Sample records for differential replication dynamics

  1. Regulation of DNA replication during development

    PubMed Central

    Nordman, Jared; Orr-Weaver, Terry L.

    2012-01-01

    As development unfolds, DNA replication is not only coordinated with cell proliferation, but is regulated uniquely in specific cell types and organs. This differential regulation of DNA synthesis requires crosstalk between DNA replication and differentiation. This dynamic aspect of DNA replication is highlighted by the finding that the distribution of replication origins varies between differentiated cell types and changes with differentiation. Moreover, differential DNA replication in some cell types can lead to increases or decreases in gene copy number along chromosomes. This review highlights the recent advances and technologies that have provided us with new insights into the developmental regulation of DNA replication. PMID:22223677

  2. Differential replication dynamics for large and small Vibrio chromosomes affect gene dosage, expression and location

    PubMed Central

    Dryselius, Rikard; Izutsu, Kaori; Honda, Takeshi; Iida, Tetsuya

    2008-01-01

    Background Replication of bacterial chromosomes increases copy numbers of genes located near origins of replication relative to genes located near termini. Such differential gene dosage depends on replication rate, doubling time and chromosome size. Although little explored, differential gene dosage may influence both gene expression and location. For vibrios, a diverse family of fast growing gammaproteobacteria, gene dosage may be particularly important as they harbor two chromosomes of different size. Results Here we examined replication dynamics and gene dosage effects for the separate chromosomes of three Vibrio species. We also investigated locations for specific gene types within the genome. The results showed consistently larger gene dosage differences for the large chromosome which also initiated replication long before the small. Accordingly, large chromosome gene expression levels were generally higher and showed an influence from gene dosage. This was reflected by a higher abundance of growth essential and growth contributing genes of which many locate near the origin of replication. In contrast, small chromosome gene expression levels were low and appeared independent of gene dosage. Also, species specific genes are highly abundant and an over-representation of genes involved in transcription could explain its gene dosage independent expression. Conclusion Here we establish a link between replication dynamics and differential gene dosage on one hand and gene expression levels and the location of specific gene types on the other. For vibrios, this relationship appears connected to a polarisation of genetic content between its chromosomes, which may both contribute to and be enhanced by an improved adaptive capacity. PMID:19032792

  3. Structure and Dynamics of Replication-Mutation Systems

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    1987-03-01

    The kinetic equations of polynucleotide replication can be brought into fairly simple form provided certain environmental conditions are fulfilled. Two flow reactors, the continuously stirred tank reactor (CSTR) and a special dialysis reactor are particularly suitable for the analysis of replication kinetics. An experimental setup to study the chemical reaction network of RNA synthesis was derived from the bacteriophage Qβ. It consists of a virus specific RNA polymerase, Qβ replicase, the activated ribonucleosides GTP, ATP, CTP and UTP as well as a template suitable for replication. The ordinary differential equations for replication and mutation under the conditions of the flow reactors were analysed by the qualitative methods of bifurcation theory as well as by numerical integration. The various kinetic equations are classified according to their dynamical properties: we distinguish "quasilinear systems" which have uniquely stable point attractors and "nonlinear systems" with inherent nonlinearities which lead to multiple steady states, Hopf bifuractions, Feigenbaum-like sequences and chaotic dynamics for certain parameter ranges. Some examples which are relevant in molecular evolution and population genetics are discussed in detail.

  4. Mapping replication dynamics in Trypanosoma brucei reveals a link with telomere transcription and antigenic variation

    PubMed Central

    Devlin, Rebecca; Marques, Catarina A; Paape, Daniel; Prorocic, Marko; Zurita-Leal, Andrea C; Campbell, Samantha J; Lapsley, Craig; Dickens, Nicholas; McCulloch, Richard

    2016-01-01

    Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating – a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility. DOI: http://dx.doi.org/10.7554/eLife.12765.001 PMID:27228154

  5. Emergence of multicellular organisms with dynamic differentiation and spatial pattern.

    PubMed

    Furusawa, C; Kaneko, K

    1998-01-01

    The origin of multicellular organisms and the mechanism of development in cell societies are studied by choosing a model with intracellular biochemical dynamics allowing for oscillations, cell-cell interaction through diffusive chemicals on a two-dimensional grid, and state-dependent cell adhesion. Cells differentiate due to a dynamical instability, as described by our "isologous diversification" theory. A fixed spatial pattern of differentiated cells emerges, where spatial information is sustained by cell-cell interactions. This pattern is robust against perturbations. With an adequate cell adhesion force, active cells are release that form the seed of a new generation of multicellular organisms, accompanied by death of the original multicellular unit as a halting state. It is shown that the emergence of multicellular organisms with differentiation, regulation, and life cycle is not an accidental event, but a natural consequence in a system of replicating cells with growth.

  6. Parvovirus B19 Replication and Expression in Differentiating Erythroid Progenitor Cells

    PubMed Central

    Bua, Gloria; Manaresi, Elisabetta; Bonvicini, Francesca; Gallinella, Giorgio

    2016-01-01

    The pathogenic Parvovirus B19 (B19V) is characterized by a strict adaptation to erythroid progenitor cells (EPCs), a heterogeneous population of differentiating cells with diverse phenotypic and functional properties. In our work, we studied the dynamics of B19V infection in EPCs in dependence on the cell differentiation stage, in terms of distribution of infected cells, synthesis of viral nucleic acids and production of infectious virus. EPCs at early differentiation stage led to an abortive infection, without viral genome replication and a very low transcriptional activity. EPCs at later stages were permissive, with highest levels of viral replicative activity at day 9 (+3.0 Log from 2 to 48 hpi) and lower levels at day 18 (+1.5 Log from 2 to 48 hpi). B19V DNA increment was in accordance with the percentage of cells positive to flow-FISH assay (41.4% at day 9, 1.1% at day 18). Quantitation of total RNA indicated a close association of genome replication and transcription with viral RNA accumulation within infected cells related to viral DNA increase during the course of infection. Analysis of the different classes of mRNAs revealed two distinct pattern of genome expression profile with a fine regulation in the frequency utilization of RNA processing signals: an early phase, when cleavage at the proximal site leading to a higher relative production of mRNA for NS protein, and a late phase, when cleavage at the distal site was more frequent leading to higher relative abundance of mRNA for VP and 11 kDA proteins. Infectious virus was released from cells at day 6–15, but not at day 18. Our results, providing a detailed description of B19V replication and expression profile in differentiating EPCs, highlight the very tight adaptation of B19V to a specific cellular target defined both by its erythroid lineage and its differentiation stage. PMID:26845771

  7. Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method.

    PubMed

    Dou, Dan; Hernández-Neuta, Iván; Wang, Hao; Östbye, Henrik; Qian, Xiaoyan; Thiele, Swantje; Resa-Infante, Patricia; Kouassi, Nancy Mounogou; Sender, Vicky; Hentrich, Karina; Mellroth, Peter; Henriques-Normark, Birgitta; Gabriel, Gülsah; Nilsson, Mats; Daniels, Robert

    2017-07-05

    Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV) infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. A mitosis block links active cell cycle with human epidermal differentiation and results in endoreplication.

    PubMed

    Zanet, Jennifer; Freije, Ana; Ruiz, María; Coulon, Vincent; Sanz, J Ramón; Chiesa, Jean; Gandarillas, Alberto

    2010-12-20

    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation.

  9. A Mitosis Block Links Active Cell Cycle with Human Epidermal Differentiation and Results in Endoreplication

    PubMed Central

    Zanet, Jennifer; Freije, Ana; Ruiz, María; Coulon, Vincent; Sanz, J. Ramón; Chiesa, Jean; Gandarillas, Alberto

    2010-01-01

    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation. PMID:21187932

  10. Gause's Principle and the Effect of Resource Partitioning on the Dynamical Coexistence of Replicating Templates

    PubMed Central

    Szilágyi, András; Zachar, István; Szathmáry, Eörs

    2013-01-01

    Models of competitive template replication, although basic for replicator dynamics and primordial evolution, have not yet taken different sequences explicitly into account, neither have they analyzed the effect of resource partitioning (feeding on different resources) on coexistence. Here we show by analytical and numerical calculations that Gause's principle of competitive exclusion holds for template replicators if resources (nucleotides) affect growth linearly and coexistence is at fixed point attractors. Cases of complementary or homologous pairing between building blocks with parallel or antiparallel strands show no deviation from the rule that the nucleotide compositions of stably coexisting species must be different and there cannot be more coexisting replicator species than nucleotide types. Besides this overlooked mechanism of template coexistence we show also that interesting sequence effects prevail as parts of sequences that are copied earlier affect coexistence more strongly due to the higher concentration of the corresponding replication intermediates. Template and copy always count as one species due their constraint of strict stoichiometric coupling. Stability of fixed-point coexistence tends to decrease with the length of sequences, although this effect is unlikely to be detrimental for sequences below 100 nucleotides. In sum, resource partitioning (niche differentiation) is the default form of competitive coexistence for replicating templates feeding on a cocktail of different nucleotides, as it may have been the case in the RNA world. Our analysis of different pairing and strand orientation schemes is relevant for artificial and potentially astrobiological genetics. PMID:23990769

  11. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface.

    PubMed

    Knodel, Markus M; Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; Targett-Adams, Paul; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-08

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  12. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    PubMed Central

    Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-01

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles. PMID:29316722

  13. DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression

    PubMed Central

    Hua, Brian L.; Orr-Weaver, Terry L.

    2017-01-01

    Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation. PMID:28874453

  14. Overlapping local and long-range RNA-RNA interactions modulate dengue virus genome cyclization and replication.

    PubMed

    de Borba, Luana; Villordo, Sergio M; Iglesias, Nestor G; Filomatori, Claudia V; Gebhard, Leopoldo G; Gamarnik, Andrea V

    2015-03-01

    The dengue virus genome is a dynamic molecule that adopts different conformations in the infected cell. Here, using RNA folding predictions, chemical probing analysis, RNA binding assays, and functional studies, we identified new cis-acting elements present in the capsid coding sequence that facilitate cyclization of the viral RNA by hybridization with a sequence involved in a local dumbbell structure at the viral 3' untranslated region (UTR). The identified interaction differentially enhances viral replication in mosquito and mammalian cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Low-Pathogenic Avian Influenza Viruses in Wild House Mice

    PubMed Central

    Shriner, Susan A.; VanDalen, Kaci K.; Mooers, Nicole L.; Ellis, Jeremy W.; Sullivan, Heather J.; Root, J. Jeffrey; Pelzel, Angela M.; Franklin, Alan B.

    2012-01-01

    Background Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. Methodology/Principal Findings We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID50 equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 103.89 (H3N6) to 105.06 (H4N6) for the wild bird viruses and 102.08 (H6N2) to 102.85 (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Conclusions/Significance Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics. PMID:22720076

  16. Genome-wide alterations of the DNA replication program during tumor progression

    NASA Astrophysics Data System (ADS)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  17. Differential principal component analysis of ChIP-seq.

    PubMed

    Ji, Hongkai; Li, Xia; Wang, Qian-fei; Ning, Yang

    2013-04-23

    We propose differential principal component analysis (dPCA) for analyzing multiple ChIP-sequencing datasets to identify differential protein-DNA interactions between two biological conditions. dPCA integrates unsupervised pattern discovery, dimension reduction, and statistical inference into a single framework. It uses a small number of principal components to summarize concisely the major multiprotein synergistic differential patterns between the two conditions. For each pattern, it detects and prioritizes differential genomic loci by comparing the between-condition differences with the within-condition variation among replicate samples. dPCA provides a unique tool for efficiently analyzing large amounts of ChIP-sequencing data to study dynamic changes of gene regulation across different biological conditions. We demonstrate this approach through analyses of differential chromatin patterns at transcription factor binding sites and promoters as well as allele-specific protein-DNA interactions.

  18. Nuclear Lamins

    PubMed Central

    Dechat, Thomas; Adam, Stephen A.; Taimen, Pekka; Shimi, Takeshi; Goldman, Robert D.

    2010-01-01

    The nuclear lamins are type V intermediate filament proteins that are critically important for the structural properties of the nucleus. In addition, they are involved in the regulation of numerous nuclear processes, including DNA replication, transcription and chromatin organization. The developmentally regulated expression of lamins suggests that they are involved in cellular differentiation. Their assembly dynamic properties throughout the cell cycle, particularly in mitosis, are influenced by posttranslational modifications. Lamins may regulate nuclear functions by direct interactions with chromatin and determining the spatial organization of chromosomes within the nuclear space. They may also regulate chromatin functions by interacting with factors that epigenetically modify the chromatin or directly regulate replication or transcription. PMID:20826548

  19. Embryonic Stem Cell Specific “Master” Replication Origins at the Heart of the Loss of Pluripotency

    PubMed Central

    Julienne, Hanna; Audit, Benjamin; Arneodo, Alain

    2015-01-01

    Epigenetic regulation of the replication program during mammalian cell differentiation remains poorly understood. We performed an integrative analysis of eleven genome-wide epigenetic profiles at 100 kb resolution of Mean Replication Timing (MRT) data in six human cell lines. Compared to the organization in four chromatin states shared by the five somatic cell lines, embryonic stem cell (ESC) line H1 displays (i) a gene-poor but highly dynamic chromatin state (EC4) associated to histone variant H2AZ rather than a HP1-associated heterochromatin state (C4) and (ii) a mid-S accessible chromatin state with bivalent gene marks instead of a polycomb-repressed heterochromatin state. Plastic MRT regions (≲ 20% of the genome) are predominantly localized at the borders of U-shaped timing domains. Whereas somatic-specific U-domain borders are gene-dense GC-rich regions, 31.6% of H1-specific U-domain borders are early EC4 regions enriched in pluripotency transcription factors NANOG and OCT4 despite being GC poor and gene deserts. Silencing of these ESC-specific “master” replication initiation zones during differentiation corresponds to a loss of H2AZ and an enrichment in H3K9me3 mark characteristic of late replicating C4 heterochromatin. These results shed a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and lineage commitment. PMID:25658386

  20. DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states.

    PubMed

    White, Eric J; Emanuelsson, Olof; Scalzo, David; Royce, Thomas; Kosak, Steven; Oakeley, Edward J; Weissman, Sherman; Gerstein, Mark; Groudine, Mark; Snyder, Michael; Schübeler, Dirk

    2004-12-21

    Duplication of the genome during the S phase of the cell cycle does not occur simultaneously; rather, different sequences are replicated at different times. The replication timing of specific sequences can change during development; however, the determinants of this dynamic process are poorly understood. To gain insights into the contribution of developmental state, genomic sequence, and transcriptional activity to replication timing, we investigated the timing of DNA replication at high resolution along an entire human chromosome (chromosome 22) in two different cell types. The pattern of replication timing was correlated with respect to annotated genes, gene expression, novel transcribed regions of unknown function, sequence composition, and cytological features. We observed that chromosome 22 contains regions of early- and late-replicating domains of 100 kb to 2 Mb, many (but not all) of which are associated with previously described chromosomal bands. In both cell types, expressed sequences are replicated earlier than nontranscribed regions. However, several highly transcribed regions replicate late. Overall, the DNA replication-timing profiles of the two different cell types are remarkably similar, with only nine regions of difference observed. In one case, this difference reflects the differential expression of an annotated gene that resides in this region. Novel transcribed regions with low coding potential exhibit a strong propensity for early DNA replication. Although the cellular function of such transcripts is poorly understood, our results suggest that their activity is linked to the replication-timing program.

  1. Chaotic interactions of self-replicating RNA.

    PubMed

    Forst, C V

    1996-03-01

    A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.

  2. Global increase in replication fork speed during a p57KIP2-regulated erythroid cell fate switch

    PubMed Central

    Hwang, Yung; Futran, Melinda; Hidalgo, Daniel; Pop, Ramona; Iyer, Divya Ramalingam; Scully, Ralph; Rhind, Nicholas; Socolovsky, Merav

    2017-01-01

    Cell cycle regulators are increasingly implicated in cell fate decisions, such as the acquisition or loss of pluripotency and self-renewal potential. The cell cycle mechanisms that regulate these cell fate decisions are largely unknown. We studied an S phase–dependent cell fate switch, in which murine early erythroid progenitors transition in vivo from a self-renewal state into a phase of active erythroid gene transcription and concurrent maturational cell divisions. We found that progenitors are dependent on p57KIP2-mediated slowing of replication forks for self-renewal, a novel function for cyclin-dependent kinase inhibitors. The switch to differentiation entails rapid down-regulation of p57KIP2 with a consequent global increase in replication fork speed and an abruptly shorter S phase. Our work suggests that cell cycles with specialized global DNA replication dynamics are integral to the maintenance of specific cell states and to cell fate decisions. PMID:28560351

  3. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis

    PubMed Central

    Niño, Carlos A; Chaparro, Jenny; Soffientini, Paolo; Polo, Simona; Wasserman, Moises

    2013-01-01

    Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote. PMID:23613346

  4. Parents' Differential Treatment of Adolescent Siblings in African American Families.

    PubMed

    Solmeyer, Anna R; McHale, Susan M

    2017-03-01

    Research on European and European American families suggests that parents' differential treatment of siblings has negative implications for youths' adjustment, but few studies have explored these dynamics in minority samples. This study examined parents' differential acceptance and conflict in a sample of mothers, fathers, and two adolescent siblings in 179 African American families who were interviewed on three annual occasions. In an effort to replicate findings from European and European American samples, we assessed the longitudinal associations between differential treatment and adolescent adjustment and tested three sibling characteristics (birth order, gender, and dyad gender composition) as potential moderators of these linkages. To illuminate the sociocultural context of differential treatment and its implications, we also explored parents' cultural socialization practices and experiences of financial stress as potential moderators of these links. Multilevel models revealed that, controlling for average parent-child relationship qualities, decreases in parental acceptance and increases in parent-youth conflict over time-relative to the sibling-were associated with increases in youths' risky behavior and depressive symptoms. Links between differential treatment and adjustment were not evident, however, when mothers engaged in high levels of cultural socialization and in families under high financial stress. The discussion highlights the significance of sociocultural factors in family dynamics. © 2015 Family Process Institute.

  5. Parents’ Differential Treatment of Adolescent Siblings in African American Families

    PubMed Central

    Solmeyer, Anna R.; McHale, Susan M.

    2017-01-01

    Research on European and European American families suggests that parents’ differential treatment of siblings has negative implications for youths’ adjustment, but few studies have explored these dynamics in minority samples. This study examined parents’ differential acceptance and conflict in a sample of mothers, fathers, and two adolescent siblings in 179 African American families who were interviewed on 3 annual occasions. In an effort to replicate findings from European and European American samples, we assessed the longitudinal associations between differential treatment and adolescent adjustment and tested three sibling characteristics (birth order, gender, and dyad gender composition) as potential moderators of these linkages. To illuminate the sociocultural context of differential treatment and its implications we also explored parents’ cultural socialization practices and experiences of financial stress as potential moderators of these links. Multilevel models revealed that, controlling for average parent-child relationship qualities, decreases in parental acceptance and increases in parent-youth conflict over time—relative to the sibling—were associated with increases in youths’ risky behavior and depressive symptoms. Links between differential treatment and adjustment were not evident, however, when mothers engaged in high levels of cultural socialization and in families under high financial stress. The discussion highlights the significance of sociocultural factors in family dynamics. PMID:26198081

  6. HPV31 Utilizes the ATR-Chk1 Pathway to Maintain Elevated RRM2 Levels and a Replication-Competent Environment in Differentiating Keratinocytes

    PubMed Central

    Anacker, Daniel C.; Aloor, Heather L.; Shepard, Caitlin N.; Lenzi, Gina M.; Johnson, Bryan A.; Kim, Baek; Moody, Cary A.

    2016-01-01

    Productive replication of human papillomaviruses (HPV) is restricted to the uppermost layers of the differentiating epithelia. How HPV ensures an adequate supply of cellular substrates for viral DNA synthesis in a differentiating environment is unclear. Here, we demonstrate that HPV31 positive cells exhibit increased dNTP pools and levels of RRM2, a component of the ribonucleotide reductase (RNR) complex, which is required for de novo synthesis of dNTPs. RRM2 depletion blocks productive replication, suggesting RRM2 provides dNTPs for viral DNA synthesis in differentiating cells. We demonstrate that HPV31 regulates RRM2 levels through expression of E7 and activation of the ATR-Chk1-E2F1 DNA damage response, which is essential to combat replication stress upon entry into S-phase, as well as for productive replication. Our findings suggest a novel way in which viral DNA synthesis is regulated through activation of ATR and Chk1 and highlight an intriguing new virus/host interaction utilized for viral replication. PMID:27764728

  7. Differential effects of the extracellular microenvironment on human embryonic stem cell differentiation into keratinocytes and their subsequent replicative life span.

    PubMed

    Movahednia, Mohammad Mehdi; Kidwai, Fahad Karim; Zou, Yu; Tong, Huei Jinn; Liu, Xiaochen; Islam, Intekhab; Toh, Wei Seong; Raghunath, Michael; Cao, Tong

    2015-04-01

    Culture microenvironment plays a critical role in the propagation and differentiation of human embryonic stem cells (hESCs) and their differentiated progenies. Although high efficiency of hESC differentiation to keratinocytes (hESC-Kert) has been achieved, little is known regarding the effects of early culture microenvironment and pertinent extracellular matrix (ECM) interactions during epidermal commitment on subsequent proliferative capacity of hESC-Kert. The aim of this study is to evaluate the effects of the different ECM microenvironments during hESC differentiation on subsequent replicative life span of hESC-Kert. In doing so, H1-hESCs were differentiated to keratinocytes (H1-Kert) in two differentiation systems. The first system employed autologous fibroblast feeder support, in which keratinocytes (H1-Kert(ACC)) were derived by coculture of hESCs with hESC-derived fibroblasts (H1-ebFs). The second system employed a novel decellularized matrix from H1-ebFs to create a dermoepidermal junction-like (DEJ) matrix. H1-Kert(AFF) were derived by differentiation of hESCs on the feeder-free system employing the DEJ matrix. Our study indicated that the feeder-free system with the use of DEJ matrix was more efficient in differentiation of hESCs toward epidermal progenitors. However, the feeder-free system was not sufficient to support the subsequent replicative capacity of differentiated keratinocytes. Of note, H1-Kert(AFF) showed limited replicative capacity with reduced telomere length and early cellular senescence. We further showed that the lack of cell-cell interactions during epidermal commitment led to heightened production of TGF-β1 by hESC-Kert during extended culture, which in turn was responsible for resulting in the limited replicative life span with cellular senescence of hESC-Kert derived under the feeder-free culture system. This study highlights for the first time the importance of the culture microenvironment and cell-ECM interactions during differentiation of hESCs on subsequent replicative life span and cellular senescence of the differentiated keratinocytes, with implications for use of these cells for applications in tissue engineering and regenerative medicine.

  8. Ethidium bromide as a marker of mtDNA replication in living cells

    NASA Astrophysics Data System (ADS)

    Villa, Anna Maria; Fusi, Paola; Pastori, Valentina; Amicarelli, Giulia; Pozzi, Chiara; Adlerstein, Daniel; Doglia, Silvia Maria

    2012-04-01

    Mitochondrial DNA (mtDNA) in tumor cells was found to play an important role in maintaining the malignant phenotype. Using laser scanning confocal fluorescence microscopy (LSCFM) in a recent work, we reported a variable fluorescence intensity of ethidium bromide (EB) in mitochondria nucleoids of living carcinoma cells. Since when EB is bound to nucleic acids its fluorescence is intensified; a higher EB fluorescence intensity could reflect a higher DNA accessibility to EB, suggesting a higher mtDNA replication activity. To prove this hypothesis, in the present work we studied, by LSCFM, the EB fluorescence in mitochondria nucleoids of living neuroblastoma cells, a model system in which differentiation affects the level of mtDNA replication. A drastic decrease of fluorescence was observed after differentiation. To correlate EB fluorescence intensity to the mtDNA replication state, we evaluated the mtDNA nascent strands content by ligation-mediated real-time PCR, and we found a halved amount of replicating mtDNA molecules in differentiating cells. A similar result was obtained by BrdU incorporation. These results indicate that the low EB fluorescence of nucleoids in differentiated cells is correlated to a low content of replicating mtDNA, suggesting that EB may be used as a marker of mtDNA replication in living cells.

  9. DNA replication fading as proliferating cells advance in their commitment to terminal differentiation.

    PubMed

    Estefanía, Monturus Ma; Ganier, Olivier; Hernández, Pablo; Schvartzman, Jorge B; Mechali, Marcel; Krimer, Dora B

    2012-01-01

    Terminal differentiation is the process by which cycling cells stop proliferating to start new specific functions. It involves dramatic changes in chromatin organization as well as gene expression. In the present report we used cell flow cytometry and genome wide DNA combing to investigate DNA replication during murine erythroleukemia-induced terminal cell differentiation. The results obtained indicated that the rate of replication fork movement slows down and the inter-origin distance becomes shorter during the precommitment and commitment periods before cells stop proliferating and accumulate in G1. We propose this is a general feature caused by the progressive heterochromatinization that characterizes terminal cell differentiation.

  10. How did Metabolism and Genetic Replication Get Married?

    NASA Astrophysics Data System (ADS)

    Norris, Vic; Loutelier-Bourhis, Corinne; Thierry, Alain

    2012-10-01

    In addressing the question of the origins of the relationship between metabolism and genetic replication, we consider the implications of a prebiotic, fission-fusion, ecology of composomes. We emphasise the importance of structures and non-specific catalysis on interfaces created by structures. From the assumption that the bells of the metabolism-replication wedding still echo in modern cells, we argue that the functional assemblies of macromolecules that constitute hyperstructures in modern bacteria are the descendants of composomes and that interactions at the hyperstructure level control the cell cycle. A better understanding of the cell cycle should help understand the original metabolism-replication marriage. This understanding requires new concepts such as metabolic signalling, metabolic sensing and Dualism, which entails the cells in a population varying the ratios of equilibrium to non-equilibrium hyperstructures so as to maximise the chances of both survival and growth. A deeper understanding of the coupling between metabolism and replication may also require a new view of cell cycle functions in creating a coherent diversity of phenotypes and in narrowing the combinatorial catalytic space. To take these ideas into account, we propose the Accordion model in which a dynamic interface between lipid domains catalysed monomer to polymer reactions and became decorated with peptides and nucleotides that favoured their own catalysis. In this model, metabolism, replication, differentiation and division all began together at the interface between extended equilibrium structures within protocells or composomes.

  11. Initiation of DNA replication requires actin dynamics and formin activity.

    PubMed

    Parisis, Nikolaos; Krasinska, Liliana; Harker, Bethany; Urbach, Serge; Rossignol, Michel; Camasses, Alain; Dewar, James; Morin, Nathalie; Fisher, Daniel

    2017-11-02

    Nuclear actin regulates transcriptional programmes in a manner dependent on its levels and polymerisation state. This dynamics is determined by the balance of nucleocytoplasmic shuttling, formin- and redox-dependent filament polymerisation. Here, using Xenopus egg extracts and human somatic cells, we show that actin dynamics and formins are essential for DNA replication. In proliferating cells, formin inhibition abolishes nuclear transport and initiation of DNA replication, as well as general transcription. In replicating nuclei from transcriptionally silent Xenopus egg extracts, we identified numerous actin regulators, and disruption of actin dynamics abrogates nuclear transport, preventing NLS (nuclear localisation signal)-cargo release from RanGTP-importin complexes. Nuclear formin activity is further required to promote loading of cyclin-dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) onto chromatin, as well as initiation and elongation of DNA replication. Therefore, actin dynamics and formins control DNA replication by multiple direct and indirect mechanisms. © 2017 The Authors.

  12. Down-regulate of Djrfc2 causes tissues hypertrophy during planarian regeneration.

    PubMed

    Guo, Qi; Zhao, Guixia; Ni, Jiajia; Guo, Yanan; Zhang, Yizhe; Tian, Qingnan; Zhang, Shoutao

    2017-11-25

    Planarians are an ideal model organism for regeneration research due to their amazing ability to regenerate. DNA replication is crucial for genome stability. Replication factor C (RFC), which is a replication factor C-like complex and plays an important role during DNA replication in eukaryotes, has been reported as a wound response factor during planarian regeneration. However, how RFC controls regeneration in planarians by regulating DNA replication remains to be explained. Here, we used a two-dimensional electrophoresis (2-DE) proteomic approach to identify differentially expressed proteins in intact and regenerated planarians. Approximately 132 protein spots showed differences between intact and regenerative tissues. We selected 21 significantly expressed protein spots and processed them using TOF MS analysis. Finally, we cloned three of these candidate genes (Djhsp70, Djrfc2, Djfaim), focusing on the function of Djrfc2 during regeneration. We found that the distribution of Djrfc2 tends toward the wound site. RNA interference (RNAi) of Djrfc2 increases the number of dividing cells and the expression level of planarian neoblast marker genes, which may result in hyper-proliferation. Our studies use an available approach to directly study the regeneration dynamic at the protein level and provide further evidence to support a function of Djrfc2 in planarian regeneration. Copyright © 2017. Published by Elsevier Inc.

  13. Mechanisms by which HPV Induces a Replication Competent Environment in Differentiating Keratinocytes

    PubMed Central

    Moody, Cary A.

    2017-01-01

    Human papillomaviruses (HPV) are the causative agents of cervical cancer and are also associated with other genital malignancies, as well as an increasing number of head and neck cancers. HPVs have evolved their life cycle to contend with the different cell states found in the stratified epithelium. Initial infection and viral genome maintenance occurs in the proliferating basal cells of the stratified epithelium, where cellular replication machinery is abundant. However, the productive phase of the viral life cycle, including productive replication, late gene expression and virion production, occurs upon epithelial differentiation, in cells that normally exit the cell cycle. This review outlines how HPV interfaces with specific cellular signaling pathways and factors to provide a replication-competent environment in differentiating cells. PMID:28925973

  14. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing

    PubMed Central

    2012-01-01

    Background RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Results Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. Conclusions This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates. PMID:22985019

  15. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing.

    PubMed

    Robles, José A; Qureshi, Sumaira E; Stephen, Stuart J; Wilson, Susan R; Burden, Conrad J; Taylor, Jennifer M

    2012-09-17

    RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates.

  16. DEIsoM: a hierarchical Bayesian model for identifying differentially expressed isoforms using biological replicates

    PubMed Central

    Peng, Hao; Yang, Yifan; Zhe, Shandian; Wang, Jian; Gribskov, Michael; Qi, Yuan

    2017-01-01

    Abstract Motivation High-throughput mRNA sequencing (RNA-Seq) is a powerful tool for quantifying gene expression. Identification of transcript isoforms that are differentially expressed in different conditions, such as in patients and healthy subjects, can provide insights into the molecular basis of diseases. Current transcript quantification approaches, however, do not take advantage of the shared information in the biological replicates, potentially decreasing sensitivity and accuracy. Results We present a novel hierarchical Bayesian model called Differentially Expressed Isoform detection from Multiple biological replicates (DEIsoM) for identifying differentially expressed (DE) isoforms from multiple biological replicates representing two conditions, e.g. multiple samples from healthy and diseased subjects. DEIsoM first estimates isoform expression within each condition by (1) capturing common patterns from sample replicates while allowing individual differences, and (2) modeling the uncertainty introduced by ambiguous read mapping in each replicate. Specifically, we introduce a Dirichlet prior distribution to capture the common expression pattern of replicates from the same condition, and treat the isoform expression of individual replicates as samples from this distribution. Ambiguous read mapping is modeled as a multinomial distribution, and ambiguous reads are assigned to the most probable isoform in each replicate. Additionally, DEIsoM couples an efficient variational inference and a post-analysis method to improve the accuracy and speed of identification of DE isoforms over alternative methods. Application of DEIsoM to an hepatocellular carcinoma (HCC) dataset identifies biologically relevant DE isoforms. The relevance of these genes/isoforms to HCC are supported by principal component analysis (PCA), read coverage visualization, and the biological literature. Availability and implementation The software is available at https://github.com/hao-peng/DEIsoM Contact pengh@alumni.purdue.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28595376

  17. Sp100 colocalizes with HPV replication foci and restricts the productive stage of the infectious cycle

    PubMed Central

    Khurana, Simran; Warburton, Alix

    2017-01-01

    We have shown previously that Sp100 (a component of the ND10 nuclear body) represses transcription, replication and establishment of incoming human papillomavirus (HPV) DNA in the early stages of infection. In this follow up study, we show that Sp100 does not substantially regulate viral infection in the maintenance phase, however at late stages of infection Sp100 interacts with amplifying viral genomes to repress viral processes. We find that Sp100 localizes to HPV16 replication foci generated in primary keratinocytes, to HPV31 replication foci that form in differentiated cells, and to HPV16 replication foci in CIN 1 cervical biopsies. To analyze this further, Sp100 was down regulated by siRNA treatment of differentiating HPV31 containing cells and levels of viral transcription and replication were assessed. This revealed that Sp100 represses viral transcription and replication in differentiated cells. Analysis of Sp100 binding to viral chromatin showed that Sp100 bound across the viral genome, and that binding increased at late stages of infection. Therefore, Sp100 represses the HPV life cycle at both early and late stages of infection. PMID:28968443

  18. Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification

    PubMed Central

    Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.

    2016-01-01

    ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885

  19. Negative affect is related to reduced differential neural responses to social and non-social stimuli in 5-to-8-month-old infants: A functional near-infrared spectroscopy-study.

    PubMed

    van der Kant, Anne; Biro, Szilvia; Levelt, Claartje; Huijbregts, Stephan

    2018-04-01

    Both social perception and temperament in young infants have been related to social functioning later in life. Previous functional Near-Infrared Spectroscopy (fNIRS) data (Lloyd-Fox et al., 2009) showed larger blood-oxygenation changes for social compared to non-social stimuli in the posterior temporal cortex of five-month-old infants. We sought to replicate and extend these findings by using fNIRS to study the neural basis of social perception in relation to infant temperament (Negative Affect) in 37 five-to-eight-month-old infants. Infants watched short videos displaying either hand and facial movements of female actors (social dynamic condition) or moving toys and machinery (non-social dynamic condition), while fNIRS data were collected over temporal brain regions. Negative Affect was measured using the Infant Behavior Questionnaire. Results showed significantly larger blood-oxygenation changes in the right posterior-temporal region in the social compared to the non-social condition. Furthermore, this differential activation was smaller in infants showing higher Negative Affect. Our results replicate those of Lloyd-Fox et al. and confirmed that five-to-eight-month-old infants show cortical specialization for social perception. Furthermore, the decreased cortical sensitivity to social stimuli in infants showing high Negative Affect may be an early biomarker for later difficulties in social interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Contingency and statistical laws in replicate microbial closed ecosystems.

    PubMed

    Hekstra, Doeke R; Leibler, Stanislas

    2012-05-25

    Contingency, the persistent influence of past random events, pervades biology. To what extent, then, is each course of ecological or evolutionary dynamics unique, and to what extent are these dynamics subject to a common statistical structure? Addressing this question requires replicate measurements to search for emergent statistical laws. We establish a readily replicated microbial closed ecosystem (CES), sustaining its three species for years. We precisely measure the local population density of each species in many CES replicates, started from the same initial conditions and kept under constant light and temperature. The covariation among replicates of the three species densities acquires a stable structure, which could be decomposed into discrete eigenvectors, or "ecomodes." The largest ecomode dominates population density fluctuations around the replicate-average dynamics. These fluctuations follow simple power laws consistent with a geometric random walk. Thus, variability in ecological dynamics can be studied with CES replicates and described by simple statistical laws. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Dynamical crossover in a stochastic model of cell fate decision

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroki; Kawaguchi, Kyogo; Sagawa, Takahiro

    2017-07-01

    We study the asymptotic behaviors of stochastic cell fate decision between proliferation and differentiation. We propose a model of a self-replicating Langevin system, where cells choose their fate (i.e., proliferation or differentiation) depending on local cell density. Based on this model, we propose a scenario for multicellular organisms to maintain the density of cells (i.e., homeostasis) through finite-ranged cell-cell interactions. Furthermore, we numerically show that the distribution of the number of descendant cells changes over time, thus unifying the previously proposed two models regarding homeostasis: the critical birth death process and the voter model. Our results provide a general platform for the study of stochastic cell fate decision in terms of nonequilibrium statistical mechanics.

  2. Bayesian analysis of non-linear differential equation models with application to a gut microbial ecosystem.

    PubMed

    Lawson, Daniel J; Holtrop, Grietje; Flint, Harry

    2011-07-01

    Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    PubMed

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  4. Estimating net joint torques from kinesiological data using optimal linear system theory.

    PubMed

    Runge, C F; Zajac, F E; Allum, J H; Risher, D W; Bryson, A E; Honegger, F

    1995-12-01

    Net joint torques (NJT) are frequently computed to provide insights into the motor control of dynamic biomechanical systems. An inverse dynamics approach is almost always used, whereby the NJT are computed from 1) kinematic measurements (e.g., position of the segments), 2) kinetic measurements (e.g., ground reaction forces) that are, in effect, constraints defining unmeasured kinematic quantities based on a dynamic segmental model, and 3) numerical differentiation of the measured kinematics to estimate velocities and accelerations that are, in effect, additional constraints. Due to errors in the measurements, the segmental model, and the differentiation process, estimated NJT rarely produce the observed movement in a forward simulation when the dynamics of the segmental system are inherently unstable (e.g., human walking). Forward dynamic simulations are, however, essential to studies of muscle coordination. We have developed an alternative approach, using the linear quadratic follower (LQF) algorithm, which computes the NJT such that a stable simulation of the observed movement is produced and the measurements are replicated as well as possible. The LQF algorithm does not employ constraints depending on explicit differentiation of the kinematic data, but rather employs those depending on specification of a cost function, based on quantitative assumptions about data confidence. We illustrate the usefulness of the LQF approach by using it to estimate NJT exerted by standing humans perturbed by support-surface movements. We show that unless the number of kinematic and force variables recorded is sufficiently high, the confidence that can be placed in the estimates of the NJT, obtained by any method (e.g., LQF, or the inverse dynamics approach), may be unsatisfactorily low.

  5. Replication-dependent histone genes are actively transcribed in differentiating and aging retinal neurons

    PubMed Central

    Banday, Abdul Rouf; Baumgartner, Marybeth; Al Seesi, Sahar; Karunakaran, Devi Krishna Priya; Venkatesh, Aditya; Congdon, Sean; Lemoine, Christopher; Kilcollins, Ashley M; Mandoiu, Ion; Punzo, Claudio; Kanadia, Rahul N

    2014-01-01

    In the mammalian genome, each histone family contains multiple replication-dependent paralogs, which are found in clusters where their transcription is thought to be coupled to the cell cycle. Here, we wanted to interrogate the transcriptional regulation of these paralogs during retinal development and aging. We employed deep sequencing, quantitative PCR, in situ hybridization (ISH), and microarray analysis, which revealed that replication-dependent histone genes were not only transcribed in progenitor cells but also in differentiating neurons. Specifically, by ISH analysis we found that different histone genes were actively transcribed in a subset of neurons between postnatal day 7 and 14. Interestingly, within a histone family, not all paralogs were transcribed at the same level during retinal development. For example, expression of Hist1h1b was higher embryonically, while that of Hist1h1c was higher postnatally. Finally, expression of replication-dependent histone genes was also observed in the aging retina. Moreover, transcription of replication-dependent histones was independent of rapamycin-mediated mTOR pathway inactivation. Overall, our data suggest the existence of variant nucleosomes produced by the differential expression of the replication-dependent histone genes across retinal development. Also, the expression of a subset of replication-dependent histone isotypes in senescent neurons warrants re-examining these genes as “replication-dependent.” Thus, our findings underscore the importance of understanding the transcriptional regulation of replication-dependent histone genes in the maintenance and functioning of neurons. PMID:25486194

  6. Ssrp1a controls organogenesis by promoting cell cycle progression and RNA synthesis.

    PubMed

    Koltowska, Katarzyna; Apitz, Holger; Stamataki, Despina; Hirst, Elizabeth M A; Verkade, Heather; Salecker, Iris; Ober, Elke A

    2013-05-01

    Tightly controlled DNA replication and RNA transcription are essential for differentiation and tissue growth in multicellular organisms. Histone chaperones, including the FACT (facilitates chromatin transcription) complex, are central for these processes and act by mediating DNA access through nucleosome reorganisation. However, their roles in vertebrate organogenesis are poorly understood. Here, we report the identification of zebrafish mutants for the gene encoding Structure specific recognition protein 1a (Ssrp1a), which, together with Spt16, forms the FACT heterodimer. Focussing on the liver and eye, we show that zygotic Ssrp1a is essential for proliferation and differentiation during organogenesis. Specifically, gene expression indicative of progressive organ differentiation is disrupted and RNA transcription is globally reduced. Ssrp1a-deficient embryos exhibit DNA synthesis defects and prolonged S phase, uncovering a role distinct from that of Spt16, which promotes G1 phase progression. Gene deletion/replacement experiments in Drosophila show that Ssrp1b, Ssrp1a and N-terminal Ssrp1a, equivalent to the yeast homologue Pob3, can substitute Drosophila Ssrp function. These data suggest that (1) Ssrp1b does not compensate for Ssrp1a loss in the zebrafish embryo, probably owing to insufficient expression levels, and (2) despite fundamental structural differences, the mechanisms mediating DNA accessibility by FACT are conserved between yeast and metazoans. We propose that the essential functions of Ssrp1a in DNA replication and gene transcription, together with its dynamic spatiotemporal expression, ensure organ-specific differentiation and proportional growth, which are crucial for the forming embryo.

  7. Contribution of the Major ND10 Proteins PML, hDaxx and Sp100 to the Regulation of Human Cytomegalovirus Latency and Lytic Replication in the Monocytic Cell Line THP-1

    PubMed Central

    Wagenknecht, Nadine; Reuter, Nina; Scherer, Myriam; Reichel, Anna; Müller, Regina; Stamminger, Thomas

    2015-01-01

    Promyelocytic leukemia nuclear bodies, also termed nuclear domain 10 (ND10), have emerged as nuclear protein accumulations mediating an intrinsic cellular defense against viral infections via chromatin-based mechanisms, however, their contribution to the control of herpesviral latency is still controversial. In this study, we utilized the monocytic cell line THP-1 as an in vitro latency model for human cytomegalovirus infection (HCMV). Characterization of THP-1 cells by immunofluorescence and Western blot analysis confirmed the expression of all major ND10 components. THP-1 cells with a stable, individual knockdown of PML, hDaxx or Sp100 were generated. Importantly, depletion of the major ND10 proteins did not prevent the terminal cellular differentiation of THP-1 monocytes. After construction of a recombinant, endotheliotropic human cytomegalovirus expressing IE2-EYFP, we investigated whether the depletion of ND10 proteins affects the onset of viral IE gene expression. While after infection of differentiated, THP-1-derived macrophages as well as during differentiation-induced reactivation from latency an increase in the number of IE-expressing cells was readily detectable in the absence of the major ND10 proteins, no effect was observed in non-differentiated monocytes. We conclude that PML, hDaxx and Sp100 primarily act as cellular restriction factors during lytic HCMV replication and during the dynamic process of reactivation but do not serve as key determinants for the establishment of HCMV latency. PMID:26057166

  8. Analysis of host response to bacterial infection using error model based gene expression microarray experiments

    PubMed Central

    Stekel, Dov J.; Sarti, Donatella; Trevino, Victor; Zhang, Lihong; Salmon, Mike; Buckley, Chris D.; Stevens, Mark; Pallen, Mark J.; Penn, Charles; Falciani, Francesco

    2005-01-01

    A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of very large numbers of biological samples, replication is not always practical. Therefore, there is a need for a method to select differentially expressed genes in a rational way from insufficiently replicated data. In this paper, we describe a simple method that uses bootstrapping to generate an error model from a replicated pilot study that can be used to identify differentially expressed genes in subsequent large-scale studies on the same platform, but in which there may be no replicated arrays. The method builds a stratified error model that includes array-to-array variability, feature-to-feature variability and the dependence of error on signal intensity. We apply this model to the characterization of the host response in a model of bacterial infection of human intestinal epithelial cells. We demonstrate the effectiveness of error model based microarray experiments and propose this as a general strategy for a microarray-based screening of large collections of biological samples. PMID:15800204

  9. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.

    PubMed

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-02

    Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (

  10. Hierarchical Structure of the Eysenck Personality Inventory in a Large Population Sample: Goldberg's Trait-Tier Mapping Procedure

    PubMed Central

    Chapman, Benjamin P.; Weiss, Alexander; Barrett, Paul; Duberstein, Paul

    2014-01-01

    The structure of the Eysenck Personality Inventory (EPI) is poorly understood, and applications have mostly been confined to the broad Neuroticism, Extraversion, and Lie scales. Using a hierarchical factoring procedure, we mapped the sequential differentiation of EPI scales from broad, molar factors to more specific, molecular factors, in a UK population sample of over 6500 persons. Replicable facets at the lowest tier of Neuroticism included emotional fragility, mood lability, nervous tension, and rumination. The lowest order set of replicable Extraversion facets consisted of social dynamism, sociotropy, decisiveness, jocularity, social information seeking, and impulsivity. The Lie scale consisted of an interpersonal virtue and a behavioral diligence facet. Users of the EPI may be well served in some circumstances by considering its broad Neuroticism, Extraversion, and Lie scales as multifactorial, a feature that was explicitly incorporated into subsequent Eysenck inventories and is consistent with other hierarchical trait structures. PMID:25983361

  11. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data.

    PubMed

    Shen, Shihao; Park, Juw Won; Lu, Zhi-xiang; Lin, Lan; Henry, Michael D; Wu, Ying Nian; Zhou, Qing; Xing, Yi

    2014-12-23

    Ultra-deep RNA sequencing (RNA-Seq) has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We previously developed multivariate analysis of transcript splicing (MATS), a statistical method for detecting differential alternative splicing between two RNA-Seq samples. Here we describe a new statistical model and computer program, replicate MATS (rMATS), designed for detection of differential alternative splicing from replicate RNA-Seq data. rMATS uses a hierarchical model to simultaneously account for sampling uncertainty in individual replicates and variability among replicates. In addition to the analysis of unpaired replicates, rMATS also includes a model specifically designed for paired replicates between sample groups. The hypothesis-testing framework of rMATS is flexible and can assess the statistical significance over any user-defined magnitude of splicing change. The performance of rMATS is evaluated by the analysis of simulated and real RNA-Seq data. rMATS outperformed two existing methods for replicate RNA-Seq data in all simulation settings, and RT-PCR yielded a high validation rate (94%) in an RNA-Seq dataset of prostate cancer cell lines. Our data also provide guiding principles for designing RNA-Seq studies of alternative splicing. We demonstrate that it is essential to incorporate biological replicates in the study design. Of note, pooling RNAs or merging RNA-Seq data from multiple replicates is not an effective approach to account for variability, and the result is particularly sensitive to outliers. The rMATS source code is freely available at rnaseq-mats.sourceforge.net/. As the popularity of RNA-Seq continues to grow, we expect rMATS will be useful for studies of alternative splicing in diverse RNA-Seq projects.

  12. Host-parasite oscillation dynamics and evolution in a compartmentalized RNA replication system.

    PubMed

    Bansho, Yohsuke; Furubayashi, Taro; Ichihashi, Norikazu; Yomo, Tetsuya

    2016-04-12

    To date, various cellular functions have been reconstituted in vitro such as self-replication systems using DNA, RNA, and proteins. The next important challenges include the reconstitution of the interactive networks of self-replicating species and investigating how such interactions generate complex ecological behaviors observed in nature. Here, we synthesized a simple replication system composed of two self-replicating host and parasitic RNA species. We found that the parasitic RNA eradicates the host RNA under bulk conditions; however, when the system is compartmentalized, a continuous oscillation pattern in the population dynamics of the two RNAs emerges. The oscillation pattern changed as replication proceeded mainly owing to the evolution of the host RNA. These results demonstrate that a cell-like compartment plays an important role in host-parasite ecological dynamics and suggest that the origin of the host-parasite coevolution might date back to the very early stages of the evolution of life.

  13. DigOut: viewing differential expression genes as outliers.

    PubMed

    Yu, Hui; Tu, Kang; Xie, Lu; Li, Yuan-Yuan

    2010-12-01

    With regards to well-replicated two-conditional microarray datasets, the selection of differentially expressed (DE) genes is a well-studied computational topic, but for multi-conditional microarray datasets with limited or no replication, the same task is not properly addressed by previous studies. This paper adopts multivariate outlier analysis to analyze replication-lacking multi-conditional microarray datasets, finding that it performs significantly better than the widely used limit fold change (LFC) model in a simulated comparative experiment. Compared with the LFC model, the multivariate outlier analysis also demonstrates improved stability against sample variations in a series of manipulated real expression datasets. The reanalysis of a real non-replicated multi-conditional expression dataset series leads to satisfactory results. In conclusion, a multivariate outlier analysis algorithm, like DigOut, is particularly useful for selecting DE genes from non-replicated multi-conditional gene expression dataset.

  14. How are soap bubbles blown? Fluid dynamics of soap bubble blowing

    NASA Astrophysics Data System (ADS)

    Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin

    2013-11-01

    Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.

  15. In Vitro "Evolutionary Arms-Races" Between Hosts and Parasites in an Artificial RNA Replication System

    NASA Astrophysics Data System (ADS)

    Furubayashi, T.; Bansho, Y.; Motooka, D.; Nakamura, S.; Ichihashi, N.

    2017-07-01

    We performed coevolution of artificial RNA self-replicators and parasitic replicators in microdroplets. We observed evolutionary arms-races with oscillating population dynamics and faster evolution of self-replicators caused by parasitic replicators.

  16. Inhibition of Cell Division and DNA Replication Impair Mouse-Naïve Pluripotency Exit.

    PubMed

    Waisman, Ariel; Vazquez Echegaray, Camila; Solari, Claudia; Cosentino, María Soledad; Martyn, Iain; Deglincerti, Alessia; Ozair, Mohammad Zeeshan; Ruzo, Albert; Barañao, Lino; Miriuka, Santiago; Brivanlou, Ali; Guberman, Alejandra

    2017-09-01

    The cell cycle has gained attention as a key determinant for cell fate decisions, but the contribution of DNA replication and mitosis in stem cell differentiation has not been extensively studied. To understand if these processes act as "windows of opportunity" for changes in cell identity, we established synchronized cultures of mouse embryonic stem cells as they exit the ground state of pluripotency. We show that initial transcriptional changes in this transition do not require passage through mitosis and that conversion to primed pluripotency is linked to lineage priming in the G1 phase. Importantly, we demonstrate that impairment of DNA replication severely blocks transcriptional switch to primed pluripotency, even in the absence of p53 activity induced by the DNA damage response. Our data suggest an important role for DNA replication during mouse embryonic stem cell differentiation, which could shed light on why pluripotent cells are only receptive to differentiation signals during G1, that is, before the S phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Coupled replicator equations for the dynamics of learning in multiagent systems

    NASA Astrophysics Data System (ADS)

    Sato, Yuzuru; Crutchfield, James P.

    2003-01-01

    Starting with a group of reinforcement-learning agents we derive coupled replicator equations that describe the dynamics of collective learning in multiagent systems. We show that, although agents model their environment in a self-interested way without sharing knowledge, a game dynamics emerges naturally through environment-mediated interactions. An application to rock-scissors-paper game interactions shows that the collective learning dynamics exhibits a diversity of competitive and cooperative behaviors. These include quasiperiodicity, stable limit cycles, intermittency, and deterministic chaos—behaviors that should be expected in heterogeneous multiagent systems described by the general replicator equations we derive.

  18. Delayed Accumulation of H3K27me3 on Nascent DNA Is Essential for Recruitment of Transcription Factors at Early Stages of Stem Cell Differentiation.

    PubMed

    Petruk, Svetlana; Cai, Jingli; Sussman, Robyn; Sun, Guizhi; Kovermann, Sina K; Mariani, Samanta A; Calabretta, Bruno; McMahon, Steven B; Brock, Hugh W; Iacovitti, Lorraine; Mazo, Alexander

    2017-04-20

    Recruitment of transcription factors (TFs) to repressed genes in euchromatin is essential to activate new transcriptional programs during cell differentiation. However, recruitment of all TFs, including pioneer factors, is impeded by condensed H3K27me3-containing chromatin. Single-cell and gene-specific analyses revealed that, during the first hours of induction of differentiation of mammalian embryonic stem cells (ESCs), accumulation of the repressive histone mark H3K27me3 is delayed after DNA replication, indicative of a decondensed chromatin structure in all regions of the replicating genome. This delay provides a critical "window of opportunity" for recruitment of lineage-specific TFs to DNA. Increasing the levels of post-replicative H3K27me3 or preventing S phase entry inhibited recruitment of new TFs to DNA and significantly blocked cell differentiation. These findings suggest that recruitment of lineage-specifying TFs occurs soon after replication and is facilitated by a decondensed chromatin structure. This insight may explain the developmental plasticity of stem cells and facilitate their exploitation for therapeutic purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Characterizing rare-event property distributions via replicate molecular dynamics simulations of proteins.

    PubMed

    Krishnan, Ranjani; Walton, Emily B; Van Vliet, Krystyn J

    2009-11-01

    As computational resources increase, molecular dynamics simulations of biomolecules are becoming an increasingly informative complement to experimental studies. In particular, it has now become feasible to use multiple initial molecular configurations to generate an ensemble of replicate production-run simulations that allows for more complete characterization of rare events such as ligand-receptor unbinding. However, there are currently no explicit guidelines for selecting an ensemble of initial configurations for replicate simulations. Here, we use clustering analysis and steered molecular dynamics simulations to demonstrate that the configurational changes accessible in molecular dynamics simulations of biomolecules do not necessarily correlate with observed rare-event properties. This informs selection of a representative set of initial configurations. We also employ statistical analysis to identify the minimum number of replicate simulations required to sufficiently sample a given biomolecular property distribution. Together, these results suggest a general procedure for generating an ensemble of replicate simulations that will maximize accurate characterization of rare-event property distributions in biomolecules.

  20. Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1.

    PubMed

    Pryce, David W; Ramayah, Soshila; Jaendling, Alessa; McFarlane, Ramsay J

    2009-03-24

    DNA replication stress has been implicated in the etiology of genetic diseases, including cancers. It has been proposed that genomic sites that inhibit or slow DNA replication fork progression possess recombination hotspot activity and can form potential fragile sites. Here we used the fission yeast, Schizosaccharomyces pombe, to demonstrate that hotspot activity is not a universal feature of replication fork barriers (RFBs), and we propose that most sites within the genome that form RFBs do not have recombination hotspot activity under nonstressed conditions. We further demonstrate that Swi1, the TIMELESS homologue, differentially controls the recombination potential of RFBs, switching between being a suppressor and an activator of recombination in a site-specific fashion.

  1. Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1

    PubMed Central

    Pryce, David W.; Ramayah, Soshila; Jaendling, Alessa; McFarlane, Ramsay J.

    2009-01-01

    DNA replication stress has been implicated in the etiology of genetic diseases, including cancers. It has been proposed that genomic sites that inhibit or slow DNA replication fork progression possess recombination hotspot activity and can form potential fragile sites. Here we used the fission yeast, Schizosaccharomyces pombe, to demonstrate that hotspot activity is not a universal feature of replication fork barriers (RFBs), and we propose that most sites within the genome that form RFBs do not have recombination hotspot activity under nonstressed conditions. We further demonstrate that Swi1, the TIMELESS homologue, differentially controls the recombination potential of RFBs, switching between being a suppressor and an activator of recombination in a site-specific fashion. PMID:19273851

  2. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    NASA Astrophysics Data System (ADS)

    Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.

    2016-03-01

    We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.

  3. A Leveraged Signal-to-Noise Ratio (LSTNR) Method to Extract Differentially Expressed Genes and Multivariate Patterns of Expression From Noisy and Low-Replication RNAseq Data

    PubMed Central

    Lozoya, Oswaldo A.; Santos, Janine H.; Woychik, Richard P.

    2018-01-01

    To life scientists, one important feature offered by RNAseq, a next-generation sequencing tool used to estimate changes in gene expression levels, lies in its unprecedented resolution. It can score countable differences in transcript numbers among thousands of genes and between experimental groups, all at once. However, its high cost limits experimental designs to very small sample sizes, usually N = 3, which often results in statistically underpowered analysis and poor reproducibility. All these issues are compounded by the presence of experimental noise, which is harder to distinguish from instrumental error when sample sizes are limiting (e.g., small-budget pilot tests), experimental populations exhibit biologically heterogeneous or diffuse expression phenotypes (e.g., patient samples), or when discriminating among transcriptional signatures of closely related experimental conditions (e.g., toxicological modes of action, or MOAs). Here, we present a leveraged signal-to-noise ratio (LSTNR) thresholding method, founded on generalized linear modeling (GLM) of aligned read detection limits to extract differentially expressed genes (DEGs) from noisy low-replication RNAseq data. The LSTNR method uses an agnostic independent filtering strategy to define the dynamic range of detected aggregate read counts per gene, and assigns statistical weights that prioritize genes with better sequencing resolution in differential expression analyses. To assess its performance, we implemented the LSTNR method to analyze three separate datasets: first, using a systematically noisy in silico dataset, we demonstrated that LSTNR can extract pre-designed patterns of expression and discriminate between “noise” and “true” differentially expressed pseudogenes at a 100% success rate; then, we illustrated how the LSTNR method can assign patient-derived breast cancer specimens correctly to one out of their four reported molecular subtypes (luminal A, luminal B, Her2-enriched and basal-like); and last, we showed the ability to retrieve five different modes of action (MOA) elicited in livers of rats exposed to three toxicants under three nutritional routes by using the LSTNR method. By combining differential measurements with resolving power to detect DEGs, the LSTNR method offers an alternative approach to interrogate noisy and low-replication RNAseq datasets, which handles multiple biological conditions at once, and defines benchmarks to validate RNAseq experiments with standard benchtop assays. PMID:29868123

  4. The dynamics of genome replication using deep sequencing

    PubMed Central

    Müller, Carolin A.; Hawkins, Michelle; Retkute, Renata; Malla, Sunir; Wilson, Ray; Blythe, Martin J.; Nakato, Ryuichiro; Komata, Makiko; Shirahige, Katsuhiko; de Moura, Alessandro P.S.; Nieduszynski, Conrad A.

    2014-01-01

    Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology. PMID:24089142

  5. Multiple mutant clones in blood rarely coexist

    NASA Astrophysics Data System (ADS)

    Dingli, David; Pacheco, Jorge M.; Traulsen, Arne

    2008-02-01

    Leukemias arise due to mutations in the genome of hematopoietic (blood) cells. Hematopoiesis has a multicompartment architecture, with cells exhibiting different rates of replication and differentiation. At the root of this process, one finds a small number of stem cells, and hence the description of the mutation-selection dynamics of blood cells calls for a stochastic approach. We use stochastic dynamics to investigate to which extent acquired hematopoietic disorders are associated with mutations of single or multiple genes within developing blood cells. Our analysis considers the appearance of mutations both in the stem cell compartment as well as in more committed compartments. We conclude that in the absence of genomic instability, acquired hematopoietic disorders due to mutations in multiple genes are most likely very rare events, as multiple mutations typically require much longer development times compared to those associated with a single mutation.

  6. Single molecule analysis of Trypanosoma brucei DNA replication dynamics

    PubMed Central

    Calderano, Simone Guedes; Drosopoulos, William C.; Quaresma, Marina Mônaco; Marques, Catarina A.; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L.; Elias, Maria Carolina

    2015-01-01

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5′ extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated. PMID:25690894

  7. Single molecule analysis of Trypanosoma brucei DNA replication dynamics.

    PubMed

    Calderano, Simone Guedes; Drosopoulos, William C; Quaresma, Marina Mônaco; Marques, Catarina A; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L; Elias, Maria Carolina

    2015-03-11

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-01

    Abstract Previously, we analyzed protein abundance changes across a ‘minimally perturbed’ cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/), an online, searchable resource. DOI: http://dx.doi.org/10.7554/eLife.04534.001 PMID:25555159

  9. The scaffold protein Nde1 safeguards the brain genome during S phase of early neural progenitor differentiation

    PubMed Central

    Houlihan, Shauna L; Feng, Yuanyi

    2014-01-01

    Successfully completing the S phase of each cell cycle ensures genome integrity. Impediment of DNA replication can lead to DNA damage and genomic disorders. In this study, we show a novel function for NDE1, whose mutations cause brain developmental disorders, in safeguarding the genome through S phase during early steps of neural progenitor fate restrictive differentiation. Nde1 mutant neural progenitors showed catastrophic DNA double strand breaks concurrent with the DNA replication. This evoked DNA damage responses, led to the activation of p53-dependent apoptosis, and resulted in the reduction of neurons in cortical layer II/III. We discovered a nuclear pool of Nde1, identified the interaction of Nde1 with cohesin and its associated chromatin remodeler, and showed that stalled DNA replication in Nde1 mutants specifically occurred in mid-late S phase at heterochromatin domains. These findings suggest that NDE1-mediated heterochromatin replication is indispensible for neuronal differentiation, and that the loss of NDE1 function may lead to genomic neurological disorders. DOI: http://dx.doi.org/10.7554/eLife.03297.001 PMID:25245017

  10. Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression.

    PubMed

    Lemieux, Sébastien

    2006-08-25

    The identification of differentially expressed genes (DEGs) from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model) method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition.

  11. Cell culture-adaptive mutations of NS5A affect replication of hepatitis C virus differentially depending on the viral genotypes.

    PubMed

    Chung, Aeri; Jin, Bora; Han, Kwang-Hyub; Ahn, Sang Hoon; Kim, Seungtaek

    2017-01-01

    Most of HCV RNAs require cell culture-adaptive mutations for efficient replication in cell culture and a number of such mutations have been described including a well-known S2204I substitution mutation in NS5A protein. In contrast, the replication of genotype 2a JFH1 RNA in cell culture does not require any cell culture-adaptive mutation. Rather, the presence of S2204I mutation impaired the JFH1 RNA replication. In this study, we examined the effect of reversions and substitutions of NS5A cell culture-adaptive mutations on virus replication in different genotypic backgrounds after either placing genotype 1a NS5A in the genotype 2a JFH1 or vice versa. The results from this investigation suggest that the S2204I mutation affects HCV RNA replication differentially depending on the viral genotypes but that the effect was not simply explained by the genotypic background. Perhaps, the effect of the S2204I mutation on HCV replication reflects both intra- and intergenic interactions of NS5A protein. J. Med. Virol. 89:146-152, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. A Bayesian nonparametric approach to dynamical noise reduction

    NASA Astrophysics Data System (ADS)

    Kaloudis, Konstantinos; Hatjispyros, Spyridon J.

    2018-06-01

    We propose a Bayesian nonparametric approach for the noise reduction of a given chaotic time series contaminated by dynamical noise, based on Markov Chain Monte Carlo methods. The underlying unknown noise process (possibly) exhibits heavy tailed behavior. We introduce the Dynamic Noise Reduction Replicator model with which we reconstruct the unknown dynamic equations and in parallel we replicate the dynamics under reduced noise level dynamical perturbations. The dynamic noise reduction procedure is demonstrated specifically in the case of polynomial maps. Simulations based on synthetic time series are presented.

  13. Temporal expression profiles indicate a primary function for microRNA during the peak of DNA replication after rat partial hepatectomy.

    PubMed

    Raschzok, Nathanael; Werner, Wiebke; Sallmon, Hannes; Billecke, Nils; Dame, Christof; Neuhaus, Peter; Sauer, Igor M

    2011-06-01

    The liver has the unique capacity to regenerate after surgical resection. However, the regulation of liver regeneration is not completely understood. Recent reports indicate an essential role for small noncoding microRNAs (miRNAs) in the regulation of hepatic development, carcinogenesis, and early regeneration. We hypothesized that miRNAs are critically involved in all phases of liver regeneration after partial hepatectomy. We performed miRNA microarray analyses after 70% partial hepatectomy in rats under isoflurane anesthesia at different time points (0 h to 5 days) and after sham laparotomy. Putative targets of differentially expressed miRNAs were determined using a bioinformatic approach. Two-dimensional (2D)-PAGE proteomic analyses and protein identification were performed on specimens at 0 and 24 h after resection. The temporal dynamics of liver regeneration were characterized by 5-bromo- 2-deoxyuridine, proliferating cell nuclear antigen, IL-6, and hepatocyte growth factor. We demonstrate that miRNA expression patterns changed during liver regeneration and that these changes were most evident during the peak of DNA replication at 24 h after resection. Expression of 13 miRNAs was significantly reduced 12-48 h after resection (>25% change), out of which downreguation was confirmed in isolated hepatocytes for 6 miRNAs at 24 h, whereas three miRNAs were significantly upregulated. Proteomic analysis revealed 65 upregulated proteins; among them, 23 represent putative targets of the differentially expressed miRNAs. We provide a temporal miRNA expression and proteomic dataset of the regenerating rat liver, which indicates a primary function for miRNA during the peak of DNA replication. These data will assist further functional studies on the role of miRNAs during liver regeneration.

  14. Chromatin Insulators and Topological Domains: Adding New Dimensions to 3D Genome Architecture

    PubMed Central

    Matharu, Navneet K.; Ahanger, Sajad H.

    2015-01-01

    The spatial organization of metazoan genomes has a direct influence on fundamental nuclear processes that include transcription, replication, and DNA repair. It is imperative to understand the mechanisms that shape the 3D organization of the eukaryotic genomes. Chromatin insulators have emerged as one of the central components of the genome organization tool-kit across species. Recent advancements in chromatin conformation capture technologies have provided important insights into the architectural role of insulators in genomic structuring. Insulators are involved in 3D genome organization at multiple spatial scales and are important for dynamic reorganization of chromatin structure during reprogramming and differentiation. In this review, we will discuss the classical view and our renewed understanding of insulators as global genome organizers. We will also discuss the plasticity of chromatin structure and its re-organization during pluripotency and differentiation and in situations of cellular stress. PMID:26340639

  15. Stochastic Endogenous Replication Stress Causes ATR-Triggered Fluctuations in CDK2 Activity that Dynamically Adjust Global DNA Synthesis Rates.

    PubMed

    Daigh, Leighton H; Liu, Chad; Chung, Mingyu; Cimprich, Karlene A; Meyer, Tobias

    2018-06-04

    Faithful DNA replication is challenged by stalling of replication forks during S phase. Replication stress is further increased in cancer cells or in response to genotoxic insults. Using live single-cell image analysis, we found that CDK2 activity fluctuates throughout an unperturbed S phase. We show that CDK2 fluctuations result from transient ATR signals triggered by stochastic replication stress events. In turn, fluctuating endogenous CDK2 activity causes corresponding decreases and increases in DNA synthesis rates, linking changes in stochastic replication stress to fluctuating global DNA replication rates throughout S phase. Moreover, cells that re-enter the cell cycle after mitogen stimulation have increased CDK2 fluctuations and prolonged S phase resulting from increased replication stress-induced CDK2 suppression. Thus, our study reveals a dynamic control principle for DNA replication whereby CDK2 activity is suppressed and fluctuates throughout S phase to continually adjust global DNA synthesis rates in response to recurring stochastic replication stress events. Copyright © 2018. Published by Elsevier Inc.

  16. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus.

    PubMed

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2012-01-01

    The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these proteins collectively participate in interconnected networks converging to adapt the nucleolus dynamic activities, which favor host biosynthetic activities and may contribute to create a cellular environment supporting robust HIV-1 production.

  17. Nucleolar Protein Trafficking in Response to HIV-1 Tat: Rewiring the Nucleolus

    PubMed Central

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W.; Gautier, Virginie W.

    2012-01-01

    The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these proteins collectively participate in interconnected networks converging to adapt the nucleolus dynamic activities, which favor host biosynthetic activities and may contribute to create a cellular environment supporting robust HIV-1 production. PMID:23166591

  18. Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabb, David L.; Wang, Xia; Carr, Steven A.

    2016-03-04

    The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) employed a pair of reference xenograft proteomes for initial platform validation and ongoing quality control of its data collection for The Cancer Genome Atlas (TCGA) tumors. These two xenografts, representing basal and luminal-B human breast cancer, were fractionated and analyzed on six mass spectrometers in a total of 46 replicates divided between iTRAQ and label-free technologies, spanning a total of 1095 LC-MS/MS experiments. These data represent a unique opportunity to evaluate the stability of proteomic differentiation by mass spectrometry over many months of time for individual instruments or across instruments running dissimilarmore » workflows. We evaluated iTRAQ reporter ions, label-free spectral counts, and label-free extracted ion chromatograms as strategies for data interpretation. From these assessments we found that differential genes from a single replicate were confirmed by other replicates on the same instrument from 61-93% of the time. When comparing across different instruments and quantitative technologies, differential genes were reproduced by other data sets from 67-99% of the time. Projecting gene differences to biological pathways and networks increased the similarities. These overlaps send an encouraging message about the maturity of technologies for proteomic differentiation.« less

  19. The replicator equation and other game dynamics

    PubMed Central

    Cressman, Ross; Tao, Yi

    2014-01-01

    The replicator equation is the first and most important game dynamics studied in connection with evolutionary game theory. It was originally developed for symmetric games with finitely many strategies. Properties of these dynamics are briefly summarized for this case, including the convergence to and stability of the Nash equilibria and evolutionarily stable strategies. The theory is then extended to other game dynamics for symmetric games (e.g., the best response dynamics and adaptive dynamics) and illustrated by examples taken from the literature. It is also extended to multiplayer, population, and asymmetric games. PMID:25024202

  20. Mouse embryonic stem cells have increased capacity for replication fork restart driven by the specific Filia-Floped protein complex.

    PubMed

    Zhao, Bo; Zhang, Weidao; Cun, Yixian; Li, Jingzheng; Liu, Yan; Gao, Jing; Zhu, Hongwen; Zhou, Hu; Zhang, Rugang; Zheng, Ping

    2018-01-01

    Pluripotent stem cells (PSCs) harbor constitutive DNA replication stress during their rapid proliferation and the consequent genome instability hampers their applications in regenerative medicine. It is therefore important to understand the regulatory mechanisms of replication stress response in PSCs. Here, we report that mouse embryonic stem cells (ESCs) are superior to differentiated cells in resolving replication stress. Specifically, ESCs utilize a unique Filia-Floped protein complex-dependent mechanism to efficiently promote the restart of stalled replication forks, therefore maintaining genomic stability. The ESC-specific Filia-Floped complex resides on replication forks under normal conditions. Replication stress stimulates their recruitment to stalling forks and the serine 151 residue of Filia is phosphorylated in an ATR-dependent manner. This modification enables the Filia-Floped complex to act as a functional scaffold, which then promotes the stalling fork restart through a dual mechanism: both enhancing recruitment of the replication fork restart protein, Blm, and stimulating ATR kinase activation. In the Blm pathway, the scaffolds recruit the E3 ubiquitin ligase, Trim25, to the stalled replication forks, and in turn Trim25 tethers and concentrates Blm at stalled replication forks through ubiquitination. In differentiated cells, the recruitment of the Trim25-Blm complex to replication forks and the activation of ATR signaling are much less robust due to lack of the ESC-specific Filia-Floped scaffold. Thus, our study reveals that ESCs utilize an additional and unique regulatory layer to efficiently promote the stalled fork restart and maintain genomic stability.

  1. Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages

    PubMed Central

    Lathrop, Stephanie K.; Binder, Kelsey A.; Starr, Tregei; Cooper, Kendal G.; Chong, Audrey; Carmody, Aaron B.

    2015-01-01

    Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. PMID:25895967

  2. Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages.

    PubMed

    Lathrop, Stephanie K; Binder, Kelsey A; Starr, Tregei; Cooper, Kendal G; Chong, Audrey; Carmody, Aaron B; Steele-Mortimer, Olivia

    2015-07-01

    Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Viral precursor protein P3 and its processed products perform discrete and essential functions in the poliovirus RNA replication complex

    USDA-ARS?s Scientific Manuscript database

    The differential use of protein precursors and their products is a key strategy used during poliovirus replication. To characterize the role of protein precursors during replication, we examined the complementation profiles of mutants that inhibited 3D polymerase or 3C-RNA binding activity. We showe...

  4. Evolution of plant growth and defense in a continental introduction.

    PubMed

    Agrawal, Anurag A; Hastings, Amy P; Bradburd, Gideon S; Woods, Ellen C; Züst, Tobias; Harvey, Jeffrey A; Bukovinszky, Tibor

    2015-07-01

    Substantial research has addressed adaptation of nonnative biota to novel environments, yet surprisingly little work has integrated population genetic structure and the mechanisms underlying phenotypic differentiation in ecologically important traits. We report on studies of the common milkweed Asclepias syriaca, which was introduced from North America to Europe over the past 400 years and which lacks most of its specialized herbivores in the introduced range. Using 10 populations from each continent grown in a common environment, we identified several growth and defense traits that have diverged, despite low neutral genetic differentiation between continents. We next developed a Bayesian modeling approach to account for relationships between molecular and phenotypic differences, confirming that continental trait differentiation was greater than expected from neutral genetic differentiation. We found evidence that growth-related traits adaptively diverged within and between continents. Inducible defenses triggered by monarch butterfly herbivory were substantially reduced in European populations, and this reduction in inducibility was concordant with altered phytohormonal dynamics, reduced plant growth, and a trade-off with constitutive investment. Freedom from the community of native and specialized herbivores may have favored constitutive over induced defense. Our replicated analysis of plant growth and defense, including phenotypically plastic traits, suggests adaptive evolution following a continental introduction.

  5. Novel Approaches Reveal that Toxoplasma gondii Bradyzoites within Tissue Cysts Are Dynamic and Replicating Entities In Vivo.

    PubMed

    Watts, Elizabeth; Zhao, Yihua; Dhara, Animesh; Eller, Becca; Patwardhan, Abhijit; Sinai, Anthony P

    2015-09-08

    Despite their critical role in chronic toxoplasmosis, the biology of Toxoplasma gondii bradyzoites is poorly understood. In an attempt to address this gap, we optimized approaches to purify tissue cysts and analyzed the replicative potential of bradyzoites within these cysts. In order to quantify individual bradyzoites within tissue cysts, we have developed imaging software, BradyCount 1.0, that allows the rapid establishment of bradyzoite burdens within imaged optical sections of purified tissue cysts. While in general larger tissue cysts contain more bradyzoites, their relative "occupancy" was typically lower than that of smaller cysts, resulting in a lower packing density. The packing density permits a direct measure of how bradyzoites develop within cysts, allowing for comparisons across progression of the chronic phase. In order to capture bradyzoite endodyogeny, we exploited the differential intensity of TgIMC3, an inner membrane complex protein that intensely labels newly formed/forming daughters within bradyzoites and decays over time in the absence of further division. To our surprise, we were able to capture not only sporadic and asynchronous division but also synchronous replication of all bradyzoites within mature tissue cysts. Furthermore, the time-dependent decay of TgIMC3 intensity was exploited to gain insights into the temporal patterns of bradyzoite replication in vivo. Despite the fact that bradyzoites are considered replicatively dormant, we find evidence for cyclical, episodic bradyzoite growth within tissue cysts in vivo. These findings directly challenge the prevailing notion of bradyzoites as dormant nonreplicative entities in chronic toxoplasmosis and have implications on our understanding of this enigmatic and clinically important life cycle stage. The protozoan Toxoplasma gondii establishes a lifelong chronic infection mediated by the bradyzoite form of the parasite within tissue cysts. Technical challenges have limited even the most basic studies on bradyzoites and the tissue cysts in vivo. Bradyzoites, which are viewed as dormant, poorly replicating or nonreplicating entities, were found to be surprisingly active, exhibiting not only the capacity for growth but also previously unrecognized patterns of replication that point to their being considerably more dynamic than previously imagined. These newly revealed properties force us to reexamine the most basic questions regarding bradyzoite biology and the progression of the chronic phase of toxoplasmosis. By developing new tools and approaches to study the chronic phase at the level of bradyzoites, we expose new avenues to tackle both drug development and a better understanding of events that may lead to reactivated symptomatic disease. Copyright © 2015 Watts et al.

  6. Sperm competition dynamics: ejaculate fertilising efficiency changes differentially with time.

    PubMed

    Pizzari, Tommaso; Worley, Kirsty; Burke, Terry; Froman, David P

    2008-12-16

    A fundamental challenge in evolutionary biology is to resolve the mechanisms that maintain paternity a hypervariable fitness component. Because females are often sexually promiscuous, this challenge hinges on establishing the mechanisms through which the ejaculates of different males compete for fertilisation (sperm competition). The competitive quality of an ejaculate is mediated by the relative number of live sperm and their motile performance. The differential rate at which rival ejaculates lose their fertilising efficiency over time is therefore expected to influence the outcome of sperm competition. Here, we artificially inseminated into sets of replicate domestic hens, Gallus gallus domesticus, experimentally engineered heterospermic ejaculates containing a large number of low-quality sperm from one male, and a lower number of high-quality sperm from another male. Large, low-quality ejaculates fertilised the first eggs produced after insemination, but small, high-quality ejaculates prevailed in the long run despite their numerical disadvantage. Together, these results provide the first experimental demonstration that the relative competitive value of an ejaculate changes drastically over the time during which competing ejaculates are stored within the reproductive tract of a female, resulting in a marked temporal pattern of variation in paternity. A high level of replication makes these results robust. However, our study was restricted to few males of a well characterised study population, and future work should explore the generality of these results.

  7. Sperm competition dynamics: ejaculate fertilising efficiency changes differentially with time

    PubMed Central

    2008-01-01

    Background A fundamental challenge in evolutionary biology is to resolve the mechanisms that maintain paternity a hypervariable fitness component. Because females are often sexually promiscuous, this challenge hinges on establishing the mechanisms through which the ejaculates of different males compete for fertilisation (sperm competition). The competitive quality of an ejaculate is mediated by the relative number of live sperm and their motile performance. The differential rate at which rival ejaculates lose their fertilising efficiency over time is therefore expected to influence the outcome of sperm competition. Results Here, we artificially inseminated into sets of replicate domestic hens, Gallus gallus domesticus, experimentally engineered heterospermic ejaculates containing a large number of low-quality sperm from one male, and a lower number of high-quality sperm from another male. Large, low-quality ejaculates fertilised the first eggs produced after insemination, but small, high-quality ejaculates prevailed in the long run despite their numerical disadvantage. Conclusion Together, these results provide the first experimental demonstration that the relative competitive value of an ejaculate changes drastically over the time during which competing ejaculates are stored within the reproductive tract of a female, resulting in a marked temporal pattern of variation in paternity. A high level of replication makes these results robust. However, our study was restricted to few males of a well characterised study population, and future work should explore the generality of these results. PMID:19087292

  8. Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient.

    PubMed

    Måren, Inger Elisabeth; Kapfer, Jutta; Aarrestad, Per Arild; Grytnes, John-Arvid; Vandvik, Vigdis

    2018-01-01

    Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more niche-driven dynamics in later successional stages. Grazing reduces predictability in both successional trends and species-level dynamics, especially in plant functional groups that are not well adapted to disturbance. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

  9. Ecology and Evolution in the RNA World Dynamics and Stability of Prebiotic Replicator Systems.

    PubMed

    Szilágyi, András; Zachar, István; Scheuring, István; Kun, Ádám; Könnyű, Balázs; Czárán, Tamás

    2017-11-27

    As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string) replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1) it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2) it must be ecologically stable and (3) it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system) are promising candidates for development into coherent models that may become experimentally accessible in the future.

  10. Ecology and Evolution in the RNA World Dynamics and Stability of Prebiotic Replicator Systems

    PubMed Central

    Szilágyi, András; Kun, Ádám; Könnyű, Balázs; Czárán, Tamás

    2017-01-01

    As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string) replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1) it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2) it must be ecologically stable and (3) it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system) are promising candidates for development into coherent models that may become experimentally accessible in the future. PMID:29186916

  11. Evolutionary dynamics of adult stem cells: comparison of random and immortal-strand segregation mechanisms.

    PubMed

    Tannenbaum, Emmanuel; Sherley, James L; Shakhnovich, Eugene I

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) "immortal DNA strand" co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  12. Evolutionary dynamics of adult stem cells: Comparison of random and immortal-strand segregation mechanisms

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) “immortal DNA strand” co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  13. Diachronic investigations of mitochondrial and Y-chromosomal genetic markers in pre-Columbian Andean highlanders from South Peru.

    PubMed

    Fehren-Schmitz, Lars; Warnberg, Ole; Reindel, Markus; Seidenberg, Verena; Tomasto-Cagigao, Elsa; Isla-Cuadrado, Johny; Hummel, Susanne; Herrmann, Bernd

    2011-03-01

    This study examines the reciprocal effects of cultural evolution, and population dynamics in pre-Columbian southern Peru by the analysis of DNA from pre-Columbian populations that lived in the fringe area between the Andean highlands and the Pacific coast. The main objective is to reveal whether the transition from the Middle Horizon (MH: 650-1000 AD) to the Late Intermediate Period (LIP: 1000-1400 AD) was accompanied or influenced by population dynamic processes. Tooth samples from 90 individuals from several archaeological sites, dating to the MH and LIP, in the research area were collected to analyse mitochodrial, and Y-chromosomal genetic markers. Coding region polymorphisms were successfully analysed and replicated for 72 individuals, as were control region sequences for 65 individuals and Y-chromosomal single nucleotide polymorphisms (SNPs) for 19 individuals, and these were compared to a large set of ancient and modern indigenous South American populations. The diachronic comparison of the upper valley samples from both time periods reveals no genetic discontinuities accompanying the cultural dynamic processes. A high genetic affinity for other ancient and modern highland populations can be observed, suggesting genetic continuity in the Andean highlands at the latest from the MH. A significant matrilineal differentiation to ancient Peruvian coastal populations can be observed suggesting a differential population history. © 2010 The Authors Annals of Human Genetics © 2010 Blackwell Publishing Ltd/University College London.

  14. Dynamics of prebiotic RNA reproduction illuminated by chemical game theory

    PubMed Central

    Yeates, Jessica A. M.; Hilbe, Christian; Zwick, Martin; Nowak, Martin A.; Lehman, Niles

    2016-01-01

    Many origins-of-life scenarios depict a situation in which there are common and potentially scarce resources needed by molecules that compete for survival and reproduction. The dynamics of RNA assembly in a complex mixture of sequences is a frequency-dependent process and mimics such scenarios. By synthesizing Azoarcus ribozyme genotypes that differ in their single-nucleotide interactions with other genotypes, we can create molecules that interact among each other to reproduce. Pairwise interplays between RNAs involve both cooperation and selfishness, quantifiable in a 2 × 2 payoff matrix. We show that a simple model of differential equations based on chemical kinetics accurately predicts the outcomes of these molecular competitions using simple rate inputs into these matrices. In some cases, we find that mixtures of different RNAs reproduce much better than each RNA type alone, reflecting a molecular form of reciprocal cooperation. We also demonstrate that three RNA genotypes can stably coexist in a rock–paper–scissors analog. Our experiments suggest a new type of evolutionary game dynamics, called prelife game dynamics or chemical game dynamics. These operate without template-directed replication, illustrating how small networks of RNAs could have developed and evolved in an RNA world. PMID:27091972

  15. Dynamics of prebiotic RNA reproduction illuminated by chemical game theory.

    PubMed

    Yeates, Jessica A M; Hilbe, Christian; Zwick, Martin; Nowak, Martin A; Lehman, Niles

    2016-05-03

    Many origins-of-life scenarios depict a situation in which there are common and potentially scarce resources needed by molecules that compete for survival and reproduction. The dynamics of RNA assembly in a complex mixture of sequences is a frequency-dependent process and mimics such scenarios. By synthesizing Azoarcus ribozyme genotypes that differ in their single-nucleotide interactions with other genotypes, we can create molecules that interact among each other to reproduce. Pairwise interplays between RNAs involve both cooperation and selfishness, quantifiable in a 2 × 2 payoff matrix. We show that a simple model of differential equations based on chemical kinetics accurately predicts the outcomes of these molecular competitions using simple rate inputs into these matrices. In some cases, we find that mixtures of different RNAs reproduce much better than each RNA type alone, reflecting a molecular form of reciprocal cooperation. We also demonstrate that three RNA genotypes can stably coexist in a rock-paper-scissors analog. Our experiments suggest a new type of evolutionary game dynamics, called prelife game dynamics or chemical game dynamics. These operate without template-directed replication, illustrating how small networks of RNAs could have developed and evolved in an RNA world.

  16. A New Model for the Estimation of Cell Proliferation Dynamics Using CFSE Data

    PubMed Central

    Banks, H.T.; Sutton, Karyn L.; Thompson, W. Clayton; Bocharov, Gennady; Doumic, Marie; Schenkel, Tim; Argilaguet, Jordi; Giest, Sandra; Peligero, Cristina; Meyerhans, Andreas

    2011-01-01

    CFSE analysis of a proliferating cell population is a popular tool for the study of cell division and division-linked changes in cell behavior. Recently [13, 43, 45], a partial differential equation (PDE) model to describe lymphocyte dynamics in a CFSE proliferation assay was proposed. We present a significant revision of this model which improves the physiological understanding of several parameters. Namely, the parameter γ used previously as a heuristic explanation for the dilution of CFSE dye by cell division is replaced with a more physical component, cellular autofluorescence. The rate at which label decays is also quantified using a Gompertz decay process. We then demonstrate a revised method of fitting the model to the commonly used histogram representation of the data. It is shown that these improvements result in a model with a strong physiological basis which is fully capable of replicating the behavior observed in the data. PMID:21889510

  17. A subset of replication-dependent histone mRNAs are expressed as polyadenylated RNAs in terminally differentiated tissues.

    PubMed

    Lyons, Shawn M; Cunningham, Clark H; Welch, Joshua D; Groh, Beezly; Guo, Andrew Y; Wei, Bruce; Whitfield, Michael L; Xiong, Yue; Marzluff, William F

    2016-11-02

    Histone proteins are synthesized in large amounts during S-phase to package the newly replicated DNA, and are among the most stable proteins in the cell. The replication-dependent (RD)-histone mRNAs expressed during S-phase end in a conserved stem-loop rather than a polyA tail. In addition, there are replication-independent (RI)-histone genes that encode histone variants as polyadenylated mRNAs. Most variants have specific functions in chromatin, but H3.3 also serves as a replacement histone for damaged histones in long-lived terminally differentiated cells. There are no reported replacement histone genes for histones H2A, H2B or H4. We report that a subset of RD-histone genes are expressed in terminally differentiated tissues as polyadenylated mRNAs, likely serving as replacement histone genes in long-lived non-dividing cells. Expression of two genes, HIST2H2AA3 and HIST1H2BC, is conserved in mammals. They are expressed as polyadenylated mRNAs in fibroblasts differentiated in vitro, but not in serum starved fibroblasts, suggesting that their expression is part of the terminal differentiation program. There are two histone H4 genes and an H3 gene that encode mRNAs that are polyadenylated and expressed at 5- to 10-fold lower levels than the mRNAs from H2A and H2B genes, which may be replacement genes for the H3.1 and H4 proteins. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. The E1 Protein of Human Papillomavirus Type 16 Is Dispensable for Maintenance Replication of the Viral Genome

    PubMed Central

    Egawa, Nagayasu; Nakahara, Tomomi; Ohno, Shin-ichi; Narisawa-Saito, Mako; Yugawa, Takashi; Fujita, Masatoshi; Yamato, Kenji; Natori, Yukikazu

    2012-01-01

    Papillomavirus genomes are thought to be amplified to about 100 copies per cell soon after infection, maintained constant at this level in basal cells, and amplified for viral production upon keratinocyte differentiation. To determine the requirement for E1 in viral DNA replication at different stages, an E1-defective mutant of the human papillomavirus 16 (HPV16) genome featuring a translation termination mutation in the E1 gene was used. The ability of the mutant HPV16 genome to replicate as nuclear episomes was monitored with or without exogenous expression of E1. Unlike the wild-type genome, the E1-defective HPV16 genome became established in human keratinocytes only as episomes in the presence of exogenous E1 expression. Once established, it could replicate with the same efficiency as the wild-type genome, even after the exogenous E1 was removed. However, upon calcium-induced keratinocyte differentiation, once again amplification was dependent on exogenous E1. These results demonstrate that the E1 protein is dispensable for maintenance replication but not for initial and productive replication of HPV16. PMID:22238312

  19. Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment.

    PubMed

    Gierliński, Marek; Cole, Christian; Schofield, Pietà; Schurch, Nicholas J; Sherstnev, Alexander; Singh, Vijender; Wrobel, Nicola; Gharbi, Karim; Simpson, Gordon; Owen-Hughes, Tom; Blaxter, Mark; Barton, Geoffrey J

    2015-11-15

    High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of 'bad' replicates, which can drastically affect the gene read-count distribution. RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. g.j.barton@dundee.ac.uk. © The Author 2015. Published by Oxford University Press.

  20. Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment

    PubMed Central

    Cole, Christian; Schofield, Pietà; Schurch, Nicholas J.; Sherstnev, Alexander; Singh, Vijender; Wrobel, Nicola; Gharbi, Karim; Simpson, Gordon; Owen-Hughes, Tom; Blaxter, Mark; Barton, Geoffrey J.

    2015-01-01

    Motivation: High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. Results: A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of ‘bad’ replicates, which can drastically affect the gene read-count distribution. Availability and implementation: RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. Contact: g.j.barton@dundee.ac.uk PMID:26206307

  1. Extinction rates in tumour public goods games.

    PubMed

    Gerlee, Philip; Altrock, Philipp M

    2017-09-01

    Cancer evolution and progression are shaped by cellular interactions and Darwinian selection. Evolutionary game theory incorporates both of these principles, and has been proposed as a framework to understand tumour cell population dynamics. A cornerstone of evolutionary dynamics is the replicator equation, which describes changes in the relative abundance of different cell types, and is able to predict evolutionary equilibria. Typically, the replicator equation focuses on differences in relative fitness. We here show that this framework might not be sufficient under all circumstances, as it neglects important aspects of population growth. Standard replicator dynamics might miss critical differences in the time it takes to reach an equilibrium, as this time also depends on cellular turnover in growing but bounded populations. As the system reaches a stable manifold, the time to reach equilibrium depends on cellular death and birth rates. These rates shape the time scales, in particular, in coevolutionary dynamics of growth factor producers and free-riders. Replicator dynamics might be an appropriate framework only when birth and death rates are of similar magnitude. Otherwise, population growth effects cannot be neglected when predicting the time to reach an equilibrium, and cell-type-specific rates have to be accounted for explicitly. © 2017 The Authors.

  2. Dynamic binding of replication protein a is required for DNA repair

    PubMed Central

    Chen, Ran; Subramanyam, Shyamal; Elcock, Adrian H.; Spies, Maria; Wold, Marc S.

    2016-01-01

    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA–DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions. PMID:27131385

  3. Single-molecule FRET studies of the cooperative and non-cooperative binding kinetics of the bacteriophage T4 single-stranded DNA binding protein (gp32) to ssDNA lattices at replication fork junctions

    PubMed Central

    Lee, Wonbae; Gillies, John P.; Jose, Davis; Israels, Brett A.; von Hippel, Peter H.; Marcus, Andrew H.

    2016-01-01

    Gene 32 protein (gp32) is the single-stranded (ss) DNA binding protein of the bacteriophage T4. It binds transiently and cooperatively to ssDNA sequences exposed during the DNA replication process and regulates the interactions of the other sub-assemblies of the replication complex during the replication cycle. We here use single-molecule FRET techniques to build on previous thermodynamic studies of gp32 binding to initiate studies of the dynamics of the isolated and cooperative binding of gp32 molecules within the replication complex. DNA primer/template (p/t) constructs are used as models to determine the effects of ssDNA lattice length, gp32 concentration, salt concentration, binding cooperativity and binding polarity at p/t junctions. Hidden Markov models (HMMs) and transition density plots (TDPs) are used to characterize the dynamics of the multi-step assembly pathway of gp32 at p/t junctions of differing polarity, and show that isolated gp32 molecules bind to their ssDNA targets weakly and dissociate quickly, while cooperatively bound dimeric or trimeric clusters of gp32 bind much more tightly, can ‘slide’ on ssDNA sequences, and exhibit binding dynamics that depend on p/t junction polarities. The potential relationships of these binding dynamics to interactions with other components of the T4 DNA replication complex are discussed. PMID:27694621

  4. DNMT1 maintains progenitor function in self-renewing somatic tissue.

    PubMed

    Sen, George L; Reuter, Jason A; Webster, Daniel E; Zhu, Lilly; Khavari, Paul A

    2010-01-28

    Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, the role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unclear. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis showed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, UHRF1 (refs 9, 10), a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A and B, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue.

  5. ATR-like kinase Mec1 facilitates both chromatin accessibility at DNA replication forks and replication fork progression during replication stress

    PubMed Central

    Rodriguez, Jairo; Tsukiyama, Toshio

    2013-01-01

    Faithful DNA replication is essential for normal cell division and differentiation. In eukaryotic cells, DNA replication takes place on chromatin. This poses the critical question as to how DNA replication can progress through chromatin, which is inhibitory to all DNA-dependent processes. Here, we developed a novel genome-wide method to measure chromatin accessibility to micrococcal nuclease (MNase) that is normalized for nucleosome density, the NCAM (normalized chromatin accessibility to MNase) assay. This method enabled us to discover that chromatin accessibility increases specifically at and ahead of DNA replication forks in normal S phase and during replication stress. We further found that Mec1, a key regulatory ATR-like kinase in the S-phase checkpoint, is required for both normal chromatin accessibility around replication forks and replication fork rate during replication stress, revealing novel functions for the kinase in replication stress response. These results suggest a possibility that Mec1 may facilitate DNA replication fork progression during replication stress by increasing chromatin accessibility around replication forks. PMID:23307868

  6. Cyclic public goods games: Compensated coexistence among mutual cheaters stabilized by optimized penalty taxation

    NASA Astrophysics Data System (ADS)

    Griffin, Christopher; Belmonte, Andrew

    2017-05-01

    We study the problem of stabilized coexistence in a three-species public goods game in which each species simultaneously contributes to one public good while freeloading off another public good ("cheating"). The proportional population growth is governed by an appropriately modified replicator equation, depending on the returns from the public goods and the cost. We show that the replicator dynamic has at most one interior unstable fixed point and that the population becomes dominated by a single species. We then show that by applying an externally imposed penalty, or "tax" on success can stabilize the interior fixed point, allowing for the symbiotic coexistence of all species. We show that the interior fixed point is the point of globally minimal total population growth in both the taxed and untaxed cases. We then formulate an optimal taxation problem and show that it admits a quasilinearization, resulting in novel necessary conditions for the optimal control. In particular, the optimal control problem governing the tax rate must solve a certain second-order ordinary differential equation.

  7. Cyclic public goods games: Compensated coexistence among mutual cheaters stabilized by optimized penalty taxation.

    PubMed

    Griffin, Christopher; Belmonte, Andrew

    2017-05-01

    We study the problem of stabilized coexistence in a three-species public goods game in which each species simultaneously contributes to one public good while freeloading off another public good ("cheating"). The proportional population growth is governed by an appropriately modified replicator equation, depending on the returns from the public goods and the cost. We show that the replicator dynamic has at most one interior unstable fixed point and that the population becomes dominated by a single species. We then show that by applying an externally imposed penalty, or "tax" on success can stabilize the interior fixed point, allowing for the symbiotic coexistence of all species. We show that the interior fixed point is the point of globally minimal total population growth in both the taxed and untaxed cases. We then formulate an optimal taxation problem and show that it admits a quasilinearization, resulting in novel necessary conditions for the optimal control. In particular, the optimal control problem governing the tax rate must solve a certain second-order ordinary differential equation.

  8. ESCDL-1, a new cell line derived from chicken embryonic stem cells, supports efficient replication of Mardiviruses

    PubMed Central

    Jean, Christian; Fragnet-Trapp, Laetitia; Rémy, Sylvie; Chabanne-Vautherot, Danièle; Montillet, Guillaume; Fuet, Aurélie; Denesvre, Caroline; Pain, Bertrand

    2017-01-01

    Marek’s disease virus is the etiological agent of a major lymphoproliferative disorder in poultry and the prototype of the Mardivirus genus. Primary avian somatic cells are currently used for virus replication and vaccine production, but they are largely refractory to any genetic modification compatible with the preservation of intact viral susceptibility. We explored the concept of induction of viral replication permissiveness in an established pluripotent chicken embryonic stem cell-line (cES) in order to derive a new fully susceptible cell-line. Chicken ES cells were not permissive for Mardivirus infection, but as soon as differentiation was triggered, replication of Marek’s disease virus was detected. From a panel of cyto-differentiating agents, hexamethylene bis (acetamide) (HMBA) was found to be the most efficient regarding the induction of permissiveness. These initial findings prompted us to analyse the effect of HMBA on gene expression, to derive a new mesenchymal cell line, the so-called ESCDL-1, and monitor its susceptibility for Mardivirus replication. All Mardiviruses tested so far replicated equally well on primary embryonic skin cells and on ESCDL-1, and the latter showed no variation related to its passage number in its permissiveness for virus infection. Viral morphogenesis studies confirmed efficient multiplication with, as in other in vitro models, no extra-cellular virus production. We could show that ESCDL-1 can be transfected to express a transgene and subsequently cloned without any loss in permissiveness. Consequently, ESCDL-1 was genetically modified to complement viral gene deletions thus yielding stable trans-complementing cell lines. We herein claim that derivation of stable differentiated cell-lines from cES cell lines might be an alternative solution to the cultivation of primary cells for virology studies. PMID:28406989

  9. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    PubMed

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Normal uniform mixture differential gene expression detection for cDNA microarrays

    PubMed Central

    Dean, Nema; Raftery, Adrian E

    2005-01-01

    Background One of the primary tasks in analysing gene expression data is finding genes that are differentially expressed in different samples. Multiple testing issues due to the thousands of tests run make some of the more popular methods for doing this problematic. Results We propose a simple method, Normal Uniform Differential Gene Expression (NUDGE) detection for finding differentially expressed genes in cDNA microarrays. The method uses a simple univariate normal-uniform mixture model, in combination with new normalization methods for spread as well as mean that extend the lowess normalization of Dudoit, Yang, Callow and Speed (2002) [1]. It takes account of multiple testing, and gives probabilities of differential expression as part of its output. It can be applied to either single-slide or replicated experiments, and it is very fast. Three datasets are analyzed using NUDGE, and the results are compared to those given by other popular methods: unadjusted and Bonferroni-adjusted t tests, Significance Analysis of Microarrays (SAM), and Empirical Bayes for microarrays (EBarrays) with both Gamma-Gamma and Lognormal-Normal models. Conclusion The method gives a high probability of differential expression to genes known/suspected a priori to be differentially expressed and a low probability to the others. In terms of known false positives and false negatives, the method outperforms all multiple-replicate methods except for the Gamma-Gamma EBarrays method to which it offers comparable results with the added advantages of greater simplicity, speed, fewer assumptions and applicability to the single replicate case. An R package called nudge to implement the methods in this paper will be made available soon at . PMID:16011807

  11. Cells of pea (Pisum sativum) that differentiate from G2 phase have extrachromosomal DNA.

    PubMed Central

    Van't Hof, J; Bjerknes, C A

    1982-01-01

    Velocity sedimentation in an alkaline sucrose gradient of newly replicated chromosomal DNA revealed the presence of extrachromosomal DNA that was not replicated by differentiating cells in the elongation zone. The extrachromosomal DNA had a number average molecular weight of 12 X 10(6) to 15 X 10(6) and a weight average molecular weight of 25 X 10(6), corresponding to about 26 X 10(6) and 50 X 10(6) daltons, respectively, of double-stranded DNA. The molecules were stable, lasting at least 72 h after being formed. Concurrent measurements by velocity sedimentation, autoradiography, and cytophotometry of isolated nuclei indicated that the extrachromosomal molecules were associated with root-tip cells that stopped dividing and differentiated from G2 phase but not with those that stopped dividing and differentiated from G1 phase. PMID:7110135

  12. Control of DNA replication: a new facet of Hox proteins?

    PubMed

    Miotto, Benoit; Graba, Yacine

    2010-09-01

    Hox proteins are well-known as developmental transcription factors controlling cell and tissue identity, but recent findings suggest that they are also part of the cell replication machinery. Hox-mediated control of transcription and replication may ensure coordinated control of cell growth and differentiation, two processes that need to be tightly and precisely coordinated to allow proper organ formation and patterning. In this review we summarize the available data linking Hox proteins to the replication machinery and discuss the developmental and pathological implications of this new facet of Hox protein function.

  13. Cell growth and differentiation on feeder layers is predicted to be influenced by bioreactor geometry.

    PubMed

    Peng, C A; Palsson, B Ø

    1996-06-05

    Tissue function is comprised of a complex interplay between biological and physicochemical rate processes. The design of bioreactors for tissue engineering must account for these processes simultaneously in order to obtain a bioreactor that provides a uniform environment for tissue growth and development. In the present study we consider the effects of fluid flow and mass transfer on the growth of a tissue in a parallel-plate bioreactor configuration. The parenchymal cells grow on a preformed stromal (feeder) layer that secretes a growth factor that stimulates parenchymal stem cell replication and differentiation. The biological dynamics are described by a unilineage model that describes the replication and differentiation of the tissue stem cell. The physicochemical rates are described by the Navier-Stokes and convective-diffusion equations. The model equations are solved by a finite element method. Two dimensionless groups govern the behavior of the solution. One is the Graetz number (Gz) that describes the relative rates of convection and diffusion, and the other a new dimensionless ratio (designated by P) that describes the interplay of the growth factor production, diffusion, and stimulation. Four geometries (slab, gondola, diamond, and radial shapes) for the parallel-plate bioreactor are analyzed. The uniformity of cell growth is measured by a two-dimensional coefficient of variance. The concentration distribution of the stroma-derived growth factor was computed first based on fluid flow and bioreactor geometry. Then the concomitant cell density distribution was obtained by integrating the calculated growth factor concentration with the parenchymal cell growth and unilineage differentiation process. The spatiotemporal cell growth patterns in four different bioreactor configurations were investigated under a variety of combinations of Gz (10(-1), 10(0), and 10(1)) and P(10(-2), 10(-1), 10(0), 10(1), and 10(2)). The results indicate high cell density and uniformity can be achieved for parameter values of P = 0.01, ..., 0.1 and Gz = 0.1, ..., 1.0. Among the four geometries investigated the radial-flow-type bioreactor provides the most uniform environment in which parenchymal cells can grow and differentiate ex vivo due to the absence of walls that are parallel to the flow paths creating slow flowing regions.

  14. Algorithms for network-based identification of differential regulators from transcriptome data: a systematic evaluation

    PubMed Central

    Hui, YU; Ramkrishna, MITRA; Jing, YANG; YuanYuan, LI; ZhongMing, ZHAO

    2016-01-01

    Identification of differential regulators is critical to understand the dynamics of cellular systems and molecular mechanisms of diseases. Several computational algorithms have recently been developed for this purpose by using transcriptome and network data. However, it remains largely unclear which algorithm performs better under a specific condition. Such knowledge is important for both appropriate application and future enhancement of these algorithms. Here, we systematically evaluated seven main algorithms (TED, TDD, TFactS, RIF1, RIF2, dCSA_t2t, and dCSA_r2t), using both simulated and real datasets. In our simulation evaluation, we artificially inactivated either a single regulator or multiple regulators and examined how well each algorithm detected known gold standard regulators. We found that all these algorithms could effectively discern signals arising from regulatory network differences, indicating the validity of our simulation schema. Among the seven tested algorithms, TED and TFactS were placed first and second when both discrimination accuracy and robustness against data variation were considered. When applied to two independent lung cancer datasets, both TED and TFactS replicated a substantial fraction of their respective differential regulators. Since TED and TFactS rely on two distinct features of transcriptome data, namely differential co-expression and differential expression, both may be applied as mutual references during practical application. PMID:25326829

  15. Nuclear matrix - structure, function and pathogenesis.

    PubMed

    Wasąg, Piotr; Lenartowski, Robert

    2016-12-20

    The nuclear matrix (NM), or nuclear skeleton, is the non-chromatin, ribonucleoproteinaceous framework that is resistant to high ionic strength buffers, nonionic detergents, and nucleolytic enzymes. The NM fulfills a structural role in eukaryotic cells and is responsible for maintaining the shape of the nucleus and the spatial organization of chromatin. Moreover, the NM participates in several cellular processes, such as DNA replication/repair, gene expression, RNA transport, cell signaling and differentiation, cell cycle regulation, apoptosis and carcinogenesis. Short nucleotide sequences called scaffold/matrix attachment regions (S/MAR) anchor the chromatin loops to the NM proteins (NMP). The NMP composition is dynamic and depends on the cell type and differentiation stage or metabolic activity. Alterations in the NMP composition affect anchoring of the S/MARs and thus alter gene expression. This review aims to systematize information about the skeletal structure of the nucleus, with particular emphasis on the organization of the NM and its role in selected cellular processes. We also discuss several diseases that are caused by aberrant NM structure or dysfunction of individual NM elements.

  16. Fatty acid translocase promoted hepatitis B virus replication by upregulating the levels of hepatic cytosolic calcium.

    PubMed

    Huang, Jian; Zhao, Lei; Yang, Ping; Chen, Zhen; Ruan, Xiong Z; Huang, Ailong; Tang, Ni; Chen, Yaxi

    2017-09-15

    Hepatitis B virus (HBV) is designated a "metabolovirus" due to the intimate connection between the virus and host metabolism. The nutrition state of the host plays a relevant role in the severity of HBV infection. Metabolic syndrome (MS) is prone to increasing HBV DNA loads and accelerating the progression of liver disease in patients with chronic hepatitis B (CHB). Cluster of differentiation 36 (CD36), also named fatty acid translocase, is known to facilitate long-chain fatty acid uptake and contribute to the development of MS. We recently found that CD36 overexpression enhanced HBV replication. In this study, we further explored the mechanism by which CD36 overexpression promotes HBV replication. Our data showed that CD36 overexpression increased HBV replication, and CD36 knockdown inhibited HBV replication. RNA sequencing found some of the differentially expressed genes were involved in calcium ion homeostasis. CD36 overexpression elevated the cytosolic calcium level, and CD36 knockdown decreased the cytosolic calcium level. Calcium chelator BAPTA-AM could override the HBV replication increased by CD36 overexpression, and the calcium activator thapsigargin could improve the HBV replication reduced by CD36 knockdown. We further found that CD36 overexpression activated Src kinase, which plays an important role in the regulation of the store-operated Ca 2+ channel. An inhibitor of Src kinase (SU6656) significantly reduced the CD36-induced HBV replication. We identified a novel link between CD36 and HBV replication, which is associated with cytosolic calcium and the Src kinase pathway. CD36 may represent a potential therapeutic target for the treatment of CHB patients with MS. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Correlative live and super-resolution imaging reveals the dynamic structure of replication domains.

    PubMed

    Xiang, Wanqing; Roberti, M Julia; Hériché, Jean-Karim; Huet, Sébastien; Alexander, Stephanie; Ellenberg, Jan

    2018-06-04

    Chromosome organization in higher eukaryotes controls gene expression, DNA replication, and DNA repair. Genome mapping has revealed the functional units of chromatin at the submegabase scale as self-interacting regions called topologically associating domains (TADs) and showed they correspond to replication domains (RDs). A quantitative structural and dynamic description of RD behavior in the nucleus is, however, missing because visualization of dynamic subdiffraction-sized RDs remains challenging. Using fluorescence labeling of RDs combined with correlative live and super-resolution microscopy in situ, we determined biophysical parameters to characterize the internal organization, spacing, and mechanical coupling of RDs. We found that RDs are typically 150 nm in size and contain four co-replicating regions spaced 60 nm apart. Spatially neighboring RDs are spaced 300 nm apart and connected by highly flexible linker regions that couple their motion only <550 nm. Our pipeline allows a robust quantitative characterization of chromosome structure in situ and provides important biophysical parameters to understand general principles of chromatin organization. © 2018 Xiang et al.

  18. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    A postdoctoral position is available in the Viral Recombination Section (VRS), HIV Dynamics and Replication Program, CCR.  The VRS studies retroviral replication using human immunodeficiency viruses and other retroviruses, with a particular emphasis on the mechanisms of viral RNA biology, specific RNA packaging, virus assembly, and HIV replication.  Molecular tools and

  19. Dexamethasone treatment differentially alters viral shedding and the antibody and acute phase protein response after multivalent respiratory vaccination in beef steers

    USDA-ARS?s Scientific Manuscript database

    Our objective was to examine immunosuppression induced by dexamethasone (DEX) administration in cattle upon immunological responses to a multivalent respiratory vaccine containing replicating and non-replicating agents. Steers ( n = 32; 209 +/- 8 kg) seronegative to infectious bovine rhinotracheitis...

  20. A New Replicator: A theoretical framework for analysing replication

    PubMed Central

    2010-01-01

    Background Replicators are the crucial entities in evolution. The notion of a replicator, however, is far less exact than the weight of its importance. Without identifying and classifying multiplying entities exactly, their dynamics cannot be determined appropriately. Therefore, it is importance to decide the nature and characteristics of any multiplying entity, in a detailed and formal way. Results Replication is basically an autocatalytic process which enables us to rest on the notions of formal chemistry. This statement has major implications. Simple autocatalytic cycle intermediates are considered as non-informational replicators. A consequence of which is that any autocatalytically multiplying entity is a replicator, be it simple or overly complex (even nests). A stricter definition refers to entities which can inherit acquired changes (informational replicators). Simple autocatalytic molecules (and nests) are excluded from this group. However, in turn, any entity possessing copiable information is to be named a replicator, even multicellular organisms. In order to deal with the situation, an abstract, formal framework is presented, which allows the proper identification of various types of replicators. This sheds light on the old problem of the units and levels of selection and evolution. A hierarchical classification for the partition of the replicator-continuum is provided where specific replicators are nested within more general ones. The classification should be able to be successfully applied to known replicators and also to future candidates. Conclusion This paper redefines the concept of the replicator from a bottom-up theoretical approach. The formal definition and the abstract models presented can distinguish between among all possible replicator types, based on their quantity of variable and heritable information. This allows for the exact identification of various replicator types and their underlying dynamics. The most important claim is that replication, in general, is basically autocatalysis, with a specific defined environment and selective force. A replicator is not valid unless its working environment, and the selective force to which it is subject, is specified. PMID:20219099

  1. An efficient method to identify differentially expressed genes in microarray experiments

    PubMed Central

    Qin, Huaizhen; Feng, Tao; Harding, Scott A.; Tsai, Chung-Jui; Zhang, Shuanglin

    2013-01-01

    Motivation Microarray experiments typically analyze thousands to tens of thousands of genes from small numbers of biological replicates. The fact that genes are normally expressed in functionally relevant patterns suggests that gene-expression data can be stratified and clustered into relatively homogenous groups. Cluster-wise dimensionality reduction should make it feasible to improve screening power while minimizing information loss. Results We propose a powerful and computationally simple method for finding differentially expressed genes in small microarray experiments. The method incorporates a novel stratification-based tight clustering algorithm, principal component analysis and information pooling. Comprehensive simulations show that our method is substantially more powerful than the popular SAM and eBayes approaches. We applied the method to three real microarray datasets: one from a Populus nitrogen stress experiment with 3 biological replicates; and two from public microarray datasets of human cancers with 10 to 40 biological replicates. In all three analyses, our method proved more robust than the popular alternatives for identification of differentially expressed genes. Availability The C++ code to implement the proposed method is available upon request for academic use. PMID:18453554

  2. Prevention strategies differentially modulate the impact of cytomegalovirus replication on CD8(+) T-cell differentiation in high-risk solid organ transplant patients.

    PubMed

    Cantisán, Sara; Páez-Vega, Aurora; Pérez-Romero, Pilar; Montejo, Miguel; Cordero, Elisa; Gracia-Ahufinger, Irene; Martín-Gandul, Cecilia; Maruri, Naroa; Aguado, Rocío; Solana, Rafael; Torre-Cisneros, Julián

    2016-08-01

    The present study aimed to determine whether antiviral prevention strategies against cytomegalovirus (CMV) infection used in high-risk D+R- solid organ transplanted patients can modulate the impact of CMV replication on CD8(+) T-cell differentiation. The different CD8(+) T-cell subpopulations were measured at a single point when at least one year had elapsed since transplantation. A total of 68 D+R- patients were included, of which 33 underwent pre-emptive therapy and 35 received prophylaxis. Multivariate analysis showed that CMV replication was associated with the expansion of CD28־ EMRA CD8(+) T cells in patients managed pre-emptively but not in patients under prophylaxis (21.4% vs. 3.6%). This finding is likely related to the higher frequency of CMV recurrence observed in patients under pre-emptive therapy compared to those under prophylaxis (75% vs. 14.3%; p < 0.001). In fact, multivariate analysis showed that having more than one replication episode was associated with a 17.2% increase (p = 0.001) in the percentage of CD28־ EMRA CD8(+) T cells compared to "no episode" and with a 10.9% increase with respect to "single episodes" (p = 0.025). Additionally, patients with IFNγ response to CMV (QuantiFERON-CMV Reactive) had a higher percentage of late-differentiated CD8(+) T cells than patients lacking this response. In summary, recurrent CMV replication in D+R- patients under pre-emptive therapy was associated with the expansion of CD28־ EMRA CD8(+) T cells, which might have a short-term beneficial effect related to the high functionality of this T-cell subpopulation. Nevertheless, we cannot rule out that this accumulation might have a long-term detrimental effect related to immunosenescence and inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Blocking Virus Replication during Acute Murine Cytomegalovirus Infection Paradoxically Prolongs Antigen Presentation and Increases the CD8+ T Cell Response by Preventing Type I IFN-Dependent Depletion of Dendritic Cells.

    PubMed

    Loo, Christopher P; Snyder, Christopher M; Hill, Ann B

    2017-01-01

    Increasing amounts of pathogen replication usually lead to a proportionate increase in size and effector differentiation of the CD8 + T cell response, which is attributed to increased Ag and inflammation. Using a murine CMV that is highly sensitive to the antiviral drug famciclovir to modulate virus replication, we found that increased virus replication drove increased effector CD8 + T cell differentiation, as expected. Paradoxically, however, increased virus replication dramatically decreased the size of the CD8 + T cell response to two immunodominant epitopes. The decreased response was due to type I IFN-dependent depletion of conventional dendritic cells and could be reproduced by specific depletion of dendritic cells from day 2 postinfection or by sterile induction of type I IFN. Increased virus replication and type I IFN specifically inhibited the response to two immunodominant epitopes that are known to be dependent on Ag cross-presented by DCs, but they did not inhibit the response to "inflationary" epitopes whose responses can be sustained by infected nonhematopoietic cells. Our results show that type I IFN can suppress CD8 + T cell responses to cross-presented Ag by depleting cross-presenting conventional dendritic cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei

    PubMed Central

    Kabani, Sarah; Fenn, Katelyn; Ross, Alan; Ivens, Al; Smith, Terry K; Ghazal, Peter; Matthews, Keith

    2009-01-01

    Background Trypanosomes undergo extensive developmental changes during their complex life cycle. Crucial among these is the transition between slender and stumpy bloodstream forms and, thereafter, the differentiation from stumpy to tsetse-midgut procyclic forms. These developmental events are highly regulated, temporally reproducible and accompanied by expression changes mediated almost exclusively at the post-transcriptional level. Results In this study we have examined, by whole-genome microarray analysis, the mRNA abundance of genes in slender and stumpy forms of T.brucei AnTat1.1 cells, and also during their synchronous differentiation to procyclic forms. In total, five biological replicates representing the differentiation of matched parasite populations derived from five individual mouse infections were assayed, with RNAs being derived at key biological time points during the time course of their synchronous differentiation to procyclic forms. Importantly, the biological context of these mRNA profiles was established by assaying the coincident cellular events in each population (surface antigen exchange, morphological restructuring, cell cycle re-entry), thereby linking the observed gene expression changes to the well-established framework of trypanosome differentiation. Conclusion Using stringent statistical analysis and validation of the derived profiles against experimentally-predicted gene expression and phenotypic changes, we have established the profile of regulated gene expression during these important life-cycle transitions. The highly synchronous nature of differentiation between stumpy and procyclic forms also means that these studies of mRNA profiles are directly relevant to the changes in mRNA abundance within individual cells during this well-characterised developmental transition. PMID:19747379

  5. DNMT1 Maintains Progenitor Function in Self-Renewing Somatic Tissue

    PubMed Central

    Sen, George L.; Reuter, Jason A.; Webster, Daniel E.; Zhu, Lilly; Khavari, Paul A.

    2010-01-01

    Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation1,2. DNA methylation3,4,5 provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1)6,7 maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance,8 a clear role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unknown. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis revealed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, we show that UHRF1,9,10 a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A11,12 and B13, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue. PMID:20081831

  6. Best practices for mapping replication origins in eukaryotic chromosomes.

    PubMed

    Besnard, Emilie; Desprat, Romain; Ryan, Michael; Kahli, Malik; Aladjem, Mirit I; Lemaitre, Jean-Marc

    2014-09-02

    Understanding the regulatory principles ensuring complete DNA replication in each cell division is critical for deciphering the mechanisms that maintain genomic stability. Recent advances in genome sequencing technology facilitated complete mapping of DNA replication sites and helped move the field from observing replication patterns at a handful of single loci to analyzing replication patterns genome-wide. These advances address issues, such as the relationship between replication initiation events, transcription, and chromatin modifications, and identify potential replication origin consensus sequences. This unit summarizes the technological and fundamental aspects of replication profiling and briefly discusses novel insights emerging from mining large datasets, published in the last 3 years, and also describes DNA replication dynamics on a whole-genome scale. Copyright © 2014 John Wiley & Sons, Inc.

  7. Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures

    PubMed Central

    Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas

    2015-01-01

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture. These results demonstrate that different gestures used in ‘common’ prehistoric tasks can be distinguished quantitatively based on their dynamic parameters. Future research needs to assess our ability to reconstruct these parameters from observed use-wear patterns. PMID:26284785

  8. Environmental stress speeds up DNA replication in Pseudomonas putida in chemostat cultivations.

    PubMed

    Lieder, Sarah; Jahn, Michael; Koepff, Joachim; Müller, Susann; Takors, Ralf

    2016-01-01

    Cellular response to different types of stress is the hallmark of the cell's strategy for survival. How organisms adjust their cell cycle dynamics to compensate for changes in environmental conditions is an important unanswered question in bacterial physiology. A cell using binary fission for reproduction passes through three stages during its cell cycle: a stage from cell birth to initiation of replication, a DNA replication phase and a period of cell division. We present a detailed analysis of durations of cell cycle phases, investigating their dynamics under environmental stress conditions. Applying continuous steady state cultivations (chemostats), the DNA content of a Pseudomonas putida KT2440 population was quantified with flow cytometry at distinct growth rates. Data-driven modeling revealed that under stress conditions, such as oxygen deprivation, solvent exposure and decreased iron availability, DNA replication was accelerated correlated to the severity of the imposed stress (up to 1.9-fold). Cells maintained constant growth rates by balancing the shortened replication phase with extended cell cycle phases before and after replication. Transcriptome data underpin the transcriptional upregulation of crucial genes of the replication machinery. Hence adaption of DNA replication speed appears to be an important strategy to withstand environmental stress. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Replication Protein A Presents Canonical Functions and Is Also Involved in the Differentiation Capacity of Trypanosoma cruzi.

    PubMed

    Pavani, Raphael Souza; da Silva, Marcelo Santos; Fernandes, Carlos Alexandre Henrique; Morini, Flavia Souza; Araujo, Christiane Bezerra; Fontes, Marcos Roberto de Mattos; Sant'Anna, Osvaldo Augusto; Machado, Carlos Renato; Cano, Maria Isabel; Fragoso, Stenio Perdigão; Elias, Maria Carolina

    2016-12-01

    Replication Protein A (RPA), the major single stranded DNA binding protein in eukaryotes, is composed of three subunits and is a fundamental player in DNA metabolism, participating in replication, transcription, repair, and the DNA damage response. In human pathogenic trypanosomatids, only limited studies have been performed on RPA-1 from Leishmania. Here, we performed in silico, in vitro and in vivo analysis of Trypanosoma cruzi RPA-1 and RPA-2 subunits. Although computational analysis suggests similarities in DNA binding and Ob-fold structures of RPA from T. cruzi compared with mammalian and fungi RPA, the predicted tridimensional structures of T. cruzi RPA-1 and RPA-2 indicated that these molecules present a more flexible tertiary structure, suggesting that T. cruzi RPA could be involved in additional responses. Here, we demonstrate experimentally that the T. cruzi RPA complex interacts with DNA via RPA-1 and is directly related to canonical functions, such as DNA replication and DNA damage response. Accordingly, a reduction of TcRPA-2 expression by generating heterozygous knockout cells impaired cell growth, slowing down S-phase progression. Moreover, heterozygous knockout cells presented a better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms and metacyclic trypomastigote infection. Taken together, these findings indicate the involvement of TcRPA in the metacyclogenesis process and suggest that a delay in cell cycle progression could be linked with differentiation in T. cruzi.

  10. Verification of immune response optimality through cybernetic modeling.

    PubMed

    Batt, B C; Kompala, D S

    1990-02-09

    An immune response cascade that is T cell independent begins with the stimulation of virgin lymphocytes by antigen to differentiate into large lymphocytes. These immune cells can either replicate themselves or differentiate into plasma cells or memory cells. Plasma cells produce antibody at a specific rate up to two orders of magnitude greater than large lymphocytes. However, plasma cells have short life-spans and cannot replicate. Memory cells produce only surface antibody, but in the event of a subsequent infection by the same antigen, memory cells revert rapidly to large lymphocytes. Immunologic memory is maintained throughout the organism's lifetime. Many immunologists believe that the optimal response strategy calls for large lymphocytes to replicate first, then differentiate into plasma cells and when the antigen has been nearly eliminated, they form memory cells. A mathematical model incorporating the concept of cybernetics has been developed to study the optimality of the immune response. Derived from the matching law of microeconomics, cybernetic variables control the allocation of large lymphocytes to maximize the instantaneous antibody production rate at any time during the response in order to most efficiently inactivate the antigen. A mouse is selected as the model organism and bacteria as the replicating antigen. In addition to verifying the optimal switching strategy, results showing how the immune response is affected by antigen growth rate, initial antigen concentration, and the number of antibodies required to eliminate an antigen are included.

  11. DNA replication restart and cellular dynamics of Hef helicase/nuclease protein in Haloferax volcanii.

    PubMed

    Lestini, Roxane; Delpech, Floriane; Myllykallio, Hannu

    2015-11-01

    Understanding how frequently spontaneous replication arrests occur and how archaea deal with these arrests are very interesting and challenging research topics. Here we will described how genetic and imaging studies have revealed the central role of the archaeal helicase/nuclease Hef belonging to the XPF/MUS81/FANCM family of endonucleases in repair of arrested replication forks. Special focus will be on description of a recently developed combination of genetic and imaging tools to study the dynamic localization of a functional Hef::GFP (Green Fluorescent Protein) fusion protein in the living cells of halophilic archaea Haloferax volcanii. As Archaea provide an excellent and unique model for understanding how DNA replication is regulated to allow replication of a circular DNA molecule either from single or multiple replication origins, we will also summarize recent studies that have revealed peculiar features regarding DNA replication, particularly in halophilic archaea. We strongly believe that fundamental knowledge of our on-going studies will shed light on the evolutionary history of the DNA replication machinery and will help to establish general rules concerning replication restart and the key role of recombination proteins not only in bacteria, yeast and higher eukaryotes but also in archaea. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Replication dynamics of the yeast genome.

    PubMed

    Raghuraman, M K; Winzeler, E A; Collingwood, D; Hunt, S; Wodicka, L; Conway, A; Lockhart, D J; Davis, R W; Brewer, B J; Fangman, W L

    2001-10-05

    Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.

  13. Minireview: DNA Replication in Plant Mitochondria

    PubMed Central

    Cupp, John D.; Nielsen, Brent L.

    2014-01-01

    Higher plant mitochondrial genomes exhibit much greater structural complexity as compared to most other organisms. Unlike well-characterized metazoan mitochondrial DNA (mtDNA) replication, an understanding of the mechanism(s) and proteins involved in plant mtDNA replication remains unclear. Several plant mtDNA replication proteins, including DNA polymerases, DNA primase/helicase, and accessory proteins have been identified. Mitochondrial dynamics, genome structure, and the complexity of dual-targeted and dual-function proteins that provide at least partial redundancy suggest that plants have a unique model for maintaining and replicating mtDNA when compared to the replication mechanism utilized by most metazoan organisms. PMID:24681310

  14. Fanconi anemia FANCD2 and FANCI proteins regulate the nuclear dynamics of splicing factors.

    PubMed

    Moriel-Carretero, María; Ovejero, Sara; Gérus-Durand, Marie; Vryzas, Dimos; Constantinou, Angelos

    2017-12-04

    Proteins disabled in the cancer-prone disorder Fanconi anemia (FA) ensure the maintenance of chromosomal stability during DNA replication. FA proteins regulate replication dynamics, coordinate replication-coupled repair of interstrand DNA cross-links, and mitigate conflicts between replication and transcription. Here we show that FANCI and FANCD2 associate with splicing factor 3B1 (SF3B1), a key spliceosomal protein of the U2 small nuclear ribonucleoprotein (U2 snRNP). FANCI is in close proximity to SF3B1 in the nucleoplasm of interphase and mitotic cells. Furthermore, we find that DNA replication stress induces the release of SF3B1 from nuclear speckles in a manner that depends on FANCI and on the activity of the checkpoint kinase ATR. In chromatin, both FANCD2 and FANCI associate with SF3B1, prevent accumulation of postcatalytic intron lariats, and contribute to the timely eviction of splicing factors. We propose that FANCD2 and FANCI contribute to the organization of functional domains in chromatin, ensuring the coordination of DNA replication and cotranscriptional processes. © 2017 Moriel-Carretero et al.

  15. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression.

    PubMed

    Franz, André; Pirson, Paul A; Pilger, Domenic; Halder, Swagata; Achuthankutty, Divya; Kashkar, Hamid; Ramadan, Kristijan; Hoppe, Thorsten

    2016-02-04

    The coordinated activity of DNA replication factors is a highly dynamic process that involves ubiquitin-dependent regulation. In this context, the ubiquitin-directed ATPase CDC-48/p97 recently emerged as a key regulator of chromatin-associated degradation in several of the DNA metabolic pathways that assure genome integrity. However, the spatiotemporal control of distinct CDC-48/p97 substrates in the chromatin environment remained unclear. Here, we report that progression of the DNA replication fork is coordinated by UBXN-3/FAF1. UBXN-3/FAF1 binds to the licensing factor CDT-1 and additional ubiquitylated proteins, thus promoting CDC-48/p97-dependent turnover and disassembly of DNA replication factor complexes. Consequently, inactivation of UBXN-3/FAF1 stabilizes CDT-1 and CDC-45/GINS on chromatin, causing severe defects in replication fork dynamics accompanied by pronounced replication stress and eventually resulting in genome instability. Our work identifies a critical substrate selection module of CDC-48/p97 required for chromatin-associated protein degradation in both Caenorhabditis elegans and humans, which is relevant to oncogenesis and aging.

  16. Structural diversity and dynamics of genomic replication origins in Schizosaccharomyces pombe

    PubMed Central

    Cotobal, Cristina; Segurado, Mónica; Antequera, Francisco

    2010-01-01

    DNA replication origins (ORI) in Schizosaccharomyces pombe colocalize with adenine and thymine (A+T)-rich regions, and earlier analyses have established a size from 0.5 to over 3 kb for a DNA fragment to drive replication in plasmid assays. We have asked what are the requirements for ORI function in the chromosomal context. By designing artificial ORIs, we have found that A+T-rich fragments as short as 100 bp without homology to S. pombe DNA are able to initiate replication in the genome. On the other hand, functional dissection of endogenous ORIs has revealed that some of them span a few kilobases and include several modules that may be as short as 25–30 contiguous A+Ts capable of initiating replication from ectopic chromosome positions. The search for elements with these characteristics across the genome has uncovered an earlier unnoticed class of low-efficiency ORIs that fire late during S phase. These results indicate that ORI specification and dynamics varies widely in S. pombe, ranging from very short elements to large regions reminiscent of replication initiation zones in mammals. PMID:20094030

  17. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression

    PubMed Central

    Franz, André; Pirson, Paul A.; Pilger, Domenic; Halder, Swagata; Achuthankutty, Divya; Kashkar, Hamid; Ramadan, Kristijan; Hoppe, Thorsten

    2016-01-01

    The coordinated activity of DNA replication factors is a highly dynamic process that involves ubiquitin-dependent regulation. In this context, the ubiquitin-directed ATPase CDC-48/p97 recently emerged as a key regulator of chromatin-associated degradation in several of the DNA metabolic pathways that assure genome integrity. However, the spatiotemporal control of distinct CDC-48/p97 substrates in the chromatin environment remained unclear. Here, we report that progression of the DNA replication fork is coordinated by UBXN-3/FAF1. UBXN-3/FAF1 binds to the licensing factor CDT-1 and additional ubiquitylated proteins, thus promoting CDC-48/p97-dependent turnover and disassembly of DNA replication factor complexes. Consequently, inactivation of UBXN-3/FAF1 stabilizes CDT-1 and CDC-45/GINS on chromatin, causing severe defects in replication fork dynamics accompanied by pronounced replication stress and eventually resulting in genome instability. Our work identifies a critical substrate selection module of CDC-48/p97 required for chromatin-associated protein degradation in both Caenorhabditis elegans and humans, which is relevant to oncogenesis and aging. PMID:26842564

  18. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments

    PubMed Central

    2013-01-01

    Background High-throughput RNA sequencing (RNA-seq) offers unprecedented power to capture the real dynamics of gene expression. Experimental designs with extensive biological replication present a unique opportunity to exploit this feature and distinguish expression profiles with higher resolution. RNA-seq data analysis methods so far have been mostly applied to data sets with few replicates and their default settings try to provide the best performance under this constraint. These methods are based on two well-known count data distributions: the Poisson and the negative binomial. The way to properly calibrate them with large RNA-seq data sets is not trivial for the non-expert bioinformatics user. Results Here we show that expression profiles produced by extensively-replicated RNA-seq experiments lead to a rich diversity of count data distributions beyond the Poisson and the negative binomial, such as Poisson-Inverse Gaussian or Pólya-Aeppli, which can be captured by a more general family of count data distributions called the Poisson-Tweedie. The flexibility of the Poisson-Tweedie family enables a direct fitting of emerging features of large expression profiles, such as heavy-tails or zero-inflation, without the need to alter a single configuration parameter. We provide a software package for R called tweeDEseq implementing a new test for differential expression based on the Poisson-Tweedie family. Using simulations on synthetic and real RNA-seq data we show that tweeDEseq yields P-values that are equally or more accurate than competing methods under different configuration parameters. By surveying the tiny fraction of sex-specific gene expression changes in human lymphoblastoid cell lines, we also show that tweeDEseq accurately detects differentially expressed genes in a real large RNA-seq data set with improved performance and reproducibility over the previously compared methodologies. Finally, we compared the results with those obtained from microarrays in order to check for reproducibility. Conclusions RNA-seq data with many replicates leads to a handful of count data distributions which can be accurately estimated with the statistical model illustrated in this paper. This method provides a better fit to the underlying biological variability; this may be critical when comparing groups of RNA-seq samples with markedly different count data distributions. The tweeDEseq package forms part of the Bioconductor project and it is available for download at http://www.bioconductor.org. PMID:23965047

  19. A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands

    PubMed Central

    Prakash, Louise; Prakash, Satya

    2015-01-01

    SUMMARY Genetic studies with S. cerevisiae Polδ (pol3-L612M) and Polε (pol2-M644G) mutant alleles, each of which display a higher rate for the generation of a specific mismatch, have led to the conclusion that Polε is the primary leading strand replicase and that Polδ is restricted to replicating the lagging strand template. Contrary to this widely accepted view, here we show that Polδ plays a major role in the replication of both DNA strands, and that the paucity of pol3-L612M generated errors on the leading strand results from their more proficient removal. Thus, the apparent lack of Polδ contribution to leading strand replication is due to differential mismatch removal rather than differential mismatch generation. Altogether, our genetic studies with Pol3 and Pol2 mutator alleles support the conclusion that Polδ, and not Polε, is the major DNA polymerase for carrying out both leading and lagging DNA synthesis. PMID:26145172

  20. Differential regulation of hepatitis B virus core protein expression and genome replication by a small upstream open reading frame and naturally occurring mutations in the precore region.

    PubMed

    Zong, Li; Qin, Yanli; Jia, Haodi; Ye, Lei; Wang, Yongxiang; Zhang, Jiming; Wands, Jack R; Tong, Shuping; Li, Jisu

    2017-05-01

    Hepatitis B virus (HBV) transcribes two subsets of 3.5-kb RNAs: precore RNA for hepatitis B e antigen (HBeAg) expression, and pregenomic RNA for core and P protein translation as well as genome replication. HBeAg expression could be prevented by mutations in the precore region, while an upstream open reading frame (uORF) has been proposed as a negative regulator of core protein translation. We employed replication competent HBV DNA constructs and transient transfection experiments in Huh7 cells to verify the uORF effect and to explore the alternative function of precore RNA. Optimized Kozak sequence for the uORF or extra ATG codons as present in some HBV genotypes reduced core protein expression. G1896A nonsense mutation promoted more efficient core protein expression than mutated precore ATG, while a +1 frameshift mutation was ineffective. In conclusion, various HBeAg-negative precore mutations and mutations affecting uORF differentially regulate core protein expression and genome replication. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication.

    PubMed

    Haruta, Mayumi; Shimada, Midori; Nishiyama, Atsuya; Johmura, Yoshikazu; Le Tallec, Benoît; Debatisse, Michelle; Nakanishi, Makoto

    2016-01-22

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life.

    PubMed

    Vasas, Vera; Szathmáry, Eörs; Santos, Mauro

    2010-01-26

    A basic property of life is its capacity to experience Darwinian evolution. The replicator concept is at the core of genetics-first theories of the origin of life, which suggest that self-replicating oligonucleotides or their similar ancestors may have been the first "living" systems and may have led to the evolution of an RNA world. But problems with the nonenzymatic synthesis of biopolymers and the origin of template replication have spurred the alternative metabolism-first scenario, where self-reproducing and evolving proto-metabolic networks are assumed to have predated self-replicating genes. Recent theoretical work shows that "compositional genomes" (i.e., the counts of different molecular species in an assembly) are able to propagate compositional information and can provide a setup on which natural selection acts. Accordingly, if we stick to the notion of replicator as an entity that passes on its structure largely intact in successive replications, those macromolecular aggregates could be dubbed "ensemble replicators" (composomes) and quite different from the more familiar genes and memes. In sharp contrast with template-dependent replication dynamics, we demonstrate here that replication of compositional information is so inaccurate that fitter compositional genomes cannot be maintained by selection and, therefore, the system lacks evolvability (i.e., it cannot substantially depart from the asymptotic steady-state solution already built-in in the dynamical equations). We conclude that this fundamental limitation of ensemble replicators cautions against metabolism-first theories of the origin of life, although ancient metabolic systems could have provided a stable habitat within which polymer replicators later evolved.

  3. Spatial-pattern-induced evolution of a self-replicating loop network.

    PubMed

    Suzuki, Keisuke; Ikegami, Takashi

    2006-01-01

    We study a system of self-replicating loops in which interaction rules between individuals allow competition that leads to the formation of a hypercycle-like network. The main feature of the model is the multiple layers of interaction between loops, which lead to both global spatial patterns and local replication. The network of loops manifests itself as a spiral structure from which new kinds of self-replicating loops emerge at the boundaries between different species. In these regions, larger and more complex self-replicating loops live for longer periods of time, managing to self-replicate in spite of their slower replication. Of particular interest is how micro-scale interactions between replicators lead to macro-scale spatial pattern formation, and how these macro-scale patterns in turn perturb the micro-scale replication dynamics.

  4. Construction of green fluorescent protein-tagged recombinant iridovirus to assess viral replication.

    PubMed

    Huang, Youhua; Huang, Xiaohong; Cai, Jia; Ye, Fuzhou; Guan, Liya; Liu, Hong; Qin, Qiwei

    2011-09-01

    Green fluorescent protein-tagged recombinant virus has been successfully applied to observing the infective dynamics and evaluating viral replication. Here, we identified soft-shelled turtle iridovirus (STIV) ORF55 as an envelope protein (VP55), and developed a recombinant STIV expressing an enhanced green fluorescent protein (EGFP) fused to VP55 (EGFP-STIV). Recombinant EGFP-STIV shared similar single-step growth curves and ultrastructural morphology with wild type STIV (wt-STIV). The green fluorescence distribution during EGFP-STIV infection was consistent with the intracellular distribution of VP55 which was mostly co-localized with virus assembly sites. Furthermore, EGFP-STIV could be used to evaluate viral replication conveniently under drug treatment, and the result showed that STIV replication was significantly inhibited after the addition of antioxidant pyrrolidine dithiocarbamate (PDTC). Thus, the EGFP-tagged recombinant iridovirus will not only be useful for further investigations on the viral replicative dynamics, but also provide an alternative simple strategy to screen for antiviral substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Random catalytic reaction networks

    NASA Astrophysics Data System (ADS)

    Stadler, Peter F.; Fontana, Walter; Miller, John H.

    1993-03-01

    We study networks that are a generalization of replicator (or Lotka-Volterra) equations. They model the dynamics of a population of object types whose binary interactions determine the specific type of interaction product. Such a system always reduces its dimension to a subset that contains production pathways for all of its members. The network equation can be rewritten at a level of collectives in terms of two basic interaction patterns: replicator sets and cyclic transformation pathways among sets. Although the system contains well-known cases that exhibit very complicated dynamics, the generic behavior of randomly generated systems is found (numerically) to be extremely robust: convergence to a globally stable rest point. It is easy to tailor networks that display replicator interactions where the replicators are entire self-sustaining subsystems, rather than structureless units. A numerical scan of random systems highlights the special properties of elementary replicators: they reduce the effective interconnectedness of the system, resulting in enhanced competition, and strong correlations between the concentrations.

  6. Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics

    NASA Astrophysics Data System (ADS)

    Roca, Carlos P.; Cuesta, José A.; Sánchez, Angel

    2009-12-01

    Evolutionary game dynamics is one of the most fruitful frameworks for studying evolution in different disciplines, from Biology to Economics. Within this context, the approach of choice for many researchers is the so-called replicator equation, that describes mathematically the idea that those individuals performing better have more offspring and thus their frequency in the population grows. While very many interesting results have been obtained with this equation in the three decades elapsed since it was first proposed, it is important to realize the limits of its applicability. One particularly relevant issue in this respect is that of non-mean-field effects, that may arise from temporal fluctuations or from spatial correlations, both neglected in the replicator equation. This review discusses these temporal and spatial effects focusing on the non-trivial modifications they induce when compared to the outcome of replicator dynamics. Alongside this question, the hypothesis of linearity and its relation to the choice of the rule for strategy update is also analyzed. The discussion is presented in terms of the emergence of cooperation, as one of the current key problems in Biology and in other disciplines.

  7. 3D Spatially Resolved Models of the Intracellular Dynamics of the Hepatitis C Genome Replication Cycle

    PubMed Central

    Reiter, Sebastian; Grillo, Alfio; Herrmann, Eva; Wittum, Gabriel

    2017-01-01

    Mathematical models of virus dynamics have not previously acknowledged spatial resolution at the intracellular level despite substantial arguments that favor the consideration of intracellular spatial dependence. The replication of the hepatitis C virus (HCV) viral RNA (vRNA) occurs within special replication complexes formed from membranes derived from endoplasmatic reticulum (ER). These regions, termed membranous webs, are generated primarily through specific interactions between nonstructural virus-encoded proteins (NSPs) and host cellular factors. The NSPs are responsible for the replication of the vRNA and their movement is restricted to the ER surface. Therefore, in this study we developed fully spatio-temporal resolved models of the vRNA replication cycle of HCV. Our simulations are performed upon realistic reconstructed cell structures—namely the ER surface and the membranous webs—based on data derived from immunostained cells replicating HCV vRNA. We visualized 3D simulations that reproduced dynamics resulting from interplay of the different components of our models (vRNA, NSPs, and a host factor), and we present an evaluation of the concentrations for the components within different regions of the cell. Thus far, our model is restricted to an internal portion of a hepatocyte and is qualitative more than quantitative. For a quantitative adaption to complete cells, various additional parameters will have to be determined through further in vitro cell biology experiments, which can be stimulated by the results described in the present study. PMID:28973992

  8. Differential effects of lipid biosynthesis inhibitors on Zika and Semliki Forest viruses.

    PubMed

    Royle, Jamie; Donald, Claire L; Merits, Andres; Kohl, Alain; Varjak, Margus

    2017-12-01

    The recent outbreak of infection with Zika virus (ZIKV; Flaviviridae) has attracted attention to this previously neglected mosquito-borne pathogen and the need for efficient therapies. Since flavivirus replication is generally known to be dependent on fatty acid biosynthesis, two inhibitors of this pathway, 5-(tetradecyloxyl)-2-furoic acid (TOFA) and cerulenin, were tested for their potentiality to inhibit virus replication. At concentrations previously shown to inhibit the replication of other flaviviruses, neither drug had a significant antiviral affect against ZIKV, but reduced the replication of the non-related mosquito-borne Semliki Forest virus (Togaviridae). Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Bacteria as computers making computers

    PubMed Central

    Danchin, Antoine

    2009-01-01

    Various efforts to integrate biological knowledge into networks of interactions have produced a lively microbial systems biology. Putting molecular biology and computer sciences in perspective, we review another trend in systems biology, in which recursivity and information replace the usual concepts of differential equations, feedback and feedforward loops and the like. Noting that the processes of gene expression separate the genome from the cell machinery, we analyse the role of the separation between machine and program in computers. However, computers do not make computers. For cells to make cells requires a specific organization of the genetic program, which we investigate using available knowledge. Microbial genomes are organized into a paleome (the name emphasizes the role of the corresponding functions from the time of the origin of life), comprising a constructor and a replicator, and a cenome (emphasizing community-relevant genes), made up of genes that permit life in a particular context. The cell duplication process supposes rejuvenation of the machine and replication of the program. The paleome also possesses genes that enable information to accumulate in a ratchet-like process down the generations. The systems biology must include the dynamics of information creation in its future developments. PMID:19016882

  10. Bacteria as computers making computers.

    PubMed

    Danchin, Antoine

    2009-01-01

    Various efforts to integrate biological knowledge into networks of interactions have produced a lively microbial systems biology. Putting molecular biology and computer sciences in perspective, we review another trend in systems biology, in which recursivity and information replace the usual concepts of differential equations, feedback and feedforward loops and the like. Noting that the processes of gene expression separate the genome from the cell machinery, we analyse the role of the separation between machine and program in computers. However, computers do not make computers. For cells to make cells requires a specific organization of the genetic program, which we investigate using available knowledge. Microbial genomes are organized into a paleome (the name emphasizes the role of the corresponding functions from the time of the origin of life), comprising a constructor and a replicator, and a cenome (emphasizing community-relevant genes), made up of genes that permit life in a particular context. The cell duplication process supposes rejuvenation of the machine and replication of the program. The paleome also possesses genes that enable information to accumulate in a ratchet-like process down the generations. The systems biology must include the dynamics of information creation in its future developments.

  11. The Replicator Equation on Graphs

    PubMed Central

    Ohtsuki, Hisashi; Nowak, Martin A.

    2008-01-01

    We study evolutionary games on graphs. Each player is represented by a vertex of the graph. The edges denote who meets whom. A player can use any one of n strategies. Players obtain a payoff from interaction with all their immediate neighbors. We consider three different update rules, called ‘birth-death’, ‘death-birth’ and ‘imitation’. A fourth update rule, ‘pairwise comparison’, is shown to be equivalent to birth-death updating in our model. We use pair-approximation to describe the evolutionary game dynamics on regular graphs of degree k. In the limit of weak selection, we can derive a differential equation which describes how the average frequency of each strategy on the graph changes over time. Remarkably, this equation is a replicator equation with a transformed payoff matrix. Therefore, moving a game from a well-mixed population (the complete graph) onto a regular graph simply results in a transformation of the payoff matrix. The new payoff matrix is the sum of the original payoff matrix plus another matrix, which describes the local competition of strategies. We discuss the application of our theory to four particular examples, the Prisoner’s Dilemma, the Snow-Drift game, a coordination game and the Rock-Scissors-Paper game. PMID:16860343

  12. Coparenting Around Siblings’ Differential Treatment in Mexican-Origin Families

    PubMed Central

    Solmeyer, Anna R.; Killoren, Sarah E.; McHale, Susan M.; Updegraff, Kimberly A.

    2011-01-01

    This study examined patterns of mothers’ and fathers’ differential affection and discipline toward two adolescent offspring in 243 Mexican-origin families. Grounding our work in a family systems perspective, we used interparental patterns of differential treatment as an index of the coparental alliance and tested their associations with parents’ reports of familism values, traditional gender role attitudes, and cultural orientations. We also sought to replicate prior research on European American samples linking interparental patterns of differential treatment to marital qualities (coparenting satisfaction, love, and conflict) and adolescent depressive symptoms and risky behaviors. Three interparental patterns emerged: families in which both mothers and fathers treated their two offspring equally, incongruent families in which one parent treated both offspring equally while the other parent favored one offspring, and congruent families in which both parents favored the same offspring. Most parents reported equal treatment, but others fell into the incongruent affection (30%), incongruent discipline (45%), and congruent discipline (16%) groups. Mixed model ANOVAs revealed that in families in which mothers and fathers both treated their offspring equally, parents reported higher familism values, more traditional gender role attitudes, and relatively stronger orientations to Mexican than Anglo culture. Consistent with previous research, interparental incongruence was associated with less positive marital qualities and more adolescent adjustment problems. Discussion focuses on the role of culture in shaping coparenting and the processes through which these coparenting dynamics are linked to marital and youth adjustment. PMID:21480704

  13. MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication.

    PubMed

    Evans, Debra L; Zhang, Haoxing; Ham, Hyoungjun; Pei, Huadong; Lee, SeungBaek; Kim, JungJin; Billadeau, Daniel D; Lou, Zhenkun

    2016-01-01

    The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.

  14. Noise-induced bistability in the quasi-neutral coexistence of viral RNAs under different replication modes.

    PubMed

    Sardanyés, Josep; Arderiu, Andreu; Elena, Santiago F; Alarcón, Tomás

    2018-05-01

    Evolutionary and dynamical investigations into real viral populations indicate that RNA replication can range between the two extremes represented by so-called 'stamping machine replication' (SMR) and 'geometric replication' (GR). The impact of asymmetries in replication for single-stranded (+) sense RNA viruses has been mainly studied with deterministic models. However, viral replication should be better described by including stochasticity, as the cell infection process is typically initiated with a very small number of RNA macromolecules, and thus largely influenced by intrinsic noise. Under appropriate conditions, deterministic theoretical descriptions of viral RNA replication predict a quasi-neutral coexistence scenario, with a line of fixed points involving different strands' equilibrium ratios depending on the initial conditions. Recent research into the quasi-neutral coexistence in two competing populations reveals that stochastic fluctuations fundamentally alter the mean-field scenario, and one of the two species outcompetes the other. In this article, we study this phenomenon for viral RNA replication modes by means of stochastic simulations and a diffusion approximation. Our results reveal that noise has a strong impact on the amplification of viral RNAs, also causing the emergence of noise-induced bistability. We provide analytical criteria for the dominance of (+) sense strands depending on the initial populations on the line of equilibria, which are in agreement with direct stochastic simulation results. The biological implications of this noise-driven mechanism are discussed within the framework of the evolutionary dynamics of RNA viruses with different modes of replication. © 2018 The Author(s).

  15. The origin of replicators and reproducers

    PubMed Central

    Szathmáry, Eörs

    2006-01-01

    Replicators are fundamental to the origin of life and evolvability. Their survival depends on the accuracy of replication and the efficiency of growth relative to spontaneous decay. Infrabiological systems are built of two coupled autocatalytic systems, in contrast to minimal living systems that must comprise at least a metabolic subsystem, a hereditary subsystem and a boundary, serving respective functions. Some scenarios prefer to unite all these functions into one primordial system, as illustrated in the lipid world scenario, which is considered as a didactic example in detail. Experimentally produced chemical replicators grow parabolically owing to product inhibition. A selection consequence is survival of everybody. The chromatographized replicator model predicts that such replicators spreading on surfaces can be selected for higher replication rate because double strands are washed away slower than single strands from the surface. Analysis of real ribozymes suggests that the error threshold of replication is less severe by about one order of magnitude than thought previously. Surface-bound dynamics is predicted to play a crucial role also for exponential replicators: unlinked genes belonging to the same genome do not displace each other by competition, and efficient and accurate replicases can spread. The most efficient form of such useful population structure is encapsulation by reproducing vesicles. The stochastic corrector model shows how such a bag of genes can survive, and what the role of chromosome formation and intragenic recombination could be. Prebiotic and early evolution cannot be understood without the models of dynamics. PMID:17008217

  16. About the discrete-continuous nature of a hematopoiesis model for Chronic Myeloid Leukemia.

    PubMed

    Gaudiano, Marcos E; Lenaerts, Tom; Pacheco, Jorge M

    2016-12-01

    Blood of mammals is composed of a variety of cells suspended in a fluid medium known as plasma. Hematopoiesis is the biological process of birth, replication and differentiation of blood cells. Despite of being essentially a stochastic phenomenon followed by a huge number of discrete entities, blood formation has naturally an associated continuous dynamics, because the cellular populations can - on average - easily be described by (e.g.) differential equations. This deterministic dynamics by no means contemplates some important stochastic aspects related to abnormal hematopoiesis, that are especially significant for studying certain blood cancer deceases. For instance, by mere stochastic competition against the normal cells, leukemic cells sometimes do not reach the population thereshold needed to kill the organism. Of course, a pure discrete model able to follow the stochastic paths of billons of cells is computationally impossible. In order to avoid this difficulty, we seek a trade-off between the computationally feasible and the biologically realistic, deriving an equation able to size conveniently both the discrete and continuous parts of a model for hematopoiesis in terrestrial mammals, in the context of Chronic Myeloid Leukemia. Assuming the cancer is originated from a single stem cell inside of the bone marrow, we also deduce a theoretical formula for the probability of non-diagnosis as a function of the mammal average adult mass. In addition, this work cellular dynamics analysis may shed light on understanding Peto's paradox, which is shown here as an emergent property of the discrete-continuous nature of the system. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Insight into the time-resolved extraction of aroma compounds during espresso coffee preparation: online monitoring by PTR-ToF-MS.

    PubMed

    Sánchez-López, José A; Zimmermann, Ralf; Yeretzian, Chahan

    2014-12-02

    Using proton-transfer-reaction time-of-flight mass-spectrometry (PTR-ToF-MS), we investigated the extraction dynamic of 95 ion traces in real time (time resolution = 1 s) during espresso coffee preparation. Fifty-two of these ions were tentatively identified. This was achieved by online sampling of the volatile organic compounds (VOCs) in close vicinity to the coffee flow, at the exit of the extraction hose of the espresso machine (single serve capsules). Ten replicates of six different single serve coffee types were extracted to a final weight between 20-120 g, according to the recommended cup size of the respective coffee capsule (Ristretto, Espresso, and Lungo), and analyzed. The results revealed considerable differences in the extraction kinetics between compounds, which led to a fast evolution of the volatile profiles in the extract flow and consequently to an evolution of the final aroma balance in the cup. Besides exploring the time-resolved extraction dynamics of VOCs, the dynamic data also allowed the coffees types (capsules) to be distinguished from one another. Both hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed full separation between the coffees types. The methodology developed provides a fast and simple means of studying the extraction dynamics of VOCs and differentiating between different coffee types.

  18. On the preservation of cooperation in two-strategy games with nonlocal interactions.

    PubMed

    Aydogmus, Ozgur; Zhou, Wen; Kang, Yun

    2017-03-01

    Nonlocal interactions such as spatial interaction are ubiquitous in nature and may alter the equilibrium in evolutionary dynamics. Models including nonlocal spatial interactions can provide a further understanding on the preservation and emergence of cooperation in evolutionary dynamics. In this paper, we consider a variety of two-strategy evolutionary spatial games with nonlocal interactions based on an integro-differential replicator equation. By defining the invasion speed and minimal traveling wave speed for the derived model, we study the effects of the payoffs, the selection pressure and the spatial parameter on the preservation of cooperation. One of our most interesting findings is that, for the Prisoners Dilemma games in which the defection is the only evolutionary stable strategy for unstructured populations, analyses on its asymptotic speed of propagation suggest that, in contrast with spatially homogeneous games, the cooperators can invade the habitat under proper conditions. Other two-strategy evolutionary spatial games are also explored. Both our theoretical and numerical studies show that the nonlocal spatial interaction favors diversity in strategies in a population and is able to preserve cooperation in a competing environment. A real data application in a virus mutation study echoes our theoretical observations. In addition, we compare the results of our model to the partial differential equation approach to demonstrate the importance of including non-local interaction component in evolutionary game models. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Cancer-associated variant expression and interaction of CIZ1 with cyclin A1 in differentiating male germ cells.

    PubMed

    Greaves, Erin A; Copeland, Nikki A; Coverley, Dawn; Ainscough, Justin F X

    2012-05-15

    CIZ1 is a nuclear-matrix-associated DNA replication factor unique to higher eukaryotes, for which alternatively spliced isoforms have been associated with a range of disorders. In vitro, the CIZ1 N-terminus interacts with cyclin E and cyclin A at distinct sites, enabling functional cooperation with cyclin-A-Cdk2 to promote replication initiation. C-terminal sequences anchor CIZ1 to fixed sites on the nuclear matrix, imposing spatial constraint on cyclin-dependent kinase activity. Here we demonstrate that CIZ1 is predominantly expressed as a predicted full-length product throughout mouse development, consistent with a ubiquitous role in cell and tissue renewal. CIZ1 is expressed in proliferating stem cells of the testis, but is notably downregulated following commitment to differentiation. Significantly, CIZ1 is re-expressed at high levels in non-proliferative spermatocytes before meiotic division. Sequence analysis identifies at least seven alternatively spliced variants, including a dominant cancer-associated form and a set of novel isoforms. Furthermore, we show that in these post-replicative cells, CIZ1 interacts with germ-cell-specific cyclin A1, which has been implicated in the repair of DNA double-strand breaks. Consistent with this role, antibody depletion of CIZ1 reduces the capacity for testis extract to repair digested plasmid DNA in vitro. Together, the data imply post-replicative roles for CIZ1 in germ cell differentiation that might include meiotic recombination - a process intrinsic to genome stability and diversification.

  20. Replication Protein A Presents Canonical Functions and Is Also Involved in the Differentiation Capacity of Trypanosoma cruzi

    PubMed Central

    Pavani, Raphael Souza; da Silva, Marcelo Santos; Fernandes, Carlos Alexandre Henrique; Morini, Flavia Souza; Araujo, Christiane Bezerra; Fontes, Marcos Roberto de Mattos; Sant’Anna, Osvaldo Augusto; Machado, Carlos Renato; Cano, Maria Isabel; Fragoso, Stenio Perdigão; Elias, Maria Carolina

    2016-01-01

    Replication Protein A (RPA), the major single stranded DNA binding protein in eukaryotes, is composed of three subunits and is a fundamental player in DNA metabolism, participating in replication, transcription, repair, and the DNA damage response. In human pathogenic trypanosomatids, only limited studies have been performed on RPA-1 from Leishmania. Here, we performed in silico, in vitro and in vivo analysis of Trypanosoma cruzi RPA-1 and RPA-2 subunits. Although computational analysis suggests similarities in DNA binding and Ob-fold structures of RPA from T. cruzi compared with mammalian and fungi RPA, the predicted tridimensional structures of T. cruzi RPA-1 and RPA-2 indicated that these molecules present a more flexible tertiary structure, suggesting that T. cruzi RPA could be involved in additional responses. Here, we demonstrate experimentally that the T. cruzi RPA complex interacts with DNA via RPA-1 and is directly related to canonical functions, such as DNA replication and DNA damage response. Accordingly, a reduction of TcRPA-2 expression by generating heterozygous knockout cells impaired cell growth, slowing down S-phase progression. Moreover, heterozygous knockout cells presented a better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms and metacyclic trypomastigote infection. Taken together, these findings indicate the involvement of TcRPA in the metacyclogenesis process and suggest that a delay in cell cycle progression could be linked with differentiation in T. cruzi. PMID:27984589

  1. Dynamics of virus shedding and in situ confirmation of chelonid herpesvirus 5 in Hawaiian green turtles with Fibropapillomatosis

    USGS Publications Warehouse

    Work, Thierry M.; Dagenais, Julie; Balazs, George H.; Schettle, Nelli; Ackermann, Mathias

    2015-01-01

    Cancers in humans and animals can be caused by viruses, but virus-induced tumors are considered to be poor sites for replication of intact virions (lytic replication). Fibropapillomatosis (FP) is a neoplastic disease associated with a herpesvirus, chelonid herpesvirus 5 (ChHV5), that affects green turtles globally. ChHV5 probably replicates in epidermal cells of tumors, because epidermal intranuclear inclusions (EIIs) contain herpesvirus-like particles. However, although EIIs are a sign of herpesvirus replication, they have not yet been firmly linked to ChHV5. Moreover, the dynamics of viral shedding in turtles are unknown, and there are no serological reagents to confirm actual presence of the specific ChHV5 virus in tissues. The investigators analyzed 381 FP tumors for the presence of EIIs and found that overall, about 35% of green turtles had lytic replication in skin tumors with 7% of tumors showing lytic replication. A few (11%) turtles accounted for more than 30% cases having lytic viral replication, and lytic replication was more likely in smaller tumors. To confirm that turtles were actively replicating ChHV5, a prerequisite for shedding, the investigators used antiserum raised against F-VP26, a predicted capsid protein of ChHV5 that localizes to the host cell nucleus during viral replication. This antiserum revealed F-VP26 in EIIs of tumors, thus confirming the presence of replicating ChHV5. In this light, it is proposed that unlike other virus-induced neoplastic diseases, FP is a disease that may depend on superspreaders, a few highly infectious individuals growing numerous small tumors permissive to viral production, for transmission of ChHV5.

  2. Dynamics of Virus Shedding and In Situ Confirmation of Chelonid Herpesvirus 5 in Hawaiian Green Turtles With Fibropapillomatosis.

    PubMed

    Work, T M; Dagenais, J; Balazs, G H; Schettle, N; Ackermann, M

    2015-11-01

    Cancers in humans and animals can be caused by viruses, but virus-induced tumors are considered to be poor sites for replication of intact virions (lytic replication). Fibropapillomatosis (FP) is a neoplastic disease associated with a herpesvirus, chelonid herpesvirus 5 (ChHV5), that affects green turtles globally. ChHV5 probably replicates in epidermal cells of tumors, because epidermal intranuclear inclusions (EIIs) contain herpesvirus-like particles. However, although EIIs are a sign of herpesvirus replication, they have not yet been firmly linked to ChHV5. Moreover, the dynamics of viral shedding in turtles are unknown, and there are no serological reagents to confirm actual presence of the specific ChHV5 virus in tissues. The investigators analyzed 381 FP tumors for the presence of EIIs and found that overall, about 35% of green turtles had lytic replication in skin tumors with 7% of tumors showing lytic replication. A few (11%) turtles accounted for more than 30% cases having lytic viral replication, and lytic replication was more likely in smaller tumors. To confirm that turtles were actively replicating ChHV5, a prerequisite for shedding, the investigators used antiserum raised against F-VP26, a predicted capsid protein of ChHV5 that localizes to the host cell nucleus during viral replication. This antiserum revealed F-VP26 in EIIs of tumors, thus confirming the presence of replicating ChHV5. In this light, it is proposed that unlike other virus-induced neoplastic diseases, FP is a disease that may depend on superspreaders, a few highly infectious individuals growing numerous small tumors permissive to viral production, for transmission of ChHV5. © The Author(s) 2014.

  3. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression.

    PubMed

    Löb, D; Lengert, N; Chagin, V O; Reinhart, M; Casas-Delucchi, C S; Cardoso, M C; Drossel, B

    2016-04-07

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.

  4. How can we model selectively neutral density dependence in evolutionary games.

    PubMed

    Argasinski, Krzysztof; Kozłowski, Jan

    2008-03-01

    The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals.

  5. Heterogeneous fates and dynamic rearrangement of regenerative epidermis-derived cells during zebrafish fin regeneration.

    PubMed

    Shibata, Eri; Ando, Kazunori; Murase, Emiko; Kawakami, Atsushi

    2018-04-13

    The regenerative epidermis (RE) is a specialized tissue that plays an essential role in tissue regeneration. However, the fate of the RE during and after regeneration is unknown. In this study, we performed Cre- loxP -mediated cell fate tracking and revealed the fates of a major population of the RE cells that express fibronectin 1b ( fn1b ) during zebrafish fin regeneration. Our study showed that these RE cells are mainly recruited from the inter-ray epidermis, and that they follow heterogeneous cell fates. Early recruited cells contribute to initial wound healing and soon disappear by apoptosis, while the later recruited cells contribute to the regenerated epidermis. Intriguingly, many of these cells are also expelled from the regenerated tissue by a dynamic caudal movement of the epidermis over time, and in turn the loss of epidermal cells is replenished by a global self-replication of basal and suprabasal cells in fin. De-differentiation of non-basal epidermal cells into the basal epidermal cells did not occur during regeneration. Overall, our study reveals the heterogeneous fates of RE cells and a dynamic rearrangement of the epidermis during and after regeneration. © 2018. Published by The Company of Biologists Ltd.

  6. Sequence selection by dynamical symmetry breaking in an autocatalytic binary polymer model

    NASA Astrophysics Data System (ADS)

    Fellermann, Harold; Tanaka, Shinpei; Rasmussen, Steen

    2017-12-01

    Template-directed replication of nucleic acids is at the essence of all living beings and a major milestone for any origin of life scenario. We present an idealized model of prebiotic sequence replication, where binary polymers act as templates for their autocatalytic replication, thereby serving as each others reactants and products in an intertwined molecular ecology. Our model demonstrates how autocatalysis alters the qualitative and quantitative system dynamics in counterintuitive ways. Most notably, numerical simulations reveal a very strong intrinsic selection mechanism that favors the appearance of a few population structures with highly ordered and repetitive sequence patterns when starting from a pool of monomers. We demonstrate both analytically and through simulation how this "selection of the dullest" is caused by continued symmetry breaking through random fluctuations in the transient dynamics that are amplified by autocatalysis and eventually propagate to the population level. The impact of these observations on related prebiotic mathematical models is discussed.

  7. Rabies viruses leader RNA interacts with host Hsc70 and inhibits virus replication

    PubMed Central

    Zhang, Ran; Liu, Chuangang; Cao, Yunzi; Jamal, Muhammad; Chen, Xi; Zheng, Jinfang; Li, Liang; You, Jing; Zhu, Qi; Liu, Shiyong; Dai, Jinxia; Cui, Min; Fu, Zhen F.; Cao, Gang

    2017-01-01

    Viruses have been shown to be equipped with regulatory RNAs to evade host defense system. It has long been known that rabies virus (RABV) transcribes a small regulatory RNA, leader RNA (leRNA), which mediates the transition from viral RNA transcription to replication. However, the detailed molecular mechanism remains enigmatic. In the present study, we determined the genetic architecture of RABV leRNA and demonstrated its inhibitory effect on replication of wild-type rabies, DRV-AH08. The RNA immunoprecipitation results suggest that leRNA inhibits RABV replication via interfering the binding of RABV nucleoprotein with genomic RNA. Furthermore, we identified heat shock cognate 70 kDa protein (Hsc70) as a leRNA host cellular interacting protein, of which the expression level was dynamically regulated by RABV infection. Notably, our data suggest that Hsc70 was involved in suppressing RABV replication by leader RNA. Finally, our experiments imply that leRNA might be potentially useful as a novel drug in rabies post-exposure prophylaxis. Together, this study suggested leRNA in concert with its host interacting protein Hsc70, dynamically down-regulate RABV replication. PMID:28388579

  8. Stochastic gain in finite populations

    NASA Astrophysics Data System (ADS)

    Röhl, Torsten; Traulsen, Arne; Claussen, Jens Christian; Schuster, Heinz Georg

    2008-08-01

    Flexible learning rates can lead to increased payoffs under the influence of noise. In a previous paper [Traulsen , Phys. Rev. Lett. 93, 028701 (2004)], we have demonstrated this effect based on a replicator dynamics model which is subject to external noise. Here, we utilize recent advances on finite population dynamics and their connection to the replicator equation to extend our findings and demonstrate the stochastic gain effect in finite population systems. Finite population dynamics is inherently stochastic, depending on the population size and the intensity of selection, which measures the balance between the deterministic and the stochastic parts of the dynamics. This internal noise can be exploited by a population using an appropriate microscopic update process, even if learning rates are constant.

  9. Instantaneous and scale-versatile gourdron theory: pair momentum equation, quasi-stability concept, and statistical indeterminacy revealing masses of elementary, bio-molecular, and cosmic particles

    NASA Astrophysics Data System (ADS)

    Naitoh, Ken

    2014-04-01

    Flexible particles, including hadrons, atoms, hydrated biological molecules, cells, organs containing water, liquid fuel droplets in engines, and stars commonly break up after becoming a gourd shape rather than that of a string; this leads to cyto-fluid dynamics that can explain the proliferation, differentiation, and replication of biomolecules, onto-biology that clarifies the relationship between information, structure, and function, and the gourd theory that clarifies masses, including quark-leptons and Plank energy. The masses are related to the super-magic numbers, including the asymmetric silver ratio and symmetric yamato ratio, and reveal further mechanisms underlying symmetry breaking. This paper gives further theoretical basis and evidence, because the gourd theory reported previously is a little analogical and instinctive.

  10. Chromosome dynamics in the yeast interphase nucleus.

    PubMed

    Heun, P; Laroche, T; Shimada, K; Furrer, P; Gasser, S M

    2001-12-07

    Little is known about the dynamics of chromosomes in interphase nuclei. By tagging four chromosomal regions with a green fluorescent protein fusion to lac repressor, we monitored the movement and subnuclear position of specific sites in the yeast genome, sampling at short time intervals. We found that early and late origins of replication are highly mobile in G1 phase, frequently moving at or faster than 0.5 micrometers/10 seconds, in an energy-dependent fashion. The rapid diffusive movement of chromatin detected in G1 becomes constrained in S phase through a mechanism dependent on active DNA replication. In contrast, telomeres and centromeres provide replication-independent constraint on chromatin movement in both G1 and S phases.

  11. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    A postdoctoral position is available in the Viral Recombination Section (VRS), HIV Dynamics and Replication Program, CCR.  The VRS studies retroviral replication using human immunodeficiency viruses and other retroviruses, with a particular emphasis on the mechanisms of viral RNA biology, specific RNA packaging, virus assembly, and HIV replication.  Molecular tools and advanced imaging approaches are used to dissect various aspects of viral replication mechanisms.  A more complete description of the projects can be found at http://home.ncifcrf.gov/hivdrp/Hu_res.html.

  12. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication

    DTIC Science & Technology

    2007-04-01

    Conway, A., Lockhart, D. J., Davis, R. W., Brewer , B. J., and Fangman, W. L. (2001). Replication dynamics of the yeast genome. Science 294, 115–121... Brewer , B. J. (2001). An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint. Mol. Cell 7, 705–713. Vas, A., Mok, W., and...replication in yeast cells. We have demonstrated that re-replication induces a rapid and significant decrease in cell viability and a cellular DNA damage

  13. Analyzing the dynamics of DNA replication in Mammalian cells using DNA combing.

    PubMed

    Bialic, Marta; Coulon, Vincent; Drac, Marjorie; Gostan, Thierry; Schwob, Etienne

    2015-01-01

    How cells duplicate their chromosomes is a key determinant of cell identity and genome stability. DNA replication can initiate from more than 100,000 sites distributed along mammalian chromosomes, yet a given cell uses only a subset of these origins due to inefficient origin activation and regulation by developmental or environmental cues. An impractical consequence of cell-to-cell variations in origin firing is that population-based techniques do not accurately describe how chromosomes are replicated in single cells. DNA combing is a biophysical DNA fiber stretching method which permits visualization of ongoing DNA synthesis along Mb-sized single-DNA molecules purified from cells that were previously pulse-labeled with thymidine analogues. This allows quantitative measurements of several salient features of chromosome replication dynamics, such as fork velocity, fork asymmetry, inter-origin distances, and global instant fork density. In this chapter we describe how to obtain this information from asynchronous cultures of mammalian cells.

  14. USP7 is a SUMO deubiquitinase essential for DNA replication.

    PubMed

    Lecona, Emilio; Rodriguez-Acebes, Sara; Specks, Julia; Lopez-Contreras, Andres J; Ruppen, Isabel; Murga, Matilde; Muñoz, Javier; Mendez, Juan; Fernandez-Capetillo, Oscar

    2016-04-01

    Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates DNA replication. We have previously shown that chromatin around replisomes is rich in SUMO and poor in Ub, whereas mature chromatin exhibits an opposite pattern. How this SUMO-rich, Ub-poor environment is maintained at sites of DNA replication in mammalian cells remains unexplored. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Inhibition or genetic deletion of USP7 leads to the accumulation of Ub on SUMOylated proteins, which are displaced away from replisomes. Our findings provide a model explaining the differential accumulation of SUMO and Ub at replication forks and identify an essential role of USP7 in DNA replication that should be considered in the development of USP7 inhibitors as anticancer agents.

  15. Internally Controlled, Multiplex Real-Time Reverse Transcription PCR for Dengue Virus and Yellow Fever Virus Detection.

    PubMed

    Rojas, Alejandra; Diagne, Cheikh T; Stittleburg, Victoria D; Mohamed-Hadley, Alisha; de Guillén, Yvalena Arévalo; Balmaseda, Angel; Faye, Oumar; Faye, Ousmane; Sall, Amadou A; Harris, Eva; Pinsky, Benjamin A; Waggoner, Jesse J

    2018-04-02

    The differential diagnosis of dengue virus (DENV) and yellow fever virus (YFV) infections in endemic areas is complicated by nonspecific early clinical manifestations. In this study, we describe an internally controlled, multiplex real-time reverse transcription PCR (rRT-PCR) for the detection of DENV and YFV. The DENV-YFV assay demonstrated specific detection and had a dynamic range of 2.0-8.0 log 10 copies/μL of eluate for each DENV serotype and YFV. Clinical performance was similar to a published pan-DENV assay: 48/48 acute-phase samples from dengue cases were detected in both assays. For YFV detection, mock samples were prepared with nine geographically diverse YFV isolates over a range of concentrations. The DENV-YFV assay detected 62/65 replicates, whereas 54/65 were detected using a reference YFV rRT-PCR. Given the reemergence of DENV and YFV in areas around the world, the DENV-YFV assay should be a useful tool to narrow the differential diagnosis and provide early case detection.

  16. Single-cell telomere-length quantification couples telomere length to meristem activity and stem cell development in Arabidopsis.

    PubMed

    González-García, Mary-Paz; Pavelescu, Irina; Canela, Andrés; Sevillano, Xavier; Leehy, Katherine A; Nelson, Andrew D L; Ibañes, Marta; Shippen, Dorothy E; Blasco, Maria A; Caño-Delgado, Ana I

    2015-05-12

    Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor).

    PubMed Central

    Ishiai, M; Wada, C; Kawasaki, Y; Yura, T

    1994-01-01

    Replication of mini-F plasmid requires the plasmid-encoded RepE initiator protein and several host factors including DnaJ, DnaK, and GrpE, heat shock proteins of Escherichia coli. The RepE protein plays a crucial role in replication and exhibits two major functions: initiation of replication from the origin, ori2, and autogenous repression of repE transcription. One of the mini-F plasmid mutants that can replicate in the dnaJ-defective host produces an altered RepE (RepE54) with a markedly enhanced initiator activity but little or no repressor activity. RepE54 has been purified from cell extracts primarily in monomeric form, unlike the wild-type RepE that is recovered in dimeric form. Gel-retardation assays revealed that RepE54 monomers bind to ori2 (direct repeats) with a very high efficiency but hardly bind to the repE operator (inverted repeat), in accordance with the properties of RepE54 in vivo. Furthermore, the treatment of wild-type RepE dimers with protein denaturants enhanced their binding to ori2 but reduced binding to the operator: RepE dimers were partially converted to monomers, and the ori2 binding activity was uniquely associated with monomers. These results strongly suggest that RepE monomers represent an active form by binding to ori2 to initiate replication, whereas dimers act as an autogenous repressor by binding to the operator. We propose that RepE is structurally and functionally differentiated and that monomerization of RepE dimers, presumably mediated by heat shock protein(s), activates the initiator function and participates in regulation of mini-F DNA replication. Images PMID:8170998

  18. Replication of Murine Cytomegalovirus in Differentiated Macrophages as a Determinant of Viral Pathogenesis

    PubMed Central

    Hanson, Laura K.; Slater, Jacquelyn S.; Karabekian, Zaruhi; Virgin, Herbert W.; Biron, Christine A.; Ruzek, Melanie C.; van Rooijen, Nico; Ciavarra, Richard P.; Stenberg, Richard M.; Campbell, Ann E.

    1999-01-01

    Blood monocytes or tissue macrophages play a pivotal role in the pathogenesis of murine cytomegalovirus (MCMV) infection, providing functions beneficial to both the virus and the host. In vitro and in vivo studies have indicated that differentiated macrophages support MCMV replication, are target cells for MCMV infection within tissues, and harbor latent MCMV DNA. However, this cell type presumably initiates early, antiviral immune responses as well. In addressing this paradoxical role of macrophages, we provide evidence that the proficiency of MCMV replication in macrophages positively correlates with virulence in vivo. An MCMV mutant from which the open reading frames M139, M140, and M141 had been deleted (RV10) was defective in its ability to replicate in macrophages in vitro and was highly attenuated for growth in vivo. However, depletion of splenic macrophages significantly enhanced, rather than deterred, replication of both wild-type (WT) virus and RV10 in the spleen. The ability of RV10 to replicate in intact or macrophage-depleted spleens was independent of cytokine production, as this mutant virus was a poor inducer of cytokines compared to WT virus in both intact organs and macrophage-depleted organs. Macrophages were, however, a major contributor to the production of tumor necrosis factor alpha and gamma interferon in response to WT virus infection. Thus, the data indicate that tissue macrophages serve a net protective role and may function as “filters” in protecting other highly permissive cell types from MCMV infection. The magnitude of virus replication in tissue macrophages may dictate the amount of virus accessible to the other cells. Concomitantly, infection of this cell type initiates the production of antiviral immune responses to guarantee efficient clearance of acute MCMV infection. PMID:10364349

  19. Unstable genomes elevate transcriptome dynamics

    PubMed Central

    Stevens, Joshua B.; Liu, Guo; Abdallah, Batoul Y.; Horne, Steven D.; Ye, Karen J.; Bremer, Steven W.; Ye, Christine J.; Krawetz, Stephen A.; Heng, Henry H.

    2015-01-01

    The challenge of identifying common expression signatures in cancer is well known, however the reason behind this is largely unclear. Traditionally variation in expression signatures has been attributed to technological problems, however recent evidence suggests that chromosome instability (CIN) and resultant karyotypic heterogeneity may be a large contributing factor. Using a well-defined model of immortalization, we systematically compared the pattern of genome alteration and expression dynamics during somatic evolution. Co-measurement of global gene expression and karyotypic alteration throughout the immortalization process reveals that karyotype changes influence gene expression as major structural and numerical karyotypic alterations result in large gene expression deviation. Replicate samples from stages with stable genomes are more similar to each other than are replicate samples with karyotypic heterogeneity. Karyotypic and gene expression change during immortalization is dynamic as each stage of progression has a unique expression pattern. This was further verified by comparing global expression in two replicates grown in one flask with known karyotypes. Replicates with higher karyotypic instability were found to be less similar than replicates with stable karyotypes. This data illustrates the karyotype, transcriptome, and transcriptome determined pathways are in constant flux during somatic cellular evolution (particularly during the macroevolutionary phase) and this flux is an inextricable feature of CIN and essential for cancer formation. The findings presented here underscore the importance of understanding the evolutionary process of cancer in order to design improved treatment modalities. PMID:24122714

  20. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haruta, Mayumi; Shimada, Midori, E-mail: midorism@med.nagoya-cu.ac.jp; Nishiyama, Atsuya

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program.more » Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. - Highlights: • DNMT1 depletion results in an abnormal DNA replication program. • Aberrant DNA replication is independent of the DNA damage checkpoint in DNMT1cKO. • DNMT1 catalytic activity and RFT domain are required for proper DNA replication. • DNMT1 catalytic activity and RFT domain are required for cell proliferation.« less

  1. Large-scale adaptive differentiation in the alpine perennial herb Arabis alpina.

    PubMed

    Toräng, Per; Wunder, Jörg; Obeso, José Ramón; Herzog, Michel; Coupland, George; Ågren, Jon

    2015-04-01

    Information about the incidence and magnitude of local adaptation can help to predict the response of natural populations to a changing environment, and should be of particular interest in arctic and alpine environments where the effects of climate change are expected to be severe. To quantify adaptive differentiation in the arctic-alpine perennial herb Arabis alpina, we conducted reciprocal transplant experiments for 3 yr between Spanish and Scandinavian populations. At the sites of one Spanish and one Scandinavian population, we planted seedlings representing two Spanish and four Scandinavian populations, and recorded survival, flowering propensity and fecundity. The experiment was replicated in two subsequent years. The results demonstrate strong adaptive differentiation between A. alpina populations from the two regions. At the field site in Spain, survival and fruit production of Spanish populations were higher than those of Scandinavian populations, while the opposite was true at the site in Scandinavia, and these differences were consistent across years. By comparison, fitness varied little among populations from the same region. The results suggest that the magnitude and geographical scale of local adaptation need to be considered in predictions of the effects of global change on the dynamics of arctic and alpine plant populations. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Dynamic Architecture of Eukaryotic DNA Replication Forks In Vivo, Visualized by Electron Microscopy.

    PubMed

    Zellweger, Ralph; Lopes, Massimo

    2018-01-01

    The DNA replication process can be heavily perturbed by several different conditions of genotoxic stress, particularly relevant for cancer onset and therapy. The combination of psoralen crosslinking and electron microscopy has proven instrumental to reveal the fine architecture of in vivo DNA replication intermediates and to uncover their remodeling upon specific conditions of genotoxic stress. The replication structures are stabilized in vivo (by psoralen crosslinking) prior to extraction and enrichment procedures, allowing their visualization at the transmission electron microscope. This chapter outlines the procedures required to visualize and interpret in vivo replication intermediates of eukaryotic genomic DNA, and includes an improved method for enrichment of replication intermediates, compared to previously used BND-cellulose columns.

  3. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    PubMed

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly associated with the replicating single-stranded DNA viral genome and played a critical role in viral DNA replication. In contrast, the DNA damage response-induced phosphorylated forms of RPA32 were dispensable for viral DNA replication. Copyright © 2018 American Society for Microbiology.

  4. Role of the myeloid differentiation primary response (MYD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF) pathways in dengue.

    PubMed

    Duran, Anyelo; Valero, Nereida; Mosquera, Jesus; Delgado, Lineth; Alvarez-Mon, Melchor; Torres, Mariana

    2016-10-01

    Dengue disease courses with high viremia titers and high cytokine production suggesting viral replication and active immune response that could be related to viral evasion. One of the main targets of dengue virus (DENV) is monocyte/macrophage cells; however, little information regarding viral evasive mechanisms and pathway activation in monocytes infected by DENV is available. The aim of this study was to determine the role of myeloid differentiation primary response (MyD88), TIR-domain-containing adapter- inducing interferon-β (TRIF) and NF-kB pathways in viral replication and cytokine production in human monocyte cultures infected by DENV2. In this regard Pepinh- TRIF, Pepinh- MYD and pyrrolidine dithiocarbamate (PDTC) were used to inhibit TRIF, MYD88 and NF-kB pathways. Cytokine production was measured by ELISA. Increased DENV replication and IFNα/β, TNF-α, IL-12 and IL-18 in infected cultures at 24h were found. All of these parameters were significantly decreased after TRIF, MYD88 or NF-kB inhibition. Association analysis between viral replication and cytokine production showed high significant positive correlation in TRIF and MYD88 treated cultures. This study shows that DENV2 induces activation of innate-immune response and transcription factors to drive viral expression and replication in the face of pro-inflammatory antiviral responses in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Recent human evolution has shaped geographical differences in susceptibility to disease

    PubMed Central

    2011-01-01

    Background Searching for associations between genetic variants and complex diseases has been a very active area of research for over two decades. More than 51,000 potential associations have been studied and published, a figure that keeps increasing, especially with the recent explosion of array-based Genome-Wide Association Studies. Even if the number of true associations described so far is high, many of the putative risk variants detected so far have failed to be consistently replicated and are widely considered false positives. Here, we focus on the world-wide patterns of replicability of published association studies. Results We report three main findings. First, contrary to previous results, genes associated to complex diseases present lower degrees of genetic differentiation among human populations than average genome-wide levels. Second, also contrary to previous results, the differences in replicability of disease associated-loci between Europeans and East Asians are highly correlated with genetic differentiation between these populations. Finally, highly replicated genes present increased levels of high-frequency derived alleles in European and Asian populations when compared to African populations. Conclusions Our findings highlight the heterogeneous nature of the genetic etiology of complex disease, confirm the importance of the recent evolutionary history of our species in current patterns of disease susceptibility and could cast doubts on the status as false positives of some associations that have failed to replicate across populations. PMID:21261943

  6. Selection Dynamics in Transient Compartmentalization

    NASA Astrophysics Data System (ADS)

    Blokhuis, Alex; Lacoste, David; Nghe, Philippe; Peliti, Luca

    2018-04-01

    Transient compartments have been recently shown to be able to maintain functional replicators in the context of prebiotic studies. Here, we show that a broad class of selection dynamics is able to achieve this goal. We identify two key parameters, the relative amplification of nonactive replicators (parasites) and the size of compartments. These parameters account for competition and diversity, and the results are relevant to similar multilevel selection problems, such as those found in virus-host ecology and trait group selection.

  7. Topological entropy of catalytic sets: Hypercycles revisited

    NASA Astrophysics Data System (ADS)

    Sardanyés, Josep; Duarte, Jorge; Januário, Cristina; Martins, Nuno

    2012-02-01

    The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

  8. An application of the Caputo-Fabrizio operator to replicator-mutator dynamics: Bifurcation, chaotic limit cycles and control

    NASA Astrophysics Data System (ADS)

    Doungmo Goufo, Emile Franc

    2018-02-01

    The physical behaviors of replicator-mutator processes found in theoretical biophysics, physical chemistry, biochemistry and population biology remain complex with unlimited expressibility. People languages, for instance, have impressively and unpredictably changed over the time in human history. This is mainly due to the collection of small changes and collaboration with other languages. In this paper, the Caputo-Fabrizio operator is applied to a replicator-mutator dynamic taking place in midsts with movement. The model is fully analyzed and solved numerically via the Crank-Nicolson scheme. Stability and convergence results are provided. A concrete application to replicator-mutator dynamics for a population with three strategies is performed with numerical simulations provided for some fixed values of the physical position of the population symbolized by r and the grid points. Physically, it happens that limit cycles appear, not only in function of the mutation parameter μ but also in function of the values given to r . The amplitudes of limit cycles also appear to be proportional to r but the stability of the system remains unaffected. However, those limit cycles instead of disappearing as expected, are immediately followed by chaotic and unpredictable behaviors certainly due to the non-singular kernel used in the model and suitable to non-linear dynamics. Hence, the appearance and disappearance of limit cycles might be controlled by the position variable r which can also apprehend chaos.

  9. The auditory dynamic attending theory revisited: A closer look at the pitch comparison task.

    PubMed

    Bauer, Anna-Katharina R; Jaeger, Manuela; Thorne, Jeremy D; Bendixen, Alexandra; Debener, Stefan

    2015-11-11

    The dynamic attending theory as originally proposed by Jones, 1976. Psychol. Rev. 83(5), 323-355 posits that tone sequences presented at a regular rhythm entrain attentional oscillations and thereby facilitate the processing of sounds presented in phase with this rhythm. The increased interest in neural correlates of dynamic attending requires robust behavioral indicators of the phenomenon. Here we aimed to replicate and complement the most prominent experimental implementation of dynamic attending (Jones et al., 2002. Psychol. Sci. 13(4), 313-319). The paradigm uses a pitch comparison task in which two tones, the initial and the last of a longer series, have to be compared. In-between the two, distractor tones with variable pitch are presented, at a regular pace. A comparison tone presented in phase with the entrained rhythm is hypothesized to lead to better behavioral performance. Aiming for a conceptual replication, four different variations of the original paradigm were created which were followed by an exact replication attempt. Across all five experiments, only 40 of the 140 tested participants showed the hypothesized pattern of an inverted U-shaped profile in task accuracy, and the group average effects did not replicate the pattern reported by Jones et al., 2002. Psychol. Sci. 13(4), 313-319 in any of the five experiments. However, clear evidence for a relationship between musicality and overall behavioral performance was found. This study casts doubt on the suitability of the pitch comparison task for demonstrating auditory dynamic attending. We discuss alternative tasks that have been shown to support dynamic attending theory, thus lending themselves more readily to studying its neural correlates. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. The Emergence of Life as a First-Order Phase Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathis, Cole; Bhattacharya, Tanmoy; Walker, Sara Imari

    It is well known that life on Earth alters its environment over evolutionary and geological timescales. An important open question is whether this is a result of evolutionary optimization or a universal feature of life. In the latter case, the origin of life would be coincident with a shift in environmental conditions. Here in this paper we present a model for the emergence of life in which replicators are explicitly coupled to their environment through the recycling of a finite supply of resources. The model exhibits a dynamic, first-order phase transition from nonlife to life, where the life phase ismore » distinguished by selection on replicators. We show that environmental coupling plays an important role in the dynamics of the transition. The transition corresponds to a redistribution of matter in replicators and their environment, driven by selection on replicators, exhibiting an explosive growth in diversity as replicators are selected. The transition is accurately tracked by the mutual information shared between replicators and their environment. In the absence of successfully repartitioning system resources, the transition fails to complete, leading to the possibility of many frustrated trials before life first emerges. Often, the replicators that initiate the transition are not those that are ultimately selected. The results are consistent with the view that life's propensity to shape its environment is indeed a universal feature of replicators, characteristic of the transition from nonlife to life. We discuss the implications of these results for understanding life's emergence and evolutionary transitions more broadly.« less

  11. The Emergence of Life as a First-Order Phase Transition

    DOE PAGES

    Mathis, Cole; Bhattacharya, Tanmoy; Walker, Sara Imari

    2017-03-01

    It is well known that life on Earth alters its environment over evolutionary and geological timescales. An important open question is whether this is a result of evolutionary optimization or a universal feature of life. In the latter case, the origin of life would be coincident with a shift in environmental conditions. Here in this paper we present a model for the emergence of life in which replicators are explicitly coupled to their environment through the recycling of a finite supply of resources. The model exhibits a dynamic, first-order phase transition from nonlife to life, where the life phase ismore » distinguished by selection on replicators. We show that environmental coupling plays an important role in the dynamics of the transition. The transition corresponds to a redistribution of matter in replicators and their environment, driven by selection on replicators, exhibiting an explosive growth in diversity as replicators are selected. The transition is accurately tracked by the mutual information shared between replicators and their environment. In the absence of successfully repartitioning system resources, the transition fails to complete, leading to the possibility of many frustrated trials before life first emerges. Often, the replicators that initiate the transition are not those that are ultimately selected. The results are consistent with the view that life's propensity to shape its environment is indeed a universal feature of replicators, characteristic of the transition from nonlife to life. We discuss the implications of these results for understanding life's emergence and evolutionary transitions more broadly.« less

  12. The Emergence of Life as a First-Order Phase Transition

    NASA Astrophysics Data System (ADS)

    Mathis, Cole; Bhattacharya, Tanmoy; Imari Walker, Sara

    2017-03-01

    It is well known that life on Earth alters its environment over evolutionary and geological timescales. An important open question is whether this is a result of evolutionary optimization or a universal feature of life. In the latter case, the origin of life would be coincident with a shift in environmental conditions. Here we present a model for the emergence of life in which replicators are explicitly coupled to their environment through the recycling of a finite supply of resources. The model exhibits a dynamic, first-order phase transition from nonlife to life, where the life phase is distinguished by selection on replicators. We show that environmental coupling plays an important role in the dynamics of the transition. The transition corresponds to a redistribution of matter in replicators and their environment, driven by selection on replicators, exhibiting an explosive growth in diversity as replicators are selected. The transition is accurately tracked by the mutual information shared between replicators and their environment. In the absence of successfully repartitioning system resources, the transition fails to complete, leading to the possibility of many frustrated trials before life first emerges. Often, the replicators that initiate the transition are not those that are ultimately selected. The results are consistent with the view that life's propensity to shape its environment is indeed a universal feature of replicators, characteristic of the transition from nonlife to life. We discuss the implications of these results for understanding life's emergence and evolutionary transitions more broadly.

  13. Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model.

    PubMed

    Sun, Xiaoxiao; Dalpiaz, David; Wu, Di; S Liu, Jun; Zhong, Wenxuan; Ma, Ping

    2016-08-26

    Accurate identification of differentially expressed (DE) genes in time course RNA-Seq data is crucial for understanding the dynamics of transcriptional regulatory network. However, most of the available methods treat gene expressions at different time points as replicates and test the significance of the mean expression difference between treatments or conditions irrespective of time. They thus fail to identify many DE genes with different profiles across time. In this article, we propose a negative binomial mixed-effect model (NBMM) to identify DE genes in time course RNA-Seq data. In the NBMM, mean gene expression is characterized by a fixed effect, and time dependency is described by random effects. The NBMM is very flexible and can be fitted to both unreplicated and replicated time course RNA-Seq data via a penalized likelihood method. By comparing gene expression profiles over time, we further classify the DE genes into two subtypes to enhance the understanding of expression dynamics. A significance test for detecting DE genes is derived using a Kullback-Leibler distance ratio. Additionally, a significance test for gene sets is developed using a gene set score. Simulation analysis shows that the NBMM outperforms currently available methods for detecting DE genes and gene sets. Moreover, our real data analysis of fruit fly developmental time course RNA-Seq data demonstrates the NBMM identifies biologically relevant genes which are well justified by gene ontology analysis. The proposed method is powerful and efficient to detect biologically relevant DE genes and gene sets in time course RNA-Seq data.

  14. Nuclear DNA Replication in Trypanosomatids: There Are No Easy Methods for Solving Difficult Problems.

    PubMed

    da Silva, Marcelo S; Pavani, Raphael S; Damasceno, Jeziel D; Marques, Catarina A; McCulloch, Richard; Tosi, Luiz Ricardo Orsini; Elias, Maria Carolina

    2017-11-01

    In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Single-molecule visualization of Saccharomyces cerevisiae leading-strand synthesis reveals dynamic interaction between MTC and the replisome

    PubMed Central

    Lewis, Jacob S.; Spenkelink, Lisanne M.; Schauer, Grant D.; Hill, Flynn R.; Georgescu, Roxanna E.; O’Donnell, Michael E.; van Oijen, Antoine M.

    2017-01-01

    The replisome, the multiprotein system responsible for genome duplication, is a highly dynamic complex displaying a large number of different enzyme activities. Recently, the Saccharomyces cerevisiae minimal replication reaction has been successfully reconstituted in vitro. This provided an opportunity to uncover the enzymatic activities of many of the components in a eukaryotic system. Their dynamic behavior and interactions in the context of the replisome, however, remain unclear. We use a tethered-bead assay to provide real-time visualization of leading-strand synthesis by the S. cerevisiae replisome at the single-molecule level. The minimal reconstituted leading-strand replisome requires 24 proteins, forming the CMG helicase, the Pol ε DNA polymerase, the RFC clamp loader, the PCNA sliding clamp, and the RPA single-stranded DNA binding protein. We observe rates and product lengths similar to those obtained from ensemble biochemical experiments. At the single-molecule level, we probe the behavior of two components of the replication progression complex and characterize their interaction with active leading-strand replisomes. The Minichromosome maintenance protein 10 (Mcm10), an important player in CMG activation, increases the number of productive replication events in our assay. Furthermore, we show that the fork protection complex Mrc1–Tof1–Csm3 (MTC) enhances the rate of the leading-strand replisome threefold. The introduction of periods of fast replication by MTC leads to an average rate enhancement of a factor of 2, similar to observations in cellular studies. We observe that the MTC complex acts in a dynamic fashion with the moving replisome, leading to alternating phases of slow and fast replication. PMID:28923950

  16. RNASeq analysis of differentiated keratinocytes reveals a massive response to late events during human papillomavirus type 16 infection, including loss of epithelial barrier function.

    PubMed

    Klymenko, T; Gu, Q; Herbert, I; Stevenson, A; Iliev, V; Watkins, G; Pollock, C; Bhatia, R; Cuschieri, K; Herzyk, P; Gatherer, D; Graham, S V

    2017-10-11

    The human papillomavirus (HPV) replication cycle is tightly linked to epithelial cell differentiation. To examine HPV-associated changes in the keratinocyte transcriptome, RNAs isolated from undifferentiated and differentiated cell populations of normal, spontaneously immortalised, keratinocytes (NIKS), and NIKS stably transfected with HPV16 episomal genomes (NIKS16), were compared using RNASeq. HPV16 infection altered expression of 2862 cellular genes. Next, to elucidate the role of keratinocyte gene expression in late events during the viral life cycle, RNASeq was carried out on triplicate differentiated populations of NIKS (uninfected) and NIKS16 (infected). Of the top 966 genes altered (>log 2 = 1.8, 3.5-fold change) 670 genes were downregulated and 296 genes were up-regulated. HPV down-regulated many genes involved in epithelial barrier function that involves structural resistance to the environment and immunity to infectious agents. For example, HPV infection repressed expression of the differentiated keratinocyte-specific pattern recognition receptor TLR7, the Langerhans cell chemoattractant, CCL20, and proinflammatory cytokines, IL1A and IL1B. However, IRF1, IFNκ and viral restriction factors (IFIT1, 2, 3, 5, OASL, CD74, RTP4) were up-regulated. HPV infection abrogated gene expression associated with the physical epithelial barrier, including keratinocyte cytoskeleton, intercellular junctions and cell adhesion. qPCR and western blotting confirmed changes in expression of seven of the most significantly altered mRNAs. Expression of three genes showed statistically significant changes during cervical disease progression in clinical samples. Taken together, the data indicate that HPV infection manipulates the differentiating keratinocyte transcriptome to create an environment conducive to productive viral replication and egress. IMPORTANCE Human papillomavirus (HPV) genome amplification and capsid formation takes place in differentiated keratinocytes. The viral life cycle is intimately associated with host cell differentiation. Deep sequencing (RNASeq) of RNA from undifferentiated and differentiated uninfected and HPV16-positive keratinocytes showed that almost 3000 genes were differentially expressed in keratinocyte due to HPV16 infection. Strikingly, the epithelial barrier function of differentiated keratinocytes, comprising keratinocyte immune function and cellular structure, was found to be disrupted. These data provide new insights into virus-host interaction crucial for production of infectious virus and reveal that HPV infection remodels keratinocytes for completion of the virus replication cycle. Copyright © 2017 American Society for Microbiology.

  17. Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells.

    PubMed

    Jeong, Sin-Gu; Cho, Goang-Won

    2015-05-15

    Cellular senescence is characterized by functional decline induced by cumulative damage to DNA, proteins, lipids, and carbohydrates. Previous studies have reported that replicative senescence is caused by excessive amounts of reactive oxygen species (ROS) produced as a result of aerobic energy metabolism. In this study, we established human bone marrow mesenchymal stromal cells (hBM-MSCs) in replicative senescence after culture over a long term to investigate the relationship between ROS levels and stem cell potential and to determine whether differentiation potential can be restored by antioxidant treatment. Intracellular ROS levels were increased in hBM-MSCs; this was accompanied by a decrease in the expression of the antioxidant enzymes catalase and superoxide dismutase (SOD)1 and 2 and of phosphorylated forkhead box O1 (p-FOXO1) as well as an increase in the expression of p53 and p16, along with a reduction in differentiation potential. When the antioxidant ascorbic acid was used to eliminate excess ROS, the levels of antioxidant enzymes (catalase, SOD1 and 2, p-FOXO1, and p53) were partly restored. Moreover, differentiation into adipocytes and osteocytes was higher in hBM-MSCs treated with ascorbic acid than in the untreated control cells. These results suggest that the decline in differentiation potential caused by increased endogenous ROS production during in vitro expansion can be reversed by treatment with antioxidants such as ascorbic acid. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Infection and Propagation of Human Rhinovirus C in Human Airway Epithelial Cells

    PubMed Central

    Hao, Weidong; Bernard, Katie; Patel, Nita; Ulbrandt, Nancy; Feng, Hui; Svabek, Catherine; Wilson, Susan; Stracener, Christina; Wang, Kathy; Suzich, JoAnn; Blair, Wade

    2012-01-01

    Human rhinovirus species C (HRV-C) was recently discovered using molecular diagnostic techniques and is associated with lower respiratory tract disease, particularly in children. HRV-C cannot be propagated in immortalized cell lines, and currently sinus organ culture is the only system described that is permissive to HRV-C infection ex vivo. However, the utility of organ culture for studying HRV-C biology is limited. Here, we report that a previously described HRV-C derived from an infectious cDNA, HRV-C15, infects and propagates in fully differentiated human airway epithelial cells but not in undifferentiated cells. We demonstrate that this differentiated epithelial cell culture system supports infection and replication of a second virus generated from a cDNA clone, HRV-C11. We show that HRV-C15 virions preferentially bind fully differentiated airway epithelial cells, suggesting that the block to replication in undifferentiated cells is at the step of viral entry. Consistent with previous reports, HRV-C15 utilizes a cellular receptor other than ICAM-1 or LDLR for infection of differentiated epithelial cells. Furthermore, we demonstrate that HRV-C15 replication can be inhibited by an HRV 3C protease inhibitor (rupintrivir) but not an HRV capsid inhibitor previously under clinical development (pleconaril). The HRV-C cell culture system described here provides a powerful tool for studying the biology of HRV-C and the discovery and development of HRV-C inhibitors. PMID:23035218

  19. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells

    PubMed Central

    Mossel, Eric C.; Wang, Jieru; Jeffers, Scott; Edeen, Karen E.; Wang, Shuanglin; Cosgrove, Gregory P.; Funk, C. Joel; Manzer, Rizwan; Miura, Tanya A.; Pearson, Leonard D.; Holmes, Kathryn V.; Mason, Robert J.

    2008-01-01

    Severe acute respiratory syndrome (SARS) is a disease characterized by diffuse alveolar damage. We isolated alveolar type II cells and maintained them in a highly differentiated state. Type II cell cultures supported SARS-CoV replication as evidenced by RT-PCR detection of viral subgenomic RNA and an increase in virus titer. Virus titers were maximal by 24 hours and peaked at approximately 105 pfu/mL. Two cell types within the cultures were infected. One cell type was type II cells, which were positive for SP-A, SP-C, cytokeratin, a type II cell-specific monoclonal antibody, and Ep-CAM. The other cell type was composed of spindle-shaped cells that were positive for vimentin and collagen III and likely fibroblasts. Viral replication was not detected in type I-like cells or macrophages. Hence, differentiated adult human alveolar type II cells were infectible but alveolar type I-like cells and alveolar macrophages did not support productive infection. PMID:18022664

  20. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.

    PubMed

    Robinson, Mark D; McCarthy, Davis J; Smyth, Gordon K

    2010-01-01

    It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org).

  1. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression

    PubMed Central

    Löb, D.; Lengert, N.; Chagin, V. O.; Reinhart, M.; Casas-Delucchi, C. S.; Cardoso, M. C.; Drossel, B.

    2016-01-01

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase. PMID:27052359

  2. HCMV Reprogramming of Infected Monocyte Survival and Differentiation: A Goldilocks Phenomenon

    PubMed Central

    Stevenson, Emily V.; Collins-McMillen, Donna; Kim, Jung Heon; Cieply, Stephen J.; Bentz, Gretchen L.; Yurochko, Andrew D.

    2014-01-01

    The wide range of disease pathologies seen in multiple organ sites associated with human cytomegalovirus (HCMV) infection results from the systemic hematogenous dissemination of the virus, which is mediated predominately by infected monocytes. In addition to their role in viral spread, infected monocytes are also known to play a key role in viral latency and life-long persistence. However, in order to utilize infected monocytes for viral spread and persistence, HCMV must overcome a number of monocyte biological hurdles, including their naturally short lifespan and their inability to support viral gene expression and replication. Our laboratory has shown that HCMV is able to manipulate the biology of infected monocytes in order to overcome these biological hurdles by inducing the survival and differentiation of infected monocytes into long-lived macrophages capable of supporting viral gene expression and replication. In this current review, we describe the unique aspects of how HCMV promotes monocyte survival and differentiation by inducing a “finely-tuned” macrophage cell type following infection. Specifically, we describe the induction of a uniquely polarized macrophage subset from infected monocytes, which we argue is the ideal cellular environment for the initiation of viral gene expression and replication and, ultimately, viral spread and persistence within the infected host. PMID:24531335

  3. Early differential processing of material images: Evidence from ERP classification.

    PubMed

    Wiebel, Christiane B; Valsecchi, Matteo; Gegenfurtner, Karl R

    2014-06-24

    Investigating the temporal dynamics of natural image processing using event-related potentials (ERPs) has a long tradition in object recognition research. In a classical Go-NoGo task two characteristic effects have been emphasized: an early task independent category effect and a later task-dependent target effect. Here, we set out to use this well-established Go-NoGo paradigm to study the time course of material categorization. Material perception has gained more and more interest over the years as its importance in natural viewing conditions has been ignored for a long time. In addition to analyzing standard ERPs, we conducted a single trial ERP pattern analysis. To validate this procedure, we also measured ERPs in two object categories (people and animals). Our linear classification procedure was able to largely capture the overall pattern of results from the canonical analysis of the ERPs and even extend it. We replicate the known target effect (differential Go-NoGo potential at frontal sites) for the material images. Furthermore, we observe task-independent differential activity between the two material categories as early as 140 ms after stimulus onset. Using our linear classification approach, we show that material categories can be differentiated consistently based on the ERP pattern in single trials around 100 ms after stimulus onset, independent of the target-related status. This strengthens the idea of early differential visual processing of material categories independent of the task, probably due to differences in low-level image properties and suggests pattern classification of ERP topographies as a strong instrument for investigating electrophysiological brain activity. © 2014 ARVO.

  4. Experimental evidence for competitive growth advantage of genotype VII over VI: implications for foot-and-mouth disease virus serotype A genotype turnover in nature.

    PubMed

    Mohapatra, J K; Subramaniam, S; Singh, N K; Sanyal, A; Pattnaik, B

    2012-04-01

    In India, systematic genotype replacement has been observed for serotype A foot-and-mouth disease virus. After a decade of co-circulation of genotypes VI and VII, genotype VII emerged as the single dominant genotype since 2001. To derive possible explanations for such epochal evolution dynamics, in vitro intergenotype growth competition experiments involving both co- and superinfection regimes were conducted. Coinfection of BHK-21 cells demonstrated abrupt loss in the genotype VI viral load with commensurate increase in the load of genotype VII as measured by the genotype differentiating ELISA, RT-PCR and real-time RT-PCR. The superinfection dynamics was shaped by temporal spacing of infection, where the invading genotype VII took more number of passages than coinfection to eventually overtake the resident genotype VI. It was speculated that such superior replicative fitness of genotype VII could have been a possible factor for the ultimate dominance of genotype VII in nature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Interrogating trees for isotopic archives of atmospheric sulphur deposition and comparison to speleothem records.

    PubMed

    Wynn, P M; Loader, N J; Fairchild, I J

    2014-04-01

    Palaeorecords which depict changes in sulphur dynamics form an invaluable resource for recording atmospheric pollution. Tree rings constitute an archive that are ubiquitously available and can be absolutely dated, providing the potential to explore local- to regional-scale trends in sulphur availability. Rapid isotopic analysis by a novel "on-line" method using elemental analyser isotope ratio mass spectrometry (EA-IRMS) is developed, achieving sample precision of <0.4‰ using sample sizes of 40 mg wood powder. Tree cores from NE Italy show trends in pollution, evidenced through increasing concentrations of sulphur towards the youngest growth, and inverse trends in sulphur isotopes differentiating modern growth with light sulphur isotopes (+0.7‰) from pre-industrial growth (+7.5‰) influenced by bedrock composition. Comparison with speleothem records from the same location demonstrate replication, albeit offset in isotopic value due to groundwater storage. Using EA-IRMS, tree ring archives form a valuable resource for understanding local- to regional-scale sulphur pollution dynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Weight of fitness deviation governs strict physical chaos in replicator dynamics.

    PubMed

    Pandit, Varun; Mukhopadhyay, Archan; Chakraborty, Sagar

    2018-03-01

    Replicator equation-a paradigm equation in evolutionary game dynamics-mathematizes the frequency dependent selection of competing strategies vying to enhance their fitness (quantified by the average payoffs) with respect to the average fitnesses of the evolving population under consideration. In this paper, we deal with two discrete versions of the replicator equation employed to study evolution in a population where any two players' interaction is modelled by a two-strategy symmetric normal-form game. There are twelve distinct classes of such games, each typified by a particular ordinal relationship among the elements of the corresponding payoff matrix. Here, we find the sufficient conditions for the existence of asymptotic solutions of the replicator equations such that the solutions-fixed points, periodic orbits, and chaotic trajectories-are all strictly physical, meaning that the frequency of any strategy lies inside the closed interval zero to one at all times. Thus, we elaborate on which of the twelve types of games are capable of showing meaningful physical solutions and for which of the two types of replicator equation. Subsequently, we introduce the concept of the weight of fitness deviation that is the scaling factor in a positive affine transformation connecting two payoff matrices such that the corresponding one-shot games have exactly same Nash equilibria and evolutionary stable states. The weight also quantifies how much the excess of fitness of a strategy over the average fitness of the population affects the per capita change in the frequency of the strategy. Intriguingly, the weight's variation is capable of making the Nash equilibria and the evolutionary stable states, useless by introducing strict physical chaos in the replicator dynamics based on the normal-form game.

  7. The prohibitin-repressive interaction with E2F1 is rapidly inhibited by androgen signalling in prostate cancer cells

    PubMed Central

    Koushyar, S; Economides, G; Zaat, S; Jiang, W; Bevan, C L; Dart, D A

    2017-01-01

    Prohibitin (PHB) is a tumour suppressor molecule with pleiotropic activities across several cellular compartments including mitochondria, cell membrane and the nucleus. PHB and the steroid-activated androgen receptor (AR) have an interplay where AR downregulates PHB, and PHB represses AR. Additionally, their cellular locations and chromatin interactions are in dynamic opposition. We investigated the mechanisms of cell cycle inhibition by PHB and how this is modulated by AR in prostate cancer. Using a prostate cancer cell line overexpressing PHB, we analysed the gene expression changes associated with PHB-mediated cell cycle arrest. Over 1000 gene expression changes were found to be significant and gene ontology analysis confirmed PHB-mediated repression of genes essential for DNA replication and synthesis, for example, MCMs and TK1, via an E2F1 regulated pathway—agreeing with its G1/S cell cycle arrest activity. PHB is known to inhibit E2F1-mediated transcription, and the PHB:E2F1 interaction was seen in LNCaP nuclear extracts, which was then reduced by androgen treatment. Upon two-dimensional western blot analysis, the PHB protein itself showed androgen-mediated charge differentiation (only in AR-positive cells), indicating a potential dephosphorylation event. Kinexus phosphoprotein array analysis indicated that Src kinase was the main interacting intracellular signalling hub in androgen-treated LNCaP cells, and that Src inhibition could reduce this AR-mediated charge differentiation. PHB charge change may be associated with rapid dissociation from chromatin and E2F1, allowing the cell cycle to proceed. The AR and androgens may deactivate the repressive functions of PHB upon E2F1 leading to cell cycle progression, and indicates a role for AR in DNA replication licensing. PMID:28504694

  8. A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quintela, Barbara de M.; Conway, Jessica M.; Hyman, James M.

    Here, the dynamics of hepatitis C virus (HCV) RNA during translation and replication within infected cells were added to a previous age-structured multiscale mathematical model of HCV infection and treatment. The model allows the study of the dynamics of HCV RNA inside infected cells as well as the release of virus from infected cells and the dynamics of subsequent new cell infections. The model was used to fit in vitro data and estimate parameters characterizing HCV replication. This is the first model to our knowledge to consider both positive and negative strands of HCV RNA with an age-structured multiscale modelingmore » approach. Using this model we also studied the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular replication and the release of new virions and fit the model to in vivo data obtained from HCV-infected subjects under therapy.« less

  9. Coupling of replisome movement with nucleosome dynamics can contribute to the parent-daughter information transfer.

    PubMed

    Bameta, Tripti; Das, Dibyendu; Padinhateeri, Ranjith

    2018-06-01

    Positioning of nucleosomes along the genomic DNA is crucial for many cellular processes that include gene regulation and higher order packaging of chromatin. The question of how nucleosome-positioning information from a parent chromatin gets transferred to the daughter chromatin is highly intriguing. Accounting for experimentally known coupling between replisome movement and nucleosome dynamics, we propose a model that can obtain de novo nucleosome assembly similar to what is observed in recent experiments. Simulating nucleosome dynamics during replication, we argue that short pausing of the replication fork, associated with nucleosome disassembly, can be a event crucial for communicating nucleosome positioning information from parent to daughter. We show that the interplay of timescales between nucleosome disassembly (τp) at the replication fork and nucleosome sliding behind the fork (τs) can give rise to a rich 'phase diagram' having different inherited patterns of nucleosome organization. Our model predicts that only when τp ≥ τs the daughter chromatin can inherit nucleosome positioning of the parent.

  10. A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents

    DOE PAGES

    Quintela, Barbara de M.; Conway, Jessica M.; Hyman, James M.; ...

    2018-04-04

    Here, the dynamics of hepatitis C virus (HCV) RNA during translation and replication within infected cells were added to a previous age-structured multiscale mathematical model of HCV infection and treatment. The model allows the study of the dynamics of HCV RNA inside infected cells as well as the release of virus from infected cells and the dynamics of subsequent new cell infections. The model was used to fit in vitro data and estimate parameters characterizing HCV replication. This is the first model to our knowledge to consider both positive and negative strands of HCV RNA with an age-structured multiscale modelingmore » approach. Using this model we also studied the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular replication and the release of new virions and fit the model to in vivo data obtained from HCV-infected subjects under therapy.« less

  11. Human cytomegalovirus infection interferes with the maintenance and differentiation of trophoblast progenitor cells of the human placenta.

    PubMed

    Tabata, Takako; Petitt, Matthew; Zydek, Martin; Fang-Hoover, June; Larocque, Nicholas; Tsuge, Mitsuru; Gormley, Matthew; Kauvar, Lawrence M; Pereira, Lenore

    2015-05-01

    Human cytomegalovirus (HCMV) is a major cause of birth defects that include severe neurological deficits, hearing and vision loss, and intrauterine growth restriction. Viral infection of the placenta leads to development of avascular villi, edema, and hypoxia associated with symptomatic congenital infection. Studies of primary cytotrophoblasts (CTBs) revealed that HCMV infection impedes terminal stages of differentiation and invasion by various molecular mechanisms. We recently discovered that HCMV arrests earlier stages involving development of human trophoblast progenitor cells (TBPCs), which give rise to the mature cell types of chorionic villi-syncytiotrophoblasts on the surfaces of floating villi and invasive CTBs that remodel the uterine vasculature. Here, we show that viral proteins are present in TBPCs of the chorion in cases of symptomatic congenital infection. In vitro studies revealed that HCMV replicates in continuously self-renewing TBPC lines derived from the chorion and alters expression and subcellular localization of proteins required for cell cycle progression, pluripotency, and early differentiation. In addition, treatment with a human monoclonal antibody to HCMV glycoprotein B rescues differentiation capacity, and thus, TBPCs have potential utility for evaluation of the efficacies of novel antiviral antibodies in protecting and restoring placental development. Our results suggest that HCMV replicates in TBPCs in the chorion in vivo, interfering with the earliest steps in the growth of new villi, contributing to virus transmission and impairing compensatory development. In cases of congenital infection, reduced responsiveness of the placenta to hypoxia limits the transport of substances from maternal blood and contributes to fetal growth restriction. Human cytomegalovirus (HCMV) is a leading cause of birth defects in the United States. Congenital infection can result in permanent neurological defects, mental retardation, hearing loss, visual impairment, and pregnancy complications, including intrauterine growth restriction, preterm delivery, and stillbirth. Currently, there is neither a vaccine nor any approved treatment for congenital HCMV infection during gestation. The molecular mechanisms underlying structural deficiencies in the placenta that undermine fetal development are poorly understood. Here we report that HCMV replicates in trophoblast progenitor cells (TBPCs)-precursors of the mature placental cells, syncytiotrophoblasts and cytotrophoblasts, in chorionic villi-in clinical cases of congenital infection. Virus replication in TBPCs in vitro dysregulates key proteins required for self-renewal and differentiation and inhibits normal division and development into mature placental cells. Our findings provide insights into the underlying molecular mechanisms by which HCMV replication interferes with placental maturation and transport functions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Coparenting around siblings' differential treatment in Mexican-origin families.

    PubMed

    Solmeyer, Anna R; Killoren, Sarah E; McHale, Susan M; Updegraff, Kimberly A

    2011-04-01

    In this study we examined patterns of mothers' and fathers' differential affection and discipline toward 2 adolescent offspring in 243 Mexican-origin families. Grounding our work in a family systems perspective, we used interparental patterns of differential treatment as an index of the coparental alliance and tested their associations with parents' reports of familism values, traditional gender role attitudes, and cultural orientations. We also sought to replicate prior research on European American samples linking interparental patterns of differential treatment to marital qualities (coparenting satisfaction, love, and conflict) and adolescent depressive symptoms and risky behaviors. Three interparental patterns emerged: families in which both mothers and fathers treated their 2 offspring equally, incongruent families in which 1 parent treated both offspring equally while the other parent favored 1 offspring, and congruent families in which both parents favored the same offspring. Most parents reported equal treatment, but others fell into the incongruent affection (30%), incongruent discipline (45%), and congruent discipline (16%) groups. Mixed model analyses of variances revealed that in families in which mothers and fathers both treated their offspring equally, parents reported higher familism values, more traditional gender role attitudes, and relatively stronger orientations to Mexican than Anglo culture. Consistent with previous research, interparental incongruence was associated with less positive marital qualities and more adolescent adjustment problems. Discussion focuses on the role of culture in shaping coparenting and the processes through which these coparenting dynamics are linked to marital and youth adjustment.

  13. Caregiving and Developmental Factors Differentiating Young At-Risk Urban Children Showing Resilient Versus Stress-Affected Outcomes: A Replication and Extension.

    ERIC Educational Resources Information Center

    Wyman, Peter A.; And Others

    1999-01-01

    Tested hypotheses from an organizational-developmental model for childhood resilience among 7- to 9-year olds. Found that caregiving factors and early development differentiated children with resilient and stress-affected adaptations. Variables reflecting emotionally responsive, competent parenting were direct, proximal predictors of resilience…

  14. The Impact of Sex, Sex-Role Orientation, and Construct Type on Vocational Differentiation, Integration, and Conflict.

    ERIC Educational Resources Information Center

    Neimeyer, Greg J.; And Others

    1989-01-01

    Tested possibility that sex differences in vocational structure derived from type of construct (personally elicited/experimentally provided) and sex-role orientation (stereotyped/androgynous) of 251 college students. Results replicated earlier results concerning men's higher level of differentiation, but lower levels of integration, vis-a-vis…

  15. Productive replication of human papillomavirus 31 requires DNA repair factor Nbs1.

    PubMed

    Anacker, Daniel C; Gautam, Dipendra; Gillespie, Kenric A; Chappell, William H; Moody, Cary A

    2014-08-01

    Activation of the ATM (ataxia telangiectasia-mutated kinase)-dependent DNA damage response (DDR) is necessary for productive replication of human papillomavirus 31 (HPV31). We previously found that DNA repair and homologous recombination (HR) factors localize to sites of HPV replication, suggesting that ATM activity is required to recruit factors to viral genomes that can productively replicate viral DNA in a recombination-dependent manner. The Mre11-Rad50-Nbs1 (MRN) complex is an essential component of the DDR that is necessary for ATM-mediated HR repair and localizes to HPV DNA foci. In this study, we demonstrate that the HPV E7 protein is sufficient to increase levels of the MRN complex and also interacts with MRN components. We have found that Nbs1 depletion blocks productive viral replication and results in decreased localization of Mre11, Rad50, and the principal HR factor Rad51 to HPV DNA foci upon differentiation. Nbs1 contributes to the DDR by acting as an upstream activator of ATM in response to double-strand DNA breaks (DSBs) and as a downstream effector of ATM activity in the intra-S-phase checkpoint. We have found that phosphorylation of ATM and its downstream target Chk2, as well as SMC1 (structural maintenance of chromosome 1), is maintained upon Nbs1 knockdown in differentiating cells. Given that ATM and Chk2 are required for productive replication, our results suggest that Nbs1 contributes to viral replication outside its role as an ATM activator, potentially through ensuring localization of DNA repair factors to viral genomes that are necessary for efficient productive replication. The mechanisms that regulate human papillomavirus (HPV) replication during the viral life cycle are not well understood. Our finding that Nbs1 is necessary for productive replication even in the presence of ATM (ataxia telangiectasia-mutated kinase) and Chk2 phosphorylation offers evidence that Nbs1 contributes to viral replication downstream of facilitating ATM activation. Nbs1 is required for the recruitment of Mre11 and Rad50 to viral genomes, suggesting that the MRN complex plays a direct role in facilitating productive viral replication, potentially through the processing of substrates that are recognized by the key homologous recombination (HR) factor Rad51. The discovery that E7 increases levels of MRN components, and MRN complex formation, identifies a novel role for E7 in facilitating productive replication. Our study not only identifies DNA repair factors necessary for HPV replication but also provides a deeper understanding of how HPV utilizes the DNA damage response to regulate viral replication. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Productive Replication of Human Papillomavirus 31 Requires DNA Repair Factor Nbs1

    PubMed Central

    Anacker, Daniel C.; Gautam, Dipendra; Gillespie, Kenric A.; Chappell, William H.

    2014-01-01

    ABSTRACT Activation of the ATM (ataxia telangiectasia-mutated kinase)-dependent DNA damage response (DDR) is necessary for productive replication of human papillomavirus 31 (HPV31). We previously found that DNA repair and homologous recombination (HR) factors localize to sites of HPV replication, suggesting that ATM activity is required to recruit factors to viral genomes that can productively replicate viral DNA in a recombination-dependent manner. The Mre11-Rad50-Nbs1 (MRN) complex is an essential component of the DDR that is necessary for ATM-mediated HR repair and localizes to HPV DNA foci. In this study, we demonstrate that the HPV E7 protein is sufficient to increase levels of the MRN complex and also interacts with MRN components. We have found that Nbs1 depletion blocks productive viral replication and results in decreased localization of Mre11, Rad50, and the principal HR factor Rad51 to HPV DNA foci upon differentiation. Nbs1 contributes to the DDR by acting as an upstream activator of ATM in response to double-strand DNA breaks (DSBs) and as a downstream effector of ATM activity in the intra-S-phase checkpoint. We have found that phosphorylation of ATM and its downstream target Chk2, as well as SMC1 (structural maintenance of chromosome 1), is maintained upon Nbs1 knockdown in differentiating cells. Given that ATM and Chk2 are required for productive replication, our results suggest that Nbs1 contributes to viral replication outside its role as an ATM activator, potentially through ensuring localization of DNA repair factors to viral genomes that are necessary for efficient productive replication. IMPORTANCE The mechanisms that regulate human papillomavirus (HPV) replication during the viral life cycle are not well understood. Our finding that Nbs1 is necessary for productive replication even in the presence of ATM (ataxia telangiectasia-mutated kinase) and Chk2 phosphorylation offers evidence that Nbs1 contributes to viral replication downstream of facilitating ATM activation. Nbs1 is required for the recruitment of Mre11 and Rad50 to viral genomes, suggesting that the MRN complex plays a direct role in facilitating productive viral replication, potentially through the processing of substrates that are recognized by the key homologous recombination (HR) factor Rad51. The discovery that E7 increases levels of MRN components, and MRN complex formation, identifies a novel role for E7 in facilitating productive replication. Our study not only identifies DNA repair factors necessary for HPV replication but also provides a deeper understanding of how HPV utilizes the DNA damage response to regulate viral replication. PMID:24850735

  17. The evolution of replicators.

    PubMed Central

    Szathmáry, E

    2000-01-01

    Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators. PMID:11127914

  18. The evolution of replicators.

    PubMed

    Szathmáry, E

    2000-11-29

    Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators.

  19. Mutation rate evolution in replicator dynamics.

    PubMed

    Allen, Benjamin; Rosenbloom, Daniel I Scholes

    2012-11-01

    The mutation rate of an organism is itself evolvable. In stable environments, if faithful replication is costless, theory predicts that mutation rates will evolve to zero. However, positive mutation rates can evolve in novel or fluctuating environments, as analytical and empirical studies have shown. Previous work on this question has focused on environments that fluctuate independently of the evolving population. Here we consider fluctuations that arise from frequency-dependent selection in the evolving population itself. We investigate how the dynamics of competing traits can induce selective pressure on the rates of mutation between these traits. To address this question, we introduce a theoretical framework combining replicator dynamics and adaptive dynamics. We suppose that changes in mutation rates are rare, compared to changes in the traits under direct selection, so that the expected evolutionary trajectories of mutation rates can be obtained from analysis of pairwise competition between strains of different rates. Depending on the nature of frequency-dependent trait dynamics, we demonstrate three possible outcomes of this competition. First, if trait frequencies are at a mutation-selection equilibrium, lower mutation rates can displace higher ones. Second, if trait dynamics converge to a heteroclinic cycle-arising, for example, from "rock-paper-scissors" interactions-mutator strains succeed against non-mutators. Third, in cases where selection alone maintains all traits at positive frequencies, zero and nonzero mutation rates can coexist indefinitely. Our second result suggests that relatively high mutation rates may be observed for traits subject to cyclical frequency-dependent dynamics.

  20. USP7 is a SUMO deubiquitinase essential for DNA replication

    PubMed Central

    Lecona, Emilio; Rodriguez-Acebes, Sara; Specks, Julia; Lopez-Contreras, Andres J; Ruppen, Isabel; Murga, Matilde; Muñoz, Javier; Mendez, Juan; Fernandez-Capetillo, Oscar

    2016-01-01

    Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates various aspects of DNA replication. We previously showed that the chromatin around replisomes is rich in SUMO and depleted in Ub, whereas an opposite pattern is observed in mature chromatin. How this SUMO-rich/Ub-low environment is maintained at sites of DNA replication is not known. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Chemical inhibition or genetic deletion of USP7 leads to the accumulation of Ub on SUMOylated proteins, which are displaced to chromatin away from replisomes. Our findings provide a model to explain the differential accumulation of SUMO and Ub at replication forks, and identify an essential role of USP7 in DNA replication that should be taken into account for the use of USP7 inhibitors as anticancer agents. PMID:26950370

  1. The histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells

    PubMed Central

    McConnell, Kristopher H.; Dixon, Michael; Calvi, Brian R.

    2012-01-01

    DNA replication origin activity changes during development. Chromatin modifications are known to influence the genomic location of origins and the time during S phase that they initiate replication in different cells. However, how chromatin regulates origins in concert with cell differentiation remains poorly understood. Here, we use developmental gene amplification in Drosophila ovarian follicle cells as a model to investigate how chromatin modifiers regulate origins in a developmental context. We find that the histone acetyltransferase (HAT) Chameau (Chm) binds to amplicon origins and is partially required for their function. Depletion of Chm had relatively mild effects on origins during gene amplification and genomic replication compared with previous knockdown of its ortholog HBO1 in human cells, which has severe effects on origin function. We show that another HAT, CBP (Nejire), also binds amplicon origins and is partially required for amplification. Knockdown of Chm and CBP together had a more severe effect on nucleosome acetylation and amplicon origin activity than knockdown of either HAT alone, suggesting that these HATs collaborate in origin regulation. In addition to their local function at the origin, we show that Chm and CBP also globally regulate the developmental transition of follicle cells into the amplification stages of oogenesis. Our results reveal a complexity of origin epigenetic regulation by multiple HATs during development and suggest that chromatin modifiers are a nexus that integrates differentiation and DNA replication programs. PMID:22951641

  2. Variation, "evolution", immortality and genetic instabilities in tumour cells.

    PubMed

    Bignold, L P

    2007-08-18

    The pathological characteristics of tumour cells often include variation of their histopathological features (i.e. "degrees of de-differentiation") between cases of the same tumour type and between different foci within individual tumours. Usually, only a few cell lines from tumours are immortal. Currently, somatic mutation, replicative infidelity of DNA and aneuploidy are suggested as alternative mechanisms of genomic disturbance underlying tumours. Nevertheless, apart from Hansemann's ideas of "anaplasia" and "de-differentiation" (proposed in the 1890s), and supposed "evolutionary themes" in cancer cell biology, little has been published concerning how histopathologic variation and immortality in tumour cells might arise. This paper reviews applications of the concepts of "variation" to tumours, including concepts of "evolution" and "cellular Darwinism". It is proposed that combinations of somatic mutation, DNA replicative infidelity and aneuploidy may explain the variabilities in tumours, and provide immortality in occasional tumour cells. A possible model involves (i) an initial somatic mutation causing reduced replicative fidelity of DNA, which could be variable in intensity, and thus give rise to variations between cases; (ii) a phase of replicative infidelity of DNA causing daughter cells lines to develop various abnormalities to different degrees, and hence provide for variation between areas of the same tumour. As a last event (iii) occasional asymmetric chromosomal distributions (aneuploidy) might "refresh" the ability of a daughter cell to replicate DNA faithfully causing them to become immortal. Thus extensively mutant and variable, hyperploid, and occasionally immortal cells might arise.

  3. A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells.

    PubMed

    Li, Bing; Su, Trent; Ferrari, Roberto; Li, Jing-Yu; Kurdistani, Siavash K

    2014-02-01

    The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.

  4. Asynchronous Replication and Autosome-Pair Non-Equivalence in Human Embryonic Stem Cells

    PubMed Central

    Dutta, Devkanya; Ensminger, Alexander W.; Zucker, Jacob P.; Chess, Andrew

    2009-01-01

    A number of mammalian genes exhibit the unusual properties of random monoallelic expression and random asynchronous replication. Such exceptional genes include genes subject to X inactivation and autosomal genes including odorant receptors, immunoglobulins, interleukins, pheromone receptors, and p120 catenin. In differentiated cells, random asynchronous replication of interspersed autosomal genes is coordinated at the whole chromosome level, indicative of chromosome-pair non-equivalence. Here we have investigated the replication pattern of the random asynchronously replicating genes in undifferentiated human embryonic stem cells, using fluorescence in situ hybridization based assay. We show that allele-specific replication of X-linked genes and random monoallelic autosomal genes occur in human embryonic stem cells. The direction of replication is coordinated at the whole chromosome level and can cross the centromere, indicating the existence of autosome-pair non-equivalence in human embryonic stem cells. These results suggest that epigenetic mechanism(s) that randomly distinguish between two parental alleles are emerging in the cells of the inner cell mass, the source of human embryonic stem cells. PMID:19325893

  5. Genetic differentiation and selection against migrants in evolutionarily replicated extreme environments.

    PubMed

    Plath, Martin; Pfenninger, Markus; Lerp, Hannes; Riesch, Rüdiger; Eschenbrenner, Christoph; Slattery, Patrick A; Bierbach, David; Herrmann, Nina; Schulte, Matthias; Arias-Rodriguez, Lenin; Rimber Indy, Jeane; Passow, Courtney; Tobler, Michael

    2013-09-01

    We investigated mechanisms of reproductive isolation in livebearing fishes (genus Poecilia) inhabiting sulfidic and nonsulfidic habitats in three replicate river drainages. Although sulfide spring fish convergently evolved divergent phenotypes, it was unclear if mechanisms of reproductive isolation also evolved convergently. Using microsatellites, we found strongly reduced gene flow between adjacent populations from different habitat types, suggesting that local adaptation to sulfidic habitats repeatedly caused the emergence of reproductive isolation. Reciprocal translocation experiments indicate strong selection against immigrants into sulfidic waters, but also variation among drainages in the strength of selection against immigrants into nonsulfidic waters. Mate choice experiments revealed the evolution of assortative mating preferences in females from nonsulfidic but not from sulfidic habitats. The inferred strength of sexual selection against immigrants (RI(s)) was negatively correlated with the strength of natural selection (RI(m)), a pattern that could be attributed to reinforcement, whereby natural selection strengthens behavioral isolation due to reduced hybrid fitness. Overall, reproductive isolation and genetic differentiation appear to be replicated and direct consequences of local adaptation to sulfide spring environments, but the relative contributions of different mechanisms of reproductive isolation vary across these evolutionarily independent replicates, highlighting both convergent and nonconvergent evolutionary trajectories of populations in each drainage. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  6. A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations.

    PubMed

    Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L

    2013-05-01

    The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions.

  7. Replicator dynamics with turnover of players

    NASA Astrophysics Data System (ADS)

    Juul, Jeppe; Kianercy, Ardeshir; Bernhardsson, Sebastian; Pigolotti, Simone

    2013-08-01

    We study adaptive dynamics in games where players abandon the population at a given rate and are replaced by naive players characterized by a prior distribution over the admitted strategies. We demonstrate how such a process leads macroscopically to a variant of the replicator equation, with an additional term accounting for player turnover. We study how Nash equilibria and the dynamics of the system are modified by this additional term for prototypical examples such as the rock-paper-scissors game and different classes of two-action games played between two distinct populations. We conclude by showing how player turnover can account for nontrivial departures from Nash equilibria observed in data from lowest unique bid auctions.

  8. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication

    PubMed Central

    Zhang, Alice Tianbu; Langley, Alexander R.; Christov, Christo P.; Kheir, Eyemen; Shafee, Thomas; Gardiner, Timothy J.; Krude, Torsten

    2011-01-01

    Non-coding Y RNAs are required for the initiation of chromosomal DNA replication in mammalian cells. It is unknown how they perform this function or if they associate with a nuclear structure during DNA replication. Here, we investigate the association of Y RNAs with chromatin and their interaction with replication proteins during DNA replication in a human cell-free system. Our results show that fluorescently labelled Y RNAs associate with unreplicated euchromatin in late G1 phase cell nuclei before the initiation of DNA replication. Following initiation, Y RNAs are displaced locally from nascent and replicated DNA present in replication foci. In intact human cells, a substantial fraction of endogenous Y RNAs are associated with G1 phase nuclei, but not with G2 phase nuclei. Y RNAs interact and colocalise with the origin recognition complex (ORC), the pre-replication complex (pre-RC) protein Cdt1, and other proteins implicated in the initiation of DNA replication. These data support a molecular ‘catch and release’ mechanism for Y RNA function during the initiation of chromosomal DNA replication, which is consistent with Y RNAs acting as replication licensing factors. PMID:21610089

  9. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence.

    PubMed

    Brown, Robert W B; Sharma, Aabha I; Engman, David M

    2017-04-01

    Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.

  10. Effector-Triggered Self-Replication in Coupled Subsystems.

    PubMed

    Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren

    2017-11-13

    In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Links between genome replication and chromatin landscapes.

    PubMed

    Sequeira-Mendes, Joana; Gutierrez, Crisanto

    2015-07-01

    Post-embryonic organogenesis in plants requires the continuous production of cells in the organ primordia, their expansion and a coordinated exit to differentiation. Genome replication is one of the most important processes that occur during the cell cycle, as the maintenance of genomic integrity is of primary relevance for development. As it is chromatin that must be duplicated, a strict coordination occurs between DNA replication, the deposition of new histones, and the introduction of histone modifications and variants. In turn, the chromatin landscape affects several stages during genome replication. Thus, chromatin accessibility is crucial for the initial stages and to specify the location of DNA replication origins with different chromatin signatures. The chromatin landscape also determines the timing of activation during the S phase. Genome replication must occur fully, but only once during each cell cycle. The re-replication avoidance mechanisms rely primarily on restricting the availability of certain replication factors; however, the presence of specific histone modifications are also revealed as contributing to the mechanisms that avoid re-replication, in particular for heterochromatin replication. We provide here an update of genome replication mostly focused on data from Arabidopsis, and the advances that genomic approaches are likely to provide in the coming years. The data available, both in plants and animals, point to the relevance of the chromatin landscape in genome replication, and require a critical evaluation of the existing views about the nature of replication origins, the mechanisms of origin specification and the relevance of epigenetic modifications for genome replication. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  12. Origin of life in a digital microcosm

    NASA Astrophysics Data System (ADS)

    C G, Nitash; LaBar, Thomas; Hintze, Arend; Adami, Christoph

    2017-11-01

    While all organisms on Earth share a common descent, there is no consensus on whether the origin of the ancestral self-replicator was a one-off event or whether it only represented the final survivor of multiple origins. Here, we use the digital evolution system Avida to study the origin of self-replicating computer programs. By using a computational system, we avoid many of the uncertainties inherent in any biochemical system of self-replicators (while running the risk of ignoring a fundamental aspect of biochemistry). We generated the exhaustive set of minimal-genome self-replicators and analysed the network structure of this fitness landscape. We further examined the evolvability of these self-replicators and found that the evolvability of a self-replicator is dependent on its genomic architecture. We also studied the differential ability of replicators to take over the population when competed against each other, akin to a primordial-soup model of biogenesis, and found that the probability of a self-replicator outcompeting the others is not uniform. Instead, progenitor (most-recent common ancestor) genotypes are clustered in a small region of the replicator space. Our results demonstrate how computational systems can be used as test systems for hypotheses concerning the origin of life. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  13. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter.

    PubMed

    Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald; Zheng, Zhi-Ming

    2017-05-30

    The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P 811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis -acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. IMPORTANCE It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P 811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single-stranded oligonucleotides targeting the replication fork on either leading or lagging strands, we showed that viral lagging-strand replication activates the promoter. We also identified a transcriptional repressor element located upstream of the promoter transcription start site which interacts with cellular proteins hnRNP D0B and hnRNP A/B and modulates the late promoter activity. This is the first report on how DNA replication activates a viral late promoter. Copyright © 2017 Wang et al.

  14. Smoking-Associated Site-Specific Differential Methylation in Buccal Mucosa in the COPDGene Study

    PubMed Central

    Qiu, Weiliang; Carey, Vincent J.; Morrow, Jarrett; Bacherman, Helene; Foreman, Marilyn G.; Hokanson, John E.; Bowler, Russell P.; Crapo, James D.; DeMeo, Dawn L.

    2015-01-01

    DNA methylation is a complex, tissue-specific phenomenon that can reflect both endogenous factors and exogenous exposures. Buccal brushings represent an easily accessible source of DNA, which may be an appropriate surrogate tissue in the study of environmental exposures and chronic respiratory diseases. Buccal brushings were obtained from a subset of current and former smokers from the COPDGene study. Genome-wide DNA methylation data were obtained in the discovery cohort (n = 82) using the Illumina HumanMethylation450K array. Empirical Bayes methods were used to test for differential methylation by current smoking status at 468,219 autosomal CpG sites using linear models adjusted for age, sex, and race. Pyrosequencing was performed in a nonoverlapping replication cohort (n = 130). Current smokers were significantly younger than former smokers in both the discovery and replication cohorts. Seven CpG sites were associated with current smoking at a false discovery rate less than 0.05 in the discovery cohort. Six of the seven significant sites were pyrosequenced in the replication cohort; five CpG sites, including sites annotated to CYP1B1 and PARVA, were replicated. Correlations between cumulative smoke exposure and time since smoking cessation were observed in a subset of the significantly associated CpG sites. A significant correlation between reduced lung function and increased radiographic emphysema with methylation at cg02162897 (CYP1B1) was observed among female subjects. Site-specific methylation of DNA isolated from buccal mucosa is associated with exposure to cigarette smoke, and may provide insights into the mechanisms underlying differential susceptibility toward the development of smoking-related chronic respiratory diseases. PMID:25517428

  15. System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability*

    PubMed Central

    Xiao, Zhenyu; Chang, Jer-Gung; Hendriks, Ivo A.; Sigurðsson, Jón Otti; Olsen, Jesper V.; Vertegaal, Alfred C.O.

    2015-01-01

    Genotoxic agents can cause replication fork stalling in dividing cells because of DNA lesions, eventually leading to replication fork collapse when the damage is not repaired. Small Ubiquitin-like Modifiers (SUMOs) are known to counteract replication stress, nevertheless, only a small number of relevant SUMO target proteins are known. To address this, we have purified and identified SUMO-2 target proteins regulated by replication stress in human cells. The developed methodology enabled single step purification of His10-SUMO-2 conjugates under denaturing conditions with high yield and high purity. Following statistical analysis on five biological replicates, a total of 566 SUMO-2 targets were identified. After 2 h of hydroxyurea treatment, 10 proteins were up-regulated for SUMOylation and two proteins were down-regulated for SUMOylation, whereas after 24 h, 35 proteins were up-regulated for SUMOylation, and 13 proteins were down-regulated for SUMOylation. A site-specific approach was used to map over 1000 SUMO-2 acceptor lysines in target proteins. The methodology is generic and is widely applicable in the ubiquitin field. A large subset of these identified proteins function in one network that consists of interacting replication factors, transcriptional regulators, DNA damage response factors including MDC1, ATR-interacting protein ATRIP, the Bloom syndrome protein and the BLM-binding partner RMI1, the crossover junction endonuclease EME1, BRCA1, and CHAF1A. Furthermore, centromeric proteins and signal transducers were dynamically regulated by SUMOylation upon replication stress. Our results uncover a comprehensive network of SUMO target proteins dealing with replication damage and provide a framework for detailed understanding of the role of SUMOylation to counteract replication stress. Ultimately, our study reveals how a post-translational modification is able to orchestrate a large variety of different proteins to integrate different nuclear processes with the aim of dealing with the induced DNA damage. PMID:25755297

  16. Large Variations in HIV-1 Viral Load Explained by Shifting-Mosaic Metapopulation Dynamics

    PubMed Central

    Lythgoe, Katrina A.; Blanquart, François

    2016-01-01

    The viral population of HIV-1, like many pathogens that cause systemic infection, is structured and differentiated within the body. The dynamics of cellular immune trafficking through the blood and within compartments of the body has also received wide attention. Despite these advances, mathematical models, which are widely used to interpret and predict viral and immune dynamics in infection, typically treat the infected host as a well-mixed homogeneous environment. Here, we present mathematical, analytical, and computational results that demonstrate that consideration of the spatial structure of the viral population within the host radically alters predictions of previous models. We study the dynamics of virus replication and cytotoxic T lymphocytes (CTLs) within a metapopulation of spatially segregated patches, representing T cell areas connected by circulating blood and lymph. The dynamics of the system depend critically on the interaction between CTLs and infected cells at the within-patch level. We show that for a wide range of parameters, the system admits an unexpected outcome called the shifting-mosaic steady state. In this state, the whole body’s viral population is stable over time, but the equilibrium results from an underlying, highly dynamic process of local infection and clearance within T-cell centers. Notably, and in contrast to previous models, this new model can explain the large differences in set-point viral load (SPVL) observed between patients and their distribution, as well as the relatively low proportion of cells infected at any one time, and alters the predicted determinants of viral load variation. PMID:27706164

  17. Evaluation of hepatitis B virus replication and proteomic analysis of HepG2.2.15 cell line after cyclosporine A treatment.

    PubMed

    Xie, Hai-Yang; Xia, Wei-Liang; Zhang, Chun-Chao; Wu, Li-Ming; Ji, Hao-Feng; Cheng, Yu; Zheng, Shu-Sen

    2007-07-01

    The effect of cyclosporine A (CsA) on hepatitis B virus (HBV) replication was investigated, and proteomics expression differentiation after CsA treatment was studied in order to provide clues to explore the effect of CsA on HBV replication. Methyl thiazolyl tetrazolium (MTT) assay was used to evaluate the cytotoxicity of CsA. The HBV replication level in the HBV genomic DNA transfected HepG2.2.15 cell line was determined by an ELISA analysis of hepatitis B surface antigens (HBsAg) and Hepatitis B e antigens (HBeAg) in culture supernatant, while the intracellular HBV DNA replication level was analyzed by slot blot hybridization. Two-dimensional electrophoresis was used to investigate the alteration of protein expression in HepG2.2.15 after CsA treatment in vitro. The differentially-expressed proteins were identified by Matrix-assisted laser desorption/ionization-time of flight mass spectrometry combined with an online database search. CsA was able to inhibit the expression of HBsAg, HBeAg, and HBV DNA replication in vitro in a dose-dependent manner. A proteomics analysis indicated that the expression of 17 proteins changed significantly in the CsA treatment group compared to the control group. Eleven of the 17 proteins were identified, including the overexpression of eukaryotic translation initiation factors (eIF) 3k, otubain 1, 14.3.3 protein, eIF2-1 alpha, eIF5A, and the tyrosine 3/tryptophan 5-mono-oxygenase activation protein in CsA-treated HepG2.2.15 cells. The downregulation of the ferritin light subunit, erythrocyte cytosolic protein of 51 kDa (ECP-51), stathmin 1/oncoprotein, adenine phosphoribosyl-transferase, and the position of a tumor protein, translationally controlled 1, was shifted, suggesting it had undergone posttranslational modifications. Our study identified the inhibitory effect of CsA on HBV replication, and found that a group of proteins may be responsible for this inhibitory effect.

  18. The Human Papillomavirus Type 8 E6 Protein Interferes with NOTCH Activation during Keratinocyte Differentiation

    PubMed Central

    Meyers, Jordan M.; Spangle, Jennifer M.

    2013-01-01

    Cutaneous β-human papillomavirus (β-HPV) E6 proteins inhibit NOTCH signaling by associating with the transcriptional coactivator MAML1. NOTCH has tumor suppressor activities in epithelial cells and is activated during keratinocyte differentiation. Here we report that HPV type 8 (HPV8) E6 subverts NOTCH activation during keratinocyte differentiation by inhibiting RBPJ/MAML1 transcriptional activator complexes at NOTCH target DNA. NOTCH inhibition impairs epithelial differentiation and may thus contribute to β-HPV replication and viral oncogenesis. PMID:23365452

  19. Lymph Node Cellular and Viral Dynamics in Natural Hosts and Impact for HIV Cure Strategies.

    PubMed

    Huot, Nicolas; Bosinger, Steven E; Paiardini, Mirko; Reeves, R Keith; Müller-Trutwin, Michaela

    2018-01-01

    Combined antiretroviral therapies (cARTs) efficiently control HIV replication leading to undetectable viremia and drastic increases in lifespan of people living with HIV. However, cART does not cure HIV infection as virus persists in cellular and anatomical reservoirs, from which the virus generally rebounds soon after cART cessation. One major anatomical reservoir are lymph node (LN) follicles, where HIV persists through replication in follicular helper T cells and is also trapped by follicular dendritic cells. Natural hosts of SIV, such as African green monkeys and sooty mangabeys, generally do not progress to disease although displaying persistently high viremia. Strikingly, these hosts mount a strong control of viral replication in LN follicles shortly after peak viremia that lasts throughout infection. Herein, we discuss the potential interplay between viral control in LNs and the resolution of inflammation, which is characteristic for natural hosts. We furthermore detail the differences that exist between non-pathogenic SIV infection in natural hosts and pathogenic HIV/SIV infection in humans and macaques regarding virus target cells and replication dynamics in LNs. Several mechanisms have been proposed to be implicated in the strong control of viral replication in natural host's LNs, such as NK cell-mediated control, that will be reviewed here, together with lessons and limitations of in vivo cell depletion studies that have been performed in natural hosts. Finally, we discuss the impact that these insights on viral dynamics and host responses in LNs of natural hosts have for the development of strategies toward HIV cure.

  20. DNA replication origins—where do we begin?

    PubMed Central

    Prioleau, Marie-Noëlle; MacAlpine, David M.

    2016-01-01

    For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. PMID:27542827

  1. Rapid DNA replication origin licensing protects stem cell pluripotency

    PubMed Central

    Matson, Jacob Peter; Dumitru, Raluca; Coryell, Philip; Baxley, Ryan M; Chen, Weili; Twaroski, Kirk; Webber, Beau R; Tolar, Jakub; Bielinsky, Anja-Katrin; Purvis, Jeremy E

    2017-01-01

    Complete and robust human genome duplication requires loading minichromosome maintenance (MCM) helicase complexes at many DNA replication origins, an essential process termed origin licensing. Licensing is restricted to G1 phase of the cell cycle, but G1 length varies widely among cell types. Using quantitative single-cell analyses, we found that pluripotent stem cells with naturally short G1 phases load MCM much faster than their isogenic differentiated counterparts with long G1 phases. During the earliest stages of differentiation toward all lineages, MCM loading slows concurrently with G1 lengthening, revealing developmental control of MCM loading. In contrast, ectopic Cyclin E overproduction uncouples short G1 from fast MCM loading. Rapid licensing in stem cells is caused by accumulation of the MCM loading protein, Cdt1. Prematurely slowing MCM loading in pluripotent cells not only lengthens G1 but also accelerates differentiation. Thus, rapid origin licensing is an intrinsic characteristic of stem cells that contributes to pluripotency maintenance. PMID:29148972

  2. Differential virulence mechanisms of infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss) include host entry and virus replication kinetics

    USGS Publications Warehouse

    Penaranda, M.M.D.; Purcell, M.K.; Kurath, G.

    2009-01-01

    Host specificity is a phenomenon exhibited by all viruses. For the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV), differential specificity of virus strains from the U and M genogroups has been established both in the field and in experimental challenges. In rainbow trout (Oncorhynchus mykiss), M IHNV strains are consistently more prevalent and more virulent than U IHNV. The basis of the differential ability of these two IHNV genogroups to cause disease in rainbow trout was investigated in live infection challenges with representative U and M IHNV strains. When IHNV was delivered by intraperitoneal injection, the mortality caused by U IHNV increased, indicating that the low virulence of U IHNV is partly due to inefficiency in entering the trout host. Analyses of in vivo replication showed that U IHNV consistently had lower prevalence and lower viral load than M IHNV during the course of infection. In analyses of the host immune response, M IHNV-infected fish consistently had higher and longer expression of innate immune-related genes such as Mx-1. This suggests that the higher virulence of M IHNV is not due to suppression of the immune response in rainbow trout. Taken together, the results support a kinetics hypothesis wherein faster replication enables M IHNV to rapidly achieve a threshold level of virus necessary to override the strong host innate immune response. ?? 2009 SGM.

  3. The Human Cytomegalovirus Lytic Cycle Is Induced by 1,25-Dihydroxyvitamin D3 in Peripheral Blood Monocytes and in the THP-1 Monocytic Cell Line

    PubMed Central

    Wu, Shu-En; Miller, William E.

    2015-01-01

    Human cytomegalovirus (HCMV) resides in a latent form in hematopoietic progenitors and undifferentiated cells within the myeloid lineage. Maturation and differentiation along the myeloid lineage triggers lytic replication. Here, we used peripheral blood monocytes and the monocytic cell line THP-1 to investigate the effects of 1,25-dihydroxyvitamin D3 on HCMV replication. Interestingly, 1,25-dihydroxyvitamin D3 induces lytic replication marked by upregulation of HCMV gene expression and production of infectious virus. Moreover, we demonstrate that the effects of 1,25-dihydroxyvitamin D3 correlate with maturation/differentiation of the monocytes and not by directly stimulating the MIEP. These results are somewhat surprising as 1,25-dihydroxyvitamin D3 typically boosts immunity to bacteria and viruses rather than driving the infectious life cycle as it does for HCMV. Defining the signaling pathways kindled by 1,25-dihydroxyvitamin D3 will lead to a better understanding of the underlying molecular mechanisms that determine the fate of HCMV once it infects cells in the myeloid lineage. PMID:25965798

  4. Differential replication of Foot-and-mouth disease viruses in mice determine lethality.

    PubMed

    Cacciabue, Marco; García-Núñez, María Soledad; Delgado, Fernando; Currá, Anabella; Marrero, Rubén; Molinari, Paula; Rieder, Elizabeth; Carrillo, Elisa; Gismondi, María Inés

    2017-09-01

    Adult C57BL/6J mice have been used to study Foot-and-mouth disease virus (FMDV) biology. In this work, two variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and characterized: a non-lethal virus (A01NL) caused mild signs of disease, whereas a lethal virus (A01L) caused death within 24-48h independently of the dose used. Both viruses caused a systemic infection with pathological changes in the exocrine pancreas. Virus A01L reached higher viral loads in plasma and organs of inoculated mice as well as increased replication in an ovine kidney cell line. Complete consensus sequences revealed 6 non-synonymous changes between A01L and A10NL genomes that might be linked to replication differences, as suggested by in silico prediction studies. Our results highlight the biological significance of discrete genomic variations and reinforce the usefulness of this animal model to study viral determinants of lethality. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.

    PubMed

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2013-06-26

    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.

  6. Complex Dynamic Development of Poliovirus Membranous Replication Complexes

    PubMed Central

    Nair, Vinod; Hansen, Bryan T.; Hoyt, Forrest H.; Fischer, Elizabeth R.; Ehrenfeld, Ellie

    2012-01-01

    Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as “vesicles” are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses. PMID:22072780

  7. A complex mechanism determines polarity of DNA replication fork arrest by the replication terminator complex of Bacillus subtilis.

    PubMed

    Duggin, Iain G; Matthews, Jacqueline M; Dixon, Nicholas E; Wake, R Gerry; Mackay, Joel P

    2005-04-01

    Two dimers of the replication terminator protein (RTP) of Bacillus subtilis bind to a chromosomal DNA terminator site to effect polar replication fork arrest. Cooperative binding of the dimers to overlapping half-sites within the terminator is essential for arrest. It was suggested previously that polarity of fork arrest is the result of the RTP dimer at the blocking (proximal) side within the complex binding very tightly and the permissive-side RTP dimer binding relatively weakly. In order to investigate this "differential binding affinity" model, we have constructed a series of mutant terminators that contain half-sites of widely different RTP binding affinities in various combinations. Although there appeared to be a correlation between binding affinity at the proximal half-site and fork arrest efficiency in vivo for some terminators, several deviated significantly from this correlation. Some terminators exhibited greatly reduced binding cooperativity (and therefore have reduced affinity at each half-site) but were highly efficient in fork arrest, whereas one terminator had normal affinity over the proximal half-site, yet had low fork arrest efficiency. The results show clearly that there is no direct correlation between the RTP binding affinity (either within the full complex or at the proximal half-site within the full complex) and the efficiency of replication fork arrest in vivo. Thus, the differential binding affinity over the proximal and distal half-sites cannot be solely responsible for functional polarity of fork arrest. Furthermore, efficient fork arrest relies on features in addition to the tight binding of RTP to terminator DNA.

  8. Prenatal Exposure to Maternal Cigarette Smoking and DNA Methylation: Epigenome-Wide Association in a Discovery Sample of Adolescents and Replication in an Independent Cohort at Birth through 17 Years of Age

    PubMed Central

    Lee, Ken W.K.; Richmond, Rebecca; Hu, Pingzhao; French, Leon; Shin, Jean; Bourdon, Celine; Reischl, Eva; Waldenberger, Melanie; Zeilinger, Sonja; Gaunt, Tom; McArdle, Wendy; Ring, Susan; Woodward, Geoff; Bouchard, Luigi; Gaudet, Daniel; Smith, George Davey; Relton, Caroline; Paus, Tomas

    2014-01-01

    Background: Prenatal exposure to maternal cigarette smoking (prenatal smoke exposure) had been associated with altered DNA methylation (DNAm) at birth. Objective: We examined whether such alterations are present from birth through adolescence. Methods: We used the Infinium HumanMethylation450K BeadChip to search across 473,395 CpGs for differential DNAm associated with prenatal smoke exposure during adolescence in a discovery cohort (n = 132) and at birth, during childhood, and during adolescence in a replication cohort (n = 447). Results: In the discovery cohort, we found five CpGs in MYO1G (top-ranking CpG: cg12803068, p = 3.3 × 10–11) and CNTNAP2 (cg25949550, p = 4.0 × 10–9) to be differentially methylated between exposed and nonexposed individuals during adolescence. The CpGs in MYO1G and CNTNAP2 were associated, respectively, with higher and lower DNAm in exposed versus nonexposed adolescents. The same CpGs were differentially methylated at birth, during childhood, and during adolescence in the replication cohort. In both cohorts and at all developmental time points, the differential DNAm was in the same direction and of a similar magnitude, and was not altered appreciably by adjustment for current smoking by the participants or their parents. In addition, four of the five EWAS (epigenome-wide association study)–significant CpGs in the adolescent discovery cohort were also among the top sites of differential methylation in a previous birth cohort, and differential methylation of CpGs in CYP1A1, AHRR, and GFI1 observed in that study was also evident in our discovery cohort. Conclusions: Our findings suggest that modifications of DNAm associated with prenatal maternal smoking may persist in exposed offspring for many years—at least until adolescence. Citation: Lee KW, Richmond R, Hu P, French L, Shin J, Bourdon C, Reischl E, Waldenberger M, Zeilinger S, Gaunt T, McArdle W, Ring S, Woodward G, Bouchard L, Gaudet D, Davey Smith G, Relton C, Paus T, Pausova Z. 2015. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect 123:193–199; http://dx.doi.org/10.1289/ehp.1408614 PMID:25325234

  9. Reconciling NOx emissions reductions and ozone trends in the U.S., 2002–2006

    EPA Science Inventory

    Dynamic evaluation seeks to assess the ability of photochemical models to replicate changes in air quality as emissions and other conditions change. When a model fails to replicate an observed change, a key challenge is to discern whether the discrepancy is caused by errors in me...

  10. Reversal of DDK-Mediated MCM Phosphorylation by Rif1-PP1 Regulates Replication Initiation and Replisome Stability Independently of ATR/Chk1.

    PubMed

    Alver, Robert C; Chadha, Gaganmeet Singh; Gillespie, Peter J; Blow, J Julian

    2017-03-07

    Dbf4-dependent kinases (DDKs) are required for the initiation of DNA replication, their essential targets being the MCM2-7 proteins. We show that, in Xenopus laevis egg extracts and human cells, hyper-phosphorylation of DNA-bound Mcm4, but not phosphorylation of Mcm2, correlates with DNA replication. These phosphorylations are differentially affected by the DDK inhibitors PHA-767491 and XL413. We show that DDK-dependent MCM phosphorylation is reversed by protein phosphatase 1 (PP1) targeted to chromatin by Rif1. Loss of Rif1 increased MCM phosphorylation and the rate of replication initiation and also compromised the ability of cells to block initiation when challenged with replication inhibitors. We also provide evidence that Rif1 can mediate MCM dephosphorylation at replication forks and that the stability of dephosphorylated replisomes strongly depends on Chk1 activity. We propose that both replication initiation and replisome stability depend on MCM phosphorylation, which is maintained by a balance of DDK-dependent phosphorylation and Rif1-mediated dephosphorylation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Interest Profile Elevation, Big Five Personality Traits, and Secondary Constructs on the Self-Directed Search: A Replication and Extension

    ERIC Educational Resources Information Center

    Bullock, Emily E.; Reardon, Robert C.

    2008-01-01

    The study used the Self-Directed Search (SDS) and the NEO-FFI to explore profile elevation, four secondary constructs, and the Big Five personality factors in a sample of college students in a career course. Regression model results showed that openness, conscientiousness, differentiation high-low, differentiation Iachan, and consistency accounted…

  12. Differential replication of foot-and-mouth disease viruses in mice determine lethality

    USDA-ARS?s Scientific Manuscript database

    Adult C57BL/6J mice have been used to study foot-and-mouth disease virus (FMDV) biology. In this work, two variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and characterized: a non-lethal virus (A01NL) caused mild signs of disease, whereas a let...

  13. Role of Replication and CpG Methylation in Fragile X Syndrome CGG Deletions in Primate Cells

    PubMed Central

    Nichol Edamura, Kerrie; Leonard, Michelle R.; Pearson, Christopher E.

    2005-01-01

    Instability of the fragile X CGG repeat involves both maternally derived expansions and deletions in the gametes of full-mutation males. It has also been suggested that the absence of aberrant CpG methylation may enhance repeat deletions through an unknown process. The effect of CGG tract length, DNA replication direction, location of replication initiation, and CpG methylation upon CGG stability were investigated using an SV40 primate replication system. Replication-dependant deletions with 53 CGG repeats were observed when replication was initiated proximal to the repeat, with CGG as the lagging-strand template. When we initiated replication further from the repeat, while maintaining CGG as the lagging-strand template or using CCG as the lagging-strand template, significant instability was not observed. CpG methylation of the unstable template stabilized the repeat, decreasing both the frequency and the magnitude of deletion events. Furthermore, CpG methylation slowed the efficiency of replication for all templates. Interestingly, replication forks displayed no evidence of a block at the CGG repeat tract, regardless of replication direction or CpG methylation status. Templates with 20 CGG repeats were stable under all circumstances. These results reveal that CGG deletions occur during replication and are sensitive to replication-fork dynamics, tract length, and CpG methylation. PMID:15625623

  14. Actin homolog MreB affects chromosome segregation by regulating topoisomerase IV in Escherichia coli.

    PubMed

    Madabhushi, Ram; Marians, Kenneth J

    2009-01-30

    In Escherichia coli, topoisomerase IV, a type II topoisomerase, mediates the resolution of topological linkages between replicated daughter chromosomes and is essential for chromosome segregation. Topo IV activity is restricted to only a short interval late in the cell cycle. However, the mechanism that confers this temporal regulation is unknown. Here we report that the bacterial actin homolog MreB participates in the temporal oscillation of Topo IV activity. We show that mreB mutant strains are deficient in Topo IV activity. In addition, we demonstrate that, depending upon whether it is in a monomeric or polymerized state, MreB affects Topo IV activity differentially. In addition, MreB physically interacts with the ParC subunit of Topo IV. Together, these results may explain how dynamics of the bacterial cytoskeleton are coordinated with the timing of chromosome segregation.

  15. Single-cell tracking of flavivirus RNA uncovers species-specific interactions with the immune system dictating disease outcome

    PubMed Central

    Douam, Florian; Hrebikova, Gabriela; Albrecht, Yentli E. Soto; Sellau, Julie; Sharon, Yael; Ding, Qiang; Ploss, Alexander

    2017-01-01

    Positive-sense RNA viruses pose increasing health and economic concerns worldwide. Our limited understanding of how these viruses interact with their host and how these processes lead to virulence and disease seriously hampers the development of anti-viral strategies. Here, we demonstrate the tracking of (+) and (−) sense viral RNA at single-cell resolution within complex subsets of the human and murine immune system in different mouse models. Our results provide insights into how a prototypic flavivirus, yellow fever virus (YFV-17D), differentially interacts with murine and human hematopoietic cells in these mouse models and how these dynamics influence distinct outcomes of infection. We detect (−) YFV-17D RNA in specific secondary lymphoid compartments and cell subsets not previously recognized as permissive for YFV replication, and we highlight potential virus–host interaction events that could be pivotal in regulating flavivirus virulence and attenuation. PMID:28290449

  16. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae.

    PubMed

    Soriano, Ignacio; Morafraile, Esther C; Vázquez, Enrique; Antequera, Francisco; Segurado, Mónica

    2014-09-13

    Eukaryotic genomes are replicated during S phase according to a temporal program. Several determinants control the timing of origin firing, including the chromatin environment and epigenetic modifications. However, how chromatin structure influences the timing of the activation of specific origins is still poorly understood. By performing high-resolution analysis of genome-wide nucleosome positioning we have identified different chromatin architectures at early and late replication origins. These different patterns are already established in G1 and are tightly correlated with the organization of adjacent transcription units. Moreover, specific early and late nucleosomal patterns are fixed robustly, even in rpd3 mutants in which histone acetylation and origin timing have been significantly altered. Nevertheless, higher histone acetylation levels correlate with the local modulation of chromatin structure, leading to increased origin accessibility. In addition, we conducted parallel analyses of replication and nucleosome dynamics that revealed that chromatin structure at origins is modulated during origin activation. Our results show that early and late replication origins present distinctive nucleosomal configurations, which are preferentially associated to different genomic regions. Our data also reveal that origin structure is dynamic and can be locally modulated by histone deacetylation, as well as by origin activation. These data offer novel insight into the contribution of chromatin structure to origin selection and firing in budding yeast.

  17. SEE locomotor behavior test discriminates C57BL/6J and DBA/2J mouse inbred strains across laboratories and protocol conditions.

    PubMed

    Kafkafi, Neri; Lipkind, Dina; Benjamini, Yoav; Mayo, Cheryl L; Elmer, Gregory I; Golani, Ilan

    2003-06-01

    Conventional tests of behavioral phenotyping frequently have difficulties differentiating certain genotypes and replicating these differences across laboratories and protocol conditions. This study explores the hypothesis that automated tests can be designed to quantify ethologically relevant behavior patterns that more readily characterize heritable and replicable phenotypes. It used SEE (Strategy for the Exploration of Exploration) to phenotype the locomotor behavior of the C57BL/6 and DBA/2 mouse inbred strains across 3 laboratories. The 2 genotypes differed in 15 different measures of behavior, none of which had a significant genotype-laboratory interaction. Within the same laboratory, most of these differences were replicated in additional experiments despite the test photoperiod phase being changed and saline being injected. Results suggest that well-designed tests may considerably enhance replicability across laboratories.

  18. Getting the most out of RNA-seq data analysis.

    PubMed

    Khang, Tsung Fei; Lau, Ching Yee

    2015-01-01

    Background. A common research goal in transcriptome projects is to find genes that are differentially expressed in different phenotype classes. Biologists might wish to validate such gene candidates experimentally, or use them for downstream systems biology analysis. Producing a coherent differential gene expression analysis from RNA-seq count data requires an understanding of how numerous sources of variation such as the replicate size, the hypothesized biological effect size, and the specific method for making differential expression calls interact. We believe an explicit demonstration of such interactions in real RNA-seq data sets is of practical interest to biologists. Results. Using two large public RNA-seq data sets-one representing strong, and another mild, biological effect size-we simulated different replicate size scenarios, and tested the performance of several commonly-used methods for calling differentially expressed genes in each of them. We found that, when biological effect size was mild, RNA-seq experiments should focus on experimental validation of differentially expressed gene candidates. Importantly, at least triplicates must be used, and the differentially expressed genes should be called using methods with high positive predictive value (PPV), such as NOISeq or GFOLD. In contrast, when biological effect size was strong, differentially expressed genes mined from unreplicated experiments using NOISeq, ASC and GFOLD had between 30 to 50% mean PPV, an increase of more than 30-fold compared to the cases of mild biological effect size. Among methods with good PPV performance, having triplicates or more substantially improved mean PPV to over 90% for GFOLD, 60% for DESeq2, 50% for NOISeq, and 30% for edgeR. At a replicate size of six, we found DESeq2 and edgeR to be reasonable methods for calling differentially expressed genes at systems level analysis, as their PPV and sensitivity trade-off were superior to the other methods'. Conclusion. When biological effect size is weak, systems level investigation is not possible using RNAseq data, and no meaningful result can be obtained in unreplicated experiments. Nonetheless, NOISeq or GFOLD may yield limited numbers of gene candidates with good validation potential, when triplicates or more are available. When biological effect size is strong, NOISeq and GFOLD are effective tools for detecting differentially expressed genes in unreplicated RNA-seq experiments for qPCR validation. When triplicates or more are available, GFOLD is a sharp tool for identifying high confidence differentially expressed genes for targeted qPCR validation; for downstream systems level analysis, combined results from DESeq2 and edgeR are useful.

  19. Functional connectivity in replicated urban landscapes in the land snail (Cornu aspersum).

    PubMed

    Balbi, Manon; Ernoult, Aude; Poli, Pedro; Madec, Luc; Guiller, Annie; Martin, Marie-Claire; Nabucet, Jean; Beaujouan, Véronique; Petit, Eric J

    2018-03-01

    Urban areas are highly fragmented and thereby exert strong constraints on individual dispersal. Despite this, some species manage to persist in urban areas, such as the garden snail, Cornu aspersum, which is common in cityscapes despite its low mobility. Using landscape genetic approaches, we combined study area replication and multiscale analysis to determine how landscape composition, configuration and connectivity influence snail dispersal across urban areas. At the overall landscape scale, areas with a high percentage of roads decreased genetic differentiation between populations. At the population scale, genetic differentiation was positively linked with building surface, the proportion of borders where wooded patches and roads appeared side by side and the proportion of borders combining wooded patches and other impervious areas. Analyses based on pairwise genetic distances validated the isolation-by-distance and isolation-by-resistance models for this land snail, with an equal fit to least-cost paths and circuit-theory-based models. Each of the 12 landscapes analysed separately yielded specific relations to environmental features, whereas analyses integrating all replicates highlighted general common effects. Our results suggest that urban transport infrastructures facilitate passive snail dispersal. At a local scale, corresponding to active dispersal, unfavourable habitats (wooded and impervious areas) isolate populations. This work upholds the use of replicated landscapes to increase the generalizability of landscape genetics results and shows how multiscale analyses provide insight into scale-dependent processes. © 2018 John Wiley & Sons Ltd.

  20. In vivo dynamics of EBNA1-oriP interaction during latent and lytic replication of Epstein-Barr virus.

    PubMed

    Daikoku, Tohru; Kudoh, Ayumi; Fujita, Masatoshi; Sugaya, Yutaka; Isomura, Hiroki; Tsurumi, Tatsuya

    2004-12-24

    The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is required for maintenance of the viral genome DNA during the latent phase of EBV replication but continues to be synthesized after the induction of viral productive replication. An EBV genome-wide chromatin immunoprecipitation assay revealed that EBNA1 constantly binds to oriP of the EBV genome during not only latent but also lytic infection. Although the total levels of EBNA1 proved constant throughout the latter, the levels of the oriP-bound form were increased as lytic infection proceeded. EBV productive DNA replication occurs at discrete sites in nuclei, called replication compartments, where viral replication proteins are clustered. Confocal laser microscopic analyses revealed that whereas EBNA1 was distributed broadly in nuclei as fine punctate dots during the latent phase of infection, the protein became redistributed to the viral replication compartments and localized as distinct spots within and/or nearby the compartments after the induction of lytic replication. Taking these findings into consideration, oriP regions of the EBV genome might be organized by EBNA1 into replication domains that may set up scaffolding for lytic replication and transcription.

  1. Optimization of an RNA-Seq Differential Gene Expression Analysis Depending on Biological Replicate Number and Library Size

    PubMed Central

    Lamarre, Sophie; Frasse, Pierre; Zouine, Mohamed; Labourdette, Delphine; Sainderichin, Elise; Hu, Guojian; Le Berre-Anton, Véronique; Bouzayen, Mondher; Maza, Elie

    2018-01-01

    RNA-Seq is a widely used technology that allows an efficient genome-wide quantification of gene expressions for, for example, differential expression (DE) analysis. After a brief review of the main issues, methods and tools related to the DE analysis of RNA-Seq data, this article focuses on the impact of both the replicate number and library size in such analyses. While the main drawback of previous relevant studies is the lack of generality, we conducted both an analysis of a two-condition experiment (with eight biological replicates per condition) to compare the results with previous benchmark studies, and a meta-analysis of 17 experiments with up to 18 biological conditions, eight biological replicates and 100 million (M) reads per sample. As a global trend, we concluded that the replicate number has a larger impact than the library size on the power of the DE analysis, except for low-expressed genes, for which both parameters seem to have the same impact. Our study also provides new insights for practitioners aiming to enhance their experimental designs. For instance, by analyzing both the sensitivity and specificity of the DE analysis, we showed that the optimal threshold to control the false discovery rate (FDR) is approximately 2−r, where r is the replicate number. Furthermore, we showed that the false positive rate (FPR) is rather well controlled by all three studied R packages: DESeq, DESeq2, and edgeR. We also analyzed the impact of both the replicate number and library size on gene ontology (GO) enrichment analysis. Interestingly, we concluded that increases in the replicate number and library size tend to enhance the sensitivity and specificity, respectively, of the GO analysis. Finally, we recommend to RNA-Seq practitioners the production of a pilot data set to strictly analyze the power of their experimental design, or the use of a public data set, which should be similar to the data set they will obtain. For individuals working on tomato research, on the basis of the meta-analysis, we recommend at least four biological replicates per condition and 20 M reads per sample to be almost sure of obtaining about 1000 DE genes if they exist. PMID:29491871

  2. Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli.

    PubMed

    Bender, Brian J; Coen, Donald M; Strang, Blair L

    2014-10-01

    Protein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG colocalized with the viral single-stranded DNA binding protein UL57, but colocalization became less prominent as infection progressed. A portion of UL84FLAG also colocalized with the host nucleolar protein nucleolin at the peripheries of both replication compartments and nucleoli. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal coimmunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44, and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin. Importance: The protein-protein interactions among viral and cellular proteins required for replication of the human cytomegalovirus (HCMV) DNA genome are poorly understood. We sought to understand how an enigmatic HCMV protein critical for virus replication, UL84, localizes relative to other viral and cellular proteins required for HCMV genome replication and replicating viral DNA. We found that UL84 localizes with viral proteins, viral DNA, and the cellular nucleolar protein nucleolin in the subnuclear replication compartments in which viral DNA replication occurs. Unexpectedly, we also found localization of UL84 with nucleolin in nucleoli and showed that the presence of nucleolin is involved in localization of UL84 to the nucleus. These results add to previous work showing the importance of nucleolin in replication compartment architecture and viral DNA synthesis and are relevant to understanding UL84 function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question

    PubMed Central

    Koonin, Eugene V.; Starokadomskyy, Petro

    2016-01-01

    The question whether or not “viruses are alive” has caused considerable debate over many years. Yet, the question is effectively without substance because the answer depends entirely on the definition of life or the state of “being alive” that is bound to be arbitrary. In contrast, the status of viruses among biological entities is readily defined within the replicator paradigm. All biological replicators form a continuum along the selfishness-cooperativity axis, from the completely selfish to fully cooperative forms. Within this range, typical, lytic viruses represent the selfish extreme whereas temperate viruses and various mobile elements occupy positions closer to the middle of the range. Selfish replicators not only belong to the biological realm but are intrinsic to any evolving system of replicators. No such system can evolve without the emergence of parasites, and moreover, parasites drive the evolution of biological complexity at multiple levels. The history of life is a story of parasite-host coevolution that includes both the incessant arms race and various forms of cooperation. All organisms are communities of interacting, coevolving replicators of different classes. A complete theory of replicator coevolution remains to be developed, but it appears likely that not only the differentiation between selfish and cooperative replicators but the emergence of the entire range of replication strategies, from selfish to cooperative, is intrinsic to biological evolution. PMID:26965225

  4. Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach

    PubMed Central

    Joehanes, Roby; Liu, Chunyu; Aslibekyan, Stella; Demerath, Ellen W.; Guan, Weihua; Zhi, Degui; Willinger, Christine; Courchesne, Paul; Multhaup, Michael; Irvin, Marguerite R.; Schadt, Eric E.; Bressler, Jan; North, Kari; Sundström, Johan; Gustafsson, Stefan; Shah, Sonia; McRae, Allan F.; Harris, Sarah E.; Gibson, Jude; Redmond, Paul; Corley, Janie; Starr, John M.; Visscher, Peter M.; Wray, Naomi R.; Krauss, Ronald M.; Feinberg, Andrew; Fornage, Myriam; Pankow, James S.; Lind, Lars; Fox, Caroline; Ingelsson, Erik; Arnett, Donna K.; Boerwinkle, Eric; Liang, Liming; Levy, Daniel; Deary, Ian J.

    2017-01-01

    Background The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. Methods and Findings We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. Conclusions We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases. PMID:28095459

  5. Infection of epithelial cells with dengue virus promotes the expression of proteins favoring the replication of certain viral strains.

    PubMed

    Martínez-Betancur, Viviana; Marín-Villa, Marcel; Martínez-Gutierrez, Marlén

    2014-08-01

    Dengue virus (DENV) is the causative agent of dengue and severe dengue. To understand better the dengue virus-host interaction, it is important to determine how the expression of cellular proteins is modified due to infection. Therefore, a comparison of protein expression was conducted in Vero cells infected with two different DENV strains, both serotype 2: DENV-2/NG (associated with dengue) and DENV-2/16681 (associated with severe dengue). The viability of the infected cells was determined, and neither strain induced cell death at 48 hr. In addition, the viral genomes and infectious viral particles were quantified, and the genome of the DENV-2/16681 strain was determined to have a higher replication rate compared with the DENV-2/NG strain. Finally, the proteins from infected and uninfected cultures were separated using two-dimensional gel electrophoresis, and the differentially expressed proteins were identified by mass spectrometry. Compared with the uninfected controls, the DENV-2/NG- and DENV-2/16681-infected cultures had five and six differentially expressed proteins, respectively. The most important results were observed when the infected cultures were compared to each other (DENV-2/NG vs. DENV-2/16681), and 18 differentially expressed proteins were identified. Based on their cellular functions, many of these proteins were linked to the increase in the replication efficiency of DENV. Among the proteins were calreticulin, acetyl coenzyme A, acetyl transferase, and fatty acid-binding protein. It was concluded that the infection of Vero cells with DENV-2/NG or DENV-2/16681 differentially modifies the expression of certain proteins, which can, in turn, facilitate infection. © 2013 Wiley Periodicals, Inc.

  6. GC-Rich DNA Elements Enable Replication Origin Activity in the Methylotrophic Yeast Pichia pastoris

    PubMed Central

    Liachko, Ivan; Youngblood, Rachel A.; Tsui, Kyle; Bubb, Kerry L.; Queitsch, Christine; Raghuraman, M. K.; Nislow, Corey; Brewer, Bonita J.; Dunham, Maitreya J.

    2014-01-01

    The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins—a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation. PMID:24603708

  7. GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris.

    PubMed

    Liachko, Ivan; Youngblood, Rachel A; Tsui, Kyle; Bubb, Kerry L; Queitsch, Christine; Raghuraman, M K; Nislow, Corey; Brewer, Bonita J; Dunham, Maitreya J

    2014-03-01

    The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins--a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.

  8. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication

    PubMed Central

    Graindorge, Dany; Martineau, Sylvain; Machon, Christelle; Arnoux, Philippe; Guitton, Jérôme; Francesconi, Stefania; Frochot, Céline; Sage, Evelyne; Girard, Pierre-Marie

    2015-01-01

    UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen. PMID:26485711

  9. Oscillatory Protein Expression Dynamics Endows Stem Cells with Robust Differentiation Potential

    PubMed Central

    Kaneko, Kunihiko

    2011-01-01

    The lack of understanding of stem cell differentiation and proliferation is a fundamental problem in developmental biology. Although gene regulatory networks (GRNs) for stem cell differentiation have been partially identified, the nature of differentiation dynamics and their regulation leading to robust development remain unclear. Herein, using a dynamical system modeling cell approach, we performed simulations of the developmental process using all possible GRNs with a few genes, and screened GRNs that could generate cell type diversity through cell-cell interactions. We found that model stem cells that both proliferated and differentiated always exhibited oscillatory expression dynamics, and the differentiation frequency of such stem cells was regulated, resulting in a robust number distribution. Moreover, we uncovered the common regulatory motifs for stem cell differentiation, in which a combination of regulatory motifs that generated oscillatory expression dynamics and stabilized distinct cellular states played an essential role. These findings may explain the recently observed heterogeneity and dynamic equilibrium in cellular states of stem cells, and can be used to predict regulatory networks responsible for differentiation in stem cell systems. PMID:22073296

  10. In vivo intratumoral Epstein-Barr virus replication is associated with XBP1 activation and early-onset post-transplant lymphoproliferative disorders with prognostic implications.

    PubMed

    Gonzalez-Farre, Blanca; Rovira, Jordina; Martinez, Daniel; Valera, Alexandra; Garcia-Herrera, Adriana; Marcos, Maria Angeles; Sole, Carla; Roue, Gael; Colomer, Dolors; Gonzalvo, Elena; Ribera-Cortada, Imma; Araya, Monica; Lloreta, Josep; Colomo, Luis; Campo, Elias; Lopez-Guillermo, Armando; Martinez, Antonio

    2014-12-01

    Post-transplant lymphoproliferative disorders are life-threatening complications following hematopoietic or solid organ transplantation. They represent a spectrum of mostly EBV-driven lymphoplasmacytic proliferations. While the oncogenic effect of EBV is related to latent infection, lytic infection also has a role in lymphomagenesis. In vitro, EBV replication is linked to plasma cell differentiation and XBP1 activation, although this phenomenon has never been addressed in vivo. We analyzed for the first time latent and lytic intratumoral EBV infection in a series of 35 adult patients with a diagnosis of post-transplant lymphoproliferative disorder (26M/9F, median age 54 years). A complete EBV study was performed including the analysis of the latent EBER, latent membrane protein-11, and EBV nuclear antigens as well as the immediate-early BZLF1/ZEBRA and early BMRF1/EADE31 lytic genes. XBP1 activation was assessed by nuclear protein expression. EBV infection was observed in 28 (80%) cases being latency II and III the most frequently observed 22 (79%). Intratumoral EBV replication was detected in 17 (60%) cases. Among these, XBP1 activation was observed in 11/12 evaluable cases associated with strong cytoplasmic immunoglobulin expression consistent with plasma cell differentiation. Intriguingly, the combination of latency III infection and EBV replication identified a high-risk subgroup of patients with significantly shorter survival (overall survival at 1 year 18% vs 48%) and early-onset (median of 7 vs 26 months) post-transplant lymphoproliferative disorder. Moreover, these patients appear to be more heavily immunosuppressed, so they exhibit lower rates of rejection and graft vs host disease but higher rates of cytomegalovirus reactivation. In conclusion, EBV replication is associated with plasma cell differentiation and XBP1 activation with prognostic implications. Both latency III and lytic EBV infection are related to aggressive and early-onset post-transplant lymphoproliferative disorder. These results suggest that immunohistochemical study of latent and lytic EBV genes in the clinical practice may help to select higher-risk patients to new therapies including antiviral treatments.

  11. Speculation and replication in temperature accelerated dynamics

    DOE PAGES

    Zamora, Richard J.; Perez, Danny; Voter, Arthur F.

    2018-02-12

    Accelerated Molecular Dynamics (AMD) is a class of MD-based algorithms for the long-time scale simulation of atomistic systems that are characterized by rare-event transitions. Temperature-Accelerated Dynamics (TAD), a traditional AMD approach, hastens state-to-state transitions by performing MD at an elevated temperature. Recently, Speculatively-Parallel TAD (SpecTAD) was introduced, allowing the TAD procedure to exploit parallel computing systems by concurrently executing in a dynamically generated list of speculative future states. Although speculation can be very powerful, it is not always the most efficient use of parallel resources. In this paper, we compare the performance of speculative parallelism with a replica-based technique, similarmore » to the Parallel Replica Dynamics method. A hybrid SpecTAD approach is also presented, in which each speculation process is further accelerated by a local set of replicas. Finally and overall, this work motivates the use of hybrid parallelism whenever possible, as some combination of speculation and replication is typically most efficient.« less

  12. Speculation and replication in temperature accelerated dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Richard J.; Perez, Danny; Voter, Arthur F.

    Accelerated Molecular Dynamics (AMD) is a class of MD-based algorithms for the long-time scale simulation of atomistic systems that are characterized by rare-event transitions. Temperature-Accelerated Dynamics (TAD), a traditional AMD approach, hastens state-to-state transitions by performing MD at an elevated temperature. Recently, Speculatively-Parallel TAD (SpecTAD) was introduced, allowing the TAD procedure to exploit parallel computing systems by concurrently executing in a dynamically generated list of speculative future states. Although speculation can be very powerful, it is not always the most efficient use of parallel resources. In this paper, we compare the performance of speculative parallelism with a replica-based technique, similarmore » to the Parallel Replica Dynamics method. A hybrid SpecTAD approach is also presented, in which each speculation process is further accelerated by a local set of replicas. Finally and overall, this work motivates the use of hybrid parallelism whenever possible, as some combination of speculation and replication is typically most efficient.« less

  13. Differentiated strategies for improving streaming service quality

    NASA Astrophysics Data System (ADS)

    An, Hui; Chen, Xin-Meng

    2005-02-01

    With the explosive growth of streaming services, users are becoming more and more sensitive to its quality of service. To handle these problems, the research community focuses of the application of caching and replication techniques. But most approaches try to find specific strategies of caching of replication that suit for streaming service characteristics and to design some kind of universal policy to deal with all streaming objects. This paper explores the combination of caching and replication for improving streaming service quality and demonstrates that it makes sense to incorporate two technologies. It provides a system model and discusses some related issues of how to determining a refreshable streaming object and which refreshment policies a refreshable object should use.

  14. Around and beyond 53BP1 Nuclear Bodies.

    PubMed

    Fernandez-Vidal, Anne; Vignard, Julien; Mirey, Gladys

    2017-12-05

    Within the nucleus, sub-nuclear domains define territories where specific functions occur. Nuclear bodies (NBs) are dynamic structures that concentrate nuclear factors and that can be observed microscopically. Recently, NBs containing the p53 binding protein 1 (53BP1), a key component of the DNA damage response, were defined. Interestingly, 53BP1 NBs are visualized during G1 phase, in daughter cells, while DNA damage was generated in mother cells and not properly processed. Unlike most NBs involved in transcriptional processes, replication has proven to be key for 53BP1 NBs, with replication stress leading to the formation of these large chromatin domains in daughter cells. In this review, we expose the composition and organization of 53BP1 NBs and focus on recent findings regarding their regulation and dynamics. We then concentrate on the importance of the replication stress, examine the relation of 53BP1 NBs with DNA damage and discuss their dysfunction.

  15. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression

    PubMed Central

    Aze, Antoine; Sannino, Vincenzo; Soffientini, Paolo; Bachi, Angela; Costanzo, Vincenzo

    2016-01-01

    Half of human genome is made of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using Bacterial Artificial Chromosomes (BACs) in Xenopus laevis egg extract. Using this approach we characterized chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication dependent enrichment of a network of DNA repair factors among which the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to inability of single stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of Topoisomerase I dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications on our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions. PMID:27111843

  16. DNA replication origins-where do we begin?

    PubMed

    Prioleau, Marie-Noëlle; MacAlpine, David M

    2016-08-01

    For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. © 2016 Prioleau and MacAlpine; Published by Cold Spring Harbor Laboratory Press.

  17. Differential Equation Models for Sharp Threshold Dynamics

    DTIC Science & Technology

    2012-08-01

    dynamics, and the Lanchester model of armed conflict, where the loss of a key capability drastically changes dynamics. We derive and demonstrate a step...dynamics using differential equations. 15. SUBJECT TERMS Differential Equations, Markov Population Process, S-I-R Epidemic, Lanchester Model 16...infection, where a detection event drastically changes dynamics, and the Lanchester model of armed conflict, where the loss of a key capability

  18. Judging rolling wheels: Dynamic and kinematic aspects of rotation-translation coupling

    NASA Technical Reports Server (NTRS)

    Hecht, Heiko

    1993-01-01

    Four experiments were carried out to investigate observers' abilities to judge rolling motions. The experiments were designed to assess whether two important aspects of such motions are appreciated: the kinematic coupling of rotation and translation, and the dynamic effects of gravity. Different motion contexts of rolling wheels were created using computer-generated displays. The first experiment involved wheels rolling down an inclined plane. Observers spontaneously appreciated the anomaly of wheels that failed to accelerate, but they were not able to differentiate between different acceleration functions. Moreover, their judgements were almost exclusively based on the translation component of the rolling motion, neglecting the rotation component. In a second experiment it was found that observers could accurately estimate the perimeter of various objects. Thus, their inability to consider rotation information is not attributable to misperceptions of the geometry of wheels. In a third experiment the finding that rolling wheels appear to overrotate was replicated; however, findings from this experiment also showed, together with those from a fourth experiment, that observers are able to make very accurate judgments about translation-rotation coupling in rolling wheels when information is provided about the orientation of the wheel and the texture of the surface on which it rolls.

  19. Judging rolling wheels: dynamic and kinematic aspects of rotation-translation coupling.

    PubMed

    Hecht, H

    1993-01-01

    Four experiments were carried out to investigate observers' abilities to judge rolling motions. The experiments were designed to assess whether two important aspects of such motions are appreciated: the kinematic coupling of rotation and translation, and the dynamic effects of gravity. Different motion contexts of rolling wheels were created using computer-generated displays. The first experiment involved wheels rolling down an inclined plane. Observers spontaneously appreciated the anomaly of wheels that failed to accelerate, but they were not able to differentiate between different acceleration functions. Moreover, their judgments were almost exclusively based on the translation component of the rolling motion, neglecting the rotation component. In a second experiment it was found that observers could accurately estimate the perimeter of various objects. Thus, their inability to consider rotation information is not attributable to misperceptions of the geometry of wheels. In a third experiment the finding that rolling wheels appear to overrotate was replicated; however, findings from this experiment also showed, together with those from a fourth experiment, that observers are able to make very accurate judgments about translation-rotation coupling in rolling wheels when information is provided about the orientation of the wheel and the texture of the surface on which it rolls.

  20. Dynamics of DNA replication during premeiosis and early meiosis in wheat.

    PubMed

    Rey, María-Dolores; Prieto, Pilar

    2014-01-01

    Meiosis is a specialised cell division that involves chromosome replication, two rounds of chromosome segregation and results in the formation of the gametes. Meiotic DNA replication generally precedes chromosome pairing, recombination and synapsis in sexually developing eukaryotes. In this work, replication has been studied during premeiosis and early meiosis in wheat using flow cytometry, which has allowed the quantification of the amount of DNA in wheat anther in each phase of the cell cycle during premeiosis and each stage of early meiosis. Flow cytometry has been revealed as a suitable and user-friendly tool to detect and quantify DNA replication during early meiosis in wheat. Chromosome replication was detected in wheat during premeiosis and early meiosis until the stage of pachytene, when chromosomes are associated in pairs to further recombine and correctly segregate in the gametes. In addition, the effect of the Ph1 locus, which controls chromosome pairing and affects replication in wheat, was also studied by flow cytometry. Here we showed that the Ph1 locus plays an important role on the length of meiotic DNA replication in wheat, particularly affecting the rate of replication during early meiosis in wheat.

  1. Dynamics of DNA Replication during Premeiosis and Early Meiosis in Wheat

    PubMed Central

    Rey, María-Dolores; Prieto, Pilar

    2014-01-01

    Meiosis is a specialised cell division that involves chromosome replication, two rounds of chromosome segregation and results in the formation of the gametes. Meiotic DNA replication generally precedes chromosome pairing, recombination and synapsis in sexually developing eukaryotes. In this work, replication has been studied during premeiosis and early meiosis in wheat using flow cytometry, which has allowed the quantification of the amount of DNA in wheat anther in each phase of the cell cycle during premeiosis and each stage of early meiosis. Flow cytometry has been revealed as a suitable and user-friendly tool to detect and quantify DNA replication during early meiosis in wheat. Chromosome replication was detected in wheat during premeiosis and early meiosis until the stage of pachytene, when chromosomes are associated in pairs to further recombine and correctly segregate in the gametes. In addition, the effect of the Ph1 locus, which controls chromosome pairing and affects replication in wheat, was also studied by flow cytometry. Here we showed that the Ph1 locus plays an important role on the length of meiotic DNA replication in wheat, particularly affecting the rate of replication during early meiosis in wheat. PMID:25275307

  2. Rapid evolution leads to differential population dynamics and top-down control in resurrected Daphnia populations.

    PubMed

    Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc

    2018-01-01

    There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.

  3. Corridors and olfactory predator cues affect small mammal behavior.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkerhoff, Robert Jory; Haddad, Nick M.; Orrock, John L.

    2005-03-30

    Abstract The behavior of prey individuals is influenced by a variety of factors including, but not limited to, habitat configuration, risk of predation, and availability of resources, and these habitat-dependent factors may have interactive effects. We studied the responses of mice to an increase in perceived predation risk in a patchy environment to understand how habitat corridors might affect interactions among species in a fragmented landscape. We used a replicated experiment to investigate corridor-mediated prey responses to predator cues in a network of open habitat patches surrounded by a matrix of planted pine forest. Some of the patches were connectedmore » by corridors. We used mark–recapture techniques and foraging trays to monitor the movement, behavior, and abundance of small mammals. Predation threat was manipulated in one-half of the replicates by applying an olfactory predator cue. Corridors synchronized small mammal foraging activity among connected patches. Foraging also was inhibited in the presence of an olfactory predator cue but apparently increased in adjacent connected patches. Small mammal abundance did not change as a result of the predator manipulation and was not influenced by the presence of corridors. This study is among the 1st to indicate combined effects of landscape configuration and predation risk on prey behavior. These changes in prey behavior may, in turn, have cascading effects on community dynamics where corridors and differential predation risk influence movement and patch use.« less

  4. Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity

    PubMed Central

    2013-01-01

    Background As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. Methods To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. Results We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. Conclusion Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents. PMID:24298994

  5. Quantitative Proteomic Analysis of Replicative and Nonreplicative Forms Reveals Important Insights into Chromatin Biology of Trypanosoma cruzi*

    PubMed Central

    Leandro de Jesus, Teresa Cristina; Calderano, Simone Guedes; Vitorino, Francisca Nathalia de Luna; Llanos, Ricardo Pariona; Lopes, Mariana de Camargo; de Araújo, Christiane Bezerra; Thiemann, Otavio Henrique; Reis, Marcelo da Silva; Elias, Maria Carolina

    2017-01-01

    Chromatin associated proteins are key regulators of many important processes in the cell. Trypanosoma cruzi, a protozoa flagellate that causes Chagas disease, alternates between replicative and nonreplicative forms accompanied by a shift on global transcription levels and by changes in its chromatin architecture. Here, we investigated the T. cruzi chromatin proteome using three different protocols and compared it between replicative (epimastigote) and nonreplicative (trypomastigote) forms by high-resolution mass spectrometry. More than 2000 proteins were identified and quantified both in chromatin and nonchromatin extracts. Besides histones and other known nuclear proteins, trypanosomes chromatin also contains metabolic (mainly from carbohydrate pathway), cytoskeleton and many other proteins with unknown functions. Strikingly, the two parasite forms differ greatly regarding their chromatin-associated factors composition and amount. Although the nucleosome content is the same for both life forms (as seen by MNase digestion), the remaining proteins were much less detected in nonreplicative forms, suggesting that they have a naked chromatin. Proteins associated to DNA proliferation, such as PCNA, RPA, and DNA topoisomerases were exclusively found in the chromatin of replicative stages. On the other hand, the nonreplicative stages have an enrichment of a histone H2B variant. Furthermore, almost 20% of replicative stages chromatin-associated proteins are expressed in nonreplicative forms, but located at nonchromatin space. We identified different classes of proteins including phosphatases and a Ran-binding protein, that may shuttle between chromatin and nonchromatin space during differentiation. Seven proteins, including those with unknown functions, were selected for further validation. We confirmed their location in chromatin and their differential expression, using Western blotting assays and chromatin immunoprecipitation (ChIP). Our results indicate that the replicative state in trypanosomes involves an increase of chromatin associated proteins content. We discuss in details, the qualitative and quantitative implication of this chromatin set in trypanosome chromatin biology. Because trypanosomes are early-branching organisms, this data can boost our understanding of chromatin-associated processes in other cell types. PMID:27852749

  6. Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells.

    PubMed

    Casanova, Alain; Low, Shyan H; Emmenlauer, Mario; Conde-Alvarez, Raquel; Salcedo, Suzana P; Gorvel, Jean-Pierre; Dehio, Christoph

    2016-08-05

    Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular bacteria based on the GFP signal, with only intracellular bacteria being able to express GFP. This allows the robust detection of single intracellular bacteria before intracellular proliferation is initiated.

  7. Interplay between Selenium Levels and Replicative Senescence in WI-38 Human Fibroblasts: A Proteomic Approach.

    PubMed

    Hammad, Ghania; Legrain, Yona; Touat-Hamici, Zahia; Duhieu, Stéphane; Cornu, David; Bulteau, Anne-Laure; Chavatte, Laurent

    2018-01-20

    Selenoproteins are essential components of antioxidant defense, redox homeostasis, and cell signaling in mammals, where selenium is found in the form of a rare amino acid, selenocysteine. Selenium, which is often limited both in food intake and cell culture media, is a strong regulator of selenoprotein expression and selenoenzyme activity. Aging is a slow, complex, and multifactorial process, resulting in a gradual and irreversible decline of various functions of the body. Several cellular aspects of organismal aging are recapitulated in the replicative senescence of cultured human diploid fibroblasts, such as embryonic lung fibroblast WI-38 cells. We previously reported that the long-term growth of young WI-38 cells with high (supplemented), moderate (control), or low (depleted) concentrations of selenium in the culture medium impacts their replicative lifespan, due to rapid changes in replicative senescence-associated markers and signaling pathways. In order to gain insight into the molecular link between selenium levels and replicative senescence, in the present work, we have applied a quantitative proteomic approach based on 2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE) to the study of young and presenescent cells grown in selenium-supplemented, control, or depleted media. Applying a restrictive cut-off (spot intensity ±50% and a p value < 0.05) to the 2D-DIGE analyses revealed 81 differentially expressed protein spots, from which 123 proteins of interest were identified by mass spectrometry. We compared the changes in protein abundance for three different conditions: (i) spots varying between young and presenescent cells, (ii) spots varying in response to selenium concentration in young cells, and (iii) spots varying in response to selenium concentration in presenescent cells. Interestingly, a 72% overlap between the impact of senescence and selenium was observed in our proteomic results, demonstrating a strong interplay between selenium, selenoproteins, and replicative senescence.

  8. Cancer Terminator Viruses and Approaches for Enhancing Therapeutic Outcomes

    PubMed Central

    Das, Swadesh K.; Sarkar, Siddik; Dash, Rupesh; Dent, Paul; Wang, Xiang-Yang; Sarkar, Devanand; Fisher, Paul B.

    2015-01-01

    No single or combinatorial therapeutic approach has proven effective in decreasing morbidity or engendering a cure of metastatic cancer. In principle, conditionally replication-competent adenoviruses that induce tumor oncolysis through cancer-specific replication hold promise for cancer therapy. However, a single-agent approach may not be adequate to completely eradicate cancer in a patient because most cancers arise from abnormalities in multiple genetic and signal transduction pathways and targeting disseminated metastases is difficult to achieve. Based on these considerations, a novel class of cancer destroying adenoviruses have been produced, cancer terminator viruses (CTVs), in which cancer-specific replication is controlled by the progression-elevated gene-3 promoter and replicating viruses produce a second transgene encoding an apoptosis-inducing and immunomodulatory cytokine, either melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) or interferon-γ. This review focuses on these viruses and ways to improve their delivery systemically and enhance their therapeutic efficacy. PMID:23021240

  9. Development and application of a Controlled Release Facility (CRF) to validate flux quantifying methodologies.

    NASA Astrophysics Data System (ADS)

    Helmore, Jonathan

    2017-04-01

    The National Physical Laboratory, the UK's National Measurement Institute, has developed a novel facility capable of replicating the gaseous emission flux characteristics of a variety of real-word scenarios as may be found in small to medium scale industry and agriculture. The Controlled Release Facility (CRF) can be used to challenge conventional remote sensing techniques, as well as validate new Unmanned Aerial Vehicle (UAV) and distributed sensor network based methods, for source identification and flux calculation. The CRF method will be described and the results from three case studies will be discussed: The replication of an operational on-shore shale gas well using emissions of natural gas to atmosphere and measurements using Differential Absorption LIDAR (DIAL); the replication of fugitive volatile organic compounds emissions from a petrochemical unit and measurements using DIAL; and the replication of methane and carbon dioxide emissions from landfill and measurements using both fixed wing and multi-rotor UAVs.

  10. The sequence of the CA-SP1 junction accounts for the differential sensitivity of HIV-1 and SIV to the small molecule maturation inhibitor 3-O-{3',3'-dimethylsuccinyl}-betulinic acid.

    PubMed

    Zhou, Jing; Chen, Chin Ho; Aiken, Christopher

    2004-06-29

    Despite the effectiveness of currently available antiretroviral therapies in the treatment of HIV-1 infection, a continuing need exists for novel compounds that can be used in combination with existing drugs to slow the emergence of drug-resistant viruses. We previously reported that the small molecule 3-O-{3',3'-dimethylsuccinyl}-betulinic acid (DSB) specifically inhibits HIV-1 replication by delaying the processing of the CA-SP1 junction in Pr55Gag. By contrast, SIVmac239 replicates efficiently in the presence of high concentrations of DSB. To determine whether sequence differences in the CA-SP1 junction can fully account for the differential sensitivity of HIV-1 and SIV to DSB, we engineered mutations in this region of two viruses and tested their sensitivity to DSB in replication assays using activated human primary CD4+ T cells. Substitution of the P2 and P1 residues of HIV-1 by the corresponding amino acids of SIV resulted in strong resistance to DSB, but the mutant virus replicated with reduced efficiency. Conversely, replication of an SIV mutant containing three amino acid substitutions in the CA-SP1 cleavage site was highly sensitive to DSB, and the mutations resulted in delayed cleavage of the CA-SP1 junction in the presence of the drug. These results demonstrate that the CA-SP1 junction in Pr55Gag represents the primary viral target of DSB. They further suggest that the therapeutic application of DSB will be accompanied by emergence of mutant viruses that are highly resistant to the drug but which exhibit reduced fitness relative to wild type HIV-1.

  11. The monomeric, tetrameric, and fibrillar organization of Fib: the dynamic building block of the bacterial linear motor of Spiroplasma melliferum BC3.

    PubMed

    Cohen-Krausz, Sara; Cabahug, Pamela C; Trachtenberg, Shlomo

    2011-07-08

    Spiroplasmas belong to the class Mollicutes, representing the minimal, free-living, and self-replicating forms of life. Spiroplasmas are helical wall-less bacteria and the only ones known to swim by means of a linear motor (rather than the near-universal rotary bacterial motor). The linear motor follows the shortest path along the cell's helical membranal tube. The motor is composed of a flat monolayered ribbon of seven parallel fibrils and is believed to function in controlling cell helicity and motility through dynamic, coordinated, differential length changes in the fibrils. The latter cause local perturbations of helical symmetry, which are essential for net directional displacement in environments with a low Reynolds number. The underlying fibrils' core building block is a circular tetramer of the 59-kDa protein Fib. The fibrils' differential length changes are believed to be driven by molecular switching of Fib, leading consequently to axial ratio and length changes in tetrameric rings. Using cryo electron microscopy, diffractometry, single-particle analysis of isolated ribbons, and sequence analyses of Fib, we determined the overall molecular organization of the Fib monomer, tetramer, fibril, and linear motor of Spiroplasma melliferum BC3 that underlies cell geometry and motility. Fib appears to be a bidomained molecule, of which the N-terminal half is apparently a globular phosphorylase. By a combination of reversible rotation and diagonal shift of Fib monomers, the tetramer adopts either a cross-like nonhanded conformation or a ring-like handed conformation. The sense of Fib rotation may determine the handedness of the linear motor and, eventually, of the cell. A further change in the axial ratio of the ring-like tetramers controls fibril lengths and the consequent helical geometry. Analysis of tetramer quadrants from adjacent fibrils clearly demonstrates local differential fibril lengths. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Apparently low reproducibility of true differential expression discoveries in microarray studies.

    PubMed

    Zhang, Min; Yao, Chen; Guo, Zheng; Zou, Jinfeng; Zhang, Lin; Xiao, Hui; Wang, Dong; Yang, Da; Gong, Xue; Zhu, Jing; Li, Yanhui; Li, Xia

    2008-09-15

    Differentially expressed gene (DEG) lists detected from different microarray studies for a same disease are often highly inconsistent. Even in technical replicate tests using identical samples, DEG detection still shows very low reproducibility. It is often believed that current small microarray studies will largely introduce false discoveries. Based on a statistical model, we show that even in technical replicate tests using identical samples, it is highly likely that the selected DEG lists will be very inconsistent in the presence of small measurement variations. Therefore, the apparently low reproducibility of DEG detection from current technical replicate tests does not indicate low quality of microarray technology. We also demonstrate that heterogeneous biological variations existing in real cancer data will further reduce the overall reproducibility of DEG detection. Nevertheless, in small subsamples from both simulated and real data, the actual false discovery rate (FDR) for each DEG list tends to be low, suggesting that each separately determined list may comprise mostly true DEGs. Rather than simply counting the overlaps of the discovery lists from different studies for a complex disease, novel metrics are needed for evaluating the reproducibility of discoveries characterized with correlated molecular changes. Supplementaty information: Supplementary data are available at Bioinformatics online.

  13. [Poisons of DNA topoisomerases I and II].

    PubMed

    Charcosset, J Y; Soues, S; Laval, F

    1993-11-01

    Over the past decade, DNA topoisomerase I and II appeared to be the targets of some antitumor agents: CPT-11 and Topotecan derived from Camptothecin which interact with topoisomerase I; Actinomycin D, Adriamycin and Daunorubicin, Elliptinium Acetate, Mitoxantrone, Etoposide and Teniposide, Amsacrine which interact with topoisomerase II. The multiple functions of these enzymes are important as they play a role during replication, transcription, recombination, repair and chromatine organisation. Particularly, they relax torsional constraints which appear when intertwined DNA strands are separated while replication fork or RNA polymerases are moving. To some extent, topoisomerase I and II are structurally and functionally different. Moreover, topoisomerase I is not indispensable for a living cell whereas topoisomerase II is. Drug-topoisomerase interaction which probably leads to antitumoral effect of the compounds studied in this review is not a trivial inhibition of the enzyme but rather a poisoning due to stabilization of cleavable complexes between the enzyme and DNA. These stabilized complexes are likely to induce apoptosis-like programmed cell death, which is characterised by DNA fragmentation. However, it appears that it is the collision of the replication fork with the drug-stabilized cleavable complex that is responsible for the cytotoxicity of the drug: poisoning of topoisomerases by antitumor agents leads to a new concept of "dynamic toxicity". Although they interact with a common target, topoisomerase II poisons have differential effects on macromolecules syntheses, cell cycle and chromosome fragmentation; a few compounds may produce free radicals. Because of these differential effects in addition to quantitative and qualitative variations of stabilized cleavable complexes, in particular DNA sequences on which topoisomerase II is stabilized, these antitumor agents do not resemble each other. Cellular resistance to topoisomerases poisons results of two principal types of alteration: target and/or drug transport modification. Decreased ability to form the cleavable complex in resistant cells may be the consequence of both decreased amount of topoisomerase or altered enzyme. On the other hand, overexpression of membrane P-glycoprotein, which pumps drugs out of the cell by an energy dependent process provokes a decreased accumulation of these drugs. Cross resistances to other drugs are mainly under control of these two different mechanisms of resistance. A complete knowledge of their individual effects and mechanisms of resistance would allow a better clinical use of topoisomerases poisons, especially when administered in combination chemotherapy.

  14. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials.

    PubMed

    Kawasaki, Haruhisa; Guan, Jianjun; Tamama, Kenichi

    2010-07-02

    Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion. Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Differential expression of growth factors at the cellular level in virus-infected brain

    PubMed Central

    Prosniak, Mikhail; Zborek, Anna; Scott, Gwen S.; Roy, Anirban; Phares, Timothy W.; Koprowski, Hilary; Hooper, D. Craig

    2003-01-01

    The contribution of host factors to rabies virus (RV) transcription/replication and axonal/transsynaptic spread is largely unknown. We previously identified several host genes that are up-regulated in the mouse brain during RV infection, including neuroleukin, which is involved in neuronal growth and survival, cell motility, and differentiation, and fibroblast growth factor homologous factor 4 (FHF4), which has been implicated in limb and nervous system development. In this study, we used real-time quantitative RT-PCR to assess the expression of mRNAs specific for neuroleukin, the two isoforms of FHF4 (FHF4-1a and -1b) encoded by the FHF4 gene, and N protein of RV in neurons and astrocytes isolated by laser capture microdissection from mouse brains infected with the laboratory-adapted RV strain CVS-N2c or with a street RV of silver-haired bat origin. Differences in the gene expression patterns suggest that the capacity of RV strains to infect nonneuronal cells and differentially modulate host gene expression may be important in virus replication and spread in the CNS. PMID:12736376

  16. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Haruhisa; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210; Guan, Jianjun

    2010-07-02

    Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion.more » Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study.« less

  17. Ultra-Soft PDMS-Based Magnetoactive Elastomers as Dynamic Cell Culture Substrata

    PubMed Central

    Mayer, Matthias; Rabindranath, Raman; Börner, Juliane; Hörner, Eva; Bentz, Alexander; Salgado, Josefina; Han, Hong; Böse, Holger; Probst, Jörn; Shamonin, Mikhail; Monkman, Gareth J.; Schlunck, Günther

    2013-01-01

    Mechanical cues such as extracellular matrix stiffness and movement have a major impact on cell differentiation and function. To replicate these biological features in vitro, soft substrata with tunable elasticity and the possibility for controlled surface translocation are desirable. Here we report on the use of ultra-soft (Young’s modulus <100 kPa) PDMS-based magnetoactive elastomers (MAE) as suitable cell culture substrata. Soft non-viscous PDMS (<18 kPa) is produced using a modified extended crosslinker. MAEs are generated by embedding magnetic microparticles into a soft PDMS matrix. Both substrata yield an elasticity-dependent (14 vs. 100 kPa) modulation of α-smooth muscle actin expression in primary human fibroblasts. To allow for static or dynamic control of MAE material properties, we devise low magnetic field (≈40 mT) stimulation systems compatible with cell-culture environments. Magnetic field-instigated stiffening (14 to 200 kPa) of soft MAE enhances the spreading of primary human fibroblasts and decreases PAX-7 transcription in human mesenchymal stem cells. Pulsatile MAE movements are generated using oscillating magnetic fields and are well tolerated by adherent human fibroblasts. This MAE system provides spatial and temporal control of substratum material characteristics and permits novel designs when used as dynamic cell culture substrata or cell culture-coated actuator in tissue engineering applications or biomedical devices. PMID:24204603

  18. Mouse Norovirus infection promotes autophagy induction to facilitate replication but prevents final autophagosome maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Donnell, Tanya B.; Hyde, Jennifer L.; Mintern, Justine D.

    Autophagy is a cellular process used to eliminate intracellular pathogens. Many viruses however are able to manipulate this cellular process for their own advantage. Here we demonstrate that Mouse Norovirus (MNV) infection induces autophagy but does not appear to utilise the autophagosomal membrane for establishment and formation of the viral replication complex. We have observed that MNV infection results in lipidation and recruitment of LC3 to the autophagosome membrane but prevents subsequent fusion of the autophagosomes with lysosomes, as SQSTM1 (an autophagy receptor) accumulates and Lysosome-Associated Membrane Protein1 is sequestered to the MNV replication complex (RC) rather than to autophagosomes.more » We have additionally observed that chemical modulation of autophagy differentially affects MNV replication. From this study we can conclude that MNV infection induces autophagy, however suppresses the final maturation step of this response, indicating that autophagy induction contributes to MNV replication independently of RC biogenesis. - Highlights: • MNV induces autophagy in infected murine macrophages. • MNV does not utilise autophagosomal membranes for replication. • The MNV-induced autophagosomes do not fuse with lysosomes. • MNV sequesters SQSTM1 to prevent autophagy degradation and turnover. • Chemical modulation of autophagy enhances MNV replication.« less

  19. Multiseason occupancy models for correlated replicate surveys

    USGS Publications Warehouse

    Hines, James; Nichols, James D.; Collazo, Jaime

    2014-01-01

    Occupancy surveys collecting data from adjacent (sometimes correlated) spatial replicates have become relatively popular for logistical reasons. Hines et al. (2010) presented one approach to modelling such data for single-season occupancy surveys. Here, we present a multiseason analogue of this model (with corresponding software) for inferences about occupancy dynamics. We include a new parameter to deal with the uncertainty associated with the first spatial replicate for both single-season and multiseason models. We use a case study, based on the brown-headed nuthatch, to assess the need for these models when analysing data from the North American Breeding Bird Survey (BBS), and we test various hypotheses about occupancy dynamics for this species in the south-eastern United States. The new model permits inference about local probabilities of extinction, colonization and occupancy for sampling conducted over multiple seasons. The model performs adequately, based on a small simulation study and on results of the case study analysis. The new model incorporating correlated replicates was strongly favoured by model selection for the BBS data for brown-headed nuthatch (Sitta pusilla). Latitude was found to be an important source of variation in local colonization and occupancy probabilities for brown-headed nuthatch, with both probabilities being higher near the centre of the species range, as opposed to more northern and southern areas. We recommend this new occupancy model for detection–nondetection studies that use potentially correlated replicates.

  20. What Information Theory Says about Bounded Rational Best Response

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    Probability Collectives (PC) provides the information-theoretic extension of conventional full-rationality game theory to bounded rational games. Here an explicit solution to the equations giving the bounded rationality equilibrium of a game is presented. Then PC is used to investigate games in which the players use bounded rational best-response strategies. Next it is shown that in the continuum-time limit, bounded rational best response games result in a variant of the replicator dynamics of evolutionary game theory. It is then shown that for team (shared-payoff) games, this variant of replicator dynamics is identical to Newton-Raphson iterative optimization of the shared utility function.

  1. Evolutionary dynamics of giant viruses and their virophages.

    PubMed

    Wodarz, Dominik

    2013-07-01

    Giant viruses contain large genomes, encode many proteins atypical for viruses, replicate in large viral factories, and tend to infect protists. The giant virus replication factories can in turn be infected by so called virophages, which are smaller viruses that negatively impact giant virus replication. An example is Mimiviruses that infect the protist Acanthamoeba and that are themselves infected by the virophage Sputnik. This study examines the evolutionary dynamics of this system, using mathematical models. While the models suggest that the virophage population will evolve to increasing degrees of giant virus inhibition, it further suggests that this renders the virophage population prone to extinction due to dynamic instabilities over wide parameter ranges. Implications and conditions required to avoid extinction are discussed. Another interesting result is that virophage presence can fundamentally alter the evolutionary course of the giant virus. While the giant virus is predicted to evolve toward increasing its basic reproductive ratio in the absence of the virophage, the opposite is true in its presence. Therefore, virophages can not only benefit the host population directly by inhibiting the giant viruses but also indirectly by causing giant viruses to evolve toward weaker phenotypes. Experimental tests for this model are suggested.

  2. Evolutionary dynamics of giant viruses and their virophages

    PubMed Central

    Wodarz, Dominik

    2013-01-01

    Giant viruses contain large genomes, encode many proteins atypical for viruses, replicate in large viral factories, and tend to infect protists. The giant virus replication factories can in turn be infected by so called virophages, which are smaller viruses that negatively impact giant virus replication. An example is Mimiviruses that infect the protist Acanthamoeba and that are themselves infected by the virophage Sputnik. This study examines the evolutionary dynamics of this system, using mathematical models. While the models suggest that the virophage population will evolve to increasing degrees of giant virus inhibition, it further suggests that this renders the virophage population prone to extinction due to dynamic instabilities over wide parameter ranges. Implications and conditions required to avoid extinction are discussed. Another interesting result is that virophage presence can fundamentally alter the evolutionary course of the giant virus. While the giant virus is predicted to evolve toward increasing its basic reproductive ratio in the absence of the virophage, the opposite is true in its presence. Therefore, virophages can not only benefit the host population directly by inhibiting the giant viruses but also indirectly by causing giant viruses to evolve toward weaker phenotypes. Experimental tests for this model are suggested. PMID:23919155

  3. A maize root tip system to study DNA replication programmes in somatic and endocycling nuclei during plant development.

    PubMed

    Bass, Hank W; Wear, Emily E; Lee, Tae-Jin; Hoffman, Gregg G; Gumber, Hardeep K; Allen, George C; Thompson, William F; Hanley-Bowdoin, Linda

    2014-06-01

    The progress of nuclear DNA replication is complex in both time and space, and may reflect several levels of chromatin structure and 3-dimensional organization within the nucleus. To understand the relationship between DNA replication and developmental programmes, it is important to examine replication and nuclear substructure in different developmental contexts including natural cell-cycle progressions in situ. Plant meristems offer an ideal opportunity to analyse such processes in the context of normal growth of an organism. Our current understanding of large-scale chromosomal DNA replication has been limited by the lack of appropriate tools to visualize DNA replication with high resolution at defined points within S phase. In this perspective, we discuss a promising new system that can be used to visualize DNA replication in isolated maize (Zea mays L.) root tip nuclei after in planta pulse labelling with the thymidine analogue, 5-ethynyl-2'-deoxyuridine (EdU). Mixed populations of EdU-labelled nuclei are then separated by flow cytometry into sequential stages of S phase and examined directly using 3-dimensional deconvolution microscopy to characterize spatial patterns of plant DNA replication. Combining spatiotemporal analyses with studies of replication and epigenetic inheritance at the molecular level enables an integrated experimental approach to problems of mitotic inheritance and cellular differentiation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes.

    PubMed

    Chotiwan, Nunya; Andre, Barbara G; Sanchez-Vargas, Irma; Islam, M Nurul; Grabowski, Jeffrey M; Hopf-Jannasch, Amber; Gough, Erik; Nakayasu, Ernesto; Blair, Carol D; Belisle, John T; Hill, Catherine A; Kuhn, Richard J; Perera, Rushika

    2018-02-01

    We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several flaviviruses transmitted by this vector, our results highlight biochemical choke points that could be targeted to disrupt transmission of multiple pathogens by these mosquitoes.

  5. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes

    PubMed Central

    Chotiwan, Nunya; Andre, Barbara G.; Sanchez-Vargas, Irma; Islam, M. Nurul; Grabowski, Jeffrey M.; Hopf-Jannasch, Amber; Gough, Erik; Nakayasu, Ernesto; Blair, Carol D.; Hill, Catherine A.; Kuhn, Richard J.

    2018-01-01

    We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several flaviviruses transmitted by this vector, our results highlight biochemical choke points that could be targeted to disrupt transmission of multiple pathogens by these mosquitoes. PMID:29447265

  6. Network-scale spatial and temporal variation in Chinook salmon (Oncorhynchus tshawytscha) redd distributions: patterns inferred from spatially continuous replicate surveys

    Treesearch

    Daniel J. Isaak; Russell F. Thurow

    2006-01-01

    Spatially continuous sampling designs, when temporally replicated, provide analytical flexibility and are unmatched in their ability to provide a dynamic system view. We have compiled such a data set by georeferencing the network-scale distribution of Chinook salmon (Oncorhynchus tshawytscha) redds across a large wilderness basin (7330 km2) in...

  7. Nucleosome architecture throughout the cell cycle

    PubMed Central

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-01

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620

  8. Differences between the Cell Populations from the Peritenon and the Tendon Core with Regard to Their Potential Implication in Tendon Repair

    PubMed Central

    Cadby, Jennifer A.; Buehler, Evelyne; Godbout, Charles; van Weeren, P. René; Snedeker, Jess G.

    2014-01-01

    The role of intrinsic and extrinsic healing in injured tendons is still debated. In this study, we characterized cell plasticity, proliferative capacity, and migration characteristics as proxy measures of healing potential in cells derived from the peritenon (extrinsic healing) and compared these to cells from the tendon core (intrinsic healing). Both cell populations were extracted from horse superficial digital flexor tendon and characterized for tenogenic and matrix remodeling markers as well as for rates of migration and replication. Furthermore, colony-forming unit assays, multipotency assays, and real-time quantitative polymerase chain reaction analyses of markers of osteogenic and adipogenic differentiation after culture in induction media were performed. Finally, cellular capacity for differentiation towards a myofibroblastic phenotype was assessed. Our results demonstrate that both tendon- and peritenon-derived cell populations are capable of adipogenic and osteogenic differentiation, with higher expression of progenitor cell markers in peritenon cells. Cells from the peritenon also migrated faster, replicate more quickly, and show higher differentiation potential toward a myofibroblastic phenotype when compared to cells from the tendon core. Based on these data, we suggest that cells from the peritenon have substantial potential to influence tendon-healing outcome, warranting further scrutiny of their role. PMID:24651449

  9. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.

    PubMed

    Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J

    2009-12-01

    Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.

  10. Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload

    PubMed Central

    Kuipers, Marjorie A.; Stasevich, Timothy J.; Sasaki, Takayo; Wilson, Korey A.; Hazelwood, Kristin L.; McNally, James G.; Davidson, Michael W.

    2011-01-01

    The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles. PMID:21220507

  11. Towards scalable Byzantine fault-tolerant replication

    NASA Astrophysics Data System (ADS)

    Zbierski, Maciej

    2017-08-01

    Byzantine fault-tolerant (BFT) replication is a powerful technique, enabling distributed systems to remain available and correct even in the presence of arbitrary faults. Unfortunately, existing BFT replication protocols are mostly load-unscalable, i.e. they fail to respond with adequate performance increase whenever new computational resources are introduced into the system. This article proposes a universal architecture facilitating the creation of load-scalable distributed services based on BFT replication. The suggested approach exploits parallel request processing to fully utilize the available resources, and uses a load balancer module to dynamically adapt to the properties of the observed client workload. The article additionally provides a discussion on selected deployment scenarios, and explains how the proposed architecture could be used to increase the dependability of contemporary large-scale distributed systems.

  12. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression.

    PubMed

    Aze, Antoine; Sannino, Vincenzo; Soffientini, Paolo; Bachi, Angela; Costanzo, Vincenzo

    2016-06-01

    Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.

  13. A Natural Polymorphism in rDNA Replication Origins Links Origin Activation with Calorie Restriction and Lifespan

    PubMed Central

    Kwan, Elizabeth X.; Foss, Eric J.; Tsuchiyama, Scott; Alvino, Gina M.; Kruglyak, Leonid; Kaeberlein, Matt; Raghuraman, M. K.; Brewer, Bonita J.; Kennedy, Brian K.; Bedalov, Antonio

    2013-01-01

    Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics. PMID:23505383

  14. A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan.

    PubMed

    Kwan, Elizabeth X; Foss, Eric J; Tsuchiyama, Scott; Alvino, Gina M; Kruglyak, Leonid; Kaeberlein, Matt; Raghuraman, M K; Brewer, Bonita J; Kennedy, Brian K; Bedalov, Antonio

    2013-01-01

    Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics.

  15. RepExplore: addressing technical replicate variance in proteomics and metabolomics data analysis.

    PubMed

    Glaab, Enrico; Schneider, Reinhard

    2015-07-01

    High-throughput omics datasets often contain technical replicates included to account for technical sources of noise in the measurement process. Although summarizing these replicate measurements by using robust averages may help to reduce the influence of noise on downstream data analysis, the information on the variance across the replicate measurements is lost in the averaging process and therefore typically disregarded in subsequent statistical analyses.We introduce RepExplore, a web-service dedicated to exploit the information captured in the technical replicate variance to provide more reliable and informative differential expression and abundance statistics for omics datasets. The software builds on previously published statistical methods, which have been applied successfully to biomedical omics data but are difficult to use without prior experience in programming or scripting. RepExplore facilitates the analysis by providing a fully automated data processing and interactive ranking tables, whisker plot, heat map and principal component analysis visualizations to interpret omics data and derived statistics. Freely available at http://www.repexplore.tk enrico.glaab@uni.lu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  16. The moderating role of personal relevance on differential priming of anxiety and sadness on perceived travel risk: a replication.

    PubMed

    Chiou, Wen-Bin; Chang, Ming-Hsu; Chen, Chien-Lung

    2009-04-01

    Raghunathan and Pham conducted a pioneer study in 1999 on the motivational influences of anxiety and sadness on decision making and indicated that anxiety would motivate individuals to be risk averse, whereas sadness would motivate individuals to be risk taking. A replication study was employed in the domain of perceived travel risk. Compared to participants in a neutral mood, anxious participants showed higher perceived travel risk than sad participants. Moreover, the differential effect of anxiety and sadness on perceived travel risk was only pronounced under the high personal relevance condition, in which participants made personal decisions and expected that they would be affected by the outcomes. In general, the results extend the notion proposed by Raghunathan and Pham suggesting that travelers' implicit goals primed by anxiety or sadness used for mood-repair purposes appear to be moderated by personal relevance.

  17. Order, Disorder, Death: Lessons from a Superorganism

    PubMed Central

    Amdam, Gro V.; Seehuu, Siri-Christine

    2008-01-01

    Animal models contribute to the understanding of molecular mechanism of cancer, revealing complex roles of altered cellular-signaling networks and deficient surveillance systems. Analogous pathologies are documented in an unconventional model organism that receives attention in research on systems theory, evolution, and aging. The honeybee (Apis mellifera) colony is an advanced integrative unit, a “superorganism” in which order is controlled via complex signaling cascades and surveillance schemes. A facultatively sterile caste, the workers, regulates patterns of growth, differentiation, homeostasis, and death. Workers differentiate into temporal phenotypes in response to dynamic social cues; chemosensory signals that can translate into dramatic physiological responses, including programmed cell death. Temporal worker forms function together, and effectively identify and terminate abnormal colony members ranging from embryos to adults. As long as this regulatory system is operational at a colony level, the unit survives and propagates. However, if the worker phenotypes that collectively govern order become too few or change into malignant forms that bypass control mechanisms to replicate aberrantly; order is replaced by disorder that ultimately leads to the destruction of the society. In this chapter we describe fundamental properties of honeybee social organization, and explore conditions that lead to states of disorder. Our hope is that this chapter will be an inspirational source for ongoing and future work in the field of cancer research. PMID:16860655

  18. Differential dynamic microscopy of bidisperse colloidal suspensions.

    PubMed

    Safari, Mohammad S; Poling-Skutvik, Ryan; Vekilov, Peter G; Conrad, Jacinta C

    2017-01-01

    Research tasks in microgravity include monitoring the dynamics of constituents of varying size and mobility in processes such as aggregation, phase separation, or self-assembly. We use differential dynamic microscopy, a method readily implemented with equipment available on the International Space Station, to simultaneously resolve the dynamics of particles of radius 50 nm and 1 μm in bidisperse aqueous suspensions. Whereas traditional dynamic light scattering fails to detect a signal from the larger particles at low concentrations, differential dynamic microscopy exhibits enhanced sensitivity in these conditions by accessing smaller wavevectors where scattering from the large particles is stronger. Interference patterns due to scattering from the large particles induce non-monotonic decay of the amplitude of the dynamic correlation function with the wavevector. We show that the position of the resulting minimum contains information on the vertical position of the particles. Together with the simple instrumental requirements, the enhanced sensitivity of differential dynamic microscopy makes it an appealing alternative to dynamic light scattering to characterize samples with complex dynamics.

  19. Mediation of Family Alcoholism Risk by Religious Affiliation Types*

    PubMed Central

    Haber, Jon Randolph; Jacob, Theodore

    2009-01-01

    Objective: Religious affiliation is inversely associated with alcohol dependence (AD). Our previous findings indicated that when a religious affiliation differentiated itself from cultural norms, then high-risk adolescents (those having parents with alcoholism history) raised with these affiliations exhibited fewer AD symptoms compared with adolescents of other religious affiliations and nonreligious adolescents. The first of two studies reported here provides a needed replication of our previous findings for childhood religious affiliation using a different sample, and the second study extends examination to current religious affiliation. Method: A national sample of male and female adolescents/young adults (N = 1,329; mean age = 19.6 years) was selected who were the offspring of members of the Vietnam Era Twin Registry. Parental alcoholism, religious affiliation types, and their interactions were examined as predictors of offspring AD symptoms. Results: (1) Offspring reared with a differentiating religious affiliation during childhood exhibited significantly fewer AD symptoms as young adults; (2) offspring with current differentiating religious affiliation also exhibited fewer AD symptoms; this main effect was not weakened by adding other measures of religiousness to the model; (3) differentiating religious affiliation was correlated with both family alcoholism risk and offspring outcome, and removed the association between family alcoholism risk and offspring outcome, thus indicating that differentiating religious affiliation was at least a partial mediator of the association between family AD history risk and offspring AD outcome. Conclusions: Current results indicate that religious differentiation is an inverse mediator of alcoholism risk for offspring with or without parental AD history and regardless of the influence of other religion variables. Results replicated our previous report on religious upbringing between ages 6 and 13 years and indicated an even stronger effect when current differentiating affiliation was examined. PMID:19895764

  20. Spatiotemporal chaos of self-replicating spots in reaction-diffusion systems.

    PubMed

    Wang, Hongli; Ouyang, Qi

    2007-11-23

    The statistical properties of self-replicating spots in the reaction-diffusion Gray-Scott model are analyzed. In the chaotic regime of the system, the spots that dominate the spatiotemporal chaos grow and divide in two or decay into the background randomly and continuously. The rates at which the spots are created and decay are observed to be linearly dependent on the number of spots in the system. We derive a probabilistic description of the spot dynamics based on the statistical independence of spots and thus propose a characterization of the spatiotemporal chaos dominated by replicating spots.

  1. Agent-based modeling and systems dynamics model reproduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, M. J.; Macal, C. M.

    2009-01-01

    Reproducibility is a pillar of the scientific endeavour. We view computer simulations as laboratories for electronic experimentation and therefore as tools for science. Recent studies have addressed model reproduction and found it to be surprisingly difficult to replicate published findings. There have been enough failed simulation replications to raise the question, 'can computer models be fully replicated?' This paper answers in the affirmative by reporting on a successful reproduction study using Mathematica, Repast and Swarm for the Beer Game supply chain model. The reproduction process was valuable because it demonstrated the original result's robustness across modelling methodologies and implementation environments.

  2. Organization of supercoil domains and their reorganization by transcription

    PubMed Central

    Deng, Shuang; Stein, Richard A.; Higgins, N. Patrick

    2006-01-01

    Summary During a normal cell cycle, chromosomes are exposed to many biochemical reactions that require specific types of DNA movement. Separation forces move replicated chromosomes into separate sister cell compartments during cell division, and the contemporaneous acts of DNA replication, RNA transcription and cotranscriptional translation of membrane proteins cause specific regions of DNA to twist, writhe and expand or contract. Recent experiments indicate that a dynamic and stochastic mechanism creates supercoil DNA domains soon after DNA replication. Domain structure is subsequently reorganized by RNA transcription. Examples of transcription-dependent chromosome remodelling are also emerging from eukaryotic cell systems. PMID:16135220

  3. Open chromatin encoded in DNA sequence is the signature of ‘master’ replication origins in human cells

    PubMed Central

    Audit, Benjamin; Zaghloul, Lamia; Vaillant, Cédric; Chevereau, Guillaume; d'Aubenton-Carafa, Yves; Thermes, Claude; Arneodo, Alain

    2009-01-01

    For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions ∼300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as ‘master’ replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these ‘master’ origins are likely to play a key role in genome dynamics during evolution and in pathological situations. PMID:19671527

  4. Monitoring of the spatial and temporal dynamics of BER/SSBR pathway proteins, including MYH, UNG2, MPG, NTH1 and NEIL1-3, during DNA replication.

    PubMed

    Bj Rås, Karine Ø; Sousa, Mirta M L; Sharma, Animesh; Fonseca, Davi M; S Gaard, Caroline K; Bj Rås, Magnar; Otterlei, Marit

    2017-08-21

    Base lesions in DNA can stall the replication machinery or induce mutations if bypassed. Consequently, lesions must be repaired before replication or in a post-replicative process to maintain genomic stability. Base excision repair (BER) is the main pathway for repair of base lesions and is known to be associated with DNA replication, but how BER is organized during replication is unclear. Here we coupled the iPOND (isolation of proteins on nascent DNA) technique with targeted mass-spectrometry analysis, which enabled us to detect all proteins required for BER on nascent DNA and to monitor their spatiotemporal orchestration at replication forks. We demonstrate that XRCC1 and other BER/single-strand break repair (SSBR) proteins are enriched in replisomes in unstressed cells, supporting a cellular capacity of post-replicative BER/SSBR. Importantly, we identify for the first time the DNA glycosylases MYH, UNG2, MPG, NTH1, NEIL1, 2 and 3 on nascent DNA. Our findings suggest that a broad spectrum of DNA base lesions are recognized and repaired by BER in a post-replicative process. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Genome-wide site-specific differential methylation in the blood of individuals with Klinefelter Syndrome

    PubMed Central

    Wan, Emily S.; Qiu, Weiliang; Morrow, Jarrett; Beaty, Terri H.; Hetmanski, Jacqueline; Make, Barry J.; Lomas, David A.; Silverman, Edwin K.; DeMeo, Dawn L.

    2015-01-01

    Klinefelter syndrome (KS) (47 XXY) is a common sex-chromosome aneuploidy with an estimated prevalence of 1 in every 660 male births. Investigations into the associations between DNA methylation and the highly variable clinical manifestations of KS have largely focused on the supernumerary X chromosome; systematic investigations of the epigenome have been limited. We obtained genome-wide DNA methylation data from peripheral blood using the Illumina HumanMethylation450K platform in 5 KS (47 XXY), 102 male (46 XY), and 113 female (46 XX) control subjects participating in the chronic obstructive pulmonary disease (COPD) Gene Study. Empirical Bayes-mediated models were used to test for differential methylation by KS status. CpG sites with a false-discovery rate <0.05 from the first-generation HumanMethylation27K platform were further examined in an independent replication cohort of 2 KS subjects, 590 male, and 495 female controls drawn from the International COPD Genetics Network (ICGN). Differential methylation at sites throughout the genome were identified, including 86 CpG sites that were differentially methylated in KS subjects relative to both male and female controls. CpG sites annotated to the HEN1 methyltransferase homolog 1 (HENMT1), calcyclin-binding protein (CACYBP), and GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1) genes were among the “KS-specific” loci that were replicated in ICGN. We therefore conclude that site-specific differential methylation exists throughout the genome in KS. The functional impact and clinical relevance of these differentially methylated loci should be explored in future studies. PMID:25988574

  6. Replication-Competent Influenza A Viruses Expressing Reporter Genes.

    PubMed

    Breen, Michael; Nogales, Aitor; Baker, Steven F; Martínez-Sobrido, Luis

    2016-06-23

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo.

  7. Replication-Competent Influenza A Viruses Expressing Reporter Genes

    PubMed Central

    Breen, Michael; Nogales, Aitor; Baker, Steven F.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo. PMID:27347991

  8. Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters

    PubMed Central

    Vanwonterghem, Inka; Jensen, Paul D; Dennis, Paul G; Hugenholtz, Philip; Rabaey, Korneel; Tyson, Gene W

    2014-01-01

    A replicate long-term experiment was conducted using anaerobic digestion (AD) as a model process to determine the relative role of niche and neutral theory on microbial community assembly, and to link community dynamics to system performance. AD is performed by a complex network of microorganisms and process stability relies entirely on the synergistic interactions between populations belonging to different functional guilds. In this study, three independent replicate anaerobic digesters were seeded with the same diverse inoculum, supplied with a model substrate, α-cellulose, and operated for 362 days at a 10-day hydraulic residence time under mesophilic conditions. Selective pressure imposed by the operational conditions and model substrate caused large reproducible changes in community composition including an overall decrease in richness in the first month of operation, followed by synchronised population dynamics that correlated with changes in reactor performance. This included the synchronised emergence and decline of distinct Ruminococcus phylotypes at day 148, and emergence of a Clostridium and Methanosaeta phylotype at day 178, when performance became stable in all reactors. These data suggest that many dynamic functional niches are predictably filled by phylogenetically coherent populations over long time scales. Neutral theory would predict that a complex community with a high degree of recognised functional redundancy would lead to stochastic changes in populations and community divergence over time. We conclude that deterministic processes may play a larger role in microbial community dynamics than currently appreciated, and under controlled conditions it may be possible to reliably predict community structural and functional changes over time. PMID:24739627

  9. Around and beyond 53BP1 Nuclear Bodies

    PubMed Central

    Fernandez-Vidal, Anne; Vignard, Julien

    2017-01-01

    Within the nucleus, sub-nuclear domains define territories where specific functions occur. Nuclear bodies (NBs) are dynamic structures that concentrate nuclear factors and that can be observed microscopically. Recently, NBs containing the p53 binding protein 1 (53BP1), a key component of the DNA damage response, were defined. Interestingly, 53BP1 NBs are visualized during G1 phase, in daughter cells, while DNA damage was generated in mother cells and not properly processed. Unlike most NBs involved in transcriptional processes, replication has proven to be key for 53BP1 NBs, with replication stress leading to the formation of these large chromatin domains in daughter cells. In this review, we expose the composition and organization of 53BP1 NBs and focus on recent findings regarding their regulation and dynamics. We then concentrate on the importance of the replication stress, examine the relation of 53BP1 NBs with DNA damage and discuss their dysfunction. PMID:29206178

  10. 2′-5′-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1

    PubMed Central

    Dhar, Jayeeta; Cuevas, Rolando A.; Goswami, Ramansu; Zhu, Jianzhong

    2015-01-01

    2′-5′-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth. PMID:26178980

  11. Replicates, read numbers, and other important experimental design considerations for microbial RNA-seq identified using Bacillus thuringiensis datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Tse -Yuan; Mehlhorn, Tonia L; Pelletier, Dale A.

    RNA-seq is being used increasingly for gene expression studies and it is revolutionizing the fields of genomics and transcriptomics. However, the field of RNA-seq analysis is still evolving. Therefore, we specifically designed this study to contain large numbers of reads and four biological replicates per condition so we could alter these parameters and assess their impact on differential expression results. Bacillus thuringiensis strains ATCC10792 and CT43 were grown in two Luria broth medium lots on four dates and transcriptomics data were generated using one lane of sequence output from an Illumina HiSeq2000 instrument for each of the 32 samples, whichmore » were then analyzed using DESeq2. Genome coverages across samples ranged from 87 to 465X with medium lots and culture dates identified as major variation sources. Significantly differentially expressed genes (5% FDR, two-fold change) were detected for cultures grown using different medium lots and between different dates. The highly differentially expressed iron acquisition and metabolism genes, were a likely consequence of differing amounts of iron in the two media lots. Indeed, in this study RNA-seq was a tool for predictive biology since we hypothesized and confirmed the two LB medium lots had different iron contents (~two-fold difference). Furthermore, this study shows that the noise in data can be controlled and minimized with appropriate experimental design and by having the appropriate number of replicates and reads for the system being studied. We outline parameters for an efficient and cost effective microbial transcriptomics study.« less

  12. Replicates, read numbers, and other important experimental design considerations for microbial RNA-seq identified using Bacillus thuringiensis datasets

    DOE PAGES

    Lu, Tse -Yuan; Mehlhorn, Tonia L; Pelletier, Dale A.; ...

    2016-05-31

    RNA-seq is being used increasingly for gene expression studies and it is revolutionizing the fields of genomics and transcriptomics. However, the field of RNA-seq analysis is still evolving. Therefore, we specifically designed this study to contain large numbers of reads and four biological replicates per condition so we could alter these parameters and assess their impact on differential expression results. Bacillus thuringiensis strains ATCC10792 and CT43 were grown in two Luria broth medium lots on four dates and transcriptomics data were generated using one lane of sequence output from an Illumina HiSeq2000 instrument for each of the 32 samples, whichmore » were then analyzed using DESeq2. Genome coverages across samples ranged from 87 to 465X with medium lots and culture dates identified as major variation sources. Significantly differentially expressed genes (5% FDR, two-fold change) were detected for cultures grown using different medium lots and between different dates. The highly differentially expressed iron acquisition and metabolism genes, were a likely consequence of differing amounts of iron in the two media lots. Indeed, in this study RNA-seq was a tool for predictive biology since we hypothesized and confirmed the two LB medium lots had different iron contents (~two-fold difference). Furthermore, this study shows that the noise in data can be controlled and minimized with appropriate experimental design and by having the appropriate number of replicates and reads for the system being studied. We outline parameters for an efficient and cost effective microbial transcriptomics study.« less

  13. Replicates, Read Numbers, and Other Important Experimental Design Considerations for Microbial RNA-seq Identified Using Bacillus thuringiensis Datasets.

    PubMed

    Manga, Punita; Klingeman, Dawn M; Lu, Tse-Yuan S; Mehlhorn, Tonia L; Pelletier, Dale A; Hauser, Loren J; Wilson, Charlotte M; Brown, Steven D

    2016-01-01

    RNA-seq is being used increasingly for gene expression studies and it is revolutionizing the fields of genomics and transcriptomics. However, the field of RNA-seq analysis is still evolving. Therefore, we specifically designed this study to contain large numbers of reads and four biological replicates per condition so we could alter these parameters and assess their impact on differential expression results. Bacillus thuringiensis strains ATCC10792 and CT43 were grown in two Luria broth medium lots on four dates and transcriptomics data were generated using one lane of sequence output from an Illumina HiSeq2000 instrument for each of the 32 samples, which were then analyzed using DESeq2. Genome coverages across samples ranged from 87 to 465X with medium lots and culture dates identified as major variation sources. Significantly differentially expressed genes (5% FDR, two-fold change) were detected for cultures grown using different medium lots and between different dates. The highly differentially expressed iron acquisition and metabolism genes, were a likely consequence of differing amounts of iron in the two media lots. Indeed, in this study RNA-seq was a tool for predictive biology since we hypothesized and confirmed the two LB medium lots had different iron contents (~two-fold difference). This study shows that the noise in data can be controlled and minimized with appropriate experimental design and by having the appropriate number of replicates and reads for the system being studied. We outline parameters for an efficient and cost effective microbial transcriptomics study.

  14. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.

    PubMed

    Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  15. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations

    PubMed Central

    Hu, Eric Y.; Bouteiller, Jean-Marie C.; Song, Dong; Baudry, Michel; Berger, Theodore W.

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations. PMID:26441622

  16. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation.

    PubMed

    Audit, Benjamin; Zaghloul, Lamia; Baker, Antoine; Arneodo, Alain; Chen, Chun-Long; d'Aubenton-Carafa, Yves; Thermes, Claude

    2013-01-01

    In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.

  17. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery.

    PubMed

    O'Driscoll, Mark

    2017-01-01

    Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Residual Viremia in Treated HIV+ Individuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, Jessica M.; Perelson, Alan S.

    Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. However, some residual virus remains, below the level of detection, in HIV-infected patients on ART. Furthermore, the source of this viremia is an area of debate: does it derive primarily from activation of infected cells in the latent reservoir, or from ongoing viral replication? Our observations seem to be contradictory: there is evidence of short term evolution, implying that there must be ongoing viral replication, and viral strains should thus evolve. The phylogenetic analyses, and rare emergent drug resistance, suggest no long-term viral evolution, implying that virus derived frommore » activated latent cells must dominate. We use simple deterministic and stochastic models to gain insight into residual viremia dynamics in HIV-infected patients. Our modeling relies on two underlying assumptions for patients on suppressive ART: that latent cell activation drives viral dynamics and that the reproductive ratio of treated infection is less than 1. Nonetheless, the contribution of viral replication to residual viremia in patients on ART may be non-negligible. However, even if the portion of viremia attributable to viral replication is significant, our model predicts (1) that latent reservoir re-seeding remains negligible, and (2) some short-term viral evolution is permitted, but long-term evolution can still be limited: stochastic analysis of our model shows that de novo emergence of drug resistance is rare. Thus, our simple models reconcile the seemingly contradictory observations on residual viremia and, with relatively few parameters, recapitulates HIV viral dynamics observed in patients on suppressive therapy.« less

  19. Residual Viremia in Treated HIV+ Individuals

    DOE PAGES

    Conway, Jessica M.; Perelson, Alan S.

    2016-01-06

    Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. However, some residual virus remains, below the level of detection, in HIV-infected patients on ART. Furthermore, the source of this viremia is an area of debate: does it derive primarily from activation of infected cells in the latent reservoir, or from ongoing viral replication? Our observations seem to be contradictory: there is evidence of short term evolution, implying that there must be ongoing viral replication, and viral strains should thus evolve. The phylogenetic analyses, and rare emergent drug resistance, suggest no long-term viral evolution, implying that virus derived frommore » activated latent cells must dominate. We use simple deterministic and stochastic models to gain insight into residual viremia dynamics in HIV-infected patients. Our modeling relies on two underlying assumptions for patients on suppressive ART: that latent cell activation drives viral dynamics and that the reproductive ratio of treated infection is less than 1. Nonetheless, the contribution of viral replication to residual viremia in patients on ART may be non-negligible. However, even if the portion of viremia attributable to viral replication is significant, our model predicts (1) that latent reservoir re-seeding remains negligible, and (2) some short-term viral evolution is permitted, but long-term evolution can still be limited: stochastic analysis of our model shows that de novo emergence of drug resistance is rare. Thus, our simple models reconcile the seemingly contradictory observations on residual viremia and, with relatively few parameters, recapitulates HIV viral dynamics observed in patients on suppressive therapy.« less

  20. The Effects of Realism in Learning with Dynamic Visualizations

    ERIC Educational Resources Information Center

    Scheiter, Katharina; Gerjets, Peter; Huk, Thomas; Imhof, Birgit; Kammerer, Yvonne

    2009-01-01

    Two experiments are reported that investigated the relative effectiveness of a realistic dynamic visualization as opposed to a schematic visualization for learning about cell replication (mitosis). In Experiment 1, 37 university students watched either realistic or schematic visualizations. Students' subjective task demands ratings as well as…

  1. Genetic variations in the DNA replication origins of human papillomavirus family correlate with their oncogenic potential.

    PubMed

    Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2018-04-01

    Human papillomaviruses (HPVs) encompass a large family of viruses that range from benign to highly carcinogenic. The crucial differences between benign and carcinogenic types of HPV remain unknown, except that the two HPV types differ in the frequency of DNA replication. We have systematically analyzed the mechanism of HPV DNA replication initiation in low-risk and high-risk HPVs. Our results demonstrate that HPV-encoded E2 initiator protein and its four binding sites in the replication origin play pivotal roles in determining the destiny of the HPV-infected cell. We have identified strain-specific single nucleotide variations in E2 binding sites found only in the high-risk HPVs. We have demonstrated that these variations result in attenuated formation of the E2-DNA complex. E2 binding to these sites is linked to the activation of the DNA replication origin as well as initiation of DNA replication. Both electrophoretic mobility shift assay and atomic force microscopy studies demonstrated that binding of E2 from either low- or high-risk HPVs with variant binding sequences lacked multimeric E2-DNA complex formation in vitro. These results provided a molecular basis of differential DNA replication in the two types of HPVs and pointed to a correlation with the development of cancer. Copyright © 2017. Published by Elsevier B.V.

  2. Weight of fitness deviation governs strict physical chaos in replicator dynamics

    NASA Astrophysics Data System (ADS)

    Pandit, Varun; Mukhopadhyay, Archan; Chakraborty, Sagar

    2018-03-01

    Replicator equation—a paradigm equation in evolutionary game dynamics—mathematizes the frequency dependent selection of competing strategies vying to enhance their fitness (quantified by the average payoffs) with respect to the average fitnesses of the evolving population under consideration. In this paper, we deal with two discrete versions of the replicator equation employed to study evolution in a population where any two players' interaction is modelled by a two-strategy symmetric normal-form game. There are twelve distinct classes of such games, each typified by a particular ordinal relationship among the elements of the corresponding payoff matrix. Here, we find the sufficient conditions for the existence of asymptotic solutions of the replicator equations such that the solutions—fixed points, periodic orbits, and chaotic trajectories—are all strictly physical, meaning that the frequency of any strategy lies inside the closed interval zero to one at all times. Thus, we elaborate on which of the twelve types of games are capable of showing meaningful physical solutions and for which of the two types of replicator equation. Subsequently, we introduce the concept of the weight of fitness deviation that is the scaling factor in a positive affine transformation connecting two payoff matrices such that the corresponding one-shot games have exactly same Nash equilibria and evolutionary stable states. The weight also quantifies how much the excess of fitness of a strategy over the average fitness of the population affects the per capita change in the frequency of the strategy. Intriguingly, the weight's variation is capable of making the Nash equilibria and the evolutionary stable states, useless by introducing strict physical chaos in the replicator dynamics based on the normal-form game.

  3. Ferret airway epithelial cell cultures support efficient replication of influenza B virus but not mumps virus.

    PubMed

    Elderfield, Ruth A; Parker, Lauren; Stilwell, Peter; Roberts, Kim L; Schepelmann, Silke; Barclay, Wendy S

    2015-08-01

    Ferrets have become the model animal of choice for influenza pathology and transmission experiments as they are permissive and susceptible to human influenza A viruses. However, inoculation of ferrets with mumps virus (MuV) did not lead to successful infections. We evaluated the use of highly differentiated ferret tracheal epithelium cell cultures, FTE, for predicting the potential of ferrets to support respiratory viral infections. FTE cultures supported productive replication of human influenza A and B viruses but not of MuV, whereas analogous cells generated from human airways supported replication of all three viruses. We propose that in vitro strategies using these cultures might serve as a method of triaging viruses and potentially reducing the use of ferrets in viral studies.

  4. A Dynamic Differentiation Framework for Talent Enhancement: Findings from Syntheses and Teachers' Perspectives

    ERIC Educational Resources Information Center

    Smith, Susen

    2015-01-01

    Differentiating curriculum and pedagogy is a dynamic process that is dependent on the interrelationship between intrapersonal and environmental factors that can support the unique educational needs of gifted students. A Model of Dynamic Differentiation (MoDD) was developed from a larger study based on the ecological systems theory, an in-depth…

  5. Versatile utilization of real-time intraoperative contrast-enhanced ultrasound in cranial neurosurgery: technical note and retrospective case series.

    PubMed

    Lekht, Ilya; Brauner, Noah; Bakhsheshian, Joshua; Chang, Ki-Eun; Gulati, Mittul; Shiroishi, Mark S; Grant, Edward G; Christian, Eisha; Zada, Gabriel

    2016-03-01

    Intraoperative contrast-enhanced ultrasound (iCEUS) offers dynamic imaging and provides functional data in real time. However, no standardized protocols or validated quantitative data exist to guide its routine use in neurosurgery. The authors aimed to provide further clinical data on the versatile application of iCEUS through a technical note and illustrative case series. Five patients undergoing craniotomies for suspected tumors were included. iCEUS was performed using a contrast agent composed of lipid shell microspheres enclosing perflutren (octafluoropropane) gas. Perfusion data were acquired through a time-intensity curve analysis protocol obtained using iCEUS prior to biopsy and/or resection of all lesions. Three primary tumors (gemistocytic astrocytoma, glioblastoma multiforme, and meningioma), 1 metastatic lesion (melanoma), and 1 tumefactive demyelinating lesion (multiple sclerosis) were assessed using real-time iCEUS. No intraoperative complications occurred following multiple administrations of contrast agent in all cases. In all neoplastic cases, iCEUS replicated enhancement patterns observed on preoperative Gd-enhanced MRI, facilitated safe tumor debulking by differentiating neoplastic tissue from normal brain parenchyma, and helped identify arterial feeders and draining veins in and around the surgical cavity. Intraoperative CEUS was also useful in guiding a successful intraoperative needle biopsy of a cerebellar tumefactive demyelinating lesion obtained during real-time perfusion analysis. Intraoperative CEUS has potential for safe, real-time, dynamic contrast-based imaging for routine use in neurooncological surgery and image-guided biopsy. Intraoperative CEUS eliminates the effect of anatomical distortions associated with standard neuronavigation and provides quantitative perfusion data in real time, which may hold major implications for intraoperative diagnosis, tissue differentiation, and quantification of extent of resection. Further prospective studies will help standardize the role of iCEUS in neurosurgery.

  6. Neuronal boost to evolutionary dynamics.

    PubMed

    de Vladar, Harold P; Szathmáry, Eörs

    2015-12-06

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild.

  7. The dynamics of the RNA world: insights and challenges.

    PubMed

    Kun, Ádám; Szilágyi, András; Könnyű, Balázs; Boza, Gergely; Zachar, István; Szathmáry, Eörs

    2015-04-01

    The RNA world hypothesis of the origin of life, in which RNA emerged as both enzyme and information carrier, is receiving solid experimental support. The prebiotic synthesis of biomolecules, the catalytic aid offered by mineral surfaces, and the vast enzymatic repertoire of ribozymes are only pieces of the origin of life puzzle; the full picture can only emerge if the pieces fit together by either following from one another or coexisting with each other. Here, we review the theory of the origin, maintenance, and enhancement of the RNA world as an evolving population of dynamical systems. The dynamical view of the origin of life allows us to pinpoint the missing and the not fitting pieces: (1) How can the first self-replicating ribozyme emerge in the absence of template-directed information replication? (2) How can nucleotide replicators avoid competitive exclusion despite utilizing the very same resources (nucleobases)? (3) How can the information catastrophe be avoided? (4) How can enough genes integrate into a cohesive system in order to transition to a cellular stage? (5) How can the way information is stored and metabolic complexity coevolve to pave to road leading out of the RNA world to the present protein-DNA world? © 2015 New York Academy of Sciences.

  8. Variability of interferon-λ induction and antiviral activity in Nipah virus infected differentiated human bronchial epithelial cells of two human donors.

    PubMed

    Sauerhering, Lucie; Müller, Helena; Behner, Laura; Elvert, Mareike; Fehling, Sarah Katharina; Strecker, Thomas; Maisner, Andrea

    2017-10-01

    Highly pathogenic Nipah virus (NiV) generally causes severe encephalitis in humans. Respiratory symptoms are infrequently observed, likely reflecting variations in infection kinetics in human airways. Supporting this idea, we recently identified individual differences in NiV replication kinetics in cultured airway epithelia from different human donors. As type III interferons (IFN-λ) represent major players in the defence mechanism against viral infection of the respiratory mucosa, we studied IFN-λ induction and antiviral activity in NiV-infected primary differentiated human bronchial epithelial cells (HBEpCs) cultured under air-liquid interface conditions. Our studies revealed that IFN-λ was upregulated in airway epithelia upon NiV infection. We also show that IFN-λ pretreatment efficiently inhibited NiV replication. Interestingly, the antiviral activity of IFN-λ varied in HBEpCs from two different donors. Increased sensitivity to IFN-λ was associated with higher expression levels of IFN-λ receptors, enhanced phosphorylation of STAT1, as well as enhanced induction of interferon-stimulated gene expression. These findings suggest that individual variations in IFN-λ receptor expression affecting IFN responsiveness can play a functional role for NiV replication kinetics in human respiratory epithelial cells of different donors.

  9. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior.more » This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.« less

  10. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data

    PubMed Central

    Feng, Hao; Conneely, Karen N.; Wu, Hao

    2014-01-01

    DNA methylation is an important epigenetic modification that has essential roles in cellular processes including gene regulation, development and disease and is widely dysregulated in most types of cancer. Recent advances in sequencing technology have enabled the measurement of DNA methylation at single nucleotide resolution through methods such as whole-genome bisulfite sequencing and reduced representation bisulfite sequencing. In DNA methylation studies, a key task is to identify differences under distinct biological contexts, for example, between tumor and normal tissue. A challenge in sequencing studies is that the number of biological replicates is often limited by the costs of sequencing. The small number of replicates leads to unstable variance estimation, which can reduce accuracy to detect differentially methylated loci (DML). Here we propose a novel statistical method to detect DML when comparing two treatment groups. The sequencing counts are described by a lognormal-beta-binomial hierarchical model, which provides a basis for information sharing across different CpG sites. A Wald test is developed for hypothesis testing at each CpG site. Simulation results show that the proposed method yields improved DML detection compared to existing methods, particularly when the number of replicates is low. The proposed method is implemented in the Bioconductor package DSS. PMID:24561809

  11. Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendall, Matthew L.; Luong, Khai; Wetmore, Kelly M.

    2013-08-30

    We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns.more » However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.« less

  12. DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity

    PubMed Central

    Diamant, Noam; Hendel, Ayal; Vered, Ilan; Carell, Thomas; Reißner, Thomas; de Wind, Niels; Geacinov, Nicholas; Livneh, Zvi

    2012-01-01

    Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity. PMID:21908406

  13. Methadone enhances human influenza A virus replication.

    PubMed

    Chen, Yun-Hsiang; Wu, Kuang-Lun; Tsai, Ming-Ta; Chien, Wei-Hsien; Chen, Mao-Liang; Wang, Yun

    2017-01-01

    Growing evidence has indicated that opioids enhance replication of human immunodeficiency virus and hepatitis C virus in target cells. However, it is unknown whether opioids can enhance replication of other clinically important viral pathogens. In this study, the interaction of opioid agonists and human influenza A/WSN/33 (H1N1) virus was examined in human lung epithelial A549 cells. Cells were exposed to morphine, methadone or buprenorphine followed by human H1N1 viral infection. Exposure to methadone differentially enhanced viral propagation, consistent with an increase in virus adsorption, susceptibility to virus infection and viral protein synthesis. In contrast, morphine or buprenorphine did not alter H1N1 replication. Because A549 cells do not express opioid receptors, methadone-enhanced H1N1 replication in human lung cells may not be mediated through these receptors. The interaction of methadone and H1N1 virus was also examined in adult mice. Treatment with methadone significantly increased H1N1 viral replication in lungs. Our data suggest that use of methadone facilitates influenza A viral infection in lungs and might raise concerns regarding the possible consequence of an increased risk of serious influenza A virus infection in people who receive treatment in methadone maintenance programs. © 2015 Society for the Study of Addiction.

  14. Chapter One---Cancer terminator viruses and approaches for enhancing therapeutic outcomes.

    PubMed

    Das, Swadesh K; Sarkar, Siddik; Dash, Rupesh; Dent, Paul; Wang, Xiang-Yang; Sarkar, Devanand; Fisher, Paul B

    2012-01-01

    No single or combinatorial therapeutic approach has proven effective in decreasing morbidity or engendering a cure of metastatic cancer. In principle, conditionally replication-competent adenoviruses that induce tumor oncolysis through cancer-specific replication hold promise for cancer therapy. However, a single-agent approach may not be adequate to completely eradicate cancer in a patient because most cancers arise from abnormalities in multiple genetic and signal transduction pathways and targeting disseminated metastases is difficult to achieve. Based on these considerations, a novel class of cancer destroying adenoviruses have been produced, cancer terminator viruses (CTVs), in which cancer-specific replication is controlled by the progression-elevated gene-3 promoter and replicating viruses produce a second transgene encoding an apoptosis-inducing and immunomodulatory cytokine, either melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) or interferon-γ. This review focuses on these viruses and ways to improve their delivery systemically and enhance their therapeutic efficacy. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Spatial distribution and specification of mammalian replication origins during G1 phase

    PubMed Central

    Li, Feng; Chen, Jianhua; Solessio, Eduardo; Gilbert, David M.

    2003-01-01

    We have examined the distribution of early replicating origins on stretched DNA fibers when nuclei from CHO cells synchronized at different times during G1 phase initiate DNA replication in Xenopus egg extracts. Origins were differentially labeled in vivo versus in vitro to allow a comparison of their relative positions and spacing. With nuclei isolated in the first hour of G1 phase, in vitro origins were distributed throughout a larger number of DNA fibers and did not coincide with in vivo origins. With nuclei isolated 1 h later, a similar total number of in vitro origins were clustered within a smaller number of DNA fibers but still did not coincide with in vivo origins. However, with nuclei isolated later in G1 phase, the positions of many in vitro origins coincided with in vivo origin sites without further change in origin number or density. These results highlight two distinct G1 steps that establish a spatial and temporal program for replication. PMID:12707307

  16. Recent Insight into the Kinetic Mechanisms and Conformational Dynamics of Y-Family DNA Polymerases

    PubMed Central

    2015-01-01

    The kinetic mechanisms by which DNA polymerases catalyze DNA replication and repair have long been areas of active research. Recently discovered Y-family DNA polymerases catalyze the bypass of damaged DNA bases that would otherwise block replicative DNA polymerases and stall replication forks. Unlike DNA polymerases from the five other families, the Y-family DNA polymerases have flexible, solvent-accessible active sites that are able to tolerate various types of damaged template bases and allow for efficient lesion bypass. Their promiscuous active sites, however, also lead to fidelities that are much lower than those observed for other DNA polymerases and give rise to interesting mechanistic properties. Additionally, the Y-family DNA polymerases have several other unique structural features and undergo a set of conformational changes during substrate binding and catalysis different from those observed for replicative DNA polymerases. In recent years, pre-steady-state kinetic methods have been extensively employed to reveal a wealth of information about the catalytic properties of these fascinating noncanonical DNA polymerases. Here, we review many of the recent findings on the kinetic mechanisms of DNA polymerization with undamaged and damaged DNA substrates by the Y-family DNA polymerases, and the conformational dynamics employed by these error-prone enzymes during catalysis. PMID:24716482

  17. Concise Review: Geminin-A Tale of Two Tails: DNA Replication and Transcriptional/Epigenetic Regulation in Stem Cells.

    PubMed

    Patmanidi, Alexandra L; Champeris Tsaniras, Spyridon; Karamitros, Dimitris; Kyrousi, Christina; Lygerou, Zoi; Taraviras, Stavros

    2017-02-01

    Molecular mechanisms governing maintenance, commitment, and differentiation of stem cells are largely unexploited. Molecules involved in the regulation of multiple cellular processes are of particular importance for stem cell physiology, as they integrate different signals and coordinate cellular decisions related with self-renewal and fate determination. Geminin has emerged as a critical factor in DNA replication and stem cell differentiation in different stem cell populations. Its inhibitory interaction with Cdt1, a member of the prereplicative complex, ensures the controlled timing of DNA replication and, consequently, genomic stability in actively proliferating cells. In embryonic as well as somatic stem cells, Geminin has been shown to interact with transcription factors and epigenetic regulators to drive gene expression programs and ultimately guide cell fate decisions. An ever-growing number of studies suggests that these interactions of Geminin and proteins regulating transcription are conserved among metazoans. Interactions between Geminin and proteins modifying the epigenome, such as members of the repressive Polycomb group and the SWI/SNF proteins of the permissive Trithorax, have long been established. The complexity of these interactions, however, is only just beginning to unravel, revealing key roles on maintaining stem cell self-renewal and fate specification. In this review, we summarize current knowledge and give new perspectives for the role of Geminin on transcriptional and epigenetic regulation, alongside with its regulatory activity in DNA replication and their implication in the regulation of stem and progenitor cell biology. Stem Cells 2017;35:299-310. © 2016 AlphaMed Press.

  18. Multiway modeling and analysis in stem cell systems biology

    PubMed Central

    2008-01-01

    Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate. Conclusion Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models. PMID:18625054

  19. Checkpoint-dependent and independent roles of the Werner syndrome protein in preserving genome integrity in response to mild replication stress

    PubMed Central

    Basile, Giorgia; Leuzzi, Giuseppe; Pichierri, Pietro; Franchitto, Annapaola

    2014-01-01

    Werner syndrome (WS) is a human chromosomal instability disorder associated with cancer predisposition and caused by mutations in the WRN gene. WRN helicase activity is crucial in limiting breakage at common fragile sites (CFS), which are the preferential targets of genome instability in precancerous lesions. However, the precise function of WRN in response to mild replication stress, like that commonly used to induce breaks at CFS, is still missing. Here, we establish that WRN plays a role in mediating CHK1 activation under moderate replication stress. We provide evidence that phosphorylation of CHK1 relies on the ATR-mediated phosphorylation of WRN, but not on WRN helicase activity. Analysis of replication fork dynamics shows that loss of WRN checkpoint mediator function as well as of WRN helicase activity hamper replication fork progression, and lead to new origin activation to allow recovery from replication slowing upon replication stress. Furthermore, bypass of WRN checkpoint mediator function through overexpression of a phospho-mimic form of CHK1 restores fork progression and chromosome stability to the wild-type levels. Together, these findings are the first demonstration that WRN regulates the ATR-checkpoint activation upon mild replication stress, preventing chromosome fragility. PMID:25352544

  20. Template Directed Replication Supports the Maintenance of the Metabolically Coupled Replicator System

    NASA Astrophysics Data System (ADS)

    Könnyű, Balázs; Czárán, Tamás

    2015-06-01

    The RNA World scenario of prebiotic chemical evolution is among the most plausible conceptual framework available today for modelling the origin of life. RNA offers genetic and catalytic (metabolic) functionality embodied in a single chemical entity, and a metabolically cooperating community of RNA molecules would constitute a viable infrabiological subsystem with a potential to evolve into proto-cellular life. Our Metabolically Coupled Replicator System (MCRS) model is a spatially explicit computer simulation implementation of the RNA-World scenario, in which replicable ribozymes cooperate in supplying each other with monomers for their own replication. MCRS has been repeatedly demonstrated to be viable and evolvable, with different versions of the model improved in depth (chemical detail of metabolism) or in extension (additional functions of RNA molecules). One of the dynamically relevant extensions of the MCRS approach to prebiotic RNA evolution is the explicit inclusion of template replication into its assumptions, which we have studied in the present version. We found that this modification has not changed the behaviour of the system in the qualitative sense, just the range of the parameter space which is optimal for the coexistence of metabolically cooperating replicators has shifted in terms of metabolite mobility. The system also remains resistant and tolerant to parasitic replicators.

  1. Design and Implementation of Replicated Object Layer

    NASA Technical Reports Server (NTRS)

    Koka, Sudhir

    1996-01-01

    One of the widely used techniques for construction of fault tolerant applications is the replication of resources so that if one copy fails sufficient copies may still remain operational to allow the application to continue to function. This thesis involves the design and implementation of an object oriented framework for replicating data on multiple sites and across different platforms. Our approach, called the Replicated Object Layer (ROL) provides a mechanism for consistent replication of data over dynamic networks. ROL uses the Reliable Multicast Protocol (RMP) as a communication protocol that provides for reliable delivery, serialization and fault tolerance. Besides providing type registration, this layer facilitates distributed atomic transactions on replicated data. A novel algorithm called the RMP Commit Protocol, which commits transactions efficiently in reliable multicast environment is presented. ROL provides recovery procedures to ensure that site and communication failures do not corrupt persistent data, and male the system fault tolerant to network partitions. ROL will facilitate building distributed fault tolerant applications by performing the burdensome details of replica consistency operations, and making it completely transparent to the application.Replicated databases are a major class of applications which could be built on top of ROL.

  2. X box binding protein XBP-1s transactivates the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF50 promoter, linking plasma cell differentiation to KSHV reactivation from latency.

    PubMed

    Wilson, Sam J; Tsao, Edward H; Webb, Benjamin L J; Ye, Hongtao; Dalton-Griffin, Lucy; Tsantoulas, Christoforos; Gale, Catherine V; Du, Ming-Qing; Whitehouse, Adrian; Kellam, Paul

    2007-12-01

    Reactivation of lytic replication from viral latency is a defining property of all herpesviruses. Despite this, the authentic physiological cues for the latent-lytic switch are unclear. Such cues should ensure that viral lytic replication occurs under physiological conditions, predominantly in sites which facilitate transmission to permissive uninfected cells and new susceptible hosts. Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with the B-cell neoplasm primary effusion lymphoma (PEL), in which the virus remains latent. We have previously shown that PEL cells have the gene expression profile and immunophenotype of cycling preplasma cells (plasmablasts). Here, we show that the highly active spliced isoform of plasma cell transcription factor X box binding protein 1 (XBP-1s) is a lytic switch for KSHV. XBP-1s is normally absent in PEL, but the induction of endoplasmic reticulum stress leads to XBP-1s generation, plasma cell-like differentiation, and lytic reactivation of KSHV. XBP-1s binds to and activates the KSHV immediate-early gene ORF50 and synergizes with the ORF50 gene product RTA to induce a full lytic cycle. These data suggest that KSHV remains latent until B-cell terminal differentiation into plasma cells, the transcriptional environment of which provides the physiological "lytic switch" through XBP-1s. This links B-cell terminal differentiation to KSHV lytic reactivation.

  3. Universal Temporal Profile of Replication Origin Activation in Eukaryotes

    NASA Astrophysics Data System (ADS)

    Goldar, Arach

    2011-03-01

    The complete and faithful transmission of eukaryotic genome to daughter cells involves the timely duplication of mother cell's DNA. DNA replication starts at multiple chromosomal positions called replication origin. From each activated replication origin two replication forks progress in opposite direction and duplicate the mother cell's DNA. While it is widely accepted that in eukaryotic organisms replication origins are activated in a stochastic manner, little is known on the sources of the observed stochasticity. It is often associated to the population variability to enter S phase. We extract from a growing Saccharomyces cerevisiae population the average rate of origin activation in a single cell by combining single molecule measurements and a numerical deconvolution technique. We show that the temporal profile of the rate of origin activation in a single cell is similar to the one extracted from a replicating cell population. Taking into account this observation we exclude the population variability as the origin of observed stochasticity in origin activation. We confirm that the rate of origin activation increases in the early stage of S phase and decreases at the latter stage. The population average activation rate extracted from single molecule analysis is in prefect accordance with the activation rate extracted from published micro-array data, confirming therefore the homogeneity and genome scale invariance of dynamic of replication process. All these observations point toward a possible role of replication fork to control the rate of origin activation.

  4. Exploiting replication in distributed systems

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth P.; Joseph, T. A.

    1989-01-01

    Techniques are examined for replicating data and execution in directly distributed systems: systems in which multiple processes interact directly with one another while continuously respecting constraints on their joint behavior. Directly distributed systems are often required to solve difficult problems, ranging from management of replicated data to dynamic reconfiguration in response to failures. It is shown that these problems reduce to more primitive, order-based consistency problems, which can be solved using primitives such as the reliable broadcast protocols. Moreover, given a system that implements reliable broadcast primitives, a flexible set of high-level tools can be provided for building a wide variety of directly distributed application programs.

  5. Relative resistance of HIV-1 founder viruses to control by interferon-alpha

    PubMed Central

    2013-01-01

    Background Following mucosal human immunodeficiency virus type 1 (HIV-1) transmission, type 1 interferons (IFNs) are rapidly induced at sites of initial virus replication in the mucosa and draining lymph nodes. However, the role played by IFN-stimulated antiviral activity in restricting HIV-1 replication during the initial stages of infection is not clear. We hypothesized that if type 1 IFNs exert selective pressure on HIV-1 replication in the earliest stages of infection, the founder viruses that succeed in establishing systemic infection would be more IFN-resistant than viruses replicating during chronic infection, when type 1 IFNs are produced at much lower levels. To address this hypothesis, the relative resistance of virus isolates derived from HIV-1-infected individuals during acute and chronic infection to control by type 1 IFNs was analysed. Results The replication of plasma virus isolates generated from subjects acutely infected with HIV-1 and molecularly cloned founder HIV-1 strains could be reduced but not fully suppressed by type 1 IFNs in vitro. The mean IC50 value for IFNα2 (22 U/ml) was lower than that for IFNβ (346 U/ml), although at maximally-inhibitory concentrations both IFN subtypes inhibited virus replication to similar extents. Individual virus isolates exhibited differential susceptibility to inhibition by IFNα2 and IFNβ, likely reflecting variation in resistance to differentially up-regulated IFN-stimulated genes. Virus isolates from subjects acutely infected with HIV-1 were significantly more resistant to in vitro control by IFNα than virus isolates generated from the same individuals during chronic, asymptomatic infection. Viral IFN resistance declined rapidly after the acute phase of infection: in five subjects, viruses derived from six-month consensus molecular clones were significantly more sensitive to the antiviral effects of IFNs than the corresponding founder viruses. Conclusions The establishment of systemic HIV-1 infection by relatively IFNα-resistant founder viruses lends strong support to the hypothesis that IFNα plays an important role in the control of HIV-1 replication during the earliest stages of infection, prior to systemic viral spread. These findings suggest that it may be possible to harness the antiviral activity of type 1 IFNs in prophylactic and potentially also therapeutic strategies to combat HIV-1 infection. PMID:24299076

  6. Human Th17 Cells Lack HIV-Inhibitory RNases and Are Highly Permissive to Productive HIV Infection

    PubMed Central

    Christensen-Quick, Aaron; Lafferty, Mark; Sun, Lingling; Marchionni, Luigi; DeVico, Anthony

    2016-01-01

    ABSTRACT Human immunodeficiency virus (HIV) infects and depletes CD4+ T cells, but subsets of CD4+ T cells vary in their susceptibility and permissiveness to infection. For example, HIV preferentially depletes interleukin-17 (IL-17)-producing T helper 17 (Th17) cells and T follicular helper (Tfh) cells. The preferential loss of Th17 cells during the acute phase of infection impairs the integrity of the gut mucosal barrier, which drives chronic immune activation—a key determinant of disease progression. The preferential loss of Th17 cells has been attributed to high CD4, CCR5, and CXCR4 expression. Here, we show that Th17 cells also exhibit heightened permissiveness to productive HIV infection. Primary human CD4+ T cells were sorted, activated under Th17- or Th0-polarizing conditions and infected, and then analyzed by flow cytometry. Th17-polarizing cytokines increased HIV infection, and HIV infection was disproportionately higher among Th17 cells than among IL-17− or gamma interferon-positive (IFN-γ+) cells, even upon infection with a replication-defective HIV vector with a pseudotype envelope. Further, Th17-polarized cells produced more viral capsid protein. Our data also reveal that Th17-polarized cells have diminished expression of RNase A superfamily proteins, and we report for the first time that RNase 6 inhibits HIV. Thus, our findings link Th17 polarization to increased HIV replication. IMPORTANCE Our study compares the intracellular replicative capacities of several different HIV isolates among different T cell subsets, providing a link between the differentiation of Th17 cells and HIV replication. Th17 cells are of key importance in mucosal integrity and in the immune response to certain pathogens. Based on our findings and the work of others, we propose a model in which HIV replication is favored by the intracellular environment of two CD4+ T cell subsets that share several requirements for their differentiation: Th17 and Tfh cells. Characterizing cells that support high levels of viral replication (rather than becoming latently infected or undergoing cell death) informs the search for new therapeutics aimed at manipulating intracellular signaling pathways and/or transcriptional factors that affect HIV replication. PMID:27334595

  7. Transcriptional profiling reveals molecular signatures associated with HIV permissiveness in Th1Th17 cells and identifies Peroxisome Proliferator-Activated Receptor Gamma as an intrinsic negative regulator of viral replication

    PubMed Central

    2013-01-01

    Background We previously demonstrated that primary Th1Th17 cells are highly permissive to HIV-1, whereas Th1 cells are relatively resistant. Molecular mechanisms underlying these differences remain unknown. Results Exposure to replication competent and single-round VSV-G pseudotyped HIV strains provide evidence that superior HIV replication in Th1Th17 vs. Th1 cells was regulated by mechanisms located at entry and post-entry levels. Genome-wide transcriptional profiling identified transcripts upregulated (n = 264) and downregulated (n = 235) in Th1Th17 vs. Th1 cells (p-value < 0.05; fold change cut-off 1.3). Gene Set Enrichment Analysis revealed pathways enriched in Th1Th17 (nuclear receptors, trafficking, p38/MAPK, NF-κB, p53/Ras, IL-23) vs. Th1 cells (proteasome, interferon α/β). Differentially expressed genes were classified into biological categories using Gene Ontology. Th1Th17 cells expressed typical Th17 markers (IL-17A/F, IL-22, CCL20, RORC, IL-26, IL-23R, CCR6) and transcripts functionally linked to regulating cell trafficking (CEACAM1, MCAM), activation (CD28, CD40LG, TNFSF13B, TNFSF25, PTPN13, MAP3K4, LTB, CTSH), transcription (PPARγ, RUNX1, ATF5, ARNTL), apoptosis (FASLG), and HIV infection (CXCR6, FURIN). Differential expression of CXCR6, PPARγ, ARNTL, PTPN13, MAP3K4, CTSH, SERPINB6, PTK2, and ISG20 was validated by RT-PCR, flow cytometry and/or confocal microscopy. The nuclear receptor PPARγ was preferentially expressed by Th1Th17 cells. PPARγ RNA interference significantly increased HIV replication at levels post-entry and prior HIV-DNA integration. Finally, the activation of PPARγ pathway via the agonist Rosiglitazone induced the nuclear translocation of PPARγ and a robust inhibition of viral replication. Conclusions Thus, transcriptional profiling in Th1Th17 vs. Th1 cells demonstrated that HIV permissiveness is associated with a superior state of cellular activation and limited antiviral properties and identified PPARγ as an intrinsic negative regulator of viral replication. Therefore, triggering PPARγ pathway via non-toxic agonists may contribute to limiting covert HIV replication and disease progression during antiretroviral treatment. PMID:24359430

  8. Quantitative Proteomic Analysis of Replicative and Nonreplicative Forms Reveals Important Insights into Chromatin Biology of Trypanosoma cruzi.

    PubMed

    Leandro de Jesus, Teresa Cristina; Calderano, Simone Guedes; Vitorino, Francisca Nathalia de Luna; Llanos, Ricardo Pariona; Lopes, Mariana de Camargo; de Araújo, Christiane Bezerra; Thiemann, Otavio Henrique; Reis, Marcelo da Silva; Elias, Maria Carolina; Chagas da Cunha, Julia Pinheiro

    2017-01-01

    Chromatin associated proteins are key regulators of many important processes in the cell. Trypanosoma cruzi, a protozoa flagellate that causes Chagas disease, alternates between replicative and nonreplicative forms accompanied by a shift on global transcription levels and by changes in its chromatin architecture. Here, we investigated the T. cruzi chromatin proteome using three different protocols and compared it between replicative (epimastigote) and nonreplicative (trypomastigote) forms by high-resolution mass spectrometry. More than 2000 proteins were identified and quantified both in chromatin and nonchromatin extracts. Besides histones and other known nuclear proteins, trypanosomes chromatin also contains metabolic (mainly from carbohydrate pathway), cytoskeleton and many other proteins with unknown functions. Strikingly, the two parasite forms differ greatly regarding their chromatin-associated factors composition and amount. Although the nucleosome content is the same for both life forms (as seen by MNase digestion), the remaining proteins were much less detected in nonreplicative forms, suggesting that they have a naked chromatin. Proteins associated to DNA proliferation, such as PCNA, RPA, and DNA topoisomerases were exclusively found in the chromatin of replicative stages. On the other hand, the nonreplicative stages have an enrichment of a histone H2B variant. Furthermore, almost 20% of replicative stages chromatin-associated proteins are expressed in nonreplicative forms, but located at nonchromatin space. We identified different classes of proteins including phosphatases and a Ran-binding protein, that may shuttle between chromatin and nonchromatin space during differentiation. Seven proteins, including those with unknown functions, were selected for further validation. We confirmed their location in chromatin and their differential expression, using Western blotting assays and chromatin immunoprecipitation (ChIP). Our results indicate that the replicative state in trypanosomes involves an increase of chromatin associated proteins content. We discuss in details, the qualitative and quantitative implication of this chromatin set in trypanosome chromatin biology. Because trypanosomes are early-branching organisms, this data can boost our understanding of chromatin-associated processes in other cell types. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Spatiotemporal Evolution of the Wound Repairing Process in a 3D Human Dermis Equivalent.

    PubMed

    Lombardi, Bernadette; Casale, Costantino; Imparato, Giorgia; Urciuolo, Francesco; Netti, Paolo Antonio

    2017-07-01

    Several skin equivalent models have been developed to investigate in vitro the re-epithelialization process occurring during wound healing. Although these models recapitulate closure dynamics of epithelial cells, they fail to capture how a wounded connective tissue rebuilds its 3D architecture until the evolution in a scar. Here, the in vitro tissue repair dynamics of a connective tissue is replicated by using a 3D human dermis equivalent (3D-HDE) model composed of fibroblasts embedded in their own extracellular matrix (ECM). After inducing a physical damage, 3D-HDE undergoes a series of cellular and extracellular events quite similar to those occurring in the native dermis. In particular, fibroblasts differentiation toward myofibroblasts phenotype and neosynthesis of hyaluronic acid, fibronectin, and collagen during the repair process are assessed. Moreover, tissue reorganization after physical damage is investigated by measuring the diameter of bundles and the orientation of fibers of the newly formed ECM network. Finally, the ultimate formation of a scar-like tissue as physiological consequence of the repair and closure process is demonstrated. Taking together, the results highlight that the presence of cell-assembled and responsive stromal components enables quantitative and qualitative in vitro evaluation of the processes involved in scarring during wound healing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. In microfluidico: Recreating in vivo hemodynamics using miniaturized devices

    PubMed Central

    Zhu, Shu; Herbig, Bradley A.; Li, Ruizhi; Colace, Thomas V.; Muthard, Ryan W.; Neeves, Keith B.; Diamond, Scott L.

    2016-01-01

    Microfluidic devices create precisely controlled reactive blood flows and typically involve: (i) validated anticoagulation/pharmacology protocols, (ii) defined reactive surfaces, (iii) defined flow-transport regimes, and (iv) optical imaging. An 8-channel device can be run at constant flow rate or constant pressure drop for blood perfusion over a patterned collagen, collagen/kaolin, or collagen/tissue factor (TF) to measure platelet, thrombin, and fibrin dynamics during clot growth. A membrane-flow device delivers a constant flux of platelet agonists or coagulation enzymes into flowing blood. A trifurcated device sheaths a central blood flow on both sides with buffer, an ideal approach for on-chip recalcification of citrated blood or drug delivery. A side-view device allows clotting on a porous collagen/TF plug at constant pressure differential across the developing clot. The core-shell architecture of clots made in mouse models can be replicated in this device using human blood. For pathological flows, a stenosis device achieves shear rates of >100,000 s−1 to drive plasma von Willebrand factor (VWF) to form thick long fibers on collagen. Similarly, a micropost-impingement device creates extreme elongational and shear flows for VWF fiber formation without collagen. Overall, microfluidics are ideal for studies of clotting, bleeding, fibrin polymerization/fibrinolysis, cell/clot mechanics, adhesion, mechanobiology, and reaction-transport dynamics. PMID:26600269

  11. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    PubMed

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-03

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  12. Enterovirus 3A Facilitates Viral Replication by Promoting Phosphatidylinositol 4-Kinase IIIβ–ACBD3 Interaction

    PubMed Central

    Xiao, Xia; Lei, Xiaobo; Zhang, Zhenzhen; Ma, Yijie; Qi, Jianli; Wu, Chao; Xiao, Yan; Li, Li

    2017-01-01

    ABSTRACT Like other enteroviruses, enterovirus 71 (EV71) relies on phosphatidylinositol 4-kinase IIIβ (PI4KB) for genome RNA replication. However, how PI4KB is recruited to the genome replication sites of EV71 remains elusive. Recently, we reported that a host factor, ACBD3, is needed for EV71 replication by interacting with viral 3A protein. Here, we show that ACBD3 is required for the recruitment of PI4KB to RNA replication sites. Overexpression of viral 3A or EV71 infection stimulates the interaction of PI4KB and ACBD3. Consistently, EV71 infection induces the production of phosphatidylinositol-4-phosphate (PI4P). Furthermore, PI4KB, ACBD3, and 3A are all localized to the viral-RNA replication sites. Accordingly, PI4KB or ACBD3 depletion by small interfering RNA (siRNA) leads to a reduction in PI4P production after EV71 infection. I44A or H54Y substitution in 3A interrupts the stimulation of PI4KB and ACBD3. Further analysis suggests that stimulation of ACBD3-PI4KB interaction is also important for the replication of enterovirus 68 but disadvantageous to human rhinovirus 16. These results reveal a mechanism of enterovirus replication that involves a selective strategy for recruitment of PI4KB to the RNA replication sites. IMPORTANCE Enterovirus 71, like other human enteroviruses, replicates its genome within host cells, where viral proteins efficiently utilize cellular machineries. While multiple factors are involved, it is largely unclear how viral replication is controlled. We show that the 3A protein of enterovirus 71 recruits an enzyme, phosphatidylinositol 4-kinase IIIβ, by interacting with ACBD3, which alters cellular membranes through the production of a lipid, PI4P. Consequently, the viral and host proteins form a large complex that is necessary for RNA synthesis at replication sites. Notably, PI4KB-ACBD3 interaction also differentially mediates the replication of enterovirus 68 and rhinovirus 16. These results provide new insight into the molecular network of enterovirus replication. PMID:28701404

  13. Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G/sub 0//G/sub 1/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freytag, S.O.

    1988-04-01

    A broad base of data has implicated a role for the c-myc proto-oncogene in the control of the cell cycle and cell differentiation. To further define the role of myc in these processes, the authors examined the effect of enforced myc expression on several events that are thought to be important steps leading to the terminally differentiated state: (i) the ability to arrest growth in G/sub 0//G/sub 1/, (ii) the ability to replicate the genome upon initiation of the differentiation program, and (iii) the ability to loose responsiveness to mitogens and withdraw from the cell cycle. 3T3-L1 preadipocyte cell linesmore » expressing various levels of myc mRNA were established by transfection with a recombinant myc gene under the transcriptional control of the Rous sarcoma virus (RSV) promoter. Cells that expressed high constitutive levels of pRSV myc mRNA arrested in G/sub 0//G/sub 1/ at densities similar to those of normal cells at confluence. Upon initiation of the differentiation program, such cells traversed the cell cycle with kinetics similar to those of normal cells and subsequently arrested in G/sub 0//G/sub 1/. Thus, enforced expression of myc had no effect on the ability of cells to arrest growth in G/sub 0//G/sub 1/ or to replicate the genome upon initiation of the differentiation program. Cells were then tested for their ability to reenter the cell cycle upon exposure to high concentrations of serum and for their capacity to differentiate. In contrast to normal cells, cells expressing high constitutive levels of myc RNA reentered the cell cycle when challenged with 30% serum and failed to terminally differentiate.« less

  14. Differentiated human airway organoids to assess infectivity of emerging influenza virus.

    PubMed

    Zhou, Jie; Li, Cun; Sachs, Norman; Chiu, Man Chun; Wong, Bosco Ho-Yin; Chu, Hin; Poon, Vincent Kwok-Man; Wang, Dong; Zhao, Xiaoyu; Wen, Lei; Song, Wenjun; Yuan, Shuofeng; Wong, Kenneth Kak-Yuen; Chan, Jasper Fuk-Woo; To, Kelvin Kai-Wang; Chen, Honglin; Clevers, Hans; Yuen, Kwok-Yung

    2018-06-26

    Novel reassortant avian influenza H7N9 virus and pandemic 2009 H1N1 (H1N1pdm) virus cause human infections, while avian H7N2 and swine H1N1 virus mainly infect birds and pigs, respectively. There is no robust in vitro model for assessing the infectivity of emerging viruses in humans. Based on a recently established method, we generated long-term expanding 3D human airway organoids which accommodate four types of airway epithelial cells: ciliated, goblet, club, and basal cells. We report differentiation conditions which increase ciliated cell numbers to a nearly physiological level with synchronously beating cilia readily discernible in every organoid. In addition, the differentiation conditions induce elevated levels of serine proteases, which are essential for productive infection of human influenza viruses and low-pathogenic avian influenza viruses. We also established improved 2D monolayer culture conditions for the differentiated airway organoids. To demonstrate the ability of differentiated airway organoids to identify human-infective virus, 3D and 2D differentiated airway organoids are applied to evaluate two pairs of viruses with known distinct infectivity in humans, H7N9/Ah versus H7N2 and H1N1pdm versus an H1N1 strain isolated from swine (H1N1sw). The human-infective H7N9/Ah virus replicated more robustly than the poorly human-infective H7N2 virus; the highly human-infective H1N1pdm virus replicated to a higher titer than the counterpart H1N1sw. Collectively, we developed differentiated human airway organoids which can morphologically and functionally simulate human airway epithelium. These differentiated airway organoids can be applied for rapid assessment of the infectivity of emerging respiratory viruses to human. Copyright © 2018 the Author(s). Published by PNAS.

  15. Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1.

    PubMed

    Kumazaki, Tsutomu; Kurata, Sayaka; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2011-06-01

    Normal human cells have a replicative life span and therefore senesce. Usually, normal human cell strains are differentiated cells and reach a terminally differentiated state after a number of cell divisions. At present, definitive differences are not known between replicative senescence and terminal differentiation. TIG-1 is a human fibroblast strain established from fetal lung and has been used extensively in studies of cellular senescence, and numerous data were accumulated at the molecular level. Recently, a method for generating induced pluripotent stem cells (iPSCs) was developed. Using the method, we introduced four reprogramming genes to TIG-1 fibroblasts and succeeded in isolating colonies that had embryonic stem cell (ESC)-like morphologies. They showed alkaline phosphatase activity and expressed ESC markers, as shown by immunostaining of OCT4, SOX2, SSEA4, and TRA-1-81 as well as reverse-transcription polymerase chain reaction (RT-PCR) for OCT4 and NANOG transcripts. Thus, we succeeded in establishing iPSC clones from TIG-1. The iPSC clones could differentiate to cells originated from all three germ-cell layers, as shown by RT-PCR, for messenger RNA (mRNA) expression of α-fetoprotein (endoderm), MSX1 (mesoderm) and microtubule-associated protein 2 (ectoderm), and by immunostaining for α-fetoprotein (endoderm), α-smooth muscle actin (mesoderm), and β-III-tubulin (ectoderm). The iPSCs formed teratoma containing the structures developed from all three germ-cell layers in severe combined immune-deficiency mice. Thus, by comparing the aging process of parental TIG-1 cells and the differentiation process of iPSC-derived fibrocytes to fibroblasts, we can reveal the exact differences in processes between senescence and terminal differentiation.

  16. Constraints on the rheology of the partially molten mantle from numerical models of laboratory experiments

    NASA Astrophysics Data System (ADS)

    Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.

    2015-12-01

    One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.

  17. E2F1 and E2F2 prevent replicative stress and subsequent p53-dependent organ involution.

    PubMed

    Iglesias-Ara, A; Zenarruzabeitia, O; Buelta, L; Merino, J; Zubiaga, A M

    2015-10-01

    Tissue homeostasis requires tight regulation of cellular proliferation, differentiation and apoptosis. E2F1 and E2F2 transcription factors share a critical role in tissue homeostasis, since their combined inactivation results in overall organ involution, specially affecting the pancreatic gland, which subsequently triggers diabetes. We have examined the mechanism by which these E2Fs regulate tissue homeostasis. We show that pancreas atrophy in E2F1/E2F2 double-knockout (DKO) mice is associated with mitochondrial apoptosis and activation of the p53 pathway in young animals, before the development of diabetes. A deregulated expression of E2F target genes was detected in pancreatic cells of young DKO animals, along with unscheduled DNA replication and activation of a DNA damage response. Importantly, suppression of DNA replication in vivo with aphidicolin led to a significant inhibition of the p53 pathway in DKO pancreas, implying a causal link between DNA replication stress and p53 activation in this model. We further show that activation of the p53 pathway has a key role in the aberrant phenotype of DKO mice, since targeted inactivation of p53 gene abrogated cellular apoptosis and prevented organ involution and insulin-dependent diabetes in mice lacking E2F1/E2F2. Unexpectedly, p53 inactivation unmasked oncogenic features of E2F1/E2F2-depleted cells, as evidenced by an accelerated tumor development in triple-knockout mice compared with p53(-/-) mice. Collectively, our data reveal a role for E2F1 and E2F2 as suppressors of replicative stress in differentiating cells, and uncover the existence of a robust E2F-p53 regulatory axis to enable tissue homeostasis and prevent tumorigenesis. These findings have implications in the design of approaches targeting E2F for cancer therapy.

  18. Differential Chromatin Structure Encompassing Replication Origins in Transformed and Normal Cells

    PubMed Central

    Di Paola, Domenic; Rampakakis, Emmanouil; Chan, Man Kid

    2012-01-01

    This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator proteins, thus allowing increased origin activity. PMID:23050047

  19. E2F1 and E2F2 prevent replicative stress and subsequent p53-dependent organ involution

    PubMed Central

    Iglesias-Ara, A; Zenarruzabeitia, O; Buelta, L; Merino, J; Zubiaga, A M

    2015-01-01

    Tissue homeostasis requires tight regulation of cellular proliferation, differentiation and apoptosis. E2F1 and E2F2 transcription factors share a critical role in tissue homeostasis, since their combined inactivation results in overall organ involution, specially affecting the pancreatic gland, which subsequently triggers diabetes. We have examined the mechanism by which these E2Fs regulate tissue homeostasis. We show that pancreas atrophy in E2F1/E2F2 double-knockout (DKO) mice is associated with mitochondrial apoptosis and activation of the p53 pathway in young animals, before the development of diabetes. A deregulated expression of E2F target genes was detected in pancreatic cells of young DKO animals, along with unscheduled DNA replication and activation of a DNA damage response. Importantly, suppression of DNA replication in vivo with aphidicolin led to a significant inhibition of the p53 pathway in DKO pancreas, implying a causal link between DNA replication stress and p53 activation in this model. We further show that activation of the p53 pathway has a key role in the aberrant phenotype of DKO mice, since targeted inactivation of p53 gene abrogated cellular apoptosis and prevented organ involution and insulin-dependent diabetes in mice lacking E2F1/E2F2. Unexpectedly, p53 inactivation unmasked oncogenic features of E2F1/E2F2-depleted cells, as evidenced by an accelerated tumor development in triple-knockout mice compared with p53−/− mice. Collectively, our data reveal a role for E2F1 and E2F2 as suppressors of replicative stress in differentiating cells, and uncover the existence of a robust E2F-p53 regulatory axis to enable tissue homeostasis and prevent tumorigenesis. These findings have implications in the design of approaches targeting E2F for cancer therapy. PMID:25656653

  20. Minichromosome maintenance (Mcm) proteins, cyclin B1 and D1, phosphohistone H3 and in situ DNA replication for functional analysis of vulval intraepithelial neoplasia.

    PubMed

    Davidson, E J; Morris, L S; Scott, I S; Rushbrook, S M; Bird, K; Laskey, R A; Wilson, G E; Kitchener, H C; Coleman, N; Stern, P L

    2003-01-27

    Vulval intraepithelial neoplasia (VIN) is defined histopathologically by distinctive abnormalities of cellular maturation and differentiation. To investigate the functional properties of VIN, the expression of several proteins involved in the regulation of the cell cycle as well as in situ DNA replication competence was analysed by immunohistochemistry. Snap-frozen vulval biopsies were graded as normal squamous epithelium (n=6), undifferentiated HPV positive VIN 1 (n=3), VIN 2 (n=8) and VIN 3 (n=20). Immunohistochemistry was performed using the following markers: cyclin D1 (expressed in middle/late G1), cyclin B1 (expressed in G2/early M), phosphorylated histone H3 (expressed during mitosis) and minichromosome maintenance (Mcm) proteins 2 and 5 (expressed during the cell cycle, but not in differentiated or quiescent cells). In situ DNA replication competence was used to identify S-phase cells. The percentage of positively stained nuclei in three representative microscopic fields was calculated per biopsy. In normal vulva, the expression of all markers was restricted to the proliferative compartment of the basal layer of the epithelium. In contrast in high-grade VIN, the majority of epithelial cells expressed the Mcm proteins from basal to superficial layer. The detection of cyclins B1 and D1, phospho-histone H3 and in situ DNA replication was also found through the full thickness of these lesions but by a lower proportion of the cells. This is consistent with these markers providing a series of 'snapshots' of the cell cycle status of individual cells. The low-grade VIN showed reduced expression of the cell cycle markers in relation to the level of dysplasia. The combination of these analyses establishes that the majority of VIN cells remain in a functional replicative or prereplicative state of the cell cycle. Clinical application of these analyses may provide a basis for improved diagnosis of VIN.

  1. CCR5 Signal Transduction in Macrophages by Human Immunodeficiency Virus and Simian Immunodeficiency Virus Envelopes

    PubMed Central

    Arthos, James; Rubbert, Andrea; Rabin, Ronald L.; Cicala, Claudia; Machado, Elizabeth; Wildt, Kathryne; Hanbach, Meredith; Steenbeke, Tavis D.; Swofford, Ruth; Farber, Joshua M.; Fauci, Anthony S.

    2000-01-01

    The capacity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelopes to transduce signals through chemokine coreceptors on macrophages was examined by measuring the ability of recombinant envelope proteins to mobilize intracellular calcium stores. Both HIV and SIV envelopes mobilized calcium via interactions with CCR5. The kinetics of these responses were similar to those observed when macrophages were treated with MIP-1β. Distinct differences in the capacity of envelopes to mediate calcium mobilization were observed. Envelopes derived from viruses capable of replicating in macrophages mobilized relatively high levels of calcium, while envelopes derived from viruses incapable of replicating in macrophages mobilized relatively low levels of calcium. The failure to efficiently mobilize calcium was not restricted to envelopes derived from CXCR4-utilizing isolates but also included envelopes derived from CCR5-utilizing isolates that fail to replicate in macrophages. We characterized one CCR5-utilizing isolate, 92MW959, which entered macrophages but failed to replicate. A recombinant envelope derived from this virus mobilized low levels of calcium. When macrophages were inoculated with 92MW959 in the presence of MIP-1α, viral replication was observed, indicating that a CC chemokine-mediated signal provided the necessary stimulus to allow the virus to complete its replication cycle. Although the role that envelope-CCR5 signal transduction plays in viral replication is not yet understood, it has been suggested that envelope-mediated signals facilitate early postfusion events in viral replication. The data presented here are consistent with this hypothesis and suggest that the differential capacity of viral envelopes to signal through CCR5 may influence their ability to replicate in macrophages. PMID:10864653

  2. CCR5 signal transduction in macrophages by human immunodeficiency virus and simian immunodeficiency virus envelopes.

    PubMed

    Arthos, J; Rubbert, A; Rabin, R L; Cicala, C; Machado, E; Wildt, K; Hanbach, M; Steenbeke, T D; Swofford, R; Farber, J M; Fauci, A S

    2000-07-01

    The capacity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelopes to transduce signals through chemokine coreceptors on macrophages was examined by measuring the ability of recombinant envelope proteins to mobilize intracellular calcium stores. Both HIV and SIV envelopes mobilized calcium via interactions with CCR5. The kinetics of these responses were similar to those observed when macrophages were treated with MIP-1beta. Distinct differences in the capacity of envelopes to mediate calcium mobilization were observed. Envelopes derived from viruses capable of replicating in macrophages mobilized relatively high levels of calcium, while envelopes derived from viruses incapable of replicating in macrophages mobilized relatively low levels of calcium. The failure to efficiently mobilize calcium was not restricted to envelopes derived from CXCR4-utilizing isolates but also included envelopes derived from CCR5-utilizing isolates that fail to replicate in macrophages. We characterized one CCR5-utilizing isolate, 92MW959, which entered macrophages but failed to replicate. A recombinant envelope derived from this virus mobilized low levels of calcium. When macrophages were inoculated with 92MW959 in the presence of MIP-1alpha, viral replication was observed, indicating that a CC chemokine-mediated signal provided the necessary stimulus to allow the virus to complete its replication cycle. Although the role that envelope-CCR5 signal transduction plays in viral replication is not yet understood, it has been suggested that envelope-mediated signals facilitate early postfusion events in viral replication. The data presented here are consistent with this hypothesis and suggest that the differential capacity of viral envelopes to signal through CCR5 may influence their ability to replicate in macrophages.

  3. Cyclophilin B facilitates the replication of Orf virus.

    PubMed

    Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng

    2017-06-15

    Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID 50 ) assay and qRT-PCR detection. In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.

  4. Heat Induction of Prophage φ105 in Bacillus subtilis: Replication of the Bacterial and Bacteriophage Genomes

    PubMed Central

    Armentrout, Richard W.; Rutberg, Lars

    1971-01-01

    A temperature-inducible mutant of temperate Bacillus bacteriophage φ105 was isolated and used to lysogenize a thymine-requiring strain of Bacillus subtilis 168. Synthesis of phage and bacterial deoxyribonucleic acid (DNA) was studied by sucrose gradient centrifugation and density equilibrium centrifugation of DNA extracted from induced bacteria. The distribution of DNA in the gradients was measured by differential isotope and density labeling of DNA before and after induction and by measuring the biological activity of the DNA in genetic transformation, in rescue of phage markers, and in infectivity assays. At early times after induction, but after at least one round of replication, phage DNA remains associated with high-molecular-weight DNA, whereas, later in the infection, phage DNA is associated with material of decreasing molecular weight. Genetic linkage between phage and bacterial markers can be demonstrated in replicated DNA from induced cells. Prophage induction is shown to affect replication of the bacterial chromosome. The overall rate of replication of prelabeled bacterial DNA is identical in temperature-induced lysogenics and in “mock-induced” wild-type φ105 lysogenics. The rate of replication of the bacterial marker phe-1 (and also of nia-38), located close to the prophage in direction of the terminus of the bacterial chromosome, is increased in induced cells, however, relative to other bacterial markers tested. In temperature-inducible lysogenics, where the prophage also carries a ts mutation which blocks phage DNA synthesis, replication of both phage and bacterial DNA stops after about 50% of the phage DNA has replicated once. The results of these experiments suggest that the prophage is not initially excised in induced cells, but rather it is specifically replicated in situ together with adjacent parts of the bacterial chromosome. PMID:5002012

  5. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins.

    PubMed

    Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi

    2015-01-01

    This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.

  6. Entanglement replication in driven dissipative many-body systems.

    PubMed

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

  7. 2'-5'-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1.

    PubMed

    Dhar, Jayeeta; Cuevas, Rolando A; Goswami, Ramansu; Zhu, Jianzhong; Sarkar, Saumendra N; Barik, Sailen

    2015-10-01

    2'-5'-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Type I interferon inhibits varicella-zoster virus replication by interfering with the dynamic interaction between mediator and IE62 within replication compartments.

    PubMed

    Ku, Chia-Chi; Chang, Yi-Hsuan; Chien, Yun; Lee, Tsung-Lin

    2016-01-01

    Varicella-zoster virus (VZV) is the causative agent of varicella and zoster. The immediate-early protein, IE62 is the predominant VZ virion tegument protein, transactivating the expression of all kinetic classes of VZV genes. IE62 is localized to punctae that form DNA replication compartments in the nuclei of VZV infected cells. The morphological changes and the increase in the size of replication compartments that express IE62 are correlated with production of VZ virions. Mammalian Mediator serves as a coactivator of IE62 and functions by bridging DNA-binding transcription factors¸ RNA polymerase II (RNAP II) and their target DNAs for VZV replication. While VZV is highly sensitive to type I interferons (IFNs), how IFN-α inhibits early events during VZV replication is poorly understood. In this study, we performed in situ analysis to investigate the effects of IFN-α on the dynamic interactions of IE62 with the Mediator MED25 subunit and the RNAP II negative regulator cycle-dependent kinase 8 (CDK8) in VZV infected cells by confocal immunofluorescence. We found that in addition to dose-dependent inhibition of the yields of infectious virus by IFN treatment, IFN-α prominently impeded the development of large IE62(+) nuclear compartments and significantly decreased transcription of VZV genes. Both the expression level and stable recruitment of MED25 to IE62(+) replication compartments were inhibited by IFN-α. While IFN-α treatment upregulated CDK8 expression, redistribution and recruitment of CDK8 to IE62(+) replication compartments in infected cells was not affected by VZV. IFN-α exerts multiple inhibitory activities against virus infections. In this study, we provide visionary demonstration that continuous translocation of MED25 into VZV replication compartments ensures production of virions. IFN-α greatly impedes the formation of a stable complex between IE62 and the Mediator complex thereby suppresses VZV gene transcription. Our demonstration that IFN-α-induced antiviral effect against VZV infection is through inhibiting the reorganization of nuclear components uncovers a novel function of IFN-α. Targeting the interaction between IE62 and MED25 may offer a novel approach to the development of antiviral agents against VZV infection.

  9. Identification of novel risk genes associated with type 1 diabetes mellitus using a genome-wide gene-based association analysis.

    PubMed

    Qiu, Ying-Hua; Deng, Fei-Yan; Li, Min-Jing; Lei, Shu-Feng

    2014-11-01

    Type 1 diabetes mellitus is a serious disorder characterized by destruction of pancreatic β-cells, culminating in absolute insulin deficiency. Genetic factors contribute to the susceptibility of type 1 diabetes mellitus. The aim of the present study was to identify more susceptibility genes of type 1 diabetes mellitus. We carried out an initial gene-based genome-wide association study in a total of 4,075 type 1 diabetes mellitus cases and 2,604 controls by using the Gene-based Association Test using Extended Simes procedure. Furthermore, we carried out replication studies, differential expression analysis and functional annotation clustering analysis to support the significance of the identified susceptibility genes. We identified 452 genes associated with type 1 diabetes mellitus, even after adapting the genome-wide threshold for significance (P < 9.05E-04). Among these genes, 171 were newly identified for type 1 diabetes mellitus, which were ignored in single-nucleotide polymorphism-based association analysis and were not previously reported. We found that 53 genes have supportive evidence from replication studies and/or differential expression studies. In particular, seven genes including four non-human leukocyte antigen (HLA) genes (RASIP1, STRN4, BCAR1 and MYL2) are replicated in at least one independent population and also differentially expressed in peripheral blood mononuclear cells or monocytes. Furthermore, the associated genes tend to enrich in immune-related pathways or Gene Ontology project terms. The present results suggest the high power of gene-based association analysis in detecting disease-susceptibility genes. Our findings provide more insights into the genetic basis of type 1 diabetes mellitus.

  10. MicroRNA profiling of human primary macrophages exposed to dengue virus identifies miRNA-3614-5p as antiviral and regulator of ADAR1 expression

    PubMed Central

    Echavarría-Consuegra, Liliana; Flipse, Jacky; Fernández, Geysson Javier; Kluiver, Joost; van den Berg, Anke; Urcuqui-Inchima, Silvio; Smit, Jolanda M.

    2017-01-01

    Background Due to the high burden of dengue disease worldwide, a better understanding of the interactions between dengue virus (DENV) and its human host cells is of the utmost importance. Although microRNAs modulate the outcome of several viral infections, their contribution to DENV replication is poorly understood. Methods and principal findings We investigated the microRNA expression profile of primary human macrophages challenged with DENV and deciphered the contribution of microRNAs to infection. To this end, human primary macrophages were challenged with GFP-expressing DENV and sorted to differentiate between truly infected cells (DENV-positive) and DENV-exposed but non-infected cells (DENV-negative cells). The miRNAome was determined by small RNA-Seq analysis and the effect of differentially expressed microRNAs on DENV yield was examined. Five microRNAs were differentially expressed in human macrophages challenged with DENV. Of these, miR-3614-5p was found upregulated in DENV-negative cells and its overexpression reduced DENV infectivity. The cellular targets of miR-3614-5p were identified by liquid chromatography/mass spectrometry and western blot. Adenosine deaminase acting on RNA 1 (ADAR1) was identified as one of the targets of miR-3614-5p and was shown to promote DENV infectivity at early time points post-infection. Conclusion/Significance Overall, miRNAs appear to play a limited role in DENV replication in primary human macrophages. The miRNAs that were found upregulated in DENV-infected cells did not control the production of infectious virus particles. On the other hand, miR-3614-5p, which was upregulated in DENV-negative macrophages, reduced DENV infectivity and regulated ADAR1 expression, a protein that facilitates viral replication. PMID:29045406

  11. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    PubMed Central

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  12. Classical conditioning of sexual response in women: a replication study.

    PubMed

    Both, Stephanie; Brauer, Marieke; Laan, Ellen

    2011-11-01

    According to incentive motivation models, sexual stimuli play a crucial role in eliciting sexual arousal, desire, and behavior. Therefore, it seems highly valuable to investigate the process through which stimuli acquire motivational value. Although many theories of human sexual behavior assume that sexual stimuli obtain arousing properties through classical conditioning, systematic research on classical conditioning of sexual responses in humans is scarce. Recently, however, our research group observed conditioned genital responses in women using a differential conditioning procedure and genital vibrostimulation as unconditional stimulus (US). The aim of the present experiment was to perform an extended replication of this previous study to test the efficacy of our conditioning paradigm. A differential conditioning experiment was conducted in 32 sexually functional women. Neutral pictures served as conditional stimuli (CSs) and genital vibrostimulation as US. Only one CS (the CS+) was followed by the US during the acquisition phase. Conditioned responses were assessed during the extinction phase. Vaginal pulse amplitude (VPA) and skin conductance level were assessed, and ratings of affective value and sexual arousal were obtained. As expected, during the extinction phase, VPA was higher in response to the CS+ than to the CS-. Also, the CS+ tended to be evaluated as more positive and as more sexually arousing than the CS-. In addition, the magnitude of conditioned subjective affect was related to scores on the Sexual Inhibition\\Sexual Excitation Scales. Skin conductance levels showed no conditioning effect. Genital and subjective sexual responses were successfully modulated by the differential conditioning paradigm. This replication of our previous study confirms the effectiveness of our conditioning procedure and indicates that it may provide a fruitful paradigm for further research on associative sexual reward learning in humans. © 2011 International Society for Sexual Medicine.

  13. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses.

    PubMed

    Ozbun, Michelle A; Patterson, Nicole A

    2014-08-01

    Papillomaviruses have a strict tropism for epithelial cells, and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro-wherein virion morphogenesis occurs under cooperative viral and cellular cues-requires the cultivation of epithelium. Presented in the first section of this unit is a protocol to grow differentiating epithelial tissues that mimic many important morphological and biochemical aspects of normal skin. The technique involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname "raft" cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, or keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single-step virus growth cycle is achieved in this process, as it is unlikely that progeny virions are released to initiate subsequent rounds of infection. Copyright © 2014 John Wiley & Sons, Inc.

  14. Allele-specific control of replication timing and genome organization during development.

    PubMed

    Rivera-Mulia, Juan Carlos; Dimond, Andrew; Vera, Daniel; Trevilla-Garcia, Claudia; Sasaki, Takayo; Zimmerman, Jared; Dupont, Catherine; Gribnau, Joost; Fraser, Peter; Gilbert, David M

    2018-05-07

    DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus X castaneus mouse crosses and exploited the high single nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene expression (total nuclear RNA-seq) and chromatin accessibility (ATAC-seq). We also present HARP: a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv and CAST/Ei), parental configurations and gender revealed significant RT asynchrony between alleles across ~12% of the autosomal genome linked to sub-species genomes but not to parental origin, growth conditions or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not SNP density, gene expression, imprinting or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types including extraembryonic endoderm stem (XEN) cells, 4 male and female primary mouse embryonic fibroblasts (MEFs) and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs was largely lost in all differentiated cell types, coordinated with a more uniform Hi-C compartment arrangement, suggesting that genome organization of homologues converges to similar folding patterns during cell fate commitment. Published by Cold Spring Harbor Laboratory Press.

  15. Hierarchical cortical transcriptome disorganization in autism.

    PubMed

    Lombardo, Michael V; Courchesne, Eric; Lewis, Nathan E; Pramparo, Tiziano

    2017-01-01

    Autism spectrum disorders (ASD) are etiologically heterogeneous and complex. Functional genomics work has begun to identify a diverse array of dysregulated transcriptomic programs (e.g., synaptic, immune, cell cycle, DNA damage, WNT signaling, cortical patterning and differentiation) potentially involved in ASD brain abnormalities during childhood and adulthood. However, it remains unclear whether such diverse dysregulated pathways are independent of each other or instead reflect coordinated hierarchical systems-level pathology. Two ASD cortical transcriptome datasets were re-analyzed using consensus weighted gene co-expression network analysis (WGCNA) to identify common co-expression modules across datasets. Linear mixed-effect models and Bayesian replication statistics were used to identify replicable differentially expressed modules. Eigengene network analysis was then utilized to identify between-group differences in how co-expression modules interact and cluster into hierarchical meta-modular organization. Protein-protein interaction analyses were also used to determine whether dysregulated co-expression modules show enhanced interactions. We find replicable evidence for 10 gene co-expression modules that are differentially expressed in ASD cortex. Rather than being independent non-interacting sources of pathology, these dysregulated co-expression modules work in synergy and physically interact at the protein level. These systems-level transcriptional signals are characterized by downregulation of synaptic processes coordinated with upregulation of immune/inflammation, response to other organism, catabolism, viral processes, translation, protein targeting and localization, cell proliferation, and vasculature development. Hierarchical organization of meta-modules (clusters of highly correlated modules) is also highly affected in ASD. These findings highlight that dysregulation of the ASD cortical transcriptome is characterized by the dysregulation of multiple coordinated transcriptional programs producing synergistic systems-level effects that cannot be fully appreciated by studying the individual component biological processes in isolation.

  16. In search for genetic determinants of clinically meaningful differential cardiovascular event reduction by pravastatin in the PHArmacogenetic study of Statins in the Elderly at risk (PHASE)/PROSPER study.

    PubMed

    Postmus, Iris; Johnson, Paul C D; Trompet, Stella; de Craen, Anton J M; Slagboom, P Eline; Devlin, James J; Shiffman, Dov; Sacks, Frank M; Kearney, Patricia M; Stott, David J; Buckley, Brendan M; Sattar, Naveed; Ford, Ian; Westendorp, Rudi G J; Jukema, J Wouter

    2014-07-01

    Statin therapy is widely used in the prevention and treatment of cardiovascular events and is associated with significant risk reductions. However, there is considerable variation in response to statin therapy both in terms of LDL cholesterol reduction and clinical outcomes. It has been hypothesized that genetic variation contributes importantly to this individual drug response. We investigated the interaction between genetic variants and pravastatin or placebo therapy on the incidence of cardiovascular events by performing a genome-wide association study in the participants of the PROspective Study of Pravastatin in the Elderly at Risk for vascular disease--PHArmacogenetic study of Statins in the Elderly at risk (PROSPER/PHASE) study (n = 5244). We did not observe genome-wide significant associations with a clinically meaningful differential cardiovascular event reduction by pravastatin therapy. In addition, SNPs with p-values lower than 1 × 10(-4) were assessed for replication in a case-only analysis within two randomized placebo controlled pravastatin trials, CARE (n = 711) and WOSCOPS (n = 522). rs7102569, on chromosome 11 near the ODZ4 gene, was replicated in the CARE study (p = 0.008), however the direction of effect was opposite. This SNP was not associated in WOSCOPS. In addition, none of the SNPs replicated significantly after correcting for multiple testing. We could not identify genetic variation that was significantly associated at genome-wide level with a clinically meaningful differential event reduction by pravastatin treatment in a large prospective study. We therefore assume that in daily practice the use of genetic characteristics to personalize pravastatin treatment to improve prevention of cardiovascular disease will be limited. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Tropism and infectivity of influenza virus, including highly pathogenic avian H5N1 virus, in ferret tracheal differentiated primary epithelial cell cultures.

    PubMed

    Zeng, Hui; Goldsmith, Cynthia S; Maines, Taronna R; Belser, Jessica A; Gustin, Kortney M; Pekosz, Andrew; Zaki, Sherif R; Katz, Jacqueline M; Tumpey, Terrence M

    2013-03-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses.

  18. Measurement of replication structures at the nanometer scale using super-resolution light microscopy

    PubMed Central

    Baddeley, D.; Chagin, V. O.; Schermelleh, L.; Martin, S.; Pombo, A.; Carlton, P. M.; Gahl, A.; Domaing, P.; Birk, U.; Leonhardt, H.; Cremer, C.; Cardoso, M. C.

    2010-01-01

    DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses. PMID:19864256

  19. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates.

    PubMed

    Mahajan, Aman; Shiferaw, Yohannes; Sato, Daisuke; Baher, Ali; Olcese, Riccardo; Xie, Lai-Hua; Yang, Ming-Jim; Chen, Peng-Sheng; Restrepo, Juan G; Karma, Alain; Garfinkel, Alan; Qu, Zhilin; Weiss, James N

    2008-01-15

    Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Ca(i)) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ventricular action potential model, we modified the L-type calcium (Ca) current (I(Ca,L)) and Ca(i) cycling formulations based on new experimental patch-clamp data obtained in isolated rabbit ventricular myocytes, using the perforated patch configuration at 35-37 degrees C. Incorporating a minimal seven-state Markovian model of I(Ca,L) that reproduced Ca- and voltage-dependent kinetics in combination with our previously published dynamic Ca(i) cycling model, the new model replicates experimentally observed action potential duration and Ca(i) transient alternans at rapid heart rates, and accurately reproduces experimental action potential duration restitution curves obtained by either dynamic or S1S2 pacing.

  20. Minority games, evolving capitals and replicator dynamics

    NASA Astrophysics Data System (ADS)

    Galla, Tobias; Zhang, Yi-Cheng

    2009-11-01

    We discuss a simple version of the minority game (MG) in which agents hold only one strategy each, but in which their capitals evolve dynamically according to their success and in which the total trading volume varies in time accordingly. This feature is known to be crucial for MGs to reproduce stylized facts of real market data. The stationary states and phase diagram of the model can be computed, and we show that the ergodicity breaking phase transition common for MGs, and marked by a divergence of the integrated response, is present also in this simplified model. An analogous majority game turns out to be relatively void of interesting features, and the total capital is found to diverge in time. Introducing a restraining force leads to a model akin to the replicator dynamics of evolutionary game theory, and we demonstrate that here a different type of phase transition is observed. Finally we briefly discuss the relation of this model with one strategy per player to more sophisticated minority games with dynamical capitals and several trading strategies per agent.

  1. Pluripotency, Differentiation, and Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation

    PubMed Central

    Miyamoto, Tadashi; Furusawa, Chikara; Kaneko, Kunihiko

    2015-01-01

    Embryonic stem cells exhibit pluripotency: they can differentiate into all types of somatic cells. Pluripotent genes such as Oct4 and Nanog are activated in the pluripotent state, and their expression decreases during cell differentiation. Inversely, expression of differentiation genes such as Gata6 and Gata4 is promoted during differentiation. The gene regulatory network controlling the expression of these genes has been described, and slower-scale epigenetic modifications have been uncovered. Although the differentiation of pluripotent stem cells is normally irreversible, reprogramming of cells can be experimentally manipulated to regain pluripotency via overexpression of certain genes. Despite these experimental advances, the dynamics and mechanisms of differentiation and reprogramming are not yet fully understood. Based on recent experimental findings, we constructed a simple gene regulatory network including pluripotent and differentiation genes, and we demonstrated the existence of pluripotent and differentiated states from the resultant dynamical-systems model. Two differentiation mechanisms, interaction-induced switching from an expression oscillatory state and noise-assisted transition between bistable stationary states, were tested in the model. The former was found to be relevant to the differentiation process. We also introduced variables representing epigenetic modifications, which controlled the threshold for gene expression. By assuming positive feedback between expression levels and the epigenetic variables, we observed differentiation in expression dynamics. Additionally, with numerical reprogramming experiments for differentiated cells, we showed that pluripotency was recovered in cells by imposing overexpression of two pluripotent genes and external factors to control expression of differentiation genes. Interestingly, these factors were consistent with the four Yamanaka factors, Oct4, Sox2, Klf4, and Myc, which were necessary for the establishment of induced pluripotent stem cells. These results, based on a gene regulatory network and expression dynamics, contribute to our wider understanding of pluripotency, differentiation, and reprogramming of cells, and they provide a fresh viewpoint on robustness and control during development. PMID:26308610

  2. Evaluation of hepatitis B viral replication and proteomic analysis of HepG2.2.15 cell line after knockdown of HBx.

    PubMed

    Xie, Hai-Yang; Cheng, Jun; Xing, Chun-Yang; Wang, Jin-Jin; Su, Rong; Wei, Xu-Yong; Zhou, Lin; Zheng, Shu-Sen

    2011-06-01

    Hepatitis B virus (HBV) is one of the major pathogens of human liver disease. Studies have shown that HBV X protein (HBx) plays an important role in promoting viral gene expression and replication. In this study we performed a global proteomic profiling to identify the downstream functional proteins of HBx, thereby detecting the mechanisms of action of HBx on virion replication. HBx in the HepG2.2.15 cell line was knocked down by the transfection of small interfering RNA (siRNA). The replication level of HBV was evaluated by microparticle enzyme immunoassay analysis of HBsAg and HBeAg in the culture supernatant, and real-time quantitative PCR analysis of HBV DNA. Two-dimensional electrophoresis combined with MALDI-TOF/TOF was performed to analyze the changes in protein expression profile after treatment with HBx siRNA. Knockdown of HBx disturbed HBV replication in vitro. HBx target siRNA significantly inhibited the expression of HBsAg, HBeAg and the replication of HBV DNA. Twelve significantly changed proteins (7 upregulated and 5 downregulated) were successfully identified by MALDI-TOF/TOF using proteomics differential expression analysis after the knockdown of HBx. Among these identified proteins, HSP70 was validated by Western blotting. The results of the study indicated the positive effect of HBx on HBV replication, and a group of downstream target proteins of HBx may be responsible for this effect.

  3. Le Chatelier's principle in replicator dynamics

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Galstyan, Aram

    2011-10-01

    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both types of equilibria satisfy the detailed balance condition.

  4. Le Chatelier's principle in replicator dynamics.

    PubMed

    Allahverdyan, Armen E; Galstyan, Aram

    2011-10-01

    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both types of equilibria satisfy the detailed balance condition.

  5. Monitoring Replication Protein A (RPA) dynamics in homologous recombination through site-specific incorporation of non-canonical amino acids

    PubMed Central

    Pokhrel, Nilisha; Origanti, Sofia; Davenport, Eric Parker; Gandhi, Disha; Kaniecki, Kyle; Mehl, Ryan A.; Greene, Eric C.; Dockendorff, Chris

    2017-01-01

    Abstract An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance. PMID:28934470

  6. The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems

    ERIC Educational Resources Information Center

    Decker, Robert

    2011-01-01

    Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…

  7. Algorithm for Overcoming the Curse of Dimensionality for Certain Non-convex Hamilton-Jacobi Equations, Projections and Differential Games

    DTIC Science & Technology

    2016-05-01

    Algorithm for Overcoming the Curse of Dimensionality for Certain Non-convex Hamilton-Jacobi Equations, Projections and Differential Games Yat Tin...subproblems. Our approach is expected to have wide applications in continuous dynamic games , control theory problems, and elsewhere. Mathematics...differential dynamic games , control theory problems, and dynamical systems coming from the physical world, e.g. [11]. An important application is to

  8. An Investigation of Differential Deposition for Figure Corrections in Full-Shell Grazing-Incidents X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Kilaru, Kirenmayee; Ramsey, Brian D.

    2009-01-01

    We are investigating differential deposition as a way of correcting small figure errors inside full-shell grazing-incidence x-ray optics. The optics in our study are fabricated using the electroformed-nickel-replication technique, and the figure errors arise from fabrication errors in the mandrel, from which the shells are replicated, as well as errors induced during the electroforming process. Combined, these give sub-micron-scale figure deviations which limit the angular resolution of the optics to approx. 10 arcsec. Sub-micron figure errors can be corrected by selectively depositing (physical vapor deposition) material inside the shell. The requirements for this filler material are that it must not degrade the ultra-smooth surface finish necessary for efficient x-ray reflection (approx. 5 A rms), and must not be highly stressed. In addition, a technique must be found to produce well controlled and defined beams within highly constrained geometries, as some of our mirror shells are less than 3 cm in diameter.

  9. Enhancing the gene-environment interaction framework through a quasi-experimental research design: evidence from differential responses to September 11.

    PubMed

    Fletcher, Jason M

    2014-01-01

    This article uses a gene-environment interaction framework to examine the differential responses to an objective external stressor based on genetic variation in the production of depressive symptoms. This article advances the literature by utilizing a quasi-experimental environmental exposure design, as well as a regression discontinuity design, to control for seasonal trends, which limit the potential for gene-environment correlation and allow stronger causal claims. Replications are attempted for two prominent genes (5-HTT and MAOA), and three additional genes are explored (DRD2, DRD4, and DAT1). This article provides evidence of a main effect of 9/11 on reports of feelings of sadness and fails to replicate a common finding of interaction using 5-HTT but does show support for interaction with MAOA in men. It also provides new evidence that variation in the DRD4 gene modifies an individual's response to the exposure, with individuals with no 7-repeats found to have a muted response.

  10. Differentially Private Histogram Publication For Dynamic Datasets: An Adaptive Sampling Approach

    PubMed Central

    Li, Haoran; Jiang, Xiaoqian; Xiong, Li; Liu, Jinfei

    2016-01-01

    Differential privacy has recently become a de facto standard for private statistical data release. Many algorithms have been proposed to generate differentially private histograms or synthetic data. However, most of them focus on “one-time” release of a static dataset and do not adequately address the increasing need of releasing series of dynamic datasets in real time. A straightforward application of existing histogram methods on each snapshot of such dynamic datasets will incur high accumulated error due to the composibility of differential privacy and correlations or overlapping users between the snapshots. In this paper, we address the problem of releasing series of dynamic datasets in real time with differential privacy, using a novel adaptive distance-based sampling approach. Our first method, DSFT, uses a fixed distance threshold and releases a differentially private histogram only when the current snapshot is sufficiently different from the previous one, i.e., with a distance greater than a predefined threshold. Our second method, DSAT, further improves DSFT and uses a dynamic threshold adaptively adjusted by a feedback control mechanism to capture the data dynamics. Extensive experiments on real and synthetic datasets demonstrate that our approach achieves better utility than baseline methods and existing state-of-the-art methods. PMID:26973795

  11. Differential equation models for sharp threshold dynamics.

    PubMed

    Schramm, Harrison C; Dimitrov, Nedialko B

    2014-01-01

    We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. Published by Elsevier Inc.

  12. Long-Term Dynamics of Autonomous Fractional Differential Equations

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Xu, Wei; Xu, Yong; Han, Qun

    This paper aims to investigate long-term dynamic behaviors of autonomous fractional differential equations with effective numerical method. The long-term dynamic behaviors predict where systems are heading after long-term evolution. We make some modification and transplant cell mapping methods to autonomous fractional differential equations. The mapping time duration of cell mapping is enlarged to deal with the long memory effect. Three illustrative examples, i.e. fractional Lotka-Volterra equation, fractional van der Pol oscillator and fractional Duffing equation, are studied with our revised generalized cell mapping method. We obtain long-term dynamics, such as attractors, basins of attraction, and saddles. Compared with some existing stability and numerical results, the validity of our method is verified. Furthermore, we find that the fractional order has its effect on the long-term dynamics of autonomous fractional differential equations.

  13. Raman and Autofluorescence Spectrum Dynamics along the HRG-Induced Differentiation Pathway of MCF-7 Cells

    PubMed Central

    Morita, Shin-ichi; Takanezawa, Sota; Hiroshima, Michio; Mitsui, Toshiyuki; Ozaki, Yukihiro; Sako, Yasushi

    2014-01-01

    Cellular differentiation proceeds along complicated pathways, even when it is induced by extracellular signaling molecules. One of the major reasons for this complexity is the highly multidimensional internal dynamics of cells, which sometimes causes apparently stochastic responses in individual cells to extracellular stimuli. Therefore, to understand cell differentiation, it is necessary to monitor the internal dynamics of cells at single-cell resolution. Here, we used a Raman and autofluorescence spectrum analysis of single cells to detect dynamic changes in intracellular molecular components. MCF-7 cells are a human cancer-derived cell line that can be induced to differentiate into mammary-gland-like cells with the addition of heregulin (HRG) to the culture medium. We measured the spectra in the cytoplasm of MCF-7 cells during 12 days of HRG stimulation. The Raman scattering spectrum, which was the major component of the signal, changed with time. A multicomponent analysis of the Raman spectrum revealed that the dynamics of the major components of the intracellular molecules, including proteins and lipids, changed cyclically along the differentiation pathway. The background autofluorescence signals of Raman scattering also provided information about the differentiation process. Using the total information from the Raman and autofluorescence spectra, we were able to visualize the pathway of cell differentiation in the multicomponent phase space. PMID:25418290

  14. Model-based variance-stabilizing transformation for Illumina microarray data.

    PubMed

    Lin, Simon M; Du, Pan; Huber, Wolfgang; Kibbe, Warren A

    2008-02-01

    Variance stabilization is a step in the preprocessing of microarray data that can greatly benefit the performance of subsequent statistical modeling and inference. Due to the often limited number of technical replicates for Affymetrix and cDNA arrays, achieving variance stabilization can be difficult. Although the Illumina microarray platform provides a larger number of technical replicates on each array (usually over 30 randomly distributed beads per probe), these replicates have not been leveraged in the current log2 data transformation process. We devised a variance-stabilizing transformation (VST) method that takes advantage of the technical replicates available on an Illumina microarray. We have compared VST with log2 and Variance-stabilizing normalization (VSN) by using the Kruglyak bead-level data (2006) and Barnes titration data (2005). The results of the Kruglyak data suggest that VST stabilizes variances of bead-replicates within an array. The results of the Barnes data show that VST can improve the detection of differentially expressed genes and reduce false-positive identifications. We conclude that although both VST and VSN are built upon the same model of measurement noise, VST stabilizes the variance better and more efficiently for the Illumina platform by leveraging the availability of a larger number of within-array replicates. The algorithms and Supplementary Data are included in the lumi package of Bioconductor, available at: www.bioconductor.org.

  15. Productive Lifecycle of Human Papillomaviruses that Depends Upon Squamous Epithelial Differentiation

    PubMed Central

    Kajitani, Naoko; Satsuka, Ayano; Kawate, Akifumi; Sakai, Hiroyuki

    2012-01-01

    Human papillomaviruses (HPVs) target the stratified epidermis, and can causes diseases ranging from benign condylomas to malignant tumors. Infections of HPVs in the genital tract are among the most common sexually transmitted diseases, and a major risk factor for cervical cancer. The virus targets epithelial cells in the basal layer of the epithelium, while progeny virions egress from terminally differentiated cells in the cornified layer, the surface layer of the epithelium. In infected basal cells, the virus maintains its genomic DNA at low-copy numbers, at which the viral productive lifecycle cannot proceed. Progression of the productive lifecycle requires differentiation of the host cell, indicating that there is tight crosstalk between viral replication and host differentiation programs. In this review, we discuss the regulation of the HPV lifecycle controlled by the differentiation program of the host cells. PMID:22536200

  16. Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics.

    PubMed

    Maduike, Nkabuije Z; Tehranchi, Ashley K; Wang, Jue D; Kreuzer, Kenneth N

    2014-01-01

    DNA replication in Escherichia coli is normally initiated at a single origin, oriC, dependent on initiation protein DnaA. However, replication can be initiated elsewhere on the chromosome at multiple ectopic oriK sites. Genetic evidence indicates that initiation from oriK depends on RNA-DNA hybrids (R-loops), which are normally removed by enzymes such as RNase HI to prevent oriK from misfiring during normal growth. Initiation from oriK sites occurs in RNase HI-deficient mutants, and possibly in wild-type cells under certain unusual conditions. Despite previous work, the locations of oriK and their impact on genome stability remain unclear. We combined 2D gel electrophoresis and whole genome approaches to map genome-wide oriK locations. The DNA copy number profiles of various RNase HI-deficient strains contained multiple peaks, often in consistent locations, identifying candidate oriK sites. Removal of RNase HI protein also leads to global alterations of replication fork migration patterns, often opposite to normal replication directions, and presumably eukaryote-like replication fork merging. Our results have implications for genome stability, offering a new understanding of how RNase HI deficiency results in R-loop-mediated transcription-replication conflict, as well as inappropriate replication stalling or blockage at Ter sites outside of the terminus trap region and at ribosomal operons. © 2013 John Wiley & Sons Ltd.

  17. The Importance of linking In Situ Observation to Flux Measurement in Understanding Rhizosphere Dynamics in Scaling to Global Processes

    NASA Astrophysics Data System (ADS)

    Allen, M. F.; Taggart, M. C.; Hernandez, R. R.; Harmon, T. C.; Rundel, P.

    2017-12-01

    Observation is essential for organizing outputs from sensor data to describe dynamic phenomena regulating core processes. The rhizosphere is that region of the soil layer that regulates soil carbon acquisition, turnover, and sequestration and that is most sensitive to rapid changes in soil moisture, temperature, and gases. Virtually every process regulating carbon and nutrient immobilization and mineralization occur here at the maximum rates. However, the observation of root, microbial, and animal growth, movement, and mortality are rarely undertaken at time scales of crucial events. While multiple cores or observations can be taken in space, replications in time are rarely undertaken. We coupled automated (AMR) and manual minirhizotrons (MMR) with soil and aboveground sensors for temperature (T), water content (q), CO2, and O2 to measure short-term dynamics that regulate carbon cycling. AMRs imaged rhizospheres, multiple times daily. From these images, we observed timing of root and hyphal growth and mortality in response to changes in photosynthesis, diurnal temperature fluctuations, and precipitation and drought events. Replicate manual minirhizotron tubes describe the spatial structure of those events, and replicate core samples provide measurements of standing crop at known times. We present four examples showing how observation led to understanding unusual C flux patterns in mixed-conifer forest (belowground photosynthate allocation), hot desert (CaCO3 formation and weathering), grassland (root grazing), and tropical rainforest (soil gas flux patterns).

  18. Biofidelic Human Activity Modeling and Simulation with Large Variability

    DTIC Science & Technology

    2014-11-25

    A systematic approach was developed for biofidelic human activity modeling and simulation by using body scan data and motion capture data to...replicate a human activity in 3D space. Since technologies for simultaneously capturing human motion and dynamic shapes are not yet ready for practical use, a...that can replicate a human activity in 3D space with the true shape and true motion of a human. Using this approach, a model library was built to

  19. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection

    PubMed Central

    Fu, Yuxuan; Zhang, Li; Zhang, Fang; Tang, Ting; Zhou, Qi; Feng, Chunhong; Jin, Yu

    2017-01-01

    Exosomes can transfer genetic materials between cells. Their roles in viral infections are beginning to be appreciated. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular response and result in productive infection of the recipient host. Here, we showed that EV71 infection resulted in upregulated exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. We provided evidence showing that miR-146a was preferentially enriched in exosomes while the viral RNA was not in infected cells. Moreover, the exosomes contained replication-competent EV71 RNA in complex with miR-146a, Ago2, and GW182 and could mediate EV71 transmission independent of virus-specific receptor. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Additionally, we found that the IFN-stimulated gene factors (ISGs), BST-2/tetherin, were involved in regulating EV71-induced upregulation of exosome secretion. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. Together, our findings provide evidence that exosomes secreted by EV71-infected cells selectively packaged high level miR-146a that can be functionally transferred to and facilitate exosomal EV71 RNA to replicate in the recipient cells by suppressing type I interferon response. PMID:28910400

  20. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression.

    PubMed

    Lamontagne, Jason; Mell, Joshua C; Bouchard, Michael J

    2016-02-01

    Globally, a chronic hepatitis B virus (HBV) infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication.

  1. Set regulation in asexual and sexual Plasmodium parasites reveals a novel mechanism of stage-specific expression.

    PubMed

    Pace, Tomasino; Olivieri, Anna; Sanchez, Massimo; Albanesi, Veronica; Picci, Leonardo; Siden Kiamos, Inga; Janse, Chris J; Waters, Andrew P; Pizzi, Elisabetta; Ponzi, Marta

    2006-05-01

    Transmission of the malaria parasite depends on specialized gamete precursors (gametocytes) that develop in the bloodstream of a vertebrate host. Gametocyte/gamete differentiation requires controlled patterns of gene expression and regulation not only of stage and gender-specific genes but also of genes associated with DNA replication and mitosis. Once taken up by mosquito, male gametocytes undergo three mitotic cycles within few minutes to produce eight motile gametes. Here we analysed, in two Plasmodium species, the expression of SET, a conserved nuclear protein involved in chromatin dynamics. SET is expressed in both asexual and sexual blood stages but strongly accumulates in male gametocytes. We demonstrated functionally the presence of two distinct promoters upstream of the set open reading frame, the one active in all blood stage parasites while the other active only in gametocytes and in a fraction of schizonts possibly committed to sexual differentiation. In ookinetes both promoters exhibit a basal activity, while in the oocysts the gametocyte-specific promoter is silent and the reporter gene is only transcribed from the constitutive promoter. This transcriptional control, described for the first time in Plasmodium, provides a mechanism by which single-copy genes can be differently modulated during parasite development. In male gametocytes an overexpression of SET might contribute to a prompt entry and execution of S/M phases within mosquito vector.

  2. The Evolution of Cooperation in the Finitely Repeated Prisoner’s Dilemma

    DTIC Science & Technology

    1989-09-01

    biological evolutionary game theory, mathematical ecology (the replicator dynamics are formally equivalent to the Lotka - Volterra dynamics), and...repeated prisoner’s dilemma. Under the dynamics considered, if there is convergence to a limit (in general there need not be), then that limit must...of time. It will be noted also that this same behavior can create computation problems making it imprudent in general to try to infer limiting

  3. Analysis of Reproducibility of Proteome Coverage and Quantitation Using Isobaric Mass Tags (iTRAQ and TMT).

    PubMed

    Casey, Tammy M; Khan, Javed M; Bringans, Scott D; Koudelka, Tomas; Takle, Pari S; Downs, Rachael A; Livk, Andreja; Syme, Robert A; Tan, Kar-Chun; Lipscombe, Richard J

    2017-02-03

    This study aimed to compare the depth and reproducibility of total proteome and differentially expressed protein coverage in technical duplicates and triplicates using iTRAQ 4-plex, iTRAQ 8-plex, and TMT 6-plex reagents. The analysis was undertaken because comprehensive comparisons of isobaric mass tag reproducibility have not been widely reported in the literature. The highest number of proteins was identified with 4-plex, followed by 8-plex and then 6-plex reagents. Quantitative analyses revealed that more differentially expressed proteins were identified with 4-plex reagents than 8-plex reagents and 6-plex reagents. Replicate reproducibility was determined to be ≥69% for technical duplicates and ≥57% for technical triplicates. The results indicate that running an 8-plex or 6-plex experiment instead of a 4-plex experiment resulted in 26 or 39% fewer protein identifications, respectively. When 4-plex spectra were searched with three software tools-ProteinPilot, Mascot, and Proteome Discoverer-the highest number of protein identifications were obtained with Mascot. The analysis of negative controls demonstrated the importance of running experiments as replicates. Overall, this study demonstrates the advantages of using iTRAQ 4-plex reagents over iTRAQ 8-plex and TMT 6-plex reagents, provides estimates of technical duplicate and triplicate reproducibility, and emphasizes the value of running replicate samples.

  4. Climate variables explain neutral and adaptive variation within salmonid metapopulations: The importance of replication in landscape genetics

    USGS Publications Warehouse

    Hand, Brian K.; Muhlfeld, Clint C.; Wade, Alisa A.; Kovach, Ryan; Whited, Diane C.; Narum, Shawn R.; Matala, Andrew P.; Ackerman, Michael W.; Garner, B. A.; Kimball, John S; Stanford, Jack A.; Luikart, Gordon

    2016-01-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  5. Differential expression of lncRNAs during the HIV replication cycle: an underestimated layer in the HIV-host interplay.

    PubMed

    Trypsteen, Wim; Mohammadi, Pejman; Van Hecke, Clarissa; Mestdagh, Pieter; Lefever, Steve; Saeys, Yvan; De Bleser, Pieter; Vandesompele, Jo; Ciuffi, Angela; Vandekerckhove, Linos; De Spiegelaere, Ward

    2016-10-26

    Studying the effects of HIV infection on the host transcriptome has typically focused on protein-coding genes. However, recent advances in the field of RNA sequencing revealed that long non-coding RNAs (lncRNAs) add an extensive additional layer to the cell's molecular network. Here, we performed transcriptome profiling throughout a primary HIV infection in vitro to investigate lncRNA expression at the different HIV replication cycle processes (reverse transcription, integration and particle production). Subsequently, guilt-by-association, transcription factor and co-expression analysis were performed to infer biological roles for the lncRNAs identified in the HIV-host interplay. Many lncRNAs were suggested to play a role in mechanisms relying on proteasomal and ubiquitination pathways, apoptosis, DNA damage responses and cell cycle regulation. Through transcription factor binding analysis, we found that lncRNAs display a distinct transcriptional regulation profile as compared to protein coding mRNAs, suggesting that mRNAs and lncRNAs are independently modulated. In addition, we identified five differentially expressed lncRNA-mRNA pairs with mRNA involvement in HIV pathogenesis with possible cis regulatory lncRNAs that control nearby mRNA expression and function. Altogether, the present study demonstrates that lncRNAs add a new dimension to the HIV-host interplay and should be further investigated as they may represent targets for controlling HIV replication.

  6. Lack of association between digit ratio (2D:4D) and assertiveness: replication in a large sample.

    PubMed

    Voracek, Martin

    2009-12-01

    Findings regarding within-sex associations of digit ratio (2D:4D), a putative pointer to long-lasting effects of prenatal androgen action, and sexually differentiated personality traits have generally been inconsistent or unreplicable, suggesting that effects in this domain, if any, are likely small. In contrast to evidence from Wilson's important 1983 study, a forerunner of modern 2D:4D research, two recent studies in 2005 and 2008 by Freeman, et al. and Hampson, et al. showed assertiveness, a presumably male-typed personality trait, was not associated with 2D:4D; however, these studies were clearly statistically underpowered. Hence this study examined this question anew, based on a large sample of 491 men and 627 women. Assertiveness was only modestly sexually differentiated, favoring men, and a positive correlate of age and education and a negative correlate of weight and Body Mass Index among women, but not men. Replicating the two prior studies, 2D:4D was throughout unrelated to assertiveness scores. This null finding was preserved with controls for correlates of assertiveness, also in nonparametric analysis and with tests for curvilinear relations. Discussed are implications of this specific null finding, now replicated in a large sample, for studies of 2D:4D and personality in general and novel research approaches to proceed in this field.

  7. Cholesterol depletion by methyl-β-cyclodextrin enhances cell proliferation and increases the number of desmin-positive cells in myoblast cultures.

    PubMed

    Portilho, Débora M; Soares, Carolina P; Morrot, Alexandre; Thiago, Leandro S; Butler-Browne, Gillian; Savino, Wilson; Costa, Manoel L; Mermelstein, Cláudia

    2012-11-05

    Skeletal myogenesis comprises myoblast replication and differentiation into striated multinucleated myotubes. Agents that interfere with myoblast replication are important tools for the understanding of myogenesis. Recently, we showed that cholesterol depletion by methyl-β-cyclodextrin (MCD) enhances the differentiation step in chick-cultured myogenic cells, involving the activation of the Wnt/β-catenin signaling pathway. However, the effects of cholesterol depletion on myoblast replication have not been carefully studied. Here we show that MCD treatment increases cell proliferation in primary chick myogenic cell cultures. Treatment of myogenic cells with the anti-mitotic reagent cytosine arabinoside, immediately following cholesterol depletion, blocks the MCD-induced effects on proliferation. Cholesterol depletion induced an increase in the number of desmin-positive mononucleated cells, and an increase in desmin expression. MCD induces an increase in the expression of the cell cycle regulator p53 and the master switch gene MyoD1. Treatment with BIO, a specific inhibitor of GSK3β, induced effects similar to MCD on cell proliferation; while treatment with Dkk1, a specific inhibitor of the Wnt/β-catenin pathway, neutralized the effects of MCD. These findings indicate that rapid changes in the cholesterol content in cell membranes of myoblasts can induce cell proliferation, possibly by the activation of the Wnt/β-catenin signaling pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene.

    PubMed

    Thys, Ryan Griffin; Wang, Yuh-Hwa

    2015-11-27

    DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Neuronal boost to evolutionary dynamics

    PubMed Central

    de Vladar, Harold P.; Szathmáry, Eörs

    2015-01-01

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild. PMID:26640653

  10. Environmental-stress-induced Chromatin Regulation and its Heritability

    PubMed Central

    Fang, Lei; Wuptra, Kenly; Chen, Danqi; Li, Hongjie; Huang, Shau-Ku; Jin, Chunyuan; Yokoyama, Kazunari K

    2014-01-01

    Chromatin is subject to proofreading and repair mechanisms during the process of DNA replication, as well as repair to maintain genetic and epigenetic information and genome stability. The dynamic structure of chromatin modulates various nuclear processes, including transcription and replication, by altering the accessibility of the DNA to regulatory factors. Structural changes in chromatin are affected by the chemical modification of histone proteins and DNA, remodeling of nucleosomes, incorporation of variant histones, noncoding RNAs, and nonhistone DNA-binding proteins. Phenotypic diversity and fidelity can be balanced by controlling stochastic switching of chromatin structure and dynamics in response to the environmental disruptors and endogenous stresses. The dynamic chromatin remodeling can, therefore, serve as a sensor, through which environmental and/or metabolic agents can alter gene expression, leading to global cellular changes involving multiple interactive networks. Furthermore its recent evidence also suggests that the epigenetic changes are heritable during the development. This review will discuss the environmental sensing system for chromatin regulation and genetic and epigenetic controls from developmental perspectives. PMID:25045581

  11. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ: Novel Mechanisms of Function and Pathogenesis.

    PubMed

    Euro, Liliya; Haapanen, Outi; Róg, Tomasz; Vattulainen, Ilpo; Suomalainen, Anu; Sharma, Vivek

    2017-03-07

    DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform in the "intrinsic processivity" subdomain of the enzyme. Our data indicate that noncatalytic mutations may disrupt replisomal interactions, thereby causing Pol γ-associated neurodegenerative disorders.

  12. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases

    PubMed Central

    DeBalsi, Karen L.; Hoff, Kirsten E.; Copeland, William C.

    2016-01-01

    As regulators of bioenergetics in the cell and the primary source of endogenous reactive oxygen species (ROS), dysfunctional mitochondria have been implicated for decades in the process of aging and age-related diseases. Mitochondrial DNA (mtDNA) is replicated and repaired by nuclear-encoded mtDNA polymerase γ (Pol γ) and several other associated proteins, which compose the mtDNA replication machinery. Here, we review evidence that errors caused by this replication machinery and failure to repair these mtDNA errors results in mtDNA mutations. Clonal expansion of mtDNA mutations results in mitochondrial dysfunction, such as decreased electron transport chain (ETC) enzyme activity and impaired cellular respiration. We address the literature that mitochondrial dysfunction, in conjunction with altered mitochondrial dynamics, is a major driving force behind aging and age-related diseases. Additionally, interventions to improve mitochondrial function and attenuate the symptoms of aging are examined. PMID:27143693

  13. BFT replication resistant to MAC attacks

    NASA Astrophysics Data System (ADS)

    Zbierski, Maciej

    2016-09-01

    Over the last decade numerous Byzantine fault-tolerant (BFT) replication protocols have been proposed in the literature. However, the vast majority of these solutions reuse the same authentication scheme, which makes them susceptible to a so called MAC attack. Such vulnerability enables malicious clients to undetectably prevent the replicated service from processing incoming client requests, and consequently making it permanently unavailable. While some BFT protocols attempted to address this issue by using different authentication mechanisms, they at the same time significantly degraded the performance achieved in correct environments. This article presents a novel adaptive authentication mechanism which can be combined with practically any Byzantine fault-tolerant replication protocol. Unlike previous solutions, the proposed scheme dynamically switches between two operation modes to combine high performance in correct environments and liveness during MAC attacks. The experiment results presented in the article demonstrate that the proposed mechanism can sufficiently tolerate MAC attacks without introducing any observable overhead whenever no faults are present.

  14. The Influence of Hydroxylation on Maintaining CpG Methylation Patterns: A Hidden Markov Model Approach.

    PubMed

    Giehr, Pascal; Kyriakopoulos, Charalampos; Ficz, Gabriella; Wolf, Verena; Walter, Jörn

    2016-05-01

    DNA methylation and demethylation are opposing processes that when in balance create stable patterns of epigenetic memory. The control of DNA methylation pattern formation by replication dependent and independent demethylation processes has been suggested to be influenced by Tet mediated oxidation of 5mC. Several alternative mechanisms have been proposed suggesting that 5hmC influences either replication dependent maintenance of DNA methylation or replication independent processes of active demethylation. Using high resolution hairpin oxidative bisulfite sequencing data, we precisely determine the amount of 5mC and 5hmC and model the contribution of 5hmC to processes of demethylation in mouse ESCs. We develop an extended hidden Markov model capable of accurately describing the regional contribution of 5hmC to demethylation dynamics. Our analysis shows that 5hmC has a strong impact on replication dependent demethylation, mainly by impairing methylation maintenance.

  15. Comparison of five cluster validity indices performance in brain [18 F]FET-PET image segmentation using k-means.

    PubMed

    Abualhaj, Bedor; Weng, Guoyang; Ong, Melissa; Attarwala, Ali Asgar; Molina, Flavia; Büsing, Karen; Glatting, Gerhard

    2017-01-01

    Dynamic [ 18 F]fluoro-ethyl-L-tyrosine positron emission tomography ([ 18 F]FET-PET) is used to identify tumor lesions for radiotherapy treatment planning, to differentiate glioma recurrence from radiation necrosis and to classify gliomas grading. To segment different regions in the brain k-means cluster analysis can be used. The main disadvantage of k-means is that the number of clusters must be pre-defined. In this study, we therefore compared different cluster validity indices for automated and reproducible determination of the optimal number of clusters based on the dynamic PET data. The k-means algorithm was applied to dynamic [ 18 F]FET-PET images of 8 patients. Akaike information criterion (AIC), WB, I, modified Dunn's and Silhouette indices were compared on their ability to determine the optimal number of clusters based on requirements for an adequate cluster validity index. To check the reproducibility of k-means, the coefficients of variation CVs of the objective function values OFVs (sum of squared Euclidean distances within each cluster) were calculated using 100 random centroid initialization replications RCI 100 for 2 to 50 clusters. k-means was performed independently on three neighboring slices containing tumor for each patient to investigate the stability of the optimal number of clusters within them. To check the independence of the validity indices on the number of voxels, cluster analysis was applied after duplication of a slice selected from each patient. CVs of index values were calculated at the optimal number of clusters using RCI 100 to investigate the reproducibility of the validity indices. To check if the indices have a single extremum, visual inspection was performed on the replication with minimum OFV from RCI 100 . The maximum CV of OFVs was 2.7 × 10 -2 from all patients. The optimal number of clusters given by modified Dunn's and Silhouette indices was 2 or 3 leading to a very poor segmentation. WB and I indices suggested in median 5, [range 4-6] and 4, [range 3-6] clusters, respectively. For WB, I, modified Dunn's and Silhouette validity indices the suggested optimal number of clusters was not affected by the number of the voxels. The maximum coefficient of variation of WB, I, modified Dunn's, and Silhouette validity indices were 3 × 10 -2 , 1, 2 × 10 -1 and 3 × 10 -3 , respectively. WB-index showed a single global maximum, whereas the other indices showed also local extrema. From the investigated cluster validity indices, the WB-index is best suited for automated determination of the optimal number of clusters for [ 18 F]FET-PET brain images for the investigated image reconstruction algorithm and the used scanner: it yields meaningful results allowing better differentiation of tissues with higher number of clusters, it is simple, reproducible and has an unique global minimum. © 2016 American Association of Physicists in Medicine.

  16. An analysis of gene expression in PTSD implicates genes involved in the glucocorticoid receptor pathway and neural responses to stress

    PubMed Central

    Logue, Mark W.; Smith, Alicia K.; Baldwin, Clinton; Wolf, Erika J.; Guffanti, Guia; Ratanatharathorn, Andrew; Stone, Annjanette; Schichman, Steven A.; Humphries, Donald; Binder, Elisabeth B.; Arloth, Janine; Menke, Andreas; Uddin, Monica; Wildman, Derek; Galea, Sandro; Aiello, Allison E.; Koenen, Karestan C.; Miller, Mark W.

    2015-01-01

    We examined the association between posttraumatic stress disorder (PTSD) and gene expression using whole blood samples from a cohort of trauma-exposed white non-Hispanic male veterans (115 cases and 28 controls). 10,264 probes of genes and gene transcripts were analyzed. We found 41 that were differentially expressed in PTSD cases versus controls (multiple-testing corrected p<0.05). The most significant was DSCAM, a neurological gene expressed widely in the developing brain and in the amygdala and hippocampus of the adult brain. We then examined the 41 differentially expressed genes in a meta-analysis using two replication cohorts and found significant associations with PTSD for 7 of the 41 (p<0.05), one of which (ATP6AP1L) survived multiple-testing correction. There was also broad evidence of overlap across the discovery and replication samples for the entire set of genes implicated in the discovery data based on the direction of effect and an enrichment of p<0.05 significant probes beyond what would be expected under the null. Finally, we found that the set of differentially expressed genes from the discovery sample was enriched for genes responsive to glucocorticoid signaling with most showing reduced expression in PTSD cases compared to controls. PMID:25867994

  17. Alterations in the nuclear proteome of HIV-1 infected T-cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBoer, Jason; Jagadish, Teena; Haverland, Nicole A.

    Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified fourmore » clusters of protein–protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection. - Highlights: • We identify changes in the expression of nuclear proteins during HIV-1 infection. • 163 nuclear proteins were found differentially regulated during HIV-1 infection. • Bioinformatic analysis identified several nuclear pathways altered by HIV infection. • Candidate factors were validated in two independent cell lines.« less

  18. Differential Effects of the Putative GBF1 Inhibitors Golgicide A and AG1478 on Enterovirus Replication▿

    PubMed Central

    van der Linden, Lonneke; van der Schaar, Hilde M.; Lanke, Kjerstin H. W.; Neyts, Johan; van Kuppeveld, Frank J. M.

    2010-01-01

    The genus Enterovirus, belonging to the family Picornaviridae, includes well-known pathogens, such as poliovirus, coxsackievirus, and rhinovirus. Brefeldin A (BFA) impedes replication of several enteroviruses through inhibition of Golgi-specific BFA resistance factor 1 (GBF1), a regulator of secretory pathway integrity and transport. GBF1 mediates the GTP exchange of Arf1, which in activated form recruits coatomer protein complex I (COP-I) to Golgi vesicles, a process important in transport between the endoplasmic reticulum and Golgi vesicles. Recently, the drugs AG1478 and Golgicide A (GCA) were put forward as new inhibitors of GBF1. In this study, we investigated the effects of these putative GBF1 inhibitors on secretory pathway function and enterovirus replication. We show that both drugs induced fragmentation of the Golgi vesicles and caused dissociation of Arf1 and COP-I from Golgi membranes, yet they differed in their effect on GBF1 localization. The effects of AG1478, but not those of GCA, could be countered by overexpression of Arf1, indicating a difference in their molecular mechanism of action. Consistent with this idea, we observed that GCA drastically reduced replication of coxsackievirus B3 (CVB3) and other human enterovirus species, whereas AG1478 had no effect at all on enterovirus replication. Time-of-addition studies and analysis of RNA replication using a subgenomic replicon both showed that GCA suppresses RNA replication of CVB3, which could be countered by overexpression of GBF1. These results indicate that, in contrast to AG1478, GCA inhibits CVB3 RNA replication by targeting GBF1. AG1478 and GCA may be valuable tools to further dissect enterovirus replication. PMID:20504936

  19. Divergent Requirement for a DNA Repair Enzyme during Enterovirus Infections

    PubMed Central

    Maciejewski, Sonia; Nguyen, Joseph H. C.; Gómez-Herreros, Fernando; Cortés-Ledesma, Felipe; Caldecott, Keith W.

    2015-01-01

    ABSTRACT Viruses of the Enterovirus genus of picornaviruses, including poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus, commandeer the functions of host cell proteins to aid in the replication of their small viral genomic RNAs during infection. One of these host proteins is a cellular DNA repair enzyme known as 5′ tyrosyl-DNA phosphodiesterase 2 (TDP2). TDP2 was previously demonstrated to mediate the cleavage of a unique covalent linkage between a viral protein (VPg) and the 5′ end of picornavirus RNAs. Although VPg is absent from actively translating poliovirus mRNAs, the removal of VPg is not required for the in vitro translation and replication of the RNA. However, TDP2 appears to be excluded from replication and encapsidation sites during peak times of poliovirus infection of HeLa cells, suggesting a role for TDP2 during the viral replication cycle. Using a mouse embryonic fibroblast cell line lacking TDP2, we found that TDP2 is differentially required among enteroviruses. Our single-cycle viral growth analysis shows that CVB3 replication has a greater dependency on TDP2 than does poliovirus or human rhinovirus replication. During infection, CVB3 protein accumulation is undetectable (by Western blot analysis) in the absence of TDP2, whereas poliovirus protein accumulation is reduced but still detectable. Using an infectious CVB3 RNA with a reporter, CVB3 RNA could still be replicated in the absence of TDP2 following transfection, albeit at reduced levels. Overall, these results indicate that TDP2 potentiates viral replication during enterovirus infections of cultured cells, making TDP2 a potential target for antiviral development for picornavirus infections. PMID:26715620

  20. Dynamic Modulation of Expression of Lentiviral Restriction Factors in Primary CD4+ T Cells following Simian Immunodeficiency Virus Infection.

    PubMed

    Rahmberg, Andrew R; Rajakumar, Premeela A; Billingsley, James M; Johnson, R Paul

    2017-04-01

    Although multiple restriction factors have been shown to inhibit HIV/SIV replication, little is known about their expression in vivo Expression of 45 confirmed and putative HIV/SIV restriction factors was analyzed in CD4 + T cells from peripheral blood and the jejunum in rhesus macaques, revealing distinct expression patterns in naive and memory subsets. In both peripheral blood and the jejunum, memory CD4 + T cells expressed higher levels of multiple restriction factors compared to naive cells. However, relative to their expression in peripheral blood CD4 + T cells, jejunal CCR5 + CD4 + T cells exhibited significantly lower expression of multiple restriction factors, including APOBEC3G , MX2 , and TRIM25 , which may contribute to the exquisite susceptibility of these cells to SIV infection. In vitro stimulation with anti-CD3/CD28 antibodies or type I interferon resulted in upregulation of distinct subsets of multiple restriction factors. After infection of rhesus macaques with SIVmac239, the expression of most confirmed and putative restriction factors substantially increased in all CD4 + T cell memory subsets at the peak of acute infection. Jejunal CCR5 + CD4 + T cells exhibited the highest levels of SIV RNA, corresponding to the lower restriction factor expression in this subset relative to peripheral blood prior to infection. These results illustrate the dynamic modulation of confirmed and putative restriction factor expression by memory differentiation, stimulation, tissue microenvironment and SIV infection and suggest that differential expression of restriction factors may play a key role in modulating the susceptibility of different populations of CD4 + T cells to lentiviral infection. IMPORTANCE Restriction factors are genes that have evolved to provide intrinsic defense against viruses. HIV and simian immunodeficiency virus (SIV) target CD4 + T cells. The baseline level of expression in vivo and degree to which expression of restriction factors is modulated by conditions such as CD4 + T cell differentiation, stimulation, tissue location, or SIV infection are currently poorly understood. We measured the expression of 45 confirmed and putative restriction factors in primary CD4 + T cells from rhesus macaques under various conditions, finding dynamic changes in each state. Most dramatically, in acute SIV infection, the expression of almost all target genes analyzed increased. These are the first measurements of many of these confirmed and putative restriction factors in primary cells or during the early events after SIV infection and suggest that the level of expression of restriction factors may contribute to the differential susceptibility of CD4 + T cells to SIV infection. Copyright © 2017 American Society for Microbiology.

  1. Differential Variance Analysis: a direct method to quantify and visualize dynamic heterogeneities

    NASA Astrophysics Data System (ADS)

    Pastore, Raffaele; Pesce, Giuseppe; Caggioni, Marco

    2017-03-01

    Many amorphous materials show spatially heterogenous dynamics, as different regions of the same system relax at different rates. Such a signature, known as Dynamic Heterogeneity, has been crucial to understand the nature of the jamming transition in simple model systems and is currently considered very promising to characterize more complex fluids of industrial and biological relevance. Unfortunately, measurements of dynamic heterogeneities typically require sophisticated experimental set-ups and are performed by few specialized groups. It is now possible to quantitatively characterize the relaxation process and the emergence of dynamic heterogeneities using a straightforward method, here validated on video microscopy data of hard-sphere colloidal glasses. We call this method Differential Variance Analysis (DVA), since it focuses on the variance of the differential frames, obtained subtracting images at different time-lags. Moreover, direct visualization of dynamic heterogeneities naturally appears in the differential frames, when the time-lag is set to the one corresponding to the maximum dynamic susceptibility. This approach opens the way to effectively characterize and tailor a wide variety of soft materials, from complex formulated products to biological tissues.

  2. Requirements for rapid plasmid ColE1 copy number adjustments: a mathematical model of inhibition modes and RNA turnover rates.

    PubMed

    Paulsson, J; Nordström, K; Ehrenberg, M

    1998-01-01

    The random distribution of ColE1 plasmids between the daughter cells at cell division introduces large copy number variations. Statistic variation associated with limited copy number in single cells also causes fluctuations to emerge spontaneously during the cell cycle. Efficient replication control out of steady state is therefore important to tame such stochastic effects of small numbers. In the present model, the dynamic features of copy number control are divided into two parts: first, how sharply the replication frequency per plasmid responds to changes in the concentration of the plasmid-coded inhibitor, RNA I, and second, how tightly RNA I and plasmid concentrations are coupled. Single (hyperbolic)- and multiple (exponential)-step inhibition mechanisms are compared out of steady state and it is shown how the response in replication frequency depends on the mode of inhibition. For both mechanisms, sensitivity of inhibition is "bought" at the expense of a rapid turnover of a replication preprimer, RNA II. Conventional, single-step, inhibition kinetics gives a sloppy replication control even at high RNA II turnover rates, whereas multiple-step inhibition has the potential of working with unlimited precision. When plasmid concentration changes rapidly, RNA I must be degraded rapidly to be "up to date" with the change. Adjustment to steady state is drastically impaired when the turnover rate constants of RNA I decrease below certain thresholds, but is basically unaffected for a corresponding increase. Several features of copy number control that are shown to be crucial for the understanding of ColE1-type plasmids still remain to be experimentally characterized. It is shown how steady-state properties reflect dynamics at the heart of regulation and therefore can be used to discriminate between fundamentally different copy number control mechanisms. The experimental tests of the predictions made require carefully planned assays, and some suggestions for suitable experiments arise naturally from the present work. It is also discussed how the presence of the Rom protein may affect dynamic qualities of copy number control. Copyright 1998 Academic Press.

  3. Role of the DNA Damage Response in Human Papillomavirus RNA Splicing and Polyadenylation.

    PubMed

    Nilsson, Kersti; Wu, Chengjun; Schwartz, Stefan

    2018-06-12

    Human papillomaviruses (HPVs) have evolved to use the DNA repair machinery to replicate its DNA genome in differentiated cells. HPV activates the DNA damage response (DDR) in infected cells. Cellular DDR factors are recruited to the HPV DNA genome and position the cellular DNA polymerase on the HPV DNA and progeny genomes are synthesized. Following HPV DNA replication, HPV late gene expression is activated. Recent research has shown that the DDR factors also interact with RNA binding proteins and affects RNA processing. DDR factors activated by DNA damage and that associate with HPV DNA can recruit splicing factors and RNA binding proteins to the HPV DNA and induce HPV late gene expression. This induction is the result of altered alternative polyadenylation and splicing of HPV messenger RNA (mRNA). HPV uses the DDR machinery to replicate its DNA genome and to activate HPV late gene expression at the level of RNA processing.

  4. DNA Replication and Cell Cycle Progression Regulatedby Long Range Interaction between Protein Complexes bound to DNA.

    PubMed

    Matsson, L

    2001-12-01

    A nonstationary interaction that controlsDNA replication and the cell cycle isderived from many-body physics in achemically open T cell. The model predictsa long range force F'(ξ) =- (κ/2) ξ(1 - ξ)(2 - ξ)between thepre-replication complexes (pre-RCs) boundby the origins in DNA, ξ = ϕ/N being the relativedisplacement of pre-RCs, ϕ the number of pre-RCs, N the number of replicons to be replicated,and κ the compressibilitymodulus in the lattice of pre-RCs whichbehaves dynamically like an elasticallybraced string. Initiation of DNAreplication is induced at the thresholdϕ = N by a switch ofsign of F''(ξ), fromattraction (-) and assembly in the G(1) phase (0<ϕ

  5. Sparse dynamics for partial differential equations

    PubMed Central

    Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D.; Osher, Stanley

    2013-01-01

    We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms. PMID:23533273

  6. Sparse dynamics for partial differential equations.

    PubMed

    Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D; Osher, Stanley

    2013-04-23

    We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms.

  7. Ability of WRF to Simulate Rainfall Distribution Over West Africa: Role of Horizontal Resolution and Dynamical Processes

    NASA Astrophysics Data System (ADS)

    Kouadio, K.; Konare, A.; Bastin, S.; Ajayi, V. O.

    2016-12-01

    This research work focused on the thorny problem of the representation of rainfall over West Africa and particularly in the Gulf of Guinea and its surroundings by Regional Climate Models (RCMs). The sensitivities of Weather Research and Forecasting (WRF) Model are tested for changes in horizontal resolution (convective permitting versus parameterized) on the replication of West African Climate in year 2014 and also changes in microphysics (MP) and planetary boundary layer (PBL) schemes on June 2014. The sensitivity to horizontal resolution study show that both runs at 24km and 4km (explicit convection) resolution fairly replicate the general distribution of the rainfall over West African region. The analysis also reveals a good replication of the dynamical features of West African monsoon system including Tropical Easterly Jet (TEJ), African Easterly Jet (AEJ), monsoon flow and the West African Heat Low (WAHL). Some differences have been noticed between WRF and ERA-interim outputs irrespective to the spectral nudging used in the experiment which then suggest strong interactions between scales. The link between the seasonal displacement of the WAHL and the spatial distribution of the rainfall and the Sahelian onset is confirmed in this study. The results also show an improvement on the replication of rainfall with the very high resolution run observed at daily scale over the Sahel while a dry bias is observed in WRF simulations of the rainfall over Ivorian Coast and in the Gulf of Guinea. Generally, over the Guinean coast the high resolution run did not provide subsequent improvement on the replication of rainfall. The sensitivity of WRF to MP and PBL on rainfall replication study reveals that the most significant added value over the Guinean coast and surroundings area is provided by the configurations that used the PBL Asymmetric Convective Model V2 (ACM2) suggesting more influence of the PBL compared to MP. The change on microphysics and planetary boundary layer schemes in general, seems to have less effect on the explicit runs into the replication of the rainfall over the Gulf of Guinea and the surroundings seaboard.

  8. Dissecting the Calcium-Induced Differentiation of Human Primary Keratinocytes Stem Cells by Integrative and Structural Network Analyses

    PubMed Central

    Toufighi, Kiana; Yang, Jae-Seong; Luis, Nuno Miguel; Aznar Benitah, Salvador; Lehner, Ben; Serrano, Luis; Kiel, Christina

    2015-01-01

    The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55%) are composed of non-dynamic and dynamic gene products (‘di-chromatic’), 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation. PMID:25946651

  9. Enhancer regions show high histone H3.3 turnover that changes during differentiation

    PubMed Central

    Deaton, Aimee M; Gómez-Rodríguez, Mariluz; Mieczkowski, Jakub; Tolstorukov, Michael Y; Kundu, Sharmistha; Sadreyev, Ruslan I; Jansen, Lars ET; Kingston, Robert E

    2016-01-01

    The organization of DNA into chromatin is dynamic; nucleosomes are frequently displaced to facilitate the ability of regulatory proteins to access specific DNA elements. To gain insight into nucleosome dynamics, and to follow how dynamics change during differentiation, we used a technique called time-ChIP to quantitatively assess histone H3.3 turnover genome-wide during differentiation of mouse ESCs. We found that, without prior assumptions, high turnover could be used to identify regions involved in gene regulation. High turnover was seen at enhancers, as observed previously, with particularly high turnover at super-enhancers. In contrast, regions associated with the repressive Polycomb-Group showed low turnover in ESCs. Turnover correlated with DNA accessibility. Upon differentiation, numerous changes in H3.3 turnover rates were observed, the majority of which occurred at enhancers. Thus, time-ChIP measurement of histone turnover shows that active enhancers are unusually dynamic in ESCs and changes in highly dynamic nucleosomes predominate at enhancers during differentiation. DOI: http://dx.doi.org/10.7554/eLife.15316.001 PMID:27304074

  10. The exact probability distribution of the rank product statistics for replicated experiments.

    PubMed

    Eisinga, Rob; Breitling, Rainer; Heskes, Tom

    2013-03-18

    The rank product method is a widely accepted technique for detecting differentially regulated genes in replicated microarray experiments. To approximate the sampling distribution of the rank product statistic, the original publication proposed a permutation approach, whereas recently an alternative approximation based on the continuous gamma distribution was suggested. However, both approximations are imperfect for estimating small tail probabilities. In this paper we relate the rank product statistic to number theory and provide a derivation of its exact probability distribution and the true tail probabilities. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Long-term live-cell imaging reveals new roles for Salmonella effector proteins SseG and SteA.

    PubMed

    McQuate, Sarah E; Young, Alexandra M; Silva-Herzog, Eugenia; Bunker, Eric; Hernandez, Mateo; de Chaumont, Fabrice; Liu, Xuedong; Detweiler, Corrella S; Palmer, Amy E

    2017-01-01

    Salmonella Typhimurium is an intracellular bacterial pathogen that infects both epithelial cells and macrophages. Salmonella effector proteins, which are translocated into the host cell and manipulate host cell components, control the ability to replicate and/or survive in host cells. Due to the complexity and heterogeneity of Salmonella infections, there is growing recognition of the need for single-cell and live-cell imaging approaches to identify and characterize the diversity of cellular phenotypes and how they evolve over time. Here, we establish a pipeline for long-term (17 h) live-cell imaging of infected cells and subsequent image analysis methods. We apply this pipeline to track bacterial replication within the Salmonella-containing vacuole in epithelial cells, quantify vacuolar replication versus survival in macrophages and investigate the role of individual effector proteins in mediating these parameters. This approach revealed that dispersed bacteria can coalesce at later stages of infection, that the effector protein SseG influences the propensity for cytosolic hyper-replication in epithelial cells, and that while SteA only has a subtle effect on vacuolar replication in epithelial cells, it has a profound impact on infection parameters in immunocompetent macrophages, suggesting differential roles for effector proteins in different infection models. © 2016 John Wiley & Sons Ltd.

  12. CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation.

    PubMed

    Merkenschlager, Matthias; Nora, Elphège P

    2016-08-31

    Genome function, replication, integrity, and propagation rely on the dynamic structural organization of chromosomes during the cell cycle. Genome folding in interphase provides regulatory segmentation for appropriate transcriptional control, facilitates ordered genome replication, and contributes to genome integrity by limiting illegitimate recombination. Here, we review recent high-resolution chromosome conformation capture and functional studies that have informed models of the spatial and regulatory compartmentalization of mammalian genomes, and discuss mechanistic models for how CTCF and cohesin control the functional architecture of mammalian chromosomes.

  13. Sex Stereotypes in the United States Revisited: 1972-1988.

    ERIC Educational Resources Information Center

    Bergen, David J.; Williams, John E.

    1991-01-01

    Reports the results of a 1988 replication of a sex stereotype study done in 1972. There were minor qualitative changes such as the perception of women as more and men as less reality-oriented, but there was no evidence that the two stereotypes had become significantly less differentiated. (CJS)

  14. Robust Statistics: What They Are, and Why They Are So Important

    ERIC Educational Resources Information Center

    Corlu, Sencer M.

    2009-01-01

    The problem with "classical" statistics all invoking the mean is that these estimates are notoriously influenced by atypical scores (outliers), partly because the mean itself is differentially influenced by outliers. In theory, "modern" statistics may generate more replicable characterizations of data, because at least in some…

  15. Assessing Underreporting Response Bias on the MMPI-2

    ERIC Educational Resources Information Center

    Bagby, R. Michael; Marshall, Margarita B.

    2004-01-01

    The authors assess the replicability of the two-factor model of underreporting response style. They then examine the relative performance of scales measuring these styles in analog (ARD) and differential prevalence group (DPG) designs. Principal components analysis produced a two-factor structure corresponding to self-deceptive (SD) and impression…

  16. Human embryonic stem cells fail to activate CHK1 and commit to apoptosis in response to DNA replication stress.

    PubMed

    Desmarais, Joëlle A; Hoffmann, Michele J; Bingham, Gregg; Gagou, Mary E; Meuth, Mark; Andrews, Peter W

    2012-07-01

    Pluripotent cells of the early embryo, to which embryonic stem cells (ESCs) correspond, give rise to all the somatic cells of the developing fetus. Any defects that occur in their genome or epigenome would have devastating consequences. Genetic and epigenetic change in human ESCs appear to be an inevitable consequence of long-term culture, driven by selection of variant cells that have a higher propensity for self-renewal rather than either differentiation or death. Mechanisms underlying the potentially separate events of mutation and subsequent selection of variants are poorly understood. Here, we show that human ESCs and their malignant counterpart, embryonal carcinoma (EC) cells, both fail to activate critical S-phase checkpoints when exposed to DNA replication inhibitors and commit to apoptosis instead. Human ESCs and EC cells also fail to form replication protein A, γH2AX, or RAD51 foci or load topoisomerase (DNA) II binding protein 1 onto chromatin in response to replication inhibitors. Furthermore, direct measurements of single-stranded DNA (ssDNA) show that these cells fail to generate the ssDNA regions in response to replication stress that are necessary for the activation of checkpoints and the initiation of homologous recombination repair to protect replication fork integrity and restart DNA replication. Taken together, our data suggest that pluripotent cells control genome integrity by the elimination of damaged cells through apoptosis rather than DNA repair, and therefore, mutations or epigenetic modifications resulting in an imbalance in cell death control could lead to genetic instability. Copyright © 2012 AlphaMed Press.

  17. Parvovirus Induced Alterations in Nuclear Architecture and Dynamics

    PubMed Central

    Ihalainen, Teemu O.; Niskanen, Einari A.; Jylhävä, Juulia; Paloheimo, Outi; Dross, Nicolas; Smolander, Hanna; Langowski, Jörg; Timonen, Jussi; Vihinen-Ranta, Maija

    2009-01-01

    The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP) studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analyzis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications. PMID:19536327

  18. The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages.

    PubMed

    Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T

    2018-02-01

    Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Characteristics and Concepts of Dynamic Hub Proteins in DNA Processing Machinery from Studies of RPA

    PubMed Central

    Sugitani, Norie; Chazin, Walter J.

    2015-01-01

    DNA replication, damage response and repair require the coordinated action of multi-domain proteins operating within dynamic multi-protein machines that act upon the DNA substrate. These modular proteins contain flexible linkers of various lengths, which enable changes in the spatial distribution of the globular domains (architecture) that harbor their essential biochemical functions. This mobile architecture is uniquely suited to follow the evolving substrate landscape present over the course of the specific process performed by the multi-protein machinery. A fundamental advance in understanding of protein machinery is the realization of the pervasive role of dynamics. Not only is the machine undergoing dynamic transformations, but the proteins themselves are flexible and constantly adapting to the progression through the steps of the overall process. Within this dynamic context the activity of the constituent proteins must be coordinated, a role typically played by hub proteins. A number of important characteristics of modular proteins and concepts about the operation of dynamic machinery have been discerned. These provide the underlying basis for the action of the machinery that reads DNA, and responds to and repairs DNA damage. Here, we introduce a number of key characteristics and concepts, including the modularity of the proteins, linkage of weak binding sites, direct competition between sites, and allostery, using the well recognized hub protein replication protein A (RPA). PMID:25542993

  20. ColE1-Plasmid Production in Escherichia coli: Mathematical Simulation and Experimental Validation.

    PubMed

    Freudenau, Inga; Lutter, Petra; Baier, Ruth; Schleef, Martin; Bednarz, Hanna; Lara, Alvaro R; Niehaus, Karsten

    2015-01-01

    Plasmids have become very important as pharmaceutical gene vectors in the fields of gene therapy and genetic vaccination in the past years. In this study, we present a dynamic model to simulate the ColE1-like plasmid replication control, once for a DH5α-strain carrying a low copy plasmid (DH5α-pSUP 201-3) and once for a DH5α-strain carrying a high copy plasmid (DH5α-pCMV-lacZ) by using ordinary differential equations and the MATLAB software. The model includes the plasmid replication control by two regulatory RNA molecules (RNAI and RNAII) as well as the replication control by uncharged tRNA molecules. To validate the model, experimental data like RNAI- and RNAII concentration, plasmid copy number (PCN), and growth rate for three different time points in the exponential phase were determined. Depending on the sampled time point, the measured RNAI- and RNAII concentrations for DH5α-pSUP 201-3 reside between 6 ± 0.7 and 34 ± 7 RNAI molecules per cell and 0.44 ± 0.1 and 3 ± 0.9 RNAII molecules per cell. The determined PCNs averaged between 46 ± 26 and 48 ± 30 plasmids per cell. The experimentally determined data for DH5α-pCMV-lacZ reside between 345 ± 203 and 1086 ± 298 RNAI molecules per cell and 22 ± 2 and 75 ± 10 RNAII molecules per cell with an averaged PCN of 1514 ± 1301 and 5806 ± 4828 depending on the measured time point. As the model was shown to be consistent with the experimentally determined data, measured at three different time points within the growth of the same strain, we performed predictive simulations concerning the effect of uncharged tRNA molecules on the ColE1-like plasmid replication control. The hypothesis is that these tRNA molecules would have an enhancing effect on the plasmid production. The in silico analysis predicts that uncharged tRNA molecules would indeed increase the plasmid DNA production.

  1. TCC: an R package for comparing tag count data with robust normalization strategies

    PubMed Central

    2013-01-01

    Background Differential expression analysis based on “next-generation” sequencing technologies is a fundamental means of studying RNA expression. We recently developed a multi-step normalization method (called TbT) for two-group RNA-seq data with replicates and demonstrated that the statistical methods available in four R packages (edgeR, DESeq, baySeq, and NBPSeq) together with TbT can produce a well-ranked gene list in which true differentially expressed genes (DEGs) are top-ranked and non-DEGs are bottom ranked. However, the advantages of the current TbT method come at the cost of a huge computation time. Moreover, the R packages did not have normalization methods based on such a multi-step strategy. Results TCC (an acronym for Tag Count Comparison) is an R package that provides a series of functions for differential expression analysis of tag count data. The package incorporates multi-step normalization methods, whose strategy is to remove potential DEGs before performing the data normalization. The normalization function based on this DEG elimination strategy (DEGES) includes (i) the original TbT method based on DEGES for two-group data with or without replicates, (ii) much faster methods for two-group data with or without replicates, and (iii) methods for multi-group comparison. TCC provides a simple unified interface to perform such analyses with combinations of functions provided by edgeR, DESeq, and baySeq. Additionally, a function for generating simulation data under various conditions and alternative DEGES procedures consisting of functions in the existing packages are provided. Bioinformatics scientists can use TCC to evaluate their methods, and biologists familiar with other R packages can easily learn what is done in TCC. Conclusion DEGES in TCC is essential for accurate normalization of tag count data, especially when up- and down-regulated DEGs in one of the samples are extremely biased in their number. TCC is useful for analyzing tag count data in various scenarios ranging from unbiased to extremely biased differential expression. TCC is available at http://www.iu.a.u-tokyo.ac.jp/~kadota/TCC/ and will appear in Bioconductor (http://bioconductor.org/) from ver. 2.13. PMID:23837715

  2. Applications of Replicating-Competent Reporter-Expressing Viruses in Diagnostic and Molecular Virology.

    PubMed

    Li, Yongfeng; Li, Lian-Feng; Yu, Shaoxiong; Wang, Xiao; Zhang, Lingkai; Yu, Jiahui; Xie, Libao; Li, Weike; Ali, Razim; Qiu, Hua-Ji

    2016-05-06

    Commonly used tests based on wild-type viruses, such as immunostaining, cannot meet the demands for rapid detection of viral replication, high-throughput screening for antivirals, as well as for tracking viral proteins or virus transport in real time. Notably, the development of replicating-competent reporter-expressing viruses (RCREVs) has provided an excellent option to detect directly viral replication without the use of secondary labeling, which represents a significant advance in virology. This article reviews the applications of RCREVs in diagnostic and molecular virology, including rapid neutralization tests, high-throughput screening systems, identification of viral receptors and virus-host interactions, dynamics of viral infections in vitro and in vivo, vaccination approaches and others. However, there remain various challenges associated with RCREVs, including pathogenicity alterations due to the insertion of a reporter gene, instability or loss of the reporter gene expression, or attenuation of reporter signals in vivo. Despite all these limitations, RCREVs have become powerful tools for both basic and applied virology with the development of new technologies for generating RCREVs, the inventions of novel reporters and the better understanding of regulation of viral replication.

  3. Differential Deposition Technique for Figure Corrections in Grazing Incidence X-ray Optics

    NASA Technical Reports Server (NTRS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail

    2009-01-01

    A differential deposition technique is being developed to correct the low- and mid-spatial-frequency deviations in the axial figure profile of Wolter type grazing incidence X-ray optics. These deviations arise due to various factors in the fabrication process and they degrade the performance of the optics by limiting the achievable angular resolution. In the differential deposition technique, material of varying thickness is selectively deposited along the length of the optic to minimize these deviations, thereby improving the overall figure. High resolution focusing optics being developed at MSFC for small animal radionuclide imaging are being coated to test the differential deposition technique. The required spatial resolution for these optics is 100 m. This base resolution is achievable with the regular electroform-nickel-replication fabrication technique used at MSFC. However, by improving the figure quality of the optics through differential deposition, we aim at significantly improving the resolution beyond this value.

  4. Differential flatness properties and multivariable adaptive control of ovarian system dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2016-12-01

    The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.

  5. Allosteric ligands for the pharmacologically important Flavivirus target (NS5) from ZINC database based on pharmacophoric points, free energy calculations and dynamics correlation.

    PubMed

    Khan, Abbas; Saleem, Shoaib; Idrees, Muhammad; Ali, Syed Shujait; Junaid, Muhammad; Chandra Kaushik, Aman; Wei, Dong-Qing

    2018-04-11

    Dengue virus belongs to a group of human pathogens, which causes different diseases, dengue hemorrhagic fever and dengue shock syndrome in humans. It possesses RNA as a genetic material and is replicated with the aid of NS5 protein. RNA-dependent RNA polymerase (RdRp) is an important domain of NS5 in the replication of that virus. The catalytic process activity of RdRp is making it an important target for antiviral chemical therapy. To date, No FDA drug has been approved and marketed for the treatment of diseases caused by Dengue virus. So, there is a dire need to advance an area of active antiviral inhibitors that is safe, less expensive and widely available. An experimentally validated complex of Dengue NS5 and compound 27 (6LS) were used as pharmacophoric input and hits were identified. We also used Molecular dynamics (MD) simulations alongside free energy and dynamics of the internal residues of the apo and holo systems to understand the binding mechanism. Our analysis resulted that the three inhibitors (ZINC72070002, ZINC6551486, and ZINC39588257) greatly affected the interior dynamics and residual signaling to dysfunction the replicative role of NS5. The interaction of these inhibitors caused the loss of the correlated motion of NS5 near to the N terminus and helped the stability of the binding complex. This investigation provided a methodological route to discover allosteric inhibitors against the epidemics of this Flaviviruses. Allosteric inhibitors are important and major assets in considering the development of the competitive and robust antiviral agents such as against Dengue viral infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Speculative behavior and asset price dynamics.

    PubMed

    Westerhoff, Frank

    2003-07-01

    This paper deals with speculative trading. Guided by empirical observations, a nonlinear deterministic asset pricing model is developed in which traders repeatedly choose between technical and fundamental analysis to determine their orders. The interaction between the trading rules produces complex dynamics. The model endogenously replicates the stylized facts of excess volatility, high trading volumes, shifts in the level of asset prices, and volatility clustering.

  7. Dynamics of Engagement and Disaffection in a Social Studies Classroom Context

    ERIC Educational Resources Information Center

    Taboada Barber, Ana M.; Buehl, Michelle M.; Beck, Jori S.

    2017-01-01

    In this investigation, we replicated Skinner et al.'s study of the dynamics of engagement with a more diverse sample of Grades 6 and 7 students from a middle school with a large English learner (primarily Spanish-speaking) student population. We tested dimensions of the self-system model of motivational development in a specific academic domain…

  8. Complex dynamics and empirical evidence (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Delli Gatti, Domenico; Gaffeo, Edoardo; Giulioni, Gianfranco; Gallegati, Mauro; Kirman, Alan; Palestrini, Antonio; Russo, Alberto

    2005-05-01

    Standard macroeconomics, based on a reductionist approach centered on the representative agent, is badly equipped to explain the empirical evidence where heterogeneity and industrial dynamics are the rule. In this paper we show that a simple agent-based model of heterogeneous financially fragile agents is able to replicate a large number of scaling type stylized facts with a remarkable degree of statistical precision.

  9. Transcriptome Dynamics of Developing Photoreceptors in Three‐Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks

    PubMed Central

    Kaewkhaw, Rossukon; Kaya, Koray Dogan; Brooks, Matthew; Homma, Kohei; Zou, Jizhong; Chaitankar, Vijender; Rao, Mahendra

    2015-01-01

    Abstract The derivation of three‐dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone‐rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp‐GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self‐organizing 3D retina‐like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S‐opsin and no rhodopsin or L/M‐opsin is present. The transcriptome profile, by RNA‐seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. Stem Cells 2015;33:3504–3518 PMID:26235913

  10. C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability.

    PubMed

    Korzelius, Jerome; The, Inge; Ruijtenberg, Suzan; Portegijs, Vincent; Xu, Huihong; Horvitz, H Robert; van den Heuvel, Sander

    2011-02-15

    DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability

    PubMed Central

    Korzelius, Jerome; The, Inge; Ruijtenberg, Suzan; Portegijs, Vincent; Xu, Huihong; Horvitz, H. Robert; van den Heuvel, Sander

    2012-01-01

    DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell-cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements. PMID:21146520

  12. Lipopolysaccharide potentiates the effect of hepatocyte growth factor on hepatocyte replication in rats by augmenting AP-1 activity.

    PubMed

    Gao, C; Jokerst, R; Gondipalli, P; Cai, S R; Kennedy, S; Flye, M W; Ponder, K P

    1999-12-01

    The liver regenerates by replication of differentiated hepatocytes after damage or removal of part of the liver. Although several growth factors and signaling pathways are activated during regeneration, it is unclear as to which of these are essential for hepatocyte replication. We show here that low- (1 mg/kg) and high- (10 mg/kg) dose hepatocyte growth factor (HGF) induced replication of 2.1% and 11.1% of hepatocytes in rats, respectively. Lipopolysaccharide (LPS), an inducer of the acute phase response, augmented hepatocyte replication in response to low- and high-dose HGF by 4- and 2-fold, respectively. HGF alone induced moderate levels of c-Jun-N-terminal kinase (JNK) and p44/p42 mitogen-activated protein kinase (MAPK), resulting in moderate levels of AP-1-DNA binding activity. The combination of LPS + HGF increased JNK and AP-1-DNA binding activity more than levels seen with LPS or HGF alone. The activation of Stat3 that was observed after administration of LPS + HGF, but not HGF alone, could contribute to increased transcription of AP-1 components. Because phosphorylation of the c-Jun component of AP-1 by JNK increases its ability to activate transcription, the AP-1 in hepatocytes from animals treated with LPS + HGF may be more active than in rats treated with LPS or HGF alone. LPS may contribute to hepatocyte replication by potentiating the effect of HGF on the activation of both AP-1-DNA binding and transcriptional activity.

  13. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry

    PubMed Central

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Marietta, Y.W.T. Lee; Ernest, Y.C. Lee; Zhang, Zhongtao

    2015-01-01

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21WAF1, DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21WAF1 and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21WAF1, Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value. PMID:26059433

  14. Regulatory Mechanisms That Prevent Re-initiation of DNA Replication Can Be Locally Modulated at Origins by Nearby Sequence Elements

    PubMed Central

    Richardson, Christopher D.; Li, Joachim J.

    2014-01-01

    Eukaryotic cells must inhibit re-initiation of DNA replication at each of the thousands of origins in their genome because re-initiation can generate genomic alterations with extraordinary frequency. To minimize the probability of re-initiation from so many origins, cells use a battery of regulatory mechanisms that reduce the activity of replication initiation proteins. Given the global nature of these mechanisms, it has been presumed that all origins are inhibited identically. However, origins re-initiate with diverse efficiencies when these mechanisms are disabled, and this diversity cannot be explained by differences in the efficiency or timing of origin initiation during normal S phase replication. This observation raises the possibility of an additional layer of replication control that can differentially regulate re-initiation at distinct origins. We have identified novel genetic elements that are necessary for preferential re-initiation of two origins and sufficient to confer preferential re-initiation on heterologous origins when the control of re-initiation is partially deregulated. The elements do not enhance the S phase timing or efficiency of adjacent origins and thus are specifically acting as re-initiation promoters (RIPs). We have mapped the two RIPs to ∼60 bp AT rich sequences that act in a distance- and sequence-dependent manner. During the induction of re-replication, Mcm2-7 reassociates both with origins that preferentially re-initiate and origins that do not, suggesting that the RIP elements can overcome a block to re-initiation imposed after Mcm2-7 associates with origins. Our findings identify a local level of control in the block to re-initiation. This local control creates a complex genomic landscape of re-replication potential that is revealed when global mechanisms preventing re-replication are compromised. Hence, if re-replication does contribute to genomic alterations, as has been speculated for cancer cells, some regions of the genome may be more susceptible to these alterations than others. PMID:24945837

  15. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Lee, Marietta Y W T; Lee, Ernest Y C; Zhang, Zhongtao

    2015-05-20

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.

  16. Replication cycle of duck hepatitis A virus type 1 in duck embryonic hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Fangke; Chen, Yun; Shi, Jintong

    Duck hepatitis A virus type 1 (DHAV-1) is an important agent of duck viral hepatitis. Until recently, the replication cycle of DHAV-1 is still unknown. Here duck embryonic hepatocytes infected with DHAV-1 were collected at different time points, and dynamic changes of the relative DHAV-1 gene expression during replication were detected by real-time PCR. And the morphology of hepatocytes infected with DHAV was evaluated by electron microscope. The result suggested that the adsorption of DHAV-1 saturated at 90 min post-infection, and the virus particles with size of about 50 nm including more than 20 nm of vacuum drying gold weremore » observed on the infected cells surface. What's more, the replication lasted around 13 h after the early protein synthesis for about 5 h, and the release of DHAV-1 was in steady state after 32 h. The replication cycle will enrich the data for DVH control and provide the foundation for future studies. - Highlights: • This is the first description of the replication cycle of DHAV-1. • Firstly find that DHAV-1 adsorption saturated at 90 min post-infection. • The replication lasted around 13 h after early protein synthesis for about 5 h. • The release of DHAV-1 was in steady state after 32 h.« less

  17. Dynamic Organization of lncRNA and Circular RNA Regulators Collectively Controlled Cardiac Differentiation in Humans.

    PubMed

    Li, Yongsheng; Zhang, Jinwen; Huo, Caiqin; Ding, Na; Li, Junyi; Xiao, Jun; Lin, Xiaoyu; Cai, Benzhi; Zhang, Yunpeng; Xu, Juan

    2017-10-01

    Advances in developmental cardiology have increased our understanding of the early aspects of heart differentiation. However, understanding noncoding RNA (ncRNA) transcription and regulation during this process remains elusive. Here, we constructed transcriptomes for both long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in four important developmental stages ranging from early embryonic to cardiomyocyte based on high-throughput sequencing datasets, which indicate the high stage-specific expression patterns of two ncRNA types. Additionally, higher similarities of samples within each stage were found, highlighting the divergence of samples collected from distinct cardiac developmental stages. Next, we developed a method to identify numerous lncRNA and circRNA regulators whose expression was significantly stage-specific and shifted gradually and continuously during heart differentiation. We inferred that these ncRNAs are important for the stages of cardiac differentiation. Moreover, transcriptional regulation analysis revealed that the expression of stage-specific lncRNAs is controlled by known key stage-specific transcription factors (TFs). In addition, circRNAs exhibited dynamic expression patterns independent from their host genes. Functional enrichment analysis revealed that lncRNAs and circRNAs play critical roles in pathways that are activated specifically during heart differentiation. We further identified candidate TF-ncRNA-gene network modules for each differentiation stage, suggesting the dynamic organization of lncRNAs and circRNAs collectively controlled cardiac differentiation, which may cause heart-related diseases when defective. Our study provides a foundation for understanding the dynamic regulation of ncRNA transcriptomes during heart differentiation and identifies the dynamic organization of novel key lncRNAs and circRNAs to collectively control cardiac differentiation. Copyright © 2017. Published by Elsevier B.V.

  18. Cryo-EM of dynamic protein complexes in eukaryotic DNA replication.

    PubMed

    Sun, Jingchuan; Yuan, Zuanning; Bai, Lin; Li, Huilin

    2017-01-01

    DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems. © 2016 The Protein Society.

  19. Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex

    PubMed Central

    Brass, Volker; Berke, Jan Martin; Montserret, Roland; Blum, Hubert E.; Penin, François; Moradpour, Darius

    2008-01-01

    Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane α-helix that may be involved in intramembrane protein–protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix α0, formed by NS3 residues 12–23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design. PMID:18799730

  20. Monitoring Replication Protein A (RPA) dynamics in homologous recombination through site-specific incorporation of non-canonical amino acids.

    PubMed

    Pokhrel, Nilisha; Origanti, Sofia; Davenport, Eric Parker; Gandhi, Disha; Kaniecki, Kyle; Mehl, Ryan A; Greene, Eric C; Dockendorff, Chris; Antony, Edwin

    2017-09-19

    An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Spared ability to recognise fear from static and moving whole-body cues following bilateral amygdala damage

    PubMed Central

    Atkinson, Anthony P.; Heberlein, Andrea S.; Adolphs, Ralph

    2007-01-01

    Bilateral amygdala lesions impair the ability to identify certain emotions, especially fear, from facial expressions, and neuroimaging studies have demonstrated differential amygdala activation as a function of the emotional expression of faces, even under conditions of subliminal presentation, and again especially for fear. Yet the amygdala's role in processing emotion from other classes of stimuli remains poorly understood. On the basis of its known connectivity as well as prior studies in humans and animals, we hypothesised that the amygdala would be important also for the recognition of fear from body expressions. To test this hypothesis, we assessed a patient (S.M.) with complete bilateral amygdala lesions who is known to be severely impaired at recognising fear from faces. S.M. completed a battery of tasks involving forced-choice labelling and rating of the emotions in two sets of dynamic body movement stimuli, as well as in a set of static body postures. Unexpectedly, S.M.'s performance was completely normal. We replicated the finding in a second rare subject with bilateral lesions entirely confined to the amygdala. Compared to healthy comparison subjects, neither of the amygdala lesion subjects was impaired in identifying fear from any of these displays. Thus, whatever the role of the amygdala in processing whole-body fear cues, it is apparently not necessary for the normal recognition of fear from either static or dynamic body expressions. PMID:17561172

  2. In vitro activation of the neuro-transduction mechanism in sensitive organotypic human skin model.

    PubMed

    Martorina, Francesca; Casale, Costantino; Urciuolo, Francesco; Netti, Paolo A; Imparato, Giorgia

    2017-01-01

    Recent advances in tissue engineering have encouraged researchers to endeavor the production of fully functional three-dimensional (3D) thick human tissues in vitro. Here, we report the fabrication of a fully innervated human skin tissue in vitro that recapitulates and replicates skin sensory function. Previous attempts to innervate in vitro 3D skin models did not demonstrate an effective functionality of the nerve network. In our approach, we initially engineer functional human skin tissue based on fibroblast-generated dermis and differentiated epidermis; then, we promote rat dorsal root ganglion (DRG) neurons axon ingrowth in the de-novo developed tissue. Neurofilaments network infiltrates the entire native dermis extracellular matrix (ECM), as demonstrated by immunofluorescence and second harmonic generation (SHG) imaging. To prove sensing functionality of the tissue, we use topical applications of capsaicin, an agonist of transient receptor protein-vanilloid 1 (TRPV1) channel, and quantify calcium currents resulting from variations of Ca ++ concentration in DRG neurons innervating our model. Calcium currents generation demonstrates functional cross-talking between dermis and epidermis compartments. Moreover, through a computational fluid dynamic (CFD) analysis, we set fluid dynamic conditions for a non-planar skin equivalent growth, as proof of potential application in creating skin grafts tailored on-demand for in vivo wound shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A molecular description of ligand binding to the two overlapping binding pockets of the nuclear vitamin D receptor (VDR): structure-function implications

    PubMed Central

    Mizwicki, Mathew T.; Menegaz, Danusa; Yaghmaei, Sepideh; Henry, Helen L.; Norman, Anthony W.

    2010-01-01

    Molecular modeling results indicate that the VDR contains two overlapping ligand binding pockets (LBP). Differential ligand stability and fractional occupancy of the two LBP has been physiochemically linked to the regulation of VDR-dependent genomic and non-genomic cellular responses. The purpose of this report is to develop an unbiased molecular modeling protocol that serves as a good starting point in simulating the dynamic interaction between 1α,25(OH)2-vitamin D3 (1,25D3) and the VDR LBP. To accomplish this goal, the flexible docking protocol developed allowed for flexibility in the VDR ligand and the VDR atoms that form the surfaces of the VDR LBP. This approach blindly replicated the 1,25D3 conformation and side-chain dynamics observed in the VDR x-ray structure. The results are also consistent with the previously published tenants of the vitamin D sterol (VDS)-VDR conformational ensemble model. Furthermore, we used flexible docking in combination with whole cell patch clamp electrophysiology and steroid competition assays to demonstrate that a) new non-vitamin D VDR ligands show a different pocket selectivity when compared to 1,25D3 that is qualitatively consistent with their ability to stimulate chloride channels and b) a new route of ligand binding provides a novel hypothesis describing the structural nuances that underlie hypercalceamia. PMID:20398762

  4. The Dynamics of DNA Sequencing.

    ERIC Educational Resources Information Center

    Morvillo, Nancy

    1997-01-01

    Describes a paper-and-pencil activity that helps students understand DNA sequencing and expands student understanding of DNA structure, replication, and gel electrophoresis. Appropriate for advanced biology students who are familiar with the Sanger method. (DDR)

  5. Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies

    PubMed Central

    Baker, Steven F.; Perez, Daniel R.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A and B viruses (IAV and IBV, respectively) cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1) was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer’s spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection. PMID:26809059

  6. Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies.

    PubMed

    Breen, Michael; Nogales, Aitor; Baker, Steven F; Perez, Daniel R; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A and B viruses (IAV and IBV, respectively) cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1) was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer's spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection.

  7. A Theoretical Approach to Norm Ecosystems: Two Adaptive Architectures of Indirect Reciprocity Show Different Paths to the Evolution of Cooperation

    NASA Astrophysics Data System (ADS)

    Uchida, Satoshi; Yamamoto, Hitoshi; Okada, Isamu; Sasaki, Tatsuya

    2018-02-01

    Indirect reciprocity is one of the basic mechanisms to sustain mutual cooperation, by which beneficial acts are returned, not by the recipient, but by third parties. This mechanism relies on the ability of individuals to know the past actions of others, and to assess those actions. There are many different systems of assessing others, which can be interpreted as rudimentary social norms (i.e., views on what is “good” or “bad”). In this paper, impacts of different adaptive architectures, i.e., ways for individuals to adapt to environments, on indirect reciprocity are investigated. We examine two representative architectures: one based on replicator dynamics and the other on genetic algorithm. Different from the replicator dynamics, the genetic algorithm requires describing the mixture of all possible norms in the norm space under consideration. Therefore, we also propose an analytic method to study norm ecosystems in which all possible second order social norms potentially exist and compete. The analysis reveals that the different adaptive architectures show different paths to the evolution of cooperation. Especially we find that so called Stern-Judging, one of the best studied norms in the literature, exhibits distinct behaviors in both architectures. On one hand, in the replicator dynamics, Stern-Judging remains alive and gets a majority steadily when the population reaches a cooperative state. On the other hand, in the genetic algorithm, it gets a majority only temporarily and becomes extinct in the end.

  8. Selectionist and Evolutionary Approaches to Brain Function: A Critical Appraisal

    PubMed Central

    Fernando, Chrisantha; Szathmáry, Eörs; Husbands, Phil

    2012-01-01

    We consider approaches to brain dynamics and function that have been claimed to be Darwinian. These include Edelman’s theory of neuronal group selection, Changeux’s theory of synaptic selection and selective stabilization of pre-representations, Seung’s Darwinian synapse, Loewenstein’s synaptic melioration, Adam’s selfish synapse, and Calvin’s replicating activity patterns. Except for the last two, the proposed mechanisms are selectionist but not truly Darwinian, because no replicators with information transfer to copies and hereditary variation can be identified in them. All of them fit, however, a generalized selectionist framework conforming to the picture of Price’s covariance formulation, which deliberately was not specific even to selection in biology, and therefore does not imply an algorithmic picture of biological evolution. Bayesian models and reinforcement learning are formally in agreement with selection dynamics. A classification of search algorithms is shown to include Darwinian replicators (evolutionary units with multiplication, heredity, and variability) as the most powerful mechanism for search in a sparsely occupied search space. Examples are given of cases where parallel competitive search with information transfer among the units is more efficient than search without information transfer between units. Finally, we review our recent attempts to construct and analyze simple models of true Darwinian evolutionary units in the brain in terms of connectivity and activity copying of neuronal groups. Although none of the proposed neuronal replicators include miraculous mechanisms, their identification remains a challenge but also a great promise. PMID:22557963

  9. Applying a multi-replication framework to support dynamic situation assessment and predictive capabilities

    NASA Astrophysics Data System (ADS)

    Lammers, Craig; McGraw, Robert M.; Steinman, Jeffrey S.

    2005-05-01

    Technological advances and emerging threats reduce the time between target detection and action to an order of a few minutes. To effectively assist with the decision-making process, C4I decision support tools must quickly and dynamically predict and assess alternative Courses Of Action (COAs) to assist Commanders in anticipating potential outcomes. These capabilities can be provided through the faster-than-real-time predictive simulation of plans that are continuously re-calibrating with the real-time picture. This capability allows decision-makers to assess the effects of re-tasking opportunities, providing the decision-maker with tremendous freedom to make time-critical, mid-course decisions. This paper presents an overview and demonstrates the use of a software infrastructure that supports DSAP capabilities. These DSAP capabilities are demonstrated through the use of a Multi-Replication Framework that supports (1) predictivie simulations using JSAF (Joint Semi-Automated Forces); (2) real-time simulation, also using JSAF, as a state estimation mechanism; and, (3) real-time C4I data updates through TBMCS (Theater Battle Management Core Systems). This infrastructure allows multiple replications of a simulation to be executed simultaneously over a grid faster-than-real-time, calibrated with live data feeds. A cost evaluator mechanism analyzes potential outcomes and prunes simulations that diverge from the real-time picture. In particular, this paper primarily serves to walk a user through the process for using the Multi-Replication Framework providing an enhanced decision aid.

  10. Group Dynamics and Individual Roles: A Differentiated Approach to Social-Emotional Learning

    ERIC Educational Resources Information Center

    Dugas, Daryl

    2017-01-01

    Differentiated instruction is a set of strategies to help teachers meet each child where he or she is in order to improve students' engagement, lead them to do their best work, and maximize their success. This article describes a differentiated classroom management approach based in group dynamics which focuses on the development of group norms…

  11. Xenobiotics that affect oxidative phosphorylation alter differentiation of human adipose-derived stem cells at concentrations that are found in human blood

    PubMed Central

    Llobet, Laura; Toivonen, Janne M.; Montoya, Julio; Ruiz-Pesini, Eduardo; López-Gallardo, Ester

    2015-01-01

    ABSTRACT Adipogenesis is accompanied by differentiation of adipose tissue-derived stem cells to adipocytes. As part of this differentiation, biogenesis of the oxidative phosphorylation system occurs. Many chemical compounds used in medicine, agriculture or other human activities affect oxidative phosphorylation function. Therefore, these xenobiotics could alter adipogenesis. We have analyzed the effects on adipocyte differentiation of some xenobiotics that act on the oxidative phosphorylation system. The tested concentrations have been previously reported in human blood. Our results show that pharmaceutical drugs that decrease mitochondrial DNA replication, such as nucleoside reverse transcriptase inhibitors, or inhibitors of mitochondrial protein synthesis, such as ribosomal antibiotics, diminish adipocyte differentiation and leptin secretion. By contrast, the environmental chemical pollutant tributyltin chloride, which inhibits the ATP synthase of the oxidative phosphorylation system, can promote adipocyte differentiation and leptin secretion, leading to obesity and metabolic syndrome as postulated by the obesogen hypothesis. PMID:26398948

  12. Polyester: simulating RNA-seq datasets with differential transcript expression.

    PubMed

    Frazee, Alyssa C; Jaffe, Andrew E; Langmead, Ben; Leek, Jeffrey T

    2015-09-01

    Statistical methods development for differential expression analysis of RNA sequencing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differential expression status is often unknown in experimental datasets, artificially constructed datasets must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data. Polyester is an R package designed to simulate RNA-seq data, beginning with an experimental design and ending with collections of RNA-seq reads. Its main advantage is the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs. Data generated by Polyester is a reasonable approximation to real RNA-seq data and standard differential expression workflows can recover differential expression set in the simulation by the user. Polyester is freely available from Bioconductor (http://bioconductor.org/). jtleek@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Genome-wide association study in East Asians suggests UHMK1 as a novel bone mineral density susceptibility gene.

    PubMed

    Choi, Hyung Jin; Park, Hyojung; Zhang, Lei; Kim, Jung Hee; Kim, Ye An; Yang, Jae-Yeon; Pei, Yu-Fang; Tian, Qing; Shen, Hui; Hwang, Joo-Yeon; Deng, Hong-Wen; Cho, Nam H; Shin, Chan Soo

    2016-10-01

    To identify genetic variants that influence bone mineral density (BMD) in East Asians, we performed a quantitative trait analysis of lumbar spine, total hip and femoral neck BMD in a Korean population-based cohort (N=2729) and follow-up replication analysis in a Chinese Han population and two Caucasian populations (N=1547, 2250 and 987, respectively). From the meta-analysis of the stage 1 discovery analysis and stage 2 replication analysis, we identified four BMD loci that reached near-genome-wide significance level (P<5×10(-7)). One locus on 1q23 (UHMK1, rs16863247, P=4.1×10(-7) for femoral neck BMD and P=3.2×10(-6) for total hip BMD) was a novel BMD signal. Interestingly, rs16863247 was very rare in Caucasians (minor allele frequency<0.01), indicating that this association could be specific to East Asians. In gender specific analysis, rs1160574 on 1q32 (KCNH1) was associated with femoral neck BMD (P=2.1×10(-7)) in female subjects. rs9371538 in the known BMD region on 6q25 ESR1 was associated with lumbar spine BMD (P=5.6×10(-9)). rs7776725 in the known BMD region on 7q31 WTN16 was associated with total hip BMD (P=8.6×10(-9)). In osteoblasts, endogenous UHMK1 expression was increased during differentiation and UHMK1 knockdown decreased its differentiation, while UHMK1 overexpression increased its differentiation. In osteoclasts, endogenous UHMK1 expression was decreased during differentiation and UHMK1 knockdown increased its differentiation, while UHMK1 overexpression decreased its differentiation. In conclusion, our genome-wide association study identified the UHMK1 gene as a novel BMD locus specific to East Asians. Functional studies suggest a role of UHMK1 on regulation of osteoblasts and osteoclasts. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis

    PubMed Central

    Yüksel, Melih; Power, Jeffrey J.; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike

    2016-01-01

    In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off. PMID:27375604

  15. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis.

    PubMed

    Yüksel, Melih; Power, Jeffrey J; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike

    2016-01-01

    In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off.

  16. Dynamic Network-Based Relevance Score Reveals Essential Proteins and Functional Modules in Directed Differentiation

    PubMed Central

    Wu, Chia-Chou; Lin, Che

    2015-01-01

    The induction of stem cells toward a desired differentiation direction is required for the advancement of stem cell-based therapies. Despite successful demonstrations of the control of differentiation direction, the effective use of stem cell-based therapies suffers from a lack of systematic knowledge regarding the mechanisms underlying directed differentiation. Using dynamic modeling and the temporal microarray data of three differentiation stages, three dynamic protein-protein interaction networks were constructed. The interaction difference networks derived from the constructed networks systematically delineated the evolution of interaction variations and the underlying mechanisms. A proposed relevance score identified the essential components in the directed differentiation. Inspection of well-known proteins and functional modules in the directed differentiation showed the plausibility of the proposed relevance score, with the higher scores of several proteins and function modules indicating their essential roles in the directed differentiation. During the differentiation process, the proteins and functional modules with higher relevance scores also became more specific to the neuronal identity. Ultimately, the essential components revealed by the relevance scores may play a role in controlling the direction of differentiation. In addition, these components may serve as a starting point for understanding the systematic mechanisms of directed differentiation and for increasing the efficiency of stem cell-based therapies. PMID:25977693

  17. Dynamics and Control of Constrained Multibody Systems modeled with Maggi's equation: Application to Differential Mobile Robots Part I

    NASA Astrophysics Data System (ADS)

    Amengonu, Yawo H.; Kakad, Yogendra P.

    2014-07-01

    Quasivelocity techniques such as Maggi's and Boltzmann-Hamel's equations eliminate Lagrange multipliers from the beginning as opposed to the Euler-Lagrange method where one has to solve for the n configuration variables and the multipliers as functions of time when there are m nonholonomic constraints. Maggi's equation produces n second-order differential equations of which (n-m) are derived using (n-m) independent quasivelocities and the time derivative of the m kinematic constraints which add the remaining m second order differential equations. This technique is applied to derive the dynamics of a differential mobile robot and a controller which takes into account these dynamics is developed.

  18. Teacher Survival Rates--A Current Look

    ERIC Educational Resources Information Center

    Mark, Jonathan H.; Anderson, Barry D.

    1978-01-01

    To examine how survival rates change with time, each cohort of new entrants to the public school teaching profession between 1968 and 1976 was examined. Results replicated Charters' downward sloping survival curve, although the curve has shifted up steadily through time. The survival rate differential between men and women is decreasing over time.…

  19. Rice bran extracts inhibit invasion and intracellular replication of Salmonella typhimurium in mouse and porcine intestinal epithelial cells

    USDA-ARS?s Scientific Manuscript database

    Dietary rice bran supplementation has been shown to inhibit Salmonella fecal shedding in animals. The aim of this study was to determine if bran extracts from two distinct rice varieties, Lijiangxintuanheigu (LTH) and Sanhuangzhan-2 (SHZ-2), differentially inhibit Salmonella enterica serover Typhimu...

  20. The Differential Effects of Parental Involvement on High School Completion and Postsecondary Attendance

    ERIC Educational Resources Information Center

    Ross, Terris

    2016-01-01

    Previous studies have shown the impact of parental involvement on a number of student achievement, motivation, and engagement outcomes, but the extent to which parental involvement influences high school completion and postsecondary attendance has received less attention in the literature. Filling that gap, this study replicates and extends…

Top