Science.gov

Sample records for differential reflectance microscope

  1. Dark-field illuminated reflectance fiber bundle endoscopic microscope

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Huang, Yong; Kang, Jin U.

    2011-04-01

    We propose a reflectance fiber bundle microscope using a dark-field illumination configuration for applications in endoscopic medical imaging and diagnostics. Our experiment results show that dark-field illumination can effectively suppress strong specular reflection from the proximal end of the fiber bundle. We realized a lateral resolution of 4.4 μm using the dark-field illuminated fiber bundle configuration. To demonstrate the feasibility of using the system to study cell morphology, we obtained still and video images of two thyroid cancer cell lines. Our results clearly allow differentiation of different cancer cell types.

  2. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  3. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  4. An Erbium Quantum Gas Microscope with a Reflective Objective

    NASA Astrophysics Data System (ADS)

    Krahn, Aaron; Phelps, Gregory; Hebert, Anne; Dickerson, Susannah; Greiner, Markus; Erbium Lab Team

    2016-05-01

    Dipolar atoms present an exciting opportunity to extend previous quantum gas microscope (QGM) experiments to more complex systems influenced by long range, anisotropic interactions. We present on current progress toward the construction of a QGM for ultracold Erbium atoms in an optical lattice, including the development of a novel imaging system for single-site resolution. While most QGMs until now have typically utilized a high numerical aperture microscope objective, we discuss a reflective mirror alternative that offers an equally high NA (.9-.95), a comparable field of view (34 micrometers radial), and a larger working distance (25 millimeters) that keeps the atoms far from any surfaces. By operating in a Schmidt telescope configuration, this imaging system is well-suited both for collecting 401 nm imaging fluorescence and for the creation of an expandable lattice with a variety of associated lattice geometries.

  5. [Identification of pearl powder using microscopic infrared reflectance spectroscopy].

    PubMed

    Zhang, Xuan; Hu, Chao; Yan, Yan; Yang, Hai-Feng; Li, Jun-Fang; Bai, Hua; Xi, Guang-Cheng; Liao, Jie

    2014-09-01

    Pearl is a precious ornament and traditional Chinese medicine, which application history in China is more than 2000 years. It is well known that the chemical ingredients of shell and pearl are very similar, which all of them including calcium carbonate and various amino acids. Generally, shell powders also can be used as medicine; however, its medicinal value is much lower than that of pearl powders. Due to the feature similarity between pearl powders and shell powders, the distinguishment of them by detecting chemical composition and morphology is very difficult. It should be noted that shell powders have been often posing as pearl powders in markets, which seriously infringes the interests of consumers. Identification of pearl powder was investigated by microscopic infrared reflectance spectroscopy, and pearl powder as well as shell powder was calcined at different temperatures for different time before infrared reflectance spectroscopy analysis. The experimental results indicated that when calcined at 400 °C for 30 minutes under atmospheric pressure, aragonite in pearl powder partly transformed into calcite, while aragonite in shell powder completely transformed into calcite. At the same time, the difference in phase transition between the pearl powders 'and shell powders can be easily detected by using the microscopic infrared reflectance spectroscopy. Therefore, based on the difference in their phase transition process, infrared reflectance spectroscopy can be used to identify phase transformation differences between pearl powder and shell powder. It's more meaningfully that the proposed infrared reflectance spec- troscopy method was also investigated for the applicability to other common counterfeits, such as oyster shell powders and abalone shell powders, and the results show that the method can be a simple, efficiently and accurately method for identification of pearl powder.

  6. Development and evaluation of an automated reflectance microscope system for the petrographic characterization of bituminous coals

    SciTech Connect

    Hoover, D. S.; Davis, A.

    1980-10-01

    The development of automated coal petrographic techniques will lessen the demands on skilled personnel to do routine work. This project is concerned with the development and successful testing of an instrument which will meet these needs. The fundamental differences in reflectance of the three primary maceral groups should enable their differentiation in an automated-reflectance frequency histogram (reflectogram). Consequently, reflected light photometry was chosen as the method for automating coal petrographic analysis. Three generations of an automated system (called Rapid Scan Versions I, II and III) were developed and evaluated for petrographic analysis. Their basic design was that of a reflected-light microscope photometer with an automatic stage, interfaced with a minicomputer. The hardware elements used in the Rapid Scan Version I limited the system's flexibility and presented problems with signal digitization and measurement precision. Rapid Scan Version II was designed to incorporate a new microscope photometer and computer system. A digital stepping stage was incorporated into the Rapid Scan Version III system. The precision of reflectance determination of this system was found to be +- 0.02 percent reflectance. The limiting factor in quantitative interpretation of Rapid Scan reflectograms is the resolution of reflectance populations of the individual maceral groups. Statistical testing indicated that reflectograms were highly reproducible, and a new computer program, PETAN, was written to interpret the curves for vitrinite reflectance parameters ad petrographic.

  7. Pupil engineering for a confocal reflectance line-scanning microscope

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2011-03-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current confocal point-scanning systems are large, complex, and expensive. A confocal line-scanning microscope, utilizing a of linear array detector can be simpler, smaller, less expensive, and may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A line scanner may be implemented with a divided-pupil, half used for transmission and half for detection, or with a full-pupil using a beamsplitter. The premise is that a confocal line-scanner with either a divided-pupil or a full-pupil will provide high resolution and optical sectioning that would be competitive to that of the standard confocal point-scanner. We have developed a confocal line-scanner that combines both divided-pupil and full-pupil configurations. This combined-pupil prototype is being evaluated to determine the advantages and limitations of each configuration for imaging skin, and comparison of performance to that of commercially available standard confocal point-scanning microscopes. With the combined configuration, experimental evaluation of line spread functions (LSFs), contrast, signal-to-noise ratio, and imaging performance is in progress under identical optical and skin conditions. Experimental comparisons between divided-pupil and full-pupil LSFs will be used to determine imaging performance. Both results will be compared to theoretical calculations using our previously reported Fourier analysis model and to the confocal point spread function (PSF). These results may lead to a simpler class of confocal reflectance scanning microscopes for clinical and surgical dermatology.

  8. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  9. Differentiated Coaching: Fostering Reflection with Teachers

    ERIC Educational Resources Information Center

    Stover, Katie; Kissel, Brian; Haag, Karen; Shoniker, Rebecca

    2011-01-01

    Literacy coaches inspire teacher reflection and promote a culture of ongoing professional learning. This article illustrates the role of literacy coaches, describes how coaches differentiate support for a diverse group of teachers, and explains how teacher reflection can be a catalyst for change and professional growth. The authors, current and…

  10. Design of reflectance confocal microscopes for clinical applications

    NASA Astrophysics Data System (ADS)

    Zavislan, James M.

    2009-02-01

    Reflectance confocal microscopy provides real time, cellular resolution images of in-vivo and ex-vivo tissues and has been cleared by the FDA and international regulatory agencies for medical applications. Clinical applications of reflectance confocal microscopy are being tested in single- and multi-center clinical trials. In this paper I will review the design challenges of sub-surface imaging with confocal microscopy and techniques to compare the instruments performance between different sites.

  11. Full-field transmission-type angle-deviation optical microscope with reflectivity-height transformation

    PubMed Central

    Chiu, Ming-Hung; Tan, Chen-Tai; Tsai, Ming-Hung; Yang, Ya-Hsin

    2015-01-01

    This full-field transmission-type three-dimensional (3D) optical microscope is constructed based on the angle deviation method (ADM) and the algorithm of reflectivity-height transformation (RHT). The surface height is proportional to the deviation angle of light passing through the object. The angle deviation and surface height can be measured based on the reflectivity closed to the critical angle using a parallelogram prism and two CCDs. PMID:26504645

  12. Development of in vivo confocal microscope for reflection and fluorescence imaging simultaneously

    NASA Astrophysics Data System (ADS)

    Ahn, MyoungKi; Chun, ByungSeon; Song, Cheol; Gweon, DaeGab

    2010-02-01

    In-vivo confocal microscope technology can be applied to the medical imaging diagnosis and new drug development. We present an in-vivo confocal microscope that can acquire a reflection image and a fluorescence image simultaneously and independently. To obtain reflection confocal images, we used a linearly polarized diode laser with the wavelength of 830 nm. To acquire fluorescence confocal images, we used two diode lasers with the wavelength of 488 nm and 660 nm, respectively. Because of a broad wavelength bandwidth from visible (488 nm) to near-IR (830 nm), we designed and optimized the optical system to reduce various optical aberrations. With the developed in-vivo confocal microscope, we performed ex-vivo cell imaging and in-vivo imaging of the human skin.

  13. Nonscanning three-dimensional optical microscope based on the reflectivity-height transformation for biological measurements.

    PubMed

    Chiu, Ming-Hung; Tan, Chen-Tai; Lee, Tsuan-Shih; Lee, Jain-Cheng

    2013-04-01

    We propose a nonscanning three-dimensional (3D) optical microscope based on reflectivity-height transformation in applications of biological and transparent plate measurements. The reflectivity of a prism can be transformed to the surface height of the specimen based on geometrical optics and the principle of internal reflection. Thus, the pattern of reflectivity is representative of the surface profile. Using charge-coupled device cameras to obtain the two-dimensional image patterns and combining with its reflectivity pattern, the 3D profile can be generated. The lateral resolution is determined by the diffraction limit, and the vertical resolution is better than several nanometers according to the incident angle and polarization used.

  14. An Introduction to Differentials Based on Hyperreal Numbers and Infinite Microscopes

    ERIC Educational Resources Information Center

    Henry, Valerie

    2010-01-01

    In this article, we propose to introduce the differential of a function through a non-classical way, lying on hyperreals and infinite microscopes. This approach is based on the developments of nonstandard analysis, wants to be more intuitive than the classical one and tries to emphasize the functional and geometric aspects of the differential. In…

  15. Evaluation of an Automated Reflectance Microscope system for coal characterization. Technical report 18

    SciTech Connect

    Liscinsky, D. S.; Vastola, F.

    1980-01-01

    The potential of an Automated Reflectance Microscope (ARM) system to determine the petrographic composition of a coal has been examined. The analysis involves the automatic scanning of a polished coal surface with a reflectance microscope. The reflectivity of consecutive 4-square-micrometer spots on the surface is measured by a photomultiplier tube and recorded by a microcomputer. This study was aimed at making the interpretation of a reflectogram more straightforward, that is, increasing the ability to discriminate among species. Although hardware improvements to decrease the spot size and the error associated with each reading would allow some increase in the ability to discriminate among species, the heterogeneous nature of the surface still limits the qualitative and quantitative information that can be derived from a reflectogram. Therefore a real-time data processing algorithm was implemented during data acquisition to study the effects that processing can have on a reflectogram. By measuring connectivity, it was found that edge readings could be indirectly eliminated. This greatly improved the ability to discriminate among species. Further investigation led to the conclusion that physical particle size has a major effect on a reflectogram. The concentration of coal in a pellet also has an effect on the ability to discriminate among species. A bonus of using processing to enhance the data was the ability to simultaneously gather information on particle size distributions. Based on the results the potential of an ARM system is improved by algorithm enhancement. The processing of the data allows some of the inherent limitations to be reduced.

  16. Microscopic theory for negative differential mobility in crowded environments.

    PubMed

    Bénichou, O; Illien, P; Oshanin, G; Sarracino, A; Voituriez, R

    2014-12-31

    We study the behavior of the stationary velocity of a driven particle in an environment of mobile hard-core obstacles. Based on a lattice gas model, we demonstrate analytically that the drift velocity can exhibit a nonmonotonic dependence on the applied force, and show quantitatively that such negative differential mobility (NDM), observed in various physical contexts, is controlled by both the density and diffusion time scale of the obstacles. Our study unifies recent numerical and analytical results obtained in specific regimes, and makes it possible to determine analytically the region of the full parameter space where NDM occurs. These results suggest that NDM could be a generic feature of biased (or active) transport in crowded environments.

  17. Direct numerical simulations of magmatic differentiation at the microscopic scale

    NASA Astrophysics Data System (ADS)

    Sethian, J.; Suckale, J.; Elkins-Tanton, L. T.

    2010-12-01

    A key question in the context of magmatic differentiation and fractional crystallization is the ability of crystals to decouple from the ambient fluid and sink or rise. Field data indicates a complex spectrum of behavior ranging from rapid sedimentation to continued entrainment. Theoretical and laboratory studies paint a similarly rich picture. The goal of this study is to provide a detailed numerical assessment of the competing effects of sedimentation and entrainment at the scale of individual crystals. The decision to simulate magmatic differentiation at the grain scale comes at the price of not being able to simultaneously solve for the convective velocity field at the macroscopic scale, but has the crucial advantage of enabling us to fully resolve the dynamics of the systems from first principles without requiring any simplifying assumptions. The numerical approach used in this study is a customized computational methodology developed specifically for simulations of solid-fluid coupling in geophysical systems. The algorithm relies on a two-step projection scheme: In the first step, we solve the multiple-phase Navier-Stokes or Stokes equation in both domains. In the second step, we project the velocity field in the solid domain onto a rigid-body motion by enforcing that the deformation tensor in the respective domain is zero. This procedure is also used to enforce the no-slip boundary-condition on the solid-fluid interface. We have extensively validated and benchmarked the method. Our preliminary results indicate that, not unexpectedly, the competing effects of sedimentation and entrainment depend sensitively on the size distribution of the crystals, the aspect ratio of individual crystals and the vigor of the ambient flow field. We provide a detailed scaling analysis and quantify our results in terms of the relevant non-dimensional numbers.

  18. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    SciTech Connect

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are more spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).

  19. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    DOE PAGES

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are moremore » spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).« less

  20. Design and construction of a multiwavelength, micromirror total internal reflectance fluorescence microscope.

    PubMed

    Larson, Joshua; Kirk, Matt; Drier, Eric A; O'Brien, William; MacKay, James F; Friedman, Larry J; Hoskins, Aaron A

    2014-10-01

    Colocalization single-molecule spectroscopy (CoSMoS) has proven to be a useful method for studying the composition, kinetics and mechanisms of complex cellular machines. Key to the technique is the ability to simultaneously monitor multiple proteins and/or nucleic acids as they interact with one another. Here we describe a protocol for constructing a CoSMoS micromirror total internal reflection fluorescence microscope (mmTIRFM). Design and construction of a scientific microscope often requires a number of custom components and a substantial time commitment. In our protocol, we have streamlined this process by implementation of a commercially available microscopy platform designed to accommodate the optical components necessary for an mmTIRFM. The mmTIRF system eliminates the need for machining custom parts by the end user and facilitates optical alignment. Depending on the experience level of the microscope builder, these time savings and the following protocol can enable mmTIRF construction to be completed within 2 months.

  1. Design and Construction of a Multi-wavelength, Micromirror Total Internal Reflectance Fluorescence Microscope

    PubMed Central

    Larson, Joshua; Kirk, Matt; Drier, Eric A.; O’Brien, William; MacKay, James F.; Friedman, Larry; Hoskins, Aaron

    2015-01-01

    Colocalization Single Molecule Spectroscopy (CoSMoS) has proven to be a useful method for studying the composition, kinetics, and mechanisms of complex cellular machines. Key to the technique is the ability to simultaneously monitor multiple proteins and/or nucleic acids as they interact with one another. Here we describe a protocol for constructing a CoSMoS micromirror Total Internal Reflection Fluorescence Microscope (mmTIRFM). Design and construction of a scientific microscope often requires a number of custom components and a significant time commitment. In our protocol, we have streamlined this process by implementation of a commercially available microscopy platform designed to accommodate the optical components necessary for a mmTIRFM. The mmTIRF system eliminates the need for machining custom parts by the end-user and facilitates optical alignment. Depending on the experience-level of the microscope builder, these time-savings and the following protocol can enable mmTIRF construction to be completed within two months. PMID:25188633

  2. Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Hashizume, J.; Goto, M.; Yamaguchi, M.; Tsujimura, T.; Aoki, S.

    2013-10-01

    An x-ray differential phase microscope with a Foucault knife-edge scanning filter was set up at the bending magnet source BL3C, Photon Factory. A reconstructed phase profile from the differential phase image of an aluminium wire at 5.36 keV was fairly good agreement with the numerical simulation. Phase tomography of a biological specimen, such as an Artemia cyst, could be successfully demonstrated.

  3. High numerical aperture microendoscope objective for a fiber confocal reflectance microscope

    NASA Astrophysics Data System (ADS)

    Kester, Robert T.; Tkaczyk, Tomasz S.; Descour, Michael R.; Christenson, Todd; Richards-Kortum, Rebecca

    2007-03-01

    A disposable high numerical aperture microendoscope objective has been designed, fabricated, and tested for use with a fiber confocal reflectance microscope. The objective uses high precision LIGA fabricated components to integrate imaging components and hydraulic suction lines into a housing that measures only 3.85 mm in outer diameter and 14.65 mm in length. The hydraulics are used to translate tissue through the focal plane for three dimensional imaging. This device is diffraction limited for λ = 850 nm, has a numerical aperture of 1.0, a field of view of 250 µm, and a working distance of 450 µm. The objective is intended for in vivo imaging of precancerous cells.

  4. A multipurpose scanning near-field optical microscope: Reflectivity and photocurrent on semiconductor and biological samples

    NASA Astrophysics Data System (ADS)

    Cricenti, A.; Generosi, R.; Barchesi, C.; Luce, M.; Rinaldi, M.

    1998-09-01

    A multipurpose scanning near field optical microscope (SNOM) operating at ambient pressure is described with the aim of characterizing the inner parts of biological molecules and any semiconductor or metal microstructure. Therefore, in addition to the requirements of reliability and mechanical stability we have carefully considered analyzing a sample with all available geometries for input/output of photons, in order to get as much information as possible. The SNOM unit consists of two separable cylindrical supports; the lower one contains the sample holder mounted on top of a piezoelectric scanner which is contained in a motor controlled x-y-z stage. A piezo-modulated stretched optical fiber with a few tens of nanometer pinhole and a shear-force apparatus mounted inside the top cylinder allow for topography measurements. The reflectivity of the sample can be measured by applying different methods: the sample can be illuminated on top by an external source, as well as by the optical fiber used for the detection of the reflectivity signal. An aperture in the lower cylinder allows for illumination of the sample on the back: in this case the fiber collects the evanescent wave induced at the top of the sample. Another aperture in the lower cylinder allows measurement of the reflected light which includes a contribution due to the interaction with the fiber. Also photocurrent experiments can be easily performed by illuminating the sample with the fiber and detecting the transmitted signal using a current-voltage converter mounted inside the top cylinder. A video-camera that can reach 170 enlargements is mounted on the top cylinder for positioning the fiber on particular regions of the sample. Reflectivity and photocurrent measurements have been performed on uncoated neurons, CsI compound, Au/GaAs, and PtSi/Si systems, reaching a resolution well below the diffraction limit.

  5. Microscopic description of intraband absorption in graphene: the occurrence of transient negative differential transmission.

    PubMed

    Kadi, Faris; Winzer, Torben; Malic, Ermin; Knorr, Andreas; Göttfert, F; Mittendorff, M; Winnerl, S; Helm, M

    2014-07-18

    We present a microscopic explanation of the controversially discussed transient negative differential transmission observed in degenerate optical pump-probe measurements in graphene. Our approach is based on the density matrix formalism allowing a time- and momentum-resolved study of carrier-light, carrier-carrier, and carrier-phonon interaction on microscopic footing. We show that phonon-assisted optical intraband transitions give rise to transient absorption in the optically excited hot carrier system counteracting pure absorption bleaching of interband transitions. While interband transition bleaching is relevant in the first hundreds of fs after the excitation, intraband absorption sets in at later times. In particular, in the low excitation regime, these intraband absorption processes prevail over the absorption bleaching resulting in a zero crossing of the differential transmission. Our findings are in good qualitative agreement with recent experimental pump-probe studies.

  6. Modeling ion channel dynamics through reflected stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Dangerfield, Ciara E.; Kay, David; Burrage, Kevin

    2012-05-01

    Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the “gold standard,” but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks.

  7. Differentiation of live-viable versus dead bacterial endospores by calibrated hyperspectral reflectance microscopy.

    PubMed

    Anderson, J; Reynolds, C; Ringelberg, D; Edwards, J; Foley, K

    2008-10-01

    This paper describes the use of hyperspectral imaging microscopy (HIM) for the characterization and differentiation of live viable versus dead/non-viable bacterial endospores for two species of Bacillus. To accomplish this, endospore-forming Bacillus were cultured and differentiated into endospores. Non-viable endospores were produced using sporicidal methods representing standard decontamination procedures incorporating chlorine and peroxide. Finally, endospore samples were lyophilized to prepare them for spectral analysis. Prior to HIM, baseline spectral reflectance characterizing the endospores was measured using an ASD (400-900 nm) reflectance spectrometer. These data were used to calibrate the resulting spectral image data. HIM data comprising 32 images ranging from 400 to 720 nm (visible to near infrared) were recorded using a C-mounted VariSpec hyperspectral camera attached to an epifluorescent microscope. The images produced by the system record the reflectance and absorption features of endospores based on the structure of the outer coat. Analysis of the HIM data was performed using accepted image and spectral processing routines. Where peroxide was the sporicide, changes in the outer endospore coat contributed to structurally significant visible and near infrared signature differences between live-viable versus dead, non-viable endospores. A statistical test for divergence, a method for scoring spectral structural diversity, also showed the difference between viable and non-viable peroxide killed endospores to be statistically significant. These findings may lead to an improved optical procedure to rapidly identify viable and non-viable endospores in situations of decontamination.

  8. A confocal video-rate laser-beam scanning reflected-light microscope with no moving parts.

    PubMed

    Goldstein, S R; Hubin, T; Rosenthal, S; Washburn, C

    1990-01-01

    A no-moving-parts, 30 frames/s, laser-beam scanning confocal reflected-light microscope has been developed. In principle, the technique can be extended to fluorescence and transmission light microscopy. Acousto-optic beam deflectors controlled by digital electronics move a laser beam in a 512-line interlaced 8.5 x 8.5-mm raster. The light passes through a beam splitter, enters an inverted microscope through the side camera port, and is imaged at the object by the microscope objective. Reflected light returns through the objective, exits the camera port, is reflected off the beam splitter, and is imaged on to the photocathode of an image dissector tube (IDT). Confocality is provided by raster scanning the IDT aperture coincident with the congruent image of the laser beam incident on the object. Real-time jitter-free reflected light images of a variety of biological objects have been produced. Computer-controlled alignment of the laser scan and IDT is performed in several seconds.

  9. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    PubMed

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-07

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach.

  10. Living matter observations with a novel hyperspectral supercontinuum confocal microscope for VIS to near-IR reflectance spectroscopy.

    PubMed

    Bertani, Francesca R; Ferrari, Luisa; Mussi, Valentina; Botti, Elisabetta; Costanzo, Antonio; Selci, Stefano

    2013-10-25

    A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 μm wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage. With this apparatus we collect each single scanning point as a whole spectrum by combining two linear spectral detector arrays, one CCD for the visible range, and one InGaAs infrared array, simultaneously available at the sensor output channel of the home made instrument. This microscope has been developed for biomedical analysis of human skin and other similar applications. Results are shown illustrating the technical performances of the instrument and the capability in extracting information about the composition and the structure of different parts or compartments in biological samples as well as in solid statematter. A complete spectroscopic fingerprinting of samples at microscopic level is shown possible by using statistical analysis on raw data or analytical reflectance models based on Abelés matrix transfer methods.

  11. Living Matter Observations with a Novel Hyperspectral Supercontinuum Confocal Microscope for VIS to Near-IR Reflectance Spectroscopy

    PubMed Central

    Bertani, Francesca R.; Ferrari, Luisa; Mussi, Valentina; Botti, Elisabetta; Costanzo, Antonio; Selci, Stefano

    2013-01-01

    A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 μm wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage. With this apparatus we collect each single scanning point as a whole spectrum by combining two linear spectral detector arrays, one CCD for the visible range, and one InGaAs infrared array, simultaneously available at the sensor output channel of the home made instrument. This microscope has been developed for biomedical analysis of human skin and other similar applications. Results are shown illustrating the technical performances of the instrument and the capability in extracting information about the composition and the structure of different parts or compartments in biological samples as well as in solid statematter. A complete spectroscopic fingerprinting of samples at microscopic level is shown possible by using statistical analysis on raw data or analytical reflectance models based on Abelés matrix transfer methods. PMID:24233077

  12. Angle of incidence averaging in reflectance measurements with optical microscopes for studying layered two-dimensional materials.

    PubMed

    Saigal, Nihit; Mukherjee, Amlan; Sugunakar, Vasam; Ghosh, Sandip

    2014-07-01

    Reflectance spectrum measured using an optical microscope with a large numerical aperture objective lens is shown to get modified. The change is most prominent when there are optical interference related features in the spectrum. This modification is shown to arise primarily due to the wide range of angles of incidence involved in the measurement and a simple formulation is provided to correct for this in simulations. The importance of such analysis is brought out through a reflectance contrast spectroscopy based study for identifying mono-layer and bi-layer graphene and MoS2.

  13. Observation of Amorphous Recording Marks Using Reflection-Mode Near-Field Scanning Optical Microscope Supported by Optical Interference Method

    NASA Astrophysics Data System (ADS)

    Sakai, Masaru; Mononobe, Shuji; Yusu, Keiichiro; Tadokoro, Toshiyasu; Saiki, Toshiharu

    2005-09-01

    A signal enhancing technique for a reflection-mode near-field scanning optical microscope (NSOM) is proposed. Optical interference between the signal light, from an aperture at the tip of a tapered optical fiber, and the reflected light, from a metallic coating around the aperture, enhances the signal intensity. We used a rewritable high-definition digital versatile disc (HD DVD) with dual recording layers as a sample medium, and demonstrated observation of amorphous recording marks on the semitransparent (the first) recording layer. In spite of low optical contrast between the crystal region and the amorphous region on this layer, we successfully observed recording marks with good contrast.

  14. Anisotropic Differential Reflectance Spectroscopy of Thin GeSe

    NASA Astrophysics Data System (ADS)

    Matson, Joseph; Woods, Grace; Churchill, Hugh

    2017-01-01

    Atomically thin monochalcogenides are predicted to exhibit a two-dimensional structural phase transition. This phase transition could be useful for designing new phase change memory devices. The critical temperature is dependent on the material as well as the thickness, and is predicted to occur just above room temperature for monolayer GeSe. We used differential reflectance spectroscopy on thin samples of GeSe to measure changes in the optical anisotropy with temperature as a signature of this phase transition. We constructed an apparatus for temperature-depedendent spectroscopy of micro-scale GeSe samples, and measured anisotropic optical absorption of thin GeSe. We observed a decrease in optical anisotropy of GeSe at elevated temperatures, which may be a first indication of the continuous transition from a rectangular to a square lattice in that material. This work was supported by NSF REU Grant #EEC-1359306.

  15. A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor

    PubMed Central

    Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong

    2016-01-01

    In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well. PMID:27649199

  16. A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor.

    PubMed

    Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong

    2016-09-16

    In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well.

  17. Interoceptive–reflective regions differentiate alexithymia traits in depersonalization disorder

    PubMed Central

    Lemche, Erwin; Brammer, Michael J.; David, Anthony S.; Surguladze, Simon A.; Phillips, Mary L.; Sierra, Mauricio; Williams, Steven C.R.; Giampietro, Vincent P.

    2013-01-01

    It is unclear to what degree depersonalization disorder (DPD) and alexithymia share abnormal brain mechanisms of emotional dysregulation. We compared cerebral processing of facial expressions of emotion in individuals with DPD to normal controls (NC). We presented happy and sad emotion expressions in increasing intensities from neutral (0%) through mild (50%) to intense (100%) to DPD and non-referred NC subjects in an implicit event-related fMRI design, and correlated respective brain activations with responses on the 20-item Toronto Alexithymia Scale (TAS-20) and its three subscales F1-F3. The TAS-20 predicts clinical diagnosis of DPD with a unique variance proportion of 38%. Differential regression analysis was utilized to ascertain brain regions for each alexithymia subscale. Differential regions of total alexithymia severity for happy emotion were the globus pallidus externus; for identifying feelings (TAS-20 F1 subscale), the right anterior insula; for description of feelings (F2), the right dorsal mid-anterior cingulate gyrus (BA 24); and for externally oriented cognitive style (F3), the left paracingulate gyrus (BA 32). For sad emotion, the differential region for the total TAS-20 score was the dorsal anterior cingulate gyrus (BA 24); for TAS-20 F1, the left inferior anterior insula; for TAS-20 F2, the right PCC (BA 31); and for TAS-20 F3, the right orbital gyrus (BA 10). Supporting our hypotheses, the ascertained brain regions for TAS-20 subscales subserve interoception, monitoring and reflection of internal states and emotion. The presented analyses provide evidence that alexithymia plays a substantial role in emotional dysregulation in DPD, presumably based on restrictions in interoception. PMID:23932225

  18. Investigation of select energetic materials by differential reflection spectrometry

    NASA Astrophysics Data System (ADS)

    Fuller, Anna Marie

    The presence of explosive or energetic materials is prevalent in today's world. Terrorists continue to target buildings and mass transit systems with explosive devices. The detection of these energetic materials is necessary to insure national security and welfare. Detection techniques such as X-ray scanners, Raman spectroscopy, Terahertz spectroscopy and ion mobility spectrometry are in current use or development; however, none of these are appropriate for all necessary applications. These techniques include. The present document provides an overview of the current detection techniques and describes a new technique for detecting energetic materials called differential reflection spectrometry (DRS). DRS essentially measures the optical absorption of energetic materials. The use of DRS has led to the discovery of previously unreported optical characteristics for some energetic compounds that are unique to the individual material. These optical characteristics consist of absorption shoulders between 270 and 420 nm, e.g. near 420 nm for 2, 4, 6 trinitrotoluene (TNT). In the presented research, the origin of the differential reflection spectra obtained was investigated using several techniques including UV-Visible spectrophotometry (transmission and reflection) and computer molecular modeling. Experimental DRS spectra of TNT, hexahydro-1,3,5 trinitro-1,3,5 triazine (RDX), octahydro 1,3,5,7-tetranitro-1,3,5,6 tetrazocine (HMX), 18 pentaerythritol tetranitrate (PETN), and 2, 4, 6, n-tetranitro-n-methylaniline (Tetryl) were taken and analyzed. From the experimental results and verification by molecular modeling, it was found that the absorption features observed in the redder region of the UV range (270--420 nm) are due to molecular orbital transitions in the nitro (NO2) groups of the measured explosives. These transitions only occur in specific conditions, such as high concentration solutions and solids, where the normally forbidden transitions are allowed. The unique

  19. A simple method for overcoming some problems when observing thick reflective biological samples with a confocal scanning laser microscope.

    PubMed

    Rumio, C; Morini, M; Miani, A; Barajon, I; Castano, P

    1995-01-01

    A simple device is described, which allows the range of depth of scanning to be reduced when observing thick reflecting biological samples with a confocal scanning laser microscope (CSLM). Thick histological sections of human skin and rat brain stem were mounted between two coverslips ('sandwich' style) and the optical tomography was performed from both sides by turning the 'sandwich' upside-down. The samples were impregnated using standard Golgi-Cox, 'rapid Golgi' or other silver methods. The ability to turn the 'sandwich' upside-down is particularly useful when the reflective structure inspected is deep inside the section, i.e., near the lower surface of the specimen, or when it is opaque to the laser beam or excessively reflective.

  20. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    NASA Astrophysics Data System (ADS)

    Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.

    2014-03-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  1. Minimum surface-effect microgripper design for force-reflective telemanipulation of a microscopic environment

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Celanovic, Nikola

    1996-01-01

    This paper describes the fundamental physical motivations for a minimum surface effect design, and presents a microgripper that incorporates a piezoelectric ceramic actuator and a flexure-based structure and transmission. The microgripper serves effectively as a one degree-of-freedom prototype of a minimum surface effect micromanipulator design. Data is presented that characterizes the microgripper performance under both pure position and pure force control, followed by a discussion of the attributes and limitations of flexure-based design. The microgripper is interfaced with a force reflective macrogripper, and the pair is controlled with a hybrid position/force scheme. Data is presented that illustrates the effective operation of the telerobotic pair.

  2. Minimum Surface-Effect Microgripper Design for Force-Reflective Telemanipulation of a Microscopic Environment

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Celanovic, Nikola

    1996-01-01

    This paper describes the fundamental physical motivations for minimum surface effect design, and presents a microgripper that incorporates a piezoelectric ceramic actuator and a flexure-based structure and transmission. The microgripper serves effectively as a one degree-of-freedom prototype of minimum surface effect micromanipulator design. Data is presented that characterizes the microgripper performance under both pure position and pure force control, followed by a discussion of the attributes and limitations of flexure-based design. The microgripper is interfaced with a force-reflective macrogripper, and the pair controlled with a hybrid position/force scheme. Data is presented that illustrates the effective operation of the telerobotic pair.

  3. Commentary: taking a deep breath before reflecting on differential response.

    PubMed

    Merkel-Holguin, Lisa; Bross, Donald C

    2015-01-01

    Although there are certainly limitations to each and every research and evaluation project in child welfare, as with other fields of study, understanding DR as a CPS reform has been fostered through many thoughtful and rigorous studies that have employed random control trial evaluation designs. For each assumption addressed in this commentary, we have raised a few questions. For all interested in CPS reform, other questions arise because child protection and child welfare professionals are trying to encourage more scientific ways of thinking as a means of engendering improvements: 1. Has the research on DR spotlighted the inadequacy of CPS interventions, either AR or IR? A high percentage of CPS responses are short-term. Is it reasonable to expect significant differences between AR and IR families and improvements in the CPS population, given that families often present with problems characterized as intractable but the intensity of the CPS response, coupled with limited service availability and accessibility, may not be sufficient to meet family needs? 2. Has the DR research, which has mainly focused on AR families, also highlighted the glaring absence of quality research in what is effective in producing positive outcomes for families that receive traditional child abuse and neglect investigations? 3. Does the implementation of DR move the CPS field ahead in terms of making better triage decisions, identifying especially those that require CPS involvement as compared to those who will benefit from but might not absolutely need intervention? Is 'triage' an explicit assumption of the DR innovation? Is it an implicit assumption of DR, however defined? If triage is not part of the research, does the ability of child protection to respond both differentially and also correctly to cases needing most, some, or no attention remain unknown? Until there is a reliable and valid way for determining for which families services are most urgently needed, are many reforms in CPS

  4. Differential phase shift of partially reflected radio waves.

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.

    1971-01-01

    The addition of phase difference measurements to differential absorption experiments is shown to be both feasible and desirable. The phase information can provide a more sensitive measurement of electron density above about 75 km. The differential phase shift is only weakly dependent on collision frequency in this range, and so an accurate collision frequency profile is not a prerequisite. The differential phase shift and differential absorption measurements taken together can provide both electron density and collision frequency data from about 70 to 90 km.

  5. All-plastic, miniature, digital fluorescence microscope for three part white blood cell differential measurements at the point of care

    PubMed Central

    Forcucci, Alessandra; Pawlowski, Michal E.; Majors, Catherine; Richards-Kortum, Rebecca; Tkaczyk, Tomasz S.

    2015-01-01

    Three-part differential white blood cell counts are used for disease diagnosis and monitoring at the point-of-care. A low-cost, miniature achromatic microscope was fabricated for identification of lymphocytes, monocytes, and granulocytes in samples of whole blood stained with acridine orange. The microscope was manufactured using rapid prototyping techniques of diamond turning and 3D printing and is intended for use at the point-of-care in low-resource settings. The custom-designed microscope requires no manual adjustment between samples and was successfully able to classify three white blood cell types (lymphocytes, granulocytes, and monocytes) using samples of peripheral whole blood stained with acridine orange. PMID:26601006

  6. Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces.

    PubMed

    Edwards, C S; Christensen, P R

    2013-04-10

    The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft payload. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often >5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically <2 to 3). Since this style of instrument is based on a long heritage of thermal infrared emission spectrometers sent to orbit (the thermal emission spectrometer), sent to planetary surfaces [the mini-thermal emission spectrometers (mini-TES)], and evaluated in laboratory environments (e.g., the Arizona State University emission spectrometer laboratory), direct comparisons to existing data are uniquely possible with this style of instrument. The ability to obtain bulk mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars

  7. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui

    2015-12-01

    Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect.

  8. Toward the development of a soft x-ray reflection imaging microscope in the Schwarzschild configuration using a soft x-ray laser at 18. 2 nm

    SciTech Connect

    Dicicco, D.; Rosser, R. ); Kim, D.; Suckewer, S. . Plasma Physics Lab.)

    1991-12-01

    We present the recent results obtained from a soft X-ray reflection imaging microscope in the Schwarzschild configuration. The microscope demonstrated a spatial resolution of 0.7 {mu}m with a magnification of 16 at 18.2 nm. The soft X-ray laser at 18.2 nm was used as an X-ray source. Mo/Si multilayers were coated on the Schwarzschild optics and the normal incidence reflectivity at 18.2 nm per surface was measured to be {approximately} 20 %. 18 refs., 6 figs.

  9. Detection of explosive materials by differential reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Hummel, Rolf E.; Fuller, Anna M.; Schöllhorn, Claus; Holloway, Paul H.

    2006-06-01

    It is shown that traces of 2,4,6-trinitrotoluene (TNT) display strong and distinct structures in differential reflectograms, near 420 and 250nm. These characteristic peaks are not observed from moth balls, nail polish, polyvinyl chloride, starch, soap, paper, epoxy, aspirin, polycarbonate, aspartame, polystyrene, polyester, fertilizer, or sugar, to mention a few substances which may be in or on a suitcase. The described technique for detection of TNT is fast, inexpensive, reliable, and portable and does not require contact with the surveyed substance. Moreover, we have developed a curve recognition program for field applications of the technique. The origin of the spectra is discussed.

  10. Optimization of a high shear wet granulation process using focused beam reflectance measurement and particle vision microscope technologies.

    PubMed

    Arp, Zane; Smith, Ben; Dycus, Eric; O'grady, Des

    2011-08-01

    Application of process analytical technology in the pharmaceutical industry has led to a great number of studies into inline instrumentation. Near-infrared moisture monitoring in fluid bed drying and content uniformity assurance in blending are gaining acceptance for monitoring and quality control of these processes. Although these techniques are a great improvement over traditional methods, each is performed at points in processing wherein processing is well understood and interfacing equipment is relatively easy. More complex unit operations have largely been unexplored due to complexities interfacing inline analytical equipment to unit operations or a lack of methodologies that can be applied to measure attributes of interest. This paper reports results from a study utilizing a focused beam reflectance measurement system equipped with window scraper technology for the inline measurement and control of a high shear wet granulation (HSWG) process. In addition to this, offline results obtained with a particle vision microscope system are compared to verify the results obtained inline. It is shown that using these technologies in monitoring the HSWG process greatly increases process understanding of physical changes occurring during processing through real-time observation of particle size, leading to real-time control of the process.

  11. In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph.

    PubMed

    Ulrich, Martina; Klemp, Marisa; Darvin, Maxim E; König, Karsten; Lademann, Jürgen; Meinke, Martina C

    2013-06-01

    The standard diagnostic procedure for basal cell carcinoma (BCC) is invasive tissue biopsy with time-consuming histological examination. To reduce the number of biopsies, noninvasive optical methods have been developed providing high-resolution skin examination. We present direct comparison of a reflectance confocal microscope (RLSM) and a multiphoton tomograph (MPT) for BCC diagnosis. Both systems are applied to nine patients prior to surgery, and the results are analyzed, including histological results. Both systems prove suitable for detecting typical characteristics of BCC in various stages. The RLSM allows large horizontal overview images to be obtained, enabling the investigator to find the regions of interest quickly, e.g., BCC nests. Elongated cells and palisading structures are easily recognized using both methods. Due to the higher resolution, changes in nucleus diameter or cytoplasm could be visualized with the MPT. Therefore, the nucleus diameter, nucleus/cytoplasm ratio, and cell density are estimated for normal and BCC cells using the MPT. The nucleus of elongated BCC cells is significantly longer than other measured normal skin cells, whereas the cell density and nucleus/cytoplasm ratio of BCC cannot be significantly distinguished from granular cells.

  12. In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph

    NASA Astrophysics Data System (ADS)

    Ulrich, Martina; Klemp, Marisa; Darvin, Maxim E.; König, Karsten; Lademann, Jürgen; Meinke, Martina C.

    2013-06-01

    The standard diagnostic procedure for basal cell carcinoma (BCC) is invasive tissue biopsy with time-consuming histological examination. To reduce the number of biopsies, noninvasive optical methods have been developed providing high-resolution skin examination. We present direct comparison of a reflectance confocal microscope (RLSM) and a multiphoton tomograph (MPT) for BCC diagnosis. Both systems are applied to nine patients prior to surgery, and the results are analyzed, including histological results. Both systems prove suitable for detecting typical characteristics of BCC in various stages. The RLSM allows large horizontal overview images to be obtained, enabling the investigator to find the regions of interest quickly, e.g., BCC nests. Elongated cells and palisading structures are easily recognized using both methods. Due to the higher resolution, changes in nucleus diameter or cytoplasm could be visualized with the MPT. Therefore, the nucleus diameter, nucleus/cytoplasm ratio, and cell density are estimated for normal and BCC cells using the MPT. The nucleus of elongated BCC cells is significantly longer than other measured normal skin cells, whereas the cell density and nucleus/cytoplasm ratio of BCC cannot be significantly distinguished from granular cells.

  13. Algorithms for differentiating between images of heterogeneous tissue across fluorescence microscopes.

    PubMed

    Chitalia, Rhea; Mueller, Jenna; Fu, Henry L; Whitley, Melodi Javid; Kirsch, David G; Brown, J Quincy; Willett, Rebecca; Ramanujam, Nimmi

    2016-09-01

    Fluorescence microscopy can be used to acquire real-time images of tissue morphology and with appropriate algorithms can rapidly quantify features associated with disease. The objective of this study was to assess the ability of various segmentation algorithms to isolate fluorescent positive features (FPFs) in heterogeneous images and identify an approach that can be used across multiple fluorescence microscopes with minimal tuning between systems. Specifically, we show a variety of image segmentation algorithms applied to images of stained tumor and muscle tissue acquired with 3 different fluorescence microscopes. Results indicate that a technique called maximally stable extremal regions followed by thresholding (MSER + Binary) yielded the greatest contrast in FPF density between tumor and muscle images across multiple microscopy systems.

  14. Algorithms for differentiating between images of heterogeneous tissue across fluorescence microscopes

    PubMed Central

    Chitalia, Rhea; Mueller, Jenna; Fu, Henry L.; Whitley, Melodi Javid; Kirsch, David G.; Brown, J. Quincy; Willett, Rebecca; Ramanujam, Nimmi

    2016-01-01

    Fluorescence microscopy can be used to acquire real-time images of tissue morphology and with appropriate algorithms can rapidly quantify features associated with disease. The objective of this study was to assess the ability of various segmentation algorithms to isolate fluorescent positive features (FPFs) in heterogeneous images and identify an approach that can be used across multiple fluorescence microscopes with minimal tuning between systems. Specifically, we show a variety of image segmentation algorithms applied to images of stained tumor and muscle tissue acquired with 3 different fluorescence microscopes. Results indicate that a technique called maximally stable extremal regions followed by thresholding (MSER + Binary) yielded the greatest contrast in FPF density between tumor and muscle images across multiple microscopy systems. PMID:27699108

  15. Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope.

    PubMed

    Cerbino, Roberto; Trappe, Veronique

    2008-05-09

    We demonstrate the use of an ordinary white-light microscope for the study of the q-dependent dynamics of colloidal dispersions. Time series of digital video images are acquired in bright field with a fast camera, and image differences are Fourier analyzed as a function of the time delay between them. This allows for the characterization of the particle dynamics independent of whether or not they can be resolved individually. The characteristic times are measured in a wide range of wave vectors and the results are found to be in good agreement with the theoretically expected values for Brownian motion in a viscous medium.

  16. Microscopic Mapping of Subnanometric Motion with Multiple-Beam Differential Holographic Technique

    NASA Astrophysics Data System (ADS)

    Lin, Hungyi

    The measurement of ultrasmall displacement is usually performed by laser interferometry. In most cases, this method is specified for the surface measurement and requires a relatively smooth surface capable of reflecting light. In this research, a newly developed method, mutiple -beam microdifferential holography, is introduced to measure a small configuration change. This configuration change can happen on the surface of an object or inside a semitransparent object. In the experiment, two reference beams are used to record a pair of phase biased holographic images simultaneously. During the image reconstruction, the CCD image acquisition system is employed to record the pair of images one at a time and then process them digitally. The subtraction image intuitively shows that the deformation of tested object occurs between the double exposures applied during the holographic recording. A second object beam, usually a plane wave, is added to the imaging system for the purpose of image registration, which is required for the image processing. Several developments upgraded the system performance. The calibration was done with an extremely consistent moving object, a small air bubble drifting in a glycerine-filled capillary. Displacements as small as 0.4 nanometer are reported. In application, a living cell, a single frog muscle fiber, was under examination. This part of the research focused mainly on the crossbridge mechanism of striated muscle contraction. The images made at the plateau of tetanus suggest either that the cycling time constant is much longer than 10 msec, that the displacement for a power stroke is substantially less than 12 nanometer, or that the crossbridge is not cycling during the isometric force generation. The images made at the initial state of force development suggest that a large number of crossbridges shift toward the actin filament at the onset of the force development and stay there (at least without large scale rotation) even when the

  17. Reflecting microscope system with a 0.99 numerical aperture designed for three-dimensional fluorescence imaging of individual molecules at cryogenic temperatures

    PubMed Central

    Inagawa, H.; Toratani, Y.; Motohashi, K.; Nakamura, I.; Matsushita, M.; Fujiyoshi, S.

    2015-01-01

    We have developed a cryogenic fluorescence microscope system, the core of which is a reflecting objective that consists of spherical and aspherical mirrors. The use of an aspherical mirror allows the reflecting objective to have a numerical aperture (NA) of up to 0.99, which is close to the maximum possible NA of 1.03 in superfluid helium. The performance of the system at a temperature of 1.7 K was tested by recording a three-dimensional fluorescence image of individual quantum dots using excitation wavelengths (λex) of 532 nm and 635 nm. At 1.7 K, the microscope worked with achromatic and nearly diffraction-limited performance. The 1/e2 radius (Γ) of the point spread function of the reflecting objective in the lateral (xy) direction was 0.212 ± 0.008 μm at λex = 532 nm and was less than 1.2 times the simulated value for a perfectly polished objective. The radius Γ in the axial (z) direction was 0.91 ± 0.04 μm at λex = 532 nm and was less than 1.4 times the simulated value of Γ. The chromatic aberrations between the two wavelengths were one order of magnitude smaller than Γ in each direction. PMID:26239746

  18. Reflecting microscope system with a 0.99 numerical aperture designed for three-dimensional fluorescence imaging of individual molecules at cryogenic temperatures.

    PubMed

    Inagawa, H; Toratani, Y; Motohashi, K; Nakamura, I; Matsushita, M; Fujiyoshi, S

    2015-08-04

    We have developed a cryogenic fluorescence microscope system, the core of which is a reflecting objective that consists of spherical and aspherical mirrors. The use of an aspherical mirror allows the reflecting objective to have a numerical aperture (NA) of up to 0.99, which is close to the maximum possible NA of 1.03 in superfluid helium. The performance of the system at a temperature of 1.7 K was tested by recording a three-dimensional fluorescence image of individual quantum dots using excitation wavelengths (λex) of 532 nm and 635 nm. At 1.7 K, the microscope worked with achromatic and nearly diffraction-limited performance. The 1/e(2) radius (Γ) of the point spread function of the reflecting objective in the lateral (xy) direction was 0.212 ± 0.008 μm at λex = 532 nm and was less than 1.2 times the simulated value for a perfectly polished objective. The radius Γ in the axial (z) direction was 0.91 ± 0.04 μm at λex = 532 nm and was less than 1.4 times the simulated value of Γ. The chromatic aberrations between the two wavelengths were one order of magnitude smaller than Γ in each direction.

  19. Multiple wall-reflection effect in adaptive-array differential-phase reflectometry on QUEST

    NASA Astrophysics Data System (ADS)

    Idei, H.; Mishra, K.; Yamamoto, M. K.; Fujisawa, A.; Nagashima, Y.; Hamasaki, M.; Hayashi, Y.; Onchi, T.; Hanada, K.; Zushi, H.; QUEST Team

    2016-01-01

    A phased array antenna and Software-Defined Radio (SDR) heterodyne-detection systems have been developed for adaptive array approaches in reflectometry on the QUEST. In the QUEST device considered as a large oversized cavity, standing wave (multiple wall-reflection) effect was significantly observed with distorted amplitude and phase evolution even if the adaptive array analyses were applied. The distorted fields were analyzed by Fast Fourier Transform (FFT) in wavenumber domain to treat separately the components with and without wall reflections. The differential phase evolution was properly obtained from the distorted field evolution by the FFT procedures. A frequency derivative method has been proposed to overcome the multiple-wall reflection effect, and SDR super-heterodyned components with small frequency difference for the derivative method were correctly obtained using the FFT analysis.

  20. Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator

    NASA Astrophysics Data System (ADS)

    Li, Bei; Borri, Paola; Langbein, Wolfgang

    2013-06-01

    In the last decade, coherent anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful multiphoton imaging technique offering label-free chemical sensitivity and high three-dimensional resolution. However, its widespread application in the life sciences has been hampered by the use of costly pulsed lasers, the existence of a nonresonant background requiring involved technical solutions for its efficient suppression, and the limited acquisition speed of multiplex techniques addressing several vibrational resonances, if improved chemical specificity is needed. We have recently reported a differential CARS technique (D-CARS), which simultaneously measures two vibrational frequencies, enhancing the chemical selectivity and sensitivity without introducing costly hardware, while maintaining fast acquisition. In this study, we demonstrate a compact, fully automated, cost-effective module, which integrates on hardware and software level with a commercial multiphoton microscope based on a single 100 fs Ti:Sapphire oscillator and enables D-CARS microscopy in a user-friendly format for applications in the life sciences.

  1. Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator.

    PubMed

    Li, Bei; Borri, Paola; Langbein, Wolfgang

    2013-06-01

    In the last decade, coherent anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful multiphoton imaging technique offering label-free chemical sensitivity and high three-dimensional resolution. However, its widespread application in the life sciences has been hampered by the use of costly pulsed lasers, the existence of a nonresonant background requiring involved technical solutions for its efficient suppression, and the limited acquisition speed of multiplex techniques addressing several vibrational resonances, if improved chemical specificity is needed. We have recently reported a differential CARS technique (D-CARS), which simultaneously measures two vibrational frequencies, enhancing the chemical selectivity and sensitivity without introducing costly hardware, while maintaining fast acquisition. In this study, we demonstrate a compact, fully automated, cost-effective module, which integrates on hardware and software level with a commercial multiphoton microscope based on a single 100 fs Ti:Sapphire oscillator and enables D-CARS microscopy in a user-friendly format for applications in the life sciences.

  2. Comparison of the ability of quantitative parameters to differentiate surface texture of Atomic Force Microscope (AFM) images

    NASA Astrophysics Data System (ADS)

    Niedzielski, Bethany; Caragianis Broadbridge, Christine; DaPonte, John S.; Gherasimova, Maria

    2010-01-01

    The purpose of this study was to compare the ability of several texture analysis parameters to differentiate textured samples from a smooth control on images obtained with an Atomic Force Microscope (AFM). Surface roughness plays a major role in the realm of material science, especially in integrated electronic devices. As these devices become smaller and smaller, new materials with better electrical properties are needed. New materials with smoother surface morphology have been found to have superior electrical properties than their rougher counterparts. Therefore, in many cases surface texture is indicative of the electrical properties that material will have. Physical vapor deposition techniques such as Jet Vapor Deposition and Molecular Beam Epitaxy are being utilized to synthesize these materials as they have been found to create pure and uniform thin layers. For the current study, growth parameters were varied to produce a spectrum of textured samples. The focus of this study was the image processing techniques associated with quantifying surface texture. As a result of the limited sample size, there was no attempt to draw conclusions about specimen processing methods. The samples were imaged using an AFM in tapping mode. In the process of collecting images, it was discovered that roughness data was much better depicted in the microscope's "height" mode as opposed to "equal area" mode. The AFM quantified the surface texture of each image by returning RMS roughness and the first order histogram statistics of mean roughness, standard deviation, skewness, and kurtosis. Color images from the AFM were then processed on an off line computer running NIH ImageJ with an image texture plug in. This plug in produced another set of first order statistics computed from each images' histogram as well as second order statistics computed from each images' cooccurrence matrix. The second order statistics, which were originally proposed by Haralick, include contrast, angular

  3. Differential impact of Limnoperna fortunei-herbicide interaction between Roundup Max® and glyphosate on freshwater microscopic communities.

    PubMed

    Gattás, F; Vinocur, A; Graziano, M; Dos Santos Afonso, M; Pizarro, H; Cataldo, D

    2016-09-01

    Multiple anthropogenic stressors act simultaneously on the environment, with consequences different from those caused by single-stressor exposure. We investigated how the combination of the invasive mussel Limnoperna fortunei and a widely applied herbicide, Roundup Max®, affected freshwater microscopic communities and water quality. Further, we compared these results with those induced by the combination of the mussel and technical-grade glyphosate. We carried out a 34-day experiment in outdoor mesocosms, applying the following six treatments: 6 mg L(-1) of technical-grade glyphosate (G), the equivalent concentration of glyphosate in Roundup Max® (R), 100 mussels (M), the combination of mussels and herbicide either in the technical-grade or formulated form (MG and MR, respectively), and control (C). Herbicides significantly increased total phosphorus in water; R and MR showed greater initial total nitrogen and ammonium. R increased picoplankton abundance and caused an eightfold increase in phytoplankton, with high turbidity values; G had a lower effect on these variables. Herbicide-mussel combination induced an accelerated dissipation of glyphosate in water (MG 6.36 ± 0.83 mg G g DW(-1) day(-1) and MR 5.16 ± 1.26 mg G g DW(-1) day(-1)). A synergistic effect on ammonium was observed in MR but not in MG. MR and MG had an antagonistic effect on phytoplankton, which showed a drastic reduction due to grazing, as revealed by M. We provide evidence of differential effects of Roundup Max® and technical-grade glyphosate over water quality and microscopic communities, and in combination with mussels. However, in the combination of mussels and herbicides, mussels seem to play a leading role. In the presence of L. fortunei, the effects of higher nutrient availability provided by herbicides addition were counteracted by the filtration activity of mussels, which released nutrients, grazed on picoplankton and phytoplankton, and boosted the development of other

  4. Spectrophotometric Method for Differentiation of Human Skin Melanoma. I. Optical Diffuse Reflection Coefficient

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.

    2016-03-01

    We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.

  5. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    SciTech Connect

    Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.

    2009-04-15

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  6. 50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors.

    PubMed

    Matsuyama, Satoshi; Yasuda, Shuhei; Yamada, Jumpei; Okada, Hiromi; Kohmura, Yoshiki; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2017-04-13

    X-ray spectromicroscopy with a full-field imaging technique is a powerful method for chemical analysis of heterogeneous complex materials with a nano-scale spatial resolution. For imaging optics, an X-ray reflective optical system has excellent capabilities with highly efficient, achromatic, and long-working-distance properties. An advanced Kirkpatrick-Baez geometry that combines four independent mirrors with elliptic and hyperbolic shapes in both horizontal and vertical directions was developed for this purpose, although the complexity of the system has a limited applicable range. Here, we present an optical system consisting of two monolithic imaging mirrors. Elliptic and hyperbolic shapes were formed on a single substrate to achieve both high resolution and sufficient stability. The mirrors were finished with a ~1-nm shape accuracy using elastic emission machining. The performance was tested at SPring-8 with a photon energy of approximately 10 keV. We could clearly resolve 50-nm features in a Siemens star without chromatic aberration and with high stability over 20 h. We applied this system to X-ray absorption fine structure spectromicroscopy and identified elements and chemical states in specimens of zinc and tungsten micron-size particles.

  7. Geographical differentiation of dried lentil seed (Lens culinaris) samples using diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and discriminant analysis.

    PubMed

    Kouvoutsakis, G; Mitsi, C; Tarantilis, P A; Polissiou, M G; Pappas, C S

    2014-02-15

    Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and discriminant analysis were used for the geographical differentiation of dried lentil seed (Lens culinaris) samples. Specifically, 18 Greek samples and nine samples imported from other countries were distinguished using the 2250-1720 and 1275-955 cm⁻¹ spectral regions. The differentiation is complete. The combination of DRIFTS and discriminant analysis enables simple, rapid, cheap and accurate differentiation of commercial lentil seeds in terms of geographical origin.

  8. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method

    PubMed Central

    Kaniber, M.; Schraml, K.; Regler, A.; Bartl, J.; Glashagen, G.; Flassig, F.; Wierzbowski, J.; Finley, J. J.

    2016-01-01

    We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangle and gap size of = 4.5 nm = 2.6 nm and = 5.4 nm = 3.8 nm, respectively. The corresponding optical properties of individual nanoantennas studied by differential reflection spectroscopy show a strong reduction of the localised surface plasmon polariton resonance linewidth from 0.21 eV to 0.07 eV upon reducing the antenna size from 150 nm to 100 nm. This is attributed to the absence of inhomogeneous broadening as compared to optical measurements on nanoantenna ensembles. The inter-particle coupling of an individual bowtie nanoantenna, which gives rise to strongly localised and enhanced electromagnetic hotspots, is demonstrated using polarization-resolved spectroscopy, yielding a large degree of linear polarization of ρmax ~ 80%. The combination of highly reproducible nanofabrication and fast, non-destructive and non-contaminating optical spectroscopy paves the route towards future semiconductor-based nano-plasmonic circuits, consisting of multiple photonic and plasmonic entities. PMID:27005986

  9. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method

    NASA Astrophysics Data System (ADS)

    Kaniber, M.; Schraml, K.; Regler, A.; Bartl, J.; Glashagen, G.; Flassig, F.; Wierzbowski, J.; Finley, J. J.

    2016-03-01

    We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangle and gap size of = 4.5 nm = 2.6 nm and = 5.4 nm = 3.8 nm, respectively. The corresponding optical properties of individual nanoantennas studied by differential reflection spectroscopy show a strong reduction of the localised surface plasmon polariton resonance linewidth from 0.21 eV to 0.07 eV upon reducing the antenna size from 150 nm to 100 nm. This is attributed to the absence of inhomogeneous broadening as compared to optical measurements on nanoantenna ensembles. The inter-particle coupling of an individual bowtie nanoantenna, which gives rise to strongly localised and enhanced electromagnetic hotspots, is demonstrated using polarization-resolved spectroscopy, yielding a large degree of linear polarization of ρmax ~ 80%. The combination of highly reproducible nanofabrication and fast, non-destructive and non-contaminating optical spectroscopy paves the route towards future semiconductor-based nano-plasmonic circuits, consisting of multiple photonic and plasmonic entities.

  10. Early detection and differentiation of venous and arterial occlusion in skin flaps using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy.

    PubMed

    Zhu, Caigang; Chen, Shuo; Chui, Christopher Hoe-Kong; Tan, Bien-Keem; Liu, Quan

    2016-02-01

    Our previous preclinical study demonstrated that both visible diffuse reflectance and autofluorescence spectroscopy, each of which yields a different set of physiological information, can predict skin flap viability with high accuracy in a MacFarlane rat dorsal skin flap model. In this report, we further evaluated our technique for the early detection and differentiation of venous occlusion and arterial occlusion in a rat groin flap model. We performed both diffuse reflectance and autofluorescence measurements on the skin flap model and statistically differentiated between flaps with and without occlusions as well as between flaps with venous occlusion and those with arterial occlusion based on these non-invasive optical measurements. Our preliminary results suggested that visible diffuse reflectance and autofluorescence spectroscopy can be potentially used clinically to detect both venous and arterial occlusion and differentiate one from the other accurately at an early time point.

  11. Early detection and differentiation of venous and arterial occlusion in skin flaps using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy

    PubMed Central

    Zhu, Caigang; Chen, Shuo; Chui, Christopher Hoe-Kong; Tan, Bien-Keem; Liu, Quan

    2016-01-01

    Our previous preclinical study demonstrated that both visible diffuse reflectance and autofluorescence spectroscopy, each of which yields a different set of physiological information, can predict skin flap viability with high accuracy in a MacFarlane rat dorsal skin flap model. In this report, we further evaluated our technique for the early detection and differentiation of venous occlusion and arterial occlusion in a rat groin flap model. We performed both diffuse reflectance and autofluorescence measurements on the skin flap model and statistically differentiated between flaps with and without occlusions as well as between flaps with venous occlusion and those with arterial occlusion based on these non-invasive optical measurements. Our preliminary results suggested that visible diffuse reflectance and autofluorescence spectroscopy can be potentially used clinically to detect both venous and arterial occlusion and differentiate one from the other accurately at an early time point. PMID:26977363

  12. Note: refractive index sensing of turbid media by differentiation of the reflectance profile: does error-correction work?

    PubMed

    Goyal, K G; Dong, M L; Kane, D G; Makkar, S S; Worth, B W; Bali, L M; Bali, S

    2012-08-01

    A widely used method for determining refractive index postulates that the derivative of the angular profile for light reflected from the sample is maximum at the critical angle for total internal reflection (TIR). It is well-known that in turbid media this "differentiation method" yields errors in refractive index. Unexplained anomalies in previous error-calculations are eliminated if one uses a recent model of TIR which departs from traditional Fresnel theory. However we find that, in practical situations, the refractive index obtained by differentiation even after error-correction is significantly different from the best estimate for the refractive index obtained by curve-fitting the reflectance data. Thus the differentiation method lacks scientific validity in turbid media.

  13. Differential gene expression profiling in aggressive bladder transitional cell carcinoma compared to the adjacent microscopically normal urothelium by microdissection-SMART cDNA PCR-SSH.

    PubMed

    Wang, H T; Ma, F L; Ma, X B; Han, R F; Zhang, Y B; Chang, J W

    2006-01-01

    Identifying novel and known genes that are differentially expressed in aggressive bladder transitional cell carcinoma (BTCC) has important implications in understanding the biology of bladder tumorigenesis and developing new diagnostic and therapeutic agents. In this study we identified the differential gene expression profiles comparing tumor to the adjacent microscopically normal mucosa by manual microdissection on frozen sections. The RNAs extracted from microdissected tissues were amplified by SMART cDNA PCR technology to generate forward subtractive cDNA library by suppressive subtractive hybridization (SSH). We obtained 376 positive clones, one hundred clones of aggressive BTCC subtracted cDNA library were selected at random and inserts were reamplified by PCR. After differential screening by reverse dot blotting, 73 positive clones, that contend inserts putatively upregulated in aggressive BTCC, were further analysed by DNA sequencing, GenBank and EST database searching. Sequencing results showed that 66 clones stand for 23 known genes and 7 clones for three new EST (Genbank number: DN236875, DN236874 and DN236873). In conclusion, microdissection-SMART cDNA PCR-SSH allowed for an efficient way to identify aggressive BTCC-specific differential expressed genes that may potentially be involved in the carcinogenesis and/or progression of aggressive BTCC. These differentially expressed genes may be of potential utility as therapeutic and diagnostic targets for aggressive BTCC.

  14. Columns of differential reflectivity: a precursor for storm evolution and convective rain

    NASA Astrophysics Data System (ADS)

    Troemel, S.; Diederich, M.; Kumjian, M. R.; Picca, J. C.; Simmer, C.

    2012-12-01

    Nowcasting aims at providing accurate information about weather hazards related to convection at a very high refresh rate well suited for fast evolving convective systems. Polarimetric weather radars arise as a key tool to provide "seamless" analysis and nowcast of convective risk to aviation, because of their ability to observe 3dimensional storm structure, evolution, microphysical processes, and generated precipitation. Columns of differential reflectivity ZDR measured by polarimetric weather radars are prominent signatures associated with thunderstorm updrafts. Since greater vertical velocities can loft larger drops and water-coated ice particles to higher altitudes above the environmental freezing level, the integrated ZDR column above the freezing level increases with increasing updraft intensity. Frequently, they can extend several kilometers above the environmental freezing level. These positive ZDR values above the environmental freezing level point to the presence of large, oblate raindrops and perhaps water-coated hailstones and graupel. Analyses on the informative content of ZDR columns as precursor for storm evolution will be presented based on both the X-band polarimetric data collected by the twin radars (XPol Bonn and XPol Jülich) in the Bonn area, Germany, and volume radar data collected with the S-band KOUN radar, in Norman, Oklahoma. In order to derive the ZDR column product, radar volume data is interpolated onto a three-dimensional Cartesian (x,y,z) grid and then, for each (x,y) coordinate, the number of vertical grid boxes above the freezing level containing ZDR values in excess of a predetermined threshold (=1dB) are counted. The ZDR column product is simply a count of the number of grid boxes, which can be converted into "ZDR column volume" by simply multiplying the count by the dimension ΔxΔyΔz of the grid box. Interdependencies between the volumes of ZDR columns above the environmental freezing level, precipitation near the surface, the

  15. Diffuse reflectance spectroscopy can differentiate high grade and low grade prostatic carcinoma.

    PubMed

    Werahera, Priya N; Jasion, Edward A; David Crawford, E; Lucia, M Scott; van Bokhoven, Adrie; Sullivan, Holly T; Kim, Fernando J; Maroni, Paul D; David Port, J; Daily, John W; Rosa, Francisco G La; Werahera, Priya N; Jasion, Edward A; Crawford, E David; Lucia, M Scott; van Bokhoven, Adrie; Sullivan, Holly T; Kim, Fernando J; Maroni, Paul D; Port, J David; Daily, John W; La Rosa, Francisco G; Daily, John W; Van Bokhoven, Adrie; Crawford, E David; Port, J David; Werahera, Priya N; Lucia, M Scott; Sullivan, Holly T; Maroni, Paul D; Jasion, Edward A; La Rosa, Francisco G; Kim, Fernando J

    2016-08-01

    Prostate tumors are graded by the revised Gleason Score (GS) which is the sum of the two predominant Gleason grades present ranging from 6-10. GS 6 cancer exclusively with Gleason grade 3 is designated as low grade (LG) and correlates with better clinical prognosis for patients. GS >7 cancer with at least one of the Gleason grades 4 and 5 is designated as HG indicate worse prognosis for patients. Current transrectal ultrasound guided prostate biopsies often fail to correctly diagnose HG prostate cancer due to sampling errors. Diffuse reflectance spectra (DRS) of biological tissue depend on tissue morphology and architecture. Thus, DRS could potentially differentiate between HG and LG prostatic carcinoma. A 15-gauge optical biopsy needle was prototyped to take prostate biopsies after measuring DRS with a laboratory fluorometer. This needle has an optical sensor that utilizes 8×100 μm optical fibers for tissue excitation and a single 200 μm central optical fiber to measure DRS. Tissue biopsy cores were obtained from 20 surgically excised prostates using this needle after measuring DRS at 5 nm intervals between 500-700 nm wavelengths. Tissue within a measurement window was histopathologically classified as either benign, LG, or HG and correlated with DRS. Partial least square analysis of DRS identified principal components (PC) as potential classifiers. Statistically significant PCs (p<;0.05) were tested for their ability to classify biopsy tissue using support vector machine and leave-one-out cross validation method. There were 29 HG and 49 LG cancers among 187 biopsy cores included in the study. Study results show 76% sensitivity, 80% specificity, 93% negative predictive value, and 50% positive predictive value for HG versus benign, and 76%, 73%, 84%, and 63%, for HG versus LG prostate tissue classification. DRS failed to diagnose 7/29 (24%) HG cancers. This study demonstrated that an optical biopsy needle guided by DRS has sufficient accuracy to differentiate HG

  16. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  17. Reflecting Solutions of High Order Elliptic Differential Equations in Two Independent Variables Across Analytic Arcs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Carleton, O.

    1972-01-01

    Consideration is given specifically to sixth order elliptic partial differential equations in two independent real variables x, y such that the coefficients of the highest order terms are real constants. It is assumed that the differential operator has distinct characteristics and that it can be factored as a product of second order operators. By analytically continuing into the complex domain and using the complex characteristic coordinates of the differential equation, it is shown that its solutions, u, may be reflected across analytic arcs on which u satisfies certain analytic boundary conditions. Moreover, a method is given whereby one can determine a region into which the solution is extensible. It is seen that this region of reflection is dependent on the original domain of difinition of the solution, the arc and the coefficients of the highest order terms of the equation and not on any sufficiently small quantities; i.e., the reflection is global in nature. The method employed may be applied to similar differential equations of order 2n.

  18. Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations

    PubMed Central

    Muñetón-Gómez, Vilma C.; Doncel-Pérez, Ernesto; Fernandez, Ana P.; Serrano, Julia; Pozo-Rodrigálvarez, Andrea; Vellosillo-Huerta, Lara; Taylor, Julian S.; Cardona-Gómez, Gloria P.; Nieto-Sampedro, Manuel; Martínez-Murillo, Ricardo

    2012-01-01

    The increased risk and prevalence of lacunar stroke and Parkinson's disease (PD) makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra (SN) of the rat after stereotaxic administration of endothelin-1 (ET-1), a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs) with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize GFP-positive neurons derived from the transplants. 48 h after ET-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterized with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive) and neuron types present in the normal striatum. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting a possible role in the regulation of the blood brain barrier and angiogenesis. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism. PMID:22876219

  19. Comparison of the Sysmex XT-2000iV with microscopic differential counts of canine bone marrow.

    PubMed

    Pernecker, Iris; Bauer, Natali B; Johannes, Sigrid; Ginder, Melanie; Harleman, Johannes H; Moritz, Andreas

    2017-03-01

    Canine bone marrow is frequently assessed in the advanced preclinical research environment. Automated analysis provides time savings and objectivity over the gold standard of microscopic (cytologic) evaluation. We compared the analysis of 90 canine bone marrow samples by the Sysmex XT-2000iV hematology analyzer (Sysmex Corp., Kobe, Japan) with cytologic evaluation. Gates for cell populations were created in the system's WBC/BASO channel. Variables "total nucleated red blood cells" (total_NRBC), "poly- and orthochromatic nucleated red blood cells" (poly_orth_NRBC), "total neutrophils" (total_NEUT), "mature neutrophils" (mature_NEUT), and myeloid-to-erythroid (M:E) ratio were compared with cytologic evaluation. Intra-assay repeatability and total error (TE) were calculated for both methods. Intra-assay repeatability was 0.95-2.48% for the XT-2000iV and 8.32-23.23% for cytology. Observed TE for the automated measurement was 5.16-46.8% and for cytology 22.70-76.74%. Spearman rank correlation was excellent for M:E ratio (0.91) and fair for the other populations (0.65-0.71). Absolute bias for M:E ratio was low (-0.114). A negative absolute bias of -7.71% for the XT-2000iV was found for poly_orth_NRBC, whereas the bias was positive for total_NEUT (7.10%) and mature_NEUT (14.67%). M:E ratio of canine bone marrow samples can be precisely determined using the Sysmex XT-2000iV WBC/BASO channel. Total_NRBC, poly_orth_NRBC, total_NEUT, and mature_NEUT can be estimated rapidly. With distinctly lower coefficient of variation and observed TE compared with cytology, automated measurement provides advantages in terms of standardization, and it is suited to the advanced preclinical research environment where large numbers of samples are investigated.

  20. Infrared microscope inspection apparatus

    DOEpatents

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  1. Infrared microscope inspection apparatus

    DOEpatents

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  2. Multiphoton microscopic imaging of histological sections without hematoxylin and eosin staining differentiates carcinoma in situ lesion from normal oesophagus

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Xu, Jian; Kang, Deyong; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Jiang, Xingshan

    2013-10-01

    Multiphoton microscopy (MPM) has become a powerful, important tool for tissues imaging at the molecular level. In this paper, this technique was extended to histological investigations, differentiating carcinoma in situ (CIS) lesion from normal oesophagus by imaging histological sections without hematoxylin and eosin (H&E) staining. The results show that the histology procedures of dehydration, paraffin embedding, and de-paraffinizing highlighted two photon excited fluorescence of cytoplasm and nucleolus of epithelial cell and collagen in stroma. MPM has the ability to identify the characteristics of CIS lesion including changes of squamous cells and full epithelium, identification of basement membrane, especially prominent nucleolus. The studies described here show that MPM has the potential for future retrospective studies of tumor staging by employing on histological section specimens without H&E staining.

  3. Microscope basics.

    PubMed

    Sluder, Greenfield; Nordberg, Joshua J

    2013-01-01

    This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter.

  4. [Microscopic colitis].

    PubMed

    Bohr, Johan

    2002-02-11

    Microscopic colitis is an umbrella term for a newly described group of colitides, belonging to the inflammatory bowel diseases, which are only diagnosable by microscopic evaluation of a macroscopically normal colon mucosa. Collagenous colitis and lymphocytic colitis are the most common of these colitides. Microscopic colitis is characterised clinically by chronic non-bloody watery diarrhoea. Crampy abdominal pain, nocturnal diarrhoea, urgency, and initial weight loss are usual. Concomitant diseases of autoimmune origin and arthralgia are commonly seen. Treatment of microscopic colitis follows the guidelines for treatment of other inflammatory bowel diseases, but a substantial part of the patients with microscopic colitis enter spontaneous remission after some years. A minor part, however, have very troublesome symptoms and are almost refractory to treatment. Microscopic colitis has apparently no malignant potential.

  5. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO{sub 2} differential absorption LIDAR (DIAL)

    SciTech Connect

    Nelson, D.H.; Petrin, R.R.; MacKerrow, E.P.; Schmitt, M.J.; Quick, C.R.; Zardecki, A.; Porch, W.M.; Whitehead, M.; Walters, D.L.

    1998-09-01

    The measurement sensitivity of CO{sub 2} differential absorption LIDAR (DIAL) can be affected by a number of different processes. The authors address the interaction of two of these processes: effects due to beam propagation through atmospheric turbulence and effects due to reflective speckle. Atmospheric turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has a major impact on the sensitivity of CO{sub 2} DIAL. The interaction of atmospheric turbulence and reflective speckle is of great importance in the performance of a DIAL system. A Huygens-Fresnel wave optics propagation code has previously been developed at the Naval Postgraduate School that models the effects of atmospheric turbulence as propagation through a series of phase screens with appropriate atmospheric statistical characteristics. This code has been modified to include the effects of reflective speckle. The performance of this modified code with respect to the combined effects of atmospheric turbulence and reflective speckle is examined. Results are compared with a combination of experimental data and analytical models.

  6. Two Configurations for Accessing Classroom Computers: Differential Impact on Students' Critical Reflections and Their Empowerment

    ERIC Educational Resources Information Center

    Solhaug, T.

    2009-01-01

    The context of this article is the new technological environment and the struggle to use meaningful teaching practices in Norwegian schools. Students' critical reflections in two different technological learning environments in six upper secondary schools are compared. Three of these schools offer Internet-connected computers in special computer…

  7. Community Agricultural Processing Services: A Reflection of Urban Differentiation or County Agricultural Structure.

    ERIC Educational Resources Information Center

    Moxley, Robert L.; Calloway, Michael O.

    Questionnaire data from 81 North Carolina communities were analyzed in 1981 to test the hypothesis that 5 institutional subcategories (education, general community services, transportation, agricultural services, and health and sanitation) exhibit the underlying characteristic of unidimensionality and that they reflect comparable levels of…

  8. Differentiating cancerous tissues from noncancerous tissues using single-fiber reflectance spectroscopy with different fiber diameters

    NASA Astrophysics Data System (ADS)

    Sircan-Kuçuksayan, Aslinur; Denkceken, Tuba; Canpolat, Murat

    2015-11-01

    Elastic light-scattering spectra acquired with single-fiber optical probes with diameters of 100, 200, 400, 600, 800, 1000, 1200, and 1500 μm were used to differentiate cancerous from noncancerous prostate tissues. The spectra were acquired ex vivo on 24 excised prostate tissue samples collected from four patients. For each probe, the spectra and histopathology results were compared in order to investigate the correlation between the core diameters of the single-fiber optical probe and successful differentiation between cancerous and noncancerous prostate tissues. The spectra acquired using probes with a fiber core diameter of 400 μm or smaller successfully differentiated cancerous from noncancerous prostate tissues. Next, the spectra were acquired from monosized polystyrene microspheres with a diameter of 5.00±0.01 μm to investigate the correlation between the core diameters of the probes and the Mie oscillations on the spectra. Monte Carlo simulations of the light distribution of the tissue phantoms were run to interrogate whether the light detected by the probes with different fiber core diameters was in the ballistic or diffusive regime. If the single-fiber optical probes detect light in the ballistic regime, the spectra can be used to differentiate between cancerous and noncancerous tissues.

  9. Culture adaptation alters transcriptional hierarchies among single human embryonic stem cells reflecting altered patterns of differentiation.

    PubMed

    Gokhale, Paul J; Au-Young, Janice K; Dadi, SriVidya; Keys, David N; Harrison, Neil J; Jones, Mark; Soneji, Shamit; Enver, Tariq; Sherlock, Jon K; Andrews, Peter W

    2015-01-01

    We have used single cell transcriptome analysis to re-examine the substates of early passage, karyotypically Normal, and late passage, karyotypically Abnormal ('Culture Adapted') human embryonic stem cells characterized by differential expression of the cell surface marker antigen, SSEA3. The results confirmed that culture adaptation is associated with alterations to the dynamics of the SSEA3(+) and SSEA3(-) substates of these cells, with SSEA3(-) Adapted cells remaining within the stem cell compartment whereas the SSEA3(-) Normal cells appear to have differentiated. However, the single cell data reveal that these substates are characterized by further heterogeneity that changes on culture adaptation. Notably the Adapted population includes cells with a transcriptome substate suggestive of a shift to a more naïve-like phenotype in contrast to the cells of the Normal population. Further, a subset of the Normal SSEA3(+) cells expresses genes typical of endoderm differentiation, despite also expressing the undifferentiated stem cell genes, POU5F1 (OCT4) and NANOG, whereas such apparently lineage-primed cells are absent from the Adapted population. These results suggest that the selective growth advantage gained by genetically variant, culture adapted human embryonic stem cells may derive in part from a changed substate structure that influences their propensity for differentiation.

  10. Testing leaf multispectral reflectance data as input into random forest to differentiate velvetleaf from soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Velvetleaf (Abutilon theophrasti Medic.) infestations negatively impact row crop production throughout the United States and Canada’s eastern provinces. To implement management strategies to control velvetleaf, managers need tools for differentiating it from crop plants. 5Band, 7Band, 8Band, and ...

  11. [Dissociation (conversion) - malingering - antisocial personality disorder: differential diagnostic reflection on the basis of a case study].

    PubMed

    Rothuber, Helfried; Mitterauer, Bernhard

    2011-01-01

    In this case report we refer to the big challenge of making a diagnosis in a deliberate malingering in the field of mental disorders. We specifically describe the difficulty regarding the differentiation between a conversion disorder and malingering of a serial delinquent. For such a person avoiding criminal persecution is one of the most frequent reason to deceitfully simulate a mental illness. In this field, symptoms of conversion disorders exceed the average; furthermore, a great number of organic-neurological illnesses may appear to be very similar to a conversion disorder or in many cases a neurological disorder can actually be detected in the course of a somatic examination. A further obstacle for the differential diagnosis can be seen in the difficulty to discern it from factitious disorders. However, it is quite possible to discern the deliberate malingering of a mental disorder from a conversion disorder by means of the diligent diagnosis of a competent and experienced doctor/assessor who specialises.

  12. Mid-fusiform activation during object discrimination reflects the process of differentiating structural descriptions.

    PubMed

    Liu, Xun; Steinmetz, Nicholas A; Farley, Alison B; Smith, Charles D; Joseph, Jane E

    2008-09-01

    The present study explored constraints on mid-fusiform activation during object discrimination. In three experiments, participants performed a matching task on simple line configurations, nameable objects, three dimensional (3-D) shapes, and colors. Significant bilateral mid-fusiform activation emerged when participants matched objects and 3-D shapes, as compared to when they matched two-dimensional (2-D) line configurations and colors, indicating that the mid-fusiform is engaged more strongly for processing structural descriptions (e.g., comparing 3-D volumetric shape) than perceptual descriptions (e.g., comparing 2-D or color information). In two of the experiments, the same mid-fusiform regions were also modulated by the degree of structural similarity between stimuli, implicating a role for the mid-fusiform in fine differentiation of similar visual object representations. Importantly, however, this process of fine differentiation occurred at the level of structural, but not perceptual, descriptions. Moreover, mid-fusiform activity was more robust when participants matched shape compared to color information using the identical stimuli, indicating that activity in the mid-fusiform gyrus is not driven by specific stimulus properties, but rather by the process of distinguishing stimuli based on shape information. Taken together, these findings further clarify the nature of object processing in the mid-fusiform gyrus. This region is engaged specifically in structural differentiation, a critical component process of object recognition and categorization.

  13. Interference Confocal Microscope Integrated with Spatial Phase Shifter

    PubMed Central

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-01-01

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses. PMID:27563909

  14. Interference Confocal Microscope Integrated with Spatial Phase Shifter.

    PubMed

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-08-24

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.

  15. ERPs Differentially Reflect Automatic and Deliberate Processing of the Functional Manipulability of Objects

    PubMed Central

    Madan, Christopher R.; Chen, Yvonne Y.; Singhal, Anthony

    2016-01-01

    It is known that the functional properties of an object can interact with perceptual, cognitive, and motor processes. Previously we have found that a between-subjects manipulation of judgment instructions resulted in different manipulability-related memory biases in an incidental memory test. To better understand this effect we recorded electroencephalography (EEG) while participants made judgments about images of objects that were either high or low in functional manipulability (e.g., hammer vs. ladder). Using a between-subjects design, participants judged whether they had seen the object recently (Personal Experience), or could manipulate the object using their hand (Functionality). We focused on the P300 and slow-wave event-related potentials (ERPs) as reflections of attentional allocation. In both groups, we observed higher P300 and slow wave amplitudes for high-manipulability objects at electrodes Pz and C3. As P300 is thought to reflect bottom-up attentional processes, this may suggest that the processing of high-manipulability objects recruited more attentional resources. Additionally, the P300 effect was greater in the Functionality group. A more complex pattern was observed at electrode C3 during slow wave: processing the high-manipulability objects in the Functionality instruction evoked a more positive slow wave than in the other three conditions, likely related to motor simulation processes. These data provide neural evidence that effects of manipulability on stimulus processing are further mediated by automatic vs. deliberate motor-related processing. PMID:27536224

  16. Frontoparietal EEG alpha-phase synchrony reflects differential attentional demands during word recall and oculomotor dual-tasks.

    PubMed

    Kwon, Gusang; Kim, Min-Young; Lim, Sanghyun; Kwon, Hyukchan; Lee, Yong-Ho; Kim, Kiwoong; Lee, Eun-Ju; Suh, Minah

    2015-12-16

    To study the relationship between the varying degrees of cognitive load and long-range synchronization among neural networks, we utilized a dual-task paradigm combining concurrent word recall working memory tasks and oculomotor tasks that differentially activate the common frontoparietal (FP) network. We hypothesized that each dual-task combination would generate differential neuronal activation patterns among long-range connection during word retention period. Given that the FP alpha-phase synchronization is involved in attentional top-down processes, one would expect that the long-range synchronization pattern is affected by the degrees of dual-task demand. We measured a single-trial phase locking value in the alpha frequency (8-12 Hz) with electroencephalography in healthy participants. Single-trial phase locking value characterized the synchronization between two brain signals. Our results revealed that different amounts of FP alpha-phase synchronization were produced by different dual-task combinations, particularly during the early phase of the word retention period. These differences were dependent on the individual's working memory capacity and memory load. Our study shows that during dual-task, each oculomotor task, which is subserved by distinct neural network, generates different modulation patterns on long-range neuronal activation and FP alpha-phase synchronization seems to reflect these differential cognitive loads.

  17. Microscopic Polyangiitis

    PubMed Central

    Chung, Sharon A.; Seo, Philip

    2010-01-01

    Synopsis In 1923, Friedrich Wohlwill described two patients with a “microscopic form of periarteritis nodosa”, which was distinct from classical polyarteritis nodosa. This disease, now known as microscopic polyangiitis (MPA), is a primary systemic vasculitis characterized by inflammation of the small-caliber blood vessels and the presence of circulating antineutrophil cytoplasmic antibodies (ANCA). Typically, microscopic polyangiitis presents with glomerulonephritis and pulmonary capillaritis, although involvement of the skin, nerves, and gastrointestinal tract is not uncommon. Treatment of MPA generally requires use of a cytotoxic agent (such as cyclophosphamide) in addition to high-dose glucocorticoids. Recent research has focused on identifying alternate treatment strategies that minimize or eliminate exposure to cytotoxic agents. This article will review the history, pathogenesis, clinical manifestations, and treatment of MPA. PMID:20688249

  18. Martian Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  19. Differential investment in visual and olfactory brain areas reflects behavioural choices in hawk moths

    PubMed Central

    Stöckl, Anna; Heinze, Stanley; Charalabidis, Alice; el Jundi, Basil; Warrant, Eric; Kelber, Almut

    2016-01-01

    Nervous tissue is one of the most metabolically expensive animal tissues, thus evolutionary investments that result in enlarged brain regions should also result in improved behavioural performance. Indeed, large-scale comparative studies in vertebrates and invertebrates have successfully linked differences in brain anatomy to differences in ecology and behaviour, but their precision can be limited by the detail of the anatomical measurements, or by only measuring behaviour indirectly. Therefore, detailed case studies are valuable complements to these investigations, and have provided important evidence linking brain structure to function in a range of higher-order behavioural traits, such as foraging experience or aggressive behaviour. Here, we show that differences in the size of both lower and higher-order sensory brain areas reflect differences in the relative importance of these senses in the foraging choices of hawk moths, as suggested by previous anatomical work in Lepidopterans. To this end we combined anatomical and behavioural quantifications of the relative importance of vision and olfaction in two closely related hawk moth species. We conclude that differences in sensory brain volume in these hawk moths can indeed be interpreted as differences in the importance of these senses for the animal’s behaviour. PMID:27185464

  20. Digital FDIRC: A focused differential internal reflection Cherenkov imaged by SiPM arrays

    NASA Astrophysics Data System (ADS)

    Marrocchesi, P. S.; Bagliesi, M. G.; Basti, A.; Bigongiari, G.; Bonechi, S.; Brogi, P.; Checchia, C.; Collazuol, G.; Maestro, P.; Morsani, F.; Piemonte, C.; Stolzi, F.; Suh, J. E.; Sulaj, A.

    2016-07-01

    A prototype of an Internal Reflection Cherenkov, equipped with a SiO2 (fused silica) radiator bar optically connected to a cylindrical mirror, was tested at CERN SPS in March 2015 with a beam of relativistic ions obtained from fragmentation of primary argon nuclei at energies 13, 19 and 30 GeV/n. The detector, designed to identify cosmic nuclei, features an imaging focal plane of dimensions 4 cm × 3 cm equipped with 16 arrays of NUV-SiPM (near-ultraviolet sensitive silicon photon avalanche detector) for a total of 1024 sensitive elements. The outstanding performance of the photodetectors (with negligible background in between adjacent photopeaks) allowed us to apply the technique of photon counting to the Cherenkov light collected on the focal plane. Thanks to the fine granularity of the array elements, the Cherenkov pattern was recorded together with the total number of detected photoelectrons increasing as Z2 as a function of the atomic number Z. In this paper, we report the performance of the SiPM arrays and the excellent resolution achieved by the digital Cherenkov prototype in the charge identification of the elements present in the beam.

  1. Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy.

    PubMed

    Hands, James R; Clemens, Graeme; Stables, Ryan; Ashton, Katherine; Brodbelt, Andrew; Davis, Charles; Dawson, Timothy P; Jenkinson, Michael D; Lea, Robert W; Walker, Carol; Baker, Matthew J

    2016-05-01

    The ability to diagnose cancer rapidly with high sensitivity and specificity is essential to exploit advances in new treatments to lead significant reductions in mortality and morbidity. Current cancer diagnostic tests observing tissue architecture and specific protein expression for specific cancers suffer from inter-observer variability, poor detection rates and occur when the patient is symptomatic. A new method for the detection of cancer using 1 μl of human serum, attenuated total reflection-Fourier transform infrared spectroscopy and pattern recognition algorithms is reported using a 433 patient dataset (3897 spectra). To the best of our knowledge, we present the largest study on serum mid-infrared spectroscopy for cancer research. We achieve optimum sensitivities and specificities using a Radial Basis Function Support Vector Machine of between 80.0 and 100 % for all strata and identify the major spectral features, hence biochemical components, responsible for the discrimination within each stratum. We assess feature fed-SVM analysis for our cancer versus non-cancer model and achieve 91.5 and 83.0 % sensitivity and specificity respectively. We demonstrate the use of infrared light to provide a spectral signature from human serum to detect, for the first time, cancer versus non-cancer, metastatic cancer versus organ confined, brain cancer severity and the organ of origin of metastatic disease from the same sample enabling stratified diagnostics depending upon the clinical question asked.

  2. Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures

    PubMed Central

    Galanter, Joshua M; Gignoux, Christopher R; Oh, Sam S; Torgerson, Dara; Pino-Yanes, Maria; Thakur, Neeta; Eng, Celeste; Hu, Donglei; Huntsman, Scott; Farber, Harold J; Avila, Pedro C; Brigino-Buenaventura, Emerita; LeNoir, Michael A; Meade, Kelly; Serebrisky, Denise; Rodríguez-Cintrón, William; Kumar, Rajesh; Rodríguez-Santana, Jose R; Seibold, Max A; Borrell, Luisa N; Burchard, Esteban G; Zaitlen, Noah

    2017-01-01

    Populations are often divided categorically into distinct racial/ethnic groups based on social rather than biological constructs. Genetic ancestry has been suggested as an alternative to this categorization. Herein, we typed over 450,000 CpG sites in whole blood of 573 individuals of diverse Hispanic origin who also had high-density genotype data. We found that both self-identified ethnicity and genetically determined ancestry were each significantly associated with methylation levels at 916 and 194 CpGs, respectively, and that shared genomic ancestry accounted for a median of 75.7% (IQR 45.8% to 92%) of the variance in methylation associated with ethnicity. There was a significant enrichment (p=4.2×10-64) of ethnicity-associated sites amongst loci previously associated environmental exposures, particularly maternal smoking during pregnancy. We conclude that differential methylation between ethnic groups is partially explained by the shared genetic ancestry but that environmental factors not captured by ancestry significantly contribute to variation in methylation. DOI: http://dx.doi.org/10.7554/eLife.20532.001 PMID:28044981

  3. Microscopic colitis

    PubMed Central

    Ianiro, Gianluca; Cammarota, Giovanni; Valerio, Luca; Annicchiarico, Brigida Eleonora; Milani, Alessandro; Siciliano, Massimo; Gasbarrini, Antonio

    2012-01-01

    Microscopic colitis may be defined as a clinical syndrome, of unknown etiology, consisting of chronic watery diarrhea, with no alterations in the large bowel at the endoscopic and radiologic evaluation. Therefore, a definitive diagnosis is only possible by histological analysis. The epidemiological impact of this disease has become increasingly clear in the last years, with most data coming from Western countries. Microscopic colitis includes two histological subtypes [collagenous colitis (CC) and lymphocytic colitis (LC)] with no differences in clinical presentation and management. Collagenous colitis is characterized by a thickening of the subepithelial collagen layer that is absent in LC. The main feature of LC is an increase of the density of intra-epithelial lymphocytes in the surface epithelium. A number of pathogenetic theories have been proposed over the years, involving the role of luminal agents, autoimmunity, eosinophils, genetics (human leukocyte antigen), biliary acids, infections, alterations of pericryptal fibroblasts, and drug intake; drugs like ticlopidine, carbamazepine or ranitidine are especially associated with the development of LC, while CC is more frequently linked to cimetidine, non-steroidal antiinflammatory drugs and lansoprazole. Microscopic colitis typically presents as chronic or intermittent watery diarrhea, that may be accompanied by symptoms such as abdominal pain, weight loss and incontinence. Recent evidence has added new pharmacological options for the treatment of microscopic colitis: the role of steroidal therapy, especially oral budesonide, has gained relevance, as well as immunosuppressive agents such as azathioprine and 6-mercaptopurine. The use of anti-tumor necrosis factor-α agents, infliximab and adalimumab, constitutes a new, interesting tool for the treatment of microscopic colitis, but larger, adequately designed studies are needed to confirm existing data. PMID:23180940

  4. Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues

    PubMed Central

    Gonzalez, O.A.; Novak, M.J.; Kirakodu, S.; Stromberg, A.; Nagarajan, R.; Huang, C.B.; Chen, K.C.; Orraca, L.; Martinez-Gonzalez, J.; Ebersole, J.L.

    2016-01-01

    SUMMARY Recent evidence has determined a phenotypic and functional heterogeneity for macrophage populations. This plasticity of macrophage function has been related to specific properties of subsets (M1, M2) of these cells in inflammation, adaptive immune responses, and resolution of tissue destructive processes. This investigation hypothesized that targeted alterations in the distribution of macrophage phenotypes in aged individuals, and with periodontitis would be skewed towards M1 inflammatory macrophages in gingival tissues. The study used a nonhuman primate model to evaluate gene expression profiles as footprints of macrophage variation in healthy and periodontitis gingival tissues from animals 3–23 years of age and in periodontitis tissues in adult and aged animals. Significant increases in multiple genes reflecting overall increases in macrophage activities were observed in healthy aged tissues, and were significantly increased in periodontitis tissues from both adults and aged animals. Generally, gene expression patterns for M2 macrophages were similar in healthy young, adolescent, and adult tissues. However, modest increases were noted in healthy aged tissues, similar to those seen in periodontitis tissues from both age groups. M1 macrophage gene transcription patterns increased significantly over the age range in healthy tissues, with multiple genes (e.g. CCL13, CCL19, CCR7, TLR4) significantly increased in aged animals. Additionally, gene expression patterns for M1 macrophages were significantly increased in adult health versus periodontitis and aged healthy versus periodontitis. The findings supported a significant increase in macrophages with aging and in periodontitis. The primary increases in both healthy aged tissues and, particularly periodontitis tissues appeared in the M1 phenotype. PMID:26397131

  5. Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues.

    PubMed

    Gonzalez, O A; Novak, M J; Kirakodu, S; Stromberg, A; Nagarajan, R; Huang, C B; Chen, K C; Orraca, L; Martinez-Gonzalez, J; Ebersole, J L

    2015-01-01

    Recent evidence has determined a phenotypic and functional heterogeneity for macrophage populations. This plasticity of macrophage function has been related to specific properties of subsets (M1 and M2) of these cells in inflammation, adaptive immune responses and resolution of tissue destructive processes. This investigation hypothesized that targeted alterations in the distribution of macrophage phenotypes in aged individuals, and with periodontitis would be skewed towards M1 inflammatory macrophages in gingival tissues. The study used a non-human primate model to evaluate gene expression profiles as footprints of macrophage variation in healthy and periodontitis gingival tissues from animals 3-23 years of age and in periodontitis tissues in adult and aged animals. Significant increases in multiple genes reflecting overall increases in macrophage activities were observed in healthy aged tissues, and were significantly increased in periodontitis tissues from both adults and aged animals. Generally, gene expression patterns for M2 macrophages were similar in healthy young, adolescent and adult tissues. However, modest increases were noted in healthy aged tissues, similar to those seen in periodontitis tissues from both age groups. M1 macrophage gene transcription patterns increased significantly over the age range in healthy tissues, with multiple genes (e.g. CCL13, CCL19, CCR7 and TLR4) significantly increased in aged animals. Additionally, gene expression patterns for M1 macrophages were significantly increased in adult health versus periodontitis and aged healthy versus periodontitis. The findings supported a significant increase in macrophages with aging and in periodontitis. The primary increases in both healthy aged tissues and, particularly periodontitis tissues appeared in the M1 phenotype.

  6. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  7. Correction of terrestrial LiDAR intensity channel using Oren-Nayar reflectance model: An application to lithological differentiation

    NASA Astrophysics Data System (ADS)

    Carrea, Dario; Abellan, Antonio; Humair, Florian; Matasci, Battista; Derron, Marc-Henri; Jaboyedoff, Michel

    2016-03-01

    Ground-based LiDAR has been traditionally used for surveying purposes via 3D point clouds. In addition to XYZ coordinates, an intensity value is also recorded by LiDAR devices. The intensity of the backscattered signal can be a significant source of information for various applications in geosciences. Previous attempts to account for the scattering of the laser signal are usually modelled using a perfect diffuse reflection. Nevertheless, experience on natural outcrops shows that rock surfaces do not behave as perfect diffuse reflectors. The geometry (or relief) of the scanned surfaces plays a major role in the recorded intensity values. Our study proposes a new terrestrial LiDAR intensity correction, which takes into consideration the range, the incidence angle and the geometry of the scanned surfaces. The proposed correction equation combines the classical radar equation for LiDAR with the bidirectional reflectance distribution function of the Oren-Nayar model. It is based on the idea that the surface geometry can be modelled by a relief of multiple micro-facets. This model is constrained by only one tuning parameter: the standard deviation of the slope angle distribution (σslope) of micro-facets. Firstly, a series of tests have been carried out in laboratory conditions on a 2 m2 board covered by black/white matte paper (perfect diffuse reflector) and scanned at different ranges and incidence angles. Secondly, other tests were carried out on rock blocks of different lithologies and surface conditions. Those tests demonstrated that the non-perfect diffuse reflectance of rock surfaces can be practically handled by the proposed correction method. Finally, the intensity correction method was applied to a real case study, with two scans of the carbonate rock outcrop of the Dents-du-Midi (Swiss Alps), to improve the lithological identification for geological mapping purposes. After correction, the intensity values are proportional to the intrinsic material reflectance

  8. Effect of polyglycerol esters additive on palm oil crystallization using focused beam reflectance measurement and differential scanning calorimetry.

    PubMed

    Saw, M H; Hishamuddin, E; Chong, C L; Yeoh, C B; Lim, W H

    2017-01-01

    The effect of 0.1-0.7% (w/w) of polyglycerol esters (PGEmix-8) on palm oil crystallization was studied using focused beam reflectance measurement (FBRM) to analyze the in-line changes of crystal size distribution during the crystallization. FBRM results show that 0.1-0.5% (w/w) of PGEmix-8 did not significantly affect nucleation but slightly retarded crystal growth. The use of 0.7% (w/w) additive showed greater heterogeneous nucleation compared to those with lower dosages of additive. Crystal growth was also greatly reduced when using 0.7% (w/w) dosage. The morphological study indicated that the palm oil crystals were smaller and more even in size than when more additive was added. Isothermal crystallization studies using differential scanning calorimetry (DSC) showed increased inhibitory effects on palm oil crystal growth with increasing concentration of PGEmix-8. These results imply that PGEmix-8 is a nucleation enhancing and crystal growth retarding additive in palm oil crystallization at 0.7% (w/w) dosage.

  9. Acoustic imaging microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-10-17

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  10. Molecular and iridescent feather reflectance data reveal recent genetic diversification and phenotypic differentiation in a cloud forest hummingbird.

    PubMed

    Ornelas, Juan Francisco; González, Clementina; Hernández-Baños, Blanca E; García-Moreno, Jaime

    2016-02-01

    The present day distribution and spatial genetic diversity of Mesoamerican biota reflects a long history of responses to habitat change. The hummingbird Lampornis amethystinus is distributed in northern Mesoamerica, with geographically disjunct populations. Based on sampling across the species range using mitochondrial DNA (mtDNA) sequences and nuclear microsatellites jointly analysed with phenotypic and climatic data, we (1) test whether the fragmented distribution is correlated with main evolutionary lineages, (2) assess body size and plumage color differentiation of populations in geographic isolation, and (3) evaluate a set of divergence scenarios and demographic patterns of the hummingbird populations. Analysis of genetic variation revealed four main groups: blue-throated populations (Sierra Madre del Sur); two groups of amethyst-throated populations (Trans-Mexican Volcanic Belt and Sierra Madre Oriental); and populations east of the Isthmus of Tehuantepec (IT) with males showing an amethyst throat. The most basal split is estimated to have originated in the Pleistocene, 2.39-0.57 million years ago (MYA), and corresponded to groups of populations separated by the IT. However, the estimated recent divergence time between blue- and amethyst-throated populations does not correspond to the 2-MY needed to be in isolation for substantial plumage divergence, likely because structurally iridescent colors are more malleable than others. Results of species distribution modeling and Approximate Bayesian Computation analysis fit a model of lineage divergence west of the Isthmus after the Last Glacial Maximum (LGM), and that the species' suitable habitat was disjunct during past and current conditions. These results challenge the generality of the contraction/expansion glacial model to cloud forest-interior species and urges management of cloud forest, a highly vulnerable ecosystem to climate change and currently facing destruction, to prevent further loss of genetic

  11. Virtual pinhole confocal microscope

    SciTech Connect

    George, J.S.; Rector, D.M.; Ranken, D.M.; Peterson, B.; Kesteron, J.

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  12. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  13. Color Laser Microscope

    NASA Astrophysics Data System (ADS)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  14. Microscopic derivation of discrete hydrodynamics.

    PubMed

    Español, Pep; Anero, Jesús G; Zúñiga, Ignacio

    2009-12-28

    By using the standard theory of coarse graining based on Zwanzig's projection operator, we derive the dynamic equations for discrete hydrodynamic variables. These hydrodynamic variables are defined in terms of the Delaunay triangulation. The resulting microscopically derived equations can be understood, a posteriori, as a discretization on an arbitrary irregular grid of the Navier-Stokes equations. The microscopic derivation provides a set of discrete equations that exactly conserves mass, momentum, and energy and the dissipative part of the dynamics produces strict entropy increase. In addition, the microscopic derivation provides a practical implementation of thermal fluctuations in a way that the fluctuation-dissipation theorem is satisfied exactly. This paper points toward a close connection between coarse-graining procedures from microscopic dynamics and discretization schemes for partial differential equations.

  15. Miscibility, Crystallization, and Rheological Behavior of Solution Casting Poly(3-hydroxybutyrate)/poly(ethylene succinate) Blends Probed by Differential Scanning Calorimetry, Rheology, and Optical Microscope Techniques

    NASA Astrophysics Data System (ADS)

    Sun, Wei-hua; Qiao, Xiao-ping; Cao, Qi-kun; Liu, Jie-ping

    2010-02-01

    The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybutyrate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.

  16. Forensic Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  17. Embryos, microscopes, and society.

    PubMed

    Maienschein, Jane

    2016-06-01

    Embryos have different meanings for different people and in different contexts. Seen under the microscope, the biological embryo starts out as one cell and then becomes a bunch of cells. Gradually these divide and differentiate to make up the embryo, which in humans becomes a fetus at eight weeks, and then eventually a baby. At least, that happens in those cases that carry through normally and successfully. Yet a popular public perception imagines the embryo as already a little person in the very earliest stages of development, as if it were predictably to become an adult. In actuality, cells can combine, pull apart, and recombine in a variety of ways and still produce embryos, whereas most embryos never develop into adults at all. Biological embryos and popular imaginations of embryos diverge. This paper looks at some of the historical reasons for and social implications of that divergence.

  18. X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1991-01-01

    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.

  19. Differentials in female labour force participation rates in Indonesia: reflection of economic needs and opportunities, culture or bad data?

    PubMed

    Jones, G

    1986-12-01

    This study investigates regional differentials in female labor force participation rates by educational status in Indonesia, using data from the 1961, 1971, and 1980 censuses. Rates in the Javanese areas are always well above the Indonesian average; in mainly Sundanese West Java they are much lower than the average, and in South Sulawesi they are lower still. Kalimantan is the only region where there is no stability in rates over time, possibly due to the inaccessibility of much of its population for census-taking. When only urban areas are considered, the regional differentials do not alter very much. As in most of the world, participation rates for single women are higher than those of married women, and those for divorced and widowed women are higher still. Participation rates are lowest of all for women with a junior high school education, rise for those witha senior high school education; and rise sharply for those with a university or academy education. The provinces with the highest urban female labor force participation rates--Yogyakarta, Central Java, East Java, and Bali--are among the poorest provinces in Indonesia. Female labor force participation rates in Indonesia are much higher than in other Moslem countries. Geographic and socioeconomic differentials in female labor force participation rates in Indonesia are not an artifact of inconsistencies in the data, but can be related to 2 other sets of explanatory variables: 1) economic needs and opportunities and 2) cultural differences.

  20. Non-linear patterns in age-related DNA methylation may reflect CD4(+) T cell differentiation.

    PubMed

    Johnson, Nicholas D; Wiener, Howard W; Smith, Alicia K; Nishitani, Shota; Absher, Devin M; Arnett, Donna K; Aslibekyan, Stella; Conneely, Karen N

    2017-04-07

    DNA methylation (DNAm) is an important epigenetic process involved in the regulation of gene expression. While many studies have identified thousands of loci associated with age, few have differentiated between linear and non-linear DNAm trends with age. Non-linear trends could indicate early- or late-life gene regulatory processes. Using data from the Illumina 450K array on 336 human peripheral blood samples, we identified 21 CpG sites that associated with age (P<1.03E-7) and exhibited changing rates of DNAm change with age (P<1.94E-6). For two of these CpG sites (cg07955995 and cg22285878), DNAm increased with age at an increasing rate, indicating that differential DNAm was greatest among elderly individuals. We observed significant replication for both CpG sites (P<5.0E-8) in a second set of peripheral blood samples. In 8 of 9 additional datasets comprising samples of monocytes, T cell subtypes, and brain tissue, we observed a pattern directionally consistent with DNAm increasing with age at an increasing rate, which was nominally significant in the three largest datasets (4.3E-15differentiation via the repression of FOXP3. These findings may suggest a possible role for cg07955995 and cg22285878 in immunosenescence.

  1. Multispectral reflectance imaging of brain activation in rodents: methodological study of the differential path length estimations and first in vivo recordings in the rat olfactory bulb

    NASA Astrophysics Data System (ADS)

    Renaud, Rémi; Martin, Claire; Gurden, Hirac; Pain, Frédéric

    2012-01-01

    Dynamic maps of relative changes in blood volume and oxygenation following brain activation are obtained using multispectral reflectance imaging. The technique relies on optical absorption modifications linked to hemodynamic changes. The relative variation of hemodynamic parameters can be quantified using the modified Beer-Lambert Law if changes in reflected light intensities are recorded at two wavelengths or more and the differential path length (DP) is known. The DP is the mean path length in tissues of backscattered photons and varies with wavelength. It is usually estimated using Monte Carlo simulations in simplified semi-infinite homogeneous geometries. Here we consider the use of multilayered models of the somatosensory cortex (SsC) and olfactory bulb (OB), which are common physiological models of brain activation. Simulations demonstrate that specific DP estimation is required for SsC and OB, specifically for wavelengths above 600 nm. They validate the hypothesis of a constant path length during activation and show the need for specific DP if imaging is performed in a thinned-skull preparation. The first multispectral reflectance imaging data recorded in vivo during OB activation are presented, and the influence of DP on the hemodynamic parameters and the pattern of oxymetric changes in the activated OB are discussed.

  2. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics.

    PubMed

    Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen

    2016-04-01

    Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive.

  3. Differential effects of early postinjury treatment with neuroprotective drugs in a mouse model using diffuse reflectance spectroscopy

    PubMed Central

    Shochat, Ariel; Abookasis, David

    2015-01-01

    Abstract. The time required for the arrival of an ambulance crew and administration of first aid is critical to clinical outcome, particularly in the case of head injury victims requiring neuroprotective drugs following a car accident, falls, and assaults. Short response times of the medical team, together with proper treatment, can limit injury severity and even save a life before transportation to the nearest medical center. We present a comparative evaluation of five different neuroprotective drugs frequently used in intensive care and operating units in the early phase following traumatic brain injury (TBI): hypertonic saline (HTS), mannitol, morphine, melatonin, and minocycline. The effectiveness of these drugs in terms of changes in brain tissue morphology (cell organelle size, density, distribution, etc.) and biochemical tissue properties (chromophores’ content) was experimentally evaluated through analysis of the spectral reduced scattering and optical absorption coefficient parameters in the near-infrared (NIR) optical range (650 to 1000 nm). Experiments were conducted on anesthetized male mice subjected to a noninvasive closed head weight-drop model of focal TBI (n=50 and n=10 control) and monitored using an NIR diffuse reflectance spectroscopy system utilizing independent source–detector separation and location. After 10 min of baseline measurement, focal TBI was induced and measurements were conducted for 20 min. Subsequently, a neuroprotective drug was administrated and measurements were recorded for another 30 min. This work’s major findings are threefold: first, minocycline was found to improve hemodynamic outcome at the earliest time postinjury. Second, HTS decreased brain water content and inhibited the increase in intracranial pressure. Third, the efficacy of neuroprotective drugs can be monitored noninvasively with diffuse reflectance spectroscopy. The demonstrated ability to noninvasively detect cerebral physiological properties

  4. Differential effects of early postinjury treatment with neuroprotective drugs in a mouse model using diffuse reflectance spectroscopy.

    PubMed

    Shochat, Ariel; Abookasis, David

    2015-01-01

    The time required for the arrival of an ambulance crew and administration of first aid is critical to clinical outcome, particularly in the case of head injury victims requiring neuroprotective drugs following a car accident, falls, and assaults. Short response times of the medical team, together with proper treatment, can limit injury severity and even save a life before transportation to the nearest medical center. We present a comparative evaluation of five different neuroprotective drugs frequently used in intensive care and operating units in the early phase following traumatic brain injury (TBI): hypertonic saline (HTS), mannitol, morphine, melatonin, and minocycline. The effectiveness of these drugs in terms of changes in brain tissue morphology (cell organelle size, density, distribution, etc.) and biochemical tissue properties (chromophores' content) was experimentally evaluated through analysis of the spectral reduced scattering and optical absorption coefficient parameters in the near-infrared (NIR) optical range (650 to 1000 nm). Experiments were conducted on anesthetized male mice subjected to a noninvasive closed head weight-drop model of focal TBI ([Formula: see text] and [Formula: see text] control) and monitored using an NIR diffuse reflectance spectroscopy system utilizing independent source-detector separation and location. After 10 min of baseline measurement, focal TBI was induced and measurements were conducted for 20 min. Subsequently, a neuroprotective drug was administrated and measurements were recorded for another 30 min. This work's major findings are threefold: first, minocycline was found to improve hemodynamic outcome at the earliest time postinjury. Second, HTS decreased brain water content and inhibited the increase in intracranial pressure. Third, the efficacy of neuroprotective drugs can be monitored noninvasively with diffuse reflectance spectroscopy. The demonstrated ability to noninvasively detect cerebral physiological

  5. TEAM Electron Microscope Animation

    SciTech Connect

    2012-01-01

    The TEAM Electron Microscope, a device that enables atomic-scale imaging in 3-D, has a rotating stage that can hold and position samples inside electron microscopes with unprecedented stability, position-control accuracy, and range of motion.The TEAM Stage makes one of the world's most powerful electron microscopes even better, and enables previously impossible experiments.

  6. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  7. Signaling pathways in aged T cells – a reflection of T cell differentiation, cell senescence and host environment

    PubMed Central

    Goronzy, Jörg J.; Li, Guangjin; Yu, Mingcan; Weyand, Cornelia M.

    2012-01-01

    With increasing age, the ability of the immune system to protect against new antigenic challenges or to control chronic infections erodes. Decline in thymic function and cumulating antigenic experiences of acute and chronic infections threaten T cell homeostasis, but insufficiently explain the failing immune competence and the increased susceptibility for autoimmunity. Alterations in signaling pathways in the aging T cells account for many of the age-related defects. Signaling threshold calibrations seen with aging frequently built on mechanisms that are operational in T cell development and T cell differentiation or are adaptations to the changing environment in the aging host. Age-related changes in transcription of receptors and signaling molecules shift the balance towards inhibitory pathways, most dominantly seen in CD8 T cells and to a lesser degree in CD4 T cells. Prominent examples are the expression of negative regulatory receptors of the CD28 and the TNF receptor superfamilies as well the expression of various cytoplasmic and nuclear dual-specific phosphatases. PMID:22560928

  8. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae

    PubMed Central

    Mahmood, Maziah; Abdullah, Siti N. A.; Hanafi, Mohamed M.; Nejat, Naghmeh; Latif, Muhammad A.

    2015-01-01

    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world’s most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties. PMID:26001124

  9. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae.

    PubMed

    Azizi, Parisa; Rafii, Mohd Y; Mahmood, Maziah; Abdullah, Siti N A; Hanafi, Mohamed M; Nejat, Naghmeh; Latif, Muhammad A; Sahebi, Mahbod

    2015-01-01

    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world's most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties.

  10. Scanning Microscopes Using X Rays and Microchannels

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  11. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes.

    PubMed

    Ishmukhametov, Robert R; Russell, Aidan N; Wheeler, Richard J; Nord, Ashley L; Berry, Richard M

    2016-02-08

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  12. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes

    NASA Astrophysics Data System (ADS)

    Ishmukhametov, Robert R.; Russell, Aidan N.; Wheeler, Richard J.; Nord, Ashley L.; Berry, Richard M.

    2016-02-01

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  13. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes

    PubMed Central

    Ishmukhametov, Robert R.; Russell, Aidan N.; Wheeler, Richard J.; Nord, Ashley L.; Berry, Richard M.

    2016-01-01

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy. PMID:26853732

  14. Water window imaging x ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.

  15. Present Spatial Diversity Patterns of Theobroma cacao L. in the Neotropics Reflect Genetic Differentiation in Pleistocene Refugia Followed by Human-Influenced Dispersal

    PubMed Central

    Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob

    2012-01-01

    Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao’s distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000–13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species’ Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of

  16. Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal.

    PubMed

    Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob

    2012-01-01

    Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao's distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000-13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species' Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao.

  17. Low MMP-8/TIMP-1 reflects left ventricle impairment in takotsubo cardiomyopathy and high TIMP-1 may help to differentiate it from acute coronary syndrome

    PubMed Central

    Parkkonen, Olavi; Nieminen, Mikko T.; Vesterinen, Paula; Tervahartiala, Taina; Perola, Markus; Salomaa, Veikko; Jousilahti, Pekka; Sorsa, Timo; Pussinen, Pirkko J.; Sinisalo, Juha

    2017-01-01

    Background Matrix metalloproteinase 8 (MMP-8) is the most potent type-I collagen protease. Such collagen mainly constitutes the transient fibrosis in takotsubo cardiomyopathy (TTC) endomyocardial biopsies. High MMP-8 and tissue-inhibitor of matrix metalloproteinase-1 (TIMP-1) levels are implicated in acute coronary syndrome (ACS). We compared MMP-8 and TIMP-1 levels in consecutive TTC and ACS patients, and their association to TTC severity. Methods and results In 45 acute serum samples of TTC, 2072 ACS and 1000 controls, TIMP-1 differed between ACS 146.7ng/mL (115.0–186.3) (median (interquartile range)), TTC 115.7 (94.3–137.7) and controls 80.9 (73.2–90.4), (p<0.0001). MMP-8 levels were similar between ACS and TTC. In receiver-operating characteristics analysis, TIMP-1 differentiated TTC from ACS with an area under the curve (AUC) of 0.679 (p<0.0001) surpassing troponin T (TnT) at 0.522 (p = 0.66). Compared to other differing factors (age, sex, smoking), TIMP-1 improved diagnostic specificity and sensitivity from AUC of 0.821 to 0.844 (p = 0.007). The MMP8/TIMP-1 molar ratio differentiated normal ejection fraction (EF) at 0.27 (0.13–0.51) from decreased EF<50% at 0.08 (0.05–0.20), (p = 0.04) in TTC, but not in ACS. Conclusions Even with other differing factors considered, TIMP-1 differentiated TTC from ACS better than TnT. In TTC, the low MMP-8/TIMP-1 molar ratio may reflect decreased proteolysis and increased transient fibrosis, perhaps in part explaining the left-ventricle impairment. PMID:28278213

  18. Cryogenic immersion microscope

    SciTech Connect

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  19. Thermal-Wave Microscope

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy

    1989-01-01

    Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.

  20. Reflecting Reflective Practice

    ERIC Educational Resources Information Center

    Galea, Simone

    2012-01-01

    This paper demystifies reflective practice on teaching by focusing on the idea of reflection itself and how it has been conceived by two philosophers, Plato and Irigaray. It argues that reflective practice has become a standardized method of defining the teacher in teacher education and teacher accreditation systems. It explores how practices of…

  1. Photography through the Microscope.

    ERIC Educational Resources Information Center

    McNeil, D. W.

    1992-01-01

    Describes how to illuminate and optically stain slides for microscope use and how to interface a 35mm camera with a microscope using an adaptor. Provides equipment descriptions and sources, details about illumination, image formation, darkfield adaptors, centerable filter adaptors, darkfield stops, rheinburg filters, and choosing specimens to…

  2. Mailing microscope slides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  3. The Homemade Microscope.

    ERIC Educational Resources Information Center

    Baker, Roger C., Jr.

    1991-01-01

    Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)

  4. Links between microscopic and macroscopic fluid mechanics

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, C. G.

    2003-01-01

    The microscopic and macroscopic versions of fluid mechanics differ qualitatively. Microscopic particles obey time-reversible ordinary differential equations. The resulting particle trajectories {q(t)} may be time-averaged or ensemble-averaged so as to generate field quantities corresponding to macroscopic variables. On the other hand, the macroscopic continuum fields described by fluid mechanics follow irreversible partial differential equations. Smooth particle methods bridge the gap separating these two views of fluids by solving the macroscopic field equations with particle dynamics that resemble molecular dynamics. Recently, nonlinear dynamics have provided some useful tools for understanding the relationship between the microscopic and macroscopic points of view. Chaos and fractals play key roles in this new understanding. Non-equilibrium phase-space averages look very different from their equilibrium counterparts. Away from equilibrium the smooth phase-space distributions are replaced by fractional-dimensional singular distributions that exhibit time irreversibility.

  5. Assessment of Petrological Microscopes.

    ERIC Educational Resources Information Center

    Mathison, Charter Innes

    1990-01-01

    Presented is a set of procedures designed to check the design, ergonomics, illumination, function, optics, accessory equipment, and image quality of a microscope being considered for purchase. Functions for use in a petrology or mineralogy laboratory are stressed. (CW)

  6. Microscope collision protection apparatus

    DOEpatents

    DeNure, Charles R.

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  7. Hypoxia in Microscopic Tumors

    PubMed Central

    Li, Xiao-Feng; O’Donoghue, Joseph A

    2008-01-01

    Tumor hypoxia has been commonly observed in a broad spectrum of primary solid malignancies. Hypoxia is associated with tumor progression, increased aggressiveness, enhanced metastatic potential and poor prognosis. Hypoxic tumor cells are resistant to radiotherapy and some forms of chemotherapy. Using an animal model, we recently showed that microscopic tumors less than 1 mm diameter were severely hypoxic. In this review, models and techniques for the study of hypoxia in microscopic tumors are discussed. PMID:18384940

  8. UV-visible microscope spectrophotometric polarization and dichroism with increased discrimination power in forensic analysis

    NASA Astrophysics Data System (ADS)

    Purcell, Dale Kevin

    Microanalysis of transfer (Trace) evidence is the application of a microscope and microscopical techniques for the collection, observation, documentation, examination, identification, and discrimination of micrometer sized particles or domains. Microscope spectrophotometry is the union of microscopy and spectroscopy for microanalysis. Analytical microspectroscopy is the science of studying the emission, reflection, transmission, and absorption of electromagnetic radiation to determine the structure or chemical composition of microscopic-size materials. Microscope spectrophotometry instrument designs have evolved from monochromatic illumination which transmitted through the microscope and sample and then is detected by a photometer detector (photomultiplier tube) to systems in which broad-band (white light) illumination falls incident upon a sample followed by a non-scanning grating spectrometer equipped with a solid-state multi-element detector. Most of these small modern spectrometers are configured with either silicon based charged-couple device detectors (200-950 nm) or InGaAs based diode array detectors (850-2300 nm) with computerized data acquisition and signal processing being common. A focus of this research was to evaluate the performance characteristics of various modern forensic (UV-Vis) microscope photometer systems as well as review early model instrumental designs. An important focus of this research was to efficiently measure ultraviolet-visible spectra of microscopically small specimens for classification, differentiation, and possibly individualization. The first stage of the project consisted of the preparation of microscope slides containing neutral density filter reference materials, molecular fluorescence reference materials, and dichroic reference materials. Upon completion of these standard slide preparations analysis began with measurements in order to evaluate figures of merit for comparison of the instruments investigated. The figures of

  9. Operating microscopes: past, present, and future.

    PubMed

    Uluç, Kutluay; Kujoth, Gregory C; Başkaya, Mustafa K

    2009-09-01

    The operating microscope is a fixture of modern surgical facilities, and it is a critically important factor in the success of many of the most complex and difficult surgical interventions used in medicine today. The rise of this key surgical tool reflects advances in understanding the principles of optics and vision that have occurred over centuries. The development of reading spectacles in the late 13th century led to the construction of early compound microscopes in the 16th and 17th centuries by Lippershey, Janssen, Galileo, Hooke, and others. Perhaps surprisingly, Leeuwenhoek's simple microscopes of this era offered improved performance over his contemporaries' designs. The intervening years saw improvements that reduced the spherical and chromatic aberrations present in compound microscopes. By the late 19th century, Carl Zeiss and Ernst Abbe ushered the compound microscope into the beginnings of the modern era of commercial design and production. The introduction of the microscope into the operating room by Nylén in 1921 initiated a revolution in surgical practice that gained momentum throughout the 1950s with multiple refinements, the introduction of the Zeiss OPMI series, and Kurze's application of the microscope to neurosurgery in 1957. Many of the refinements of the last 50 years have greatly improved the handling and practical operation of the surgical microscope, considerations which are equally important to its optical performance. Today's sophisticated operating microscopes allow for advanced real-time angiographic and tumor imaging. In this paper the authors discuss what might be found in the operating rooms of tomorrow.

  10. Electron microscope studies

    SciTech Connect

    Crewe, A.V.; Kapp, O.H.

    1992-07-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations.

  11. Microscope on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  12. Making Art with Microscopes

    ERIC Educational Resources Information Center

    Benedis-Grab, Gregory

    2011-01-01

    Interdisciplinary teaching is a great way to focus on overarching concepts and help students make connections across disciplines. Historically, art and science have been connected disciplines. The botanical prints of the 18th and 19th centuries and early work with microscopes are two examples of a need for strong artistic skills in the science…

  13. Design and analysis of multilayer x ray/XUV microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1990-01-01

    The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view.

  14. Theoretical model of the helium pinhole microscope

    NASA Astrophysics Data System (ADS)

    Palau, Adrià Salvador; Bracco, Gianangelo; Holst, Bodil

    2016-12-01

    In recent years, the development of neutral helium microscopes has gained increasing interest. The low energy, charge neutrality, and inertness of the helium atoms makes helium microscopy an attractive candidate for the imaging of a range of samples. The simplest neutral helium microscope is the so-called pinhole microscope. It consists of a supersonic expansion helium beam collimated by two consecutive apertures (skimmer and pinhole), which together determine the beam spot size and hence the resolution at a given working distance to the sample. Due to the high ionization potential of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial to optimize the microscope design to maximize the intensity for a given resolution and working distance. Here we present an optimization model for the helium pinhole microscope system. We show that for a given resolution and working distance, there is a single intensity maximum. Further we show that with present-day state-of-the-art detector technology (ionization efficiency 1 ×10-3 ), a resolution of the order of 600 nm at a working distance of 3 mm is possible. In order to make this quantification, we have assumed a Lambertian reflecting surface and calculated the beam spot size that gives a signal 100 cts/s within a solid angle of 0.02 π sr, following an existing design. Reducing the working distance to the micron range leads to an improved resolution of around 40 nm.

  15. Biofilm Formation in Microscopic Double Emulsion Droplets

    NASA Astrophysics Data System (ADS)

    Chang, Connie; Weitz, David

    2012-02-01

    In natural, medical, and industrial settings, there exist surface-associated communities of bacteria known as biofilms. These highly structured films are composed of bacterial cells embedded within self-produced extracellular matrix, usually composed of exopolysaccharides, proteins, and nucleic acids; this matrix serves to protect the bacterial community from antibiotics and environmental stressors. Here, we form biofilms encapsulated within monodisperse, microscopically-sized double emulsion droplets using microfluidics. The bacteria self-organize at the inner liquid-liquid droplet interfaces, multiply, and differentiate into extracellular matrix-producing cells, forming manifold three-dimensional shell-within-a-shell structures of biofilms, templated upon the inner core of spherical liquid droplets. By using microfluidics to encapsulate bacterial cells, we have the ability to view individual cells multiplying in microscopically-sized droplets, which allows for high-throughput analysis in studying the genetic program leading to biofilm development, or cell signaling that induces differentiation.

  16. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  17. Femtosecond scanning tunneling microscope

    SciTech Connect

    Taylor, A.J.; Donati, G.P.; Rodriguez, G.; Gosnell, T.R.; Trugman, S.A.; Some, D.I.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). By combining scanning tunneling microscopy with ultrafast optical techniques we have developed a novel tool to probe phenomena on atomic time and length scales. We have built and characterized an ultrafast scanning tunneling microscope in terms of temporal resolution, sensitivity and dynamic range. Using a novel photoconductive low-temperature-grown GaAs tip, we have achieved a temporal resolution of 1.5 picoseconds and a spatial resolution of 10 nanometers. This scanning tunneling microscope has both cryogenic and ultra-high vacuum capabilities, enabling the study of a wide range of important scientific problems.

  18. Microscopic enteritis: Bucharest consensus.

    PubMed

    Rostami, Kamran; Aldulaimi, David; Holmes, Geoffrey; Johnson, Matt W; Robert, Marie; Srivastava, Amitabh; Fléjou, Jean-François; Sanders, David S; Volta, Umberto; Derakhshan, Mohammad H; Going, James J; Becheanu, Gabriel; Catassi, Carlo; Danciu, Mihai; Materacki, Luke; Ghafarzadegan, Kamran; Ishaq, Sauid; Rostami-Nejad, Mohammad; Peña, A Salvador; Bassotti, Gabrio; Marsh, Michael N; Villanacci, Vincenzo

    2015-03-07

    Microscopic enteritis (ME) is an inflammatory condition of the small bowel that leads to gastrointestinal symptoms, nutrient and micronutrient deficiency. It is characterised by microscopic or sub-microscopic abnormalities such as microvillus changes and enterocytic alterations in the absence of definite macroscopic changes using standard modern endoscopy. This work recognises a need to characterize disorders with microscopic and submicroscopic features, currently regarded as functional or non-specific entities, to obtain further understanding of their clinical relevance. The consensus working party reviewed statements about the aetiology, diagnosis and symptoms associated with ME and proposes an algorithm for its investigation and treatment. Following the 5(th) International Course in Digestive Pathology in Bucharest in November 2012, an international group of 21 interested pathologists and gastroenterologists formed a working party with a view to formulating a consensus statement on ME. A five-step agreement scale (from strong agreement to strong disagreement) was used to score 21 statements, independently. There was strong agreement on all statements about ME histology (95%-100%). Statements concerning diagnosis achieved 85% to 100% agreement. A statement on the management of ME elicited agreement from the lowest rate (60%) up to 100%. The remaining two categories showed general agreement between experts on clinical presentation (75%-95%) and pathogenesis (80%-90%) of ME. There was strong agreement on the histological definition of ME. Weaker agreement on management indicates a need for further investigations, better definitions and clinical trials to produce quality guidelines for management. This ME consensus is a step toward greater recognition of a significant entity affecting symptomatic patients previously labelled as non-specific or functional enteropathy.

  19. Thermal Lens Microscope

    NASA Astrophysics Data System (ADS)

    Uchiyama, Kenji; Hibara, Akihide; Kimura, Hiroko; Sawada, Tsuguo; Kitamori, Takehiko

    2000-09-01

    We developed a novel laser microscope based on the thermal lens effect induced by a coaxial beam comprised of excitation and probe beams. The signal generation mechanism was confirmed to be an authentic thermal lens effect from the measurement of signal and phase dependences on optical configurations between the sample and the probe beam focus, and therefore, the thermal lens effect theory could be applied. Two-point spatial resolution was determined by the spot size of the excitation beam, not by the thermal diffusion length. Sensitivity was quite high, and the detection ability, evaluated using a submicron microparticle containing dye molecules, was 0.8 zmol/μm2, hence a distribution image of trace chemical species could be obtained quantitatively. In addition, analytes are not restricted to fluorescent species, therefore, the thermal lens microscope is a promising analytical microscope. A two-dimensional image of a histamine molecule distribution, which was produced in mast cells at the femtomole level in a human nasal mucous polyp, was obtained.

  20. Thimble microscope system

    NASA Astrophysics Data System (ADS)

    Kamal, Tahseen; Rubinstein, Jaden; Watkins, Rachel; Cen, Zijian; Kong, Gary; Lee, W. M.

    2016-12-01

    Wearable computing devices, e.g. Google Glass, Smart watch, embodies the new human design frontier, where technology interfaces seamlessly with human gestures. During examination of any subject in the field (clinic, surgery, agriculture, field survey, water collection), our sensory peripherals (touch and vision) often go hand-in-hand. The sensitivity and maneuverability of the human fingers are guided with tight distribution of biological nerve cells, which perform fine motor manipulation over a range of complex surfaces that is often out of sight. Our sight (or naked vision), on the other hand, is generally restricted to line of sight that is ill-suited to view around corner. Hence, conventional imaging methods are often resort to complex light guide designs (periscope, endoscopes etc) to navigate over obstructed surfaces. Using modular design strategies, we constructed a prototype miniature microscope system that is incorporated onto a wearable fixture (thimble). This unique platform allows users to maneuver around a sample and take high resolution microscopic images. In this paper, we provide an exposition of methods to achieve a thimble microscopy; microscope lens fabrication, thimble design, integration of miniature camera and liquid crystal display.

  1. Reliability of Pressure Ulcer Rates: How Precisely Can We Differentiate Among Hospital Units, and Does the Standard Signal-Noise Reliability Measure Reflect This Precision?

    PubMed

    Staggs, Vincent S; Cramer, Emily

    2016-08-01

    Hospital performance reports often include rankings of unit pressure ulcer rates. Differentiating among units on the basis of quality requires reliable measurement. Our objectives were to describe and apply methods for assessing reliability of hospital-acquired pressure ulcer rates and evaluate a standard signal-noise reliability measure as an indicator of precision of differentiation among units. Quarterly pressure ulcer data from 8,199 critical care, step-down, medical, surgical, and medical-surgical nursing units from 1,299 US hospitals were analyzed. Using beta-binomial models, we estimated between-unit variability (signal) and within-unit variability (noise) in annual unit pressure ulcer rates. Signal-noise reliability was computed as the ratio of between-unit variability to the total of between- and within-unit variability. To assess precision of differentiation among units based on ranked pressure ulcer rates, we simulated data to estimate the probabilities of a unit's observed pressure ulcer rate rank in a given sample falling within five and ten percentiles of its true rank, and the probabilities of units with ulcer rates in the highest quartile and highest decile being identified as such. We assessed the signal-noise measure as an indicator of differentiation precision by computing its correlations with these probabilities. Pressure ulcer rates based on a single year of quarterly or weekly prevalence surveys were too susceptible to noise to allow for precise differentiation among units, and signal-noise reliability was a poor indicator of precision of differentiation. To ensure precise differentiation on the basis of true differences, alternative methods of assessing reliability should be applied to measures purported to differentiate among providers or units based on quality. © 2016 The Authors. Research in Nursing & Health published by Wiley Periodicals, Inc.

  2. Reliability of Pressure Ulcer Rates: How Precisely Can We Differentiate Among Hospital Units, and Does the Standard Signal‐Noise Reliability Measure Reflect This Precision?

    PubMed Central

    Cramer, Emily

    2016-01-01

    Abstract Hospital performance reports often include rankings of unit pressure ulcer rates. Differentiating among units on the basis of quality requires reliable measurement. Our objectives were to describe and apply methods for assessing reliability of hospital‐acquired pressure ulcer rates and evaluate a standard signal‐noise reliability measure as an indicator of precision of differentiation among units. Quarterly pressure ulcer data from 8,199 critical care, step‐down, medical, surgical, and medical‐surgical nursing units from 1,299 US hospitals were analyzed. Using beta‐binomial models, we estimated between‐unit variability (signal) and within‐unit variability (noise) in annual unit pressure ulcer rates. Signal‐noise reliability was computed as the ratio of between‐unit variability to the total of between‐ and within‐unit variability. To assess precision of differentiation among units based on ranked pressure ulcer rates, we simulated data to estimate the probabilities of a unit's observed pressure ulcer rate rank in a given sample falling within five and ten percentiles of its true rank, and the probabilities of units with ulcer rates in the highest quartile and highest decile being identified as such. We assessed the signal‐noise measure as an indicator of differentiation precision by computing its correlations with these probabilities. Pressure ulcer rates based on a single year of quarterly or weekly prevalence surveys were too susceptible to noise to allow for precise differentiation among units, and signal‐noise reliability was a poor indicator of precision of differentiation. To ensure precise differentiation on the basis of true differences, alternative methods of assessing reliability should be applied to measures purported to differentiate among providers or units based on quality. © 2016 The Authors. Research in Nursing & Health published by Wiley Periodicals, Inc. PMID:27223598

  3. Q: How do Microscopes Work?

    ERIC Educational Resources Information Center

    Zimov, Sarah

    2004-01-01

    Microscopes allow scientists to examine everyday objects in extraordinary ways. They provide high-resolution images that show objects in fine detail. This brief article describes the many types of microscopes and how they are used in different scientific venues.

  4. Reflection Coefficients.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1994-01-01

    Discusses and provides an example of reflectivity approximation to determine whether reflection will occur. Provides a method to show thin-film interference on a projection screen. Also applies the reflectivity concepts to electromagnetic wave systems. (MVL)

  5. Adirondack Under the Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday, Jan. 15, 2004. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists have begun using the microscopic imager instrument at the end of the rover's robotic arm to examine the rock and understand how it formed.

  6. Solid state optical microscope

    SciTech Connect

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  7. Solid state optical microscope

    DOEpatents

    Young, I.T.

    1983-08-09

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

  8. Atomic Force Microscope

    SciTech Connect

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  9. Microscopic Rayleigh Droplet Beams

    NASA Astrophysics Data System (ADS)

    Doak, R. B.

    2005-11-01

    A periodically triggered Rayleigh Droplet Beam (RDB) delivers a perfectly linear and periodic stream of identical, monoenergetic droplets that are phase-locked to the trigger signal. The droplet diameter and spacing are easily adjusted of choice of nozzle diameter and trigger frequency. Any liquid of low viscosity may be emloyed as the beam fluid. Although the field of nanofluidics is expanding rapidly, little effort has yet been devoted to ``external flows'' such as RDB's. At ASU we have generated RDB's of water and methanol down to 2 microns in droplet diameter. Nozzle clogging is the sole impediment to smaller droplets. Microscopic Rayleigh droplet beams offer tremendous potential for fundamental physical measurements, fluid dynamics research, and nanofabrication. This talk will describe the apparatus and techniques used at ASU to generate RDB's (surprisingly simple and inexpensive), discuss the triboelectric phenomena that play a role (surprisingly significant), present some initial experimental fluid dynamics measurements, and briefly survey RDB applications. Our particular interest in RDB's is as microscopic transport systems to deliver hydrated, undenatured proteins into vacuum for structure determination via serial diffraction of x-rays or electrons. This may offer the first general method for structure determination of non-crystallizable proteins.

  10. Microscopic Tribotactic Walkers

    NASA Astrophysics Data System (ADS)

    Steimel, Joshua; Aragones, Juan; Alexander-Katz, Alfredo

    2014-03-01

    The translational motion of a rotating object near a surface is strongly dependent on the friction between the object and the surface. The process of friction is inherently directional and the friction coefficient can be anisotropic even in the absence of a net friction coefficient gradient. This is macroscopically observed in the ordering motif of some animal hair or scales and a microscopic analog can be imagined where the friction coefficient is determined by the strength and density of reversible bonds between a rotating object and the substrate. For high friction coefficients most of the rotational motion is converted into translational motion; conversely for low friction coefficients the object primarily rotates in place. We exploited this property to design and test a new class of motile system that displays tribotaxis, which is the process by which an object detects differences in the local friction coefficient and moves accordingly either to regions of higher or lower friction. These synthetic tribotactic microscopic walkers, composed of a pair of functionalized superparamagnetic beads, detect gradients in the spatial friction coefficient and migrate towards high friction areas when actuated in a random fashion. The effective friction between the walkers and the substrate is controlled by the local density of active receptors in the substrate. The tribotactic walkers also displayed trapping in high friction areas where the density of free receptors is higher.

  11. Electron microscope phase enhancement

    DOEpatents

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  12. [Microscopic infrared spectral imaging of oily core].

    PubMed

    Huang, Qiao-Song; Yu, Zhao-Xian; Li, Jing; Chen, Chen

    2009-02-01

    In the present paper, the authors examined some oily core by microscopic infrared spectral imaging methods. Those methods can be classified in three modes, referred to as "transmission mode", "reflection mode" and "attenuated total reflection (ATR) mode". The observed oily core samples belong to siltstone. The samples were made of quartz (-20%), feldspar(-50%) and other rock (igneous rock 25%, metamorphic rocks 1%, sedimentary rock 4%); a little recrystallized calcite (-1%) was in the pore, and the argillaceous matter was distributed along the edge of a pore. The experimental work has been accomplished using SHIMADZU Model IRPrestige-21 Fourier transform infrared spectrophotometer plus AIM8800 infrared microscope. For IRPrestige-21, the spectral range is 7 800-350 cm(-1) spectral resolution is 1 cm(-1), and AIM8800 microscope with motorized stages has a resolution of 1 micrometer. The experiment was preformed at room temperature. In "transmission mode" infrared spectral imaging method, the spectral range was limited in wavenumbers greater than 2 000 cm(-1) because the base glass piece has strong light absorption. In contrast with "transmission mode", in "attenuated total reflection (ATR) mode", the depth of penetration into sample is very small (1-2 micrometer), then the absorbance value has nothing to do with base glass piece light absorption. In microscopic infrared transmission spectra, the experimental result shows that there are some strong absorption peaks at 2 866, 2 928, 3 618 and 2 515 cm(-1) respectively. The former two peaks correspond to methyl(methylene) symmetrical and unsymmetrical stretch vibration mode, respectively. The latter two peaks correspond to hydroxyl-stretch vibration mode and S-H, P-H chemical bond stretch vibration mode, respectively. In microscopic longwave infrared ATR spectra, there are other stronger absorption peaks at 1 400, 1 038 and 783 cm(i1)respectively, corresponding to methyl(methylene) widing vibration mode and optical mode

  13. Anisotropic contrast optical microscope.

    PubMed

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm(2) object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  14. Anisotropic contrast optical microscope

    NASA Astrophysics Data System (ADS)

    Peev, D.; Hofmann, T.; Kananizadeh, N.; Beeram, S.; Rodriguez, E.; Wimer, S.; Rodenhausen, K. B.; Herzinger, C. M.; Kasputis, T.; Pfaunmiller, E.; Nguyen, A.; Korlacki, R.; Pannier, A.; Li, Y.; Schubert, E.; Hage, D.; Schubert, M.

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  15. Quantification of the Information Limit of Transmission Electron Microscopes

    SciTech Connect

    Barthel, J.; Thust, A.

    2008-11-14

    The resolving power of high-resolution transmission electron microscopes is characterized by the information limit, which reflects the size of the smallest object detail observable with a particular instrument. We introduce a highly accurate measurement method for the information limit, which is suitable for modern aberration-corrected electron microscopes. An experimental comparison with the traditionally applied Young's fringe method yields severe discrepancies and confirms theoretical considerations according to which the Young's fringe method does not reveal the information limit.

  16. Research and application of ergonomics to optical microscope

    NASA Astrophysics Data System (ADS)

    Jiang, Xue-kun; Xiao, Ze-xin; Zhang, Jie

    2008-03-01

    The characteristics of the human and the microscope, and their integrated characteristic have been studied respectively in this paper. Our results indicated that the correspondence of (i) focusing installment with human body arm, (ii) the height of ocular with eyes, (iii) visual characteristic with illuminative condition of the optical microscope, should obey the theory of the ergonomics. This was reflected in the structural design and the produce of the product, and therefore, improved the property of the amenity of the machine.

  17. Mars Under the Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This magnified look at the martian soil near the Mars Exploration Rover Opportunity's landing site, Meridiani Planum, shows coarse grains sprinkled over a fine layer of sand. The image was captured by the rover's microscopic imager on the 10th day, or sol, of its mission. Scientists are intrigued by the spherical rocks, which can be formed by a variety of geologic processes, including cooling of molten lava droplets and accretion of concentric layers of material around a particle or 'seed.'

    The examined patch of soil is 3 centimeters (1.2 inches) across. The circular grain in the lower left corner is approximately 3 millimeters (.12 inches) across, or about the size of a sunflower seed.

  18. Imaging arrangement and microscope

    SciTech Connect

    Pertsinidis, Alexandros; Chu, Steven

    2015-12-15

    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  19. Atomic Force Microscope Operation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation (large file)

    This animation is a scientific illustration of the operation of NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The AFM is used to image the smallest Martian particles using a very sharp tip at the end of one of eight beams.

    The beam of the AFM is set into vibration and brought up to the surface of a micromachined silicon substrate. The substrate has etched in it a series of pits, 5 micrometers deep, designed to hold the Martian dust particles.

    The microscope then maps the shape of particles in three dimensions by scanning them with the tip.

    At the end of the animation is a 3D representation of the AFM image of a particle that was part of a sample informally called 'Sorceress.' The sample was delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Ultra high frequency imaging acoustic microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-05-23

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  1. Design and analysis of soft X-ray imaging microscopes

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Cheng, Wang; Wu, Jiang; Hoover, Richard B.

    1992-01-01

    The spherical Schwarzschild microscope for soft X-ray applications in microscopy and projection lithography consists of two concentric spherical mirrors configured such that the third-order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for X-ray applications, it is desirable to have only two reflecting surfaces in a microscope. To reduce microscope aberrations and increase the field of view, generalized mirror surface profiles are here considered. Based on incoherent and sine wave modulation transfer function calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical Head reflecting two-mirror microscope configurations. The Head microscope with a NA of 0.4 achieves diffraction limited performance for objects with a diameter of 40 microns. Thus, it seems possible to record images with a feature size less than 100 A with a 40x microscope when using 40 A radiation.

  2. No departure to "Pandora"? Using critical phenomenology to differentiate "naive" from "reflective" experience in psychiatry and psychosomatic medicine (A comment on Schwartz and Wiggins, 2010)

    PubMed Central

    2010-01-01

    The mind-body problem lies at the heart of the clinical practice of both psychiatry and psychosomatic medicine. In their recent publication, Schwartz and Wiggins address the question of how to understand life as central to the mind-body problem. Drawing on their own use of the phenomenological method, we propose that the mind-body problem is not resolved by a general, evocative appeal to an all encompassing life-concept, but rather falters precisely at the insurmountable difference between "natural" and a "reflective" experience built into phenomenological method itself. Drawing on the works of phenomenologically oriented thinkers, we describe life as inherently "teleological" without collapsing life with our subjective perspective, or stepping over our epistemological limits. From the phenomenology it can be demonstrated that the hypothetical teleological qualities are a reflective reconstruction modelled on human behavioural structure. PMID:21040525

  3. No departure to "Pandora"? Using critical phenomenology to differentiate "naive" from "reflective" experience in psychiatry and psychosomatic medicine (a comment on Schwartz and Wiggins, 2010).

    PubMed

    Schlimme, Jann E; Bonnemann, Catharina; Mishara, Aaron L

    2010-10-31

    The mind-body problem lies at the heart of the clinical practice of both psychiatry and psychosomatic medicine. In their recent publication, Schwartz and Wiggins address the question of how to understand life as central to the mind-body problem. Drawing on their own use of the phenomenological method, we propose that the mind-body problem is not resolved by a general, evocative appeal to an all encompassing life-concept, but rather falters precisely at the insurmountable difference between "natural" and a "reflective" experience built into phenomenological method itself. Drawing on the works of phenomenologically oriented thinkers, we describe life as inherently "teleological" without collapsing life with our subjective perspective, or stepping over our epistemological limits. From the phenomenology it can be demonstrated that the hypothetical teleological qualities are a reflective reconstruction modelled on human behavioural structure.

  4. High sensitive reflection type long period fiber grating biosensor for real time detection of thyroglobulin, a differentiated thyroid cancer biomarker: the Smart Health project

    NASA Astrophysics Data System (ADS)

    Quero, G.; Severino, R.; Vaiano, P.; Consales, M.; Ruvo, M.; Sandomenico, A.; Borriello, A.; Giordano, M.; Zuppolini, S.; Diodato, L.; Cutolo, A.; Cusano, A.

    2015-09-01

    We report the development of a reflection-type long period fiber grating (LPG) biosensor able to perform the real time detection of thyroid cancer markers in the needle washout of fine-needle aspiration biopsy. A standard LPG is first transformed in a practical probe working in reflection mode, then it is coated by an atactic-polystyrene overlay in order to increase its surrounding refractive index sensitivity and to provide, at the same time, the desired interfacial properties for a stable bioreceptor immobilization. The results provide a clear demonstration of the effectiveness and sensitivity of the developed biosensing platform, allowing the in vitro detection of human Thyroglobulin at sub-nanomolar concentrations.

  5. The Reflective Learning Continuum: Reflecting on Reflection

    ERIC Educational Resources Information Center

    Peltier, James W.; Hay, Amanda; Drago, William

    2005-01-01

    The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research that considers reflection within the context of both the marketing and general business education literature. This article describes the use of an instrument that can be used to measure four identified levels of a…

  6. Femtosecond photoelectron point projection microscope

    SciTech Connect

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-10-15

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect.

  7. Proper alignment of the microscope.

    PubMed

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3.

  8. Transmission electron microscope CCD camera

    DOEpatents

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  9. Approximating the detection limit of an infrared spectroscopic imaging microscope operating in an attenuated total reflection (ATR) modality: theoretical and empirical results for an instrument using a linear array detector and a 1.5 millimeter germanium hemisphere internal reflection element.

    PubMed

    Lanzarotta, Adam

    2015-01-01

    Theoretical and empirical detection limits have been estimated for aripiprazole (analyte) in alpha lactose monohydrate (matrix model pharmaceutical formulation) using a micro-attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic imaging instrument equipped with a linear array detector and a 1.5 mm germanium hemisphere internal reflection element (IRE). The instrument yielded a theoretical detection limit of 0.0035% (35 parts per million (ppm)) when operating under diffraction-limited conditions, which was 49 times lower than what was achieved with a traditional macro-ATR instrument operating under practical conditions (0.17%, 1700 ppm). However, these results may not be achievable for most analyses because the detection limits will be particle size limited, rather than diffraction limited, for mixtures with average particle diameters greater than 8.3 μm (most pharmaceutical samples). For example, a theoretical detection limit of 0.028% (280 ppm) was calculated for an experiment operating under particle size-limited conditions where the average particle size was 23.4 μm. These conditions yielded a detection limit of 0.022% (220 ppm) when measured empirically, which was close to the theoretical value and only eight times lower than that of a faster, more simplistic macro-ATR instrument. Considering the longer data acquisition and processing times characteristic of the micro-ATR imaging approach (minutes or even hours versus seconds), the cost-benefit ratio may not often be favorable for the analysis of analytes in matrices that exhibit only a few overlapping absorptions (low-interfering matrices such as alpha lactose monohydrate) using this technique compared to what can be achieved using macro-ATR. However, the advantage was significant for detecting analytes in more complex matrices (those that exhibited several overlapping absorptions with the analyte) because the detection limit of the macro-ATR approach was highly formulation

  10. Athena microscopic Imager investigation

    USGS Publications Warehouse

    Herkenhoff, K. E.; Squyres, S. W.; Bell, J.F.; Maki, J.N.; Arneson, H.M.; Bertelsen, P.; Brown, D.I.; Collins, S.A.; Dingizian, A.; Elliott, S.T.; Goetz, W.; Hagerott, E.C.; Hayes, A.G.; Johnson, M.J.; Kirk, R.L.; McLennan, S.; Morris, R.V.; Scherr, L.M.; Schwochert, M.A.; Shiraishi, L.R.; Smith, G.H.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Wadsworth, M.V.

    2003-01-01

    The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI). The MI is a fixed-focus camera mounted on the end of an extendable instrument arm, the Instrument Deployment Device (IDD). The MI was designed to acquire images at a spatial resolution of 30 microns/pixel over a broad spectral range (400-700 nm). The MI uses the same electronics design as the other MER cameras but has optics that yield a field of view of 31 ?? 31 mm across a 1024 ?? 1024 pixel CCD image. The MI acquires images using only solar or skylight illumination of the target surface. A contact sensor is used to place the MI slightly closer to the target surface than its best focus distance (about 66 mm), allowing concave surfaces to be imaged in good focus. Coarse focusing (???2 mm precision) is achieved by moving the IDD away from a rock target after the contact sensor has been activated. The MI optics are protected from the Martian environment by a retractable dust cover. The dust cover includes a Kapton window that is tinted orange to restrict the spectral bandpass to 500-700 nm, allowing color information to be obtained by taking images with the dust cover open and closed. MI data will be used to place other MER instrument data in context and to aid in petrologic and geologic interpretations of rocks and soils on Mars. Copyright 2003 by the American Geophysical Union.

  11. Submerged Reflectance

    DTIC Science & Technology

    1976-08-01

    at 450 and viewed at 0* (i.e., viewed nor1al to the surface). Instruments for performing this particular bi-directional reflectance measurement are...are described below. 3.1 THEORY OF ABSOLUTE SUBMERGED REFLECTANCE MEASUREMENT An absolute measurement of the reflectance of a surface can be obtained by...relative reflectance measurement is shown in Figure 2. The irradiance across the target will vary within the field of view of the photometer because

  12. The Latest in Handheld Microscopes

    ERIC Educational Resources Information Center

    Wighting, Mervyn J.; Lucking, Robert A.; Christmann, Edwin P.

    2004-01-01

    Around 1590, Zacharias Jansenn of Holland invented the microscope. Jansenn, an eyeglass maker by trade, experimented with lenses and discovered that things appeared closer with combinations of lenses. Over the past 400 years, several refinements to microscopes have occurred, making it possible to magnify objects between 200 and 1,500 times their…

  13. Scientists View Battery Under Microscope

    SciTech Connect

    2015-04-10

    PNNL researchers use a special microscope setup that shows the inside of a battery as it charges and discharges. This battery-watching microscope is located at EMSL, DOE's Environmental Molecular Sciences Laboratory that resides at PNNL. Researchers the world over can visit EMSL and use special instruments like this, many of which are the only one of their kind available to scientists.

  14. Scientists View Battery Under Microscope

    ScienceCinema

    None

    2016-07-12

    PNNL researchers use a special microscope setup that shows the inside of a battery as it charges and discharges. This battery-watching microscope is located at EMSL, DOE's Environmental Molecular Sciences Laboratory that resides at PNNL. Researchers the world over can visit EMSL and use special instruments like this, many of which are the only one of their kind available to scientists.

  15. Inter-Trial Correlations in Predictive-Saccade Endpoints: Fractal Scaling Reflects Differential Control along Task-Relevant and Orthogonal Directions

    PubMed Central

    Federighi, Pamela; Wong, Aaron L.; Shelhamer, Mark

    2017-01-01

    Saccades exhibit variation in performance from one trial to the next, even when paced at a constant rate by targets at two fixed locations. We previously showed that amplitude fluctuations in consecutive predictive saccades have fractal structure: the spectrum of the sequence of consecutive amplitudes has a power-law (f −α) form, indicative of inter-trial correlations that reflect the storage of prior performance information to guide the planning of subsequent movements. More gradual decay of these inter-trial correlations coincides with a larger magnitude of spectral slope α, and indicates stronger information storage over longer times. We have previously demonstrated that larger decay exponents (α) are associated with faster adaptation in a saccadic double-step task. Here, we extend this line of investigation to predictive saccade endpoints (i.e., movement errors). Subjects made predictive, paced saccades between two fixed targets along a horizontal or vertical axis. Endpoint fluctuations both along (on-axis) and orthogonal to (off-axis) the direction of target motion were examined for correlations and fractal structure. Endpoints in the direction of target motion had little or no correlation or power-law scaling, suggesting that successive movements were uncorrelated (white noise). In the orthogonal direction, however, the sequence of endpoints did exhibit inter-trial correlations and scaling. In contrast, in our previous work the scaling of saccade amplitudes is strong along the target direction. This may reflect the fact that while saccade amplitudes are neurally programmed, endpoints are not directly controlled but instead serve as a source of error feedback. Hence, the lack of correlations in on-axis endpoint errors suggests that maximum information has been extracted from previous movement errors to plan subsequent movement amplitudes. In contrast, correlations in the off-axis component indicate that useful information still remains in this error

  16. Subsurface Imaging with the Scanning Microwave Microscope

    NASA Astrophysics Data System (ADS)

    Kopanski, Joseph; You, Lin; Michelson, Jonathan; Hitz, Emily; Obeng, Yaw; Back End of the Line Reliability; Metrology Project Team

    2015-03-01

    The scanning microwave microscope (SMM) forms images from the reflected amplitude and phase of an incident RF (~ 2.3 GHz) signal. The reflected signal is a function of the properties of the tip-sample contact, but can also be influenced by buried interfaces and subsurface variations of the sample permittivity. This mechanism allows limited imaging of conductors buried within dielectrics, voids within metal, or multiple metal layers with different permittivity. Subsurface SMM data acquisition modes include passive and various active data acquisition modes. The theory of sub-surface imaging with SMM and COMSOL multi-physics simulations of specific situations will be presented. Measurements of specifically designed test structures and correlation with simulations show the sensitivity and resolution of the technique applied to imaging subsurface metal lines embedded in dielectric. Applications include metrology for back end of the line (BEOL) multi-level metallization and three-dimensional integrated circuits (3D-ICs).

  17. LOCAL MAGNETIC BEHAVIOR OF 54Fe in EuFe2As2 AND Eu0.5K0.5Fe2As2: MICROSCOPIC STUDY USING TIME DIFFERENTIAL PERTURBED ANGULAR DISTRIBUTION (TDPAD) SPECTROSCOPY

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Layek, S.; Hossain, Z.

    2013-12-01

    In this paper, we report the time differential perturbed angular distribution measurements of 54Fe on a polycrystalline EuFe2As2 and Eu0.5K0.5Fe2As2. The hyperfine field and nuclear spin-relaxation rate are strongly temperature dependent in the paramagnetic state suggesting strong spin fluctuation in the parent compound. The local susceptibility show Curie-Weiss-like temperature dependence and Korringa-like relaxation in the tetragonal phase indicating the presence of local moment. In the orthorhombic phase, the hyperfine field behavior suggesting quasi two-dimensional magnetic ordering. The experimental results are in a good agreement with first-principle calculations based on density functional theory.

  18. Immunohistochemical study of Ulex europaeus agglutinin 1 (UEA-1) binding of megakaryocytes in bone marrow biopsy specimens: demonstration of heterogeneity in staining pattern reflecting the stages of differentiation.

    PubMed

    Liu, S M; Li, C Y

    1996-01-01

    During differentiation, megakaryocytes undergo nuclear endoreplication, an increase in cell size, cytoplasmic granulation, and release of platelets. The changes in highly lobulated nuclei with varying degree of polyploidy and increasing cell size are easily recognized morphologically. However, the actual cytoplasmic changes are more difficult to perceive morphologically. With the peroxidase-antiperoxidase (PAP) method using UEA-1 as the binding protein to the alpha-L-fucose of glycoprotein synthesized by megakaryocytes, we observed significant variation in cytoplasmic staining of megakaryocytes in routinely processed bone marrow biopsy sections. A total of 3344 megakaryocytes in bone marrow sections from 10 patients with nonhematologic diseases and from 10 patients with idiopathic thrombocytopenic purpura (ITP) was studied. According to the intensity and pattern of cytoplasmic staining, we divided megakaryocytes into at least six groups: (1) low granular (LG), (2) diffuse granular (DG), (3) diffuse dense granular (DDG), (4) marginal granular (MG), (5) denuded (DMK), and (6) endomitotic (EndoM). Most of the megakaryocytes were DG (mean, 42.75% +/- 19.21%) and DDG (mean, 50.25% +/- 21.23%). In correlation with nuclear morphology and cell size, it appears that substances binding to UEA-1 are located in the paranuclear region in early megakaryocytes and produce a low granular focal staining pattern (LG cells). Next, the granules spread throughout the cytoplasm (DG cells) and increase in quantity (DDG). This is followed by migration of granules to the periphery of the cytoplasm (MG cells) and is associated with the liberation of platelets and eventual formation of DMK megakaryocytes. Endomitosis, regulated by unknown factors, occurred in the MG stage. In comparing the group with nonhematologic disease (mean DG, 35.4% +/- 18.48%; DDG, 58.4% +/- 21.8%) and the group with ITP (mean DG, 50.1% +/- 17.82%; DDG, 42.1% +/- 18.12%), we found an increasing proportion of DG

  19. Erythropoiesis-driven regulation of hepcidin in human red cell disorders is better reflected through concentrations of soluble transferrin receptor rather than growth differentiation factor 15.

    PubMed

    Fertrin, Kleber Yotsumoto; Lanaro, Carolina; Franco-Penteado, Carla Fernanda; de Albuquerque, Dulcinéia Martins; de Mello, Mariana Rezende Bandeira; Pallis, Flávia Rubia; Bezerra, Marcos André Cavalcanti; Hatzlhofer, Betania Lucena Domingues; Olbina, Gordana; Saad, Sara Terezinha Olalla; da Silva Araújo, Aderson; Westerman, Mark; Costa, Fernando Ferreira

    2014-04-01

    Growth differentiation factor 15 (GDF-15) is a bone marrow-derived cytokine whose ability to suppress iron regulator hepcidin in vitro and increased concentrations found in patients with ineffective erythropoiesis (IE)suggest that hepcidin deficiency mediated by GDF-15 may be the pathophysiological explanation for nontransfusional iron overload. We aimed to compare GDF-15 production in anemic states with different types of erythropoietic dysfunction. Complete blood counts, biochemical markers of iron status, plasma hepcidin, GDF-15, and known hepcidin regulators [interleukin-6 and erythropoietin (EPO)] were measured in 87 patients with red cell disorders comprising IE and hemolytic states: thalassemia, sickle cell anemia, and cobalamin deficiency. Healthy volunteers were also evaluated for comparison. Neither overall increased EPO,nor variable GDF-15 concentrations correlated with circulating hepcidin concentrations (P = 0.265 and P = 0.872). Relative hepcidin deficiency was found in disorders presenting with concurrent elevation of GDF-15 and soluble transferrin receptor (sTfR), a biomarker of erythropoiesis, and sTfR had the strongest correlation with hepcidin (r(s) = 0.584, P < 0.0001). Our data show that high concentrations of GDF-15 in vivo are not necessarily associated with pathological hepcidin reduction, and hepcidin deficiency was only found when associated with sTfR overproduction. sTfR elevation may be a necessary common denominator of erythropoiesis-driven mechanisms to favor iron absorption in anemic states and appears a suitable target for investigative approaches to iron disorders.

  20. The head-mounted microscope.

    PubMed

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery.

  1. Spatial genetic structure of bristle-thighed curlews (Numenius tahitiensis): breeding area differentiation not reflected on the non-breeding grounds

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Tibbitts, T. Lee; Gill, Robert E.; Williams, Ian S.; Talbot, Sandra L.

    2015-01-01

    Migratory birds occupy geographically and ecologically disparate areas during their annual cycle with conditions on breeding and non-breeding grounds playing separate and important roles in population dynamics. We used data from nuclear microsatellite and mitochondrial DNA control region loci to assess the breeding and non-breeding spatial genetic structure of a transoceanic migrant shorebird, the bristle-thighed curlew. We found spatial variance in the distribution of allelic and haplotypic frequencies between the curlew's two breeding areas in Alaska but did not observe this spatial structure throughout its non-breeding range on low-lying tropical and subtropical islands in the Central Pacific (Oceania). This suggests that the two breeding populations do not spatially segregate during the non-breeding season. Lack of migratory connectivity is likely attributable to the species' behavior, as bristle-thighed curlews exhibit differential timing of migration and some individuals move among islands during non-breeding months. Given the detrimental impact of many past and current human activities on island ecosystems, admixture of breeding populations in Oceania may render the bristle-thighed curlew less vulnerable to perturbations there, as neither breeding population will be disproportionally affected by local habitat losses or by stochastic events. Furthermore, lack of migratory connectivity may enable bristle-thighed curlews to respond to changing island ecosystems by altering their non-breeding distribution. However, availability of suitable non-breeding habitat for curlews in Oceania is increasingly limited on both low-lying and high islands by habitat loss, sea level rise, and invasive mammalian predators that pose a threat to flightless and flight-compromised curlews during the molting period.

  2. Adirondack Under the Microscope-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overhead look at the martian rock dubbed Adirondack was captured by the Mars Exploration Rover Spirit's panoramic camera. It shows the approximate region where the rover's microscopic imager began its first close-up inspection.

  3. Magnetic Resonance Force Microscope Development

    SciTech Connect

    Hammel, P.C.; Zhang, Z.; Suh, B.J.; Roukes, M.L.; Midzor, M.; Wigen, P.E.; Childress, J.R.

    1999-06-03

    Our objectives were to develop the Magnetic Resonance Force Microscope (MRFM) into an instrument capable of scientific studies of buried structures in technologically and scientifically important electronic materials such as magnetic multilayer materials. This work resulted in the successful demonstration of MRFM-detected ferromagnetic resonance (FMR) as a microscopic characterization tool for thin magnetic films. Strong FMR spectra obtained from microscopic Co thin films (500 and 1000 angstroms thick and 40 x 200 microns in lateral extent) allowed us to observe variations in sample inhomogeneity and magnetic anisotropy field. We demonstrated lateral imaging in microscopic FMR for the first time using a novel approach employing a spatially selective local field generated by a small magnetically polarized spherical crystallite of yttrium iron garnet. These successful applications of the MRFM in materials studies provided the basis for our successful proposal to DOE/BES to employ the MRF M in studies of buried interfaces in magnetic materials.

  4. Microscopic Procedures for Plant Meiosis.

    ERIC Educational Resources Information Center

    Braselton, James P.

    1997-01-01

    Describes laboratory techniques designed to familiarize students with meiosis and how microscopic preparations of meiosis are made. These techniques require the use of fresh or fixed flowers. Contains 18 references. (DDR)

  5. Recent Athena Microscopic Imager Results

    NASA Astrophysics Data System (ADS)

    Herkenhoff, K. E.; Ashley, J. W.; Johnson, J. R.; Parker, T. J.; Athena Science Team

    2012-03-01

    The Mars Exploration Rover Opportunity arrived at the rim of Endeavour Crater in August 2011. This presentation summarizes Opportunity Microscopic Imager observations of ejecta, bedrock, a gypsum vein, and other materials in the crater rim rocks.

  6. (Center of excellence: Microlaser microscope)

    SciTech Connect

    Webb, R.H.

    1992-01-01

    This Center-of-Excellence grant has two components: development of an imaging system based on microlaser arrays forms a central project among a group of laser diagnostic and therapeutic efforts primarily funded outside the grant. In these first 8 months we have set up the Microlaser Microscope using small microlaser arrays. We have emphasized the basics of microlaser handling and electronic addressing and the optics of the microscope. Details of electronics and optics given here will be used in the larger arrays which should be available soon. After a description of the central Microlaser Microscope project, we touch briefly on the other projects of the Center, which have been outstandingly fruitful this year. Publications are necessarily concerned with the smaller projects, since the Microlaser Microscope is in its early stages.

  7. Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials

    NASA Astrophysics Data System (ADS)

    Frisenda, Riccardo; Niu, Yue; Gant, Patricia; Molina-Mendoza, Aday J.; Schmidt, Robert; Bratschitsch, Rudolf; Liu, Jinxin; Fu, Lei; Dumcenco, Dumitru; Kis, Andras; Perez De Lara, David; Castellanos-Gomez, Andres

    2017-02-01

    Optical spectroscopy techniques such as differential reflectance and transmittance have proven to be very powerful techniques for studying 2D materials. However, a thorough description of the experimental setups needed to carry out these measurements is lacking in the literature. We describe a versatile optical microscope setup for carrying out differential reflectance and transmittance spectroscopy in 2D materials with a lateral resolution of ~1 µm in the visible and near-infrared part of the spectrum. We demonstrate the potential of the presented setup to determine the number of layers of 2D materials and characterize their fundamental optical properties, such as excitonic resonances. We illustrate its performance by studying mechanically exfoliated and chemical vapor-deposited transition metal dichalcogenide samples.

  8. On thermodynamic and microscopic reversibility

    SciTech Connect

    Crooks, Gavin E.

    2011-07-12

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa.

  9. STM-SQUID probe microscope

    NASA Astrophysics Data System (ADS)

    Hayashi, Tadayuki; Tachiki, Minoru; Itozaki, Hideo

    2007-11-01

    We have developed a STM-SQUID probe microscope. A high TC SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution prior to observation by SQUID microscopy. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk. Furthermore we have investigated a sample vibration method of the static magnetic field emanating from a sample with the aim of achieving a higher signal-to-noise (S/N) ratio.

  10. Single-wavelength STED microscope

    NASA Astrophysics Data System (ADS)

    Baer, Stephen C.

    2011-03-01

    The zero-point STED microscope (US Pat. 5,866,911)1 was the first far-field microscope to overcome the diffraction limit, but optimally it requires two expensive synchronized short-pulsed lasers. Replacing the synchronized pulsed lasers with CW lasers had been proposed to reduce costs1, but this seriously reduced resolution compared to a similarly powered pulsed STED microscope. A recent theoretical and experimental study (Nat. Methods 4, 915 (2007))3 argued that CW STED has better resolution than previously believed, but there appear to be flaws in the theory sufficient to raise questions about its reported experimental confirmation. We describe an alternative approach to reducing cost of the STED microscope while preserving resolution. A portion of the beam from a femtosecond pulsed laser of a wavelength able to excite fluorescence by multiphoton absorption, is passed through a long optical fiber to stretch the pulses to reduce their peak power so they can no longer excite but can quench by stimulated emission. The stretched pulses are shaped into a doughnut profile and then recombined with the first beam for interaction with the specimen. With suitable fluorophores, this instrument should be able to match the resolution performance of the pulsed laser STED microscope using separate lasers. Particularly when added to an existing multiphoton microscope, such performance should be achievable at extremely low added cost.

  11. Reflecting on Reflecting on Practice

    ERIC Educational Resources Information Center

    Wilson, Arthur L.

    2009-01-01

    This article discusses three broad themes--reflection, power, and negotiation--that are evidenced in all of the articles in this issue. In this article, the author tries to transgress the articles at some middling altitude to seek some broader thematics. His observations about reflection, power, and negotiation do transcend individual efforts,…

  12. Development of the fast astigmatic auto-focus microscope system

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Yao; Lee, Chien-Shing; Chen, Po-Jui; Chen, Nien-Tsu; Chen, Fong-Zhi; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hwang, Chi-Hung

    2009-04-01

    In this paper, a fast auto-focus microscope system was developed based on the astigmatic method. A collimated infrared laser beam was employed in the infinite-corrected microscope optical axis by the beam splitter and reflected by the sample surface. By embedding an astigmatic lens in the system, the reflected laser beam has different focal lengths in the sagittal and tangential planes. As the microscope's relative distance varies, the reflected laser beam shape also varies and can be detected by an embedded four-quadrant photodiode, i.e., the focus error signal (FES) can be found. Then, a fast auto-focus system can be realized by converting the FES to the microscope's defocus distance. We designed an astigmatic auto-focus system for a 20× objective lens with a ±50 µm working range, and this system could also be used for 10× and 5× objectives with ±200 µm and ±800 µm working ranges, respectively.

  13. Applications of 1 MV field-emission transmission electron microscope.

    PubMed

    Tonomura, Akira

    2003-01-01

    A newly developed 1 MV field-emission transmission electron microscope has recently been applied to the field of superconductivity by utilizing its bright and monochromatic field-emission electron beam. This microscope allows individual magnetic vortices inside high-Tc superconductors to be observed, thus, opening the way to investigate the unusual behaviour of vortices, which reflects the anisotropic layered structure of these superconducting materials. One example is the observation of the arrangements of chain vortex lines that are formed when a magnetic field is applied obliquely to the layer plane of the materials.

  14. Applications Of The Microscope System LSM

    NASA Astrophysics Data System (ADS)

    Kapitza, Hans-Georg; Wilke, Volker

    1989-02-01

    The new universal confocal LSM is a second-generation laser scanning microscope. This means, that laser scanning microscopy now made the transition from experimental set-up lab types to integrated workstations, where the manual handling of mechanical and optical components is left to the computer. The built-in microcomputer - now not only drives scanners and transforms signals into images but also controls directly the microscope functions. It turned out that this is a crucial step for making the LSM an universal instrument for widespread use in research and development. The switching from conventiona] microscopy to laser scanning modes and vice versa is performed by simply pressing keys. Not only images can be stored on the built-in hard disk but at the same time automati cally the corresponding set of parameters: Even weeks or months after creating an image the settings of the instrument belonging to this image can be called from the operators panel by loading a parameter file which defines the laser line used and its intensity setting, nosepiece position, zoom factor, averaging conditions, microscopy mode (transmitted, reflected or fluorescence) and parameters for signal conditioning. Since the microscope stand is motorized at a high degree, the computer recreates automatically the exact conditions desired after dialing the number of the parameter file. In this way working with the LSM becomes not only reproducible, but also the user is freed from the handling of mechanical parts and typing commands on a keyboard. Finally the automatized LSM allows true remote control by a host computer necessary for the most demanding 3D-reconstruction. The characteristics pointed out so far are prerequisites for the daily use by microscopists in life science, semiconductor research, development and testing and materials research.

  15. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  16. Microscope and method of use

    DOEpatents

    Bongianni, Wayne L.

    1984-01-01

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.

  17. Scanning thermal-conductivity microscope

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; McCarthy, Brendan; Grover, Ranjan

    2006-02-01

    This article describes a novel implementation of an atomic force microscope that can map thermal-conductivity features across a sample with a high spatial resolution. The microscope employs a single-sided, metal-coated cantilever, which acts as a bimetallic strip together with a heating laser whose beam is focused on the cantilever's free end, on the opposite side of its tip. Subtracting the topography obtained by the unheated and heated cantilevers yields a map of thermal conductivity across the surface of a sample. The article presents (a) the theory of operation of the microscope and (b) the experimental results obtained on a silicon sample with oxide features, showing good agreement between the two.

  18. Microscope and method of use

    DOEpatents

    Bongianni, W.L.

    1984-04-17

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers. 7 figs.

  19. Microscope and method of use

    SciTech Connect

    Bongianni, W.L.

    1981-08-18

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.

  20. Mosaic of Commemorative Microscope Substrate

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Written by electron beam lithography in the Microdevices Laboratory of NASA's Jet Propulsion Laboratory, this Optical Microscope substrate helps the Phoenix Mars Mission science team learn how to assemble individual microscope images into a mosaic by aligning rows of text.

    Each line is about 0.1 millimeter tall, the average thickness of a human hair. Except for the Mogensen twins, the names are of babies born and team members lost during the original development of MECA (the Microscopy, Electrochemistry and Conductivity Analyzer) for the canceled 2001 Mars lander mission. The plaque also acknowledges the MECA 2001 principal investigator, now retired.

    This image was taken by the MECA Optical Microscope on Sol 111, or the 111th day of the Phoenix mission (Sept. 16, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  1. Microscopic characterization of peptide nanostructures.

    PubMed

    Mammadov, Rashad; Tekinay, Ayse B; Dana, Aykutlu; Guler, Mustafa O

    2012-02-01

    Peptide-based nanomaterials have been utilized for various applications from regenerative medicine to electronics since they provide several advantages including easy synthesis methods, numerous routes for functionalization and biomimicry of secondary structures of proteins which leads to design of self-assembling peptide molecules to form nanostructures. Microscopic characterization at nanoscale is critical to understand processes directing peptide molecules to self-assemble and identify structure-function relationship of the nanostructures. Here, fundamental studies in microscopic characterization of peptide nanostructures are discussed to provide insights in widely used microscopy tools. In this review, we will encompass characterization studies of peptide nanostructures with modern microscopes, such as TEM, SEM, AFM, and advanced optical microscopy techniques. We will also mention specimen preparation methods and describe interpretation of the images.

  2. Inclined selective plane illumination microscopy adaptor for conventional microscopes.

    PubMed

    Cutrale, Francesco; Gratton, Enrico

    2012-11-01

    Driven by the biological sciences, there is an increased need for imaging modalities capable of live cell imaging with high spatial and temporal resolution. To achieve this goal in a comprehensive manner, three-dimensional acquisitions are necessary. Ideal features of a modern microscope system should include high imaging speed, high contrast ratio, low photo-bleaching and photo-toxicity, good resolution in a 3D context, and mosaic acquisition for large samples. Given the importance of collecting data in live sample further increases the technical challenges required to solve these issues. This work presents a practical version of a microscopy method, Selective Plane Illumination Microscopy re-introduced by Huisken et al. (Science2004,305,1007-1009). This method is gaining importance in the biomedical field, but its use is limited by difficulties associated with unconventional microscope design which employs two objectives and a particular kind of sample preparation needed to insert the sample between the objectives. Based on the selective plane illumination principle but with a design similar to the Total Internal Reflection Fluorescence microscope, Dunsby (Dunsby, Opt Express 2008,16,20306-20316) demonstrated the oblique plane microscope (OPM) using a single objective which uses conventional sample preparation protocols. However, the Dunsby instrument was not intended to be part of a commercial microscope. In this work, we describe a system with the advantages of OPM and that can be used as an adaptor to commonly used microscopes, such as IX-71 Olympus, simplifying the construction of the OPM and increasing performance of a conventional microscope. We named our design inclined selective plane illumination microscope (iSPIM).

  3. Microscopic Materials on a Magnet

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These images show a comparison of the weak magnet OM7 from the Optical Microscope on NASA's Phoenix Mars Lander before (left) and after (right) soil deposition.

    The microscope took the left image during Phoenix's Sol 15 (June 10, 2008) and the right image during Sol 21 (Jun 16, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Long working distance interference microscope

    DOEpatents

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.

    2004-04-13

    Disclosed is a long working distance interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. The long working distance of 10-30 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-D height profiles of MEMS test structures to be acquired across an entire wafer. A well-matched pair of reference/sample objectives is not required, significantly reducing the cost of this microscope, as compared to a Linnik microinterferometer.

  5. Reflectance Modeling

    NASA Technical Reports Server (NTRS)

    Smith, J. A. (Principal Investigator)

    1985-01-01

    The overall goal of this work has been to develop a set of computational tools and media abstractions for the terrain bidirectional reflectance problem. The modeling of soil and vegetation surfaces has been emphasized with a gradual increase in the complexity of the media geometries treated. Pragmatic problems involved in the combined modeling of soil, vegetation, and atmospheric effects have been of interest and one of the objectives has been to describe the canopy reflectance problem in a classical radiative transfer sense permitting easier inclusion of our work by other workers in the radiative transfer field.

  6. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains

    PubMed Central

    Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43−at 450 cm-1 and ν4PO43− from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with

  7. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    PubMed

    Woess, Claudia; Unterberger, Seraphin Hubert; Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with time

  8. Switch on Micro*scope!

    ERIC Educational Resources Information Center

    Roland, Sarah; Bahr, Michele; Olendzenski, Lorraine; Patterson, David J.

    2005-01-01

    Scientists at the Marine Biological Laboratory in Woods Hole, Massachusetts, have created micro*scope, a free, searchable knowledge environment for exploring the microbial world. Microbiology can easily be incorporated into the curriculum, because microbial communities are easy to access. Organisms grow quickly, making certain arrays of…

  9. Scanning tunneling microscope nanoetching method

    DOEpatents

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  10. Nature Study with the Microscope.

    ERIC Educational Resources Information Center

    Sollberger, Dwight E.

    1991-01-01

    Identifies specific instruction difficulties, potential problems, solutions, and activities for successful use of microscopes in the classroom. Procedures are outlined for guiding students in creating their own slides with monocotyledon and dicotyledon stems, fern spores, stomata, lichens, and red onions. (MCO)

  11. Curriculum Guidelines for Microscopic Anatomy.

    ERIC Educational Resources Information Center

    Journal of Dental Education, 1993

    1993-01-01

    The American Association of Dental Schools' guidelines for curricula in microscopic anatomy offer an overview of the histology curriculum, note primary educational goals, outline specific content for general and oral histology, suggest prerequisites, and make recommendations for sequencing. Appropriate faculty and facilities are also suggested.…

  12. Chasing Meteors With a Microscope.

    ERIC Educational Resources Information Center

    Jones, Richard C.

    1993-01-01

    Describes types of meteors and micrometeorites that enter the Earth's atmosphere. Presents an activity where students collect micrometeorites with a strip of tape in an undisturbed outdoor area. After 24 hours, they examine the tape by sandwiching it between 2 glass slides and view through a microscope at 100X. (PR)

  13. The Biggest Microscopic Image Ever

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a mosaic of four individual frames taken by the microscopic imager that have been very carefully stitched together to reveal the entire 5-centimeter-diameter (almost 2-inch) hole left on the rock dubbed 'Humphrey.' The holes were created by the Mars Exploration Rover Spirit's rock abrasion tool. The mosaic, created on March 7, 2004, is the first of its kind of an abraded surface on Mars, and gave scientists their first ever microscopic imager view of the entire drilled area. While it is easy for the panoramic camera and the navigation cameras to fit an area this size into their field of view, the microscopic imager can only capture a portion of the ground area with each image.

    Scientists are interested in many of the small features on 'Humphrey' uncovered by the rock abrasion tool and made visible by the microscopic imager. The sinuous veins within the rock could be evidence that water was trickling through the material while it was deep underground, whereas the dark 'age spots' in the center of the hole may be crystals of the mineral olivine.

  14. Teaching Optics to Biology Students Through Constructing a Light Microscope

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer

    2015-03-01

    The microscope is familiar to many disciplines, including physics, materials science, chemistry, and the life sciences. It demonstrates fundamental aspects of ray and wave optics, making it an ideal system to help educate students in the basic concepts of optics and in measurement principles and techniques. We present an experimental system developed to teach students the basics of ray and wave optics. The students design, build, and test a light microscope made from optics components. We describe the equipment and the basic measurements that students can perform to develop experimental techniques to understand optics principles. Students measure the magnification and test the resolution of the microscope. The system is open and versatile to allow advanced projects such as epi-fluorescence, total internal reflection fluorescence, and optical trapping. We have used this equipment in an optics course, an advanced laboratory course, and graduate-level training modules.

  15. Phase resolved and coherence gated en face reflection imaging of multilayered embryonal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Fukami, Tadashi; Iwai, Hidenao; Yamashita, Yutaka

    2012-03-01

    Embryonal carcinoma (EC) cells, which are cell lines derived from teratocarcinomas, have characteristics in common with stem cells and differentiate into many kinds of functional cells. Similar to embryonic stem (ES) cells, undifferentiated EC cells form multi-layered spheroids. In order to visualize the three-dimensional structure of multilayered EC cells without labeling, we employed full-field interference microscopy with the aid of a low-coherence quantitative phase microscope, which is a reflection-type interference microscope employing the digital holographic technique with a low-coherent light source. Owing to the low-coherency of the light-source (halogen lamp), only the light reflected from reflective surface at a specific sectioning height generates an interference image on the CCD camera. P19CL6 EC cells, derived from mouse teratocarcinomas, formed spheroids that are about 50 to 200 micrometers in diameter. Since the height of each cell is around 10 micrometers, it is assumed that each spheroid has 5 to 20 cell layers. The P19CL6 spheroids were imaged in an upright configuration and the horizontally sectioned reflection images of the sample were obtained by sequentially and vertically scanning the zero-path-length height. Our results show the threedimensional structure of the spheroids, in which plasma and nuclear membranes were distinguishably imaged. The results imply that our technique is further capable of imaging induced pluripotent stem (iPS) cells for the assessment of cell properties including their pluripotency.

  16. Experiments on terahertz 3D scanning microscopic imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Qi

    2016-10-01

    Compared with the visible light and infrared, terahertz (THz) radiation can penetrate nonpolar and nonmetallic materials. There are many studies on the THz coaxial transmission confocal microscopy currently. But few researches on the THz dual-axis reflective confocal microscopy were reported. In this paper, we utilized a dual-axis reflective confocal scanning microscope working at 2.52 THz. In contrast with the THz coaxial transmission confocal microscope, the microscope adopted in this paper can attain higher axial resolution at the expense of reduced lateral resolution, revealing more satisfying 3D imaging capability. Objects such as Chinese characters "Zhong-Hua" written in paper with a pencil and a combined sheet metal which has three layers were scanned. The experimental results indicate that the system can extract two Chinese characters "Zhong," "Hua" or three layers of the combined sheet metal. It can be predicted that the microscope can be applied to biology, medicine and other fields in the future due to its favorable 3D imaging capability.

  17. Neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice; Menelle, Alain

    2015-10-01

    The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples) and two examples related to the materials for energy.

  18. Development of X-ray imaging microscopes for LMJ

    NASA Astrophysics Data System (ADS)

    Troussel, Philippe; Rosch, Rudolph; Reverdin, Charles; Soullié, Gérard; Boutin, Jean Yves; Marmoret, Rémy; Richard, André; Bridou, Francoise; Delmotte, Franck

    2010-11-01

    For the future Laser Megajoules French facility (LMJ), our laboratory develops time-resolved X-ray Imaging systems to diagnose laser produced plasma. In this presentation, we describe the design of these imagers which combine grazing X-ray microscope and camera. A first set of three imaging diagnostics will give basic measurements during all the life of the facility : two twelve-image microscopes focalize X-rays from the target on a framing camera. The third one produces an image on a streak camera. These microscopes also contain refractive lenses to extend the spectral range up to 15 keV. A second set of diagnostics will consist of advanced high resolution X-ray imaging systems. Imaging studies performed with a microscope composed of three concave toroidal mirrors are presented. This microscope, working at 0.6 degrees grazing incidence, has a focal length longer than 80 cm. About the imaging performances, we have achieved a spatial resolution of about 6 microns for the sagittal dimension and around 10 microns for the tangential dimension within a field of 1 mm. To increase the bandwidth of reflectivity of all these mirrors until 10 keV, multilayer coatings have been deposited.

  19. Confocal scanning beam laser microscope/macroscope: applications in fluorescence

    NASA Astrophysics Data System (ADS)

    Dixon, Arthur E.; Damaskinos, Savvas; Ribes, Alfonso

    1996-03-01

    A new confocal scanning beam laser microscope/macroscope is described that combines the rapid scan of a scanning beam laser microscope with the large specimen capability of a scanning stage microscope. This instrument combines an infinity-corrected confocal scanning laser microscope with a scanning laser macroscope that uses a telecentric f*(Theta) laser scan lens to produce a confocal imaging system with a resolution of 0.25 microns at a field of view of 25 microns and 5 microns at a field of view of 75,000 microns. The frame rate is 5 seconds per frame for a 512 by 512 pixel image, and 25 seconds for a 2048 by 2048 pixel image. Applications in fluorescence are discussed that focus on two important advantages of the instrument over a confocal scanning laser microscope: an extremely wide range of magnification, and the ability to image very large specimens. Examples are presented of fluorescence and reflected-light images of high quality printing, fluorescence images of latent fingerprints, packaging foam, and confocal autofluorescence images of a cricket.

  20. Versatile multispectral microscope based on light emitting diodes

    NASA Astrophysics Data System (ADS)

    Brydegaard, Mikkel; Merdasa, Aboma; Jayaweera, Hiran; Ålebring, Jens; Svanberg, Sune

    2011-12-01

    We describe the development of a novel multispectral microscope, based on light-emitting diodes, capable of acquiring megapixel images in thirteen spectral bands from the ultraviolet to the near infrared. The system captures images and spectra in transmittance, reflectance, and scattering modes. We present as examples of applications ground truth measurements for remote sensing and parasitology diagnostics. The system is a general purpose scientific instrument that could be used to develop dedicated simplified instruments with optimal bands and mode selection.

  1. Compact scanning-force microscope using a laser diode

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; Iams, Doug; Weissenberger, Volker; Bell, L. Stephen

    1988-12-01

    The paper describes the operation of a compact scanning-force microscope in which the gradient of force acting on a vibrating tip is monitored by a diode laser and its integrated photodiode. The system does not require reflecting or focusing elements or complicated electronics. Experimental results using this system with magnetic domains on a magnetooptic storage medium attest to the feasibility of this concept.

  2. A mini-microscope for in situ monitoring of cells.

    PubMed

    Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R; Hamilton, Geraldine A; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E; Khademhosseini, Ali

    2012-10-21

    A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost.

  3. Shear Brillouin light scattering microscope

    PubMed Central

    Kim, Moonseok; Besner, Sebastien; Ramier, Antoine; Kwok, Sheldon J. J.; An, Jeesoo; Scarcelli, Giuliano; Yun, Seok Hyun

    2016-01-01

    Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution. PMID:26832263

  4. Nanocarpets for Trapping Microscopic Particles

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel

    2004-01-01

    Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.

  5. Hyperbaric hydrothermal atomic force microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  6. Hyperbaric Hydrothermal Atomic Force Microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  7. Optical Analysis of Microscope Images

    NASA Astrophysics Data System (ADS)

    Biles, Jonathan R.

    Microscope images were analyzed with coherent and incoherent light using analog optical techniques. These techniques were found to be useful for analyzing large numbers of nonsymbolic, statistical microscope images. In the first part phase coherent transparencies having 20-100 human multiple myeloma nuclei were simultaneously photographed at 100 power magnification using high resolution holographic film developed to high contrast. An optical transform was obtained by focussing the laser onto each nuclear image and allowing the diffracted light to propagate onto a one dimensional photosensor array. This method reduced the data to the position of the first two intensity minima and the intensity of successive maxima. These values were utilized to estimate the four most important cancer detection clues of nuclear size, shape, darkness, and chromatin texture. In the second part, the geometric and holographic methods of phase incoherent optical processing were investigated for pattern recognition of real-time, diffuse microscope images. The theory and implementation of these processors was discussed in view of their mutual problems of dimness, image bias, and detector resolution. The dimness problem was solved by either using a holographic correlator or a speckle free laser microscope. The latter was built using a spinning tilted mirror which caused the speckle to change so quickly that it averaged out during the exposure. To solve the bias problem low image bias templates were generated by four techniques: microphotography of samples, creation of typical shapes by computer graphics editor, transmission holography of photoplates of samples, and by spatially coherent color image bias removal. The first of these templates was used to perform correlations with bacteria images. The aperture bias was successfully removed from the correlation with a video frame subtractor. To overcome the limited detector resolution it is necessary to discover some analog nonlinear intensity

  8. Microscopic Description of Scission Configurations

    SciTech Connect

    Dubray, N.; Goutte, H.; Berger, J. F.

    2007-02-26

    Properties of 226Th, 256Fm, 258Fm and 260Fm nuclei in the scission region are described using a full-microscopic Hartree-Fock-Bogoliubov approach with the effective Gogny nucleon-nucleon interaction. In a first step, the Potential Energy Surfaces are computed in the (q 20, q30) plane, the scission lines are found, fulfilling a given criterion on the density in the nuclear neck. Finally a few properties of the fragments along this line are presented.

  9. Apparatus Would Stain Microscope Slides

    NASA Technical Reports Server (NTRS)

    Breeding, James D.

    1993-01-01

    Proposed apparatus meters specific amounts of fluid out of containers at specific times to stain microscope slides. Intended specifically for semiautomated staining of microbiological and hematological samples in microgravity, leakproof apparatus used in other environments in which technicians have little time to allocate to staining procedures and/or exposure to toxic staining agents or to micro-organisms to be stained hazardous. Apparatus adapted to perform almost any staining procedure and accommodates multiple staining reagents, useful for small or remote clinical laboratories.

  10. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas

    PubMed Central

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas K.

    2016-01-01

    This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system’s fixed oblique angle of 30° are shown to be a hybridization of TE and TM modes. The models are validated with transmission spectroscopy at fixed points on fresh bovine muscle and fat tissues. Images based on the calculated absorption coefficient and index of refraction of bovine tissue are successfully compared with the terahertz magnitude and phase measured in the reflection mode. The validated techniques are extended to 20 and 30 μm slices of fixed human lobular carcinoma and infiltrating ductal carcinoma mounted on polystyrene microscope slides in order to investigate the terahertz differentiation of the carcinoma with non-cancerous tissue. Both transmission and reflection imaging show clear differentiation in carcinoma versus healthy tissue. However, when using the reflection mode, in the calculation of the thin tissue properties, the absorption is shown to be sensitive to small phase variations that arise due to deviations in slide and tissue thickness and non-ideal tissue adhesion. On the other hand, the results show that the transmission mode is much less sensitive to these phase variations. The results also demonstrate that reflection imaging provides higher resolution and more clear margins between cancerous and fibroglandular regions, cancerous and fatty regions, and fibroglandular and fatty tissue regions. In addition, more features consistent with high power pathology images are exhibited in the reflection mode images. PMID:27699136

  11. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas.

    PubMed

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas K

    2016-09-01

    This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system's fixed oblique angle of 30° are shown to be a hybridization of TE and TM modes. The models are validated with transmission spectroscopy at fixed points on fresh bovine muscle and fat tissues. Images based on the calculated absorption coefficient and index of refraction of bovine tissue are successfully compared with the terahertz magnitude and phase measured in the reflection mode. The validated techniques are extended to 20 and 30 μm slices of fixed human lobular carcinoma and infiltrating ductal carcinoma mounted on polystyrene microscope slides in order to investigate the terahertz differentiation of the carcinoma with non-cancerous tissue. Both transmission and reflection imaging show clear differentiation in carcinoma versus healthy tissue. However, when using the reflection mode, in the calculation of the thin tissue properties, the absorption is shown to be sensitive to small phase variations that arise due to deviations in slide and tissue thickness and non-ideal tissue adhesion. On the other hand, the results show that the transmission mode is much less sensitive to these phase variations. The results also demonstrate that reflection imaging provides higher resolution and more clear margins between cancerous and fibroglandular regions, cancerous and fatty regions, and fibroglandular and fatty tissue regions. In addition, more features consistent with high power pathology images are exhibited in the reflection mode images.

  12. Microscope Image of Scavenged Particles

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Phoenix Mars Lander's Optical Microscope shows a strongly magnetic surface which has scavenged particles from within the microscope enclosure before a sample delivery from the lander's Robotic Arm. The particles correspond to the larger grains seen in fine orange material that makes up most of the soil at the Phoenix site. They vary in color, but are of similar size, about one-tenth of a millimeter.

    As the microscope's sample wheel moved during operation, these particles also shifted, clearing a thin layer of the finer orange particles that have also been collected. Together with the previous image, this shows that the larger grains are much more magnetic than the fine orange particles with a much larger volume of the grains being collected by the magnet. The image is 2 milimeters across.

    It is speculated that the orange material particles are a weathering product from the larger grains, with the weathering process both causing a color change and a loss of magnetism.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  13. Duties to Extraterrestrial Microscopic Organisms

    NASA Astrophysics Data System (ADS)

    Cockell, C. S.

    Formulating a normative axiology for the treatment of extraterrestrial microscopic organisms, should they ever be found, requires an extension of environmental ethics to beyond the Earth. Using an ethical framework for the treatment of terrestrial micro-organisms, this paper elaborates a similar ethic for the treatment of extraterrestrial microscopic organisms. An ethic of `teloempathy' allows for the moral considerability of any organism that has `interests', based on rudimentary qualities of conativism, and therefore allows for an identical treatment of all life, related or not related to life on Earth. Although, according to this ethic, individual extraterrestrial microscopic organisms have a good of their own and even `rights', at this level the ethic can only be theoretical, allowing for the inevitable destruction of many individual organisms during the course of human exploratory missions, similarly to the daily destruction of microbes by humans on Earth. A holistic teloempathy, an operative ethic, not only provides a framework for human exploration, but it also has important implications for planetary protection and proposals to implement planetary-scale atmospheric alterations on other bodies. Even prior to the discovery of extraterrestrial life, or the discovery of a complete absence of such life, this exercise yields important insights into the moral philosophy that guides our treatment of terrestrial micro-organisms.

  14. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  15. Scanned probe microscope for biological applications

    NASA Astrophysics Data System (ADS)

    Baiburin, Vil B.; Konnov, Nikolai P.; Shcherbakov, Anatolyi A.; Malakhaeva, Alina N.; Zadnova, Svetlana P.; Volkov, Yuri P.

    1997-12-01

    In our biophysical laboratory has been developed a new scanned probe microscope (SPM) for biological application. The SPM allows to investigate a biological samples' surface by means of three different near field microscopes: scanning tunneling microscope (STM), atomic force microscope (AFM) and near field scanning optical microscope (NSOM). The SPM is very rigid and can be operated in ordinary laboratory without any vibration isolation. The scanning area of the microscope is about 10 by 10 micrometers. Some different biological objects were visualized by means of the SPM viz. bacteria (E. Coli, plague, cholera, staphylococcus), macromolecules (DNA, plague proteins) and phage (T2).

  16. 21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction.... Assisted reproduction microscopes and microscope accessories (excluding microscope stage warmers, which are classified under assisted reproduction accessories) are optical instruments used to enlarge images of...

  17. 21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction.... Assisted reproduction microscopes and microscope accessories (excluding microscope stage warmers, which are classified under assisted reproduction accessories) are optical instruments used to enlarge images of...

  18. 21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction.... Assisted reproduction microscopes and microscope accessories (excluding microscope stage warmers, which are classified under assisted reproduction accessories) are optical instruments used to enlarge images of...

  19. 21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction.... Assisted reproduction microscopes and microscope accessories (excluding microscope stage warmers, which are classified under assisted reproduction accessories) are optical instruments used to enlarge images of...

  20. 21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction.... Assisted reproduction microscopes and microscope accessories (excluding microscope stage warmers, which are classified under assisted reproduction accessories) are optical instruments used to enlarge images of...

  1. Reflective Packaging

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.

  2. Biology Reflective Assessment Curriculum

    NASA Astrophysics Data System (ADS)

    Bayley, Cheryl Ann

    Often students and educators view assessments as an obligation and finality for a unit. In the current climate of high-stakes testing and accountability, the balance of time, resources and emphasis on students' scores related to assessment have been slanted considerably toward the summative side. This tension between assessment for accountability and assessment to inform teaching strains instruction and educators' ability to use that information to design learning opportunities that help students develop deeper conceptual understanding. A substantive body of research indicates that formative and reflective assessment can significantly improve student learning. Biology Reflective Assessment Curriculum (BRAC) examines support provided for high school science students through assessment practices. This investigation incorporates the usage of reflective assessments as a guiding practice for differentiated instruction and student choice. Reflective assessment is a metacognitive strategy that promotes self-monitoring and evaluation. The goals of the curriculum are to promote self-efficacy and conceptual understanding in students learning biology through developing their metacognitive awareness. BRAC was implemented in a high school biology classroom. Data from assessments, metacognitive surveys, self-efficacy surveys, reflective journals, student work, a culminating task and field notes were used to evaluate the effectiveness of the curriculum. The results suggest that students who develop their metacognitive skills developed a deeper conceptual understanding and improved feelings of self-efficacy when they were engaged in a reflective assessment unit embedded with student choice. BRAC is a tool for teachers to use assessments to assist students in becoming metacognitive and to guide student choice in learning opportunities.

  3. Pathology and differential diagnosis of chronic, noninfectious gastritis.

    PubMed

    Polydorides, Alexandros D

    2014-03-01

    The histologic finding of chronic inflammation in an endoscopic mucosal biopsy of the stomach (chronic gastritis) is very common and usually reflects the presence of Helicobacter pylori infection. However, infectious organisms are not always present in biopsy material, and some cases of chronic gastritis do not result from H. pylori infection. Thus, the differential diagnosis of this finding is an important one for pathologists to keep in mind. This review presents the three most common and clinically significant causes of chronic, noninfectious gastritis, namely, autoimmune atrophic gastritis, lymphocytic gastritis, and gastric involvement in the setting of inflammatory bowel disease, especially Crohn disease. For each entity, a brief discussion of its etiology and pathogenesis, a review of the clinical and endoscopic features, and a description of the microscopic findings are presented in the context of the differential diagnosis of chronic gastritis with emphasis on helpful histopathologic hints and long-term sequelae.

  4. An auto-focusing system for white light microscopic measurement

    NASA Astrophysics Data System (ADS)

    Chang, Ming; Deka, Juti Rani; Chen, Pei Jung; Chen, Yu Kuan; Cui, Changcai

    2008-12-01

    With the rapid development of semiconductor technology the demand for high resolution measuring system is evolving at an ever-increasing pace. Microscope was initially used to detect the defect by connecting charge couple device (CCD) as an auxiliary device. In general, for microscopic measurement human eyes are used to focus on the sample. The adjustment depends on the operator's astute measurement ability, which affected the repeatability and accuracy of the readings. There is a need of high-speed microscope auto focusing system for industrial applications. The present investigation describes about the development of an autofocus system to carry out microscopic measurement more precisely and accurately with less time. The measurement system consists of a light source, two beam splitters, a movable sample stage and a Mirau's interferometer, a photo-detector and 8051 microcontroller (MCU89C51). The light reflected from the sample surface interferes with the light reflected from the reference and produce an interference pattern, which is imaged onto a CCD array. In the setup developed for the autofocus one extra beam splitter is placed in the path of interfered beam to the CCD. The beam splitter is placed at equal distances from the CCD and the photodetector. The focus position is determined from the voltage developed in the photo-detector due to the movement of sample stage of the microscope. The maximum voltage that obtained at the focus position is confirmed with the CCD image. Microcontroller is used to stop the controller at the focus position immediately once the sample stage reaches it. Software is developed to locate the maximum intensity position. The design may autofocus the interferometer within 4mm distance in 1 second. The auto-focusing not only provides enhanced repeatability and accuracy of the results at a faster rate but also minimizes operator involvement.

  5. Solid-state optical microscope

    DOEpatents

    Young, I.T.

    1981-01-07

    A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  6. Stimulated Parametric Emission Microscope Systems

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuyoshi; Isobe, Keisuke

    2006-10-01

    We present a novel microscopy technique based on the fourwave mixing (FWM) process that is enhanced by two-photon electronic resonance induced by a pump pulse along with stimulated emission induced by a dump pulse. A Ti:sapphire laser and an optical parametric oscillator are used as light sources for the pump and dump pulses, respectively. We demonstrate that our FWM technique can be used to obtain two-dimensional microscopic images of an unstained leaf of Camellia sinensis and an unlabeled tobacco BY2 Cell.

  7. Stimulated Brillouin Scattering Microscopic Imaging

    PubMed Central

    Ballmann, Charles W.; Thompson, Jonathan V.; Traverso, Andrew J.; Meng, Zhaokai; Scully, Marlan O.; Yakovlev, Vladislav V.

    2015-01-01

    Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue. PMID:26691398

  8. Microscopic tubes in igneous rocks

    NASA Technical Reports Server (NTRS)

    Richter, D.; Simmons, G.

    1977-01-01

    Microscopic tubes have been observed in several igneous rocks and may be quite common. They occur in single crystals and have either elliptical or circular cross-sections 1 to 5 microns in diameter and are ten to hundreds of microns long. Microtubes may be hollow or partially or completely filled with another phase, but are distinct from acicular crystals of accessory minerals such as rutile. Microtubes can form by at least three processes: (1) the partial annealing of microcracks, (2) the natural etching of dislocations, or (3) the primary inclusion of fluid material during crystal growth.

  9. Microscopic Analysis of Activated Sludge. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on the use of a compound microscope to analyze microscope communities, present in wastewater treatment processes, for operational control. Course topics include: sampling techniques, sample handling, laboratory analysis, identification of organisms, data interpretation, and use of the compound microscope.…

  10. A Student-Built Scanning Tunneling Microscope

    ERIC Educational Resources Information Center

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  11. High-speed atomic force microscope combined with single-molecule fluorescence microscope

    NASA Astrophysics Data System (ADS)

    Fukuda, Shingo; Uchihashi, Takayuki; Iino, Ryota; Okazaki, Yasutaka; Yoshida, Masato; Igarashi, Kiyohiko; Ando, Toshio

    2013-07-01

    High-speed atomic force microscopy (HS-AFM) and total internal reflection fluorescence microscopy (TIRFM) have mutually complementary capabilities. Here, we report techniques to combine these microscopy systems so that both microscopy capabilities can be simultaneously used in the full extent. To combine the two systems, we have developed a tip-scan type HS-AFM instrument equipped with a device by which the laser beam from the optical lever detector can track the cantilever motion in the X- and Y-directions. This stand-alone HS-AFM system is mounted on an inverted optical microscope stage with a wide-area scanner. The capability of this combined system is demonstrated by simultaneous HS-AFM/TIRFM imaging of chitinase A moving on a chitin crystalline fiber and myosin V walking on an actin filament.

  12. High-speed atomic force microscope combined with single-molecule fluorescence microscope.

    PubMed

    Fukuda, Shingo; Uchihashi, Takayuki; Iino, Ryota; Okazaki, Yasutaka; Yoshida, Masato; Igarashi, Kiyohiko; Ando, Toshio

    2013-07-01

    High-speed atomic force microscopy (HS-AFM) and total internal reflection fluorescence microscopy (TIRFM) have mutually complementary capabilities. Here, we report techniques to combine these microscopy systems so that both microscopy capabilities can be simultaneously used in the full extent. To combine the two systems, we have developed a tip-scan type HS-AFM instrument equipped with a device by which the laser beam from the optical lever detector can track the cantilever motion in the X- and Y-directions. This stand-alone HS-AFM system is mounted on an inverted optical microscope stage with a wide-area scanner. The capability of this combined system is demonstrated by simultaneous HS-AFM∕TIRFM imaging of chitinase A moving on a chitin crystalline fiber and myosin V walking on an actin filament.

  13. Reflected Glory

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  14. Inspection with Robotic Microscopic Imaging

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Deans, Matthew; Kunz, Clay; Sargent, Randy; Chen, Alan; Mungas, Greg

    2005-01-01

    Future Mars rover missions will require more advanced onboard autonomy for increased scientific productivity and reduced mission operations cost. One such form of autonomy can be achieved by targeting precise science measurements to be made in a single command uplink cycle. In this paper we present an overview of our solution to the subproblems of navigating a rover into place for microscopic imaging, mapping an instrument target point selected by an operator using far away science camera images to close up hazard camera images, verifying the safety of placing a contact instrument on a sample or finding nearby safe points, and analyzing the data that comes back from the rover. The system developed includes portions used in the Multiple Target Single Cycle Instrument Placement demonstration at NASA Ames in October 2004, and portions of the MI Toolkit delivered to the Athena Microscopic Imager Instrument Team for the MER mission still operating on Mars today. Some of the component technologies are also under consideration for MSL mission infusion.

  15. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  16. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  17. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  18. Martian Magnets Under the Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Mars Exploration Rover Spirit acquired this microscopic imager view of its capture magnet on sol 92 (April 6, 2004). Both Spirit and the Mars Exploration Rover Opportunity are equipped with a number of magnets. The capture magnet, as seen here, has a stronger charge than its sidekick, the filter magnet. The lower-powered filter magnet captures only the most magnetic airborne dust with the strongest charges, while the capture magnet picks up all magnetic airborne dust.

    The magnets' primary purpose is to collect the martian magnetic dust so that scientists can analyze it with the rovers' Moessbauer spectrometers. While there is plenty of dust on the surface of Mars, it is difficult to confirm where it came from, and when it was last airborne. Because scientists are interested in learning about the properties of the dust in the atmosphere, they devised this dust-collection experiment.

    The capture magnet is about 4.5 centimeters (1.8 inches) in diameter and is constructed with a central cylinder and three rings, each with alternating orientations of magnetization. Scientists have been monitoring the continual accumulation of dust since the beginning of the mission with panoramic camera and microscopic imager images. They had to wait until enough dust accumulated before they could get a Moessbauer spectrometer analysis. The results of that analysis, performed on sol 92, have not been sent back to Earth yet.

  19. Optical inversions based on polarization parameters indirect microscopic imaging

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Huang, Zicheng; Ni, Guoqiang

    2016-10-01

    The resolution of conventional optical microscope is intrinsically limited by the optical diffraction, therefore it cannot be used in the measurement of sub-100nm shape and structural detection. Non-optical imaging techniques are not limited by the optical diffraction. For example, scanning tunneling microscopy (STM) and atomic force microscopy (AFM), but both of them have the weakness of narrow view field, low efficiency, and excessive cost. To detect nanoscale material, a new microscopic imaging technique is introduced in this paper, i.e. the polarization parameter indirect microscopic imaging technique. A conventional reflection microscopic system is used as the basic optical system, with polarization-modulation mechanics being inserted into it. The near-field structural characteristics can be delivered by optical wave and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated, and then curves of the image intensity can be obtained. By analyzing the near-field polarization parameters in nanoscale, indirect polarization parameter imaging can be established.

  20. Fluorescein sodium fluorescence microscope-integrated lymphangiography for lymphatic supermicrosurgery.

    PubMed

    Ayestaray, Benoit; Bekara, Farid

    2015-07-01

    Microscope-integrated lymphangiography is a useful method in the field of lymphatic supermicrosurgery. Fluorescence based on indocyanine green (ICG) is the most commonly used. Fluorescein sodium is a fluorescent tracer used for retinal and neurosurgical angiography but not yet for lymphatic supermicrosurgery. In this report, we present a case in which the fluorescein sodium fluorescence microscope-integrated lymphangiography was used for assessment of lymphatic drainage pathway and patency in a patient treated for secondary lymphedema by lymphaticovenular anastomoses. Fluorescein sodium fluorescence microscope-integrated lymphangiography was evaluated in a 67-year-old female presented for a Campisi clinical stage IV lymphedema of the upper limb. Transcutaneous guidance and vascular fluorescence were assessed. A comparison with ICG fluorescence was made intraoperatively. Two lymphaticovenular anastomoses were performed and their patency were checked by lymphangiography. Transcutaneous signal was found higher with fluorescein sodium fluorescence. Intraluminal visualization was possible with fluorescein sodium coloration during lymphaticovenular anastomoses. No adverse reaction occurred. The circumferential differential reduction rate of affected limb was 8.1% 3 months after lymphaticovenular anastomoses. The use of fluorescence microscope-integrated lymphangiography with fluorescein sodium may be superior to ICG fluorescence in assistance of lymphaticovenular anastomoses.

  1. Parameter estimation method for blurred cell images from fluorescence microscope

    NASA Astrophysics Data System (ADS)

    He, Fuyun; Zhang, Zhisheng; Luo, Xiaoshu; Zhao, Shulin

    2016-10-01

    Microscopic cell image analysis is indispensable to cell biology. Images of cells can easily degrade due to optical diffraction or focus shift, as this results in low signal-to-noise ratio (SNR) and poor image quality, hence affecting the accuracy of cell analysis and identification. For a quantitative analysis of cell images, restoring blurred images to improve the SNR is the first step. A parameter estimation method for defocused microscopic cell images based on the power law properties of the power spectrum of cell images is proposed. The circular radon transform (CRT) is used to identify the zero-mode of the power spectrum. The parameter of the CRT curve is initially estimated by an improved differential evolution algorithm. Following this, the parameters are optimized through the gradient descent method. Using synthetic experiments, it was confirmed that the proposed method effectively increased the peak SNR (PSNR) of the recovered images with high accuracy. Furthermore, experimental results involving actual microscopic cell images verified that the superiority of the proposed parameter estimation method for blurred microscopic cell images other method in terms of qualitative visual sense as well as quantitative gradient and PSNR.

  2. Quantitative determination of two polymorphic forms of imatinib mesylate in a drug substance and tablet formulation by X-ray powder diffraction, differential scanning calorimetry and attenuated total reflectance Fourier transform infrared spectroscopy.

    PubMed

    Bellur Atici, Esen; Karlığa, Bekir

    2015-10-10

    Imatinib has been identified as a tyrosine kinase inhibitor that selectively inhibits the Abl tyrosine kinases, including Bcr-Abl. The active substance used in drug product is the mesylate salt form of imatinib, a phenylaminopyrimidine derivative and chemically named as N-(3-(4-(pyridin-3-yl) pyrimidin-2-ylamino)-4-methylphenyl)-4-((4-methylpiperazin-1-yl) methyl)-benzamide methanesulfonic acid salt. It exhibits many polymorphic forms and most stable and commercialized polymorphs are known as α and β forms. Molecules in α and β polymorphic forms exhibit significant conformational differences due to their different intra- and intermolecular interactions, which stabilize their molecular conformations and affect their physicochemical properties such as bulk density, melting point, solubility, stability, and processability. The manufacturing process of a drug tablet included granulation, compression, coating, and drying may cause polymorphic conversions. Therefore, polymorphic content of the drug substance should be controlled during quality control and stability testing. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) methods were evaluated for determination of the polymorphic content of the drug substance and drug product; and PXRD was the most accurate technique and selected as preferred method and validated. Prior to development of a quantification method, pure α and β polymorphs were characterized and used throughout the method development and validation studies. Mixtures with different ratios of α and β forms were scanned using X-ray diffractometer with a scan rate of 0.250°/min over an angular range of 19.5-21.0° 2θ and the peak heights for characteristic peak of β form at 20.5 ± 0.2° 2θ diffraction angle were used to generate a calibration curve. The detection limit of β polymorph in α form imatinib mesylate tablets was found as 4% and

  3. Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope.

    PubMed

    Mathew, Manoj; Santos, Susana I C O; Zalvidea, Dobryna; Loza-Alvarez, Pablo

    2009-07-01

    In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans.

  4. Improved Spatial Resolution for Reflection Mode Infrared Microscopy

    SciTech Connect

    Bechtel, Hans A.; Martin, Michael C.; May, T.E.; Lerch, Philippe

    2009-10-09

    Standard commercial infrared microscopes operating in reflection mode use a mirror to direct the reflected light from the sample to the detector. This mirror blocks about half of the incident light, however, and thus degrades the spatial resolution by reducing the umerical aperture of the objective. Here, we replace the mirror with a 50% beamsplitter to allow full illumination of the objective and retain a way to direct the reflected light to the detector. The improved spatial resolution is demonstrated using two different microscopes apable of diffraction-limited resolution: the first microscope is coupled to a synchrotron source and utilizes a single point detector, whereas the second microscope has a standard blackbody source and uses a focal planetarray (FPA) detector.

  5. Automated dimensional analysis using a light-sectioning microscope

    SciTech Connect

    Loomis, J.; Lightman, A.; Poe, A.; Caldwell, R.

    1988-12-31

    A computer vision system has been integrated with a modified light-sectioning microscope for quality control and inspection of a machined part whose critical dimensions are 30 to 300 {mu}m. Height measurements were determined by analysis of the projected light-section line. Transverse measurements were made using the microscope in a traditional configuration with illumination from selected elements of an external LED ring array. The light section irradiance was under computer control to accommodate the spatial variations in surface reflectance whose dynamic range exceeded that of the vision system. Part features are located by the vision system. Edges and line centers are then measured to sub-pixel resolution with a gray-level analysis algorithm. This paper describes the design and operation of this system. Details of the measurement process and analysis algorithms are provided.

  6. Laser confocal microscope with wavelet-profiled point spread function

    NASA Astrophysics Data System (ADS)

    Romero, Mary Jacquiline; Bautista, Godofredo; Daria, Vincent Ricardo; Saloma, Caesar

    2010-04-01

    We report a laser-scanning confocal reflectance microscope with a wavelet-profiled point spread function (PSF) for rapid multi-resolution extraction and analysis of microscopic object features. The PSF is generated via holography by encoding a π-phase shifting disk unto a collimated laser beam via a phase-only spatial light modulator (SLM) that is positioned at the pupil plane of the focusing objective lens. Scaling of the transverse PSF distribution is achieved by selecting a suitable ratio of the π-phase shifting disk radius and the pupil aperture radius. With one and the same objective lens and one SLM to control the phase profile of the pupil function, we produce amplitude PSF distributions that are accurate scaled representations of the circularly-symmetric Mexican hat mother wavelet.

  7. X-ray microscope assemblies. Final report and metrology report

    SciTech Connect

    Zehnpfennig, T.F.

    1981-04-13

    This is the Final Report and Metrology Report prepared under Lawrence Livermore Laboratory Subcontract 9936205, X-ray Microscope Assemblies. The purpose of this program was to design, fabricate, and perform detailed metrology on an axisymmetric grazing-incidence x-ray microscope (XRMS) to be used as a diagnostic instrument in the Lawrence Livermore Laser Fusion Program. The optical configuration chosen for this device consists of two internally polished surfaces of revolution: an hyperboloid facing the object; and a confocal, co-axial elliposid facing the image. This arrangement is known as the Wolter Type-I configuration. The grazing angle of reflection for both surfaces is approximately 1/sup 0/. The general optical performance goals under this program were to achieve a spatial resolution in the object plane in the soft x-ray region of approximately 1 micron, and to achieve an effective solid collecting angle which is an appreciable fraction of the geometric solid collecting angle.

  8. The Use of Microscopes and Telescopes in IR Imaging

    SciTech Connect

    Dinwiddie, Ralph Barton

    2011-01-01

    A wide selection of lenses is very useful to the thermographer working in a research environment, where applications can vary from week to week. Both wide angle and telephoto infrared lenses are widely used alternatives to the standard lenses typically supplied by IR camera manufacturers. However, in some extreme applications the need arises for additional image magnification. In these cases, the thermographer must rely on an IR microscope for close-up work with a field of view on the order of 1.3 to 15.8 mm, or a telescope for working at a distance on the order of meters or kilometers. The advantages of using an IR microscope and reflecting telescope will be discussed, as well as the challenges and characteristics of using these instruments.

  9. Confocal Microscope Alignment of Nanocrystals for Coherent Diffraction Imaging

    NASA Astrophysics Data System (ADS)

    Beitra, Loren; Watari, Moyu; Matsuura, Takashi; Shimamoto, Naonobu; Harder, Ross; Robinson, Ian

    2010-06-01

    We have installed and tested an Olympus LEXT confocal microscope at the 34-ID-C beamline of the Advanced Photon Source (APS). The beamline is for Coherent X-ray Diffraction (CXD) experiments in which a nanometre-sized crystal is aligned inside a focussed X-ray beam. The microscope was required for three-dimensional (3D) sample alignment to get around sphere-of-confusion issues when locating Bragg peaks in reciprocal space. In this way, and by use of strategic sample preparations, we have succeeded in measuring six Bragg peaks from a single 200 nm gold crystal and obtained six projections of its internal displacement field. This enables the clear identification of stacking-fault bands within the crystal. The confocal alignment method will allow a full determination of the strain tensor provided three or more Bragg reflections from the same crystal are found.

  10. Low-price optical microscope for school science education

    NASA Astrophysics Data System (ADS)

    Hoshimiya, Tsutomu; Kumagai, Masaaki

    2007-06-01

    In schools, scientific education with an optical microscope is popularly used. However, scanning apparatus for the microscope is very expensive such that the price is several times higher than the microscope itself. In order to activate children's interest in science, a low-price scanning and imaging function unit compatible to conventional optical microscopes used in schools was designed and manufactured using a personal computer (PC) used in all elementally and middle school education. The designing of imaging apparatus includes two choices: (i) using imaging device (reflection-type), or (ii) using photo-sensor and scanning device (transmission-type). In this paper, the latter method is adopted, considering the educational effect using "Lambert-Beer's law". This apparatus measures optical transmittance of modulated visible light with a photo-detector, and uses audio-input unit of PC as an A/D converter. Scanning unit with a pair of pulse motor drives was also used. Control software was built on Knoppix (an operating system based on freeware Linux), however it is very easy to rewrite to Windows application. By these reasons, this apparatus is low-price (less than microscope price) so that it is one of the best candidates for science education application in schools. As a biological specimen, a wing of spider wasp (Pompilidae) was used. Measured region was 10mm×10mm and the resolution was 100×100 pixels. The photograph of original specimen and the obtained image were shown in Figures (a) and (b), respectively. The obtained image showed a well-resolved detailed structure of the wing. Scanning was done by an external scanning apparatus. However, feeding of scanning pulses through printer port to stepping motor will be available based on the same method.

  11. A Reflective Look at Reflecting Teams

    ERIC Educational Resources Information Center

    Pender, Rebecca L.; Stinchfield, Tracy

    2012-01-01

    This article reviewed existing literature and research on the reflecting team process. There is a dearth of empirical research that explores the reflecting team process and the outcome of counseling that uses reflecting teams. Implications of using reflecting teams for counselors, counselor educators, and clients will be discussed. A call for…

  12. The Athena Microscopic Imager Investigation

    NASA Technical Reports Server (NTRS)

    Herkenhoff, K. E.; Aquyres, S. W.; Bell, J. F., III; Maki, J. N.; Arneson, H. M.; Brown, D. I.; Collins, S. A.; Dingizian, A.; Elliot, S. T.; Geotz, W.

    2003-01-01

    The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI) [1]. The MI is a fixed-focus camera mounted on the end of an extendable instrument arm, the Instrument Deployment Device (IDD; see Figure 1).The MI was designed to acquire images at a spatial resolution of 30 microns/pixel over a broad spectral range (400 - 700 nm; see Table 1). Technically, the microscopic imager is not a microscope: it has a fixed magnification of 0.4 and is intended to produce images that simulate a geologist s view through a common hand lens. In photographers parlance, the system makes use of a macro lens. The MI uses the same electronics design as the other MER cameras [2, 3] but has optics that yield a field of view of 31 31 mm across a 1024 1024 pixel CCD image (Figure 2). The MI acquires images using only solar or skylightillumination of the target surface. A contact sensor is used to place the MI slightly closer to the target surface than its best focus distance (about 66 mm), allowing concave surfaces to be imaged in good focus. Because the MI has a relatively small depth of field (3 mm), a single MI image of a rough surface will contain both focused and unfocused areas. Coarse focusing will be achieved by moving the IDD away from a rock target after the contact sensor is activated. Multiple images taken at various distances will be acquired to ensure good focus on all parts of rough surfaces. By combining a set of images acquired in this way, a completely focused image can be assembled. Stereoscopic observations can be obtained by moving the MI laterally relative to its boresight. Estimates of the position and orientation of the MI for each acquired image will be stored in the rover computer and returned to Earth with the image data. The MI optics will be protected from the Martian environment by a retractable dust cover. The dust cover includes a Kapton window that is tinted orange to restrict the spectral bandpass to 500-700 nm

  13. A high-resolution multimode digital microscope system.

    PubMed

    Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry

    2013-01-01

    This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae.

  14. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  15. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  16. Foldscope: Origami-Based Paper Microscope

    PubMed Central

    Cybulski, James S.; Clements, James; Prakash, Manu

    2014-01-01

    Here we describe an ultra-low-cost origami-based approach for large-scale manufacturing of microscopes, specifically demonstrating brightfield, darkfield, and fluorescence microscopes. Merging principles of optical design with origami enables high-volume fabrication of microscopes from 2D media. Flexure mechanisms created via folding enable a flat compact design. Structural loops in folded paper provide kinematic constraints as a means for passive self-alignment. This light, rugged instrument can survive harsh field conditions while providing a diversity of imaging capabilities, thus serving wide-ranging applications for cost-effective, portable microscopes in science and education. PMID:24940755

  17. Reflected Ceiling Plan/Reflected Deck Plan 2009; Reflected Ceiling Plan/Reflected Deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Reflected Ceiling Plan/Reflected Deck Plan 2009; Reflected Ceiling Plan/Reflected Deck Plan 2010 - Gilpin's Falls Covered Bridge, Spanning North East Creek at Former (Bypassed) Section of North East Road (SR 272), North East, Cecil County, MD

  18. Lens design with suppressed first order reflections

    NASA Astrophysics Data System (ADS)

    Buchheister, Jan; Weth, Christopher

    2010-08-01

    Optical systems with a reflected light condition, e.g. microscopes with reflected light illumination or fundus cameras, need to have weak first order ghosts or even to be completely free from them. Sequential ray tracing can be used to control optical performance and reflections on a ray basis during optimization. This is significantly more efficient in computation time and convergence than the usual approaches with non-sequential ray tracing or reconfigured optical systems to cover all critical ghosts. An ophthalmic lens for a fundus camera was designed with first order reflections stripped out by applying sequential ray tracing. The merit-function only had to be completed under certain conditions guaranteeing the absence of any reflections. No additional reconfiguration of the optical system in the design software was necessary.

  19. Spectral Interferometry with Electron Microscopes.

    PubMed

    Talebi, Nahid

    2016-09-21

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential.

  20. Mars Under the Microscope (stretched)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This magnified look at the martian soil near the Mars Exploration Rover Opportunity's landing site, Meridiani Planum, shows coarse grains sprinkled over a fine layer of sand. The image was captured on the 10th day, or sol, of the rover's mission by its microscopic imager, located on the instrument deployment device, or 'arm.' Scientists are intrigued by the spherical rocks, which can be formed by a variety of geologic processes, including cooling of molten lava droplets and accretion of concentric layers of material around a particle or 'seed.'

    The examined patch of soil is 3 centimeters (1.2 inches) across. The circular grain in the lower left corner is approximately 3 millimeters (.12 inches) across, or about the size of a sunflower seed.

    This stretched color composite was obtained by merging images acquired with the orange-tinted dust cover open and closed. The varying hints of orange suggest differences in mineral composition. The blue tint at the lower right corner is a tag used by scientists to indicate that the dust cover is closed.

  1. Mars Under the Microscope (color)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This magnified look at the martian soil near the Mars Exploration Rover Opportunity's landing site, Meridiani Planum, shows coarse grains sprinkled over a fine layer of sand. The image was captured by the rover's microscopic imager on the 10th day, or sol, of its mission and roughly approximates the color a human eye would see. Scientists are intrigued by the spherical rocks, which can be formed by a variety of geologic processes, including cooling of molten lava droplets and accretion of concentric layers of material around a particle or 'seed.'

    The examined patch of soil is 3 centimeters (1.2 inches) across. The circular grain in the lower left corner is approximately 3 millimeters (.12 inches) across, or about the size of a sunflower seed.

    This color composite was obtained by merging images acquired with the orange-tinted dust cover in both its open and closed positions. The blue tint at the lower right corner is a tag used by scientists to indicate that the dust cover is closed.

  2. Microscopic theory of rubber elasticity.

    PubMed

    Oyerokun, Folusho T; Schweizer, Kenneth S

    2004-05-15

    A microscopic integral equation theory of elasticity in polymer liquids and networks is developed which addresses the nonclassical problem of the consequences of interchain repulsive interactions and packing correlations on mechanical response. The theory predicts strain induced softening, and a nonclassical intermolecular contribution to the linear modulus. The latter is of the same magnitude as the classical single chain entropy contribution at low polymer concentrations, but becomes much more important in the melt state, and dominant as the isotropic-nematic liquid crystal phase transition is approached. Comparison of the calculated stress-strain curve and induced nematic order parameter with computer simulations show good agreement. A nearly quadratic dependence of the linear elastic modulus on segmental concentration is found, as well as a novel fractional power law dependence on degree of polymerization. Quantitative comparison of the theory with experiments on polydimethylsiloxane networks are presented and good agreement is found. However, a nonzero modulus in the long chain limit is not predicted since quenched chemical crosslinks and trapped entanglements are not explicitly taken into account. The theory is generalizable to treat the structure, thermodynamics and mechanical response of nematic elastomers.

  3. Spectral Interferometry with Electron Microscopes

    PubMed Central

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932

  4. Robotic CCD microscope for enhanced crystal recognition

    DOEpatents

    Segelke, Brent W.; Toppani, Dominique

    2007-11-06

    A robotic CCD microscope and procedures to automate crystal recognition. The robotic CCD microscope and procedures enables more accurate crystal recognition, leading to fewer false negative and fewer false positives, and enable detection of smaller crystals compared to other methods available today.

  5. Scanning optical microscope with long working distance objective

    DOEpatents

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  6. Development of a high-energy Kirkpatrick Baez microscope

    NASA Astrophysics Data System (ADS)

    Li, Yaran; Mu, Baozhong; Xie, Qing; Wang, Xin; Wang, Zhanshan

    2016-09-01

    X-ray imaging of the laser produced plasma plays an important role in plasma diagnostics. Based on the urgent needs of conducting deeper and finer physical experiments, we developed a high-energy Kirkpatrick Baez microscope working at 17.48keV with a spectral resolution (E/▵E) of 30. The concave spherical substrates was polished, ultrasonically cleaned and coated. The substrates have a radius of curvature of 20m with a roughness better than 0.3nm. The grazing incidence angles are designed at 0.7° and 0.73° for separate reflecting mirrors. The x-ray backlit imaging experiments show its spatial resolution is 5.5μm at best focus. The effective field of view is measured to be 90μm, which is consistent with the multilayer design. This article provides detailed informations for the optical design, multilayers coating and characterization of the microscope. The microscope promises to be a high-energy, high-resolution, and energy resolved X-ray diagnostics instrument for SG series laser facility.

  7. Measurement Uncertainty of Microscopic Laser Triangulation on Technical Surfaces.

    PubMed

    Mueller, Thomas; Poesch, Andreas; Reithmeier, Eduard

    2015-12-01

    Laser triangulation is widely used to measure three-dimensional structure of surfaces. The technique is suitable for macroscopic and microscopic surface measurements. In this paper, the measurement uncertainty of laser triangulation is investigated on technical surfaces for microscopic measurement applications. Properties of technical surfaces are, for example, reflectivity, surface roughness, and the presence of scratches and pores. These properties are more influential in the microscopic laser triangulation than in the macroscopic one. In the Introduction section of this paper, the measurement uncertainty of laser triangulation is experimentally investigated for 13 different specimens. The measurements were carried out with and without a laser speckle reducer. In the Materials and Methods section of this paper, the surfaces of the 13 specimens are characterized in order to be able to find correlations between the surface properties and the measurement uncertainty. The last section of this paper describes simulations of the measurement uncertainty, which allow for the calculation of the measurement uncertainty with only one source of uncertainty present. The considerations in this paper allow for the assessment of the measurement uncertainty of laser triangulation on any technical surface when some surface properties, such as roughness, are known.

  8. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  9. The current status of microscopical hair comparisons.

    PubMed

    Rowe, W F

    2001-12-08

    Although the microscopical comparison of human hairs has been accepted in courts of law for over a century, recent advances in DNA technology have called this type of forensic examination into question. In a number of cases, post-conviction DNA testing has exonerated defendants who were convicted in part on the results of microscopical hair comparisons. A federal judge has held a Daubert hearing on the microscopical comparison of human hairs and has concluded that this type of examination does not meet the criteria for admission of scientific evidence in federal courts. A review of the available scientific literature on microscopical hair comparisons (including studies conducted by the Royal Canadian Mounted Police and the Federal Bureau of Investigation) leads to three conclusions: (1) microscopical comparisons of human hairs can yield scientifically defensible conclusions that can contribute to criminal investigations and criminal prosecutions, (2) the reliability of microscopical hair comparisons is strongly affected by the training of the forensic hair examiner, (3) forensic hair examiners cannot offer estimates of the probability of a match of a questioned hair with a hair from a randomly selected person. In order for microscopical hair examinations to survive challenges under the U.S. Supreme Court's Daubert decision, hair microscopists must be better trained and undergo frequent proficiency testing. More research on the error rates of microscopical hair comparisons should be undertaken, and guidelines for the permissible interpretations of such comparisons should be established. Until these issues have been addressed and satisfactorily resolved, microscopical hair comparisons should be regarded by law enforcement agencies and courts of law as merely presumptive in nature, and all microscopical hair comparisons should be confirmed by nuclear DNA profiling or mitochondrial DNA sequencing.

  10. Atomic Force Microscope Mediated Chromatography

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  11. The Scanning Optical Microscope: An Overview

    NASA Astrophysics Data System (ADS)

    Kino, G. S.; Corte, T. R.; Xiao, G. Q.

    1988-07-01

    In the last few years there has been a resurgence in research on optical microscopes. One reason stems from the invention of the acoustic microscope by Quate and Lemons,1 and the realization that some of the same principles could be applied to the optical microscope. The acoustic microscope has better transverse definition for the same wavelength than the standard optical microscope and at the same time has far better range definition. Consequently, Kompfner, who was involved with the work on the early acoustic microscope, decided to try out similar scanning microscope principles with optics, and started a group with Wilson and Sheppard to carry out such research at Oxford.2 Sometime earlier, Petran et a13 had invented the tandem scanning microscope which used many of the same principles. Now, in our laboratory at Stanford, these ideas on the tandem scanning microscope and the scanning optical microscope are converging. Another aspect of this work, which stems from the earlier experience with the acoustic microscope, involves measurement of both phase and amplitude of the optical beam. It is also possible to use scanned optical microscopy for other purposes. For instance, an optical beam can be used to excite electrons and holes in semiconductors, and the generated current can be measured. By scanning the optical beam over the semiconductor, an image can be obtained of the regions where there is strong or weak electron hole generation. This type of microscope is called OBIC (Optical Beam Induced Current). A second application involves fluorescent imaging of biological materials. Here we have the excellent range definition of a scanning optical microscope which eliminates unwanted glare from regions of the material where the beam is unfocused.3 A third application is focused on the heating effect of the light beam. With such a system, images can be obtained which are associated with changes in the thermal properties of a material, changes in recombination rates in

  12. Microscopic features for initial diagnosis and disease activity evaluation in inflammatory bowel disease.

    PubMed

    Bressenot, Aude; Geboes, Karel; Vignaud, Jean-Michel; Guéant, Jean-Louis; Peyrin-Biroulet, Laurent

    2013-07-01

    Inflammatory bowel disease is characterized by 2 major entities: Crohn's disease (CD) and ulcerative colitis (UC). In clinical practice, separation of UC and CD has been based on a variety of clinical features, symptoms, endoscopic and radiological, gross and microscopic characteristics. The microscopic diagnosis of inflammatory bowel disease is based on a combination of 2 types of lesions: architectural abnormalities and inflammatory features. However, microscopic distinction between these 2 entities can be difficult and often results in an interim diagnosis of "indeterminate colitis." Recommendations are made to encourage pathologists to give an indication of the activity of the disease: in UC, biopsies are used to discriminate between quiescent disease, inactive disease, and different grades of activity; in CD, evaluation of disease activity is limited and inactivity in the biopsy may not reflect inactivity in the patient. The aim of this review was to summarize microscopic features of inflammatory bowel disease for initial diagnosis and evaluation of disease activity in both CD and UC.

  13. A desktop extreme ultraviolet microscope based on a compact laser-plasma light source

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Torrisi, A.; Bartnik, A.; Węgrzyński, Ł.; Fok, T.; Fiedorowicz, H.

    2017-01-01

    A compact, desktop size microscope, based on laser-plasma source and equipped with reflective condenser and diffractive Fresnel zone plate objective, operating in the extreme ultraviolet (EUV) region at the wavelength of 13.8 nm, was developed. The microscope is capable of capturing magnified images of objects with 95-nm full-pitch spatial resolution (48 nm 25-75% KE) and exposure time as low as a few seconds, combining reasonable acquisition conditions with stand-alone desktop footprint. Such EUV microscope can be regarded as a complementary imaging tool to already existing, well-established ones. Details about the microscope, characterization, resolution estimation and real sample images are presented and discussed.

  14. Multispectral assessment of skin malformations using a modified video-microscope

    NASA Astrophysics Data System (ADS)

    Bekina, A.; Diebele, I.; Rubins, U.; Zaharans, J.; Derjabo, A.; Spigulis, J.

    2012-10-01

    A simplified method is proposed for alternative clinical diagnostics of skin malformations. A modified digital microscope, additionally equipped with a fourcolour LED (450 nm, 545 nm, 660 nm and 940 nm) subsequent illumination system, was applied for assessment of skin cancerous lesions and cutaneous inflammations. Multispectral image analysis was performed to map distributions of skin erythema index, bilirubin index, melanoma/nevus differentiation parameter, and fluorescence indicator. The skin malformation monitoring has shown that it is possible to differentiate melanoma from other pathologies.

  15. Automatic Focus Adjustment of a Microscope

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2005-01-01

    AUTOFOCUS is a computer program for use in a control system that automatically adjusts the position of an instrument arm that carries a microscope equipped with an electronic camera. In the original intended application of AUTOFOCUS, the imaging microscope would be carried by an exploratory robotic vehicle on a remote planet, but AUTOFOCUS could also be adapted to similar applications on Earth. Initially control software other than AUTOFOCUS brings the microscope to a position above a target to be imaged. Then the instrument arm is moved to lower the microscope toward the target: nominally, the target is approached from a starting distance of 3 cm in 10 steps of 3 mm each. After each step, the image in the camera is subjected to a wavelet transform, which is used to evaluate the texture in the image at multiple scales to determine whether and by how much the microscope is approaching focus. A focus measure is derived from the transform and used to guide the arm to bring the microscope to the focal height. When the analysis reveals that the microscope is in focus, image data are recorded and transmitted.

  16. Assessment of asymptomatic microscopic hematuria in adults.

    PubMed

    Sharp, Victoria J; Barnes, Kerri T; Erickson, Bradley A

    2013-12-01

    Although routine screening for bladder cancer is not recommended, microscopic hematuria is often incidentally discovered by primary care physicians. The American Urological Association has published an updated guideline for the management of asymptomatic microscopic hematuria, which is defined as the presence of three or more red blood cells per high-power field visible in a properly collected urine specimen without evidence of infection. The most common causes of microscopic hematuria are urinary tract infection, benign prostatic hyperplasia, and urinary calculi. However, up to 5% of patients with asymptomatic microscopic hematuria are found to have a urinary tract malignancy. The risk of urologic malignancy is increased in men, persons older than 35 years, and persons with a history of smoking. Microscopic hematuria in the setting of urinary tract infection should resolve after appropriate antibiotic treatment; persistence of hematuria warrants a diagnostic workup. Dysmorphic red blood cells, cellular casts, proteinuria, elevated creatinine levels, or hypertension in the presence of microscopic hematuria should prompt concurrent nephrologic and urologic referral. The upper urinary tract is best evaluated with multiphasic computed tomography urography, which identifies hydronephrosis, urinary calculi, and renal and ureteral lesions. The lower urinary tract is best evaluated with cystoscopy for urethral stricture disease, benign prostatic hyperplasia, and bladder masses. Voided urine cytology is no longer recommended as part of the routine evaluation of asymptomatic microscopic hematuria, unless there are risk factors for malignancy.

  17. The Atomic Origin of the Reflection Law

    NASA Astrophysics Data System (ADS)

    Prytz, Kjell

    2016-12-01

    It will be demonstrated how the reflection law may be derived on an atomic basis using the plane wave approximation together with Huygens' principle. The model utilized is based on the electric dipole character of matter originating from its molecular constituents. This approach is not new but has, since it was first introduced by Ewald and Oseen in 1915, been applied and analyzed many times before. Here we develop the Ewald-Oseen model of reflection adapted for high school and early undergraduate students with a basic knowledge of microscopic material structure.

  18. Recent Opportunity Microscopic Imager Results

    NASA Astrophysics Data System (ADS)

    Herkenhoff, K. E.; Arvidson, R. E.; Jolliff, B. L.; Yingst, R.; Team, A.

    2013-12-01

    Opportunity arrived at exposures of Endeavour crater rim rocks in August 2011, on a hill dubbed 'Cape York.' These rocks have been the goal of exploration by Opportunity for the past few years because spectral evidence for phyllosilicates was observed at this location in orbital remote sensing data. As Opportunity circum¬navigated Cape York, the Microscopic Imager (MI) was used to examine the fine-scale textures of various soils and rocky outcrops. As reported previously, Opportunity discovered multiple bright linear features along the western periphery of Cape York that have been interpreted as veins of Ca sulfate deposited in fractures within the bedrock of Cape York. Opportunity then explored the northern and eastern sides of Cape York, including the area around 'Matijevic Hill' that shows evidence for phyllosilicates in CRISM data acquired from the Mars Reconnaissance Orbiter. One of the first outcrops examined near Matijevic Hill, dubbed 'Kirkwood,' is dominated by millimeter-size spherules. Unlike the hematite-rich concretions observed by Opportunity on Meridiani Planum, the aggregated 'newberries' in the Kirkwood exposure display internal structure and resistant rims. Compositionally, the spherule-rich rock is very similar to a nearby spherule-poor outcrop dubbed 'Whitewater Lake.' Thus these spherules have a more basalt-like composition compared to the hematite-rich concretions of the Burns Formation. The origin of the Kirkwood outcrop is uncertain, but the setting on the rim of the 22-km diameter Endeavour crater suggests that perhaps impact melting was involved in lapilli formation, possibly followed by mobilization and sorting in the ejecta blanket. Alternatively, the newberries may be diagenetic iron oxide concretions that are less well cemented than the 'blueberries' of the younger sulfate-rich Burns Formation. The Whitewater Lake outcrops contain the phyllosilicate phases observed from orbit, and are the oldest materials yet investigated by

  19. Microscopes for NASA's Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    One part of the Microscopy, Electrochemistry, and Conductivity Analyzer instrument for NASA's Phoenix Mars Lander is a pair of telescopes with a special wheel (on the right in this photograph) for presenting samples to be inspected with the microscopes. A horizontally mounted optical microscope (on the left in this photograph) and an atomic force microscope will examine soil particles and possibly ice particles.

    The shapes and the size distributions of soil particles may tell scientists about environmental conditions the material has experienced. Tumbling rounds the edges. Repeated wetting and freezing causes cracking. Clay minerals formed during long exposure to water have distinctive, platy particles shapes.

  20. The microscopes of Antoni van Leeuwenhoek.

    PubMed

    van Zuylen, J

    1981-03-01

    The seventeenth-century Dutch microscopist, Antoni van Leeuwenhoek, was the first man to make a protracted study of microscopical objects, and, unlike his contemporary Robert Hooke, he viewed by transmitted light. Leeuwenhoek made over 500 of his own, curious, simple microscopes, but now only nine are known to exist. The exact nature of the lenses Leeuwenhoek made, has for long been a puzzle. The existing microscopes have now been examined in detail, and their optical characteristics measured and tabulated. It is proposed that the lens of highest magnification, x 266, was made using a special blown bubble technique.

  1. Mars Life? - Microscopic Egg-shaped Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This electron microscope image shows egg-shaped structures, some of which may be possible microscopic fossils of Martian origin as discussed by NASA research published in the Aug. 16, 1996, issue of the journal Science. A two-year investigation found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  2. Seismic isolation of an electron microscope

    SciTech Connect

    Godden, W.G.; Aslam, M.; Scalise, D.T.

    1980-01-01

    A unique two-stage dynamic-isolation problem is presented by the conflicting design requirements for the foundations of an electron microscope in a seismic region. Under normal operational conditions the microscope must be isolated from ambient ground noise; this creates a system extremely vulnerable to seismic ground motions. Under earthquake loading the internal equipment forces must be limited to prevent damage or collapse. An analysis of the proposed design solution is presented. This study was motivated by the 1.5 MeV High Voltage Electron Microscope (HVEM) to be installed at the Lawrence Berkeley Laboratory (LBL) located near the Hayward Fault in California.

  3. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke's tabulated data.

  4. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    SciTech Connect

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  5. Quantitative Phase Imaging with a Scanning Transmission X-Ray Microscope

    PubMed Central

    de Jonge, M. D.; Hornberger, B.; Holzner, C.; Legnini, D.; Paterson, D.; McNulty, I.; Jacobsen, C.; Vogt, S.

    2010-01-01

    We obtain quantitative phase reconstructions from differential phase contrast images obtained with a scanning transmission x-ray microscope and 2.5 keV x rays. The theoretical basis of the technique is presented along with measurements and their interpretation. PMID:18518198

  6. Orientations to Reflective Practice.

    ERIC Educational Resources Information Center

    Wellington, Bud; Austin, Patricia

    1996-01-01

    Delineates five orientations to reflective practice: immediate, technical, deliberative, dialectic, and transpersonal, each reflecting different social science bases and beliefs and values about education. Views them as interactive, interdependent, noncompeting, aspects of reflective practice. (SK)

  7. Deciduous canine and permanent lateral incisor differential root resorption.

    PubMed

    Davies, K R; Schneider, G B; Southard, T E; Hillis, S L; Wertz, P W; Finkelstein, M; Hogan, M M

    2001-10-01

    When a permanent maxillary canine erupts apical to the permanent lateral incisor and the deciduous canine, resorption typically takes place only on the deciduous canine root. An understanding of this differential resorption could provide insight into the reasons for excessive iatrogenic root resorption during orthodontic tooth movement. The purpose of the present study was to examine the response of roots of permanent lateral incisors and deciduous canines to simulated resorption, and to acid and enzyme attack, reflecting the physiologic environment of an erupting permanent canine. Groups of maxillary permanent lateral incisor and deciduous canine roots were exposed to 5 combinations of Ten Cate demineralizing solution, Ten Cate demineralizing solution with EDTA, and a Type I collagenase solution. Sections of the roots were examined under a polarized light microscope. Analysis of variation of the resulting root lesions demonstrated that the lesion depths for deciduous canines were greater than those for permanent lateral incisors when averaged across 4 of the conditions (F(1,24) = 7.49, P =.0115). On average, deciduous canine roots demonstrated lesions 10% deeper than did permanent lateral incisor roots. We concluded that when deciduous canine and permanent lateral incisor roots are subjected to acid and enzyme attack, reflecting the physiologic environment of an erupting permanent canine, significantly deeper demineralized lesions are seen in the deciduous roots compared with the permanent roots. This finding may partially explain the differential root resorption during permanent tooth eruption.

  8. Feedback regulation of microscopes by image processing.

    PubMed

    Tsukada, Yuki; Hashimoto, Koichi

    2013-05-01

    Computational microscope systems are becoming a major part of imaging biological phenomena, and the development of such systems requires the design of automated regulation of microscopes. An important aspect of automated regulation is feedback regulation, which is the focus of this review. As modern microscope systems become more complex, often with many independent components that must work together, computer control is inevitable since the exact orchestration of parameters and timings for these multiple components is critical to acquire proper images. A number of techniques have been developed for biological imaging to accomplish this. Here, we summarize the basics of computational microscopy for the purpose of building automatically regulated microscopes focus on feedback regulation by image processing. These techniques allow high throughput data acquisition while monitoring both short- and long-term dynamic phenomena, which cannot be achieved without an automated system.

  9. A Live Specimen Cell for the Microscope.

    ERIC Educational Resources Information Center

    McNeil, D. W.

    1991-01-01

    Provides background and instructions for the assembly of a microaquarium, or specimen cell, in which the dynamic world of living microorganisms can be viewed through a microscope overextended periods of time utilizing the simplest of materials in the process. (JJK)

  10. A pragmatic guide to multiphoton microscope design

    PubMed Central

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  11. A Student-Built Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Ekkens, Tom

    2015-12-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself. I wanted to give my students a deeper appreciation for the physics by having them build a simple scanning tunneling microscope. Initially, 15 hours of an upper-division laboratory class were devoted to building and operating the STM. As the build process was refined, the time commitment for this project has shrunk to nine hours. Using the method described in this paper, the project is now simple enough that it can be built and operated by students in the introductory class.

  12. Assessing and benchmarking multiphoton microscopes for biologists

    PubMed Central

    Corbin, Kaitlin; Pinkard, Henry; Peck, Sebastian; Beemiller, Peter; Krummel, Matthew F.

    2017-01-01

    Multiphoton microscopy has become staple tool for tracking cells within tissues and organs due to superior depth of penetration, low excitation volumes, and reduced phototoxicity. Many factors, ranging from laser pulse width to relay optics to detectors and electronics, contribute to the overall ability of these microscopes to excite and detect fluorescence deep within tissues. However, we have found that there are few standard ways already described in the literature to distinguish between microscopes or to benchmark existing microscopes to measure the overall quality and efficiency of these instruments. Here, we discuss some simple parameters and methods that can either be used within a multiphoton facility or by a prospective purchaser to benchmark performance. This can both assist in identifying decay in microscope performance and in choosing features of a scope that are suited to experimental needs. PMID:24974026

  13. Assessing and benchmarking multiphoton microscopes for biologists.

    PubMed

    Corbin, Kaitlin; Pinkard, Henry; Peck, Sebastian; Beemiller, Peter; Krummel, Matthew F

    2014-01-01

    Multiphoton microscopy has become staple tool for tracking cells within tissues and organs due to superior depth of penetration, low excitation volumes, and reduced phototoxicity. Many factors, ranging from laser pulse width to relay optics to detectors and electronics, contribute to the overall ability of these microscopes to excite and detect fluorescence deep within tissues. However, we have found that there are few standard ways already described in the literature to distinguish between microscopes or to benchmark existing microscopes to measure the overall quality and efficiency of these instruments. Here, we discuss some simple parameters and methods that can either be used within a multiphoton facility or by a prospective purchaser to benchmark performance. This can both assist in identifying decay in microscope performance and in choosing features of a scope that are suited to experimental needs.

  14. Surface-Finish Measurement with Interference Microscopes,

    DTIC Science & Technology

    1977-02-01

    illuminated with white light in the M2 -M’, Figure 4. THE TWYMAN -GREEN INTERFEROMETER . (This Instrument Uses a Point Source, the Light is...vertical specimens mounted on a machine spindle. The double-beam microscope is a Twyman -Green interferometer in which microscope objectives have...characteristics of each instrument: the double and multiple-beam interferometer , the FECO fringe interferometer , and the Nomarski polarization contrast

  15. Soft x-ray laser microscope

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  16. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  17. IMIS: An intelligence microscope imaging system

    NASA Technical Reports Server (NTRS)

    Caputo, Michael; Hunter, Norwood; Taylor, Gerald

    1994-01-01

    Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.

  18. Microscopic theory of diffraction of light from a small hole

    NASA Astrophysics Data System (ADS)

    Jung, Jesper; Keller, Ole

    2014-10-01

    On the basis of the Maxwell-Lorentz local-field equations and nonlocal linear response theory, a self-consistent microscopic Green function theory of diffraction of light from a single hole in a thin and plane metallic screen is established. By subtracting the scattering of identical incident fields from screens with and without a hole, a causal effective optical aperture response tensor is introduced. An approximate expression is derived for the aperture response tensor in the limit where the screen behaves like an electric-dipole absorber and radiator. In this limit the internal electron dynamics is that of a quantum well. For a screen so thin that its bound electron motion can be described by a single quantum level, a approach for a quantum mechanical calculation of the aperture response tensor is presented. When the linear dimensions of the hole become sufficiently small the so-called aperture field, defined as the difference between the prevailing electric field with and that without a hole, becomes identical to the field from an incident-field-induced electric dipole with anisotropic linear polarizability. Our theory is formulated in such a manner that preknowledge only of (i) the incident electromagnetic field and (ii) the light-unperturbed optical electron properties (the microscopic conductivity tensor) of the screen with the geometrically given hole is needed. Since the microscopic theory allows for the presence of an (oscillating) component of the sheet current density perpendicular to the plane of the screen, a generalization of (i) the standard jump conditions of the field across the sheet and (ii) the reflection symmetries of the various fields in the plane of the screen is worked out. As our theory deviates radically from the approach of all classical diffraction theories, which are based on the macroscopic Maxwell equations and some kind of pheno-menological expression for the screen conductivity σ (often just σ →∞), we give a brief review of

  19. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  20. Observation of a vacuum tunnel gap in a transmission electron microscope using a micromechanical tunneling microscope

    NASA Astrophysics Data System (ADS)

    Lutwyche, M. I.; Wada, Y.

    1995-05-01

    This letter reports the observation of the vacuum tunnel gap between two conductors using a high resolution transmission electron microscope. A 2.5 mm square micromachined tunneling microscope chip has been fabricated with a minimum feature size of 0.4 μm. The chip fits into a modified side-entry type transmission electron microscope holder. The tunnel gap is controlled by a purpose-built feedback controller. The micromachines work reliably during observation of the tip apex in a transmission electron microscope, allowing the voltage and current to be changed while the tunnel gap is observed.

  1. Designs for a quantum electron microscope.

    PubMed

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope.

  2. First Atomic Force Microscope Image from Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This calibration image presents three-dimensional data from the atomic force microscope on NASA's Phoenix Mars Lander, showing surface details of a substrate on the microscope station's sample wheel. It will be used as an aid for interpreting later images that will show shapes of minuscule Martian soil particles.

    The area imaged by the microscope is 40 microns by 40 microns, small enough to fit on an eyelash. The grooves in this substrate are 14 microns (0.00055 inch) apart, from center to center. The vertical dimension is exaggerated in the image to make surface details more visible. The grooves are 300 nanometers (0.00001 inch) deep.

    This is the first atomic force microscope image recorded on another planet. It was taken on July 9, 2008, during the 44th Martian day, or sol, of the Phoenix mission since landing.

    Phoenix's Swiss-made atomic force microscope builds an image of the surface shape of a particle by sensing it with a sharp tip at the end of a spring, all microfabricated out of a silicon wafer. A strain gauge records how far the spring flexes to follow the contour of the surface. It can provide details of soil-particle shapes smaller than one-hundredth the width of a human hair. This is about 20 times smaller than what can be resolved with Phoenix's optical microscope, which has provided much higher-magnification imaging than anything seen on Mars previously. Both microscopes are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer.

  3. 21 CFR 864.3600 - Microscopes and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... enlarge images of specimens, preparations, and cultures for medical purposes. Variations of microscopes... light. (3) Inverted stage microscopes, which permit examination of tissue cultures or other...

  4. 21 CFR 864.3600 - Microscopes and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... enlarge images of specimens, preparations, and cultures for medical purposes. Variations of microscopes... light. (3) Inverted stage microscopes, which permit examination of tissue cultures or other...

  5. 21 CFR 864.3600 - Microscopes and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... enlarge images of specimens, preparations, and cultures for medical purposes. Variations of microscopes... light. (3) Inverted stage microscopes, which permit examination of tissue cultures or other...

  6. 21 CFR 864.3600 - Microscopes and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... enlarge images of specimens, preparations, and cultures for medical purposes. Variations of microscopes... light. (3) Inverted stage microscopes, which permit examination of tissue cultures or other...

  7. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, Donald A.; Turner, Brian; Kipling, Kent

    1999-01-01

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture.

  8. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, D.A.; Turner, B.; Kipling, K.

    1999-05-11

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible is disclosed. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture. 20 figs.

  9. Optical modeling of Fresnel zoneplate microscopes.

    PubMed

    Naulleau, Patrick P; Mochi, Iacopo; Goldberg, Kenneth A

    2011-07-10

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  10. Optical modeling of Fresnel zoneplate microscopes

    SciTech Connect

    Naulleau, Patrick P.; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-07-10

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  11. Microscopic features of moving traffic jams

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Hiller, Andreas; Rehborn, Hubert

    2006-04-01

    Empirical and numerical microscopic features of moving traffic jams are presented. Based on a single vehicle data analysis, it is found that within wide moving jams, i.e., between the upstream and downstream jam fronts there is a complex microscopic spatiotemporal structure. This jam structure consists of alternations of regions in which traffic flow is interrupted and flow states of low speeds associated with “moving blanks” within the jam. Moving blanks within a wide moving jam resemble electron holes in the valence band of semiconductors: As the moving blanks that propagate upstream appear due to downstream vehicle motion within the jam, so appearance of electron holes moving with the electric field results from electron motion against the electric field in the valence band of semiconductors. Empirical features of moving blanks are found. Based on microscopic models in the context of the Kerner’s three-phase traffic theory, physical reasons for moving blanks emergence within wide moving jams are disclosed. Microscopic nonlinear effects of moving jam emergence, propagation, and dissolution as well as a diverse variety of hysteresis effects in freeway traffic associated with phase transitions and congested traffic propagation are numerically investigated. Microscopic structure of moving jam fronts is numerically studied and compared with empirical results.

  12. The optics of microscope image formation.

    PubMed

    Wolf, David E

    2013-01-01

    Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion.

  13. Optical modeling of Fresnel zoneplate microscopes

    SciTech Connect

    Naulleau, Patrick; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-04-06

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes rou tinely used in the synchrotron community.

  14. Differential gear

    SciTech Connect

    Shibuya, K.; Hamada, T.; Masuda, K.; Shimada, K.

    1989-05-02

    A differential gear for permitting a difference in rotational speed between two output shafts is described, the differential gear including an input shaft and two output shafts. The improvement consists of means for limiting the difference in rotational speed between the two output shafts in response to the rotational speed of the input shaft, the rotational speed limiting means comprising a differential casing coupled to the input shaft and adapted to be rotated by the input shaft, a differential pinion shaft radially extending within the differential casing and rotatably mounted at its opposite ends in the differential casing. A plurality of differential pinion gears rotatably mounted on the differential pinion shaft is also included, and also a pair of side gears having a rotational axis common to that of the differential casing, wherein the side gears mesh with the differential pinion gears and the two output shafts are fixed to the side gears, the means for limiting the difference in rotational speed between the two output shafts comprising a weight means radially movable in the differential casing, the weight means limiting the difference in rotational speed between the two output shafts in response to the centrifugal force applied to the weight means, the weight means being slidably mounted on the differential pinion shaft and being biased radially inwardly.

  15. All-plastic miniature fluorescence microscope for point-of-care readout of bead-based bioassays

    NASA Astrophysics Data System (ADS)

    Forcucci, Alessandra; Pawlowski, Michal Emanuel; Crannell, Zachary; Pavlova, Ina; Richards-Kortum, Rebecca; Tkaczyk, Tomasz S.

    2015-10-01

    A number of new platforms have been developed for multiplexed bioassays that rely on imaging targeted fluorescent beads labeled with different fluorescent dyes. We developed a compact, low-cost three-dimensional printed fluorescence microscope that can be used as a detector for mutiplexed, bead-based assays to support point-of-care applications. Images obtained with the microscope were analyzed to differentiate multiple analytes in a single sample with a comparable limit of detection to commercially available macroscopic assay platforms.

  16. Understanding reflective practice.

    PubMed

    Nicol, Jacqueline Sian; Dosser, Isabel

    2016-05-04

    The Nursing and Midwifery Council (NMC) requires that nurses and midwives use feedback as an opportunity for reflection and learning, to improve practice. The NMC revalidation process stipulates that practitioners provide examples of how they have achieved this. To reflect in a meaningful way, it is important to understand what is meant by reflection, the skills required, and how reflection can be undertaken successfully. Traditionally, reflection occurs after an event encountered in practice. The authors challenge this perception, suggesting that reflection should be undertaken before, during and after an event. This article provides practical guidance to help practitioners use reflective models to write reflective accounts. It also outlines how the reflective process can be used as a valuable learning tool in preparation for revalidation.

  17. Understanding oxide interfaces: From microscopic imaging to electronic phases

    NASA Astrophysics Data System (ADS)

    Ilani, Shahal

    2014-03-01

    In the last decade, the advent of complex oxide interfaces has unleashed a wealth of new possibilities to create materials with unexpected functionalities. A notable example is the two-dimensional electron system formed at the interface between LaAlO3 and SrTiO3 (LAO/STO), which exhibits ferromagnetism, superconductivity, and a wide range of unique magneto-transport properties. A key challenge is to find the microscopic mechanisms that underlie these emergent phenomena. While there is a growing understanding that these phenomena might reflect rich structures at the micro-scale, experimental progress toward microscopic imaging of this system has been so far rather limited due to the buried nature of its interface. In this talk I will discuss our experiments that study this system on microscopic and macroscopic scales. Using a newly-developed nanotube-based scanning electrometer we image on the nanoscale the electrostatics and mechanics of this buried interface. We reveal the dynamics of structural domains in STO, their role in generating the contested anomalous piezoelectricity of this substrate, and their direct effects on the physics of the interface electrons. Using macroscopic magneto-transport experiments we demonstrate that a universal Lifshitz transition between the population of d-orbitals with different symmetries underlies many of the transport phenomena observed to date. We further show that the interactions between the itinerant electrons and localized spins leads to an unusual, gate-tunable magnetic phase diagram. These measurements highlight the unique physical settings that can be realized within this new class of low dimensional systems.

  18. Reflecting on reflection: a personal encounter.

    PubMed

    Glen, S; Clark, A; Nicol, M

    1995-02-01

    This paper reports a retrospective study of a Senior Lecturer in Nursing Studies experience of supervising a student teacher who, as part of her teaching placement experience, utilised 'Critically Reflective Analysis of an Educational Event' as a means to assess her teaching in the practice setting. The Senior Lecturer and student nurse teacher used an external 'advisor' to facilitate their meta-reflection on the theoretical perspectives that informed the process in which they were engaged. The paper raises the following questions for consideration--What is the link between ability to reflect and quality of practice? Is it possible to utilise reflective tutorials as a means of assessing professional competence whilst at the same time encouraging personal and professional development? Is the ability to reflect on practice dependent on the context? Should we assume that all practitioners have the necessary skills to supervise students in practice and what preparation and support is needed? The paper demonstrates that by introducing 'Critically Reflective Analysis of an Education Event' into the student teachers' curriculum the role of both supervisor and student teacher was challenged and changed. The paper also demonstrates that reflective tutorials are not wholly a retrospective business. They are creative, or recreative of a teaching experience, as well as to some extent representing it. Finally, even if one cannot speak in Kuhnian parlance, of a conceptual revolution, it would seem legitimate to say, in Schon's terms, that the contextual frame in which professional problems are addressed has undergone significant change.

  19. Microscopic saw mark analysis: an empirical approach.

    PubMed

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles

    2015-01-01

    Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%.

  20. Image processing for HTS SQUID probe microscope

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Koetitz, R.; Itozaki, H.; Ishikawa, T.; Kawabe, U.

    2005-10-01

    An HTS SQUID probe microscope has been developed using a high-permeability needle to enable high spatial resolution measurement of samples in air even at room temperature. Image processing techniques have also been developed to improve the magnetic field images obtained from the microscope. Artifacts in the data occur due to electromagnetic interference from electric power lines, line drift and flux trapping. The electromagnetic interference could successfully be removed by eliminating the noise peaks from the power spectrum of fast Fourier transforms of line scans of the image. The drift between lines was removed by interpolating the mean field value of each scan line. Artifacts in line scans occurring due to flux trapping or unexpected noise were removed by the detection of a sharp drift and interpolation using the line data of neighboring lines. Highly detailed magnetic field images were obtained from the HTS SQUID probe microscope by the application of these image processing techniques.

  1. Macroscopic model of scanning force microscope

    DOEpatents

    Guerra-Vela, Claudio; Zypman, Fredy R.

    2004-10-05

    A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.

  2. Automated monitoring to reduce electron microscope downtime.

    PubMed

    Brunner, Matthias J; Resch, Guenter P

    2009-10-01

    High-end transmission electron microscopes are complex and sensitive instruments. Failure of one of the external supplies, malfunction of the microscope hardware or maloperation are typical reasons for subsystems to fail. Especially if undiscovered for a longer period of time, this can cause unnecessary downtime, compromising user access and increasing operating costs. Utilizing the software introduced in this article ("MoniTEM"), we have succeeded to reduce downtime of an FEI Tecnai Polara by coupling constant monitoring of critical subsystems with automatic, remote feedback to the system supervisor, ensuring immediate problem solving. The software described here is freely available from http://www.imba.oeaw.ac.at/monitem/ and can be readily adapted for use with other FEI transmission electron microscopes.

  3. CHAMP - Camera, Handlens, and Microscope Probe

    NASA Technical Reports Server (NTRS)

    Mungas, G. S.; Beegle, L. W.; Boynton, J.; Sepulveda, C. A.; Balzer, M. A.; Sobel, H. R.; Fisher, T. A.; Deans, M.; Lee, P.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe) is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As an arm-mounted imager, CHAMP supports stereo-imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision range-finding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. Currently designed with a filter wheel with 4 different filters, so that color and black and white images can be obtained over the entire Field-of-View, future designs will increase the number of filter positions to include 8 different filters. Finally, CHAMP incorporates controlled white and UV illumination so that images can be obtained regardless of sun position, and any potential fluorescent species can be identified so the most astrobiologically interesting samples can be identified.

  4. CHAMP (Camera, Handlens, and Microscope Probe)

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S.; Boynton, John E.; Balzer, Mark A.; Beegle, Luther; Sobel, Harold R.; Fisher, Ted; Klein, Dan; Deans, Matthew; Lee, Pascal; Sepulveda, Cesar A.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe)is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As a robotic arm-mounted imager, CHAMP supports stereo imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision rangefinding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. CHAMP was originally developed through the Mars Instrument Development Program (MIDP) in support of robotic field investigations, but may also find application in new areas such as robotic in-orbit servicing and maintenance operations associated with spacecraft and human operations. We overview CHAMP'S instrument performance and basic design considerations below.

  5. Universal tool microscope remanufacture based on CCD

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Hu, Zhongxiang; Zhang, Xunming; Zhang, Jiaying

    2006-02-01

    To overcome the drawback of traditional universal tool microscopes, a remanufacturing scheme based on charge coupled devices (CCD) is proposed. In this paper, the remanufacturing of old tool microscopes is replaced gradually by CCD and grating ruler and the development of a novel measuring system designed to directly analyze image of the screw to be measured is discussed. For the analysis of image, such novel image processing methods as adaptive switching median (ASM) filter and edge detection based on the modified Sobel operator are designed. For the line detection algorithm, HOUGH transform also is used to measure the screw parameter. Experiments on screw images demonstrate that the scheme of remanufactured universal tool microscope is of feasibility and the proposed measurement is of validity.

  6. Light- and electron-microscopic histochemistry of Fabry's disease.

    PubMed Central

    Faraggiana, T.; Churg, J.; Grishman, E.; Strauss, L.; Prado, A.; Bishop, D. F.; Schuchman, E.; Desnick, R. J.

    1981-01-01

    A histochemical study was performed on light- and electron-microscopic level in a case of Fabry's disease. The patient underwent kidney transplantation for renal failure and died of heart failure 6 months later. Patient's tissues were studied at the light- and electron-microscopic levels with various embedding and staining techniques for lipids and carbohydrates. Two peroxidase-labeled lectins (from Ricinus communis and from Bandeiraea simplicifolia) known to have affinity for alpha- and beta-D-galactose, were strongly reactive with the storage material on frozen sections. The ultrahistochemical and extraction tests showed that the typical granules had a variable reactivity and morphologic characteristics in different cells, probably reflecting different composition. A small number of typical deposits were also observed in the transplanted kidney. This is the first reported case of recurrence of the storage disease in the allograft. Of interest was also the fact that the patient's blood inhibited normal alpha-galactosidase activity, suggesting a possible inhibitor-related mechanism in the pathogenesis of the recurrence. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 PMID:6786101

  7. Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    The figure presents selected views of a compact microscope imaging system (CMIS) that includes a miniature video microscope, a Cartesian robot (a computer- controlled three-dimensional translation stage), and machine-vision and control subsystems. The CMIS was built from commercial off-the-shelf instrumentation, computer hardware and software, and custom machine-vision software. The machine-vision and control subsystems include adaptive neural networks that afford a measure of artificial intelligence. The CMIS can perform several automated tasks with accuracy and repeatability . tasks that, heretofore, have required the full attention of human technicians using relatively bulky conventional microscopes. In addition, the automation and control capabilities of the system inherently include a capability for remote control. Unlike human technicians, the CMIS is not at risk of becoming fatigued or distracted: theoretically, it can perform continuously at the level of the best human technicians. In its capabilities for remote control and for relieving human technicians of tedious routine tasks, the CMIS is expected to be especially useful in biomedical research, materials science, inspection of parts on industrial production lines, and space science. The CMIS can automatically focus on and scan a microscope sample, find areas of interest, record the resulting images, and analyze images from multiple samples simultaneously. Automatic focusing is an iterative process: The translation stage is used to move the microscope along its optical axis in a succession of coarse, medium, and fine steps. A fast Fourier transform (FFT) of the image is computed at each step, and the FFT is analyzed for its spatial-frequency content. The microscope position that results in the greatest dispersal of FFT content toward high spatial frequencies (indicating that the image shows the greatest amount of detail) is deemed to be the focal position.

  8. Reflections in art

    PubMed Central

    CAVANAGH, PATRICK; CHAO, JESSICA; WANG, DINA

    2009-01-01

    When artists depict a mirror in a painting, it necessarily lacks the most obvious property of a mirror: as we move around the painting of the mirror, the reflections we see in it do not change. And yet representations of mirrors and other reflecting surfaces can be quite convincing in paintings. Here, we will examine the rules of reflection, the many ways that painters can break those rules without losing the impression of reflection and the rules that cannot be broken. The rules that govern the perception of reflection are a small subset of the physical rules of reflection. PMID:18534102

  9. A scanning acoustic microscope based on picosecond ultrasonics.

    PubMed

    Che, S; Guduru, P R; Nurmikko, A V; Maris, H J

    2015-02-01

    We report on the development of a new type of scanning acoustic microscope. We use a femtosecond light pulse to generate a short sound pulse, and then focus this sound onto the sample by means of a specially designed and microfabricated acoustic lens of radius a few microns. The sound travels to the sample through a thin layer of water. The sound reflected from the sample is collected by the lens and then passes through a monolithically integrated optical resonant cavity. The induced change in the properties of this cavity are measured using a time-delayed probe light pulse. We describe some of the challenges involved in the construction and operation of this high-precision metrology apparatus and present some preliminary results.

  10. The near-field scanning thermal microscope

    NASA Astrophysics Data System (ADS)

    Wischnath, Uli F.; Welker, Joachim; Munzel, Marco; Kittel, Achim

    2008-07-01

    We report on the design, characterization, and performance of a near-field scanning thermal microscope capable to detect thermal heat currents mediated by evanescent thermal electromagnetic fields close to the surface of a sample. The instrument operates in ultrahigh vacuum and retains its scanning tunneling microscope functionality, so that its miniature, micropipette-based thermocouple sensor can be positioned with high accuracy. Heat currents on the order of 10-7W are registered in z spectroscopy at distances from the sample ranging from 1 to about 30nm. In addition, the device provides detailed thermographic images of a sample's surface.

  11. Multiphoton cryo microscope with sample temperature control

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2013-02-01

    We present a multiphoton microscope system which combines the advantages of multiphoton imaging with precise control of the sample temperature. The microscope provides online insight in temperature-induced changes and effects in plant tissue and animal cells with subcellular resolution during cooling and thawing processes. Image contrast is based on multiphoton fluorescence intensity or fluorescence lifetime in the range from liquid nitrogen temperature up to +600°C. In addition, micro spectra from the imaged regions can be recorded. We present measurement results from plant leaf samples as well as Chinese hamster ovary cells.

  12. Development of an ultrasound microscope combined with optical microscope for multiparametric characterization of a single cell.

    PubMed

    Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi

    2015-09-01

    Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.

  13. Microscope system with on axis programmable Fourier transform filtering

    NASA Astrophysics Data System (ADS)

    Martínez, José Luis; García-Martínez, Pascuala; Moreno, Ignacio

    2017-02-01

    We propose an on-axis microscope optical system to implement programmable optical Fourier transform image processing operations, taking advantage of phase and polarization modulation of a liquid crystal on silicon (LCOS) display. We use a Hamamatsu spatial light modulator (SLM), free of flickering, which therefore can be tuned to fully eliminate the zero order component of the encoded diffractive filter. This allows the realization of filtering operation on axis (as opposed to other systems in the literature that require operating off axis), therefore making use of the full space bandwidth provided by the SLM. The system is first demonstrated by implementing different optical processing operations based on phase-only blazed gratings such as phase contrast, band-pass filtering, or additive and substractive imaging. Then, a simple Differential interference contrast (DIC) imaging is obtained changing to a polarization modulation scheme, achieved simply by selecting a different incident state of polarization on the incident beam.

  14. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  15. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  16. Science 101: How Does an Electron Microscope Work?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2013-01-01

    Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…

  17. Miniature self-contained vacuum compatible electronic imaging microscope

    DOEpatents

    Naulleau, Patrick P.; Batson, Phillip J.; Denham, Paul E.; Jones, Michael S.

    2001-01-01

    A vacuum compatible CCD-based microscopic camera with an integrated illuminator. The camera can provide video or still feed from the microscope contained within a vacuum chamber. Activation of an optional integral illuminator can provide light to illuminate the microscope subject. The microscope camera comprises a housing with a objective port, modified objective, beam-splitter, CCD camera, and LED illuminator.

  18. Liberating Moral Reflection

    ERIC Educational Resources Information Center

    Horell, Harold D.

    2013-01-01

    The author argues that if we are to foster life-giving and liberating moral reflection, we must first liberate moral reflection from distortions; specifically, from the distorting effects of moral insensitivity, destructive moral relativism, and confusions resulting from a failure to understand the dynamics of moral reflection. The author proposes…

  19. Teaching Critical Reflection

    ERIC Educational Resources Information Center

    Smith, Elizabeth

    2011-01-01

    Despite long-standing commitment to the notion of critical reflection across the healthcare professions it is unusual for critical theory and practice to be taught as explicit subjects in healthcare higher education. There is evidence to show that reflective techniques such as critical portfolios and reflective diaries can help students to…

  20. Nano Robotic Manipulation inside Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Fukuda, Toshio; Nakajima, Masahiro; Liu, Pou

    We report nanomanipulation and nanoassembly through nanorobotic manipulation inside electron microscopes. A hybrid nanorobotic manipulation system, which is integrated with a nanorobotic manipulator inside a transmission electron microscope (TEM) and nanorobotic manipulators inside a scanning electron microscope (SEM), is used. The elasticity of a multi-walled CNT (MWNT) is measured inside a TEM. The telescoping MWNT is fabricated by peeling off outer layers through destructive fabrication process. The electrostatic actuation of telescoping MWNT is directly observed by a TEM. A cutting technique for CNTs assisted by the presence of oxygen gas is also presented. The cutting procedure was conducted in less than 1 minute using a low-energy electron beam inside a scanning electron microscope. A bending technique of a CNT assisted by the presence of oxygen gas is also applied for the 3-D fabrication of nanosturucture. We expect that these techniques will be applied for the rapid prototyping nanoassembly of various CNT nanodevices. For the nano-biological applications, environmental-SEM (E-SEM) nanomanipulation system is also presented with the direct observation of the hydroscopic samples with non-drying treatment.

  1. Schematic Animation of Phoenix's Microscope Station

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation shows the workings of the microscope station of the Microscopy, Electrochemistry and Conductivity Analyzer (MECA) instrument suite of NASA's Phoenix Mars Lander.

    Samples are delivered to the horizontal portion of the sample wheel (yellow) that pokes outside an opening in the box enclosure. The wheel rotates to present the sample to the microscopes. The Optical Microscope (red) can see particles a little smaller than one-tenth the diameter of a human hair. The Atomic Force Microscope (pink) can see particles forty time smaller. The samples are on a variety of substrate surfaces, the small circles on the beveled edge of the sample wheel. For scale, the diameter of the wheel is about 14 centimeters (5.5 inches). Each substrate is a circle 3 millimeters (0.1 inch) in diameter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  3. Making a Microscope with Readily Available Materials

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Buah-Bassuah, Paul K.; Molesini, Giuseppe

    2007-01-01

    The making of microscope devices using inexpensive or recovered materials is demonstrated. Examples of images illustrating the performance of such devices are presented. As a project at the undergraduate level, the task is effective in acquiring familiarity with optical imaging concepts and their practical implementation in the laboratory.…

  4. Reasoning about Magnetism at the Microscopic Level

    ERIC Educational Resources Information Center

    Cheng, Meng-Fei; Cheng, Yufang; Hung, Shuo-Hsien

    2014-01-01

    Based on our experience of teaching physics in middle and senior secondary school, we have found that students have difficulty in reasoning at the microscopic level. Their reasoning is limited to the observational level so they have problems in developing scientific models of magnetism. Here, we suggest several practical activities and the use of…

  5. Microscopic Description of Le Chatelier's Principle

    ERIC Educational Resources Information Center

    Novak, Igor

    2005-01-01

    A simple approach that "demystifies" Le Chatelier's principle (LCP) and simulates students to think about fundamental physical background behind the well-known principles is presented. The approach uses microscopic descriptors of matter like energy levels and populations and does not require any assumption about the fixed amount of substance being…

  6. SLAC All Access: X-ray Microscope

    ScienceCinema

    Nelson, Johanna; Liu, Yijin

    2016-07-12

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  7. Formative Assessment Probes: Representing Microscopic Life

    ERIC Educational Resources Information Center

    Keeley, Page

    2011-01-01

    This column focuses on promoting learning through assessment. The author discusses the formative assessment probe "Pond Water," which reveals how elementary children will often apply what they know about animal structures to newly discovered microscopic organisms, connecting their knowledge of the familiar to the unfamiliar through…

  8. SLAC All Access: X-ray Microscope

    SciTech Connect

    Nelson, Johanna; Liu, Yijin

    2012-08-14

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  9. Comparisons between conventional optical imaging and parametric indirect microscopic imaging on human skin detection

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.

  10. Theoretical model of the helium zone plate microscope

    NASA Astrophysics Data System (ADS)

    Salvador Palau, Adrià; Bracco, Gianangelo; Holst, Bodil

    2017-01-01

    times. Finally, we show that with present-day state-of-the-art detector technology (ionization efficiency 1 ×10-3 ), a resolution of the order of 10 nm is possible. In order to make this quantification, we have assumed a Lambertian reflecting surface and calculated the beam spot size that gives a signal 100 cts/s within a solid angle of 0.02 sr, following an existing helium microscope design.

  11. A vertical coarse approach scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Drevniok, Benedict

    A Pan-style scanning tunneling microscope (STM), with a vertical coarse approach mechanism, was designed, built and tested. The microscope will be operated in ultra-high vacuum and also at cryogenic temperatures (8 K) inside a continuous flow cryostat. Fundamental differences in operating principle exist between the new microscope and the beetle-type inertial sliders [1] that have been the mainstay of the group for the last eight years. While Pan-style microscopes do already exist [2], they remain challenging to build, and an active area of research [3]. This system represents a bold departure from well-trodden paths, and will greatly expand the range of experiments that our group can perform. The operating principles of inertial piezoelectric motors are detailed. Design guidelines for a piezoelectric motor are given, and used in the design of the vertical coarse approach motor. A simple, inexpensive implementation for creating waveforms with an extremely fast fall time is discussed. Motor performance is tested, and a minimum step size of 20nm is found for frequencies ranging from 0 Hz to 3 kHz. The motor operates with high dynamic range: individual 20nm steps can be taken, as well as being able to move at a velocity of 0.4mm s-1. Little is known about the vibrational properties of Pan-style microscopes. Vibrational testing of the microscope revealed the expected scanner bending mode at 1.6 kHz (above the scanner bending mode of our beetles at 1.2 kHz), and a complicated response signal above this frequency. Custom extension springs for an eddy-current damping system are built and tested. A low resonant frequency of 1.8 Hz is found, which is ideal for the application. Initial testing of the STM in ambient conditions is performed on two different surfaces. A moire supermesh [4] with periodicity 3nm is observed on a highly-oriented pyrolytic graphite (HOPG) surface, and agrees well with previously published results. Using a flame-annealed Gold on mica surface, a low

  12. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  13. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  14. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  15. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  16. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  17. Effect of Eshelby twist on core structure of screw dislocations in molybdenum: atomic structure and electron microscope image simulations

    NASA Astrophysics Data System (ADS)

    Gröger, R.; Dudeck, K. J.; Nellist, P. D.; Vitek, V.; Hirsch, P. B.; Cockayne, D. J. H.

    2011-06-01

    This paper addresses the question as to whether the core structure of screw dislocations in Mo in the bulk can be obtained from high-resolution electron microscopy (HREM) images of such dislocations viewed end-on in a thin foil. Atomistic simulations of the core structure of screw dislocations in elastically anisotropic Mo were carried out using bond order potentials. These simulations take account automatically of the effects of the surface relaxation displacements (anisotropic Eshelby twist). They show that the differential displacements of the atoms at the surface are different with components perpendicular to the Burgers vector about five times larger than those in the middle of the foil, the latter being characteristic of the bulk. Nye tensor plots show that the surface relaxation stresses strongly affect the incompatible distortions. HREM simulations of the computed structure reflect the displacements at the exit surface, modified by interband scattering and the microscope transfer function. Nye tensor plots obtained from the HREM images show that interband scattering also affects the incompatible distortions. It is concluded that it would be very difficult to obtain information on the core structure of screw dislocations in the bulk Mo from HREM images, even under ideal experimental conditions, and that quantitative comparisons between experimental and simulated images from assumed model structures would be essential.

  18. Dual-mode optical microscope based on single-pixel imaging

    NASA Astrophysics Data System (ADS)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  19. Biological applications of the SQUID microscope

    NASA Astrophysics Data System (ADS)

    Chemla, Yann Robert

    The recently developed "microscope" based on a high-T c dc SQUID (Superconducting QUantum Interference Device) is used to detect the magnetic fields produced by biological samples maintained at room temperature and atmospheric pressure. The microscope consists of a SQUID placed on the end of a sapphire "cold finger" thermally anchored to a liquid nitrogen reservoir inside a vacuum enclosure. A 3-mu m thick silicon nitride (SiN) membrane, located above the SQUID, acts as a vacuum window. Room temperature samples are placed on top of the window and can be brought within 15mum of the SQUID. In Part I, the SQUID microscope is used to investigate magnetotactic bacteria, microorganisms which possess a permanent dipole moment. The magnetic field produced by the motion of the bacteria in growth medium is detected by the SQUID in the microscope. Measurements are performed on both motile and nonmotile bacteria. In the nonmotile case, we obtain the power spectrum of the magnetic flux noise produced by the rotational Brownian motion of the ensemble of bacteria. Furthermore, we measure the time-dependent flux produced by the ensemble in response to an applied uniform magnetic field. In the motile case, we obtain the magnetic flux power spectra produced by the swimming bacteria. Combined, these measurements determine the average rotational drag coefficient, magnetic moment, and the frequency and amplitude of the vibrational and rotational modes of the bacteria in a unified set of measurements. In addition, the microscope can easily resolve the motion of a single bacterium. This technique can be extended to any biological substance to which a suitable magnetic label can be attached. In Part II, a technique is described for the specific, sensitive, quantitative, and rapid detection of biological targets using superparamagnetic nanoparticle labels. In this technique, a mylar film to which the targets have been bound is placed on the microscope, typically 40mum from the SQUID. A

  20. Ergodicity reflected in macroscopic and microscopic field-dependent behavior of BNT-based relaxors

    SciTech Connect

    Dittmer, Robert; Jo, Wook Rödel, Jürgen; Gobeljic, Danka; Shvartsman, Vladimir V.; Lupascu, Doru C.; Jones, Jacob L.

    2014-02-28

    The effect of heterovalent B-site doping on ergodicity of relaxor ferroelectrics is studied using (1 − y)(0.81Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-0.19Bi{sub 1/2}K{sub 1/2}TiO{sub 3})-yBiZn{sub 1/2}Ti{sub 1/2}O{sub 3} (BNT-BKT-BZT) with y = (0.02;0.03;0.04) as a model system. Both the large- and small-signal parameters are studied as a function of electric field. The crystal structure is assessed by means of neutron diffraction in the initial state and after exposure to a high electric field. In order to measure ferroelastic domain textures, diffraction patterns of the poled samples are collected as a function of sample rotation angle. Piezoresponse force microscopy (PFM) is employed to probe the microstructure for polar regions at a nanoscopic scale. For low electric fields E < 2 kV·mm{sup −1}, large- and small-signal constitutive behavior do not change with composition. At high electric fields, however, drastic differences are observed due to a field-induced phase transition into a long-range ordered state. It is hypothesized that increasing BZT content decreases the degree of non-ergodicity; thus, the formation of long-range order is impeded. It is suggested that frozen and dynamic polar nano regions exist to a different degree, depending on the BZT content. This image is supported by PFM measurements. Moreover, PFM measurements suggest that the relaxation mechanism after removal of the bias field is influenced by surface charges.

  1. Dynamic phase imaging utilizing a 4-dimensional microscope system

    PubMed Central

    Creath, Katherine

    2011-01-01

    This paper describes a new, novel interference Linnik microscope system and presents images and data of live biological samples. The specially designed optical system enables instantaneous 4-dimensional video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with a variety of magnifications and wavelengths with fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phase measurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different organisms such as flagellates and rotifers will be presented, as will measurements of human breast cancer cells with the addition of various agents that break down the cells. These data highlight examples of monitoring different biological processes and motions. PMID:24357901

  2. Brewster Angle Microscope Investigations of Two Dimensional Phase Transitions

    NASA Astrophysics Data System (ADS)

    Schuman, Adam William

    The liquid-liquid interface is investigated by microscopic and thermodynamic means to image and measure interfacial properties when the system undergoes a two-dimensional (2D) phase transition of a Gibbs monolayer by varying the sample temperature. An in-house Brewster angle microscope (BAM) is constructed to visualize the interface during this transition while a quasi-elastic light scattering technique is used to determine the interfacial tension. These results complement x-ray investigations of the same systems. Evidence of interfacial micro-separated structure, microphases, comes from observations across a hexane-water interface with the inclusion of a long-chain fluorinated alcohol surfactant into the bulk hexane. Microphases take the form of spatially modulated structure to the density of the surfactant as it spans laterally across the interface. The surfactant monolayer exhibits microphase morphology over a range of a couple degrees as the temperature of the system is scanned through the 2D gas-solid phase transition. Microphase structure was observed for heating and cooling the hexane-water system and structural comparisons are given when the temperature step and quench depth of the cooling process is varied. A complete sequence of morphological structure was observed from 2D gas to cluster to labyrinthine stripe to a 2D solid mosaic pattern. Two characteristic length scales emerge giving rise to speculation of an elastic contribution to the standard repulsive and attractive competitive forces stabilizing the microphase. The benefit of BAM to laterally image very thin films across the surface of an interface on the micrometer length scale nicely complements x-ray reflectivity methods that average structural data transverse to the liquid interface on a molecular scale. To properly analyze x-ray reflectivity data, the interface is required to be laterally homogeneous. BAM can sufficiently characterize the interface for this purpose as is done for a Langmuir

  3. Differential games.

    NASA Technical Reports Server (NTRS)

    Varaiya, P. P.

    1972-01-01

    General discussion of the theory of differential games with two players and zero sum. Games starting at a fixed initial state and ending at a fixed final time are analyzed. Strategies for the games are defined. The existence of saddle values and saddle points is considered. A stochastic version of a differential game is used to examine the synthesis problem.

  4. Differentiated Staffing.

    ERIC Educational Resources Information Center

    Allen, Dwight W.; Kline, Lloyd W.

    The traditional educational structure requires the teacher to be part bookkeeper, part clerical assistant, and part psychologist, among other roles, while his salary scale is based on length of service. Differentiated staffing offers ways of changing this pattern. The details of differentiated duties are largely a matter of local option and…

  5. Comparison of line-scanned and point-scanned dual-axis confocal microscope performance.

    PubMed

    Wang, D; Chen, Y; Wang, Y; Liu, J T C

    2013-12-15

    The point-scanned dual-axis confocal (PS-DAC) microscope has been shown to exhibit superior capability to reject out-of-focus and multiply scattered light in comparison to its conventional single-axis counterpart. However, the slow frame rate (typically <5 Hz) resulting from point-by-point data collection makes these systems vulnerable to motion artifacts. While video-rate point-scanned confocal microscopy is possible, a line-scanned dual-axis confocal (LS-DAC) microscope provides a simpler means of achieving high-speed imaging through line-by-line data collection, but sacrifices contrast due to loss of confocality along one dimension. Here we evaluate the performance trade-offs between an LS-DAC and PS-DAC microscope with identical spatial resolutions. Characterization experiments of the LS-DAC and PS-DAC microscopes with tissue phantoms, in reflectance mode, are shown to match results from Monte Carlo scattering simulations of the systems. Fluorescence images of mouse brain vasculature, obtained using resolution-matched LS-DAC and PS-DAC microscopes, demonstrate the comparable performance of LS-DAC and PS-DAC microscopy at shallow depths.

  6. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers.

    PubMed

    Zhao, Shiye; Zhu, Lixin; Li, Daoji

    2016-04-15

    The level of contamination by microscopic anthropogenic litter (0.5-5mm) in terrestrial ecosystems is not well understood. After chemical digestion in 10% KOH, microscopic anthropogenic litter from the gastrointestinal tracts of 17 terrestrial birds was identified and categorized under a stereomicroscope based on its physical properties and melting tests. In total, 364 items from 16 birds were identified as microscopic anthropogenic litter, ranging in size from 0.5 to 8.5mm. No relationship between plastic load and body condition was found. Natural fibers, plastic fibers and fragmented plastics represented, respectively, 37.4% (136 items), 54.9% (200 items) and 7.7% (28 items) of total litter items. Small sample sizes limited our ability to draw strong conclusions about the metabolism of natural fibers, but the decline in the proportion of natural fibers from the esophagus to stomach to intestine suggested that they may be digestible. Particles smaller than 5mm represented more than 90% of the total number of pollutant items. Particles with colors in the mid-tones and fibrous shapes were overwhelmingly common particles. The results reflect pollution by microscopic anthropogenic litter in the terrestrial ecosystem of the study area. Microscopic natural fibers, which may disperse and adsorb chemical pollutants differently from microplastic and may pose an even greater risk, are in urgent need of further research.

  7. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability.

    PubMed

    Hasan, Md Mehedi; Alam, Mohammad Wajih; Wahid, Khan A; Miah, Sayem; Lukong, Kiven Erique

    2016-01-01

    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size.

  8. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability

    PubMed Central

    Hasan, Md. Mehedi; Wahid, Khan A.; Miah, Sayem; Lukong, Kiven Erique

    2016-01-01

    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size. PMID:27977709

  9. Microscopic nature of ferro- and antiferromagnetic interface coupling of uncompensated magnetic moments in exchange bias systems.

    PubMed

    Gruyters, M; Schmitz, D

    2008-02-22

    Exchange bias in layered CoO/Fe structures is investigated by x-ray resonant magnetic reflectivity (XRMR) measurements. Element-specific hysteresis loops are obtained from x-ray magnetic circular dichroism effects in the XRMR spectra. Evidence is provided for the existence of different types of uncompensated moments in the antiferromagnetic material. Explanations are given for the microscopic nature of these moments and the complex exchange interactions that determine the magnetization reversal in exchange bias systems.

  10. A scanning acoustic microscope discriminates cancer cells in fluid

    NASA Astrophysics Data System (ADS)

    Miura, Katsutoshi; Yamamoto, Seiji

    2015-10-01

    Scanning acoustic microscopy (SAM) discriminates lesions in sections by assessing the speed of sound (SOS) or attenuation of sound (AOS) through tissues within a few minutes without staining; however, its clinical use in cytological diagnosis is unknown. We applied a thin layer preparation method to observe benign and malignant effusions using SAM. Although SAM is inferior in detecting nuclear features than light microscopy, it can differentiate malignant from benign cells using the higher SOS and AOS values and large irregular cell clusters that are typical features of carcinomas. Moreover, each single malignant cell exhibits characteristic cytoplasmic features such as a large size, irregular borders and secretory or cytoskeletal content. By adjusting the observation range, malignant cells are differentiated from benign cells easily using SAM. Subtle changes in the functional and structural heterogeneity of tumour cells were pursuable with a different digital data of SAM. SAM can be a useful tool for screening malignant cells in effusions before light microscopic observation. Higher AOS values in malignant cells compared with those of benign cells support the feasibility of a novel sonodynamic therapy for malignant effusions.

  11. On Range and Reflecting Functions about the Line "y = mx"

    ERIC Educational Resources Information Center

    Beslin, Scott J.; Heck, Brian K.; Becnel, Jeremy J.

    2008-01-01

    The authors explore the importance of "range" and its relationship to continuously differentiable functions that have inverses when their graphs are reflected about lines other than y = x. Some open questions are posed for the reader. (Contains 5 figures.)

  12. Optics of high-performance electron microscopes.

    PubMed

    Rose, H H

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described.

  13. Development of Scanning Ultrafast Electron Microscope Capability.

    SciTech Connect

    Collins, Kimberlee Chiyoko; Talin, Albert Alec; Chandler, David W.; Michael, Joseph R.

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  14. Design and development of compact multiphoton microscopes

    NASA Astrophysics Data System (ADS)

    Mehravar, SeyedSoroush

    A compact multi-photon microscope (MPM) was designed and developed with the use of low-cost mode-locked fiber lasers operating at 1040nm and 1560nm. The MPM was assembled in-house and the system aberration was investigated using the optical design software: Zemax. A novel characterization methodology based on 'nonlinear knife-edge' technique was also introduced to measure the axial, lateral resolution, and the field curvature of the multi-photon microscope's image plane. The field curvature was then post-corrected using data processing in MATLAB. A customized laser scanning software based on LabVIEW was developed for data acquisition, image display and controlling peripheral electronics. Finally, different modalities of multi-photon excitation such as second- and third harmonic generation, two- and three-photon fluorescence were utilized to study a wide variety of samples from cancerous cells to 2D-layered materials.

  15. Immersion interferometer for microscopic moire interferometry

    NASA Astrophysics Data System (ADS)

    Han, B.; Post, D.

    1992-03-01

    The basic sensitivity of moire interferometry has been increased beyond the previously conceived theoretical limit. This is accomplished by creating the virtual reference grating inside a refractive medium instead of air, thus shortening the wavelength of light. Various optical configurations of moire interferometry for operation in a refractive medium are introduced and one of them has been put into current practice. A very compact four-beam immersion interferometer has been developed for microscopic viewing, which produces a basic sensitivity of 4.8 fringes per micron displacement (contour interval of 0.208 micron per fringe order), corresponding to moire with 4800 lines per mm. Its configuration makes it inherently stable and relatively insensitive to environmental disturbances. An optical microscope is employed to obtain high spatial resolution. The method is demonstrated for deformation of a thick graphite/epoxy composite at the 0/90-deg ply interface.

  16. Commissioning of the PRIOR proton microscope

    DOE PAGES

    Varentsov, D.; Antonov, O.; Bakhmutova, A.; ...

    2016-02-18

    Recently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5–4.5 GeV proton beams delivered by the heavy ion synchrotron SIS-18 of GSI, 30 μm spatial and 10 ns temporal resolutions of the proton microscope have been demonstrated. A new pulsed power setup for studying properties of matter under extremes has been developed for the dynamic commissioning of the PRIOR facility. This study describes the PRIOR setup as well asmore » the results of the first static and dynamic protonradiography experiments performed at GSI.« less

  17. Surface conservation laws at microscopically diffuse interfaces.

    PubMed

    Chu, Kevin T; Bazant, Martin Z

    2007-11-01

    In studies of interfaces with dynamic chemical composition, bulk and interfacial quantities are often coupled via surface conservation laws of excess surface quantities. While this approach is easily justified for microscopically sharp interfaces, its applicability in the context of microscopically diffuse interfaces is less theoretically well-established. Furthermore, surface conservation laws (and interfacial models in general) are often derived phenomenologically rather than systematically. In this article, we first provide a mathematically rigorous justification for surface conservation laws at diffuse interfaces based on an asymptotic analysis of transport processes in the boundary layer and derive general formulae for the surface and normal fluxes that appear in surface conservation laws. Next, we use nonequilibrium thermodynamics to formulate surface conservation laws in terms of chemical potentials and provide a method for systematically deriving the structure of the interfacial layer. Finally, we derive surface conservation laws for a few examples from diffusive and electrochemical transport.

  18. Commissioning of the PRIOR proton microscope

    SciTech Connect

    Varentsov, D.; Antonov, O.; Bakhmutova, A.; Barnes, C. W.; Bogdanov, A.; Danly, C. R.; Efimov, S.; Endres, M.; Fertman, A.; Golubev, A. A.; Hoffmann, D. H. H.; Ionita, B.; Kantsyrev, A.; Krasik, Ya. E.; Lang, P. M.; Lomonosov, I.; Mariam, F. G.; Markov, N.; Mintsev, V. B.; Nikolaev, D.; Panyushkin, V.; Rodionova, M.; Schanz, M.; Schoenberg, K.; Semennikov, A.; Shestov, L.; Skachkov, V. S.; Turtikov, V.; Udrea, S.; Vasylyev, O.; Weyrich, K.; Wilde, C.; Zubareva, A.; Merrill, F. E.

    2016-02-18

    Recently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5–4.5 GeV proton beams delivered by the heavy ion synchrotron SIS-18 of GSI, 30 μm spatial and 10 ns temporal resolutions of the proton microscope have been demonstrated. A new pulsed power setup for studying properties of matter under extremes has been developed for the dynamic commissioning of the PRIOR facility. This study describes the PRIOR setup as well as the results of the first static and dynamic protonradiography experiments performed at GSI.

  19. Optics of high-performance electron microscopes*

    PubMed Central

    Rose, H H

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described. PMID:27877933

  20. Atomic force microscopy of Precambrian microscopic fossils.

    PubMed

    Kempe, André; Schopf, J William; Altermann, Wladyslaw; Kudryavtsev, Anatoliy B; Heckl, Wolfgang M

    2002-07-09

    Atomic force microscopy (AFM) is a technique used routinely in material science to image substances at a submicron (including nm) scale. We apply this technique to analysis of the fine structure of organic-walled Precambrian fossils, microscopic sphaeromorph acritarchs (cysts of planktonic unicellular protists) permineralized in approximately 650-million-year-old cherts of the Chichkan Formation of southern Kazakhstan. AFM images, backed by laser-Raman spectroscopic analysis of individual specimens, demonstrate that the walls of these petrified fossils are composed of stacked arrays of approximately 200-nm-sized angular platelets of polycyclic aromatic kerogen. Together, AFM and laser-Raman spectroscopy provide means by which to elucidate the submicron-scale structure of individual microscopic fossils, investigate the geochemical maturation of ancient organic matter, and, potentially, distinguish true fossils from pseudofossils and probe the mechanisms of fossil preservation by silica permineralization.

  1. Salient region detection for phytoplankton microscopic image

    NASA Astrophysics Data System (ADS)

    Chu, Jingjing; Ji, Guangrong; Zheng, Haiyong; Yu, Kun; Lu, Hongguang

    2013-07-01

    IG method is an excellent salient region detection method as its good generality and well-defined boundaries. In this paper, an improved method based on IG method is proposed to generate saliency map for phytoplankton microscopic images. This method utilizes the characteristics of phytoplankton microscopic images, through Gaussian low-pass filter to reduce high frequency components corresponding to water stains and dust specks. On the basis of luminance and color used in IG method, saturation is added to determine saliency due to that the saturation of background is lower than that of cells. The experimental results show that the proposed method can not only improve visual quality significantly, but also obtain higher precision and better recall rates compared with IG method.

  2. Microscopic models of traveling wave equations

    NASA Astrophysics Data System (ADS)

    Brunet, Eric; Derrida, Bernard

    1999-09-01

    Reaction-diffusion problems are often described at a macroscopic scale by partial derivative equations of the type of the Fisher or Kolmogorov-Petrovsky-Piscounov equation. These equations have a continuous family of front solutions, each of them corresponding to a different velocity of the front. By simulating systems of size up to N=1016 particles at the microscopic scale, where particles react and diffuse according to some stochastic rules, we show that a single velocity is selected for the front. This velocity converges logarithmically to the solution of the F-KPP equation with minimal velocity when the number N of particles increases. A simple calculation of the effect introduced by the cutoff due to the microscopic scale allows one to understand the origin of the logarithmic correction.

  3. Atomic force microscopy of Precambrian microscopic fossils

    PubMed Central

    Kempe, André; Schopf, J. William; Altermann, Wladyslaw; Kudryavtsev, Anatoliy B.; Heckl, Wolfgang M.

    2002-01-01

    Atomic force microscopy (AFM) is a technique used routinely in material science to image substances at a submicron (including nm) scale. We apply this technique to analysis of the fine structure of organic-walled Precambrian fossils, microscopic sphaeromorph acritarchs (cysts of planktonic unicellular protists) permineralized in ≈650-million-year-old cherts of the Chichkan Formation of southern Kazakhstan. AFM images, backed by laser-Raman spectroscopic analysis of individual specimens, demonstrate that the walls of these petrified fossils are composed of stacked arrays of ≈200-nm-sized angular platelets of polycyclic aromatic kerogen. Together, AFM and laser-Raman spectroscopy provide means by which to elucidate the submicron-scale structure of individual microscopic fossils, investigate the geochemical maturation of ancient organic matter, and, potentially, distinguish true fossils from pseudofossils and probe the mechanisms of fossil preservation by silica permineralization. PMID:12089337

  4. Scanning tunneling microscope assembly, reactor, and system

    SciTech Connect

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  5. Microscopic analysis of pear-shaped nuclei

    NASA Astrophysics Data System (ADS)

    Nomura, K.

    2015-10-01

    We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sd f interacting boson model (IBM), that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 - β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  6. Scanning electron microscope view of iron crystal

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).

  7. Atomic Force Microscope for Imaging and Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  8. [Elimination of microscopic filamentous fungi with disinfectants].

    PubMed

    Laciaková, A; Laciak, V

    1994-01-01

    The antifungal effectivity of three single-component (Persteril, Septonex, Glutaraldehyd) and of three combined (Persteril+Septonex, Pesteril+Glutaraldehyd, Glutaraldehyd+Septonex) commercially available disinfectants was monitored by the diffuse method on five fen of the microscopic filamentous fungi Aspergillus alternata, Aspergillus niger, Mucor fragillis, Fusarium moniliforme, Penicillium glabrum. The highest antifungal activity was observed in 2% Persteril while 2% Persteril + 1% Septonex were the most effective among the combined disinfectants. M. fragilis was the most resistant strain.

  9. Investigation of Fretting by Microscopic Observation

    NASA Technical Reports Server (NTRS)

    Godfrey, Douglas

    1951-01-01

    An experimental investigation, using microscopic observation and color motion photomicrographs of the action, was conducted to determine the cause of fretting. Glass and other noncorrosive materials, as well as metals, were used as specimens. A very simple apparatus vibrated convex surfaces in contact with stationary flat surfaces at frequencies of 120 cycles or less than l cycle per second, an amplitude of 0.0001 inch, and load of 0.2 pound.

  10. Microscopic Description of Nuclear Quantum Phase Transitions

    SciTech Connect

    Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2007-08-31

    The relativistic mean-field framework, extended to include correlations related to restoration of broken symmetries and to fluctuations of the quadrupole deformation, is applied to a study of shape transitions in Nd isotopes. It is demonstrated that the microscopic self-consistent approach, based on global effective interactions, can describe not only general features of transitions between spherical and deformed nuclei, but also the singular properties of excitation spectra and transition rates at the critical point of quantum shape phase transition.

  11. Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue: A hyperspectral microscopic imaging analysis

    NASA Astrophysics Data System (ADS)

    Li, Qingli; Liu, Hongying; Wang, Yiting; Sun, Zhen; Guo, Fangmin; Zhu, Jianzhong

    2014-12-01

    Histological observation of dual-stained colon sections is usually performed by visual observation under a light microscope, or by viewing on a computer screen with the assistance of image processing software in both research and clinical settings. These traditional methods are usually not sufficient to reliably differentiate spatially overlapping chromogens generated by different dyes. Hyperspectral microscopic imaging technology offers a solution for these constraints as the hyperspectral microscopic images contain information that allows differentiation between spatially co-located chromogens with similar but different spectra. In this paper, a hyperspectral microscopic imaging (HMI) system is used to identify methyl green and nitrotetrazolium blue chloride in dual-stained colon sections. Hyperspectral microscopic images are captured and the normalized score algorithm is proposed to identify the stains and generate the co-expression results. Experimental results show that the proposed normalized score algorithm can generate more accurate co-localization results than the spectral angle mapper algorithm. The hyperspectral microscopic imaging technology can enhance the visualization of dual-stained colon sections, improve the contrast and legibility of each stain using their spectral signatures, which is helpful for pathologist performing histological analyses.

  12. Fluorescence Talbot microscope using incoherent source

    NASA Astrophysics Data System (ADS)

    Sun, Yangyang; Pang, Shuo

    2016-08-01

    Fluorescence Talbot microscope is a scalable field-of-view (FOV) imaging platform, which takes advantage of the phase sensitivity of the self-image of a periodic structure. Such a system can maintain the microscopic resolution and extend the FOV for the whole slide (15 mm×15 mm) scanning. Previously reported Talbot fluorescence systems, tabletop and on-chip device alike, rely on the coherence of the illumination source, limiting their potential applications in low-resource setting environment. A more cost-effective setup using a light-emitting diode, which has an area of 4 mm2 and a full width at half maximum of 16 nm in wavelength, is demonstrated. Compared to the illumination that is spatially filtered by a single pinhole, our system has achieved an illumination intensity that is 357 times higher. The reconstructed image quality is comparable to that of a 10× microscope objective. Various samples, such as fluorescent beads, green fluorescence protein-labeled HeLa cells, and a mouse kidney slide, were reconstructed by the system.

  13. Inside dielectrics: Microscopic and macroscopic polarization

    NASA Astrophysics Data System (ADS)

    Umari, P.; Corso, A. Dal; Resta, R.

    2001-08-01

    We address the very basic issue of what happens, at a microscopic level, inside a polarized dielectric. We show that the complete information about electronic polarization is embedded in the microscopic polarization P(ind)(r). Previous studies in the literature have addressed the induced electronic charge density (alias the divergence of our vector field) where the most relevant information is obliterated. The physical meaning of P(ind)(r) is best understood by imaging that the applied field is adiabatically switched on in time: P(ind)(r) is then proportional to the microscopic transient current flowing through the sample while the field is switched on and the dielectric is polarized. We provide a quantum-mechanical expression for P(ind)(r), and we present first-principle results for two case studies: Si and NaBr. In the case of Si, the (unperturbed) valence charge defines a continuous network of bonds. When a field is switched on, most of the polarization current P(ind)(r) flows within narrow channels along the bonds, and percolates across the material. Although less dominant, a similar feature occurs even in NaBr. Both materials turn out to be far from the Clausius-Mossotti limit, where the transient current does not cross the cell boundaries. In ferroelectric oxides, which have a mixed ionic/covalent character, the role of percolating transient currents is expected to be dominant.

  14. First Sample Delivery to Mars Microscope

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm on NASA's Phoenix Mars Lander has just delivered the first sample of dug-up soil to the spacecraft's microscope station in this image taken by the Surface Stereo Imager during the mission's Sol 17 (June 12), or 17th Martian day after landing.

    The scoop is positioned above the box containing key parts of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer, or MECA, instrument suite. It has sprinkled a small amount of soil into a notch in the MECA box where the microscope's sample wheel is exposed. The wheel turns to present sample particles on various substrates to the Optical Microscope for viewing.

    The scoop is about 8.5 centimeters (3.3 inches) wide. The top of the MECA box is 20 centimeters (7.9 inches) wide. This image has been lightened to make details more visible.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Sharp Tips on the Atomic Force Microscope

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the eight sharp tips of the NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The microscope maps the shape of particles in three dimensions by scanning them with one of the tips at the end of a beam. For the AFM image taken, the tip at the end of the upper right beam was used. The tip pointing up in the enlarged image is the size of a smoke particle at its base, or 2 microns. This image was taken with a scanning electron microscope before Phoenix launched on August 4, 2007.

    The AFM was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Global Microscopic Models for Nuclear Reaction Calculations

    SciTech Connect

    Goriely, S.

    2005-05-24

    Important effort has been devoted in the last decades to measuring reaction cross sections. Despite such effort, many nuclear applications still require the use of theoretical predictions to estimate experimentally unknown cross sections. Most of the nuclear ingredients in the calculations of reaction cross sections need to be extrapolated in an energy and/or mass domain out of reach of laboratory simulations. In addition, some applications often involve a large number of unstable nuclei, so that only global approaches can be used. For these reasons, when the nuclear ingredients to the reaction models cannot be determined from experimental data, it is highly recommended to consider preferentially microscopic or semi-microscopic global predictions based on sound and reliable nuclear models which, in turn, can compete with more phenomenological highly-parameterized models in the reproduction of experimental data. The latest developments made in deriving such microscopic models for practical applications are reviewed. It mainly concerns nuclear structure properties (masses, deformations, radii, etc.), level densities at the equilibrium deformation, {gamma}-ray strength, as well as fission barriers and level densities at the fission saddle points.

  17. Zoom microscope objective using electrowetting lenses.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-02-08

    We report a zoom microscope objective which can achieve continuous zoom change and correct the aberrations dynamically. The objective consists of three electrowetting liquid lenses and two glass lenses. The magnification is changed by applying voltages on the three electrowetting lenses. Besides, the three electrowetting liquid lenses can play a role to correct the aberrations. A digital microscope based on the proposed objective is demonstrated. We analyzed the properties of the proposed objective. In contrast to the conventional objectives, the proposed objective can be tuned from ~7.8 × to ~13.2 × continuously. For our objective, the working distance is fixed, which means no movement parts are needed to refocus or change its magnification. Moreover, the zoom objective can be dynamically optimized for a wide range of wavelength. Using such an objective, the fabrication tolerance of the optical system is larger than that of a conventional system, which can decrease the fabrication cost. The proposed zoom microscope objective cannot only take place of the conventional objective, but also has potential application in the 3D microscopy.

  18. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  19. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  20. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J.; Wendt, Joel R.

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  1. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  2. Differentiating Knowledge, Differentiating (Occupational) Practice

    ERIC Educational Resources Information Center

    Hordern, Jim

    2016-01-01

    This paper extends arguments for differentiating knowledge into conceptualisations of occupational practice. It is argued that specialised forms of knowledge and practice require recognition and differentiation in ways that many contemporary approaches to practice theory deny. Drawing on Hager's interpretation of MacIntyre, it is suggested that…

  3. Restoration of distorted colour microscopic images from transverse chromatic aberration of imperfect lenses.

    PubMed

    Wu, H-S; Murray, J; Morgello, S; Fiel, M I; Schiano, T; Kalir, T; Deligdisch, L; Gil, J

    2011-02-01

    An algorithm is presented for restoration of colour microscopic images with distortions from imperfect microscope lenses having transverse chromatic aberrations, resulting in a magnification that slightly varies with wavelengths or colours. The differential of each colour component image is computed as the difference between the component image and its slightly magnified version. The absolute values in the differential component images are generally higher at the edges where greater discontinuities occur. The two cross-correlation functions of the absolute differentials between red and green colours and between red and blue colours are then computed. The maximum in the two cross-correlation functions were sought, respectively, and the cross-correlation delays were then calculated. The two cross-correlation delays were used to determine dispersions and to realign the three colour components. Results of real microscopic images are provided. The restored image and the original are compared both visually and quantitatively in terms of the estimated entropies measured for the degree of concentrations using vector distributions.

  4. Microscope Cells Containing Multiple Micromachined Wells

    NASA Technical Reports Server (NTRS)

    Turner, Walter; Skupinski, Robert

    2003-01-01

    Tech Briefs, May 2003 19 Manufacturing Microscope Cells Containing Multiple Micromachined Wells The cost per cell has been reduced substantially. John H. Glenn Research Center, Cleveland, Ohio An improved design for multiple-well microscope cells and an associated improved method of fabricating them have been devised. [As used here, "well" denotes a cavity that has a volume of about 1 or 2 L and that is used to hold a sample for examination under a microscope. As used here, "cell" denotes a laminate, based on a standard 1- by 3-in. (2.54- by 7.62-cm) microscope slide, that comprises (1) the slide as the lower layer, (2) an intermediate layer that contains holes that serve as the wells, and (3) a top layer that either consists of, or is similar to, a standard microscope-slide cover slip.] The improved design and method of fabrication make it possible to increase (relative to a prior design and method of fabrication) the number of wells per cell while reducing the fabrication loss and reducing the cost per cell to about one-tenth of the prior value. In the prior design and method, the slide, well, and cover-slip layers were made from silicate glass. The fabrication of each cell was a labor-intensive process that included precise cutting and grinding of the glass components, fusing of the glass components, and then more grinding and polishing to obtain desired dimensions. Cells of the prior design were expensive and fragile, the rate of loss in fabrication was high, and the nature of the glass made it difficult to increase the number of cells per well. Efforts to execute alternative prior designs in plastic have not yielded satisfactory results because, for typical applications, plastics are not sufficiently thermally or chemically stable, not sufficiently optically clear, and/or not hard enough to resist scratching. The figure depicts a cell of the present improved type. The slide and cover-slip layers are made of a low-thermal-expansion glass (Pyrex(TradeMark) or

  5. Reflection of a polarized light cone

    NASA Astrophysics Data System (ADS)

    Brody, Jed; Weiss, Daniel; Berland, Keith

    2013-01-01

    We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.

  6. Massive Particle Reflection from Moving Mirrors

    NASA Astrophysics Data System (ADS)

    Sfarti, Adrian

    2016-09-01

    We investigate the reflection of massive particles from moving mirrors. The adoption of the formalism based on the energy-momentum allowed us to derive the most general set of formulas, valid for massive and, in the limit, also for massless particles. We show that the momentum change of the reflecting particle always lies along the normal to the mirror, independent of the mirror speed. The subject is interesting not only to physicists designing concentrators for fascicles of massive particles and electron microscopes but also to computer scientists working in raytracing operating in the photon sector. The paper, far from being only theoretical, has profound and novel practical applications in both domains of engineering design and computer science.

  7. Critical dimensional linewidth calibration using UV microscope and laser interferometry

    NASA Astrophysics Data System (ADS)

    Li, Qi; Gao, Si-tian; Li, Wei; Lu, Ming-zhen; Zhang, Ming-kai

    2013-10-01

    In order to calibrate the critical dimensional (CD) uncertainty of lithography masks in semiconductor manufacturing, NIM is building a two dimensional metrological UV microscope which has traceable measurement ability for nanometer linewidths and pitches. The microscope mainly consists of UV light receiving components, piezoelectric ceramics (PZT) driven stage and interferometer calibration framework. In UV light receiving components they include all optical elements on optical path. The UV light originates from Köhler high aperture transmit/reflect illumination sources; then goes through objective lens to UV splitting optical elements; after that, one part of light attains UV camera for large range calibration, the other part of light passes through a three dimensional adjusted pinhole and is collected by PMT for nanoscale scanning. In PZT driven stage, PZT stick actuators with closed loop control are equipped to push/pull a flexural hinge based platform. The platform has a novel designed compound flexural hinges which nest separate X, Y direction moving mechanisms within one layer but avoiding from mutual cross talk, besides this, the hinges also contain leverage structures to amplify moving distance. With these designs, the platform can attain 100 μm displacement ranges as well as 1 nm resolution. In interferometer framework a heterodyne multi-pass interferometer is mounted on the platform, which measures X-Y plane movement and Z axis rotation, through reference mirror mounted on objective lens tube and Zerodur mirror mounted on PZT platform, the displacement is traced back to laser wavelength. When development is finished, the apparatus can offer the capability to calibrate one dimensional linewidths and two dimensional pitches ranging from 200nm to 50μm with expanded uncertainty below 20nm.

  8. DIFFERENTIAL ANALYZER

    DOEpatents

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  9. Renewable liquid reflection grating

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  10. Ultraviolet reflective coating

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.

    1974-01-01

    Composition consists of dispersion of barium sulphate in aqueous solution of water-soluble inorganic binder. Binder is selected from group consisting of alkali metal sulphates. Coating exhibits high reflectance of ultraviolet light to wavelengths of approximately 200.0 nm, which compares favorably with high reflectance of virgin barium sulphate power.

  11. Reflective Learning in Practice.

    ERIC Educational Resources Information Center

    Brockbank, Anne, Ed.; McGill, Ian, Ed.; Beech, Nic, Ed.

    This book contains 22 papers on reflective learning in practice. The following papers are included: "Our Purpose" (Ann Brockbank, Ian McGill, Nic Beech); "The Nature and Context of Learning" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning and Organizations" (Ann Brockbank, Ian McGill, Nic Beech);…

  12. Reflection in Medical Education

    ERIC Educational Resources Information Center

    Hargreaves, Ken

    2016-01-01

    This paper offers a medical-education perspective that I will hope complement other disciplinary perspectives in examining the value of reflection for learning in tertiary education. The paper outlines some of the theoretical strands of reflective practice facilitated in a unique course subject for professionalism and patient safety, within the…

  13. Transparencies and Reflections.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    1999-01-01

    Discusses the use of perspective, or showing things as the human eye sees them, when creating reflections and transparencies in works of art. Provides examples of artwork using transparency, reflection, and refraction by M. C. Escher, Richard Estes, and Janet Fish to give students an opportunity to learn about these three art techniques. (CMK)

  14. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  15. Rethinking Reflection: Teachers' Critiques

    ERIC Educational Resources Information Center

    Atkinson, Becky M.

    2012-01-01

    This article presents findings from a study conducted with a teacher focus group asked to read and discuss their responses to selected published teacher narratives of reflective practice. The teachers challenged features of practitioner reflection presented in several of the reading selections as not representative of how they experienced…

  16. 3D Printed Microscope for Mobile Devices that Cost Pennies

    ScienceCinema

    Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine

    2016-07-12

    Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.

  17. 3D Printed Microscope for Mobile Devices that Cost Pennies

    SciTech Connect

    Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine

    2014-09-15

    Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.

  18. A practical guide to microscope care and maintenance.

    PubMed

    Petrak, Lara J; Waters, Jennifer C

    2014-01-01

    Optimal microscope performance requires regular maintenance and quality control testing. This chapter is a practical guide to microscope care with an emphasis on preventing, identifying and troubleshooting common issues.

  19. Comparison of local, semi-microscopic, and microscopic three-cluster models

    SciTech Connect

    Theeten, M.; Baye, D.; Descouvemont, P.

    2006-10-15

    Two different three-body models are compared with a fully antisymmetrized microscopic three-cluster model. The local model makes use of local effective interactions involving forbidden states among the three particles. In the semi-microscopic model, nonlocal two-body interactions are derived within the resonating-group method from the same nucleon-nucleon effective forces as in the microscopic model. In both cases, calculations are performed in hyperspherical coordinates with the Lagrange-mesh method. The role of forbidden states and their elimination are discussed. The models are applied to an {alpha}{alpha}n description of {sup 9}Be and an {alpha}nn description of {sup 6}He. The local model results are affected by almost forbidden states and may be unrealistic for {sup 9}Be. A comparison of the microscopic and semi-microscopic models shows that the effect of exchanges involving the three clusters is weak. An overbinding of {sup 9}Be cannot be avoided with nucleon-nucleon forces reproducing {alpha}n and {alpha}{alpha} scattering properties. On the contrary, {sup 6}He is underbound under the same conditions. This can probably be attributed to a lack of three-nucleon forces.

  20. Local tomographic phase microscopy from differential projections

    NASA Astrophysics Data System (ADS)

    Vishnyakov, G. N.; Levin, G. G.; Minaev, V. L.; Nekrasov, N. A.

    2016-12-01

    It is proposed to use local tomography for optical studies of the internal structure of transparent phase microscopic objects, for example, living cells. From among the many local tomography methods that exist, the algorithms of back projection summation (in which partial derivatives of projections are used as projection data) are chosen. The application of local tomography to living cells is reasonable because, using optical phase microscopy, one can easily obtain projection data in the form of first-order derivatives of projections applying the methods of differential interference contrast and shear interferometry. The mathematical fundamentals of local tomography in differential projections are considered, and a computer simulation of different local tomography methods is performed. A tomographic phase microscope and the results of reconstructing a local tomogram of an erythrocyte from a set of experimental differential projections are described.

  1. Improved Scanners for Microscopic Hyperspectral Imaging

    NASA Technical Reports Server (NTRS)

    Mao, Chengye

    2009-01-01

    Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version

  2. Quantitative imaging with a mobile phone microscope.

    PubMed

    Skandarajah, Arunan; Reber, Clay D; Switz, Neil A; Fletcher, Daniel A

    2014-01-01

    Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone-based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications.

  3. Quantitative Imaging with a Mobile Phone Microscope

    PubMed Central

    Skandarajah, Arunan; Reber, Clay D.; Switz, Neil A.; Fletcher, Daniel A.

    2014-01-01

    Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone–based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications. PMID:24824072

  4. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (Inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  5. Disorder-induced microscopic magnetic memory.

    PubMed

    Pierce, M S; Buechler, C R; Sorensen, L B; Turner, J J; Kevan, S D; Jagla, E A; Deutsch, J M; Mai, T; Narayan, O; Davies, J E; Liu, K; Dunn, J Hunter; Chesnel, K M; Kortright, J B; Hellwig, O; Fullerton, E E

    2005-01-14

    Using coherent x-ray speckle metrology, we have measured the influence of disorder on major loop return point memory (RPM) and complementary point memory (CPM) for a series of perpendicular anisotropy Co/Pt multilayer films. In the low disorder limit, the domain structures show no memory with field cycling--no RPM and no CPM. With increasing disorder, we observe the onset and the saturation of both the RPM and the CPM. These results provide the first direct ensemble-sensitive experimental study of the effects of varying disorder on microscopic magnetic memory and are compared against the predictions of existing theories.

  6. Transmission Electron Microscope Measures Lattice Parameters

    NASA Technical Reports Server (NTRS)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  7. Microscope spectrometer for light scattering investigations

    SciTech Connect

    Barbara, Aude; Lopez-Rios, Tomas; Dumont, Sylvain; Gay, Frederic; Quemerais, Pascal

    2010-08-01

    We describe a setup including a microscope to study volumes of a few {mu}m{sup 3} by static and dynamic light scattering (DLS) in a backscattering configuration. Light scattered by individual objects of micrometric size can be analyzed in the 400-800 nm spectral range. This setup can also be employed to study both diluted and concentrated colloidal solutions by DLS measurements. For diluted solutions we found evidence of the fluctuations of the number of particles in a confocal volume. We discuss their contribution to the autocorrelation function of the scattered intensity measured as a function of time.

  8. Scanning tip microwave near field microscope

    DOEpatents

    Xiang, Xiao-Dong; Schultz, Peter G.; Wei, Tao

    1998-01-01

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

  9. Improved Photon-Emission-Microscope System

    NASA Technical Reports Server (NTRS)

    Vu, Duc

    2006-01-01

    An improved photon-emission-microscope (PEM) instrumentation system has been developed for use in diagnosing failure conditions in semiconductor devices, including complex integrated circuits. This system is designed primarily to image areas that emit photons, at wavelengths from 400 to 1,100 nm, associated with device failures caused by leakage of electric current through SiO2 and other dielectric materials used in multilayer semiconductor structures. In addition, the system is sensitive enough to image areas that emit photons during normal operation.

  10. Transmission electron microscope studies of extraterrestrial materials

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  11. Microscopic Primordial Black Holes and Extra Dimensions

    SciTech Connect

    Conley, John A.; Wizansky, Tommer

    2006-11-15

    We examine the production and evolution of microscopic black holes in the early universe in the large extra dimensions scenario. We demonstrate that, unlike in the standard four-dimensional cosmology, in large extra dimensions absorption of matter from the primordial plasma by the black holes is significant and can lead to rapid growth of the black hole mass density. This effect can be used to constrain the conditions present in the very early universe. We demonstrate that this constraint is applicable in regions of parameter space not excluded by existing bounds.

  12. Ponderomotive phase plate for transmission electron microscopes

    DOEpatents

    Reed, Bryan W [Livermore, CA

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  13. Scanning tip microwave near field microscope

    DOEpatents

    Xiang, X.D.; Schultz, P.G.; Wei, T.

    1998-10-13

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an end wall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity. 17 figs.

  14. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.

    1991-01-01

    An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

  15. A portable laser photostimulation and imaging microscope.

    PubMed

    Nikolenko, Volodymyr; Peterka, Darcy S; Yuste, Rafael

    2010-08-01

    We describe a compact microscope that uses a spatial light modulator (SLM) to control the excitation laser light. The flexibility of SLMs, which can mimic virtually any optical transfer function, enables the experimenter to create, in software, arbitrary spatio-temporal light patterns, including focusing and beam scanning, simply by calculating the appropriate phase mask. Our prototype, a scan-less device with no moving parts, can be used for laser imaging or photostimulation, supplanting the need for an elaborate optical setup. As a proof of principle, we generate complex excitation patterns on fluorescent samples and also perform functional imaging of neuronal activity in living brain slices.

  16. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  17. Templates for Deposition of Microscopic Pointed Structures

    NASA Technical Reports Server (NTRS)

    Pugel, Diane E.

    2008-01-01

    Templates for fabricating sharply pointed microscopic peaks arranged in nearly regular planar arrays can be fabricated by a relatively inexpensive technique that has recently been demonstrated. Depending on the intended application, a semiconducting, insulating, or metallic film could be deposited on such a template by sputtering, thermal evaporation, pulsed laser deposition, or any other suitable conventional deposition technique. Pointed structures fabricated by use of these techniques may prove useful as photocathodes or field emitters in plasma television screens. Selected peaks could be removed from such structures and used individually as scanning tips in atomic force microscopy or mechanical surface profiling.

  18. Microscopic theory of equilibrium polariton condensates

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Wu, Fengcheng; Xie, Ming; Su, Jung-Jung; MacDonald, A. H.

    2016-12-01

    We present a microscopic theory of the equilibrium polariton condensate state of a semiconductor quantum well in a planar optical cavity. The theory accounts for the adjustment of matter excitations to the presence of a coherent photon field, predicts effective polariton-polariton interaction strengths that are weaker and condensate exciton fractions that are smaller than in the commonly employed exciton-photon model, and yields effective Rabi coupling strengths that depend on the detuning of the cavity-photon energy relative to the bare exciton energy. The dressed quasiparticle bands that appear naturally in the theory provide a mechanism for electrical manipulation of polariton condensates.

  19. Mars Life? - Microscopic Tube-like Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This high-resolution scanning electron microscope image shows an unusual tube-like structural form that is less than 1/100th the width of a human hair in size found in meteorite ALH84001, a meteorite believed to be of Martian origin. Although this structure is not part of the research published in the Aug. 16 issue of the journal Science, it is located in a similar carbonate glob in the meteorite. This structure will be the subject of future investigations that could confirm whether or not it is fossil evidence of primitive life on Mars 3.6 billion years ago.

  20. 21 CFR 878.4700 - Surgical microscope and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Surgical microscope and accessories. 878.4700 Section 878.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... microscope and accessories. (a) Identification. A surgical microscope and accessories is an AC-powered...

  1. 21 CFR 878.4700 - Surgical microscope and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Surgical microscope and accessories. 878.4700 Section 878.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... microscope and accessories. (a) Identification. A surgical microscope and accessories is an AC-powered...

  2. 21 CFR 878.4700 - Surgical microscope and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Surgical microscope and accessories. 878.4700 Section 878.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... microscope and accessories. (a) Identification. A surgical microscope and accessories is an AC-powered...

  3. 21 CFR 878.4700 - Surgical microscope and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Surgical microscope and accessories. 878.4700 Section 878.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... microscope and accessories. (a) Identification. A surgical microscope and accessories is an AC-powered...

  4. 21 CFR 878.4700 - Surgical microscope and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical microscope and accessories. 878.4700 Section 878.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... microscope and accessories. (a) Identification. A surgical microscope and accessories is an AC-powered...

  5. Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters.

    PubMed

    Maki, Daisuke; Ishii, Tetsuya; Sato, Fuminobu; Kato, Yushi; Yamamoto, Takayoshi; Iida, Toshiyuki

    2011-03-01

    A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using (241)Am alpha rays. The spatial resolution of this system was ∼ 3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image.

  6. Amplified total internal reflection.

    PubMed

    Fan, J; Dogariu, A; Wang, L J

    2003-02-24

    Totally internal reflected beams can be amplified if the lowerindex medium has gain. We analyze the reflection and refraction of light, and analytically derive the expression for the Goos-Hänchen shifts of a Gaussian beam incident on a lower-index medium, both active and absorptive. We examine the energy flow and the Goos-Hänchen shifts for various cases. The analytical results are consistent with the numerical results. For the TE mode, the Goos-Hänchen shift for the transmitted beam is exactly half of that of the reflected beam, resulting in a "1/2" rule.

  7. Microscopic modeling of nitride intersubband absorbance

    NASA Astrophysics Data System (ADS)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  8. Quantitative phase-contrast confocal microscope

    PubMed Central

    Liu, Changgeng; Marchesini, Stefano; Kim, Myung K.

    2014-01-01

    We present a quantitative phase-contrast confocal microscope (QPCCM) by combining a line-scanning confocal system with digital holography (DH). This combination can merge the merits of these two different imaging modalities. High-contrast intensity images with low coherent noise, and the optical sectioning capability are made available due to the confocality. Phase profiles of the samples become accessible thanks to DH. QPCCM is able to quantitatively measure the phase variations of optical sections of the opaque samples and has the potential to take high-quality intensity and phase images of non-opaque samples such as many biological samples. Because each line scan is recorded by a hologram that may contain the optical aberrations of the system, it opens avenues for a variety of numerical aberration compensation methods and development of full digital adaptive optics confocal system to emulate current hardware-based adaptive optics system for biomedical imaging, especially ophthalmic imaging. Preliminary experiments with a microscope objective of NA 0.65 and 40 × on opaque samples are presented to demonstrate this idea. The measured lateral and axial resolutions of the intensity images from the current system are ~0.64μm and ~2.70μm respectively. The noise level of the phase profile by QPCCM is ~2.4nm which is better than the result by DH. PMID:25089404

  9. Microscopic models for bridging electrostatics and currents

    NASA Astrophysics Data System (ADS)

    Borghi, L.; DeAmbrosis, A.; Mascheretti, P.

    2007-03-01

    A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.

  10. Excitation-scanning hyperspectral imaging microscope

    PubMed Central

    Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2014-01-01

    Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  11. 3D printing of microscopic bacterial communities

    PubMed Central

    Connell, Jodi L.; Ritschdorff, Eric T.; Whiteley, Marvin; Shear, Jason B.

    2013-01-01

    Bacteria communicate via short-range physical and chemical signals, interactions known to mediate quorum sensing, sporulation, and other adaptive phenotypes. Although most in vitro studies examine bacterial properties averaged over large populations, the levels of key molecular determinants of bacterial fitness and pathogenicity (e.g., oxygen, quorum-sensing signals) may vary over micrometer scales within small, dense cellular aggregates believed to play key roles in disease transmission. A detailed understanding of how cell–cell interactions contribute to pathogenicity in natural, complex environments will require a new level of control in constructing more relevant cellular models for assessing bacterial phenotypes. Here, we describe a microscopic three-dimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating colonies. In this laser-based lithographic technique, microscopic containers are formed around selected bacteria suspended in gelatin via focal cross-linking of polypeptide molecules. After excess reagent is removed, trapped bacteria are localized within sealed cavities formed by the cross-linked gelatin, a highly porous material that supports rapid growth of fully enclosed cellular populations and readily transmits numerous biologically active species, including polypeptides, antibiotics, and quorum-sensing signals. Using this approach, we show that a picoliter-volume aggregate of Staphylococcus aureus can display substantial resistance to β-lactam antibiotics by enclosure within a shell composed of Pseudomonas aeruginosa. PMID:24101503

  12. Active limited-angle tomographic phase microscope.

    PubMed

    Kus, Arkadiusz; Krauze, Wojciech; Kujawinska, Malgorzata

    2015-01-01

    We demonstrate an active, holographic tomography system, working with limited angle of projections, realized by optical-only, diffraction-based beam steering. The system created for this purpose is a Mach–Zehnder interferometer modified to serve as a digital holographic microscope with a high numerical aperture illumination module and a spatial light modulator (SLM). Such a solution is fast and robust. Apart from providing an elegant solution to viewing angle shifting, it also adds new capabilities of the holographic microscope system. SLM, being an active optical element, allows wavefront correction in order to improve measurement accuracy. Integrated phase data captured with different illumination scenarios within a highly limited angular range are processed by a new tomographic reconstruction algorithm based on the compressed sensing technique: total variation minimization, which is applied here to reconstruct nonpiecewise constant samples. Finally, the accuracy of full measurement and the proposed processing path is tested for a calibrated three-dimensional micro-object as well as a biological object--C2C12 myoblast cell.

  13. Line-scanning, stage scanning confocal microscope

    NASA Astrophysics Data System (ADS)

    Carucci, John A.; Stevenson, Mary; Gareau, Daniel

    2016-03-01

    We created a line-scanning, stage scanning confocal microscope as part of a new procedure: video assisted micrographic surgery (VAMS). The need for rapid pathological assessment of the tissue on the surface of skin excisions very large since there are 3.5 million new skin cancers diagnosed annually in the United States. The new design presented here is a confocal microscope without any scanning optics. Instead, a line is focused in space and the sample, which is flattened, is physically translated such that the line scans across its face in a direction perpendicular to the line its self. The line is 6mm long and the stage is capable of scanning 50 mm, hence the field of view is quite large. The theoretical diffraction-limited resolution is 0.7um lateral and 3.7um axial. However, in this preliminary report, we present initial results that are a factor of 5-7 poorer in resolution. The results are encouraging because they demonstrate that the linear array detector measures sufficient signal from fluorescently labeled tissue and also demonstrate the large field of view achievable with VAMS.

  14. Microscopic functional anatomy: Integumentary system: Chapter 17

    USGS Publications Warehouse

    Elliott, Diane G.; Ostrander, Gary K.

    2000-01-01

    Many of the features of the fish integument can only be observed microscopically. Because there are over 20,000 living fishes, mostly higher bony fishes (teleosts), a great diversity exists in the microscopic anatomy of the integument. This chapter presents several examples from varied taxonomic groups to illustrate the variation in morphological features. As in all vertebrate epidermis, the fundamental structural unit is the epithelial cell. This is the only constant feature, as a great diversity of cell types exists in the various fish taxa. Some of these include apocrine mucous cells and a variety of other secretory cells, ionocytes, sensory cells, and wandering cells such as leukocytes. The dermis consists essentially of two sets of collagen fibers arranged in opposing geodesic spirals around the body. The dermis of most fishes is divided into two major layers. The upper (outer) layer, the stratum spongiosum or stratum laxum, is a loose network of connective tissue, whereas the lower layer, the stratum compactum, is a dense layer consisting primarily of orthogonal collagen bands. There are also specialized dermal elements such as chromatophores scales, and fin rays.

  15. The Scanning TMR Microscope for Biosensor Applications

    PubMed Central

    Vyas, Kunal N.; Love, David M.; Ionescu, Adrian; Llandro, Justin; Kollu, Pratap; Mitrelias, Thanos; Holmes, Stuart; Barnes, Crispin H. W.

    2015-01-01

    We present a novel tunnel magnetoresistance (TMR) scanning microscope set-up capable of quantitatively imaging the magnetic stray field patterns of micron-sized elements in 3D. By incorporating an Anderson loop measurement circuit for impedance matching, we are able to detect magnetoresistance changes of as little as 0.006%/Oe. By 3D rastering a mounted TMR sensor over our magnetic barcodes, we are able to characterise the complex domain structures by displaying the real component, the amplitude and the phase of the sensor’s impedance. The modular design, incorporating a TMR sensor with an optical microscope, renders this set-up a versatile platform for studying and imaging immobilised magnetic carriers and barcodes currently employed in biosensor platforms, magnetotactic bacteria and other complex magnetic domain structures of micron-sized entities. The quantitative nature of the instrument and its ability to produce vector maps of magnetic stray fields has the potential to provide significant advantages over other commonly used scanning magnetometry techniques. PMID:25849347

  16. Active limited-angle tomographic phase microscope

    NASA Astrophysics Data System (ADS)

    Kuś, Arkadiusz; Krauze, Wojciech; Kujawińska, Małgorzata

    2015-11-01

    We demonstrate an active, holographic tomography system, working with limited angle of projections, realized by optical-only, diffraction-based beam steering. The system created for this purpose is a Mach-Zehnder interferometer modified to serve as a digital holographic microscope with a high numerical aperture illumination module and a spatial light modulator (SLM). Such a solution is fast and robust. Apart from providing an elegant solution to viewing angle shifting, it also adds new capabilities of the holographic microscope system. SLM, being an active optical element, allows wavefront correction in order to improve measurement accuracy. Integrated phase data captured with different illumination scenarios within a highly limited angular range are processed by a new tomographic reconstruction algorithm based on the compressed sensing technique: total variation minimization, which is applied here to reconstruct nonpiecewise constant samples. Finally, the accuracy of full measurement and the proposed processing path is tested for a calibrated three-dimensional micro-object as well as a biological object-C2C12 myoblast cell.

  17. Excitation-scanning hyperspectral imaging microscope.

    PubMed

    Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J

    2014-04-01

    Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications.

  18. Ionoluminescence in the helium ion microscope.

    PubMed

    Boden, Stuart A; Franklin, Thomas M W; Scipioni, Larry; Bagnall, Darren M; Rutt, Harvey N

    2012-12-01

    Ionoluminescence (IL) is the emission of light from a material due to excitation by an ion beam. In this work, a helium ion microscope (HIM) has been used in conjunction with a luminescence detection system to characterize IL from materials in an analogous way to how cathodoluminescence (CL) is characterized in a scanning electron microscope (SEM). A survey of the helium ion beam induced IL characteristics, including images and spectra, of a variety of materials known to exhibit CL in an SEM is presented. Direct band-gap semiconductors that luminesce strongly in the SEM are found not do so in the HIM, possibly due to defect-related nonradiative pathways created by the ion beam. Other materials do, however, exhibit IL, including a cerium-doped garnet sample, quantum dots, and rare-earth doped LaPO4 nanocrystals. These emissions are a result of transitions between f electron states or transitions across size dependent band gaps. In all these samples, IL is found to decay with exposure to the beam, fitting well to double exponential functions. In an exploration of the potential of this technique for biological tagging applications, imaging with the IL emitted by rare-earth doped LaPO4 nanocrystals, simultaneously with secondary electron imaging, is demonstrated at a range of magnifications.

  19. Inquiry based learning with a virtual microscope

    NASA Astrophysics Data System (ADS)

    Kelley, S. P.; Sharples, M.; Tindle, A.; Villasclaras-Fernández, E.

    2012-12-01

    As part of newly funded initiative, the Wolfson OpenScience Laboratory, we are linking a tool for inquiry based learning, nQuire (http://www.nquire.org.uk) with the virtual microscope for Earth science (http://www.virtualmicroscope.co.uk) to allow students to undertake projects and gain from inquiry based study thin sections of rocks without the need for a laboratory with expensive petrological microscopes. The Virtual Microscope (VM) was developed for undergraduate teaching of petrology and geoscience, allowing students to explore rock hand specimens and thin sections in a browser window. The system is based on HTML5 application and allows students to scan and zoom the rocks in a browser window, view in ppl and xpl conditions, and rotate specific areas to view birefringence and pleochroism. Importantly the VM allows students to gain access to rare specimens such as Moon rocks that might be too precious to suffer loss or damage. Experimentation with such specimens can inspire the learners' interest in science and allows them to investigate relevant science questions. Yet it is challenging for learners to engage in scientific processes, as they may lack scientific investigation skills or have problems in planning their activities; for teachers, managing inquiry activities is a demanding task (Quintana et al., 2004). To facilitate the realization of inquiry activities, the VM is being integrated with the nQuire tool. nQuire is a web tool that guides and supports students through the inquiry process (Mulholland et al., 2011). Learners are encouraged to construct their own personally relevant hypothesis, pose scientific questions, and plan the method to answer them. Then, the system enables users to collect and analyze data, and share their conclusions. Teachers can monitor their students' progress through inquiries, and give them access to new parts of inquiries as they advance. By means of the integration of nQuire and the VM, inquiries that involve collecting data

  20. Seasonal soybean crop reflectance

    NASA Technical Reports Server (NTRS)

    Lemaster, E. W. (Principal Investigator); Chance, J. E.

    1983-01-01

    Data are presented from field measurements of 1980 including 5 acquisitions of handheld radiometer reflectance measurements, 7 complete sets of parameters for implementing the Suits mode, and other biophysical parameters to characterize the soybean canopy. LANDSAT calculations on the simulated Brazilian soybean reflectance are included along with data collected during the summer and fall on 1981 on soybean single leaf optical parameters for three irrigation treatments. Tests of the Suits vegetative canopy reflectance model for the full hemisphere of observer directions as well as the nadir direction show moderate agreement for the visible channels of the MSS and poor agreement in the near infrared channel. Temporal changes in the spectral characteristics of the single leaves were seen to occur as a function of maturity which demonstrates that the absorptance of a soybean single leaf is more a function of thetransmittancee characteristics than the seasonally consistent single leaf reflectance.