimeter on a Chip

    DOEpatents

    Cavicchi, Richard E; Poirier, Gregory Ernest; Suehle, John S; Gaitan, Michael; Tea, Nim H

    1998-06-30

    A differential scanning microcalorimeter produced on a silicon chip enables microscopic scanning calorimetry measurements of small samples and thin films. The chip may be fabricated using standard CMOS processes. The microcalorimeter includes a reference zone and a sample zone. The reference and sample zones may be at opposite ends of a suspended platform or may reside on separate platforms. An integrated polysilicon heater provides heat to each zone. A thermopile consisting of a succession of thermocouple junctions generates a voltage representing the temperature difference between the reference and sample zones. Temperature differences between the zones provide information about the chemical reactions and phase transitions that occur in a sample placed in the sample zone.

  9. Differential diagnosis of neoplasia of the palatine tonsil.

    PubMed

    Hyams, V J

    1978-05-01

    The differential diagnosis of approximately 2000 cases of palatine tonsillar malignancy contained in the Otolaryngic Pathology Registry of the Armed Forces Institute of Pathology are presented to include basic statistics of age, race and sex. These statistics and others from the World English language medical literature are compared and discussed briefly. Pertinent information points out the overwhelming predominance of squanmous (epidermoid) carcinoma, the delayed medical attention of patients and hence the advanced clinical state of the disease when first diagnosed, the involvement of cervical lymph nodes in the majority of cases and the causative relationship of alcoholism. A discussion of the various histological types of tonsillar carcinoma suggests a simplification of the current microscopic classification.

  10. Negative Differential Conductance in Polyporphyrin Oligomers with Nonlinear Backbones.

    PubMed

    Kuang, Guowen; Chen, Shi Zhang; Yan, Linghao; Chen, Ke Qiu; Shang, Xuesong; Liu, Pei Nian; Lin, Nian

    2018-01-17

    We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink. Aided by density functional theory with nonequilibrium Green's functions simulations, we attributed this backbone-dependent NDC to bias-modulated hybridization of the electrode states with the resonant transport molecular orbital. We argue this mechanism is generic in molecular systems, which opens a new route of designing molecular NDC devices.

  11. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, Donald A.; Turner, Brian; Kipling, Kent

    1999-01-01

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture.

  12. Fiber-optic temperature sensors based on differential spectral transmittance/reflectivity and multiplexed sensing systems

    NASA Astrophysics Data System (ADS)

    Wang, Anbo; Wang, George Z.; Murphy, Kent A.; Claus, Richard O.

    1995-05-01

    Dielectric-multilayer-filter-based, optical-fiber temperature sensors based on differential spectral transmittance/reflectivity were shown experimentally. A resolution of 0.2 C was achieved over a measurement range of 30-120 C. The sensor was shown to possess low immunity to variations in light-source power and fiber-bending loss. A wavelength-division-multiplexed sensing system was also fabricated by cascading three such filters with distinct cutoff wavelengths along a single multimode fiber. A resolution of 0.5 C was achieved over a temperature spectrum of 50-100 C. Furthermore, cross talk between sensors was examined.

  13. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    DOEpatents

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  14. Phase and Index of Refraction Imaging by Hyperspectral Reflectance Confocal Microscopy.

    PubMed

    Selci, Stefano

    2016-12-16

    A hyperspectral reflectance confocal microscope (HSCM) was realized by CNR-ISC (Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi) a few years ago. The instrument and data have been already presented and discussed. The main activity of this HSCM has been within biology, and reflectance data have shown good matching between spectral signatures and the nature or evolution on many types of cells. Such a relationship has been demonstrated mainly with statistical tools like Principal Component Analysis (PCA), or similar concepts, which represent a very common approach for hyperspectral imaging. However, the point is that reflectance data contains much more useful information and, moreover, there is an obvious interest to go from reflectance, bound to the single experiment, to reflectivity, or other physical quantities, related to the sample alone. To accomplish this aim, we can follow well-established analyses and methods used in reflectance spectroscopy. Therefore, we show methods of calculations for index of refraction n , extinction coefficient k and local thicknesses of frequency starting from phase images by fast Kramers-Kronig (KK) algorithms and the Abeles matrix formalism. Details, limitations and problems of the presented calculations as well as alternative procedures are given for an example of HSCM images of red blood cells (RBC).

  15. Properties of nanocrystalline Si layers embedded in structure of solar cell

    NASA Astrophysics Data System (ADS)

    Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    Suppression of spectral reflectance from the surface of solar cell is necessary for achieving a high energy conversion efficiency. We developed a simple method for forming nanocrystalline layers with ultralow reflectance in a broad range of wavelengths. The method is based on metal assisted etching of the silicon surface. In this work, we prepared Si solar cell structures with embedded nanocrystalline layers. The microstructure of embedded layer depends on the etching conditions. We examined the microstructure of the etched layers by a transmission electron microscope and analysed the experimental images by statistical and Fourier methods. The obtained results provide information on the applied treatment operations and can be used to optimize the solar cell forming procedure.

  16. Ultrafast amorphization in Ge(10)Sb(2)Te(13) thin film induced by single femtosecond laser pulse.

    PubMed

    Konishi, Mitsutaka; Santo, Hisashi; Hongo, Yuki; Tajima, Kazuyuki; Hosoi, Masaharu; Saiki, Toshiharu

    2010-06-20

    We demonstrate amorphization in a Ge(10)Sb(2)Te(13) (GST) thin film through a nonthermal process by femtosecond electronic excitation. Amorphous recording marks were formed by irradiation with a single femtosecond pulse, and were confirmed to be recrystallized by laser thermal annealing. Scanning electron microscope observations revealed that amorphization occurred below the melting temperature. We performed femtosecond pump-probe measurements to investigate the amorphization dynamics of a GST thin film. We found that the reflectivity dropped abruptly within 500fs after excitation by a single pulse and that a small change in the reflectivity occurred within 5ps of this drop.

  17. Minimum surface-effect microgripper design for force-reflective telemanipulation of a microscopic environment

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Celanovic, Nikola

    1996-01-01

    This paper describes the fundamental physical motivations for a minimum surface effect design, and presents a microgripper that incorporates a piezoelectric ceramic actuator and a flexure-based structure and transmission. The microgripper serves effectively as a one degree-of-freedom prototype of a minimum surface effect micromanipulator design. Data is presented that characterizes the microgripper performance under both pure position and pure force control, followed by a discussion of the attributes and limitations of flexure-based design. The microgripper is interfaced with a force reflective macrogripper, and the pair is controlled with a hybrid position/force scheme. Data is presented that illustrates the effective operation of the telerobotic pair.

  18. The Changing Nature of Warfare, the Factors Mediating Future Conflict, and Implications for SOF

    DTIC Science & Technology

    2006-04-01

    most commonly used vernacular today, one is describing the person’s sexual orientation.13 The English language is replete with other words that have...countries and those that are technologically more advanced, primarily due to labor cost differentials. Globaliza- tion has transmuted economics from a...fascination with forensic sci- ences, ala the acclaimed television pro- gram CSI, has transmuted from civilian criminal proceedings to microscopic

  19. Rapid alkaline methylene blue supravital staining for assessment of anterior segment infections.

    PubMed

    Kiuchi, Katsuji

    2016-01-01

    To present the Löffler's alkaline methylene blue technique of staining eye discharges in eyes with anterior segment infections. The Löffler's alkaline methylene blue staining method is a simple staining technique that can be used to differentiate bacterial, viral, and fungal infections. It is a cationic dye that stains cells blue because the positively charged dye is attracted to negatively charged particles such as polyphosphates, DNAs, and RNAs. Specimens collected from patients by swabbing are smeared onto microscope slides and the methylene blue solution is dropped on the slide. The slide is covered with a glass cover slip and examined under a microscope. The entire time from the collection to the viewing is about 30 seconds. Histopathological images of the conjunctival epithelial cells and neutrophils in eye discharges were dyed blue and the nuclei were stained more intensely blue. Bacterial infections consisted mainly of neutrophils, and viral infections consisted mainly of lymphocytes. Löffler's alkaline methylene blue staining can be done in about 30 seconds for diagnosis. Even though this is a one color stain, it is possible to infer the cause of the infection by detection of the absence of bacteria and/or fungi in context of the differential distribution of neutrophils and lymphocytes.

  20. [The development OF THE vestibular apparatus under conditions of weightlessness].

    PubMed

    Vinikov, Ia A; Gazenko, O G; Titovo, L K; Bornshteĭn, A A; Govardovskiĭ, V I

    1976-01-01

    The spawn of the aquarium fish Brachydanio rerio was developing during 5--6 days under conditions of weightlessness (first on board the spaceship "Sojuz-16", then in the space station "Salut-4") in special aquariums "EMKON", in thermostable installations. Electron microscopically the embryos were found to have a well developed labyrinth in early developmental histologically and cytologically differentiated receptory structures of the macula utriculi and macula saccili. In contrast to controls, the experimental animals showed certain alterations in the otolite organization. In similar experiments the embryos of clawed frog Xenopus laevis in the stage of the tail bud were also placed in special containers "EMKON" and thermostable apparatus "Biotherm-4" and by the spaceship "Sojuz-17" were brought to the space station "Salut-4", where it stayed for 16 days. The initial embryos had already had a well developed acoustic vesicle with macula communis. Inspite of the preliminary load by start acceleration and staying under conditions of weightlessness, they reached the general development fairly similar to controls. As it was shown electron microscopically their labyrinth had highly histologically and cytologically differentiated structures. However, a disturbance of the development of the otolithic membrane and otoconia should be noted. The alterations observed in the otolithic membrane organization in experimental fishes and frogs may be explained by general disorders in calcium metabolism.

  1. Ultrastructural localization of hair keratins, high sulfur keratin-associated proteins and sulfhydryl oxidase in the human hair.

    PubMed

    Alibardi, Lorenzo

    2017-03-01

    Hardening of the human hair shaft during cornification results from the bonding of keratins and keratin-associated proteins. In situ hybridization and light immunocytochemical studies have shown the general distribution of different keratins and some associated proteins but not determined their ultrastructural localization. I report here the localization of hair keratins, two high-sulfur keratin-associated proteins and sulfhydryl oxidase has been studied under the transmission electron microscope in the cornification zone of the human hair. The ultrastructural study on keratin distribution in general confirms previous light microscopic studies. Sulfur-rich KAP1 is mainly cortical but the labeling disappears in fully cornified cortical cells while a diffuse labeling is also present in differentiating cuticle cells. Sulfur-rich K26 immunolocalization is only detected in the exocuticle and endocuticle. Sparse labeling for sulfhydryl oxidase occurs in differentiating cortical cells but is weak and uneven in cuticle cells and absent in medulla and inner root sheath. Labeling disappears in the upper fully cornified cortex and cuticle. The observations indicate that sulfhydryl oxidase and keratin associated proteins are initially produced in the cytoplasm among keratin bundles accumulating in cortical and cuticle cells but these proteins undergo changes during the following cornification that alter the epitopes tagged by the antibodies.

  2. Histology of microscopic colitis-review with a practical approach for pathologists.

    PubMed

    Langner, Cord; Aust, Daniela; Ensari, Arzu; Villanacci, Vincenzo; Becheanu, Gabriel; Miehlke, Stephan; Geboes, Karel; Münch, Andreas

    2015-04-01

    Microscopic colitis has emerged as a major cause of chronic watery non-bloody diarrhoea, particularly in elderly females. The term is used as an umbrella term to categorize a subgroup of colitides with distinct clinicopathological phenotypes and no significant endoscopic abnormalities. Lymphocytic colitis is defined by an increased number of surface intraepithelial lymphocytes, and collagenous colitis by a thickened collagen band underneath the surface epithelium. There is increased inflammation in the lamina propria, but only little or no crypt architectural distortion. Incomplete and variant forms showing less characteristic features have been reported under different names. The differential diagnosis mainly includes resolving infectious colitis and changes related to the intake of drugs such as non-steroidal anti-inflammatory drugs. Substantial clinical and histological overlap between lymphocytic and collagenous colitis has been described, raising the suspicion that the conditions are two histological manifestations of the same entity, possibly representing different manifestations during the disease course or different stages of disease development. In this review, we provide a practical approach for pathologists, with a focus on diagnostic criteria and differential diagnosis, and discuss recent insights into the pathogenesis of disease and the relationship with classic chronic inflammatory bowel disease, i.e. Crohn's disease and ulcerative colitis. © 2014 John Wiley & Sons Ltd.

  3. Noradrenergic innervation of the hypothalamus of rhesus monkeys: distribution of dopamine-beta-hydroxylase immunoreactive fibers and quantitative analysis of varicosities in the paraventricular nucleus.

    PubMed

    Ginsberg, S D; Hof, P R; Young, W G; Morrison, J H

    1993-01-22

    The distribution of noradrenergic processes within the hypothalamus of rhesus monkeys (Macaca mulatta) was examined by immunohistochemistry with an antibody against dopamine-beta-hydroxylase. The results revealed that the pattern of dopamine-beta-hydroxylase immunoreactivity varied systematically throughout the rhesus monkey hypothalamus. Extremely high densities of dopamine-beta-hydroxylase-immunoreactive processes were observed in the paraventricular and supraoptic nuclei, while relatively lower levels were found in the arcuate and dorsomedial nuclei and in the medial preoptic, perifornical, and suprachiasmatic areas. Moderate levels of dopamine-beta-hydroxylase immunoreactivity were found throughout the lateral hypothalamic area and in the internal lamina of the median eminence. Very few immunoreactive processes were found in the ventromedial nucleus or in the mammillary complex. Other midline diencephalic structures were found to have high densities of dopamine-beta-hydroxylase immunoreactivity, including the paraventricular nucleus of the thalamus and a discrete subregion of nucleus reuniens, the magnocellular subfascicular nucleus. A moderate density of dopamine-beta-hydroxylase immunoreactive processes were found in the rhomboid nucleus and zona incerta whereas little dopamine-beta-hydroxylase immunoreactivity was found in the fields of Forel, nucleus reuniens, or subthalamic nucleus. The differential distribution of dopamine-beta-hydroxylase-immunoreactive processes may reflect a potential role of norepinephrine as a regulator of a variety of functions associated with the nuclei that are most heavily innervated, e.g., neuroendocrine release from the paraventricular and supraoptic nuclei, and gonadotropin release from the medial preoptic area and mediobasal hypothalamus. Additionally, quantitative analysis of dopamine-beta-hydroxylase-immunoreactive varicosities was performed on a laser scanning microscope in both magnocellular and parvicellular regions of the paraventricular nucleus of the hypothalamus. The methodology employed in this study allowed for the high resolution of immunoreactive profiles through the volume of tissue being analyzed, and was more accurate than conventional light microscopy in terms of varicosity quantification. Quantitatively, a significant difference in the density of dopamine-beta-hydroxylase-immunoreactive varicosities was found between magnocellular and parvicellular regions, suggesting that parvicellular neurons received a denser noradrenergic input. These differential patterns may reflect an important functional role for norepinephrine in the regulation of anterior pituitary secretion through the hypothalamic-pituitary-adrenal stress axis.

  4. Wafer defect detection by a polarization-insensitive external differential interference contrast module.

    PubMed

    Nativ, Amit; Feldman, Haim; Shaked, Natan T

    2018-05-01

    We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.

  5. A Computer-Aided Distinction Method of Borderline Grades of Oral Cancer

    NASA Astrophysics Data System (ADS)

    Sami, Mustafa M.; Saito, Masahisa; Muramatsu, Shogo; Kikuchi, Hisakazu; Saku, Takashi

    We have developed a new computer-aided diagnostic system for differentiating oral borderline malignancies in hematoxylin-eosin stained microscopic images. Epithelial dysplasia and carcinoma in-situ (CIS) of oral mucosa are two different borderline grades similar to each other, and it is difficult to distinguish between them. A new image processing and analysis method has been applied to a variety of histopathological features and shows the possibility for differentiating the oral cancer borderline grades automatically. The method is based on comparing the drop-shape similarity level in a particular manually selected pair of neighboring rete ridges. It was found that the considered similarity level in dysplasia was higher than those in epithelial CIS, of which pathological diagnoses were conventionally made by pathologists. The developed image processing method showed a good promise for the computer-aided pathological assessment of oral borderline malignancy differentiation in clinical practice.

  6. Observation and measurement of negative differential resistance on PtSi Schottky junctions on porous silicon.

    PubMed

    Banihashemian, Seyedeh Maryam; Hajghassem, Hassan; Erfanian, Alireza; Aliahmadi, Majidreza; Mohtashamifar, Mansor; Mosakazemi, Seyed Mohamadhosein

    2010-01-01

    Nanosize porous Si is made by two step controlled etching of Si. The first etching step is carried on the Si surface and the second is performed after deposition of 75 Å of platinum on the formed surface. A platinum silicide structure with a size of less than 25 nm is formed on the porous Si surface, as measured with an Atomic Forced Microscope (AFM). Differential resistance curve as a function of voltage in 77 K and 100 K shows a negative differential resistance and indicates the effect of quantum tunneling. In general form, the ratio of maximum to minimum tunneling current (PVR) and the number of peaks in I-V curves reduces by increasing the temperature. However, due to accumulation of carriers behind the potential barrier and superposition of several peaks, it is observed that the PVR increases at 100 K and the maximum PVR at 100 K is 189.6.

  7. Mechanisms of Forming Intergranular Microcracks and Microscopic Surface Discontinuities in Welds

    DTIC Science & Technology

    1992-06-01

    SCC) is defined as slow stable crack extension occurring under static loading in sea water at stress intensity values below KIc (critical stress...preheating on the cold cracking resistance is reflected mainly in a reduction of the degree of localization of microplastic strains, their...deconcentration and an increase of the basis over which microplastic yielding takes place. This increases the amount of energy used for local plastic deformation

  8. Characterization of the structure of low-e substrates and consequences for IR transflection measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVetter, Brent M.; Kenkel, Seth; Mittal, Shachi

    Spectral distortions caused by the electric field standing wave effect were investigated for two commonly used reflective substrates: low-emissivity glass and gold-coated glass. Our analytical calculations showed that spectral distortions may arise for both incoherent and coherent light sources when performing transflectance measurements. We experimentally confirmed our predictions using a commercial mid-infrared quantum cascade laser microscope and an interferometric infrared imaging system.

  9. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.

    PubMed

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji

    2015-05-01

    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  10. Compact 3D printed module for fluorescence and label-free imaging using evanescent excitation

    NASA Astrophysics Data System (ADS)

    Pandey, Vikas; Gupta, Shalini; Elangovan, Ravikrishnan

    2018-01-01

    Total internal reflection fluorescence (TIRF) microscopy is widely used for selective excitation and high-resolution imaging of fluorophores, and more recently label-free nanosized objects, with high vertical confinement near a liquid-solid interface. Traditionally, high numerical aperture objectives (>1.4) are used to simultaneously generate evanescent waves and collect fluorescence emission signals which limits their use to small area imaging (<0.1 mm2). Objective-based TIRFs are also expensive as they require dichroic mirrors and efficient notch filters to prevent specular reflection within the objective lenses. We have developed a compact 3D module called cTIRF that can generate evanescent waves in microscope glass slides via a planar waveguide illumination. The module can be attached as a fixture to any existing optical microscope, converting it into a TIRF and enabling high signal-to-noise ratio (SNR) fluorescence imaging using any magnification objective. As the incidence optics is perpendicular to the detector, label-free evanescent scattering-based imaging of submicron objects can also be performed without using emission filters. SNR is significantly enhanced in this case as compared to cTIRF alone, as seen through our model experiments performed on latex beads and mammalian cells. Extreme flexibility and the low cost of our approach makes it scalable for limited resource settings.

  11. Depth-section imaging of swine kidney by spectrally encoded microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Jiuling; Gao, Wanrong

    2016-10-01

    The kidneys are essential regulatory organs whose main function is to regulate the balance of electrolytes in the blood, along with maintaining pH homeostasis. The study of the microscopic structure of the kidney will help identify kidney diseases associated with specific renal histology change. Spectrally encoded microscopy (SEM) is a new reflectance microscopic imaging technique in which a grating is used to illuminate different positions along a line on the sample with different wavelengths, reducing the size of system and imaging time. In this paper, a SEM device is described which is based on a super luminescent diode source and a home-built spectrometer. The lateral resolution was measured by imaging the USAF resolution target. The axial response curve was obtained as a reflect mirror was scanned through the focal plane axially. In order to test the feasibility of using SEM for depth-section imaging of an excised swine kidney tissue, the images of the samples were acquired by scanning the sample at 10 μm per step along the depth direction. Architectural features of the kidney tissue could be clearly visualized in the SEM images, including glomeruli and blood vessels. Results from this study suggest that SEM may be useful for locating regions with probabilities of kidney disease or cancer.

  12. A promising lightweight multicomponent microwave absorber based on doped barium hexaferrite/calcium titanate/multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Afghahi, Seyyed Salman Seyyed; Jafarian, Mojtaba; Atassi, Yomen

    2016-07-01

    We present the design of a microwave absorber in the X band based on ternary nanocomposite of doped barium hexaferrite (Ba-M)/calcium titanate (CTO)/multiwall carbon nanotubes (MWCNTs) in epoxy matrix. The hydrothermal method has been used to synthesize Ba-M and CTO nanopowder. The phase identification has been investigated using XRD patterns. Scanning electron microscope, transmission electron microscope, vibrating sample magnetometer, and vector network analyzer are used to analyze the morphology of the different components and the magnetic, electromagnetic, and microwave absorption properties of the final composite absorbers, respectively. As far as we know, the design of this type of multicomponent microwave absorber has not been investigated before. The results reveal that the combination of these three components with their different loss mechanisms has a synergistic effect that enhances the attenuation properties of the final composite. The absorber of only 2.5-mm thickness and 35 wt% of loading ratio exhibits a minimum reflection loss of -43 dB at 10.2 GHz with a bandwidth of 3.6 GHz, while the corresponding absorber based on pure (Ba-M) shows a minimum reflection loss of -34 dB at 9.8 GHz with a bandwidth of 0.256 GHz and a thickness of 4 mm.

  13. Do Uric Acid Deposits in Zooxanthellae Function as Eye-Spots?

    PubMed Central

    Yamashita, Hiroshi; Kobiyama, Atsushi; Koike, Kazuhiko

    2009-01-01

    The symbiosis between zooxanthellae (dinoflagellate genus Symbiodinium) and corals is a fundamental basis of tropical marine ecosystems. However the physiological interactions of the hosts and symbionts are poorly understood. Recently, intracellular crystalline deposits in Symbiodinium were revealed to be uric acid functioning for nutrient storage. This is the first exploration of these enigmatic crystalline materials that had previously been misidentified as oxalic acid, providing new insights into the nutritional strategies of Symbiodinium in oligotrophic tropical waters. However, we believe these deposits also function as eye-spots on the basis of light and electron microscopic observations of motile cells of cultured Symbiodinium. The cells possessed crystalline deposit clusters in rows with each row 100–150 nm thick corresponding to 1/4 the wavelength of light and making them suitable for maximum wave interference and reflection of light. Crystalline clusters in cells observed with a light microscope strongly refracted and polarized light, and reflected or absorbed short wavelength light. The facts that purines, including uric acid, have been identified as the main constituents of light reflectors in many organisms, and that the photoreceptor protein, opsin, was detected in our Symbiodinium strain, support the idea that uric acid deposits in Symbiodinium motile cells may function as a component of an eye-spot. PMID:19609449

  14. Do uric acid deposits in zooxanthellae function as eye-spots?

    PubMed

    Yamashita, Hiroshi; Kobiyama, Atsushi; Koike, Kazuhiko

    2009-07-17

    The symbiosis between zooxanthellae (dinoflagellate genus Symbiodinium) and corals is a fundamental basis of tropical marine ecosystems. However the physiological interactions of the hosts and symbionts are poorly understood. Recently, intracellular crystalline deposits in Symbiodinium were revealed to be uric acid functioning for nutrient storage. This is the first exploration of these enigmatic crystalline materials that had previously been misidentified as oxalic acid, providing new insights into the nutritional strategies of Symbiodinium in oligotrophic tropical waters. However, we believe these deposits also function as eye-spots on the basis of light and electron microscopic observations of motile cells of cultured Symbiodinium. The cells possessed crystalline deposit clusters in rows with each row 100-150 nm thick corresponding to 1/4 the wavelength of light and making them suitable for maximum wave interference and reflection of light. Crystalline clusters in cells observed with a light microscope strongly refracted and polarized light, and reflected or absorbed short wavelength light. The facts that purines, including uric acid, have been identified as the main constituents of light reflectors in many organisms, and that the photoreceptor protein, opsin, was detected in our Symbiodinium strain, support the idea that uric acid deposits in Symbiodinium motile cells may function as a component of an eye-spot.

  15. [Spectral reflectance characteristics and modeling of typical Takyr Solonetzs water content].

    PubMed

    Zhang, Jun-hua; Jia, Ke-li

    2015-03-01

    Based on the analysis of the spectral reflectance of the typical Takyr Solonetzs soil in Ningxia, the relationship of soil water content and spectral reflectance was determined, and a quantitative model for the prediction of soil water content was constructed. The results showed that soil spectral reflectance decreased with the increasing soil water content when it was below the water holding capacity but increased with the increasing soil water content when it was higher than the water holding capacity. Soil water content presented significantly negative correlation with original reflectance (r), smooth reflectance (R), logarithm of reflectance (IgR), and positive correlation with the reciprocal of R and logarithm of reciprocal [lg (1/R)]. The correlation coefficient of soil water content and R in the whole wavelength was 0.0013, 0.0397 higher than r and lgR, respectively. Average correlation coefficient of soil water content with 1/R and [lg (1/R)] at the wavelength of 950-1000 nm was 0.2350 higher than that of 400-950 nm. The relationships of soil water content with the first derivate differential (R') , the first derivate differential of logarithm (lgR)' and the first derivate differential of logarithm of reciprocal [lg(1/R)]' were unstable. Base on the coefficients of r, lg(1/R), R' and (lgR)', different regression models were established to predict soil water content, and the coefficients of determination were 0.7610, 0.8184, 0.8524 and 0.8255, respectively. The determination coefficient for power function model of R'. reached 0.9447, while the fitting degree between the predicted value based on this model and on-site measured value was 0.8279. The model of R' had the highest fitted accuracy, while that of r had the lowest one. The results could provide a scientific basis for soil water content prediction and field irrigation in the Takyr Solonetzs region.

  16. Sporadic Hemangioblastoma Arising from the Infundibulum.

    PubMed

    Pakdaman, Michael N; Austin, Matthew J; Bannykh, Serguei; Pressman, Barry D

    2017-05-01

    Hemangioblastomas are rare vascular tumors most often found in the posterior fossa and cervical spinal cord and commonly associated with von Hippel-Lindau Disease. We report a case of sporadic hemangioblastoma in a patient without von Hippel-Lindau Disease. Imaging characteristics included a solid, suprasellar mass that was homogeneously enhancing. These findings most resembled a pituicytoma or choroid glioma because of the close association with the infundibulum and the homogeneous avid enhancement. Microscopically, the neoplasm was seen to be composed of vascular channels associated with foamy stromal cells, containing clear cytoplasmic vacuoles. Microscopic and immunohistochemical findings were consistent with hemangioblastoma. Hemangioblastomas are a rare form of vascular tumor most commonly associated with von-Hippel Lindau disease. Our finding of non-cystic hemangioblastoma arising from the infundibulum demonstrates that, while rare, hemangioblastomas should be considered on the differential diagnosis for an avidly enhancing suprasellar mass.

  17. Oral Language: Expression of Thought.

    ERIC Educational Resources Information Center

    Anastasiow, Nicholas

    A child's language reflects his thought processes and his level of development. Motor, emotional, and language development all have a direct relationship to the child's cognitive functioning--each follows the pattern of moving from gross and loosely differentiated states to refined and differentiated systems. Research in early childhood education…

  18. Transformational Leader as Person-Centered Communicator: Empirical Findings and Observations for Leadership Educators

    ERIC Educational Resources Information Center

    Crawford, C. B.; Strohkirch, C. Sue

    2004-01-01

    This article focuses on the empirical effects of cognitive differentiation and persuasive skills on transformational, transaction, and laissez-faire leadership. Subjects (N = 294) completed measures of independent and dependent variables. Findings confirmed prior findings, however some findings reflected differences. Cognitive differentiation was…

  19. Sibling comparison of differential parental treatment in adolescence: gender, self-esteem, and emotionality as mediators of the parenting-adjustment association.

    PubMed

    Feinberg, M E; Neiderhiser, J M; Simmens, S; Reiss, D; Hetherington, E M

    2000-01-01

    This study employs findings from social comparison research to investigate adolescents' comparisons with siblings with regard to parental treatment. The sibling comparison hypothesis was tested on a sample of 516 two-child families by examining whether gender, self-esteem, and emotionality-which have been found in previous research to moderate social comparison-also moderate sibling comparison as reflected by siblings' own evaluations of differential parental treatment. Results supported a moderating effect for self-esteem and emotionality but not gender. The sibling comparison process was further examined by using a structural equation model in which parenting toward each child was associated with the adjustment of that child and of the child's sibling. Evidence of the "sibling barricade" effect-that is, parenting toward one child being linked with opposite results on the child's sibling as on the target child-was found in a limited number of cases and interpreted as reflecting a sibling comparison process. For older siblings, emotionality and self-esteem moderated the sibling barricade effect but in the opposite direction as predicted. Results are discussed in terms of older siblings' increased sensitivity to parenting as well as the report of differential parenting reflecting the child's level of comfort and benign understanding of differential parenting, which buffers the child against environmental vicissitudes evoking sibling comparison processes.

  20. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    NASA Astrophysics Data System (ADS)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

Top