Sample records for differential space-time modulation

  1. Efficacy analysis of LDPC coded APSK modulated differential space-time-frequency coded for wireless body area network using MB-pulsed OFDM UWB technology.

    PubMed

    Manimegalai, C T; Gauni, Sabitha; Kalimuthu, K

    2017-12-04

    Wireless body area network (WBAN) is a breakthrough technology in healthcare areas such as hospital and telemedicine. The human body has a complex mixture of different tissues. It is expected that the nature of propagation of electromagnetic signals is distinct in each of these tissues. This forms the base for the WBAN, which is different from other environments. In this paper, the knowledge of Ultra Wide Band (UWB) channel is explored in the WBAN (IEEE 802.15.6) system. The measurements of parameters in frequency range from 3.1-10.6 GHz are taken. The proposed system, transmits data up to 480 Mbps by using LDPC coded APSK Modulated Differential Space-Time-Frequency Coded MB-OFDM to increase the throughput and power efficiency.

  2. Cohomology and deformation of 𝔞𝔣𝔣(1|1) acting on differential operators

    NASA Astrophysics Data System (ADS)

    Basdouri, Khaled; Omri, Salem

    We consider the 𝔞𝔣𝔣(1|1)-module structure on the spaces of differential operators acting on the spaces of weighted densities. We compute the second differential cohomology of the Lie superalgebra 𝔞𝔣𝔣(1|1) with coefficients in differential operators acting on the spaces of weighted densities. We classify formal deformations of the 𝔞𝔣𝔣(1|1)-module structure on the superspaces of symbols of differential operators. We prove that any formal deformation of a given infinitesimal deformation of this structure is equivalent to its infinitesimal part. This work is the simplest superization of a result by Basdouri [Deformation of 𝔞𝔣𝔣(1)-modules of pseudo-differential operators and symbols, J. Pseudo-differ. Oper. Appl. 7(2) (2016) 157-179] and application of work by Basdouri et al. [First cohomology of 𝔞𝔣𝔣(1) and 𝔞𝔣𝔣(1|1) acting on linear differential operators, Int. J. Geom. Methods Mod. Phys. 13(1) (2016)].

  3. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 2: Inversion of differential and rotating Doppler shifts

    NASA Technical Reports Server (NTRS)

    Gay, R. H.; Grossi, M. D.

    1975-01-01

    The preparation of the analytical approach and of the related software used in the inversion of the differential and rotating Doppler data obtained from the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) is discussed. These data were collected in space-to-space paths (between the ASTP Docking Module (DM) and the Apollo Command Service Module and in space-to-ground paths (between the DM and ground). The Doppler links operated at 162 and 324 MHz and have an accuracy better than 3 MHz over 10-sec integration time. The inversion approach was tested with dummy data obtained with a computer simulation. It was found that a measurement accuracy of 1 to 10% in the value of the horizontal electron density gradient at 221-km altitude can be achieved, in space-to-space paths. For space-to-ground paths near the orbital plane, possible effects of the horizontal gradients on the received differential Doppler shifts were identified. It was possible to reduce the gradient-associated errors in the inversion that leads to the columnar electron content by approximately one-half. Accuracies of 5 to 10% in columnar electron content are achievable, with this gradient-compensation technique.

  4. Impact of ionizing radiation exposure on in vitro differentiation of preosteoblastic cell lines

    NASA Astrophysics Data System (ADS)

    Hu, Yueyuan; Lau, Patrick; Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther

    Bone demineralization of astronauts during residence in microgravity is a well known phe-nomenon during space travel. Besides altered gravity conditions, radiation risk is considered to be one of the major health hazards for astronauts in both orbital and interplanetary space. Un-til know, little is known about the effects of space radiation on the skeletal system especially on the bone forming osteoblasts. Accelerator facilities are used to simulate parts of the radiation environment in space. We examined the effects of heavy ion exposure on osteoblastic differ-entiation of murine preosteoblastic cell lines to gain insight into potential cellular mechanisms involved in bone cellular response after exposure to heavy ions. Therefore, we examined gene expression modulation of bone specific transcription factors, osteoblast specific marker genes as well as genes function as coupling factors that link bone resorption to bone formation. mRNA levels were determined using quantitative real time reverse transcriptase PCR (qRT-PCR). Expression of a target gene was standardized to unregulated reference genes. We investigated the transcriptional regulation of Osteocalcin (OCN) as well as TGF-β1, p21(CDKN1A) and the bone specific transcription factor Runx2 (cbfa1). We investigated gene expression modula-tions after exposure to energetic carbon ions (35 MeV/u, 73 keV/µm), iron ions (1000 MeV/u, 150 keV/µm) and lead ions (29 MeV/u, 9600 keV/µm) versus low LET X-rays. X-irradiation dose-dependently increased the mRNA levels of p21(CDKN1A) and Runx2 (cbfa1) whereas expression of OCN and TGF-β1 were elevated at later time points. Exposure to heavy ions provoked a more pronounced effect on osteoblastic specific gene expression within the dif-ferentiation process. Collectively, our results indicate that heavy ions facilitate osteoblastic differentiation more effectively than X-ray. Using the proposed in vitro model we confirmed that exposure to ionizing radiation significantly modulates gene expression levels of marker genes involved in the differentiation of osteoblasts. The data presented allow us to suggest that exposure to ionizing radiation interferes with bone formation at the level of cell differentiation.

  5. Differential operators on the supercircle S1|2 and symbol map

    NASA Astrophysics Data System (ADS)

    Hamza, Raouafi; Selmi, Zeineb; Boujelben, Jamel

    2017-09-01

    We consider the supercircle S1|2 equipped with the standard contact structure. The conformal Lie superalgebra 𝒦(2) acts on S1|2 as the Lie superalgebra of contact vector fields; it contains the Möbius superalgebra 𝔬𝔰𝔭(2|2). We study the space of linear differential operators on weighted densities as a module over 𝔬𝔰𝔭(2|2). We introduce the canonical isomorphism between this space and the corresponding space of symbols. This result allows us to give, in contrast to the classical setting, a classification of the 𝒦(2)-modules 𝔇λ,μk of linear differential operators of order k acting on the superspaces of weighted densities. This work is the simplest superization of a result by Gargoubi and Ovsienko [Modules of differential operators on the real line, Funct. Anal. Appl. 35(1) (2001) 13-18.

  6. ADJUSTABLE DOUBLE PULSE GENERATOR

    DOEpatents

    Gratian, J.W.; Gratian, A.C.

    1961-08-01

    >A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)

  7. The Beautiful and the Ugly: Reading Ability Modulates Word Spacing Effects in Chinese Children

    ERIC Educational Resources Information Center

    Lin, Yu-Cheng; Lin, Pei-Ying

    2017-01-01

    There are no salient word spaces in Mandarin Chinese. Thus, it is unclear whether word spacing information differentially affects the reading speed of children with and without reading difficulties (RD). In the present study, native Chinese-speaking children of differential reading abilities were tested with Chinese text in un-spaced versus spaced…

  8. The affine cohomology spaces and its applications

    NASA Astrophysics Data System (ADS)

    Fraj, Nizar Ben; Laraiedh, Ismail

    2016-12-01

    We compute the nth cohomology space of the affine Lie superalgebra 𝔞𝔣𝔣(1) on the (1,1)-dimensional real superspace with coefficient in a large class of 𝔞𝔣𝔣(1)-modules M. We apply our results to the module of weight densities and the module of linear differential operators acting on a superspace of weighted densities. This work is the generalization of a result by Basdouri et al. [The linear 𝔞𝔣𝔣(n|1)-invariant differential operators on weighted densities on the superspace ℝ1|n and 𝔞𝔣𝔣(n|1)-relative cohomology, Int. J. Geom. Meth. Mod. Phys. 10 (2013), Article ID: 1320004, 9 pp.

  9. Algebraic and geometric structures of analytic partial differential equations

    NASA Astrophysics Data System (ADS)

    Kaptsov, O. V.

    2016-11-01

    We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.

  10. Low-voltage differentially-signaled modulators.

    PubMed

    Zortman, William A; Lentine, Anthony L; Trotter, Douglas C; Watts, Michael R

    2011-12-19

    For exascale computing applications, viable optical solutions will need to operate using low voltage signaling and with low power consumption. In this work, the first differentially signaled silicon resonator is demonstrated which can provide a 5dB extinction ratio using 3fJ/bit and 500mV signal amplitude at 10Gbps. Modulation with asymmetric voltage amplitudes as low as 150mV with 3dB extinction are demonstrated at 10Gbps as well. Differentially signaled resonators simplify and expand the design space for modulator implementation and require no special drivers.

  11. Prismatic Adaptation Induces Plastic Changes onto Spatial and Temporal Domains in Near and Far Space.

    PubMed

    Patané, Ivan; Farnè, Alessandro; Frassinetti, Francesca

    2016-01-01

    A large literature has documented interactions between space and time suggesting that the two experiential domains may share a common format in a generalized magnitude system (ATOM theory). To further explore this hypothesis, here we measured the extent to which time and space are sensitive to the same sensorimotor plasticity processes, as induced by classical prismatic adaptation procedures (PA). We also exanimated whether spatial-attention shifts on time and space processing, produced through PA, extend to stimuli presented beyond the immediate near space. Results indicated that PA affected both temporal and spatial representations not only in the near space (i.e., the region within which the adaptation occurred), but also in the far space. In addition, both rightward and leftward PA directions caused opposite and symmetrical modulations on time processing, whereas only leftward PA biased space processing rightward. We discuss these findings within the ATOM framework and models that account for PA effects on space and time processing. We propose that the differential and asymmetrical effects following PA may suggest that temporal and spatial representations are not perfectly aligned.

  12. Giant Linear Nonreciprocity, Zero Reflection, and Zero Band Gap in Equilibrated Space-Time-Varying Media

    NASA Astrophysics Data System (ADS)

    Taravati, Sajjad

    2018-06-01

    This article presents a class of space-time-varying media with giant linear nonreciprocity, zero space-time local reflections, and zero photonic band gap. This is achieved via equilibrium in the electric and magnetic properties of unidirectionally space-time-modulated media. The enhanced nonreciprocity is accompanied by a larger sonic regime interval which provides extra design freedom for achieving strong nonreciprocity by a weak pumping strength. We show that the width of photonic band gaps in general periodic space-time permittivity- and permeability-modulated media is proportional to the absolute difference between the electric and magnetic pumping strengths. We derive a rigorous analytical solution for investigation of wave propagation and scattering from general periodic space-time permittivity- and permeability-modulated media. In contrast with weak photonic transitions, from the excited mode to its two adjacent modes, in conventional space-time permittivity-modulated media, in an equilibrated space-time-varying medium, strong photonic transitions occur from the excited mode to its four adjacent modes. We study the enhanced nonreciprocity and zero band gap in equilibrated space-time-modulated media by analysis of their dispersion diagrams. In contrast to conventional space-time permittivity-modulated media, equilibrated space-time media exhibit different phase and group velocities for forward and backward harmonics. Furthermore, the numerical simulation scheme of general space-time permittivity- and permeability-modulated media is presented, which is based on the finite-difference time-domain technique. Our analytical and numerical results provide insights into general space-time refractive-index-modulated media, paving the way toward optimal isolators, nonreciprocal integrated systems, and subharmonic frequency generators.

  13. Six Month Report on Tissue Cultured Avian Skeletal Myofibers in the STL/A Module Aboard STS-77

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1997-01-01

    Space travel is know to effect skeletal muscle, causing rapid and pronounced atrophy in humans and animals, even when strenuous exercise is used as a countermeasure. The cellular and molecular bases of this atrophy are unknown. Space travel may cause muscle atrophy by a direct effect on the muscle fibers and/or indirectly by reducing circulating levels of growth factors such as growth hormone. The recent development of a tissue culture incubator system for Shuttle Middeck basic science experiments [Space Tissue Loss (STL) Module] by the Walter Reed Army Institute of Research (WRAIR) allows the study of the effects of space travel directly on isolated skeletal myofibers. Avian bioartificial skeletal muscle 'organoids' containing differentiated skeletal myofibers and connective tissue fibroblasts were flown aboard the Space Shuttle (Space Transportation System, STS) on Flight STS-77, a repeat of a similar experiment flown on STS-66. The results from these two flight experiments show for the first time that space travel has a direct effect on skeletal muscle cells separate from any systemic effects resulting from altered circulating growth factors.

  14. Effect of space relevant radiation exposure on differentiation and mineralization of murine osteoprogenitor cells

    NASA Astrophysics Data System (ADS)

    Lau, Patrick; Hu, Yueyuan; Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther

    Extended exposure to altered gravity conditions like during long-term space flight results in significant bone loss. Exposure to ionizing radiation for cancer therapy causes bone damage and may increase the risk of fractures. Similarly, besides altered gravity conditions, astronauts on exploratory missions beyond low-Earth orbit will be exposed to high-energy heavy ions in addition to proton and photon radiation, although for prolonged periods and at lower doses and dose rates compared with therapy. Space conditions may place astronauts at a greater risk for mission-critical fractures. Until now, little is known about the effects of space radiation on the skeletal system especially on osteoprogenitor cells. Accelerator facilities are used to simulate parts of the radiation environment in space. Heavy ion accelerators therefore could be used to assess radiation risks for astronauts who will be exposed to higher radiation doses e.g. on a Mars mission. The aim of the present study was to determine the biological effects of spaceflight-relevant radiation exposure on the cellular level using murine osteoprogenitor cell lines compared to nonirradiated controls. To gain a deeper understanding of bone cell differenti-ation and mineralization after exposure to heavy ions, we examined gene expression modulation of bone specific transcription factors, osteoblast specific marker genes as well as genes function as coupling factors that link bone resorption to bone formation. We investigated the transcrip-tional modulation of type I collagen (Col I), osteocalcin (Ocn), Transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6) and the bone specific transcription factor Runx2 (Cbfa1). To gain deeper insight into potential cellular mechanisms involved in cellular response after ex-posure to heavy ions, we investigated gene expression modulations after exposure to energetic carbon ions (35 MeV/u, 73.2 keV/µm), iron ions (1000 MeV/u, 150 keV/µm) and lead ions (29 MeV/u, 9600 keV/µm) versus low LET X-rays. Exposure to X-irradiation dose-dependently increased the mRNA levels of Runx2 (cbfa1) whereas expression values of OCN and TGF-β1 were elevated at later time points. Exposure to heavy ions provoked a more marked effect on bone specific gene expression within the differentiation process. Collectively, our results indi-cate that heavy ions facilitate differentiation more effectively than X-rays as a major response in the progeny of irradiated osteoprogenitor cells. The data presented allow us to suggest that exposure to ionizing radiation interferes with bone formation at the level of cellular differenti-ation. In this regard, further experiments are needed to investigate gene expression patterns in mammalian cells that respond to differentiation after exposure to ionizing radiation.

  15. Space-time-modulated stochastic processes

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  16. HgCdTe APDs for time-resolved space applications

    NASA Astrophysics Data System (ADS)

    Rothman, J.; Lasfargues, G.; Delacourt, B.; Dumas, A.; Gibert, F.; Bardoux, A.; Boutillier, M.

    2017-12-01

    The use of HgCdTe avalanche photodiodes (APDs) for resolving the temporal variation of faint light level signals is analyzed. The analysis is based on the performance characteristics such as the gain, the response time, and dark currents in the APDs, measured as a function of operating temperature and Cd composition, and on recently developed detector demonstrator modules. The choice of Cd composition in the APDs is strongly dependent on the application needs in terms of electrical bandwidth and signal-to-noise ratio. A performance model has been developed and used to predict the performance of the future detector modules for different applications such as high bandwidth and/or deep space free space optical telecommunications and lidar, associated with sensitivities down to single photon level at low operating temperature and close to single-photon operation at bandwidth of 10 GHz at room temperature. The predictions are corroborated by the results obtained on detector modules that have been developed and used in lidar and deep space optical communications. In a first lidar prototype, integrating a 200 µm APD, we obtained a maximum sensitivity of 25 fW/√Hz at T = 190 K operating temperature. The detector has been used for differential absorption lidar estimations of the absorption due to presence of CO2 in the atmosphere. A random error of 3-10% was obtained for the estimation of the optical thickness at a distance of 100-3000 m, for a range resolution of 100 m and using and averaging time of 4 s. The pursuit of this development is pending on the space qualification of the technology. Results from first proton and irradiation tests are reported that shows on a close to constant performance during and after the irradiation and endurance tests.

  17. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    PubMed Central

    Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés

    2011-01-01

    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems. PMID:22163907

  18. A Hitch-hiker's Guide to Stochastic Differential Equations. Solution Methods for Energetic Particle Transport in Space Physics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Strauss, R. Du Toit; Effenberger, Frederic

    2017-10-01

    In this review, an overview of the recent history of stochastic differential equations (SDEs) in application to particle transport problems in space physics and astrophysics is given. The aim is to present a helpful working guide to the literature and at the same time introduce key principles of the SDE approach via "toy models". Using these examples, we hope to provide an easy way for newcomers to the field to use such methods in their own research. Aspects covered are the solar modulation of cosmic rays, diffusive shock acceleration, galactic cosmic ray propagation and solar energetic particle transport. We believe that the SDE method, due to its simplicity and computational efficiency on modern computer architectures, will be of significant relevance in energetic particle studies in the years to come.

  19. Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE

    NASA Astrophysics Data System (ADS)

    Ansmann, Gerrit

    2018-04-01

    We present a family of Python modules for the numerical integration of ordinary, delay, or stochastic differential equations. The key features are that the user enters the derivative symbolically and it is just-in-time-compiled, allowing the user to efficiently integrate differential equations from a higher-level interpreted language. The presented modules are particularly suited for large systems of differential equations such as those used to describe dynamics on complex networks. Through the selected method of input, the presented modules also allow almost complete automatization of the process of estimating regular as well as transversal Lyapunov exponents for ordinary and delay differential equations. We conceptually discuss the modules' design, analyze their performance, and demonstrate their capabilities by application to timely problems.

  20. Power Generator with Thermo-Differential Modules

    NASA Technical Reports Server (NTRS)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  1. Differential degradation patterns of photovoltaic backsheets at the array level

    DOE PAGES

    Fairbrother, Andrew; Boyd, Matthew; Lyu, Yadong; ...

    2018-02-04

    There are relatively few field studies on the degradation of non-fluoropolymer-based backsheets, and understanding their in-field behavior is critical for further development of such products. In this paper, backsheet degradation of modules with one of these new types of backsheets (polyethylene naphthalate (PEN)-based) was documented at a four-year old utility-scale array located in Maryland (USA). Visual inspection, colorimetry, glossimetry, and Fourier-transform infrared spectroscopy (FTIR) revealed highly varied properties depending on module position within the array. Specifically, modules near the edge of the array and with higher mounting elevations underwent greater amounts of backsheet degradation, as indicated by yellowing and gloss-loss.more » The reason for these unique degradation patterns were differential backside exposure conditions, especially of ultraviolet light. This was strongly influenced by the array design, including array structural and environmental factors, such as module spacing and ground cover, respectively. Within the array, no clear link between backsheet degradation and module output or safety has been identified. However, such a relationship may be expected to become more pronounced with time, affecting system lifetime and ultimately the levelized cost of electricity (LCOE). Finally, the observed phenomena have implications for both backsheet product development and array design, especially for modules that utilize newer classes of non-fluoropolymer-based backsheets which are typically more susceptible to environmental degradation.« less

  2. Differential degradation patterns of photovoltaic backsheets at the array level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbrother, Andrew; Boyd, Matthew; Lyu, Yadong

    There are relatively few field studies on the degradation of non-fluoropolymer-based backsheets, and understanding their in-field behavior is critical for further development of such products. In this paper, backsheet degradation of modules with one of these new types of backsheets (polyethylene naphthalate (PEN)-based) was documented at a four-year old utility-scale array located in Maryland (USA). Visual inspection, colorimetry, glossimetry, and Fourier-transform infrared spectroscopy (FTIR) revealed highly varied properties depending on module position within the array. Specifically, modules near the edge of the array and with higher mounting elevations underwent greater amounts of backsheet degradation, as indicated by yellowing and gloss-loss.more » The reason for these unique degradation patterns were differential backside exposure conditions, especially of ultraviolet light. This was strongly influenced by the array design, including array structural and environmental factors, such as module spacing and ground cover, respectively. Within the array, no clear link between backsheet degradation and module output or safety has been identified. However, such a relationship may be expected to become more pronounced with time, affecting system lifetime and ultimately the levelized cost of electricity (LCOE). Finally, the observed phenomena have implications for both backsheet product development and array design, especially for modules that utilize newer classes of non-fluoropolymer-based backsheets which are typically more susceptible to environmental degradation.« less

  3. A dc-coupled, high sensitivity bolometric detector system for the Infrared Telescope in Space

    NASA Technical Reports Server (NTRS)

    Devlin, M.; Lange, A. E.; Wilbanks, T.; Sato, S.

    1993-01-01

    We report the performance of an ac bridge readout system that has been developed for use on the Infrared Telescope in Space which is scheduled for launch in 1994. The ac bridge readout provides excellent dc stability enabling observing strategies well-suited to space-borne observations. The ability to modulate the optical signal slowly allows the use of new, highly sensitive, long time-constant bolometers. At 300 mK, the bolometers have an electrical noise equivalent power of 3 x 10 exp -17 W/sq rt Hz. The total noise of the differential signal, including amplifier noise, is less than 8 x 10 exp -17 W/sq rt Hz at frequencies as low as 35 mHz.

  4. Fast and Forceful: Modulation of Response Activation Induced by Shifts of Perceived Depth in Virtual 3D Space

    PubMed Central

    Plewan, Thorsten; Rinkenauer, Gerhard

    2016-01-01

    Reaction time (RT) can strongly be influenced by a number of stimulus properties. For instance, there was converging evidence that perceived size rather than physical (i.e., retinal) size constitutes a major determinant of RT. However, this view has recently been challenged since within a virtual three-dimensional (3D) environment retinal size modulation failed to influence RT. In order to further investigate this issue in the present experiments response force (RF) was recorded as a supplemental measure of response activation in simple reaction tasks. In two separate experiments participants’ task was to react as fast as possible to the occurrence of a target located close to the observer or farther away while the offset between target locations was increased from Experiment 1 to Experiment 2. At the same time perceived target size (by varying the retinal size across depth planes) and target type (sphere vs. soccer ball) were modulated. Both experiments revealed faster and more forceful reactions when targets were presented closer to the observers. Perceived size and target type barely affected RT and RF in Experiment 1 but differentially affected both variables in Experiment 2. Thus, the present findings emphasize the usefulness of RF as a supplement to conventional RT measurement. On a behavioral level the results confirm that (at least) within virtual 3D space perceived object size neither strongly influences RT nor RF. Rather the relative position within egocentric (body-centered) space presumably indicates an object’s behavioral relevance and consequently constitutes an important modulator of visual processing. PMID:28018273

  5. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Takeshita, Oscar Y.; Cabral, Hermano A.; He, Jiali; White, Gregory S.

    1997-01-01

    Turbo coding using iterative SOVA decoding and M-ary differentially coherent or non-coherent modulation can provide an effective coding modulation solution: (1) Energy efficient with relatively simple SOVA decoding and small packet lengths, depending on BEP required; (2) Low number of decoding iterations required; and (3) Robustness in fading with channel interleaving.

  6. Realization of Uq(sp(2n)) within the Differential Algebra on Quantum Symplectic Space

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao; Hu, Naihong

    2017-10-01

    We realize the Hopf algebra U_q({sp}_{2n}) as an algebra of quantum differential operators on the quantum symplectic space X(f_s;R) and prove that X(f_s;R) is a U_q({sp}_{2n})-module algebra whose irreducible summands are just its homogeneous subspaces. We give a coherence realization for all the positive root vectors under the actions of Lusztig's braid automorphisms of U_q({sp}_{2n}).

  7. NASA Tech Briefs, December 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics include: Coherent Frequency Reference System for the NASA Deep Space Network; Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers; 180-GHz I-Q Second Harmonic Resistive Mixer MMIC; Ultra-Low-Noise W-Band MMIC Detector Modules; 338-GHz Semiconductor Amplifier Module; Power Amplifier Module with 734-mW Continuous Wave Output Power; Multiple Differential-Amplifier MMICs Embedded in Waveguides; Rapid Corner Detection Using FPGAs; Special Component Designs for Differential-Amplifier MMICs; Multi-Stage System for Automatic Target Recognition; Single-Receiver GPS Phase Bias Resolution; Ultra-Wideband Angle-of-Arrival Tracking Systems; Update on Waveguide-Embedded Differential MMIC Amplifiers; Automation Framework for Flight Dynamics Products Generation; Product Operations Status Summary Metrics; Mars Terrain Generation; Application-Controlled Parallel Asynchronous Input/Output Utility; Planetary Image Geometry Library; Propulsion Design With Freeform Fabrication (PDFF); Economical Fabrication of Thick-Section Ceramic Matrix Composites; Process for Making a Noble Metal on Tin Oxide Catalyst; Stacked Corrugated Horn Rings; Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator; Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator; Strain System for the Motion Base Shuttle Mission Simulator; Ko Displacement Theory for Structural Shape Predictions; Pyrotechnic Actuator for Retracting Tubes Between MSL Subsystems; Surface-Enhanced X-Ray Fluorescence; Infrared Sensor on Unmanned Aircraft Transmits Time-Critical Wildfire Data; and Slopes To Prevent Trapping of Bubbles in Microfluidic Channels.

  8. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  9. STRS SpaceWire FPGA Module

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.

    2011-01-01

    An FPGA module leverages the previous work from Goddard Space Flight Center (GSFC) relating to NASA s Space Telecommunications Radio System (STRS) project. The STRS SpaceWire FPGA Module is written in the Verilog Register Transfer Level (RTL) language, and it encapsulates an unmodified GSFC core (which is written in VHDL). The module has the necessary inputs/outputs (I/Os) and parameters to integrate seamlessly with the SPARC I/O FPGA Interface module (also developed for the STRS operating environment, OE). Software running on the SPARC processor can access the configuration and status registers within the SpaceWire module. This allows software to control and monitor the SpaceWire functions, but it is also used to give software direct access to what is transmitted and received through the link. SpaceWire data characters can be sent/received through the software interface, as well as through the dedicated interface on the GSFC core. Similarly, SpaceWire time codes can be sent/received through the software interface or through a dedicated interface on the core. This innovation is designed for plug-and-play integration in the STRS OE. The SpaceWire module simplifies the interfaces to the GSFC core, and synchronizes all I/O to a single clock. An interrupt output (with optional masking) identifies time-sensitive events within the module. Test modes were added to allow internal loopback of the SpaceWire link and internal loopback of the client-side data interface.

  10. An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Zhao, Ziliang; Shaw, Shih-Lung

    2011-01-01

    In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on highmore » performance computing platforms.« less

  11. Badhwar-O'Neill 2011 Galactic Cosmic Ray Model Update and Future Improvements

    NASA Technical Reports Server (NTRS)

    O'Neill, Pat M.; Kim, Myung-Hee Y.

    2014-01-01

    The Badhwar-O'Neill Galactic Cosmic Ray (GCR) Model based on actual GCR measurements is used by deep space mission planners for the certification of microelectronic systems and the analysis of radiation health risks to astronauts in space missions. The BO GCR Model provides GCR flux in deep space (outside the earth's magnetosphere) for any given time from 1645 to present. The energy spectrum from 50 MeV/n - 20 GeV/n is provided for ions from hydrogen to uranium. This work describes the most recent version of the BO GCR model (BO'11). BO'11 determined the GCR flux at a given time applying an emperical time delay function to past sunspot activity. We describe the GCR measurement data used in the BO'11 update - modern data from BESS, PAMELA, CAPRICE, and ACE emphasized more than the older balloon data used for the previous BO model (BO'10). We look at the GCR flux for the last 24 solar minima and show how much greater the flux was for the cycle 24 minimum in 2010. The BO'11 Model uses the traditional, steady-state Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration. It assumes a radially symmetrical diffusion coefficient derived from magnetic disturbances caused by sunspots carried outward by a constant solar wind. A more complex differential equation is now being tested to account for particle transport in the heliosphere in the next generation BO model. This new model is time-dependent (no longer a steady state model). In the new model, the dynamics and anti-symmetrical features of the actual heliosphere are accounted for so emperical time delay functions will no longer be required. The new model will be capable of simulating the more subtle features of modulation - such as the Sun's polarity and modulation dependence on gradient and curvature drift. This improvement is expected to significantly improve the fidelity of the BO GCR model. Preliminary results of its performance will be presented.

  12. Badhwar-O'Neill 2011 Galactic Cosmic Ray Model Update and Future Improvements

    NASA Technical Reports Server (NTRS)

    O'Neill, Pat M.; Kim, Myung-Hee Y.

    2014-01-01

    The Badhwar-O'Neill Galactic Cosmic Ray (GCR) Model based on actual GR measurements is used by deep space mission planners for the certification of micro-electronic systems and the analysis of radiation health risks to astronauts in space missions. The BO GCR Model provides GCR flux in deep space (outside the earth's magnetosphere) for any given time from 1645 to present. The energy spectrum from 50 MeV/n-20 GeV/n is provided for ions from hydrogen to uranium. This work describes the most recent version of the BO GCR model (BO'11). BO'11 determines the GCR flux at a given time applying an empirical time delay function to past sunspot activity. We describe the GCR measurement data used in the BO'11 update - modern data from BESS, PAMELA, CAPRICE, and ACE emphasized for than the older balloon data used for the previous BO model (BO'10). We look at the GCR flux for the last 24 solar minima and show how much greater the flux was for the cycle 24 minimum in 2010. The BO'11 Model uses the traditional, steady-state Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration. It assumes a radially symmetrical diffusion coefficient derived from magnetic disturbances caused by sunspots carried onward by a constant solar wind. A more complex differential equation is now being tested to account for particle transport in the heliosphere in the next generation BO model. This new model is time-dependent (no longer a steady state model). In the new model, the dynamics and anti-symmetrical features of the actual heliosphere are accounted for so empirical time delay functions will no longer be required. The new model will be capable of simulating the more subtle features of modulation - such as the Sun's polarity and modulation dependence on the gradient and curvature drift. This improvement is expected to significantly improve the fidelity of the BO GCR model. Preliminary results of its performance will be presented.

  13. NEW EVIDENCE FOR CHARGE-SIGN-DEPENDENT MODULATION DURING THE SOLAR MINIMUM OF 2006 TO 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Felice, V.; Munini, R.; Vos, E. E.

    The PAMELA space experiment, in orbit since 2006, has measured cosmic rays (CRs) through the most recent period of minimum solar activity with the magnetic field polarity as A  < 0. During this entire time, galactic electrons and protons have been detected down to 70 MV and 400 MV, respectively, and their differential variation in intensity with time has been monitored with unprecedented accuracy. These observations are used to show how differently electrons and protons responded to the quiet modulation conditions that prevailed from 2006 to 2009. It is well known that particle drifts, as one of four major mechanisms for the solarmore » modulation of CRs, cause charge-sign-dependent solar modulation. Periods of minimum solar activity provide optimal conditions in which to study these drift effects. The observed behavior is compared to the solutions of a three-dimensional model for CRs in the heliosphere, including drifts. The numerical results confirm that the difference in the evolution of electron and proton spectra during the last prolonged solar minimum is attributed to a large extent to particle drifts. We therefore present new evidence of charge-sign-dependent solar modulation, with a perspective on its peculiarities for the observed period from 2006 to 2009.« less

  14. On Fock-space representations of quantized enveloping algebras related to noncommutative differential geometry

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schlieker, M.

    1995-07-01

    In this paper explicitly natural (from the geometrical point of view) Fock-space representations (contragradient Verma modules) of the quantized enveloping algebras are constructed. In order to do so, one starts from the Gauss decomposition of the quantum group and introduces the differential operators on the corresponding q-deformed flag manifold (assumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group are expressed as first-order differential operators on the q-deformed flag manifold.

  15. Self-biased broadband magnet-free linear isolator based on one-way space-time coherency

    NASA Astrophysics Data System (ADS)

    Taravati, Sajjad

    2017-12-01

    This paper introduces a self-biased broadband magnet-free and linear isolator based on one-way space-time coherency. The incident wave and the space-time-modulated medium share the same temporal frequency and are hence temporally coherent. However, thanks to the unidirectionally of the space-time modulation, the space-time-modulated medium and the incident wave are spatially coherent only in the forward direction and not in the opposite direction. As a consequence, the energy of the medium strongly couples to the propagating wave in the forward direction, while it conflicts with the propagating wave in the opposite direction, yielding strong isolation. We first derive a closed-form solution for the wave scattering from a spatiotemporally coherent medium and then show that a perfectly coherent space-time-modulated medium provides a moderate isolation level which is also subject to one-way transmission gain. To overcome this issue, we next investigate the effect of space-coherency imperfection between the medium and the wave, while they are still perfectly temporally coherent. Leveraging the spatial-coherency imperfection, the medium exhibits a quasiarbitrary and strong nonreciprocal transmission. Finally, we present the experimental demonstration of the self-biased version of the proposed broadband isolator, exhibiting more than 122 % fractional operation bandwidth.

  16. Multiple-Bit Differential Detection of OQPSK

    NASA Technical Reports Server (NTRS)

    Simon, Marvin

    2005-01-01

    A multiple-bit differential-detection method has been proposed for the reception of radio signals modulated with offset quadrature phase-shift keying (offset QPSK or OQPSK). The method is also applicable to other spectrally efficient offset quadrature modulations. This method is based partly on the same principles as those of a multiple-symbol differential-detection method for M-ary QPSK, which includes QPSK (that is, non-offset QPSK) as a special case. That method was introduced more than a decade ago by the author of the present method as a means of improving performance relative to a traditional (two-symbol observation) differential-detection scheme. Instead of symbol-by-symbol detection, both that method and the present one are based on a concept of maximum-likelihood sequence estimation (MLSE). As applied to the modulations in question, MLSE involves consideration of (1) all possible binary data sequences that could have been received during an observation time of some number, N, of symbol periods and (2) selection of the sequence that yields the best match to the noise-corrupted signal received during that time. The performance of the prior method was shown to range from that of traditional differential detection for short observation times (small N) to that of ideal coherent detection (with differential encoding) for long observation times (large N).

  17. Steady-state kinetic modeling constrains cellular resting states and dynamic behavior.

    PubMed

    Purvis, Jeremy E; Radhakrishnan, Ravi; Diamond, Scott L

    2009-03-01

    A defining characteristic of living cells is the ability to respond dynamically to external stimuli while maintaining homeostasis under resting conditions. Capturing both of these features in a single kinetic model is difficult because the model must be able to reproduce both behaviors using the same set of molecular components. Here, we show how combining small, well-defined steady-state networks provides an efficient means of constructing large-scale kinetic models that exhibit realistic resting and dynamic behaviors. By requiring each kinetic module to be homeostatic (at steady state under resting conditions), the method proceeds by (i) computing steady-state solutions to a system of ordinary differential equations for each module, (ii) applying principal component analysis to each set of solutions to capture the steady-state solution space of each module network, and (iii) combining optimal search directions from all modules to form a global steady-state space that is searched for accurate simulation of the time-dependent behavior of the whole system upon perturbation. Importantly, this stepwise approach retains the nonlinear rate expressions that govern each reaction in the system and enforces constraints on the range of allowable concentration states for the full-scale model. These constraints not only reduce the computational cost of fitting experimental time-series data but can also provide insight into limitations on system concentrations and architecture. To demonstrate application of the method, we show how small kinetic perturbations in a modular model of platelet P2Y(1) signaling can cause widespread compensatory effects on cellular resting states.

  18. Functional Peptidomics: Stimulus- and Time-of-Day-Specific Peptide Release in the Mammalian Circadian Clock.

    PubMed

    Atkins, Norman; Ren, Shifang; Hatcher, Nathan; Burgoon, Penny W; Mitchell, Jennifer W; Sweedler, Jonathan V; Gillette, Martha U

    2018-06-20

    Daily oscillations of brain and body states are under complex temporal modulation by environmental light and the hypothalamic suprachiasmatic nucleus (SCN), the master circadian clock. To better understand mediators of differential temporal modulation, we characterize neuropeptide releasate profiles by nonselective capture of secreted neuropeptides in an optic nerve horizontal SCN brain slice model. Releasates are collected following electrophysiological stimulation of the optic nerve/retinohypothalamic tract under conditions that alter the phase of the SCN activity state. Secreted neuropeptides are identified by intact mass via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We found time-of-day-specific suites of peptides released downstream of optic nerve stimulation. Peptide release was modified differentially with respect to time-of-day by stimulus parameters and by inhibitors of glutamatergic or PACAPergic neurotransmission. The results suggest that SCN physiology is modulated by differential peptide release of both known and unexpected peptides that communicate time-of-day-specific photic signals via previously unreported neuropeptide signatures.

  19. Crossed Module Bundle Gerbes; Classification, String Group and Differential Geometry

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    We discuss nonabelian bundle gerbes and their differential geometry using simplicial methods. Associated to any crossed module there is a simplicial group NC, the nerve of the 1-category defined by the crossed module and its geometric realization |NC|. Equivalence classes of principal bundles with structure group |NC| are shown to be one-to-one with stable equivalence classes of what we call crossed module gerbes bundle gerbes. We can also associate to a crossed module a 2-category C'. Then there are two equivalent ways how to view classifying spaces of NC-bundles and hence of |NC|-bundles and crossed module bundle gerbes. We can either apply the W-construction to NC or take the nerve of the 2-category C'. We discuss the string group and string structures from this point of view. Also a simplicial principal bundle can be equipped with a simplicial connection and a B-field. It is shown how in the case of a simplicial principal NC-bundle these simplicial objects give the bundle gerbe connection and the bundle gerbe B-field.

  20. Analytic solution for the space-time fractional Klein-Gordon and coupled conformable Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Shallal, Muhannad A.; Jabbar, Hawraz N.; Ali, Khalid K.

    2018-03-01

    In this paper, we constructed a travelling wave solution for space-time fractional nonlinear partial differential equations by using the modified extended Tanh method with Riccati equation. The method is used to obtain analytic solutions for the space-time fractional Klein-Gordon and coupled conformable space-time fractional Boussinesq equations. The fractional complex transforms and the properties of modified Riemann-Liouville derivative have been used to convert these equations into nonlinear ordinary differential equations.

  1. WE-AB-204-07: Spatiotemporal Distribution of the FDG PET Tracer in Solid Tumors: Contributions of Diffusion and Convection Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani, M; Sefidgar, M; Bazmara, H

    2015-06-15

    Purpose: In this study, a mathematical model is utilized to simulate FDG distribution in tumor tissue. In contrast to conventional compartmental modeling, tracer distributions across space and time are directly linked together (i.e. moving beyond ordinary differential equations (ODEs) to utilizing partial differential equations (PDEs) coupling space and time). The diffusion and convection transport mechanisms are both incorporated to model tracer distribution. We aimed to investigate the contributions of these two mechanisms on FDG distribution for various tumor geometries obtained from PET/CT images. Methods: FDG transport was simulated via a spatiotemporal distribution model (SDM). The model is based on amore » 5K compartmental model. We model the fact that tracer concentration in the second compartment (extracellular space) is modulated via convection and diffusion. Data from n=45 patients with pancreatic tumors as imaged using clinical FDG PET/CT imaging were analyzed, and geometrical information from the tumors including size, shape, and aspect ratios were classified. Tumors with varying shapes and sizes were assessed in order to investigate the effects of convection and diffusion mechanisms on FDG transport. Numerical methods simulating interstitial flow and solute transport in tissue were utilized. Results: We have shown the convection mechanism to depend on the shape and size of tumors whereas diffusion mechanism is seen to exhibit low dependency on shape and size. Results show that concentration distribution of FDG is relatively similar for the considered tumors; and that the diffusion mechanism of FDG transport significantly dominates the convection mechanism. The Peclet number which shows the ratio of convection to diffusion rates was shown to be of the order of 10−{sup 3} for all considered tumors. Conclusion: We have demonstrated that even though convection leads to varying tracer distribution profiles depending on tumor shape and size, the domination of the diffusion phenomenon prevents these factors from modulating FDG distribution.« less

  2. Space vehicle chassis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel

    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  3. Jitter model and signal processing techniques for pulse width modulation optical recording

    NASA Technical Reports Server (NTRS)

    Liu, Max M.-K.

    1991-01-01

    A jitter model and signal processing techniques are discussed for data recovery in Pulse Width Modulation (PWM) optical recording. In PWM, information is stored through modulating sizes of sequential marks alternating in magnetic polarization or in material structure. Jitter, defined as the deviation from the original mark size in the time domain, will result in error detection if it is excessively large. A new approach is taken in data recovery by first using a high speed counter clock to convert time marks to amplitude marks, and signal processing techniques are used to minimize jitter according to the jitter model. The signal processing techniques include motor speed and intersymbol interference equalization, differential and additive detection, and differential and additive modulation.

  4. Hardware Verification of Laser Noise Cancellation and Gravitational Wave Extraction using Time-Delay Interferometry

    NASA Astrophysics Data System (ADS)

    Mitryk, Shawn; Mueller, Guido

    The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.

  5. Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Yi; Ming, Min; Jiang, Yuan-Ze; Duan, Hui-Zong; Yeh, Hsien-Chi

    2018-06-01

    Laser link acquisition is a key technology for inter-satellite laser ranging and laser communication. In this paper, we present an acquisition scheme based on the differential power sensing method with dual-way scanning, which will be used in the next-generation gravity measurement mission proposed in China, called Space Advanced Gravity Measurements (SAGM). In this scheme, the laser beams emitted from two satellites are power-modulated at different frequencies to enable the signals of the two beams to be measured distinguishably, and their corresponding pointing angles are determined by using the differential power sensing method. As the master laser beam and the slave laser beam are decoupled, the dual-way scanning method, in which the laser beams of both the master and the slave satellites scan uncertainty cones simultaneously and independently, can be used, instead of the commonly used single-way scanning method, in which the laser beam of one satellite scans and that of the other one stares. Therefore, the acquisition time is reduced significantly. Numerical simulation and experiments of the acquisition process are performed using the design parameters of the SAGM mission. The results show that the average acquisition time is less than 10 s for a scanning range of 1-mrad radius with a success rate of more than 99%.

  6. Nucleosome-free DNA regions differentially affect distant communication in chromatin

    PubMed Central

    Nizovtseva, Ekaterina V.; Clauvelin, Nicolas; Todolli, Stefjord; Kulaeva, Olga I.; Wengrzynek, Scott

    2017-01-01

    Abstract Communication between distantly spaced genomic regions is one of the key features of gene regulation in eukaryotes. Chromatin per se can stimulate efficient enhancer-promoter communication (EPC); however, the role of chromatin structure and dynamics in this process remains poorly understood. Here we show that nucleosome spacing and the presence of nucleosome-free DNA regions can modulate chromatin structure/dynamics and, in turn, affect the rate of EPC in vitro and in silico. Increasing the length of internucleosomal linker DNA from 25 to 60 bp results in more efficient EPC. The presence of longer nucleosome-free DNA regions can positively or negatively affect the rate of EPC, depending upon the length and location of the DNA region within the chromatin fiber. Thus the presence of histone-free DNA regions can differentially affect the efficiency of EPC, suggesting that gene regulation over a distance could be modulated by changes in the length of internucleosomal DNA spacers. PMID:27940560

  7. ODEion--a software module for structural identification of ordinary differential equations.

    PubMed

    Gennemark, Peter; Wedelin, Dag

    2014-02-01

    In the systems biology field, algorithms for structural identification of ordinary differential equations (ODEs) have mainly focused on fixed model spaces like S-systems and/or on methods that require sufficiently good data so that derivatives can be accurately estimated. There is therefore a lack of methods and software that can handle more general models and realistic data. We present ODEion, a software module for structural identification of ODEs. Main characteristic features of the software are: • The model space is defined by arbitrary user-defined functions that can be nonlinear in both variables and parameters, such as for example chemical rate reactions. • ODEion implements computationally efficient algorithms that have been shown to efficiently handle sparse and noisy data. It can run a range of realistic problems that previously required a supercomputer. • ODEion is easy to use and provides SBML output. We describe the mathematical problem, the ODEion system itself, and provide several examples of how the system can be used. Available at: http://www.odeidentification.org.

  8. Unity hatch closed in preparation for launch on STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility prepare the Unity connecting module for closure before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  9. Unity hatch closed in preparation for launch on STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility prepare the hatch of the Unity connecting module for closure before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  10. Task-discriminative space-by-time factorization of muscle activity

    PubMed Central

    Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien

    2015-01-01

    Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment. PMID:26217213

  11. Task-discriminative space-by-time factorization of muscle activity.

    PubMed

    Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien

    2015-01-01

    Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment.

  12. Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization.

    PubMed

    Fujarewicz, Krzysztof; Lakomiec, Krzysztof

    2016-12-01

    We investigate a spatial model of growth of a tumor and its sensitivity to radiotherapy. It is assumed that the radiation dose may vary in time and space, like in intensity modulated radiotherapy (IMRT). The change of the final state of the tumor depends on local differences in the radiation dose and varies with the time and the place of these local changes. This leads to the concept of a tumor's spatiotemporal sensitivity to radiation, which is a function of time and space. We show how adjoint sensitivity analysis may be applied to calculate the spatiotemporal sensitivity of the finite difference scheme resulting from the partial differential equation describing the tumor growth. We demonstrate results of this approach to the tumor proliferation, invasion and response to radiotherapy (PIRT) model and we compare the accuracy and the computational effort of the method to the simple forward finite difference sensitivity analysis. Furthermore, we use the spatiotemporal sensitivity during the gradient-based optimization of the spatiotemporal radiation protocol and present results for different parameters of the model.

  13. Microbioreactor Arrays for Full Factorial Screening of Exogenous and Paracrine Factors in Human Embryonic Stem Cell Differentiation

    PubMed Central

    Titmarsh, Drew M.; Hudson, James E.; Hidalgo, Alejandro; Elefanty, Andrew G.; Stanley, Edouard G.; Wolvetang, Ernst J.; Cooper-White, Justin J.

    2012-01-01

    Timed exposure of pluripotent stem cell cultures to exogenous molecules is widely used to drive differentiation towards desired cell lineages. However, screening differentiation conditions in conventional static cultures can become impractical in large parameter spaces, and is intrinsically limited by poor spatiotemporal control of the microenvironment that also makes it impossible to determine whether exogenous factors act directly or through paracrine-dependent mechanisms. We detail here the development of a continuous flow microbioreactor array platform that combines full-factorial multiplexing of input factors with progressive accumulation of paracrine factors through serially-connected culture chambers, and further, the use of this system to explore the combinatorial parameter space of both exogenous and paracrine factors involved in human embryonic stem cell (hESC) differentiation to a MIXL1-GFP+ primitive streak-like population. We show that well known inducers of primitive streak (BMP, Activin and Wnt signals) do not simply act directly on hESC to induce MIXL1 expression, but that this requires accumulation of surplus, endogenous factors; and, that conditioned medium or FGF-2 supplementation is able to offset this. Our approach further reveals the presence of a paracrine, negative feedback loop to the MIXL1-GFP+ population, which can be overcome with GSK-3β inhibitors (BIO or CHIR99021), implicating secreted Wnt inhibitory signals such as DKKs and sFRPs as candidate effectors. Importantly, modulating paracrine effects identified in microbioreactor arrays by supplementing FGF-2 and CHIR in conventional static culture vessels resulted in improved differentiation outcomes. We therefore demonstrate that this microbioreactor array platform uniquely enables the identification and decoding of complex soluble factor signalling hierarchies, and that this not only challenges prevailing strategies for extrinsic control of hESC differentiation, but also is translatable to conventional culture systems. PMID:23300662

  14. Unity hatch closed in preparation for launch on STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility hold part of the equipment to close the hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  15. Unity hatch closed in preparation for launch on STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility close the access hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  16. Unity hatch closed in preparation for launch on STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility make final preparations for closing the access hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  17. Volpe Center Acoustics Facility time-space-position-information system differential global positioning system user's guide, version 1.2

    DOT National Transportation Integrated Search

    2000-07-01

    This document is a users guide for the VolpeCenter AcousticsFacilitys(VCAF)Time-Space-Position-Information : (TSPI) System. The VCAF TSPI system is a differential global positioning system (dGPS) which may be utilized : for highly accurate vehi...

  18. UV lifetime demonstrator for space-based applications

    NASA Astrophysics Data System (ADS)

    Albert, Michael; Puffenburger, Kent; Schum, Tom; Fitzpatrick, Fran; Litvinovitch, Slava; Jones, Darrell; Rudd, Joseph; Hovis, Floyd

    2016-05-01

    A long-lived UV laser is an enabling technology for a number of high-priority, space-based lidar instruments. These include next generation cloud and aerosol lidars that incorporates a UV channel, direct detection 3-D wind lidars, and ozone DIAL (differential absorption lidar) systems. In previous SBIR funded work we developed techniques for increasing the survivability of components in high power UV lasers and demonstrated improved operational lifetimes. In this Phase III ESTO funded effort we are designing and building a TRL (Technology Readiness Level) 6 demonstrator that will have increased output power and a space-qualifiable package that is mechanically robust and thermally-stable. For full space compatibility, thermal control will be through pure conductive cooling. Contamination control processes and optical coatings will be chosen that are compatible with lifetimes in excess of 1 billion shots. The 1064nm output will be frequency tripled to provide greater than 100 mJ pulses of 355 nm light at 150 Hz. The laser module build was completed in the third quarter of 2015 at which time a series of life tests were initiated. The first phase of the lifetime testing is a 532 nm only test that is expected to complete in April 2016. The 532 nm lifetest will be followed by a 4 month half power UV life test and then a four month full power UV life test. The lifetime tests will be followed by thermal/vacuum (TVAC) and vibration testing to demonstrate that the laser optics module design is at TRL 6.

  19. Spacewire on Earth orbiting scatterometers

    NASA Technical Reports Server (NTRS)

    Bachmann, Alex; Lang, Minh; Lux, James; Steffke, Richard

    2002-01-01

    The need for a high speed, reliable and easy to implement communication link has led to the development of a space flight oriented version of IEEE 1355 called SpaceWire. SpaceWire is based on high-speed (200 Mbps) serial point-to-point links using Low Voltage Differential Signaling (LVDS). SpaceWIre has provisions for routing messages between a large network of processors, using wormhole routing for low overhead and latency. {additionally, there are available space qualified hybrids, which provide the Link layer to the user's bus}. A test bed of multiple digital signal processor breadboards, demonstrating the ability to meet signal processing requirements for an orbiting scatterometer has been implemented using three Astrium MCM-DSPs, each breadboard consists of a Multi Chip Module (MCM) that combines a space qualified Digital Signal Processor and peripherals, including IEEE-1355 links. With the addition of appropriate physical layer interfaces and software on the DSP, the SpaceWire link is used to communicate between processors on the test bed, e.g. sending timing references, commands, status, and science data among the processors. Results are presented on development issues surrounding the use of SpaceWire in this environment, from physical layer implementation (cables, connectors, LVDS drivers) to diagnostic tools, driver firmware, and development methodology. The tools, methods, and hardware, software challenges and preliminary performance are investigated and discussed.

  20. Action preparation modulates sensory perception in unseen personal space: An electrophysiological investigation.

    PubMed

    Job, Xavier E; de Fockert, Jan W; van Velzen, José

    2016-08-01

    Behavioural and electrophysiological evidence has demonstrated that preparation of goal-directed actions modulates sensory perception at the goal location before the action is executed. However, previous studies have focused on sensory perception in areas of peripersonal space. The present study investigated visual and tactile sensory processing at the goal location of upcoming movements towards the body, much of which is not visible, as well as visible peripersonal space. A motor task cued participants to prepare a reaching movement towards goals either in peripersonal space in front of them or personal space on the upper chest. In order to assess modulations of sensory perception during movement preparation, event-related potentials (ERPs) were recorded in response to task-irrelevant visual and tactile probe stimuli delivered randomly at one of the goal locations of the movements. In line with previous neurophysiological findings, movement preparation modulated visual processing at the goal of a movement in peripersonal space. Movement preparation also modulated somatosensory processing at the movement goal in personal space. The findings demonstrate that tactile perception in personal space is subject to similar top-down sensory modulation by motor preparation as observed for visual stimuli presented in peripersonal space. These findings show for the first time that the principles and mechanisms underlying adaptive modulation of sensory processing in the context of action extend to tactile perception in unseen personal space. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Synchronization for Optical PPM with Inter-Symbol Guard Times

    NASA Astrophysics Data System (ADS)

    Rogalin, R.; Srinivasan, M.

    2017-05-01

    Deep space optical communications promises orders of magnitude growth in communication capacity, supporting high data rate applications such as video streaming and high-bandwidth science instruments. Pulse position modulation is the modulation format of choice for deep space applications, and by inserting inter-symbol guard times between the symbols, the signal carries the timing information needed by the demodulator. Accurately extracting this timing information is crucial to demodulating and decoding this signal. In this article, we propose a number of timing and frequency estimation schemes for this modulation format, and in particular highlight a low complexity maximum likelihood timing estimator that significantly outperforms the prior art in this domain. This method does not require an explicit synchronization sequence, freeing up channel resources for data transmission.

  2. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  3. Starboard-Zenith (+YA, -ZA) side of Node 1/Unity and FGB/Zarya

    NASA Image and Video Library

    1998-12-13

    STS088-703-019 (4-15 Dec. 1998) --- The U.S.-built Unity connecting module (bottom) and the Russian-built Zarya module are backdropped against the blackness of space in this 70mm photograph taken from the Space Shuttle Endeavour. After devoting the major portion of its mission time to various tasks to ready the two docked modules for their International Space Station (ISS) roles, the six-member STS-88 crew released the tandem and performed a fly-around survey of the hardware.

  4. Unity hatch closed in preparation for launch on STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility work in the doorway of the Unity connecting module preparing it for closure before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  5. Enterprise: an International Commercial Space Station Option

    NASA Astrophysics Data System (ADS)

    Lounge, John M.

    2002-01-01

    In December 1999, the U.S. aerospace company SPACEHAB, Inc., (SPACEHAB) and the Russian aerospace company Rocket and Space Corporation Energia (RSC-Energia), initiated a joint project to establish a commercial venture on the International Space Station (ISS). The approach of this venture is to use private capital to build and attach a commercial habitable module (the "Enterprise Module") to the Russian Segment of the ISS. The module will become an element of the Russian Segment; in return, exclusive rights to use this module for commercial business will be granted to its developers. The Enterprise Module has been designed as a multipurpose module that can provide research accommodation, stowage and crew support services. Recent NASA budget decisions have resulted in the cancellation of NASA's ISS habitation module, a significant delay in its new ISS crew return vehicle, and a mandate to stabilize the ISS program. These constraints limit the ISS crew size to three people and result in very little time available for ISS research support. Since research activity is the primary reason this Space Station is being built, the ISS program must find a way to support a robust international research program as soon as possible. The time is right for a commercial initiative incorporating the Enterprise Module, outfitted with life support systems, and commercially procured Soyuz vehicles to provide the capability to increase ISS crew size to six by the end of 2005.

  6. Psychoacoustic Testing of Modulated Blade Spacing for Main Rotors

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan; Booth, Earl R., Jr. (Technical Monitor)

    2002-01-01

    Psychoacoustic testing of simulated helicopter main rotor noise is described, and the subjective results are presented. The objective of these tests was to evaluate the potential acoustic benefits of main rotors with modulated (uneven) blade spacing. Sound simulations were prepared for six main rotor configurations. A baseline 4-blade main rotor with regular blade spacing was based on the Bell Model 427 helicopter. A 5-blade main rotor with regular spacing was designed to approximate the performance of the 427, but at reduced tipspeed. Four modulated rotors - one with "optimum" spacing and three alternate configurations - were derived from the 5 bladed regular spacing rotor. The sounds were played to 2 subjects at a time, with care being taken in the speaker selection and placement to ensure that the sounds were identical for each subject. A total of 40 subjects participated. For each rotor configuration, the listeners were asked to evaluate the sounds in terms of noisiness. The test results indicate little to no "annoyance" benefit for the modulated blade spacing. In general, the subjects preferred the sound of the 5-blade regular spaced rotor over any of the modulated ones. A conclusion is that modulated blade spacing is not a promising design feature to reduce the annoyance for helicopter main rotors.

  7. Exceptional quantum geometry and particle physics

    NASA Astrophysics Data System (ADS)

    Dubois-Violette, Michel

    2016-11-01

    Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU (3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C ⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.

  8. A thermal NO(x) prediction model - Scalar computation module for CFD codes with fluid and kinetic effects

    NASA Technical Reports Server (NTRS)

    Mcbeath, Giorgio; Ghorashi, Bahman; Chun, Kue

    1993-01-01

    A thermal NO(x) prediction model is developed to interface with a CFD, k-epsilon based code. A converged solution from the CFD code is the input to the postprocessing model for prediction of thermal NO(x). The model uses a decoupled analysis to estimate the equilibrium level of (NO(x))e which is the constant rate limit. This value is used to estimate the flame (NO(x)) and in turn predict the rate of formation at each node using a two-step Zeldovich mechanism. The rate is fixed on the NO(x) production rate plot by estimating the time to reach equilibrium by a differential analysis based on the reaction: O + N2 = NO + N. The rate is integrated in the nonequilibrium time space based on the residence time at each node in the computational domain. The sum of all nodal predictions yields the total NO(x) level.

  9. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  10. KSC-98pc1410

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  11. Optical isolation based on space-time engineered asymmetric photonic band gaps

    NASA Astrophysics Data System (ADS)

    Chamanara, Nima; Taravati, Sajjad; Deck-Léger, Zoé-Lise; Caloz, Christophe

    2017-10-01

    Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical technologies. Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices has become more pressing than ever. This paper leverages space-time engineered asymmetric photonic band gaps to generate optical isolation. It shows that a properly designed space-time modulated slab is highly reflective/transparent for opposite directions of propagation. The corresponding design is magnetless, accommodates low modulation frequencies, and can achieve very high isolation levels. An experimental proof of concept at microwave frequencies is provided.

  12. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    NASA Astrophysics Data System (ADS)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  13. The osteogenic capacity of biomimetic hierarchical micropore/nanorod-patterned Sr-HA coatings with different interrod spacings.

    PubMed

    Zhou, Jianhong; Li, Bo; Han, Yong; Zhao, Lingzhou

    2016-07-01

    Advanced titanium based bone implant with fast established, rigid and stable osseointegration is stringently needed in clinic. Here the hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca9Sr1(PO4)6(OH)2, Sr1-HA) coatings (MNRs) with different interrod spacings varying from about 300 to 33nm were developed. MNRs showed dramatically differential biological performance closely related to the interrod spacing. Compared to micropore/nanogranule-patterned Sr1-HA coating (MNG), MNRs with an interrod spacing of larger than 137nm resulted in inhibited in vitro mesenchymal stem cell functions and in vivo osseointegration, while those of smaller than 96nm gave rise to dramatically enhanced the biological effect, especially those of mean 67nm displayed the best effect. The differential biological effect of MNRs was related to their modulation on the focal adhesion mediated mechanotransduction. These results suggest that MNRs with a mean interrod spacing of 67nm may give rise to an advanced implant of improved clinical performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. SpaceWire Driver Software for Special DSPs

    NASA Technical Reports Server (NTRS)

    Clark, Douglas; Lux, James; Nishimoto, Kouji; Lang, Minh

    2003-01-01

    A computer program provides a high-level C-language interface to electronics circuitry that controls a SpaceWire interface in a system based on a space qualified version of the ADSP-21020 digital signal processor (DSP). SpaceWire is a spacecraft-oriented standard for packet-switching data-communication networks that comprise nodes connected through bidirectional digital serial links that utilize low-voltage differential signaling (LVDS). The software is tailored to the SMCS-332 application-specific integrated circuit (ASIC) (also available as the TSS901E), which provides three highspeed (150 Mbps) serial point-to-point links compliant with the proposed Institute of Electrical and Electronics Engineers (IEEE) Standard 1355.2 and equivalent European Space Agency (ESA) Standard ECSS-E-50-12. In the specific application of this software, the SpaceWire ASIC was combined with the DSP processor, memory, and control logic in a Multi-Chip Module DSP (MCM-DSP). The software is a collection of low-level driver routines that provide a simple message-passing application programming interface (API) for software running on the DSP. Routines are provided for interrupt-driven access to the two styles of interface provided by the SMCS: (1) the "word at a time" conventional host interface (HOCI); and (2) a higher performance "dual port memory" style interface (COMI).

  15. The theory of pseudo-differential operators on the noncommutative n-torus

    NASA Astrophysics Data System (ADS)

    Tao, J.

    2018-02-01

    The methods of spectral geometry are useful for investigating the metric aspects of noncommutative geometry and in these contexts require extensive use of pseudo-differential operators. In a foundational paper, Connes showed that, by direct analogy with the theory of pseudo-differential operators on finite-dimensional real vector spaces, one may derive a similar pseudo-differential calculus on noncommutative n-tori, and with the development of this calculus came many results concerning the local differential geometry of noncommutative tori for n=2,4, as shown in the groundbreaking paper in which the Gauss-Bonnet theorem on the noncommutative two-torus is proved and later papers. Certain details of the proofs in the original derivation of the calculus were omitted, such as the evaluation of oscillatory integrals, so we make it the objective of this paper to fill in all the details. After reproving in more detail the formula for the symbol of the adjoint of a pseudo-differential operator and the formula for the symbol of a product of two pseudo-differential operators, we extend these results to finitely generated projective right modules over the noncommutative n-torus. Then we define the corresponding analog of Sobolev spaces and prove equivalents of the Sobolev and Rellich lemmas.

  16. Battery Reinitialization of the Photovoltaic Module of the International Space Station

    NASA Technical Reports Server (NTRS)

    Hajela, Gyan; Cohen, Fred; Dalton, Penni

    2002-01-01

    The photovoltaic (PV) module on the International Space Station (ISS) has been operating since November 2000 and supporting electric power demands of the ISS and its crew of three. The PV module contains photovoltaic arrays that convert solar energy to electrical power and an integrated equipment assembly (IEA) that houses electrical hardware and batteries for electric power regulation and storage. Each PV module contains two independent power channels for fault tolerance. Each power channel contains three batteries in parallel to meet its performance requirements and for fault tolerance. Each battery consists of 76 Ni-Hydrogen (Ni-H2) cells in series. These 76 cells are contained in two orbital replaceable units (ORU) that are connected in series. On-orbit data are monitored and trended to ensure that all hardware is operating normally. Review of on-orbit data showed that while five batteries are operating very well, one is showing signs of mismatched ORUs. The cell pressure in the two ORUs differs by an amount that exceeds the recommended range. The reason for this abnormal behavior may be that the two ORUs have different use history. An assessment was performed and it was determined that capacity of this battery would be limited by the lower pressure ORU. Steps are being taken to reduce this pressure differential before battery capacity drops to the point of affecting its ability to meet performance requirements. As a first step, a battery reinitialization procedure was developed to reduce this pressure differential. The procedure was successfully carried out on-orbit and the pressure differential was reduced to the recommended range. This paper describes the battery performance and the consequences of mismatched ORUs that make a battery. The paper also describes the reinitialization procedure, how it was performed on orbit, and battery performance after the reinitialization. On-orbit data monitoring and trending is an ongoing activity and it will continue as ISS assembly progresses.

  17. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    PubMed Central

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.; Maughan, David W.; Palmer, Bradley M.; Miller, Mark S.

    2012-01-01

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion properties (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (ton) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, ton decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts ton varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle. PMID:22995500

  18. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.

    2012-09-19

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion propertiesmore » (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (t{sub on}) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, t{sub on} decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts t{sub on} varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle.« less

  19. Research on channel characteristics of differential multi pulse position modulation without background noise

    NASA Astrophysics Data System (ADS)

    Gao, Zhuo; Zhan, Weida; Sun, Quan; Hao, Ziqiang

    2018-04-01

    Differential multi-pulse position modulation (DMPPM) is a new type of modulation technology. There is a fast transmission rate, high bandwidth utilization, high modulation rate characteristics. The study of DMPPM modulation has important scientific value and practical significance. Channel capacity is one of the important indexes to measure the communication capability of communication system, and studying the channel capacity of DMPPM without background noise is the key to analyze the characteristics of DMPPM. The DMPPM theoretical model is established. The symbol structure of DMPPM with guard time slot is analyzed, and the channel capacity expression of DMPPM is deduced. Simulation analysis by MATLAB. The curves of unit channel capacity and capacity efficiency at different pulse and photon counting rates are analyzed. The results show that DMPPM is more advantageous than multi-pulse position modulation (MPPM), and is more suitable for future wireless optical communication system.

  20. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 1: Reference Design Document (RDD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.

  1. Time Parallel Solution of Linear Partial Differential Equations on the Intel Touchstone Delta Supercomputer

    NASA Technical Reports Server (NTRS)

    Toomarian, N.; Fijany, A.; Barhen, J.

    1993-01-01

    Evolutionary partial differential equations are usually solved by decretization in time and space, and by applying a marching in time procedure to data and algorithms potentially parallelized in the spatial domain.

  2. Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations.

    PubMed

    Wu, Shuang; Liu, Zhi-Ping; Qiu, Xing; Wu, Hulin

    2014-01-01

    The immune response to viral infection is regulated by an intricate network of many genes and their products. The reverse engineering of gene regulatory networks (GRNs) using mathematical models from time course gene expression data collected after influenza infection is key to our understanding of the mechanisms involved in controlling influenza infection within a host. A five-step pipeline: detection of temporally differentially expressed genes, clustering genes into co-expressed modules, identification of network structure, parameter estimate refinement, and functional enrichment analysis, is developed for reconstructing high-dimensional dynamic GRNs from genome-wide time course gene expression data. Applying the pipeline to the time course gene expression data from influenza-infected mouse lungs, we have identified 20 distinct temporal expression patterns in the differentially expressed genes and constructed a module-based dynamic network using a linear ODE model. Both intra-module and inter-module annotations and regulatory relationships of our inferred network show some interesting findings and are highly consistent with existing knowledge about the immune response in mice after influenza infection. The proposed method is a computationally efficient, data-driven pipeline bridging experimental data, mathematical modeling, and statistical analysis. The application to the influenza infection data elucidates the potentials of our pipeline in providing valuable insights into systematic modeling of complicated biological processes.

  3. Hidden supersymmetry and quadratic deformations of the space-time conformal superalgebra

    NASA Astrophysics Data System (ADS)

    Yates, L. A.; Jarvis, P. D.

    2018-04-01

    We analyze the structure of the family of quadratic superalgebras, introduced in Jarvis et al (2011 J. Phys. A: Math. Theor. 44 235205), for the quadratic deformations of N  =  1 space-time conformal supersymmetry. We characterize in particular the ‘zero-step’ modules for this case. In such modules, the odd generators vanish identically, and the quadratic superalgebra is realized on a single irreducible representation of the even subalgebra (which is a Lie algebra). In the case under study, the quadratic deformations of N  =  1 space-time conformal supersymmetry, it is shown that each massless positive energy unitary irreducible representation (in the standard classification of Mack), forms such a zero-step module, for an appropriate parameter choice amongst the quadratic family (with vanishing central charge). For these massless particle multiplets therefore, quadratic supersymmetry is unbroken, in that the supersymmetry generators annihilate all physical states (including the vacuum state), while at the same time, superpartners do not exist.

  4. Converting an MPLM to a PMM

    NASA Technical Reports Server (NTRS)

    Perez, Hector P.

    2010-01-01

    The Multi-Purpose Logistics Module (MPLM) are pressurized modules for transporting equipment, supplies and experimental devices to and from the International Space Station (ISS). An MPLM is carried in the cargo bay of a Shuttle and attached to the Unity or Harmony modules on the ISS for the duration of a mission, usually about 10 days. From there, supplies are offloaded, and finished experiments and waste are reloaded. The MPLM is then returned to the Space Shuttle payload bay for return to Earth. Three modules were built, Leonardo, Raffaello and Donatello. The modules were provided to NASA under contract by the Italian Space Agency. Each MPLM was built to be on-orbit a maximum of one month at a time. The MPLM Leonardo is being modified to turn it into the Pressurized Multipurpose Module (PMM), which will remain permanently attached to the ISS following the STS- 133 mission. The Space Shuttle is the only vehicle or rocket that has the capacity to carry the MPLM to the ISS. With the planned retirement of the Space Shuttle in 2011, NASA has found another use for the MPLM. With the modifications of the MPLM into a PMM the ISS will have another permanent module as part of the ISS that will be used as a storage module

  5. Space Station Crew Marks the 10th Anniversary of the Launching of the European Columbus Module

    NASA Image and Video Library

    2018-02-07

    Aboard the International Space Station, Expedition 54 Flight Engineers Joe Acaba and Mark Vande Hei of NASA took time to commemorate the 10th anniversary of the launching of the European Columbus module during an in-flight event Feb. 7 with European Space Agency officials gathered in Noordwijk, Netherlands. The Columbus science laboratory was launched on Feb. 7, 2008 aboard the space shuttle Atlantis on the STS-122 mission commanded by former NASA astronaut Stephen Frick.

  6. Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications

    NASA Astrophysics Data System (ADS)

    Salary, Mohammad Mahdi; Jafar-Zanjani, Samad; Mosallaei, Hossein

    2018-03-01

    The successful realization of metamaterials and metasurfaces requires the judicious choice of constituent elements. In this paper, we demonstrate the implementation of time-varying metamaterials in the terahertz frequency regime by utilizing graphene-wrapped microwires as building blocks and modulation of graphene conductivity through exterior electrical gating. These elements enable enhancement of light-graphene interaction by utilizing optical resonances associated with Mie scattering, yielding a large tunability and modulation depth. We develop a semianalytical framework based on transition-matrix formulation for modeling and analysis of periodic and aperiodic arrays of such time-varying building blocks. The proposed method is validated against full-wave numerical results obtained using the finite-difference time-domain method. It provides an ideal tool for mathematical synthesis and analysis of space-time gradient metamaterials, eliminating the need for computationally expensive numerical models. Moreover, it allows for a wider exploration of exotic space-time scattering phenomena in time-modulated metamaterials. We apply the method to explore the role of modulation parameters in the generation of frequency harmonics and their emerging wavefronts. Several potential applications of such platforms are demonstrated, including frequency conversion, holographic generation of frequency harmonics, and spatiotemporal manipulation of light. The presented results provide key physical insights to design time-modulated functional metadevices using various building blocks and open up new directions in the emerging paradigm of time-modulated metamaterials.

  7. Unity nameplate is attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - In the Space Station Processing Facility, a worker checks placement of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  8. Unity nameplate added to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers look over the Unity connecting module, part of the International Space Station, after attaching the nameplate. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  9. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  10. Unity nameplate examined after being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, a worker checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  11. Unity nameplate is attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - In the Space Station Processing Facility, a worker places the nameplate on the side of the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  12. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  13. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex

    PubMed Central

    Raudies, Florian; Hasselmo, Michael E.

    2015-01-01

    Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432

  14. Multi-Pulse Extraction from Los Alamos Proton Storage Ring for Radiographic Applications

    NASA Astrophysics Data System (ADS)

    Thiessen, Henry A.; Neri, Filippo; Rust, Kenneth R.; Redd, Dale B.

    1997-05-01

    For radiography of moving objects, two or more pulses with adjustable time spacing are required. The existing Proton Stotage Ring (PSR) extraction system is configured to extract the entire beam in a single turn. Two kickers and two kicker modulators fired at the same time perform the normal extraction function. By reconfiguring the two kickers and two modulators, it is possible to obtain two half-sized extraction kicks with adjustable time spacing. In this way, we have extracted two pulses with adjustable relative timing. The setup will be described and experimental results will be presented.

  15. Laboratory racks are installed in the MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Rack Insertion Unit lifts another laboratory rack to the Multi-Purpose Logistics Module Leonardo, in the background. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the International Space Station aboard the Space Shuttle. Leonardo will be launched for the first time March 1, 2001, on Shuttle mission STS-102. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  16. Unity connecting module placed in new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module, part of the International Space Station, is placed in a work station in the Space Station Processing Facility (SSPF). As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  17. 2 Tbit/s free-space data transmission on two orthogonal orbital-angular-momentum beams each carrying 25 WDM channels.

    PubMed

    Fazal, Irfan M; Ahmed, Nisar; Wang, Jian; Yang, Jeng-Yuan; Yan, Yan; Shamee, Bishara; Huang, Hao; Yue, Yang; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2012-11-15

    We demonstrate a 2 Tbit/s free-space data link using two orthogonal orbital angular momentum beams each carrying 25 different wavelength-division-multiplexing channels. We measure the performance for different modulation formats, including directly detected 40 Gbit/s nonreturn-to-zero (NRZ) differential phase-shift keying, 40 Gbit/s NRZ on-off keying, and coherently-detected 10 Gbaud NRZ quadrature phase-shift keying, and achieve low bit error rates with penalties less than 5 dB.

  18. Doubly differential star-16-QAM for fast wavelength switching coherent optical packet transceiver.

    PubMed

    Liu, Fan; Lin, Yi; Walsh, Anthony J; Yu, Yonglin; Barry, Liam P

    2018-04-02

    A coherent optical packet transceiver based on doubly differential star 16-ary quadrature amplitude modulation (DD-star-16-QAM) is presented for spectrally and energy efficient reconfigurable networks. The coding and decoding processes for this new modulation format are presented, simulations and experiments are then performed to investigate the performance of the DD-star-16-QAM in static and dynamic scenarios. The static results show that the influence of frequency offset (FO) can be cancelled out by doubly differential (DD) coding and the correction range is only limited by the electronic bandwidth of the receivers. In the dynamic scenario with a time-varying FO and linewidth, the DD-star-16-QAM can overcome the time-varying FO, and the switching time of around 70 ns is determined by the time it takes the dynamic linewidth to reach the requisite level. This format can thus achieve a shorter waiting time after switching tunable lasers than the commonly used square-16-QAM, in which the transmission performance is limited by the frequency transients after the wavelength switch.

  19. Behavioural differentiation induced by environmental variation when crossing a toxic zone in an amoeba

    NASA Astrophysics Data System (ADS)

    Kunita, Itsuki; Ueda, Kei-Ichi; Akita, Dai; Kuroda, Shigeru; Nakagaki, Toshiyuki

    2017-09-01

    Organisms choose from among various courses of action in response to a wide variety of environmental conditions and the mechanism by which various behaviours are induced is an open question. Interesting behaviour was recently reported: that a unicellular organism of slime mold Physarum polycephalum known as an amoeba had multiple responses (crossing, returning, etc) when the amoeba encounters a zone with toxic levels of quinine, even under carefully controlled conditions. We here examined this elegant example in more detail to obtain insight into behavioural differentiation. We found that the statistical distribution of passage times across a quinine zone switch from unimodal to bimodal (with peaks corresponding to fast crossing and no crossing) when a periodic light stimulation to modulate a biorhythm in amoeba is applied homogeneously across the space, even under the same level of chemical stimuli. Based on a mathematical model for cell movement in amoeba, we successfully reproduced the stimulation-induced differentiation, which was observed experimentally. These dynamics may be explained by a saddle structure around a canard solution. Our results imply that the differentiation of behavioural types in amoeba is modified step-by-step via the compounding of stimulation inputs. The complex behaviour like the differentiation in amoeba may provide a basis for understanding the mechanism of behaviour selection in higher animals from an ethological perspective.

  20. Experiment module concepts study. Volume 2: Experiments and mission operations

    NASA Technical Reports Server (NTRS)

    Macdonald, J. M.

    1970-01-01

    The baseline experiment program is concerned with future space experiments and cover the scientific disciplines of astronomy, space physics, space biology, biomedicine and biotechnology, earth applications, materials science, and advanced technology. The experiments within each discipline are grouped into functional program elements according to experiments that support a particular area of research or investigation and experiments that impose similar or related demand on space station support systems. The experiment requirements on module subsystems, experiment operating modes and time profiles, and the role of the astronaut are discussed. Launch and rendezvous with the space station, disposal, and on-orbit operations are delineated. The operational interfaces between module and other system elements are presented and include space station and logistic system interfaces. Preliminary launch and on-orbit environmental criteria and requirements are discussed, and experiment equipment weights by functional program elements are tabulated.

  1. A Deep Space Orbit Determination Software: Overview and Event Prediction Capability

    NASA Astrophysics Data System (ADS)

    Kim, Youngkwang; Park, Sang-Young; Lee, Eunji; Kim, Minsik

    2017-06-01

    This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for highfidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.

  2. Insulin receptor-mediated signaling via phospholipase C-γ regulates growth and differentiation in Drosophila.

    PubMed

    Murillo-Maldonado, Juan M; Zeineddine, Fouad Bou; Stock, Rachel; Thackeray, Justin; Riesgo-Escovar, Juan R

    2011-01-01

    Coordination between growth and patterning/differentiation is critical if appropriate final organ structure and size is to be achieved. Understanding how these two processes are regulated is therefore a fundamental and as yet incompletely answered question. Here we show through genetic analysis that the phospholipase C-γ (PLC-γ) encoded by small wing (sl) acts as such a link between growth and patterning/differentiation by modulating some MAPK outputs once activated by the insulin pathway; particularly, sl promotes growth and suppresses ectopic differentiation in the developing eye and wing, allowing cells to attain a normal size and differentiate properly. sl mutants have previously been shown to have a combination of both growth and patterning/differentiation phenotypes: small wings, ectopic wing veins, and extra R7 photoreceptor cells. We show here that PLC-γ activated by the insulin pathway participates broadly and positively during cell growth modulating EGF pathway activity, whereas in cell differentiation PLC-γ activated by the insulin receptor negatively regulates the EGF pathway. These roles require different SH2 domains of PLC-γ, and act via classic PLC-γ signaling and EGF ligand processing. By means of PLC-γ, the insulin receptor therefore modulates differentiation as well as growth. Overall, our results provide evidence that PLC-γ acts during development at a time when growth ends and differentiation begins, and is important for proper coordination of these two processes.

  3. Viscosity-adjusted estimation of pressure head and pump flow with quasi-pulsatile modulation of rotary blood pump for a total artificial heart.

    PubMed

    Yurimoto, Terumi; Hara, Shintaro; Isoyama, Takashi; Saito, Itsuro; Ono, Toshiya; Abe, Yusuke

    2016-09-01

    Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.

  4. A novel x-ray circularly polarized ranging method

    NASA Astrophysics Data System (ADS)

    Song, Shi-Bin; Xu, Lu-Ping; Zhang, Hua; Gao, Na; Shen, Yang-He

    2015-05-01

    Range measurement has found multiple applications in deep space missions. With more and further deep space exploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carried out to evaluate the performance of XCPolR. Projects supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014 CXJJ-DH 12), the Xi’an Science and Technology Plan, China (Grant No. CXY1350(4)), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 201413B, 201412B, and JB141303), and the Open Fund of Key Laboratory of Precision Navigation and Timing Technology, National Time Service Center, Chinese Academy of Sciences (Grant Nos. 2014PNTT01, 2014PNTT07, and 2014PNTT08).

  5. Candid view of Astronaut Lucid in the Spektr module

    NASA Image and Video Library

    1996-09-16

    NM22-427-012 (16-26 Sept. 1996) --- During off-duty time on the Spektr Module aboard the Earth-orbiting Mir Space Station, astronaut Shannon W. Lucid, cosmonaut guest researcher, retrieves a book from her personal library. Lucid, dropped off in March by the STS-76 crew members, was nearing the end of 188 consecutive days in space before returning to Earth with the STS-79 crew. She worked with a total of five cosmonauts at various times during that stay.

  6. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    PubMed

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Toward the classification of differential calculi on κ-Minkowski space and related field theories

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron; Meljanac, Stjepan; Pikutić, Danijel; Štrajn, Rina

    2015-07-01

    Classification of differential forms on κ-Minkowski space, particularly, the classification of all bicovariant differential calculi of classical dimension is presented. By imposing super-Jacobi identities we derive all possible differential algebras compatible with the κ-Minkowski algebra for time-like, space-like and light-like deformations. Embedding into the super-Heisenberg algebra is constructed using non-commutative (NC) coordinates and one-forms. Particularly, a class of differential calculi with an undeformed exterior derivative and one-forms is considered. Corresponding NC differential calculi are elaborated. Related class of new Drinfeld twists is proposed. It contains twist leading to κ-Poincaré Hopf algebra for light-like deformation. Corresponding super-algebra and deformed super-Hopf algebras, as well as the symmetries of differential algebras are presented and elaborated. Using the NC differential calculus, we analyze NC field theory, modified dispersion relations, and discuss further physical applications.

  8. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkauser, Mary Jo W. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1991-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  9. Successful Space Flight of High-Speed InGaAs Photodiode Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Joshi, Abhay; Prasad, Narasimha; Datta, Shubbashish

    2017-01-01

    Photonic systems are required for several space applications, including satellite communication links and lidar sensors. Although such systems are ubiquitous in terrestrial applications, deployment in space requires the constituent components to withstand extreme environmental conditions, including wide operating temperature range, mechanical shock and vibration, and radiation. These conditions are significantly more stringent than alternative standards, namely Bellcore GR-468 and MIL-STD 883, which may be satisfied by typical, commercially available, photonic components. Furthermore, it is very difficult to simultaneously reproduce several aspects of space environment, including exposure to galactic cosmic rays (GCR), in a laboratory. Therefore, it is necessary to operate key photonic components in space to achieve a technology readiness level of 7 and beyond. Accordingly, the International Space Station (ISS) provides an invaluable test bed for qualifying such components for space missions. We present a fiber-pigtailed photodiode module, having a -3 dB bandwidth of 16.8 GHz, that survived 18 months on the ISS as part of the Materials International Space Station Experiment (MISSE) 7 mission. This module was launched by NASA Langley Research Center on November 16, 2009 on the Space Shuttle Atlantis (STS-129), as part of their lidar transceiver components. While orbiting on the ISS in a passive experiment container, the photodiode module was exposed to extreme temperature cycling from -157 degrees Celsius to +121 degrees Celsius 16 times a day, proton radiation from the inner Van Allen belt at the South Atlantic Anomaly, and galactic cosmic rays. The module returned to Earth on the Space Shuttle Endeavor (STS-134) on June 1, 2011 for further characterization. The post flight test of the photodiode module, shown in Fig. 1a, demonstrates no change in the module's performance, thus proving its survivability during launch and in space environment.

  10. The design of a device for hearer and feeler differentiation, part A. [speech modulated hearing device

    NASA Technical Reports Server (NTRS)

    Creecy, R.

    1974-01-01

    A speech modulated white noise device is reported that gives the rhythmic characteristics of a speech signal for intelligible reception by deaf persons. The signal is composed of random amplitudes and frequencies as modulated by the speech envelope characteristics of rhythm and stress. Time intensity parameters of speech are conveyed through the vibro-tactile sensation stimuli.

  11. Spacelab Accomplishments Forum 4

    NASA Technical Reports Server (NTRS)

    Emond, J. (Editor); Bennet, N. (Compiler); McCauley, D. (Compiler); Murphy, K. (Compiler); Baugher, Charles R. (Technical Monitor)

    1999-01-01

    The Spacelab Module, exposed platforms, and supporting instrumentation were designed and developed by the European Space Agency to house advanced experiments inside the Space Shuttle cargo bay. The Spacelab program has hosted a cross-disciplinary research agenda over a 17-year flight history. Several variations of Spacelab were used to host payloads for almost every space research discipline that NASA pursues-life sciences, microgravity research, space sciences, and earth observation studies. After seventeen years of flight, Spacelab modules, pallets, or variations thereof flew on the Shuttle 36 times for a total of 375 flight days.

  12. Differential phase-shift keying and channel equalization in free space optical communication system

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu

    2018-01-01

    We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.

  13. Unity nameplate gets final check before being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - In the Space Station Processing Facility, workers make a final check of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  14. Unity nameplate examined after being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, Joan Higgenbotham, with KSC's Astronaut Office Computer Support, checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  15. Unity connecting module before being moved to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility (SSPF), the Unity connecting module, part of the International Space Station, sits on a workstand before its move to a new location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  16. Unity connecting module in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, the Unity connecting module, part of the International Space Station, is shown with Pressurized Mating Adapters 1 (left) and 2 (right) attached. Unity is scheduled to undergo testing of the common berthing mechanism to which other space station elements will dock. Unity is the primary payload on mission STS-88, targeted to launch Dec. 3, 1998. Other testing includes the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  17. Unity connecting module moving to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility (SSPF), workers guide the suspended Unity connecting module, part of the International Space Station, as they move it to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  18. Unity connecting module lifted from workstand before move to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility (SSPF) oversee the lifting of the Unity connecting module, part of the International Space Station, for its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  19. Unity connecting module moving to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility (SSPF) the Unity connecting module, part of the International Space Station, hangs suspended during its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  20. Unity connecting module prepared for move to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility (SSPF) attach a frame to lift the Unity connecting module, part of the International Space Station, for its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  1. Localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with time–space modulation

    NASA Astrophysics Data System (ADS)

    Yao, Yu-Qin; Han, Wei; Li, Ji; Liu, Wu-Ming

    2018-05-01

    Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates (BECs). Much work has been done on one- and two-component BECs with time- or space-modulated nonlinearities, while there is little work on spinor BECs with space–time-modulated nonlinearities. In the present paper we investigate localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with nonlinearities dependent on time and space. We solve the three coupled Gross–Pitaevskii equations by similarity transformation and obtain two families of exact matter wave solutions in terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the spinor matter wave describe the dynamics of vector breathing solitons, moving breathing solitons, quasi-breathing solitons and resonant solitons. The results show that one-order vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving breathing solitons ψ ±1 are all stable, but the moving breathing soliton ψ 0 is unstable. We also present the experimental parameters to realize these phenomena in future experiments.

  2. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    NASA Astrophysics Data System (ADS)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  3. Photovoltaic driven multiple quantum well optical modulator

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    Multiple quantum well (MQW) structures (12) are utilized to provide real-time, reliable, high-performance, optically-addressed spatial-light modulators (SLM) (10). The optically-addressed SLM comprises a vertical stack of quantum well layers (12a) within the penetration depth of an optical write signal 18, a plurality of space charge barriers (12b) having predetermined tunneling times by control of doping and thickness. The material comprising the quantum well layers has a lower bandgap than that of the space charge barrier layers. The write signal modulates a read signal (20). The modulation sensitivity of the device is high and no external voltage source is required. In a preferred embodiment, the SLM having interleaved doped semiconductor layers for driving the MQW photovoltaically is characterized by the use of a shift analogous to the Moss-Burnstein shift caused by the filling of two-dimensional states in the multiple quantum wells, thus allowing high modulation sensitivity in very narrow wells. Arrays (30) may be formed with a plurality of the modulators.

  4. A unifying model of concurrent spatial and temporal modularity in muscle activity.

    PubMed

    Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien

    2014-02-01

    Modularity in the central nervous system (CNS), i.e., the brain capability to generate a wide repertoire of movements by combining a small number of building blocks ("modules"), is thought to underlie the control of movement. Numerous studies reported evidence for such a modular organization by identifying invariant muscle activation patterns across various tasks. However, previous studies relied on decompositions differing in both the nature and dimensionality of the identified modules. Here, we derive a single framework that encompasses all influential models of muscle activation modularity. We introduce a new model (named space-by-time decomposition) that factorizes muscle activations into concurrent spatial and temporal modules. To infer these modules, we develop an algorithm, referred to as sample-based nonnegative matrix trifactorization (sNM3F). We test the space-by-time decomposition on a comprehensive electromyographic dataset recorded during execution of arm pointing movements and show that it provides a low-dimensional yet accurate, highly flexible and task-relevant representation of muscle patterns. The extracted modules have a well characterized functional meaning and implement an efficient trade-off between replication of the original muscle patterns and task discriminability. Furthermore, they are compatible with the modules extracted from existing models, such as synchronous synergies and temporal primitives, and generalize time-varying synergies. Our results indicate the effectiveness of a simultaneous but separate condensation of spatial and temporal dimensions of muscle patterns. The space-by-time decomposition accommodates a unified view of the hierarchical mapping from task parameters to coordinated muscle activations, which could be employed as a reference framework for studying compositional motor control.

  5. Protecting Astronaut Health at First Entry into Vehicles Visiting the international Space Station: Insights from Whole-Module Offgas Testing

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie

    2014-01-01

    NASA has accumulated considerable experience in offgas testing of whole modules prior to their docking with the International Space Station (ISS). Since 1998, the Space Toxicology Office has performed offgas testing of the Lab module, both MPLM modules, US Airlock, Node 1, Node 2, Node 3, ATV1, HTV1, and three commercial vehicles. The goal of these tests is twofold: first, to protect the crew from adverse health effects of accumulated volatile pollutants when they first enter the module on orbit, and secondly, to determine the additional pollutant load that the ISS air revitalization systems must handle. In order to predict the amount of accumulated pollutants, the module is sealed for at least 1/5th the worst-case time interval that could occur between the last clean air purge and final hatch closure on the ground and the crew's first entry on orbit. This time can range from a few days to a few months. Typically, triplicate samples are taken at pre-planned times throughout the test. Samples are then analyzed by gas chromatography and mass spectrometry, and the rate of accumulation of pollutants is then extrapolated over time. The analytical values are indexed against 7-day spacecraft maximum allowable concentrations (SMACs) to provide a prediction of the total toxicity value (T-value) at the time of first entry. This T-value and the toxicological effects of specific pollutants that contribute most to the overall toxicity are then used to guide first entry operations. Finally, results are compared to first entry samples collected on orbit to determine the predictive ability of the ground-based offgas test.

  6. Complex effect of hydroxyapatite nanoparticles on the differentiation and functional activity of human pre-osteoclastic cells.

    PubMed

    Costa-Rodrigues, João; Silva, Ana; Santos, Catarina; Almeida, Maria Margarida; Costa, Maria Elisabete; Fernandes, Maria Helena

    2014-12-01

    Nanosized hydroxyapatite (HA) is a promising material in clinical applications targeting the bone tissue. NanoHA is able to modulate bone cellular events, which accounts for its potential utility, but also raises safety concerns regarding the maintenance of the bone homeostasis. This work analyses the effects of HA nanoparticles (HAnp) on osteoclastic differentiation and activity, an issue that has been barely addressed. Rod-like HAnp, produced by a hydrothermal precipitation method, were tested on peripheral blood mononuclear cells (PBMC), which contains the CD14+ osteoclastic precursors, in unstimulated or osteoclastogenic-induced conditions. HAnp were added at three time-points during the osteoclastic differentiation pathway, and cell response was evaluated for osteoclastic related parameters. Results showed that HAnp modulated the differentiation and function of osteoclastic cells in a dose- and time-dependent manner. In addition, the effects were dependent on the stage of osteoclastic differentiation. In unstimulated PBMC, HAnp significantly increased osteoclastogenesis, leading to the formation of mature osteoclasts, as evident by the significant increase of TRAP activity, number of TRAP-positive multinucleated cells, osteoclastic gene expression and resorbing ability. However, in a population of mature osteoclasts (formed in osteoclastogenic-induced PBMC cultures), HAnp caused a dose-dependent decrease on the osteoclastic-related parameters. These results highlight the complex effects of HAnp in osteoclastic differentiation and activity, and suggest the possibility of HAnp to modulate/disrupt osteoclastic behavior, with eventual imbalances in the bone metabolism. This should be carefully considered in bone-related and other established and prospective biomedical applications of HAnp.

  7. KSC-98pc1411

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  8. Model for the respiratory modulation of the heart beat-to-beat time interval series

    NASA Astrophysics Data System (ADS)

    Capurro, Alberto; Diambra, Luis; Malta, C. P.

    2005-09-01

    In this study we present a model for the respiratory modulation of the heart beat-to-beat interval series. The model consists of a set of differential equations used to simulate the membrane potential of a single rabbit sinoatrial node cell, excited with a periodic input signal with added correlated noise. This signal, which simulates the input from the autonomous nervous system to the sinoatrial node, was included in the pacemaker equations as a modulation of the iNaK current pump and the potassium current iK. We focus at modeling the heart beat-to-beat time interval series from normal subjects during meditation of the Kundalini Yoga and Chi techniques. The analysis of the experimental data indicates that while the embedding of pre-meditation and control cases have a roughly circular shape, it acquires a polygonal shape during meditation, triangular for the Kundalini Yoga data and quadrangular in the case of Chi data. The model was used to assess the waveshape of the respiratory signals needed to reproduce the trajectory of the experimental data in the phase space. The embedding of the Chi data could be reproduced using a periodic signal obtained by smoothing a square wave. In the case of Kundalini Yoga data, the embedding was reproduced with a periodic signal obtained by smoothing a triangular wave having a rising branch of longer duration than the decreasing branch. Our study provides an estimation of the respiratory signal using only the heart beat-to-beat time interval series.

  9. Similarity solutions of reaction–diffusion equation with space- and time-dependent diffusion and reaction terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, C.-L.; Lee, C.-C., E-mail: chieh.no27@gmail.com

    2016-01-15

    We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.

  10. Phase modulation for reduced vibration sensitivity in laser-cooled clocks in space

    NASA Technical Reports Server (NTRS)

    Klipstein, W.; Dick, G.; Jefferts, S.; Walls, F.

    2001-01-01

    The standard interrogation technique in atomic beam clocks is square-wave frequency modulation (SWFM), which suffers a first order sensitivity to vibrations as changes in the transit time of the atoms translates to perceived frequency errors. Square-wave phase modulation (SWPM) interrogation eliminates sensitivity to this noise.

  11. NASA Tech Briefs, October 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics include: A Short-Range Distance Sensor with Exceptional Linearity; Miniature Trace Gas Detector Based on Microfabricated Optical Resonators; Commercial Non-Dispersive Infrared Spectroscopy Sensors for Sub-Ambient Carbon Dioxide Detection; Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection; Mission Data System Java Edition Version 7; Adaptive Distributed Environment for Procedure Training (ADEPT); LEGEND, a LEO-to-GEO Environment Debris Model; Electronics/Computers; Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation; Impedance Discontinuity Reduction Between High-Speed Differential Connectors and PCB Interfaces; SpaceCube Version 1.5; High-Pressure Lightweight Thrusters; Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites; Ambient Dried Aerogels; Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing; Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer; Propellant-Flow-Actuated Rocket Engine Igniter; Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads; Method to Increase Performance of Foil Bearings Through Passive Thermal Management; Unibody Composite Pressurized Structure; JWST Integrated Science Instrument Module Alignment Optimization Tool; Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique; Digitally Calibrated TR Modules Enabling Real-Time Beamforming SweepSAR Architectures; Electro-Optic Time-to-Space Converter for Optical Detector Jitter Mitigation; Partially Transparent Petaled Mask/Occulter for Visible-Range Spectrum; Educational NASA Computational and Scientific Studies (enCOMPASS); Coarse-Grain Bandwidth Estimation Scheme for Large-Scale Network; Detection of Moving Targets Using Soliton Resonance Effect; High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration; High-Voltage Clock Driver for Photon-Counting CCD Characterization; Development of the Code RITRACKS; and Enabling Microliquid Chromatography by Microbead Packing of Microchannels.

  12. Performance Evaluation and Nonlinear Mitigation through DQPSK Modulation in 32 × 40 Gbps Long-Haul DWDM Systems

    NASA Astrophysics Data System (ADS)

    Sharan, Lucky; Agrawal, Vaibhav M.; Chaubey, V. K.

    2017-08-01

    Higher spectral efficiency and greater data rate per channel are the most cost-effective strategies to meet the exponential demand of data traffic in the optical core network. Multilevel modulation formats being spectrally efficient enhance the transmission capacity by coding information in the amplitude, phase, polarization or a combination of all. This paper presents the design architecture of a 32-channel dense wavelength division multiplexed (DWDM) system, where each channel operates with multi-level phase modulation formats at 40 Gbps. The proposed design has been simulated for 50 GHz channel spacing to numerically compute the performance of both differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK) modulation formats in such high-speed DWDM system. The transmission link is analyzed with perfect dispersion compensation and also with under-compensation scheme. The link performance in terms of quality factor (Q) for varying input powers with different dispersion compensation schemes has been evaluated. The simulation study shows significant nonlinear mitigation for both DPSK- and DQPSK-based DWDM systems up to 1,000 km and beyond. It is concluded that at higher power levels DQPSK format having a narrower spectrum shows better tolerance to dispersion and nonlinearities than DPSK format.

  13. International Space Station (ISS)

    NASA Image and Video Library

    1999-01-01

    The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

  14. International Space Station Assembly

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

  15. Broadband pump-probe spectroscopy at 20-MHz modulation frequency.

    PubMed

    Preda, Fabrizio; Kumar, Vikas; Crisafi, Francesco; Figueroa Del Valle, Diana Gisell; Cerullo, Giulio; Polli, Dario

    2016-07-01

    We introduce an innovative high-sensitivity broadband pump-probe spectroscopy system, based on Fourier-transform detection, operating at 20-MHz modulation frequency. A common-mode interferometer employing birefringent wedges creates two phase-locked delayed replicas of the broadband probe pulse, interfering at a single photodetector. A single-channel lock-in amplifier demodulates the interferogram, whose Fourier transform provides the differential transmission spectrum. Our approach combines broad spectral coverage with high sensitivity, due to high-frequency modulation and detection. We demonstrate its performances by measuring two-dimensional differential transmission maps of a carbon nanotubes sample, simultaneously acquiring the signal over the entire 950-1350 nm range with 2.7·10-6  rms noise over 1.5 s integration time.

  16. Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations

    NASA Technical Reports Server (NTRS)

    Fijany, Amir

    1993-01-01

    In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.

  17. Unity nameplate examined before being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, holding the nameplate for the Unity connecting module are (left) Joan Higginbotham, with the Astronaut Office Computer Support Branch, and (right) Nancy Tolliver, with Boeing-Huntsville. Part of the International Space Station, Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  18. Use of shuttle for life sciences

    NASA Technical Reports Server (NTRS)

    Mcgaughy, R. E.

    1972-01-01

    The use of the space shuttle in carrying out biological and medical research programs, with emphasis on the sortie module, is examined. Detailed descriptions are given of the goals of space life science disciplines, how the sortie can meet these goals, and what shuttle design features are necessary for a viable biological and medical experiment program. Conclusions show that the space shuttle sortie module is capable of accommodating all biological experiments contemplated at this time except for those involving large specimens or large populations of small animals; however, these experiments can be done with a specially designed module. It was also found that at least two weeks is required to do a meaningful survey of biological effects.

  19. Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras

    NASA Astrophysics Data System (ADS)

    Ashwinkumar, Meer; Cao, Jingnan; Luo, Yuan; Tan, Meng-Chwan; Zhao, Qin

    2018-03-01

    We study the ground states and left-excited states of the Ak-1 N = (2 , 0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU (k). The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.

  20. Revealing determinants of two-phase dynamics of P53 network under gamma irradiation based on a reduced 2D relaxation oscillator model.

    PubMed

    Demirkıran, Gökhan; Kalaycı Demir, Güleser; Güzeliş, Cüneyt

    2018-02-01

    This study proposes a two-dimensional (2D) oscillator model of p53 network, which is derived via reducing the multidimensional two-phase dynamics model into a model of ataxia telangiectasia mutated (ATM) and Wip1 variables, and studies the impact of p53-regulators on cell fate decision. First, the authors identify a 6D core oscillator module, then reduce this module into a 2D oscillator model while preserving the qualitative behaviours. The introduced 2D model is shown to be an excitable relaxation oscillator. This oscillator provides a mechanism that leads diverse modes underpinning cell fate, each corresponding to a cell state. To investigate the effects of p53 inhibitors and the intrinsic time delay of Wip1 on the characteristics of oscillations, they introduce also a delay differential equation version of the 2D oscillator. They observe that the suppression of p53 inhibitors decreases the amplitudes of p53 oscillation, though the suppression increases the sustained level of p53. They identify Wip1 and P53DINP1 as possible targets for cancer therapies considering their impact on the oscillator, supported by biological findings. They model some mutations as critical changes of the phase space characteristics. Possible cancer therapeutic strategies are then proposed for preventing these mutations' effects using the phase space approach.

  1. Computer simulation of rapid crystal growth under microgravity

    NASA Astrophysics Data System (ADS)

    Hisada, Yasuhiro; Saito, Osami; Mitachi, Koshi; Nishinaga, Tatau

    We are planning to grow a Ge single crystal under microgravity by the TR-IA rocket in 1992. The furnace temperature should be controlled so as to finish the crystal growth in a quite short time interval (about 6 min). This study deals with the computer simulation of rapid crystal growth in space to find the proper conditions for the experiment. The crystal growth process is influenced by various physical phenomena such as heat conduction, natural and Marangoni convections, phase change, and radiation from the furnace. In this study, a 2D simulation with axial symmetry is carried out, taking into account the radiation field with a specific temperature distribution of the furnace wall. The simulation program consists of four modules. The first module is applied for the calculation of the parabolic partial differential equation by using the control volume method. The second one evaluates implicitly the phase change by the enthalpy method. The third one is for computing the heat flux from surface by radiation. The last one is for calculating with the Monte Carlo method the view factors which are necessary to obtain the heat flux.

  2. Development status of the heatpipe power and bimodal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I.; Houts, Michael G.

    1999-01-01

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too muchmore » at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power ({gt}1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999. {copyright} {ital 1999 American Institute of Physics.}« less

  3. Development status of the heatpipe power and bimodal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I.; Houts, Michael G.; Emrich, William J. Jr.

    1999-01-22

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too muchmore » at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.« less

  4. Development status of the heatpipe power and bimodal systems

    NASA Astrophysics Data System (ADS)

    Poston, David I.; Houts, Michael G.; Emrich, William J.

    1999-01-01

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.

  5. Chronic Ethanol Exposure Produces Time- and Brain Region-Dependent Changes in Gene Coexpression Networks

    PubMed Central

    Osterndorff-Kahanek, Elizabeth A.; Becker, Howard C.; Lopez, Marcelo F.; Farris, Sean P.; Tiwari, Gayatri R.; Nunez, Yury O.; Harris, R. Adron; Mayfield, R. Dayne

    2015-01-01

    Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC), and liver after four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000) at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600). Within each region, there was little gene overlap across time (~20%). All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global ‘rewiring‘ of coexpression systems involving glial and immune signaling as well as neuronal genes. PMID:25803291

  6. Space Environment Modelling with the Use of Artificial Intelligence Methods

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.; Wintoft, P.; Wu, J.-G.; Gleisner, H.; Dovheden, V.

    1996-12-01

    Space based technological systems are affected by the space weather in many ways. Several severe failures of satellites have been reported at times of space storms. Our society also increasingly depends on satellites for communication, navigation, exploration, and research. Predictions of the conditions in the satellite environment have therefore become very important. We will here present predictions made with the use of artificial intelligence (AI) techniques, such as artificial neural networks (ANN) and hybrids of AT methods. We are developing a space weather model based on intelligence hybrid systems (IHS). The model consists of different forecast modules, each module predicts the space weather on a specific time-scale. The time-scales range from minutes to months with the fundamental time-scale of 1-5 minutes, 1-3 hours, 1-3 days, and 27 days. Solar and solar wind data are used as input data. From solar magnetic field measurements, either made on the ground at Wilcox Solar Observatory (WSO) at Stanford, or made from space by the satellite SOHO, solar wind parameters can be predicted and modelled with ANN and MHD models. Magnetograms from WSO are available on a daily basis. However, from SOHO magnetograms will be available every 90 minutes. SOHO magnetograms as input to ANNs will therefore make it possible to even predict solar transient events. Geomagnetic storm activity can today be predicted with very high accuracy by means of ANN methods using solar wind input data. However, at present real-time solar wind data are only available during part of the day from the satellite WIND. With the launch of ACE in 1997, solar wind data will on the other hand be available during 24 hours per day. The conditions of the satellite environment are not only disturbed at times of geomagnetic storms but also at times of intense solar radiation and highly energetic particles. These events are associated with increased solar activity. Predictions of these events are therefore also handled with the modules in the Lund Space Weather Model. Interesting Links: Lund Space Weather and AI Center

  7. Aquatic modules for bioregenerative life support systems: developmental aspects based on the space flight results of the C.E.B.A.S. MIN-MODULE.

    PubMed

    Blum, V

    2003-01-01

    The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.A.S. MINI-MODULE was already successfully tested in the STS-89 and STS-90 (NEUROLAB) missions. It will be flown a third time in space with the STS-107 mission in January 2003. All results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker with limited space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for scientifically essential multi-generation-experiments. The first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self-shadowing effects which results in an uncontrolled degradation and increased oxygen consumption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fish species are not affected. Although the parent-offspring-cannibalism of the ovoviviparous fish species (Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased oxygen consumption per se and a high ammonia concentration in the water. If harvesting locks can be handled by astronauts in, e. g., 4-week intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are designed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable automated food dispenser has highest priority. Also in this case basic technical solutions are already elaborated. The paper gives a comprehensive overview of the proposed further C.E.B.A.S.-based development of longer-term duration aquatic food production modules. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  8. Aquatic modules for bioregenerative life support systems: Developmental aspects based on the space flight results of the C.E.B.A.S. mini-module

    NASA Astrophysics Data System (ADS)

    Blüm, V.

    The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.A.S. MINI-MODULE was already successfidly tested in the STS-89 and STS-90 (NEUROLAB) missions. It will be flown a third time in space with the STS-107 mission in January 2003. All results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker with limited space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for scientifically essential multi-generation-experiments. The first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self-shadowing effects which results in an uncontrolled degradation and increased oxygen consumption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fish species are not affected. Although the parent-offspring-cannibalism of the ovoviviparous fish species ( Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased oxygen consumption per se and a high ammonia concentration in the water. If harvesting locks can be handled by astronauts in, e. g., 4-week intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are designed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable automated food dispenser has highest priority. Also in this case basic technical solutions are already elaborated. The paper gives a comprehensive overview of the poposed fiuther C.E.B.A.S.-based development of longer-term duration aquatic food production modules.

  9. Aquatic modules for bioregenerative life support systems: Developmental aspects based on the space flight results of the C.E.B.A. Mini Module

    NASA Astrophysics Data System (ADS)

    Bluem, S. V.

    The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.AS. MINI-MODULE was already successfully tested in the STS-89 and STS 90 (NEUROLAB) missions.- I will be flown a third time in space with the STS 107 mission in July 2002. All- results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker whith limited the space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for the demanded scientifically essential multi-generation-experiments. This first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self- shadowing effects which results in an uncontrolled degradation and increased oxygen consum ption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fishes are not affected. Although the parent - offspring- cannibalism of the used ovoviviparous fish species (Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased ox gen consumption per se and a high ammonia concentrationy in the water. If harvesting locks can be handled by astronauts in, e. g., 4w e e k- intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are disposed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without previous devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable aut omated food dis penser has highest priority. Also in this case basic technical solutions are already elaborated. So, the paper will give a comprehensive overview about the disposed further C.E.B.A.S. -based developments of aquatic food production modules.

  10. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R.

    1985-01-01

    The existence of Chandrasekhar equations for linear time-invariant systems defined on Hilbert spaces is investigated. An important consequence is that the solution to the evolutional Riccati equation is strongly differentiable in time, and that a strong solution of the Riccati differential equation can be defined. A discussion of the linear-quadratic optimal-control problem for hereditary differential systems is also included.

  11. Second LDEF Post-Retrieval Symposium interim results of experiment A0034

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Kamenetzky, Rachel R.

    1993-01-01

    Thermal control coatings and contaminant collector mirrors were exposed on the leading and trailing edge modules of Long Duration Exposure Facility (LDEF) experiment A0034 to provide a basis of comparison for investigating the role of atomic oxygen in the stimulation of volatile outgassing products. The exposure of identical thermal coatings on both the leading and trailing edges of the LDEF and the additional modified exposure of identical coatings under glass windows and metallic covers in each of the flight modules provided multiple combinations of space environmental exposure to the coatings and the contaminant collector mirrors. Investigations were made to evaluate the effects of the natural space and the induced environments on the thermal coatings and the collector mirrors to differentiate the sources of observed material degradation. Two identical flight units were fabricated for the LDEF mission, each of which included twenty-five thermal control coatings mounted in isolated compartments, each with an adjacent contaminant collector mirror mounted on the wall. The covers of the flight units included apertures for each compartment, exposing the thermal coatings directly to the space environment. Six of these compartments were sealed with ultraviolet-grade transmitting quartz windows and four other compartments were sealed with aluminum covers. One module of this passive LDEF experiment, occupying one-sixth of a full tray, was mounted in Tray C9 (leading edge), while the other identical module was mounted in Tray C3 (trailing edge).

  12. Frequency-Agile Differential Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reed, Zachary; Hodges, Joseph

    2015-06-01

    The ultimate precision of highly sensitive cavity-enhanced spectroscopic measurements is often limited by interferences (etalons) caused by weak coupled-cavity effects. Differential measurements of ring-down decay constants have previously been demonstrated to largely cancel these effects, but the measurement acquisition rates were relatively low [1,2]. We have previously demonstrated the use of frequency agile rapid scanning cavity ring-down spectroscopy (FARS-CRDS) for acquisition of absorption spectra [3]. Here, the method of rapidly scanned, frequency-agile differential cavity ring-down spectroscopy (FADS-CRDS) is presented for reducing the effect of these interferences and other shot-to-shot statistical variations in measured decay times. To this end, an electro-optic phase modulator (EOM) with a bandwidth of 20 GHz is driven by a microwave source, generating pairs of sidebands on the probe laser. The optical resonator acts as a highly selective optical filter to all laser frequencies except for one tunable sideband. This sideband may be stepped arbitrarily from mode-to-mode of the ring-down cavity, at a rate limited only by the cavity buildup/decay time. The ability to probe any cavity mode across the EOM bandwidth enables a variety of methods for generating differential spectra. The differential mode spacing may be changed, and the effect of this method on suppressing the various coupled-cavity interactions present in the system is discussed. Alternatively, each mode may also be differentially referenced to a single point, providing immunity to temporal variations in the base losses of the cavity while allowing for conventional spectral fitting approaches. Differential measurements of absorption are acquired at 3.3 kHz and a minimum detectable absorption coefficient of 5 x10-12 cm-1 in 1 s averaging time is achieved. 1. J. Courtois, K. Bielska, and J.T Hodges J. Opt. Soc. Am. B, 30, 1486-1495, 2013 2. H.F. Huang and K.K. Lehmann App. Optics 49, 1378-1387, 2010 3. G.-W. Truong, K.O. Douglass, S.E. Maxwell, R.D. van Zee, D.F. Plusquellic, J.T. Hodges, and D.A. Long Nature Photonics, 7, 532-534, 2013

  13. A geometrical multi-scale numerical method for coupled hygro-thermo-mechanical problems in photovoltaic laminates.

    PubMed

    Lenarda, P; Paggi, M

    A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.

  14. Unity connecting module lowered to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility (SSPF), the Unity connecting module, part of the International Space Station, is lowered to its new location in the SSPF. In the background, visitors watch through a viewing window, part of the visitors tour at the Center. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  15. NASA Tech Briefs, March 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Software Tool Integrating Data Flow Diagrams and Petri Nets; Adaptive Nulling for Interferometric Detection of Planets; Reducing the Volume of NASA Earth-Science Data; Reception of Multiple Telemetry Signals via One Dish Antenna; Space-Qualified Traveling-Wave Tube; Smart Power Supply for Battery-Powered Systems; Parallel Processing of Broad-Band PPM Signals; Inexpensive Implementation of Many Strain Gauges; Constant-Differential-Pressure Two-Fluid Accumulator; Inflatable Tubular Structures Rigidized with Foams; Power Generator with Thermo-Differential Modules; Mechanical Extraction of Power From Ocean Currents and Tides; Nitrous Oxide/Paraffin Hybrid Rocket Engines; Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents; Probabilistic Multi-Factor Interaction Model for Complex Material Behavior; Foldable Instrumented Bits for Ultrasonic/Sonic Penetrators; Compact Rare Earth Emitter Hollow Cathode; High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors; Rapid Active Sampling Package; Miniature Lightweight Ion Pump; Cryogenic Transport of High-Pressure-System Recharge Gas; Water-Vapor Raman Lidar System Reaches Higher Altitude; Compact Ku-Band T/R Module for High-Resolution Radar Imaging of Cold Land Processes; Wide-Field-of-View, High-Resolution, Stereoscopic Imager; Electrical Capacitance Volume Tomography with High-Contrast Dielectrics; Wavefront Control and Image Restoration with Less Computing; Polarization Imaging Apparatus; Stereoscopic Machine-Vision System Using Projected Circles; Metal Vapor Arcing Risk Assessment Tool; Performance Bounds on Two Concatenated, Interleaved Codes; Parameterizing Coefficients of a POD-Based Dynamical System; Confidence-Based Feature Acquisition; Algorithm for Lossless Compression of Calibrated Hyperspectral Imagery; Universal Decoder for PPM of any Order; Algorithm for Stabilizing a POD-Based Dynamical System; Mission Reliability Estimation for Repairable Robot Teams; Processing AIRS Scientific Data Through Level 3; Web-Based Requesting and Scheduling Use of Facilities; AutoGen Version 5.0; Time-Tag Generation Script; PPM Receiver Implemented in Software; Tropospheric Emission Spectrometer Product File Readers; Reporting Differences Between Spacecraft Sequence Files; Coordinating "Execute" Data for ISS and Space Shuttle; Database for Safety-Oriented Tracking of Chemicals; Apparatus for Cold, Pressurized Biogeochemical Experiments; Growing B Lymphocytes in a Three-Dimensional Culture System; Tissue-like 3D Assemblies of Human Broncho-Epithelial Cells; Isolation of Resistance-Bearing Microorganisms; Oscillating Cell Culture Bioreactor; and Liquid Cooling/Warming Garment.

  16. Fly-around view between the Starboard and Zenith (+YA, -ZA) sides of the ISS

    NASA Image and Video Library

    2013-11-19

    STS088-365-004 (4-15 Dec. 1998) --- The U.S.-built Unity Connecting Module and the Russian-built FGB (Zarya, with solar panels deployed) are backdropped against the blackness of space in this 35mm photograph taken from the Space Shuttle Endeavour. After devoting the major portion of its mission time to various tasks to ready the two docked modules for their International Space Station (ISS) roles, the six-member crew released the tandem and performed a fly-around survey of the hardware.

  17. KSC-98pc1363

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, a worker checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  18. KSC-98pc1367

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, a worker checks placement of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  19. KSC-98pc1365

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, workers look over the Unity connecting module, part of the International Space Station, after attaching the nameplate. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  20. KSC-98pc1366

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, workers make a final check of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  1. KSC-98pc1412

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  2. KSC-98pc1413

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  3. MS Lucid and Blaha with MGBX aboard the Mir space station Priroda module

    NASA Image and Video Library

    1997-03-26

    STS079-S-092 (16-26 Sept. 1996) --- Astronauts Shannon W. Lucid and John E. Blaha work at a microgravity glove box on the Priroda Module aboard Russia's Mir Space Station complex. Blaha, who flew into Earth-orbit with the STS-79 crew, and Lucid are the first participants in a series of ongoing exchanges of NASA astronauts serving time as cosmonaut guest researchers onboard Mir. Lucid went on to spend a total of 188 days in space before returning to Earth with the STS-79 crew. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the Space Shuttle Atlantis and the various Mir modules, with the cooperation of the Russian Space Agency (RSA). A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.

  4. Space Operations Learning Center

    NASA Technical Reports Server (NTRS)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.

  5. Variance Analysis of Unevenly Spaced Time Series Data

    NASA Technical Reports Server (NTRS)

    Hackman, Christine; Parker, Thomas E.

    1996-01-01

    We have investigated the effect of uneven data spacing on the computation of delta (sub chi)(gamma). Evenly spaced simulated data sets were generated for noise processes ranging from white phase modulation (PM) to random walk frequency modulation (FM). Delta(sub chi)(gamma) was then calculated for each noise type. Data were subsequently removed from each simulated data set using typical two-way satellite time and frequency transfer (TWSTFT) data patterns to create two unevenly spaced sets with average intervals of 2.8 and 3.6 days. Delta(sub chi)(gamma) was then calculated for each sparse data set using two different approaches. First the missing data points were replaced by linear interpolation and delta (sub chi)(gamma) calculated from this now full data set. The second approach ignored the fact that the data were unevenly spaced and calculated delta(sub chi)(gamma) as if the data were equally spaced with average spacing of 2.8 or 3.6 days. Both approaches have advantages and disadvantages, and techniques are presented for correcting errors caused by uneven data spacing in typical TWSTFT data sets.

  6. A procedure to construct exact solutions of nonlinear fractional differential equations.

    PubMed

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  7. Investigating light curve modulation via kernel smoothing. I. Application to 53 fundamental mode and first-overtone Cepheids in the LMC

    NASA Astrophysics Data System (ADS)

    Süveges, Maria; Anderson, Richard I.

    2018-03-01

    Context. Recent studies have revealed a hitherto unknown complexity of Cepheid pulsations by discovering irregular modulated variability using photometry, radial velocities, and interferometry. Aim. We aim to perform a statistically rigorous search and characterization of such phenomena in continuous time, applying it to 53 classical Cepheids from the OGLE-III catalog. Methods: We have used local kernel regression to search for both period and amplitude modulations simultaneously in continuous time and to investigate their detectability. We determined confidence intervals using parametric and non-parametric bootstrap sampling to estimate significance, and investigated multi-periodicity using a modified pre-whitening approach that relies on time-dependent light curve parameters. Results: We find a wide variety of period and amplitude modulations and confirm that first overtone pulsators are less stable than fundamental mode Cepheids. Significant temporal variations in period are more frequently detected than those in amplitude. We find a range of modulation intensities, suggesting that both amplitude and period modulations are ubiquitous among Cepheids. Over the 12-year baseline offered by OGLE-III, we find that period changes are often nonlinear, sometimes cyclic, suggesting physical origins beyond secular evolution. Our method detects modulations (period and amplitude) more efficiently than conventional methods that are reliant on certain features in the Fourier spectrum, and pre-whitens time series more accurately than using constant light curve parameters, removing spurious secondary peaks effectively. Conclusions: Period and amplitude modulations appear to be ubiquitous among Cepheids. Current detectability is limited by observational cadence and photometric precision: detection of amplitude modulation below 3 mmag requires space-based facilities. Recent and ongoing space missions (K2, BRITE, MOST, CoRoT) as well as upcoming ones (TESS, PLATO) will significantly improve detectability of fast modulations, such as cycle-to-cycle variations, by providing high-cadence high-precision photometry. High-quality long-term ground-based photometric time series will remain crucial to study longer-term modulations and to disentangle random fluctuations from secular evolution.

  8. Unity nameplate examined before being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Examining the nameplate for the Unity connecting module, in the Space Station Processing Facility, are (left to right) Joe Schweiger and Tommy Annis, of Boeing-KSC, and Nancy Tolliver, of Boeing-Huntsville. An unidentified worker behind them looks on. Part of the International Space Station, Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  9. Cortical pitch response components show differential sensitivity to native and nonnative pitch contours

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim of this study is to evaluate how nonspeech pitch contours of varying shape influence latency and amplitude of cortical pitch-specific response (CPR) components differentially as a function of language experience. Stimuli included time-varying, high rising Mandarin Tone 2 (T2) and linear rising ramp (Linear), and steady-state (Flat). Both the latency and magnitude of CPR components were differentially modulated by (i) the overall trajectory of pitch contours (time-varying vs. steady-state), (ii) their pitch acceleration rates (changing vs. constant), and (iii) their linguistic status (lexical vs. non-lexical). T2 elicited larger amplitude than Linear in both language groups, but size of the effect was larger in Chinese than English. The magnitude of CPR components elicited by T2 were larger for Chinese than English at the right temporal electrode site. Using the CPR, we provide evidence in support of experience-dependent modulation of dynamic pitch contours at an early stage of sensory processing. PMID:25306506

  10. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R. K.

    1985-01-01

    Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.

  11. Work Experience Report

    NASA Technical Reports Server (NTRS)

    Guo, Daniel

    2017-01-01

    The NASA Platform for Autonomous Systems (NPAS) toolkit is currently being used at the NASA John C. Stennis Space Center (SSC) to develop the INSIGHT program, which will autonomously monitor and control the Nitrogen System of the High Pressure Gas Facility (HPGF) on site. The INSIGHT program is in need of generic timing capabilities in order to perform timing based actions such as pump usage timing and sequence step timing. The purpose of this project was to develop a timing module that could fulfill these requirements and be adaptable for expanded use in the future. The code was written in Gensym G2 software platform, the same as INSIGHT, and was written generically to ensure compatibility with any G2 program. Currently, the module has two timing capabilities, a stopwatch function and a countdown function. Although the module has gone through some functionality testing, actual integration of the module into NPAS and the INSIGHT program is contingent on the module passing later checks.

  12. Observation of the Self-Modulation Instability via Time-Resolved Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, M.; Engel, J.; Good, J.

    Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximatelymore » $$200\\text{ }\\text{ }\\mathrm{keV}/c$$ amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.« less

  13. Observation of the Self-Modulation Instability via Time-Resolved Measurements

    DOE PAGES

    Gross, M.; Engel, J.; Good, J.; ...

    2018-04-06

    Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximatelymore » $$200\\text{ }\\text{ }\\mathrm{keV}/c$$ amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.« less

  14. Microarray and network-based identification of functional modules and pathways of active tuberculosis.

    PubMed

    Bian, Zhong-Rui; Yin, Juan; Sun, Wen; Lin, Dian-Jie

    2017-04-01

    Diagnose of active tuberculosis (TB) is challenging and treatment response is also difficult to efficiently monitor. The aim of this study was to use an integrated analysis of microarray and network-based method to the samples from publically available datasets to obtain a diagnostic module set and pathways in active TB. Towards this goal, background protein-protein interactions (PPI) network was generated based on global PPI information and gene expression data, following by identification of differential expression network (DEN) from the background PPI network. Then, ego genes were extracted according to the degree features in DEN. Next, module collection was conducted by ego gene expansion based on EgoNet algorithm. After that, differential expression of modules between active TB and controls was evaluated using random permutation test. Finally, biological significance of differential modules was detected by pathways enrichment analysis based on Reactome database, and Fisher's exact test was implemented to extract differential pathways for active TB. Totally, 47 ego genes and 47 candidate modules were identified from the DEN. By setting the cutoff-criteria of gene size >5 and classification accuracy ≥0.9, 7 ego modules (Module 4, Module 7, Module 9, Module 19, Module 25, Module 38 and Module 43) were extracted, and all of them had the statistical significance between active TB and controls. Then, Fisher's exact test was conducted to capture differential pathways for active TB. Interestingly, genes in Module 4, Module 25, Module 38, and Module 43 were enriched in the same pathway, formation of a pool of free 40S subunits. Significant pathway for Module 7 and Module 9 was eukaryotic translation termination, and for Module 19 was nonsense mediated decay enhanced by the exon junction complex (EJC). Accordingly, differential modules and pathways might be potential biomarkers for treating active TB, and provide valuable clues for better understanding of molecular mechanism of active TB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Development of optical modulators for measurements of solar magnetic fields

    NASA Technical Reports Server (NTRS)

    West, E. A.; Smith, J. E.

    1987-01-01

    The measurement of polarized light allows solar astronomers to infer the magnetic field on the Sun. The accuracy of these measurements is dependent on the stable retardation characteristics of the polarization modulators used to minimize the atmospheric effects seen in ground-based observations. This report describes the work by the Space Science Laboratory at Marshall Space Flight Center to improve two types of polarization modulators. As a result, the timing characteristics for both electrooptic crystals (KD*Ps) and liquid crystal devices (LCDs) have been studied and will be used to enhance the capabilities of the MSFC Vector Magnetograph.

  16. Modulations of MLT turbulence by waves observed during the WADIS sounding rocket project.

    NASA Astrophysics Data System (ADS)

    Strelnikov, Boris; Latteck, Ralph; Strelnikova, Irina; Lübken, Franz-Josef; Baumgarten, Gerd; Rapp, Markus

    2017-04-01

    The WADIS project (WAve propagation and DISsipation in the middle atmosphere) aimed at studying waves, their dissipation, and effects on trace constituents. Among other things, it addressed the question of the variability of MLT turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar in Tromsø. The project comprised two sounding rocket campaigns conducted at the Andøya Space Center (69 °N, 16 °E). One sounding rocket was launched in summer 2013 and one in winter 2015. The joint in-situ and ground-based observations showed horizontal variability of the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate varied in space in a wave-like manner both horizontally and in the vertical direction. This wave-like modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that vertical mean value of radar turbulence observations reveals wave-like modulation in time domain. This time variability results in up to two orders of magnitude change of the energy dissipation values with periods of 24 h. It also shows 12 h and shorter ( hours) modulations resulting in one decade variation. In this paper we present recent measurement results of turbulence-mean flow interaction and discuss possible reasons of the observed modulations.

  17. Applications of telecommunication technology for optical instrumentation with an emphasis on space-time duality

    NASA Astrophysics Data System (ADS)

    van Howe, James William

    Telecommunication technology has often been applied to areas of science and engineering seemingly unrelated to communication systems. Innovations such as electronic amplifiers, the transistor, digital coding, optical fiber, and the laser, which all had roots in communication technology, have been implemented in devices from bar-code scanners to fiber endoscopes for medical procedures. In the same way, the central theme of the work in the following chapters has been to borrow both the concepts and technology of telecommunications systems to develop novel optical instrumentation for non-telecom pursuits. This work particularly leverages fiber-integrated electro-optic phase modulators to apply custom phase profiles to ultrafast pulses for control and manipulation. Such devices are typically used in telecom transmitters to encode phase data onto optical pulses (differential phase-shift keying), or for chirped data transmission. We, however, use electro-optic phase modulators to construct four novel optical devices: (1) a programmable ultrafast optical delay line with record scanning speed for applications in optical metrology, interferometry, or broad-band phase arrays, (2) a multiwavelength pulse generator for real-time optical sampling of electronic waveforms, (3) a simple femtosecond pulse generator for uses in biomedical imaging or ultrafast spectroscopy, and (4) a nonlinear phase compensator to increase the energy of fiber-amplified ultrashort pulse systems. In addition, we describe a fifth instrument which makes use of a higher-order mode fiber, similar in design to dispersion compensating fibers used for telecom. Through soliton self-frequency shift in the higher-order mode fiber, we can broadly-tune the center frequency of ultrashort pulses in energy regimes useful for biomedical imaging or ultrafast spectroscopy. The advantages gained through using telecom components in each of these systems are the simplicity and robustness of all-fiber configurations, high-speed operation, and electronic control of signals. Finally, we devote much attention to the paradigm of space-time duality and temporal imaging which allows the electro-optic phase modulators used in our instrumentation to be framed as temporal analogs of diffractive optical elements such as lenses and prisms. We show how the concepts of "time-lenses" and "time-prisms" give an intuitive understanding of our work as well as insight for the general development of optical instrumentation.

  18. Intelligent Front-end Electronics for Silicon photodetectors (IFES)

    NASA Astrophysics Data System (ADS)

    Sauerzopf, Clemens; Gruber, Lukas; Suzuki, Ken; Zmeskal, Johann; Widmann, Eberhard

    2016-05-01

    While high channel density can be easily achieved for big experiments using custom made microchips, providing something similar for small and medium size experiments imposes a challenge. Within this work we describe a novel and cost effective solution to operate silicon photodetectors such as silicon photo multipliers (SiPM). The IFES modules provide the bias voltage for the detectors, a leading edge discriminator featuring time over threshold and a differential amplifier, all on one printed circuit board. We demonstrate under realistic conditions that the module is usable for high resolution timing measurements exploiting both charge and time information. Furthermore we show that the modules can be easily used in larger detector arrays. All in all this confirms that the IFES modules are a viable option for a broad range of experiments if cost-effectiveness and small form factor are required.

  19. pySeismicFMM: Python based Travel Time Calculation in Regular 2D and 3D Grids in Cartesian and Geographic Coordinates using Fast Marching Method

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, M.; Polkowski, M.

    2016-12-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation final release of a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. Source code of pySeismicFMM will be published before Fall Meeting. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  20. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space

    NASA Astrophysics Data System (ADS)

    Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, Ch.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.

    2017-02-01

    We present the status of our efforts to develop very compact and robust diode laser modules specifically suited for quantum optics experiments in the field and in space. The paper describes why hybrid micro-integration and GaAs-diode laser technology is best suited to meet the needs of such applications. The electro-optical performance achieved with hybrid micro-integrated, medium linewidth, high power distributed-feedback master-oscillator-power-amplifier modules and with medium power, narrow linewidth extended cavity diode lasers emitting at 767 nm and 780 nm are briefly described and the status of space relevant stress tests and space heritage is summarized. We also describe the performance of an ECDL operating at 1070 nm. Further, a novel and versatile technology platform is introduced that allows for integration of any type of laser system or electro-optical module that can be constructed from two GaAs chips. This facilitates, for the first time, hybrid micro-integration, e.g. of extended cavity diode laser master-oscillator-poweramplifier modules, of dual-stage optical amplifiers, or of lasers with integrated, chip-based phase modulator. As an example we describe the implementation of an ECDL-MOPA designed for experiments on ultra-cold rubidium and potassium atoms on board a sounding rocket and give basic performance parameters.

  1. Space Launch System Co-Manifested Payload Options for Habitation

    NASA Technical Reports Server (NTRS)

    Smitherman, David

    2015-01-01

    The Space Launch System (SLS) has a co-manifested payload capability that will grow over time as the launch vehicle matures and planned upgrades are implemented. The final configuration is planned to be capable of inserting a payload greater than 10 metric tons (mt) into a trans-lunar injection trajectory along with the crew in the Orion capsule and its service module. The co-manifested payload is located below the Orion and its service module in a 10 m high fairing similar to the way the Saturn launch vehicle carried the lunar lander below the Apollo command and service modules. Various approaches that utilize this comanifested payload capability to build up infrastructure in deep space have been explored in support of future asteroid, lunar, and Mars mission scenarios. This paper reports on the findings of the Advanced Concepts Office study team at NASA Marshall Space Flight Center (MSFC) working with the Advanced Exploration Systems Program on the Exploration Augmentation Module Project. It includes some of the possible options for habitation in the co-manifested payload volume of the SLS. Findings include a set of module designs that can be developed in 10 mt increments to support these co-manifested payload missions along with a comparison of this approach to a large-module payload flight configuration for the SLS.

  2. A study of high density bit transition requirements versus the effects on BCH error correcting coding

    NASA Technical Reports Server (NTRS)

    Ingels, F.; Schoggen, W. O.

    1981-01-01

    Several methods for increasing bit transition densities in a data stream are summarized, discussed in detail, and compared against constraints imposed by the 2 MHz data link of the space shuttle high rate multiplexer unit. These methods include use of alternate pulse code modulation waveforms, data stream modification by insertion, alternate bit inversion, differential encoding, error encoding, and use of bit scramblers. The psuedo-random cover sequence generator was chosen for application to the 2 MHz data link of the space shuttle high rate multiplexer unit. This method is fully analyzed and a design implementation proposed.

  3. Fullerene mediates proliferation and cardiomyogenic differentiation of adipose-derived stem cells via modulation of MAPK pathway and cardiac protein expression

    PubMed Central

    Hao, Tong; Zhou, Jin; Lü, Shuanghong; Yang, Boguang; Wang, Yan; Fang, Wancai; Jiang, Xiaoxia; Lin, Qiuxia; Li, Junjie; Wang, Changyong

    2016-01-01

    Zero-dimensional fullerenes can modulate the biological behavior of a variety of cell lines. However, the effects and molecular mechanisms of proliferation and cardiomyogenic differentiation in brown adipose-derived stem cells (BADSCs) are still unclear. In this study, we report the initial biological effects of fullerene-C60 on BADSCs at different concentrations. Results suggest that fullerene-C60 has no cytotoxic effects on BADSCs even at a concentration of 100 μg/mL. Fullerene-C60 improves the MAPK expression level and stem cell survival, proliferation, and cardiomyogenesis. Further, we found that the fullerene-C60 modulates cardiomyogenic differentiation. Fullerene-C60 improves the expression of cardiomyocyte-specific proteins (cTnT and α-sarcomeric actinin). At elevated concentration, fullerene-C60 reduces the incidence of diminished spontaneous cardiac differentiation of BADSCs with time. At the genetic level, fullerene-C60 (5 μg/mL) also improves the expression of cTnT. In addition, fullerene-C60 promotes the formation of gap junction among cells. These findings have important implications for clinical application of fullerenes in the treatment of myocardial infarction. PMID:26848263

  4. Lessons from Immune 1-3: what did we learn and what do we need to do in the future?

    NASA Technical Reports Server (NTRS)

    Chapes, Stephen Keith

    2004-01-01

    Sprague-Dawley rats were subjected to three 8-to-10 day space flights on the Space Shuttle. Housed in NASA's Animal Enclosure Modules, rats were flown to test the hypotheses that therapy with pegylated interleukin-2 or insulin-like growth factor-1 would ameliorate some of the effects of space flight on the immune system. As part of these experiments, we measured body and organ weights, blood cell differentials, plasma corticosterone, macrophage colony forming units, lymphocyte mitogenic, super-antigenic and interferon-gamma responses, bone marrow cell and peritoneal macrophage cytokine secretion and bone strength and mass. This paper compares some of the immunophysiological parameters of the control animals used in the Immune1-3 flight series and presents data from an animal infection model for use during space flight.

  5. A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations

    PubMed Central

    Güner, Özkan; Cevikel, Adem C.

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972

  6. Focus control system for stretched-membrane mirror module

    DOEpatents

    Butler, B.L.; Beninga, K.J.

    1991-05-21

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length. 13 figures.

  7. Focus control system for stretched-membrane mirror module

    DOEpatents

    Butler, Barry L.; Beninga, Kelly J.

    1991-01-01

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length.

  8. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya

    2010-05-25

    Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force,more » we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.« less

  9. Software Modules for the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Veregge, John R.; Gao, Jay L.; Clare, Loren P.; Mills, David

    2012-01-01

    The Proximity-1 Space Link Interleaved Time Synchronization (PITS) protocol provides time distribution and synchronization services for space systems. A software prototype implementation of the PITS algorithm has been developed that also provides the test harness to evaluate the key functionalities of PITS with simulated data source and sink. PITS integrates time synchronization functionality into the link layer of the CCSDS Proximity-1 Space Link Protocol. The software prototype implements the network packet format, data structures, and transmit- and receive-timestamp function for a time server and a client. The software also simulates the transmit and receive-time stamp exchanges via UDP (User Datagram Protocol) socket between a time server and a time client, and produces relative time offsets and delay estimates.

  10. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.

    PubMed

    Djordjevic, Ivan B

    2011-07-18

    In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

  11. The Unity connecting module rests inside the payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module rests inside the open payload bay of the orbiter Endeavour at Launch Pad 39A. At the top of bay is the docking mechanism first used with launches to Mir, the Russian space station. Unity is the first U.S. element of the International Space Station (ISS) and is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time. The mission is expected to last nearly 12 days, landing back at the Kennedy Space Center on Dec. 14.

  12. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    PubMed Central

    Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok

    2014-01-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal. PMID:24489440

  13. Modulation of vergence by off-vertical yaw axis rotation in the monkey: normal characteristics and effects of space flight

    NASA Technical Reports Server (NTRS)

    Dai, M.; Raphan, T.; Kozlovskaya, I.; Cohen, B.

    1996-01-01

    Horizontal movements of both eyes were recorded simultaneously using scleral search coils in 2 rhesus monkeys before and after the COSMOS 2229 space-flight of 1992-1993. Another 9 monkeys were tested at comparable time intervals and served as controls. Ocular vergence, defined as the difference in horizontal position between the left and right eyes, was measured during off-vertical yaw axis rotation (OVAR) in darkness. Vergence was modulated sinusoidally as a function of head position with regard to gravity during OVAR. The amplitude of peak-to-peak modulation increased with increments in tilt of the angle of the rotational axis (OVAR tilt angle) that ranged from 15 degrees to 90 degrees. Of the 11 monkeys tested, 1 had no measurable modulation in vergence. In the other 10, the mean amplitude of the peak to peak modulation was 5.5 degrees +/- 1.3 degrees at 90 degrees tilt. Each of these monkeys had maximal vergence when its nose was pointed close to upward (gravity back; mean phase: -0.9 degree +/- 26 degrees). After space flight, the modulation in vergence was reduced by over 50% for the two flight monkeys, but the phase of vergence modulation was not altered. The reduction in vergence modulation was sustained for the 11-day postflight testing period. We conclude that changes in vergence are induced in monkeys by the sinusoidal component of gravity acting along the naso-occipital axis during yaw axis OVAR, and that the modulation of the vergence reflex is significantly less sensitive to linear acceleration after space flight.

  14. Initial evaluation of commercially available InGaAsP DFB laser diodes for use in high-speed digital fiber optic transceivers

    NASA Technical Reports Server (NTRS)

    Cook, Anthony L.; Hendricks, Herbert D.

    1990-01-01

    NASA has been pursuing the development of high-speed fiber-optic transceivers for use in a number of space data system applications. Current efforts are directed toward a high-performance all-integrated-circuit transceiver operating up to the 3-5 Gb/s range. Details of the evaluation and selection of candidate high-speed optical sources to be used in the space-qualified high-performance transceiver are presented. Data on the performance of commercially available DFB (distributed feedback) lasers are presented, and their performance relative to each other and to their structural design with regard to their use in high-performance fiber-optic transceivers is discussed. The DFB lasers were obtained from seven commercial manufacturers. The data taken on each laser included threshold current, differential quantum efficiency, CW side mode suppression radio, wavelength temperature coefficient, threshold temperature coefficient, natural linewidth, and far field pattern. It was found that laser diodes with buried heterostructures and first-order gratings had, in general, the best CW operating characteristics. The modulated characteristics of the DFB laser diodes are emphasized. Modulated linewidth, modulated side mode suppression ratio, and frequency response are discussed.

  15. Modulation of kinetic Alfvén waves in an intermediate low-beta magnetoplasma

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debjani; Misra, A. P.

    2018-05-01

    We study the amplitude modulation of nonlinear kinetic Alfvén waves (KAWs) in an intermediate low-beta magnetoplasma. Starting from a set of fluid equations coupled to the Maxwell's equations, we derive a coupled set of nonlinear partial differential equations (PDEs) which govern the evolution of KAW envelopes in the plasma. The modulational instability (MI) of such KAW envelopes is then studied by a nonlinear Schrödinger equation derived from the coupled PDEs. It is shown that the KAWs can evolve into bright envelope solitons or can undergo damping depending on whether the characteristic ratio ( α ) of the Alfvén to ion-acoustic speeds remains above or below a critical value. The parameter α is also found to shift the MI domains around the k x k z plane, where k x ( k z ) is the KAW number perpendicular (parallel) to the external magnetic field. The growth rate of MI, as well as the frequency shift and the energy transfer rate, are obtained and analyzed. The results can be useful for understanding the existence and formation of bright and dark envelope solitons, or damping of KAW envelopes in space plasmas, e.g., interplanetary space, solar winds, etc.

  16. Shift-connected SIMD array architectures for digital optical computing systems, with algorithms for numerical transforms and partial differential equations

    NASA Astrophysics Data System (ADS)

    Drabik, Timothy J.; Lee, Sing H.

    1986-11-01

    The intrinsic parallelism characteristics of easily realizable optical SIMD arrays prompt their present consideration in the implementation of highly structured algorithms for the numerical solution of multidimensional partial differential equations and the computation of fast numerical transforms. Attention is given to a system, comprising several spatial light modulators (SLMs), an optical read/write memory, and a functional block, which performs simple, space-invariant shifts on images with sufficient flexibility to implement the fastest known methods for partial differential equations as well as a wide variety of numerical transforms in two or more dimensions. Either fixed or floating-point arithmetic may be used. A performance projection of more than 1 billion floating point operations/sec using SLMs with 1000 x 1000-resolution and operating at 1-MHz frame rates is made.

  17. KSC-03pd0117

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - A crowd by the countdown clock watches as Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  18. KSC-03pd0115

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Trailing a twisting column of smoke, Space Shuttle Columbia hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  19. Phase A conceptual design study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The 12 month Phase A Conceptual Design Study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload performed within the Program Development Directorate of the Marshall Space Flight Center is presented. The AMPS payload makes use of the Spacelab pressurized module and pallet, is launched by the space shuttle, and will have initial flight durations of 7 days. Scientific instruments including particle accelerators, high power transmitters, optical instruments, and chemical release devices are mounted externally on the Spacelab pallet and are controlled by the experimenters from within the pressurized module. The capability of real-time scientist interaction on-orbit with the experiment is a major characteristic of AMPS.

  20. NASA Expands BEAM’s Mission

    NASA Image and Video Library

    2017-12-05

    The mission of the Bigelow Expandable Activity Module (BEAM) on the International Space Station has been, well, expanded. After more than a year and a half on orbit providing performance data on expandable habitat technologies, NASA and Bigelow Aerospace have reached agreement to extend the life of the privately-owned module. For a minimum of three more years, BEAM will be a more operational element of the station used in crew activities and on board storage, allowing time to gather more data on the technology’s structural integrity, thermal stability, and resistance to space debris, radiation and microbial growth. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  1. Whole Module Offgas Test Report: Space-X Dragon Module

    NASA Technical Reports Server (NTRS)

    James, John T.

    2012-01-01

    Between 7 April and 11 April 2012 a chemist from the JSC Toxicology Group acquired samples of air in 500 ml evacuated canisters from the sealed Dragon Module at the Space-X facility at KSC. Three samples were taken of facility air (two before the test and one after the test), and a total of 9 samples were taken from the sealed module in triplicate at the following times: 0 hours, 48 hours, and 96 hours. The module contained 470 kg, which was 100% of the mass to be launched. Analytical data contained in the Toxicology Group Report (attached) show that the ambient facility air was clean except for almost 9 milligrams per cubic meter of isopropanol (IPA) in the sample taken at the end of the test. Space-X must ensure that IPA is not introduced into the module before it is sealed for launch. Other minor contaminants in the ambient air included the following: perfluoro(2-methyl)pentane and hexamethylcyclotrisiloxane. The first-acquired samples of each triplicate from the module were not analyzed. Analyses of pairs of samples that were taken during the test show excellent agreement between the pairs and a linear increase in the T-values during the 4 days of the test (figure below). The rate of increase averaged 0.124 T units per day. If the time from last purge of the module on the ground to crew first entry on orbit is 10 days, then the T value at first entry should be less than 1.2 units, which is well below the criterion of 3.0 for consideration of additional protection of the crew from offgas products. The primary contributors were as follows: trimethylsilanol (0.057), fluorotrimethylsilane (0.047), acetaldehyde (0.004), hexamethylcyclopentasiloxane (0.003), and toluene (0.002).

  2. DEVELOPMENTS IN GRworkbench

    NASA Astrophysics Data System (ADS)

    Moylan, Andrew; Scott, Susan M.; Searle, Anthony C.

    2006-02-01

    The software tool GRworkbench is an ongoing project in visual, numerical General Relativity at The Australian National University. Recently, GRworkbench has been significantly extended to facilitate numerical experimentation in analytically-defined space-times. The numerical differential geometric engine has been rewritten using functional programming techniques, enabling objects which are normally defined as functions in the formalism of differential geometry and General Relativity to be directly represented as function variables in the C++ code of GRworkbench. The new functional differential geometric engine allows for more accurate and efficient visualisation of objects in space-times and makes new, efficient computational techniques available. Motivated by the desire to investigate a recent scientific claim using GRworkbench, new tools for numerical experimentation have been implemented, allowing for the simulation of complex physical situations.

  3. On the Chern-Gauss-Bonnet theorem for the noncommutative 4-sphere

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Wilson, Mitsuru

    2017-01-01

    We construct a differential calculus over the noncommutative 4-sphere in the framework of pseudo-Riemannian calculi, and show that for every metric in a conformal class of perturbations of the round metric, there exists a unique metric and torsion-free connection. Furthermore, we find a localization of the projective module corresponding to the space of vector fields, which allows us to formulate a Chern-Gauss-Bonnet type theorem for the noncommutative 4-sphere.

  4. The Unity connecting module rests inside the payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module rests inside the payload bay of the orbiter Endeavour at Launch Pad 39A. The first U.S. element of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time. The mission is expected to last nearly 12 days, landing back at the Kennedy Space Center on Dec. 14.

  5. Real-time optical laboratory solution of parabolic differential equations

    NASA Technical Reports Server (NTRS)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  6. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers confirm the Multi-Purpose Logistics Module Donatello is safely in place on a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello, is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers confirm the Multi-Purpose Logistics Module Donatello is safely in place on a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello, is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  7. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Donatello is slowly lowered toward a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Donatello is slowly lowered toward a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  8. KENNEDY SPACE CENTER, FLA. - All three Multi-Purpose Logistics Modules are on the floor of the Space Station Processing Facility. This is the first time the three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-18

    KENNEDY SPACE CENTER, FLA. - All three Multi-Purpose Logistics Modules are on the floor of the Space Station Processing Facility. This is the first time the three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  9. KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is moved away from the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is moved away from the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  10. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers help the Multi-Purpose Logistics Module Donatello settle onto a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello, is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers help the Multi-Purpose Logistics Module Donatello settle onto a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello, is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  11. KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is suspended by cables over the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is suspended by cables over the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  12. KENNEDY SPACE CENTER, FLA. - This view reveals all three Multi-Purpose Logistics Modules on the floor of the Space Station Processing Facility. This is the first time all three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-18

    KENNEDY SPACE CENTER, FLA. - This view reveals all three Multi-Purpose Logistics Modules on the floor of the Space Station Processing Facility. This is the first time all three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  13. Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space.

    PubMed

    Carstensen, Daniel W; Sabatino, Malena; Morellato, Leonor Patricia C

    2016-05-01

    Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where flowers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant-pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defining pollination systems as corresponding groups of flower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifically we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and finally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confirm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not find a significant effect of pollination systems on the spatial consistency of pairwise interactions. These results indicate that the spatial rewiring of interactions could be constrained by pollination systems, resulting in conserved network structures in spite of high variation in pairwise interactions. Our findings suggest a relevant role of pollination systems in structuring plant-pollinator networks and we argue that structural patterns at the sub-network level can help us to fully understand how and why interactions vary across space and time.

  14. Space Launch System Co-Manifested Payload Options for Habitation

    NASA Technical Reports Server (NTRS)

    Smitherman, David

    2015-01-01

    The Space Launch System (SLS) has a co-manifested payload capability that will grow over time as the rocket matures and planned upgrades are implemented. The final configuration is planned to be capable of inserting a payload greater than 10 metric tons (mt) into a trans-lunar injection trajectory along with the crew in the Orion capsule and the service module. The co-manifested payload is located below the Orion and its service module in a 10-meter high fairing similar to the way the Saturn launch vehicle carried the lunar lander below the Apollo command and service modules. A variety of approaches have been explored that utilizes this co-manifested payload capability to build up infrastructure in deep space in support of future asteroid, lunar, and Mars mission scenarios. This paper is a report on the findings from the Advanced Concepts Office study team at the NASA Marshall Space Flight Center, working with the Advanced Exploration Systems Program on the Exploration Augmentation Module Project. It includes some of the possible options for habitation in the co-manifested payload volume on SLS. Findings include module designs that can be developed in 10mt increments to support these missions, including overall conceptual layouts, mass properties, and approaches for integration into various scenarios for near-term support of deep space habitat research and technology development, support to asteroid exploration, and long range support for Mars transfer flights.

  15. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.

    PubMed

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-08-10

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer.

  16. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle

    PubMed Central

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-01-01

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China’s space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10−12, which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10−9 m/s2/Hz1/2 at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927

  17. Estimating long-term behavior of periodically driven flows without trajectory integration

    NASA Astrophysics Data System (ADS)

    Froyland, Gary; Koltai, Péter

    2017-05-01

    Periodically driven flows are fundamental models of chaotic behavior and the study of their transport properties is an active area of research. A well-known analytic construction is the augmentation of phase space with an additional time dimension; in this augmented space, the flow becomes autonomous or time-independent. We prove several results concerning the connections between the original time-periodic representation and the time-extended representation, focusing on transport properties. In the deterministic setting, these include single-period outflows and time-asymptotic escape rates from time-parameterized families of sets. We also consider stochastic differential equations with time-periodic advection term. In this stochastic setting one has a time-periodic generator (the differential operator given by the right-hand-side of the corresponding time-periodic Fokker-Planck equation). We define in a natural way an autonomous generator corresponding to the flow on time-extended phase space. We prove relationships between these two generator representations and use these to quantify decay rates of observables and to determine time-periodic families of sets with slow escape rate. Finally, we use the generator on the time-extended phase space to create efficient numerical schemes to implement the various theoretical constructions. These ideas build on the work of Froyland et al (2013 SIAM J. Numer. Anal. 51 223-47), and no expensive time integration is required. We introduce an efficient new hybrid approach, which treats the space and time dimensions separately.

  18. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  19. High flow rate nozzle system with production of uniform size droplets

    DOEpatents

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  20. High flow rate nozzle system with production of uniform size droplets

    DOEpatents

    Stockel, Ivar H.

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  1. Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNFα expression.

    PubMed

    Müller, Mario M; Lehmann, Roland; Klassert, Tilman E; Reifenstein, Stella; Conrad, Theresia; Moore, Christoph; Kuhn, Anna; Behnert, Andrea; Guthke, Reinhard; Driesch, Dominik; Slevogt, Hortense

    2017-04-12

    Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.

  2. Conceptual design of the Space Station combustion module

    NASA Technical Reports Server (NTRS)

    Morilak, Daniel P.; Rohn, Dennis W.; Rhatigan, Jennifer L.

    1994-01-01

    The purpose of this paper is to describe the conceptual design of the Combustion Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and through the use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. The SS FCF is scheduled to become operational on-orbit in 1999. The Combustion Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 1999. The objectives of this paper are to describe the history of the Combustion Module concept, the types of combustion science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.

  3. Conceptual Design of the Space Station Fluids Module

    NASA Technical Reports Server (NTRS)

    Rohn, Dennis W.; Morilak, Daniel P.; Rhatigan, Jennifer L.; Peterson, Todd T.

    1994-01-01

    The purpose of this paper is to describe the conceptual design of the Fluids Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. Portions of the SS FCF are scheduled to become operational on-orbit in 1999. The Fluids Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 2001. The objectives of this paper are to describe the history of the Fluids Module concept, the types of fluids science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.

  4. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    NASA Astrophysics Data System (ADS)

    Särkimäki, K.; Hirvijoki, E.; Terävä, J.

    2018-01-01

    We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.

  5. Modulation and synchronization technique for MF-TDMA system

    NASA Technical Reports Server (NTRS)

    Faris, Faris; Inukai, Thomas; Sayegh, Soheil

    1994-01-01

    This report addresses modulation and synchronization techniques for a multi-frequency time division multiple access (MF-TDMA) system with onboard baseband processing. The types of synchronization techniques analyzed are asynchronous (conventional) TDMA, preambleless asynchronous TDMA, bit synchronous timing with a preamble, and preambleless bit synchronous timing. Among these alternatives, preambleless bit synchronous timing simplifies onboard multicarrier demultiplexer/demodulator designs (about 2:1 reduction in mass and power), requires smaller onboard buffers (10:1 to approximately 3:1 reduction in size), and provides better frame efficiency as well as lower onboard processing delay. Analysis and computer simulation illustrate that this technique can support a bit rate of up to 10 Mbit/s (or higher) with proper selection of design parameters. High bit rate transmission may require Doppler compensation and multiple phase error measurements. The recommended modulation technique for bit synchronous timing is coherent QPSK with differential encoding for the uplink and coherent QPSK for the downlink.

  6. Mathematical analysis of thermal diffusion shock waves

    NASA Astrophysics Data System (ADS)

    Gusev, Vitalyi; Craig, Walter; Livoti, Roberto; Danworaphong, Sorasak; Diebold, Gerald J.

    2005-10-01

    Thermal diffusion, also known as the Ludwig-Soret effect, refers to the separation of mixtures in a temperature gradient. For a binary mixture the time dependence of the change in concentration of each species is governed by a nonlinear partial differential equation in space and time. Here, an exact solution of the Ludwig-Soret equation without mass diffusion for a sinusoidal temperature field is given. The solution shows that counterpropagating shock waves are produced which slow and eventually come to a halt. Expressions are found for the shock time for two limiting values of the starting density fraction. The effects of diffusion on the development of the concentration profile in time and space are found by numerical integration of the nonlinear differential equation.

  7. KSC-97pc764

    NASA Image and Video Library

    1997-05-01

    KSC payload processing employees in Orbiter Processing Facility 1 prepare the Space Shuttle Orbiter Columbia’s crew airlock and payload bay for the reinstallation of the Spacelab long transfer tunnel that leads from the airlock to the Microgravity Science Laboratory-1 (MSL-1) Spacelab module. The tunnel was taken out after the STS-83 mission to allow better access to the MSL-1 module during reservicing operations to prepare it for for the STS-94 mission. That space flight is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments

  8. Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy.

    PubMed

    Jiang, Shihong; Walker, John

    2010-01-20

    We report a differential fluorescence speckle confocal microscope that acquires an image in a fraction of a second by exploiting the very high frame rate of modern digital micromirror devices (DMDs). The DMD projects a sequence of predefined binary speckle patterns to the sample and modulates the intensity of the returning fluorescent light simultaneously. The fluorescent light reflecting from the DMD's "on" and "off" pixels is modulated by correlated speckle and anticorrelated speckle, respectively, to form two images on two CCD cameras in parallel. The sum of the two images recovers a widefield image, but their difference gives a near-confocal image in real time. Experimental results for both low and high numerical apertures are shown.

  9. SPX-8 SpaceX Dragon Spacecraft Grappled by SSRMS

    NASA Image and Video Library

    2016-04-10

    iss047e050978 (4/10/2016) --- The SpaceX Dragon cargo spaceship is grappled by the International Space Station’s Canadarm2. The spacecraft is delivering about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM. Dragon’s arrival marked the first time two commercial cargo vehicles have been docked simultaneously at the space station. Orbital ATK’s Cygnus spacecraft arrived to the station just over two weeks ago. With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six.

  10. KSC-03pd0128

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Against a backdrop of blue sky and the blue Atlantic Ocean, launch of Space Shuttle Columbia is reflected in the nearby water. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day STS-107 research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  11. Laboratory racks are installed in the MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, another laboratory rack is placed on the arm of the Rack Insertion Unit to lift it to the workstand height of the Multi-Purpose Logistics Module Leonardo (not seen). The MPLM will transport laboratory racks filled with equipment, experiments and supplies to and from the International Space Station aboard the Space Shuttle. Leonardo will be launched for the first time March 1, 2001, on Shuttle mission STS-102. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  12. SPX-8 Dragon Spacecraft Approach

    NASA Image and Video Library

    2016-04-10

    ISS047e052707 (04/10/2016) --- The SpaceX Dragon cargo spaceship begins the final approach to the International Space Station. The spacecraft is delivering about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM. Dragon’s arrival marked the first time two commercial cargo vehicles have been docked simultaneously at the space station. Orbital ATK’s Cygnus spacecraft arrived to the station just over two weeks ago. With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nottale, Laurent; Célérier, Marie-Noëlle

    One of the main results of scale relativity as regards the foundation of quantum mechanics is its explanation of the origin of the complex nature of the wave function. The scale relativity theory introduces an explicit dependence of physical quantities on scale variables, founding itself on the theorem according to which a continuous and non-differentiable space-time is fractal (i.e., scale-divergent). In the present paper, the nature of the scale variables and their relations to resolutions and differential elements are specified in the non-relativistic case (fractal space). We show that, owing to the scale-dependence which it induces, non-differentiability involves a fundamentalmore » two-valuedness of the mean derivatives. Since, in the scale relativity framework, the wave function is a manifestation of the velocity field of fractal space-time geodesics, the two-valuedness of velocities leads to write them in terms of complex numbers, and yields therefore the complex nature of the wave function, from which the usual expression of the Schrödinger equation can be derived.« less

  14. Quantization of wave equations and hermitian structures in partial differential varieties

    PubMed Central

    Paneitz, S. M.; Segal, I. E.

    1980-01-01

    Sufficiently close to 0, the solution variety of a nonlinear relativistic wave equation—e.g., of the form □ϕ + m2ϕ + gϕp = 0—admits a canonical Lorentz-invariant hermitian structure, uniquely determined by the consideration that the action of the differential scattering transformation in each tangent space be unitary. Similar results apply to linear time-dependent equations or to equations in a curved asymptotically flat space-time. A close relation of the Riemannian structure to the determination of vacuum expectation values is developed and illustrated by an explicit determination of a perturbative 2-point function for the case of interaction arising from curvature. The theory underlying these developments is in part a generalization of that of M. G. Krein and collaborators concerning stability of differential equations in Hilbert space and in part a precise relation between the unitarization of given symplectic linear actions and their full probabilistic quantization. The unique causal structure in the infinite symplectic group is instrumental in these developments. PMID:16592923

  15. KSC-03pd0120

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Silhouetted against the blue Atlantic Ocean, Space Shuttle Columbia breaks free of the launch pad as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  16. KSC-03pd0121

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- A twisting column of smoke points the way to Space Shuttle Columbia at its tip as the Shuttle hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  17. KSC-03pd0129

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Pulling free of Earth's gravity, and leaving a trail of smoke behind, Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  18. KSC-03pd0134

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia seems to leap from amid the trees as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews

  19. KSC-03pd0125

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - All eyes in the VIP stand at KSC focus on Space Shuttle Columbia as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  20. KSC-03pd0130

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia seems to leap from amid the trees as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  1. KSC-03pd0118

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Competing with the brilliant blue sky, flames behind Space Shuttle Columbia trail a column of smoke as the Shuttle hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  2. KSC-03pp0139

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Columbia leaps off Launch Pad 39A and the clouds of smoke and steam as it races toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  3. KSC-03pd0123

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- A twisting column of smoke points the way to Space Shuttle Columbia at its tip as the Shuttle hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  4. KSC-03pd0113

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Through a cloud-washed blue sky above Launch Pad 39A, Space Shuttle Columbia hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  5. KSC-03pp0143

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. --Framed by branches across from Launch Pad 39A, Space Shuttle Columbia leaps toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  6. KSC-03pp0141

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Viewed from among branches across from Launch Pad 39A, Space Shuttle Columbia leaps toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  7. Aerodynamic parameter estimation via Fourier modulating function techniques

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1995-01-01

    Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.

  8. Differential calculus and gauge transformations on a deformed space

    NASA Astrophysics Data System (ADS)

    Wess, Julius

    2007-08-01

    We consider a formalism by which gauge theories can be constructed on noncommutative space time structures. The coordinates are supposed to form an algebra, restricted by certain requirements that allow us to realise the algebra in terms of star products. In this formulation it is useful to define derivatives and to extend the algebra of coordinates by these derivatives. The elements of this extended algebra are deformed differential operators. We then show that there is a morphism between these deformed differential operators and the usual higher order differential operators acting on functions of commuting coordinates. In this way we obtain deformed gauge transformations and a deformed version of the algebra of diffeomorphisms. The deformation of these algebras can be clearly seen in the category of Hopf algebras. The comultiplication will be twisted. These twisted algebras can be realised on noncommutative spaces and allow the construction of deformed gauge theories and deformed gravity theory.

  9. Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module

    NASA Astrophysics Data System (ADS)

    Martinez, Gregory D.; McKay, James; Farmer, Ben; Scott, Pat; Roebber, Elinore; Putze, Antje; Conrad, Jan

    2017-11-01

    We introduce ScannerBit, the statistics and sampling module of the public, open-source global fitting framework GAMBIT. ScannerBit provides a standardised interface to different sampling algorithms, enabling the use and comparison of multiple computational methods for inferring profile likelihoods, Bayesian posteriors, and other statistical quantities. The current version offers random, grid, raster, nested sampling, differential evolution, Markov Chain Monte Carlo (MCMC) and ensemble Monte Carlo samplers. We also announce the release of a new standalone differential evolution sampler, Diver, and describe its design, usage and interface to ScannerBit. We subject Diver and three other samplers (the nested sampler MultiNest, the MCMC GreAT, and the native ScannerBit implementation of the ensemble Monte Carlo algorithm T-Walk) to a battery of statistical tests. For this we use a realistic physical likelihood function, based on the scalar singlet model of dark matter. We examine the performance of each sampler as a function of its adjustable settings, and the dimensionality of the sampling problem. We evaluate performance on four metrics: optimality of the best fit found, completeness in exploring the best-fit region, number of likelihood evaluations, and total runtime. For Bayesian posterior estimation at high resolution, T-Walk provides the most accurate and timely mapping of the full parameter space. For profile likelihood analysis in less than about ten dimensions, we find that Diver and MultiNest score similarly in terms of best fit and speed, outperforming GreAT and T-Walk; in ten or more dimensions, Diver substantially outperforms the other three samplers on all metrics.

  10. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  11. Differential Equations Models to Study Quorum Sensing.

    PubMed

    Pérez-Velázquez, Judith; Hense, Burkhard A

    2018-01-01

    Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.

  12. Astronauts Working in Spacelab

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie captures astronaut Jan Davis and her fellow crew members working in the Spacelab, a versatile laboratory carried in the Space Shuttle's cargo bay for special research flights. Its various elements can be combined to accommodate the many types of scientific research that can best be performed in space. Spacelab consisted of an enclosed, pressurized laboratory module and open U-shaped pallets located at the rear of the laboratory module. The laboratory module contained utilities, computers, work benches, and instrument racks to conduct scientific experiments in astronomy, physics, chemistry, biology, medicine, and engineering. Equipment, such as telescopes, antennas, and sensors, is mounted on pallets for direct exposure to space. A 1-meter (3.3-ft.) diameter aluminum tunnel, resembling a z-shaped tube, connected the crew compartment (mid deck) to the module. The reusable Spacelab allowed scientists to bring experiment samples back to Earth for post-flight analysis. Spacelab was a cooperative venture of the European Space Agency (ESA) and NASA. ESA was responsible for funding, developing, and building Spacelab, while NASA was responsible for the launch and operational use of Spacelab. Spacelab missions were cooperative efforts between scientists and engineers from around the world. Teams from NASA centers, universities, private industry, government agencies and international space organizations designed the experiments. The Marshall Space Flight Center was NASA's lead center for monitoring the development of Spacelab and managing the program.

  13. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    NASA Technical Reports Server (NTRS)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  14. Dynamically orthogonal field equations for stochastic flows and particle dynamics

    DTIC Science & Technology

    2011-02-01

    where uncertainty ‘lives’ as well as a system of Stochastic Di erential Equations that de nes how the uncertainty evolves in the time varying stochastic ... stochastic dynamical component that are both time and space dependent, we derive a system of field equations consisting of a Partial Differential Equation...a system of Stochastic Differential Equations that defines how the stochasticity evolves in the time varying stochastic subspace. These new

  15. Diffusion of radon through concrete block walls: A significant source of indoor radon

    USGS Publications Warehouse

    Lively, R.S.; Goldberg, L.F.

    1999-01-01

    Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.

  16. A novel design for a hybrid space manipulator

    NASA Technical Reports Server (NTRS)

    Shahinpoor, MO

    1991-01-01

    Described are the structural design, kinematics, and characteristics of a robot manipulator for space applications and use as an articulate and powerful space shuttle manipulator. Hybrid manipulators are parallel-serial connection robots that give rise to a multitude of highly precise robot manipulators. These manipulators are modular and can be extended by additional modules over large distances. Every module has a hemispherical work space and collective modules give rise to highly dexterous symmetrical work space. Some basic designs and kinematic structures of these robot manipulators are discussed, the associated direct and inverse kinematics formulations are presented, and solutions to the inverse kinematic problem are obtained explicitly and elaborated upon. These robot manipulators are shown to have a strength-to-weight ratio that is many times larger than the value that is currently available with industrial or research manipulators. This is due to the fact that these hybrid manipulators are stress-compensated and have an ultralight weight, yet, they are extremely stiff due to the fact that force distribution in their structure is mostly axial. Actuation is prismatic and can be provided by ball screws for maximum precision.

  17. Space-by-Time Modular Decomposition Effectively Describes Whole-Body Muscle Activity During Upright Reaching in Various Directions

    PubMed Central

    Hilt, Pauline M.; Delis, Ioannis; Pozzo, Thierry; Berret, Bastien

    2018-01-01

    The modular control hypothesis suggests that motor commands are built from precoded modules whose specific combined recruitment can allow the performance of virtually any motor task. Despite considerable experimental support, this hypothesis remains tentative as classical findings of reduced dimensionality in muscle activity may also result from other constraints (biomechanical couplings, data averaging or low dimensionality of motor tasks). Here we assessed the effectiveness of modularity in describing muscle activity in a comprehensive experiment comprising 72 distinct point-to-point whole-body movements during which the activity of 30 muscles was recorded. To identify invariant modules of a temporal and spatial nature, we used a space-by-time decomposition of muscle activity that has been shown to encompass classical modularity models. To examine the decompositions, we focused not only on the amount of variance they explained but also on whether the task performed on each trial could be decoded from the single-trial activations of modules. For the sake of comparison, we confronted these scores to the scores obtained from alternative non-modular descriptions of the muscle data. We found that the space-by-time decomposition was effective in terms of data approximation and task discrimination at comparable reduction of dimensionality. These findings show that few spatial and temporal modules give a compact yet approximate representation of muscle patterns carrying nearly all task-relevant information for a variety of whole-body reaching movements. PMID:29666576

  18. Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals.

    PubMed

    Zeng, Tao; Zhang, Wanwei; Yu, Xiangtian; Liu, Xiaoping; Li, Meiyi; Chen, Luonan

    2016-07-01

    Big-data-based edge biomarker is a new concept to characterize disease features based on biomedical big data in a dynamical and network manner, which also provides alternative strategies to indicate disease status in single samples. This article gives a comprehensive review on big-data-based edge biomarkers for complex diseases in an individual patient, which are defined as biomarkers based on network information and high-dimensional data. Specifically, we firstly introduce the sources and structures of biomedical big data accessible in public for edge biomarker and disease study. We show that biomedical big data are typically 'small-sample size in high-dimension space', i.e. small samples but with high dimensions on features (e.g. omics data) for each individual, in contrast to traditional big data in many other fields characterized as 'large-sample size in low-dimension space', i.e. big samples but with low dimensions on features. Then, we demonstrate the concept, model and algorithm for edge biomarkers and further big-data-based edge biomarkers. Dissimilar to conventional biomarkers, edge biomarkers, e.g. module biomarkers in module network rewiring-analysis, are able to predict the disease state by learning differential associations between molecules rather than differential expressions of molecules during disease progression or treatment in individual patients. In particular, in contrast to using the information of the common molecules or edges (i.e.molecule-pairs) across a population in traditional biomarkers including network and edge biomarkers, big-data-based edge biomarkers are specific for each individual and thus can accurately evaluate the disease state by considering the individual heterogeneity. Therefore, the measurement of big data in a high-dimensional space is required not only in the learning process but also in the diagnosing or predicting process of the tested individual. Finally, we provide a case study on analyzing the temporal expression data from a malaria vaccine trial by big-data-based edge biomarkers from module network rewiring-analysis. The illustrative results show that the identified module biomarkers can accurately distinguish vaccines with or without protection and outperformed previous reported gene signatures in terms of effectiveness and efficiency. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. c-FLIP is involved in erythropoietin-mediated protection of erythroid-differentiated cells from TNF-alpha-induced apoptosis.

    PubMed

    Vittori, Daniela; Vota, Daiana; Callero, Mariana; Chamorro, María E; Nesse, Alcira

    2010-05-04

    The TNF-alpha (tumour necrosis factor) affects a wide range of biological activities, such as cell proliferation and apoptosis. Cell life or death responses to this cytokine might depend on cell conditions. This study focused on the modulation of factors that would affect the sensitivity of erythroid-differentiated cells to TNF-alpha. Hemin-differentiated K562 cells showed higher sensitivity to TNF-induced apoptosis than undifferentiated cells. At the same time, hemin-induced erythroid differentiation reduced c-FLIP (cellular FLICE-inhibitory protein) expression. However, this negative effect was prevented by prior treatment with Epo (erythropoietin), which allowed the cell line to maintain c-FLIP levels. On the other hand, erythroid-differentiated UT-7 cells - dependent on Epo for survival - showed resistance to TNF-alpha pro-apoptotic action. Only after the inhibition of PI3K (phosphatidylinositol-3 kinase)-mediated pathways, which was accompanied by negative c-FLIP modulation and increased erythroid differentiation, were UT-7 cells sensitive to TNF-alpha-triggered apoptosis. In summary, erythroid differentiation might deregulate the balance between growth promotion and death signals induced by TNF-alpha, depending on cell type and environmental conditions. The role of c-FLIP seemed to be critical in the protection of erythroid-differentiated cells from apoptosis or in the determination of their sensitivity to TNF-mediated programmed cell death. Epo, which for the first time was found to be involved in the prevention of c-FLIP down-regulation, proved to have an anti-apoptotic effect against the pro-inflammatory factor. The identification of signals related to cell life/death switching would have significant implications in the control of proliferative diseases and would contribute to the understanding of mechanisms underlying the anaemia associated with inflammatory processes.

  20. Logistics resupply and emergency crew return system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Ahne, D.; Caldwell, D.; Davis, K.; Delmedico, S.; Heinen, E.; Ismail, S.; Sumner, C.; Bock, J.; Buente, B.; Gliane, R.

    1989-01-01

    Sometime in the late 1990's, if all goes according to plan, Space Station Freedom will allow the United States and its cooperating partners to maintain a permanent presence in space. Acting as a scientific base of operations, it will also serve as a way station for future explorations of the Moon and perhaps even Mars. Systems onboard the station will have longer lifetimes, higher reliability, and lower maintenance requirements than seen on any previous space flight vehicle. Accordingly, the station will have to be resupplied with consumables (air, water, food, etc.) and other equipment changeouts (experiments, etc.) on a periodic basis. Waste materials and other products will also be removed from the station for return to Earth. The availability of a Logistics Resupply Module (LRM), akin to the Soviet's Progress vehicle, would help to accomplish these tasks. Riding into orbit on an expendable launch vehicle, the LRM would be configured to rendezvous autonomously and dock with the space station. After the module is emptied of its cargo, waste material from the space station would be loaded back into it. The module would then begin its descent to a recovery point on Earth. Logistics Resupply Modules could be configured in a variety of forms depending on the type of cargo being transferred. If the LRM's were cycled to the space station in such a way that at least one vehicle remained parked at the station at all times, the modules could serve double duty as crew emergency return capsules. A pressurized LRM could then bring two or more crew-persons requiring immediate return (because of health problems, system failure, or unavoidable catastrophes) back to Earth. Large cost savings would be accrued by combining the crew return function with a logistics resupply system.

  1. Does movement influence representations of time and space?

    PubMed Central

    2017-01-01

    Embodied cognition posits that abstract conceptual knowledge such as mental representations of time and space are at least partially grounded in sensorimotor experiences. If true, then the execution of whole-body movements should result in modulations of temporal and spatial reference frames. To scrutinize this hypothesis, in two experiments participants either walked forward, backward or stood on a treadmill and responded either to an ambiguous temporal question (Experiment 1) or an ambiguous spatial question (Experiment 2) at the end of the walking manipulation. Results confirmed the ambiguousness of the questions in the control condition. Nevertheless, despite large power, walking forward or backward did not influence the answers or response times to the temporal (Experiment 1) or spatial (Experiment 2) question. A follow-up Experiment 3 indicated that this is also true for walking actively (or passively) in free space (as opposed to a treadmill). We explore possible reasons for the null-finding as concerns the modulation of temporal and spatial reference frames by movements and we critically discuss the methodological and theoretical implications. PMID:28376130

  2. Does movement influence representations of time and space?

    PubMed

    Loeffler, Jonna; Raab, Markus; Cañal-Bruland, Rouwen

    2017-01-01

    Embodied cognition posits that abstract conceptual knowledge such as mental representations of time and space are at least partially grounded in sensorimotor experiences. If true, then the execution of whole-body movements should result in modulations of temporal and spatial reference frames. To scrutinize this hypothesis, in two experiments participants either walked forward, backward or stood on a treadmill and responded either to an ambiguous temporal question (Experiment 1) or an ambiguous spatial question (Experiment 2) at the end of the walking manipulation. Results confirmed the ambiguousness of the questions in the control condition. Nevertheless, despite large power, walking forward or backward did not influence the answers or response times to the temporal (Experiment 1) or spatial (Experiment 2) question. A follow-up Experiment 3 indicated that this is also true for walking actively (or passively) in free space (as opposed to a treadmill). We explore possible reasons for the null-finding as concerns the modulation of temporal and spatial reference frames by movements and we critically discuss the methodological and theoretical implications.

  3. Subcycle quantum physics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Leitenstorfer, Alfred

    2017-02-01

    A time-domain approach to quantum electrodynamics is presented, covering the entire mid-infrared and terahertz frequency ranges. Ultrabroadband electro-optic sampling with few-femtosecond laser pulses allows direct detection of the vacuum fluctuations of the electric field in free space [1,2]. Besides the Planck and electric field fundamental constants, the variance of the ground state is determined solely by the inverse of the four-dimensional space-time volume over which a measurement or physical process integrates. Therefore, we can vary the contribution of multi-terahertz vacuum fluctuations and discriminate against the trivial shot noise due to the constant flux of near-infrared probe photons. Subcycle temporal resolution based on a nonlinear phase shift provides signals from purely virtual photons for accessing the ground-state wave function without amplification to finite intensity. Recently, we have succeeded in generation and analysis of mid-infrared squeezed transients with quantum noise patterns that are time-locked to the intensity envelope of the probe pulses. We find subcycle temporal positions with a noise level distinctly below the bare vacuum which serves as a direct reference. Delay times with increased differential noise indicate generation of highly correlated quantum fields by spontaneous parametric fluorescence. Our time-domain approach offers a generalized understanding of spontaneous emission processes as a consequence of local anomalies in the co-propagating reference frame modulating the quantum vacuum, in combination with the boundary conditions set by Heisenberg's uncertainty principle. [1] C. Riek et al., Science 350, 420 (2015) [2] A. S. Moskalenko et al., Phys. Rev. Lett. 115, 263601 (2015)

  4. A 128-channel Time-to-Digital Converter (TDC) inside a Virtex-5 FPGA on the GANDALF module

    NASA Astrophysics Data System (ADS)

    Büchele, M.; Fischer, H.; Gorzellik, M.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.

    2012-03-01

    The GANDALF 6U-VME64x/VXS module has been developed for the digitization and real time analysis of detector signals. To perform different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition and trigger generation, this module comes with exchangeable analog and digital mezzanine cards. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In contrast to common TDC concepts, the input signal is sampled by 16 equidistant phase-shifted clocks. A particular challenge of the design is the minimum skew routing of the input signals to the sampling flip-flops. We present measurement results for the differential nonlinearity and the time resolution of the TDC readout system.

  5. Functional differentiability in time-dependent quantum mechanics.

    PubMed

    Penz, Markus; Ruggenthaler, Michael

    2015-03-28

    In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.

  6. Nationwide differential global positioning system (NDGPS) : capabilities and potential.

    DOT National Transportation Integrated Search

    2009-06-01

    NDGPS is a National PNT Utility: : -Operated/managed by Coast Guard as a Combined NDGPS (Maritime + DOT + ACOE sites) : -System Specifications : --Corrections broadcast at 285 and 325 kHz using Minimum shift Keying (MSK) modulation : --Real-time diff...

  7. NASA's ECOSTRESS Investigation Being Installed on the International Space Station (Artist's Concept)

    NASA Image and Video Library

    2018-04-17

    NASA's ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) will be installed on International Space Station's Japanese Experiment Module - External Facility (JEM-EF) site 10. The investigation will take advantage of the space station's orbit to measure plant surface temperatures at different times of day, allowing scientists to see how plants respond to water stress throughout the day. https://photojournal.jpl.nasa.gov/catalog/PIA22415

  8. KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello moves away from its stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello moves away from its stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  9. KENNEDY SPACE CENTER, FLA. - Overhead cables carry the Multi-Purpose Logistics Module Donatello from the payload canister (lower right) to a work stand in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - Overhead cables carry the Multi-Purpose Logistics Module Donatello from the payload canister (lower right) to a work stand in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  10. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility secure the Multi-Purpose Logistics Module Raffaello onto a new work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility secure the Multi-Purpose Logistics Module Raffaello onto a new work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  11. KENNEDY SPACE CENTER, FLA. - Workers on the floor of the Space Station Processing Facility watch as overhead cables carry the Multi-Purpose Logistics Module Donatello to a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - Workers on the floor of the Space Station Processing Facility watch as overhead cables carry the Multi-Purpose Logistics Module Donatello to a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  12. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1989-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.

  13. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  14. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  15. Unity connecting module moving to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility (SSPF) Unity is suspended in air as it is moved to a now location in the SSPF. At right, visitors watch through a viewing window, part of the visitors tour at the Center. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  16. The Unity connecting module rests inside the payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This fish-eye view of the Unity connecting module reveals its immense size relative to the workers (below right). Unity rests inside the open payload bay of the orbiter Endeavour on Launch Pad 39A. At the top of bay is the docking mechanism first used with launches to Mir, the Russian space station. Unity is the first U.S. element of the International Space Station (ISS) and is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time. The mission is expected to last nearly 12 days, landing back at the Kennedy Space Center on Dec. 14.

  17. KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman look at the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the JEM, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman look at the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the JEM, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  18. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  19. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  20. Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-14-1-0292 TITLE: Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters PRINCIPAL...Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and...29 Jul 2016 4. TITLE AND SUBTITLE Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters 5a. CONTRACT NUMBER

  1. Results of a First Generation Propellant Energy Source Module Testing: Non-Nuclear Testing of Fission System

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Godfroy, Tom; Houts, Mike; Dickens, Ricky; Dobson, Chris; Pederson, Kevin; Reid, Bob

    1999-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal- hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made.

  2. Results of a first generation least expensive approach to fission module tests: Non-nuclear testing of a fission system

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Godfroy, Tom; Houts, Mike; Dickens, Ricky; Dobson, Chris; Pederson, Kevin; Reid, Bob; Sena, J. Tom

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal-hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made. .

  3. Impact of space flight on cardiovascular autonomic control

    NASA Astrophysics Data System (ADS)

    Beckers, F.; Verheyden, B.; Morukov, B.; Aubert, Ae

    Introduction: Space flight alters the distribution of blood in the human body, leading to altered cardiovascular neurohumoral regulation with a blunted carotid-cardiac baroreflex. These changes contribute to the occurrence of orthostatic intolerance after space flight. Heart rate variability (HRV) and blood pressure variability (BPV) provide non-invasive means to study the autonomic modulation of the heart. Low frequency (LF) oscillations provide information about sympathetic modulation and baroreflex, while high frequency (HF) modulation is an index of vagal heart rate modulation. Methods: ECG and continuous blood pressure were measured for at least 10 minutes in supine, sitting and standing position 45 days and 10 days (L-45, L-10) before launch; and at 1, 2, 4, 9, 15, 19 and 25 days after return to earth (R+x). In space, ECG and continuous blood pressure were measured at day 5 (FD5) and day 8 (FD8). These measurements were performed in 3. HRV and BPV indices were calculated in time and frequency domain. Results: Measurements in supine position and sitting position did not show as high differences as the measurements in standing position. During space flight heart rate was significantly lower compared to the pre- and post-flight measurements in standing position (RR-values: L-45: 837± 42 ms; FD5: 1004± 40 ms; FD8: 1038± 53 ms; R+1: 587± 21 ms; p<0.05). This was accompanied by a significant increase in the proportion of HF power during space flight and a decrease in LF power. Immediately after space flight both LF and HF modulation of heart rate were extremely depressed compared to the pre-flight conditions (p<0.005). A gradual recovery towards baseline conditions of both indices was observed up to 25 days after return from space (LF: L-45: 3297± 462 ms2; FD5: 1251± 332 ms2; FD8: 1322± 462 ms2; R+1: 547± 188 ms2; R+4: 1958± 709 ms2; R+9: 1220± 148 ms2; R+15: 1704± 497 ms2; R+25: 2644± 573 ms2). However, even 25 days after return, values were below baseline condition. Mean systolic blood pressure did not differ significantly before during and after space flight. In space both LF and HF were decreased compared the standing measurements pre- and post-flight. No evolution was present in BPV after return to Earth. Conclusion: During space flight autonomic modulation is characterised by a vagal predominance. Immediately after return to Earth overall autonomic modulation is extremely depressed. Vasomotor autonomic control is restored rather quickly after space flight, while the restoration of autonomic modulation of heart rate is very slow.

  4. Combinatorial pulse position modulation for power-efficient free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Vanderaar, M.; Wagner, P.; Bibyk, Steven

    1993-01-01

    A new modulation technique called combinatorial pulse position modulation (CPPM) is presented as a power-efficient alternative to quaternary pulse position modulation (QPPM) for direct-detection, free-space laser communications. The special case of 16C4PPM is compared to QPPM in terms of data throughput and bit error rate (BER) performance for similar laser power and pulse duty cycle requirements. The increased throughput from CPPM enables the use of forward error corrective (FEC) encoding for a net decrease in the amount of laser power required for a given data throughput compared to uncoded QPPM. A specific, practical case of coded CPPM is shown to reduce the amount of power required to transmit and receive a given data sequence by at least 4.7 dB. Hardware techniques for maximum likelihood detection and symbol timing recovery are presented.

  5. Orion EM-1 Crew Module Adapter Lift & Move to Stand

    NASA Image and Video Library

    2016-11-11

    The Orion crew module adapter (CMA) for Exploration Mission 1 was lifted for the first and only time, Nov. 11, during its processing flow inside the Neil Armstrong Operations and Checkout (O&C) Building high bay at the agency's Kennedy Space Center in Florida. The CMA is now undergoing secondary structure outfitting.

  6. Adrenal-Derived Hormones Differentially Modulate Intestinal Immunity in Experimental Colitis

    PubMed Central

    de Souza, Patrícia Reis; Basso, Paulo José; Nardini, Viviani; Silva, Angelica; Banquieri, Fernanda

    2016-01-01

    The adrenal glands are able to modulate immune responses through neuroimmunoendocrine interactions and cortisol secretion that could suppress exacerbated inflammation such as in inflammatory bowel disease (IBD). Therefore, here we evaluated the role of these glands in experimental colitis induced by 3% dextran sulfate sodium (DSS) in C57BL/6 mice subjected to adrenalectomy, with or without glucocorticoid (GC) replacement. Mice succumbed to colitis without adrenals with a higher clinical score and augmented systemic levels of IL-6 and lower LPS. Furthermore, adrenalectomy negatively modulated systemic regulatory markers. The absence of adrenals resulted in augmented tolerogenic lamina propria dendritic cells but no compensatory local production of corticosterone and decreased mucosal inflammation associated with increased IFN-γ and FasL in the intestine. To clarify the importance of GC in this scenario, GC replacement in adrenalectomized mice restored different markers to the same degree of that observed in DSS group. Finally, this is the first time that adrenal-derived hormones, especially GC, were associated with the differential local modulation of the gut infiltrate, also pointing to a relationship between adrenalectomy and the modulation of systemic regulatory markers. These findings may elucidate some neuroimmunoendocrine mechanisms that dictate colitis outcome. PMID:27403034

  7. KSC-97pc762

    NASA Image and Video Library

    1997-05-01

    KENNEDY SPACE CENTER, FLA. -- KSC payloads processing employees work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the Space Shuttle Orbiter Columbia’s payload bay for the STS-94 mission in Orbiter Processing Facility 1. That mission is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments

  8. KSC-97pc763

    NASA Image and Video Library

    1997-05-01

    KENNEDY SPACE CENTER, FLA. -- KSC payloads processing employees work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the Space Shuttle Orbiter Columbia’s payload bay for the STS-94 mission in Orbiter Processing Facility 1. That mission is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments

  9. A Model for the Oxidation of C/SiC Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2003-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of C/SiC composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. Within the mathematical formulation, two diffusion mechanisms are possible: (1) the relative diffusion of one species with respect to the mixture, which is concentration gradient driven and (2) the diffusion associated with the average velocity of the gas mixture, which is total gas pressure gradient driven. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations must be solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of space and time. The local rate of carbon oxidation is determined as a function of space and time using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The end result is a numerical scheme capable of determining the variation of the local carbon oxidation rates as a function of space and time for any arbitrary C/SiC composite structures.

  10. Representation of solution for fully nonlocal diffusion equations with deviation time variable

    NASA Astrophysics Data System (ADS)

    Drin, I. I.; Drin, S. S.; Drin, Ya. M.

    2018-01-01

    We prove the solvability of the Cauchy problem for a nonlocal heat equation which is of fractional order both in space and time. The representation formula for classical solutions for time- and space- fractional partial differential operator Dat + a2 (-Δ) γ/2 (0 <= α <= 1, γ ɛ (0, 2]) and deviation time variable is given in terms of the Fox H-function, using the step by step method.

  11. Development of the Optical Communications Telescope Laboratory: A Laser Communications Relay Demonstration Ground Station

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Antsos, D.; Roberts, L. C. Jr.,; Piazzolla, S.; Clare, L. P.; Croonquist, A. P.

    2012-01-01

    The Laser Communications Relay Demonstration (LCRD) project will demonstrate high bandwidth space to ground bi-directional optical communications links between a geosynchronous satellite and two LCRD optical ground stations located in the southwestern United States. The project plans to operate for two years with a possible extension to five. Objectives of the demonstration include the development of operational strategies to prototype optical link and relay services for the next generation tracking and data relay satellites. Key technologies to be demonstrated include adaptive optics to correct for clear air turbulence-induced wave front aberrations on the downlink, and advanced networking concepts for assured and automated data delivery. Expanded link availability will be demonstrated by supporting operations at small sun-Earth-probe angles. Planned optical modulation formats support future concepts of near-Earth satellite user services to a maximum of 1.244 Gb/s differential phase shift keying modulation and pulse position modulations formats for deep space links at data rates up to 311 Mb/s. Atmospheric monitoring instruments that will characterize the optical channel during the link include a sun photometer to measure atmospheric transmittance, a solar scintillometer, and a cloud camera to measure the line of sight cloud cover. This paper describes the planned development of the JPL optical ground station.

  12. Auxin Influx Carriers Control Vascular Patterning and Xylem Differentiation in Arabidopsis thaliana

    PubMed Central

    Siligato, Riccardo; Alonso, Jose M.; Swarup, Ranjan; Bennett, Malcolm J.; Mähönen, Ari Pekka; Caño-Delgado, Ana I.; Ibañes, Marta

    2015-01-01

    Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants. PMID:25922946

  13. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  14. Space biology initiative program definition review. Trade study 6: Space Station Freedom/spacelab modules compatibility

    NASA Technical Reports Server (NTRS)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Blacknall, Carolyn; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The differences in rack requirements for Spacelab, the Shuttle Orbiter, and the United States (U.S.) laboratory module, European Space Agency (ESA) Columbus module, and the Japanese Experiment Module (JEM) of Space Station Freedom are identified. The feasibility of designing standardized mechanical, structural, electrical, data, video, thermal, and fluid interfaces to allow space flight hardware designed for use in the U.S. laboratory module to be used in other locations is assessed.

  15. KSC-03pd0116

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Seconds after launch, Space Shuttle Columbia appears as a flaming tip of the smoke column it trails. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  16. KSC-03pd0119

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Seconds after launch, Space Shuttle Columbia appears as a flaming tip of the smoke column it trails. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  17. KSC-03pd0114

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia hurtles through a perfect blue Florida sky following a flawless and uneventful countdown. Liftoff of Columbia on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program

  18. EMC Testing on the Integrated Science Instrument Module (ISIM) - A Summary of the EMC Test Campaign for the Science Payload of the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    McCloskey, John

    2016-01-01

    This paper describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft/observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.

  19. KSC-03pd0138

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Seeming to be perched on twin columns of fire, Space Shuttle Columbia leaps off Launch Pad 39A and races toward space on missions STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews

  20. KSC-03pd0136

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Spewing flames and billowing clouds of smoke across Launch Pad 39A, Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews

  1. KSC-03pd0135

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Spewing flames and billowing clouds of smoke across Launch Pad 39A, Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews

  2. KSC-03pp0140

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Columbia outraces the multi-colored clouds of smoke and steam rising below it from Launch Pad 39A as it races toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  3. jsc2017m000677_SpeedyTime2–Advanced_ Resistive_Exercise_ Device

    NASA Image and Video Library

    2017-07-20

    SpeedyTime #2 – Advanced Resistive Exercise Device Astronauts on the International Space Station have to exercise for two hours every day, but they can show off the hardware in a lot less time than that. In this “SpeedyTime” segment Expedition 52 flight engineer Peggy Whitson gives us a rapid-fire display of exercises that can be done with just one piece of equipment, the Advanced Resistive Exercise Device in the Tranquility module. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  4. Dynamic Network-Based Relevance Score Reveals Essential Proteins and Functional Modules in Directed Differentiation

    PubMed Central

    Wu, Chia-Chou; Lin, Che

    2015-01-01

    The induction of stem cells toward a desired differentiation direction is required for the advancement of stem cell-based therapies. Despite successful demonstrations of the control of differentiation direction, the effective use of stem cell-based therapies suffers from a lack of systematic knowledge regarding the mechanisms underlying directed differentiation. Using dynamic modeling and the temporal microarray data of three differentiation stages, three dynamic protein-protein interaction networks were constructed. The interaction difference networks derived from the constructed networks systematically delineated the evolution of interaction variations and the underlying mechanisms. A proposed relevance score identified the essential components in the directed differentiation. Inspection of well-known proteins and functional modules in the directed differentiation showed the plausibility of the proposed relevance score, with the higher scores of several proteins and function modules indicating their essential roles in the directed differentiation. During the differentiation process, the proteins and functional modules with higher relevance scores also became more specific to the neuronal identity. Ultimately, the essential components revealed by the relevance scores may play a role in controlling the direction of differentiation. In addition, these components may serve as a starting point for understanding the systematic mechanisms of directed differentiation and for increasing the efficiency of stem cell-based therapies. PMID:25977693

  5. KSC-07pd3187

    NASA Image and Video Library

    2007-11-07

    KENNEDY SPACE CENTER, FLA. -- STS-120 Pilot George Zamka is happy to be back at NASA's Kennedy Space Center after the 15-day mission to the International Space Station aboard space shuttle Discovery. The Discovery crew completed mission STS-120 with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Kim Shiflett

  6. KSC-07pd3190

    NASA Image and Video Library

    2007-11-07

    KENNEDY SPACE CENTER, FLA. -- STS-120 Doug Wheelock is happy to back at NASA's Kennedy Space Center after the 15-day mission to the International Space Station aboard space shuttle Discovery. The Discovery crew completed mission STS-120 with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Kim Shiflett

  7. KSC-07pd3186

    NASA Image and Video Library

    2007-11-07

    KENNEDY SPACE CENTER, FLA. -- STS-120 mission specialist Stephanie Wilson is happy to be back at NASA's Kennedy Space Center after the 15-day mission to the International Space Station aboard space shuttle Discovery. The Discovery crew completed mission STS-120 with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Kim Shiflett

  8. Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction.

    PubMed

    Suresh, Rahul; Li, Xing; Chiriac, Anca; Goel, Kashish; Terzic, Andre; Perez-Terzic, Carmen; Nelson, Timothy J

    2014-09-01

    Whole-genome gene expression analysis has been successfully utilized to diagnose, prognosticate, and identify potential therapeutic targets for high-risk cardiovascular diseases. However, the feasibility of this approach to identify outcome-related genes and dysregulated pathways following first-time myocardial infarction (AMI) remains unknown and may offer a novel strategy to detect affected expressome networks that predict long-term outcome. Whole-genome expression microarray on blood samples from normal cardiac function controls (n=21) and first-time AMI patients (n=31) within 48-hours post-MI revealed expected differential gene expression profiles enriched for inflammation and immune-response pathways. To determine molecular signatures at the time of AMI associated with long-term outcomes, transcriptional profiles from sub-groups of AMI patients with (n=5) or without (n=22) any recurrent events over an 18-month follow-up were compared. This analysis identified 559 differentially-expressed genes. Bioinformatic analysis of this differential gene-set for associated pathways revealed 1) increasing disease severity in AMI patients is associated with a decreased expression of genes involved in the developmental epithelial-to-mesenchymal transition pathway, and 2) modulation of cholesterol transport genes that include ABCA1, CETP, APOA1, and LDLR is associated with clinical outcome. Differentially regulated genes and modulated pathways were identified that were associated with recurrent cardiovascular outcomes in first-time AMI patients. This cell-based approach for risk stratification in AMI could represent a novel, non-invasive platform to anticipate modifiable pathways and therapeutic targets to optimize long-term outcome for AMI patients and warrants further study to determine the role of metabolic remodeling and regenerative processes required for optimal outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. 33 CFR 149.641 - What are the structural fire protection requirements for accommodation spaces and modules?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protection requirements for accommodation spaces and modules? 149.641 Section 149.641 Navigation and... the structural fire protection requirements for accommodation spaces and modules? (a) Accommodation spaces and modules must be designed, located, and constructed so as to minimize the effects of flame...

  10. Coherent Acoustic Vibration of Metal Nanoshells

    NASA Astrophysics Data System (ADS)

    Guillon, C.; Langot, P.; Del Fatti, N.; Vallée, F.; Kirakosyan, A. S.; Shahbazyan, T. V.; Cardinal, T.; Treguer, M.

    2007-01-01

    Using time-resolved pump-probe spectroscopy we have performed the first investigation of the vibrational modes of gold nanoshells. The fundamental isotropic mode launched by a femtosecond pump pulse manifests itself in a pronounced time-domain modulation of the differential transmission probed at the frequency of nanoshell surface plasmon resonance. The modulation amplitude is significantly stronger and the period is longer than in a gold nanoparticle of the same overall size, in agreement with theoretical calculations. This distinct acoustical signature of nanoshells provides a new and efficient method for identifying these versatile nanostructures and for studying their mechanical and structural properties.

  11. FIBER AND INTEGRATED OPTICS. OTHER TOPICS IN QUANTUM ELECTRONICS: Investigation of an electrooptic multichannel-waveguide modulator as a controlled transparency

    NASA Astrophysics Data System (ADS)

    Bykovskiĭ, Yu A.; Zheregi, V. G.; Kulchin, Yurii N.; Poryadin, Yu D.; Smirnov, V. L.; Fomichev, N. N.

    1990-05-01

    An investigation was made of a multichannel LiNbO3 waveguide modulator of light in space and time, suitable for processing of analog and digital signals. This modulator had 26 channels and the half-wave control voltage was 4.5 V. A theoretical analysis and an experimental study were made of the functional performance of this modulator depending on the channel interconnections and on the nature of the signals applied to the modulator. The feasibility of processing analog and digital signals was studied.

  12. Modular space station

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The modular space station comprising small, shuttle-launched modules, and characterized by low initial cost and incremental manning, is described. The initial space station is designed to be delivered into orbit by three space shuttles and assembled in space. The three sections are the power/subsystems module, the crew/operations module, and the general purpose laboratory module. It provides for a crew of six. Subsequently duplicate/crew/operations and power/subsystems modules will be mated to the original modules, and provide for an additional six crewmen. A total of 17 research and applications modules is planned, three of which will be free-flying modules. Details are given on the program plan, modular characteristics, logistics, experiment support capability and requirements, operations analysis, design support analyses, and shuttle interfaces.

  13. STS-81 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1997-01-01

    STS-81 was the fifth of nine planned missions to dock with the Russian Mir Space Station and the fourth crewmember transfer mission. The double Spacehab module was carried for the second time, and it housed experiments that were performed by the crew and logistics equipment that was transferred to the Mir.

  14. Optimal guidance for the space shuttle transition

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1972-01-01

    A guidance method for the space shuttle's transition from hypersonic entry to subsonic cruising flight is presented. The method evolves from a numerical trajectory optimization technique in which kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations. This allows the open end-time problem to be transformed to one of fixed terminal energy. In its ultimate form, E-Guidance obtains energy balance (including dynamic-pressure-rate damping) and path length control by angle-of-attack modulation and cross-range control by roll angle modulation. The guidance functions also form the basis for a pilot display of instantaneous maneuver limits and destination. Numerical results illustrate the E-Guidance concept and the optimal trajectories on which it is based.

  15. Elementary screening of lymph node metastatic-related genes in gastric cancer based on the co-expression network of messenger RNA, microRNA and long non-coding RNA.

    PubMed

    Song, Zhonghua; Zhao, Wenhua; Cao, Danfeng; Zhang, Jinqing; Chen, Shouhua

    2018-01-01

    Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. The high mortality might be attributed to delay in detection and is closely related to lymph node metastasis. Therefore, it is of great importance to explore the mechanism of lymph node metastasis and find strategies to block GC metastasis. Messenger RNA (mRNA), microRNA (miRNA) and long non-coding RNA (lncRNA) expression data and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 908 differentially expressed factors with variance >0.5 including 542 genes, 42 miRNA, and 324 lncRNA were screened using significant analysis microarray algorithm, and interaction networks were constructed using these differentially expressed factors. Furthermore, we conducted functional modules analysis in the network, and found that yellow and turquoise modules could separate samples efficiently. The groups classified in the yellow and turquoise modules had a significant difference in survival time, which was verified in another independent GC mRNA dataset (GSE62254). The results suggested that differentially expressed factors in the yellow and turquoise modules may participate in lymph node metastasis of GC and could be applied as potential biomarkers or therapeutic targets for GC.

  16. Elementary screening of lymph node metastatic-related genes in gastric cancer based on the co-expression network of messenger RNA, microRNA and long non-coding RNA

    PubMed Central

    Song, Zhonghua; Zhao, Wenhua; Cao, Danfeng; Zhang, Jinqing; Chen, Shouhua

    2018-01-01

    Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. The high mortality might be attributed to delay in detection and is closely related to lymph node metastasis. Therefore, it is of great importance to explore the mechanism of lymph node metastasis and find strategies to block GC metastasis. Messenger RNA (mRNA), microRNA (miRNA) and long non-coding RNA (lncRNA) expression data and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 908 differentially expressed factors with variance >0.5 including 542 genes, 42 miRNA, and 324 lncRNA were screened using significant analysis microarray algorithm, and interaction networks were constructed using these differentially expressed factors. Furthermore, we conducted functional modules analysis in the network, and found that yellow and turquoise modules could separate samples efficiently. The groups classified in the yellow and turquoise modules had a significant difference in survival time, which was verified in another independent GC mRNA dataset (GSE62254). The results suggested that differentially expressed factors in the yellow and turquoise modules may participate in lymph node metastasis of GC and could be applied as potential biomarkers or therapeutic targets for GC. PMID:29489999

  17. Modular space station mass properties

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An update of the space station mass properties is presented. Included are the final status update of the Initial Space Station (ISS) modules and logistic module plus incorporation of the Growth Space Station (GSS) module additions.

  18. The Construction (Using Multi-Media Techniques) of Certain Modules of a Programmed Course in Astronomy-Space Sciences for NASA Personnel of The Goddard Space Flight Center, Greenbelt, Maryland.

    ERIC Educational Resources Information Center

    Collagan, Robert B.

    This paper describes the development of a self-instructional multi-media course in astronomy-space sciences for non-technical NASA personnel. The course consists of a variety of programed materials including slides, films, film-loops, filmstrips video-tapes and audio-tapes, on concepts of time, space, and matter in our solar system and galaxy.…

  19. Unity connecting module moving to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility (SSPF), Unity (top) is suspended in air as it is moved to a new location (bottom left)in the SSPF. To its left is Leonardo, the Italian-built Multi- Purpose Logistics Module to be launched on STS-100. Above Leonardo, visitors watch through a viewing window, part of the visitors tour at the Center. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  20. Influence of White and Gray Matter Connections on Endogenous Human Cortical Oscillations

    PubMed Central

    Hawasli, Ammar H.; Kim, DoHyun; Ledbetter, Noah M.; Dahiya, Sonika; Barbour, Dennis L.; Leuthardt, Eric C.

    2016-01-01

    Brain oscillations reflect changes in electrical potentials summated across neuronal populations. Low- and high-frequency rhythms have different modulation patterns. Slower rhythms are spatially broad, while faster rhythms are more local. From this observation, we hypothesized that low- and high-frequency oscillations reflect white- and gray-matter communications, respectively, and synchronization between low-frequency phase with high-frequency amplitude represents a mechanism enabling distributed brain-networks to coordinate local processing. Testing this common understanding, we selectively disrupted white or gray matter connections to human cortex while recording surface field potentials. Counter to our original hypotheses, we found that cortex consists of independent oscillatory-units (IOUs) that maintain their own complex endogenous rhythm structure. IOUs are differentially modulated by white and gray matter connections. White-matter connections maintain topographical anatomic heterogeneity (i.e., separable processing in cortical space) and gray-matter connections segregate cortical synchronization patterns (i.e., separable temporal processing through phase-power coupling). Modulation of distinct oscillatory modules enables the functional diversity necessary for complex processing in the human brain. PMID:27445767

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieselmann, J; Bartzsch, S; Oelfke, U

    Purpose: Microbeam Radiation Therapy is a preclinical method in radiation oncology that modulates radiation fields on a micrometre scale. Dose calculation is challenging due to arising dose gradients and therapeutically important dose ranges. Monte Carlo (MC) simulations, often used as gold standard, are computationally expensive and hence too slow for the optimisation of treatment parameters in future clinical applications. On the other hand, conventional kernel based dose calculation leads to inaccurate results close to material interfaces. The purpose of this work is to overcome these inaccuracies while keeping computation times low. Methods: A point kernel superposition algorithm is modified tomore » account for tissue inhomogeneities. Instead of conventional ray tracing approaches, methods from differential geometry are applied and the space around the primary photon interaction is locally warped. The performance of this approach is compared to MC simulations and a simple convolution algorithm (CA) for two different phantoms and photon spectra. Results: While peak doses of all dose calculation methods agreed within less than 4% deviations, the proposed approach surpassed a simple convolution algorithm in accuracy by a factor of up to 3 in the scatter dose. In a treatment geometry similar to possible future clinical situations differences between Monte Carlo and the differential geometry algorithm were less than 3%. At the same time the calculation time did not exceed 15 minutes. Conclusion: With the developed method it was possible to improve the dose calculation based on the CA method with respect to accuracy especially at sharp tissue boundaries. While the calculation is more extensive than for the CA method and depends on field size, the typical calculation time for a 20×20 mm{sup 2} field on a 3.4 GHz and 8 GByte RAM processor remained below 15 minutes. Parallelisation and optimisation of the algorithm could lead to further significant calculation time reductions.« less

  2. KSC-98pc1143

    NASA Image and Video Library

    1998-09-22

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, Rainer Goercke shakes hands with Norman Jatz in front of the Spacelab Module MD001 as they prepare to close it for the last time before shipment to the National Air and Space Museum in Washington, DC. Goercke and Jatz have been on the Spacelab program since 1979 and were part of the team that first unloaded the module at KSC. Goercke is the only remaining European representative from the German-based Spacelab contractor, ERNO, and Jatz is a mechanical engineering lead from Boeing. Spacelab was designed by the European Space Agency (ESA) for the Space Shuttle program. It first flew on STS-9 in November 1983 and its final flight was the STS-90 Neurolab mission in April 1998. The sister module will travel home and be placed on display in Europe. The Spacelab concept of modular experiment racks in a pressurized shirt-sleeve environment made it highly user-friendly and accessible. Numerous experiments conceived by hundreds of scientists on the ground were conducted by flight crews in orbit. Spacelab modules served as on-orbit homes for everything from squirrel monkeys to plant seeds. They supported astronomical as well as Earth observations, for servicing the Hubble Space Telescope and for research preparatory to the International Space Station. One of the greatest benefits afforded by the Spacelab missions was the opportunity to fly a mission more than once, with the second or third flight building on the experiences and data gathered from its predecessors

  3. Nodes packaging option for Space Station application

    NASA Technical Reports Server (NTRS)

    So, Kenneth T.; Hall, John B., Jr.

    1988-01-01

    Space Station nodes packaging analyses are presented relative to moving environmental control and life support system (ECLSS) equipment from the habitability (HAB) module to node 4, in order to provide more living space and privacy for the crew, remove inherently noisy equipment from the crew quarter, retain crew waste collection and processing equipment in one location, and keep objectionable odor away from the living quarters. In addition, options for moving external electronic equipment from the Space Station truss to pressurized node 3 were evaluated in order to reduce the crew extravehicular-activity time required to install and maintain the equipment. Node size considered in this analysis is 3.66 m in diameter and 5.38 m long. The analysis shows that significant external electronic equipment could be relocated from the Space Station truss structure to node 3, and nonlife critical ECLSS HAB module equipment could be moved to node 4.

  4. Managing Complexity - Developing the Node Control Software For The International Space Station

    NASA Technical Reports Server (NTRS)

    Wood, Donald B.

    2000-01-01

    On December 4th, 1998 at 3:36 AM STS-88 (the space shuttle Endeavor) was launched with the "Node 1 Unity Module" in its payload bay. After working on the Space Station program for a very long time, that launch was one of the most beautiful sights I had ever seen! As the Shuttle proceeded to rendezvous with the Russian American module know as Zarya, I returned to Houston quickly to start monitoring the activation of the software I had spent the last 3 years working on. The FGB module (also known as "Zarya"), was grappled by the shuttle robotic arm, and connected to the Unity module. Crewmembers then hooked up the power and data connections between Zarya and Unity. On December 7th, 1998 at 9:49 PM CST the Node Control Software was activated. On December 15th, 1998, the Node-l/Zarya "cornerstone" of the International Space Station was left on-orbit. The Node Control Software (NCS) is the first software flown by NASA for the International Space Station (ISS). The ISS Program is considered the most complex international engineering effort ever undertaken. At last count some 18 countries are active partners in this global venture. NCS has performed all of its intended functions on orbit, over 200 miles above us. I'll be describing how we built the NCS software.

  5. Identification of Proteins Modulated in the Date Palm Stem Infested with Red Palm Weevil (Rhynchophorus ferrugineus Oliv.) Using Two Dimensional Differential Gel Electrophoresis and Mass Spectrometry

    PubMed Central

    Rasool, Khawaja Ghulam; Khan, Muhammad Altaf; Aldawood, Abdulrahman Saad; Tufail, Muhammad; Mukhtar, Muhammad; Takeda, Makio

    2015-01-01

    A state of the art proteomic methodology using Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI TOF) has been employed to characterize peptides modulated in the date palm stem subsequent to infestation with red palm weevil (RPW). Our analyses revealed 32 differentially expressed peptides associated with RPW infestation in date palm stem. To identify RPW infestation associated peptides (I), artificially wounded plants (W) were used as additional control beside uninfested plants, a conventional control (C). A constant unique pattern of differential expression in infested (I), wounded (W) stem samples compared to control (C) was observed. The upregulated proteins showed relative fold intensity in order of I > W and downregulated spots trend as W > I, a quite interesting pattern. This study also reveals that artificially wounding of date palm stem affects almost the same proteins as infestation; however, relative intensity is quite lower than in infested samples both in up and downregulated spots. All 32 differentially expressed spots were subjected to MALDI-TOF analysis for their identification and we were able to match 21 proteins in the already existing databases. Relatively significant modulated expression pattern of a number of peptides in infested plants predicts the possibility of developing a quick and reliable molecular methodology for detecting plants infested with date palm. PMID:26287180

  6. Identification of Proteins Modulated in the Date Palm Stem Infested with Red Palm Weevil (Rhynchophorus ferrugineus Oliv.) Using Two Dimensional Differential Gel Electrophoresis and Mass Spectrometry.

    PubMed

    Rasool, Khawaja Ghulam; Khan, Muhammad Altaf; Aldawood, Abdulrahman Saad; Tufail, Muhammad; Mukhtar, Muhammad; Takeda, Makio

    2015-08-17

    A state of the art proteomic methodology using Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI TOF) has been employed to characterize peptides modulated in the date palm stem subsequent to infestation with red palm weevil (RPW). Our analyses revealed 32 differentially expressed peptides associated with RPW infestation in date palm stem. To identify RPW infestation associated peptides (I), artificially wounded plants (W) were used as additional control beside uninfested plants, a conventional control (C). A constant unique pattern of differential expression in infested (I), wounded (W) stem samples compared to control (C) was observed. The upregulated proteins showed relative fold intensity in order of I > W and downregulated spots trend as W > I, a quite interesting pattern. This study also reveals that artificially wounding of date palm stem affects almost the same proteins as infestation; however, relative intensity is quite lower than in infested samples both in up and downregulated spots. All 32 differentially expressed spots were subjected to MALDI-TOF analysis for their identification and we were able to match 21 proteins in the already existing databases. Relatively significant modulated expression pattern of a number of peptides in infested plants predicts the possibility of developing a quick and reliable molecular methodology for detecting plants infested with date palm.

  7. Characterization of cold-associated microRNAs in the freeze-tolerant gall fly Eurosta solidaginis using high-throughput sequencing.

    PubMed

    Lyons, Pierre J; Govaere, Louise; Crapoulet, Nicolas; Storey, Kenneth B; Morin, Pier Jr

    2016-12-01

    Significant physiological and biochemical changes are observed in freeze-tolerant insects when confronted with cold temperatures. These insects have adapted to winter by retreating into a hypometabolic state of diapause and implementing cryoprotective mechanisms that allow them to survive whole body freezing. MicroRNAs (miRNAs), a family of short ribonucleic acids, are emerging as likely molecular players underlying the process of cold adaptation. Unfortunately, the data is sparse concerning the signature of miRNAs that are modulated following cold exposure in the freeze-tolerant goldenrod gall fly Eurosta solidaginis. Leveraging for the first time a next-generation sequencing approach, differentially expressed miRNAs were evaluated in 5°C and -15°C-exposed E. solidaginis larvae. Next-generation sequencing expression data was subsequently validated by qRT-PCR for selected miRNA targets. Results demonstrate 24 differentially expressed freeze-responsive miRNAs. Notable, miR-1-3p, a miRNA modulated at low temperature in another cold-hardy insect, and miR-14-3p, a miRNA associated with stress response in the fruit fly, were shown to be significantly up-regulated in -15°C-exposed larvae. Overall, this work identifies, for the first time in a high-throughput manner, differentially expressed miRNAs in cold-exposed E. solidaginis larvae and further clarifies an emerging signature of miRNAs modulated at low temperatures in cold-hardy insects. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Scheimpflug lidar method

    NASA Astrophysics Data System (ADS)

    Brydegaard, Mikkel; Malmqvist, Elin; Jansson, Samuel; Larsson, Jim; Török, Sandra; Zhao, Guangyu

    2017-08-01

    The recent several years we developed the Scheimpflug lidar method. We combined an invention from the 19th century with modern optoelectronics such as diode lasers and CMOS array from the 21st century. The approach exceeds expectations of background suppression, sensitivity and resolution beyond known from time-of-flight lidars. We accomplished multiband elastic atmospheric lidars for resolving single particles and aerosol plumes from 405 nm to 1550 nm. We pursued hyperspectral differential absorption lidar for molecular species. We demonstrated a simple method of inelastic hyperspectral lidar for profiling aquatic environments and vegetation structure. Not least, we have developed polarimetric Scheimpflug lidar with multi-kHz sampling rates for remote modulation spectroscopy and classification of aerofauna. All these advances are thanks to the Scheimpflug principle. Here we give a review of how far we have come and shed light on the limitations and opportunities for future directions. In particular, we show how the biosphere can be resolved with unsurpassed resolution in space and time, and share our expectation on how this can revolutionize ecological analysis and management in relation to agricultural pests, disease vectors and pollinator problematics.

  9. Global Versus Reactive Navigation for Joint UAV-UGV Missions in a Cluttered Environment

    DTIC Science & Technology

    2012-06-01

    spaces. The vehicle uses a two- wheel 5 differential drive system with a third omnidirectional caster for balance. This uncomplicated system saves... wheels , two differential drive wheels and one omni- directional caster wheel . The vehicle changes the direction of its movement by altering the speed of...Virtual Speed Versus Time..........64  Figure 23:  Heading and Yaw Rate Versus Time................64  Figure 24:  Individual Wheel Speeds Versus Time

  10. All-optical modulation in Mid-Wavelength Infrared using porous Si membranes

    PubMed Central

    Park, Sung Jin; Zakar, Ammar; Zerova, Vera L.; Chekulaev, Dimitri; Canham, Leigh T.; Kaplan, Andre

    2016-01-01

    We demonstrate for the first time the possibility of all-optical modulation of self-standing porous Silicon (pSi) membrane in the Mid-Wavelength Infrared (MWIR) range using femtosecond pump-probe techniques. To study optical modulation, we used pulses of an 800 nm, 60 femtosecond for pump and a MWIR tunable probe in the spectral range between 3.5 and 4.4 μm. We show that pSi possesses a natural transparency window centred around 4 μm. Yet, about 55% of modulation contrast can be achieved by means of optical excitation at the pump power of 60 mW (4.8 mJ/cm2). Our analysis shows that the main mechanism of the modulation is interaction of the MWIR signal with the free charge carrier excited by the pump. The time-resolved measurements showed a sub-picosecond rise time and a recovery time of about 66 ps, which suggests a modulation speed performance of ~15 GHz. This optical modulation of pSi membrane in MWIR can be applied to a variety of applications such as thermal imaging and free space communications. PMID:27440224

  11. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Several components for delivery to the International Space Station sit in test stands inside the Space Station Processing Facility highbay. To the right, from back to front, are the Japanese Experiment Module, the Raffaello multi-purpose logistics module, and the European Space Agency's Columbus scientific research module. To the left in front is the starboard truss segment S5. Behind it is the test stand that will hold the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  12. Time: The Biggest Pattern in Natural History Research

    NASA Astrophysics Data System (ADS)

    Gontier, Nathalie

    2016-10-01

    We distinguish between four cosmological transitions in the history of Western intellectual thought, and focus on how these cosmologies differentially define matter, space and time. We demonstrate that how time is conceptualized significantly impacts a cosmology's notion on causality, and hone in on how time is conceptualized differentially in modern physics and evolutionary biology. The former conflates time with space into a single space-time continuum and focuses instead on the movement of matter, while the evolutionary sciences have a tradition to understand time as a given when they cartography how organisms change across generations over or in time, thereby proving the phenomenon of evolution. The gap becomes more fundamental when we take into account that phenomena studied by chrono-biologists demonstrate that numerous organisms, including humans, have evolved a "sense" of time. And micro-evolutionary/genetic, meso-evolutionary/developmental and macro-evolutionary phenomena including speciation and extinction not only occur by different evolutionary modes and at different rates, they are also timely phenomena that follow different periodicities. This article focusses on delineating the problem by finding its historical roots. We conclude that though time might be an obsolete concept for the physical sciences, it is crucial for the evolutionary sciences where evolution is defined as the change that biological individuals undergo in/over or through time.

  13. Outreach Education Modules on Space Sciences in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen

    2013-04-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  14. Curcumin and its synthetic analogue dimethoxycurcumin differentially modulates antioxidant status of normal human peripheral blood mononuclear cells.

    PubMed

    Simon, Emmanuel; Aswini, P; Sameer Kumar, V B; Mankadath, Gokuldas

    2018-05-01

    Curcumin is a polyphenol derived from the herb Curcuma longa, which has been extensively studied in terms of its antitumour, antioxidant, and chemopreventive activity as well as various other effects. In the present work we compared curcumin with its synthetic analogue dimethoxycurcumin (dimc) in terms of its antioxidant enzyme-modulating effects in human peripheral blood mononuclear cells (PBMC). We found that these compounds modulate antioxidant enzymes differentially. Both curcumin and dimethoxycurcumin effected a decrease in lipid peroxidation status in PBMC, however, curcumin had better activity in this regard. An increase in the activity of catalase was seen in the case of curcumin-treated PBMC, whereas dimc increased catalase activity significantly to almost twofold level. Real time-polymerase chain reaction (RT-PCR) analysis revealed significant up-regulation of catalase at mRNA level post treatment with curcumin as well as dimc, however, dimc had better activity in this regard. Glutathione reductase (GR) activity and reduced glutathione levels increased in the case of peripheral blood mononuclear cells (PBMC) treated with curcumin, however, the trend was reversed with dimethoxycurcumin where, both glutathione reductase activity and reduced glutathione levels were significantly reduced. RT-PCR analysis of glutathione reductase mRNA levels showed decrease in mRNA levels post treatment with dimethoxycurcumin (dimc) further corroborating GR enzyme assay results, however, we could not obtain significant result post curcumin treatment. NFkB reporter assay and western blot analysis of nuclear as well as cytosolic fractions of NFkB revealed that curcumin inhibits NFkB activation whereas inhibition was much less with dimc. It has been reported that curcumin and dimc exerts differential cytotoxicity in normal and tumour cells and the reason for this had been attributed to the differential uptake of these compounds by normal cells and tumour cells. Based on our results we propose that differential modulation of antioxidant enzymes via NFkB pathway could be the reason behind differential cytotoxicity of dimc as well as curcumin in normal cells and tumour cells in addition to differential uptake of these compounds as reported previously.

  15. Habitability Concept Models for Living in Space

    NASA Astrophysics Data System (ADS)

    Ferrino, M.

    2002-01-01

    As growing trends show, living in "space" has acquired new meanings, especially considering the utilization of the International Space Station (ISS) with regard to group interaction as well as individual needs in terms of time, space and crew accommodations. In fact, for the crew, the Spaced Station is a combined Laboratory-Office/Home and embodies ethical, social, and cultural aspects as additional parameters to be assessed to achieve a user centered architectural design of crew workspace. Habitability Concept Models can improve the methods and techniques used to support the interior design and layout of space architectures and at the same time guarantee a human focused approach. This paper discusses and illustrates some of the results obtained for the interior design of a Habitation Module for the ISS. In this work, two different but complementary approaches are followed. The first is "object oriented" and based on Video Data (American and Russian) supported by Proxemic methods (Edward T. Hall, 1963 and Francesca Pregnolato, 1998). This approach offers flexible and adaptive design solutions. The second is "subject oriented" and based on a Virtual Reality environment. With this approach human perception and cognitive aspects related to a specific crew task are considered. Data obtained from these two approaches are used to verify requirements and advance the design of the Habitation Module for aspects related to man machine interfaces (MMI), ergonomics, work and free-time. It is expected that the results achieved can be applied to future space related projects.

  16. LIF inhibits osteoblast differentiation at least in part by regulation of HAS2 and its product hyaluronan.

    PubMed

    Falconi, Dominic; Aubin, Jane E

    2007-08-01

    LIF arrests osteogenesis in fetal rat calvaria cells in a differentiation stage-specific manner. Differential display identified HAS2 as a LIF-induced gene and its product, HA, modulated osteoblast differentiation similarly to LIF. Our data suggest that LIF arrests osteoblast differentiation by altering HA content of the extracellular matrix. Leukemia inhibitory factor (LIF) elicits both anabolic and catabolic effects on bone. We previously showed in the fetal rat calvaria (RC) cell system that LIF inhibits osteoblast differentiation at the late osteoprogenitor/early osteoblast stage. To uncover potential molecular mediators of this inhibitory activity, we used a positive-negative genome-wide differential display screen to identify LIF-induced changes in the developing osteoblast transcriptome. Although LIF signaling is active throughout the RC cell proliferation-differentiation sequence, only a relatively small number of genes, in several different functional clusters, are modulated by LIF specifically during the LIF-sensitive inhibitory time window. Based on their known and predicted functions, most of the LIF-regulated genes identified are plausible candidates to be involved in the LIF-induced arrest of osteoprogenitor differentiation. To test this hypothesis, we further analyzed the function of one of the genes identified, hyaluronan synthase 2 (HAS2), in the LIF-induced inhibition. Synthesis of hyaluronan (HA), the product of HAS enzymatic activity, was stimulated by LIF and mimicked the HAS2 expression profile, with highest expression in early/proliferative and late/maturing cultures and lowest levels in intermediate/late osteoprogenitor-early osteoblast cultures. Exogenously added high molecular weight HA, the product of HAS2, dose-dependently inhibited osteoblast differentiation, with pulse-treatment effective in the same differentiation stage-specific inhibitory window as seen with LIF. In addition, however, pulse treatment with HA in early cultures slightly increased bone nodule formation. Treatment with hyaluronidase, on the other hand, stimulated bone nodule formation in early cultures but caused a small dose-dependent inhibition of osteoblast differentiation in the LIF- and HA-sensitive late time window. Together the data suggest that osteoblast differentiation is acutely sensitive to HA levels and that LIF inhibits osteoblast development at least in part by stimulating high molecular weight HA synthesis through HAS2.

  17. SU-E-P-04: Transport Theory Learning Module in the Maple Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Both, J

    2014-06-01

    Purpose: The medical physics graduate program at the University of Miami is developing a computerized instructional module which provides an interactive mechanism for students to learn transport theory. While not essential in the medical physics curriculum, transport theory should be taught because the conceptual level of transport theory is fundamental, a substantial literature exists and ought to be accessible, and students should understand commercial software which solves the Boltzmann equation.But conventional teaching and learning of transport theory is challenging. Students may be under prepared to appreciate its methods, results, and relevance, and it is not substantially addressed in textbooks formore » the medical physicists. Other resources an instructor might reasonably use, while excellent, may be too briskly paced for beginning students. The purpose of this work is to render teaching of transport theory more tractable by making learning highly interactive. Methods: The module is being developed in the Maple mathematics environment by instructors and graduate students. It will refresh the students' knowledge of vector calculus and differential equations, and will develop users' intuition for phase space concepts. Scattering concepts will be developed with animated simulations using tunable parameters characterizing interactions, so that students may develop a “feel” for cross section. Transport equations for one and multiple types of radiation will be illustrated with phase space animations. Numerical methods of solution will be illustrated. Results: Attempts to teach rudiments of transport theory in radiation physics and dosimetry courses using conventional classroom techniques at the University of Miami have had small success, because classroom time is limited and the material has been hard for our students to appreciate intuitively. Conclusion: A joint effort of instructor and students to teach and learn transport theory by building an interactive description of it will lead to deeper appreciation of the transport theoretical underpinnings of dosimetry.« less

  18. Modulation of Differentiation Processes in Murine Embryonic Stem Cells Exposed to Parabolic Flight-Induced Acute Hypergravity and Microgravity.

    PubMed

    Acharya, Aviseka; Brungs, Sonja; Henry, Margit; Rotshteyn, Tamara; Singh Yaduvanshi, Nirmala; Wegener, Lucia; Jentzsch, Simon; Hescheler, Jürgen; Hemmersbach, Ruth; Boeuf, Helene; Sachinidis, Agapios

    2018-06-15

    Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of short-term altered gravity on embryonic development processes, we exposed mouse embryonic stem cells (mESCs) to phases of hypergravity and microgravity and studied the differentiation potential of the cells using wide-genome microarray analysis. During the 64th European Space Agency's parabolic flight campaign, mESCs were exposed to 31 parabolas. Each parabola comprised phases lasting 22 s of hypergravity, microgravity, and a repeat of hypergravity. On different parabolas, RNA was isolated for microarray analysis. After exposure to 31 parabolas, mESCs (P31 mESCs) were further differentiated under normal gravity (1 g) conditions for 12 days, producing P31 12-day embryoid bodies (EBs). After analysis of the microarrays, the differentially expressed genes were analyzed using different bioinformatic tools to identify developmental and nondevelopmental biological processes affected by conditions on the parabolic flight experiment. Our results demonstrated that several genes belonging to GOs associated with cell cycle and proliferation were downregulated in undifferentiated mESCs exposed to gravity changes. However, several genes belonging to developmental processes, such as vasculature development, kidney development, skin development, and to the TGF-β signaling pathway, were upregulated. Interestingly, similar enriched and suppressed GOs were obtained in P31 12-day EBs compared with ground control 12-day EBs. Our results show that undifferentiated mESCs exposed to alternate hypergravity and microgravity phases expressed several genes associated with developmental/differentiation and cell cycle processes, suggesting a transition from the undifferentiated pluripotent to a more differentiated stage of mESCs.

  19. Retro-modulators and fast beam steering for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Chan, Trevor Keith

    Free-space optical (FSO) communications is a means of secure, high bandwidth communication through the use of a modulated laser beam in free-space as the information medium. The chaotic nature of the atmosphere and the motion of the communication nodes make laser alignment a crucial concern. The employment of retro-reflecting modulators makes the bidirectional quality of a communication link into a one sided alignment problem. While there are existing retro-reflecting modulators, their trade-offs create a lack of abilities (such as aperture size, angular range, high modulation speeds, economic viability) which do not fulfill the requirements for certain applications. Also, the beam must be directed towards the intended receiver. Form mobile or scintillated communication links, beam direction must be adaptable in real time. Once again, this area suffers from trade-offs where beamsteering speed is often limited. Research used to mitigate the trade-offs and adapt the devices into viable options for a wider range of applications is explored in this dissertation. Two forms of retro-modulators were explored; a MEMS deformable mirror retro-modulator and a solid silicon retro-modulator that modulated the light by frustrated total internal reflection (FTIR). The MEMS version offered a high speed, scalable, wavelength/angle insensitive retro-modulator which can be massed produced at low cost, while the solid retro-modulator offered a large field of view with low cost as well. Both modulator's design, simulated performances, fabrication and experimental characterization are described in this dissertation. An ultra-fast beamscanner was also designed using 2-dimensional dispersion. By using wavelength switching for directional control, a beamscanner was developed that could switch light faster than pre-existing beamscanners while the beams characteristics (most importantly its aperture) could be freely adjusted by the independent optics. This beamscanner was preceded by our work on a large channel wavelength demultiplexer which combined two orthogonally oriented wavelength demultiplexers. This created a 2-dimensional array of spots in free-space. The light was directed be a collimating lens into a specific direction based on its wavelength. The performance of this beamscanner was simulated by modeling the dispersive properties of the components.

  20. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  1. Radiation Measured with Different Dosimeters for ISS-Expedition 18-19/ULF2 on Board International Space Station during Solar Minimum

    NASA Technical Reports Server (NTRS)

    Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.

    2010-01-01

    Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.

  2. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  3. Elucidating the correlation between morphology and ion dynamics in polymerized ionic liquids.

    NASA Astrophysics Data System (ADS)

    Heres, Maximilian; Cosby, Tyler; Iacob, Ciprian; Runt, James; Benson, Roberto; Liu, Hongjun; Paddison, Stephen; Sangoro, Joshua

    Charge transport and dynamics are investigated for a series of poly-ammonium and poly-imidazolium-based polymerized ionic liquids (polyIL) with a common bis(trifluoromethylsulfonyl)imide anion using broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry. A significant enhancement of the Tg independent ionic conductivity is observed for ammonium based polyIL with shorter pendant groups, in comparison to imidazolium based systems. These results emphasize the importance of polymer backbone spacing as well as counter-ion size on ionic conductivity in polymerized ionic liquids. NSF DMR 1508394.

  4. Solid polymer electrolyte water electrolysis preprototype subsystem. [oxygen production for life support systems on space stations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.

  5. Adaptive single-pixel imaging with aggregated sampling and continuous differential measurements

    NASA Astrophysics Data System (ADS)

    Huo, Yaoran; He, Hongjie; Chen, Fan; Tai, Heng-Ming

    2018-06-01

    This paper proposes an adaptive compressive imaging technique with one single-pixel detector and single arm. The aggregated sampling (AS) method enables the reduction of resolutions of the reconstructed images. It aims to reduce the time and space consumption. The target image with a resolution up to 1024 × 1024 can be reconstructed successfully at the 20% sampling rate. The continuous differential measurement (CDM) method combined with a ratio factor of significant coefficient (RFSC) improves the imaging quality. Moreover, RFSC reduces the human intervention in parameter setting. This technique enhances the practicability of single-pixel imaging with the benefits from less time and space consumption, better imaging quality and less human intervention.

  6. A class of traveling wave solutions for space-time fractional biological population model in mathematical physics

    NASA Astrophysics Data System (ADS)

    Akram, Ghazala; Batool, Fiza

    2017-10-01

    The (G'/G)-expansion method is utilized for a reliable treatment of space-time fractional biological population model. The method has been applied in the sense of the Jumarie's modified Riemann-Liouville derivative. Three classes of exact traveling wave solutions, hyperbolic, trigonometric and rational solutions of the associated equation are characterized with some free parameters. A generalized fractional complex transform is applied to convert the fractional equations to ordinary differential equations which subsequently resulted in number of exact solutions. It should be mentioned that the (G'/G)-expansion method is very effective and convenient for solving nonlinear partial differential equations of fractional order whose balancing number is a negative integer.

  7. A nonlinear ordinary differential equation associated with the quantum sojourn time

    NASA Astrophysics Data System (ADS)

    Benguria, Rafael D.; Duclos, Pierre; Fernández, Claudio; Sing-Long, Carlos

    2010-11-01

    We study a nonlinear ordinary differential equation on the half-line, with the Dirichlet boundary condition at the origin. This equation arises when studying the local maxima of the sojourn time for a free quantum particle whose states belong to an adequate subspace of the unit sphere of the corresponding Hilbert space. We establish several results concerning the existence and asymptotic behavior of the solutions.

  8. Apollo 12 Mission Summary and Splashdown

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This NASA Kennedy Space Center (KSC) video release presents footage of the November 14, 1969 Apollo-12 space mission begun from launch complex pad 39-A at Kennedy Space Center, Florida. Charles Conrad, Jr., Richard F. Gordon, Jr., and Alan L. Bean make up the three-man spacecrew. The video includes the astronaut's pre-launch breakfast, President Nixon, his wife, and daughter arriving at Cape Kennedy in time to see the launch, as well as countdown and liftoff. After the launch, President Nixon gives a brief congratulatory speech to the members of launch control at KSC. The video also presents views of the astronauts and spacecraft in space as well as splashdown of the command module on November 24, 1969. The video ends with the recovery, by helicopter and additional personnel, of the spacecrew from the command module floating in the waters of the Atlantic.

  9. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) accompanies Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) accompanies Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  10. Performance investigation of optical multicast overlay system using orthogonal modulation format

    NASA Astrophysics Data System (ADS)

    Singh, Simranjit; Singh, Sukhbir; Kaur, Ramandeep; Kaler, R. S.

    2015-03-01

    We proposed a bandwidth efficient wavelength division multiplexed-passive optical network (WDM-PON) to simultaneously transmit 60 Gb/s unicast and 10 Gb/s multicast services with 10 Gb/s upstream. The differential phase shift keying (DPSK) multicast signal is superimposed onto multiplexed non-return to zero/polarization shift keying (NRZ/PolSK) orthogonal modulated data signals. Upstream amplitude shift keying (ASK) signals formed without use of any additional light source and superimposed onto received unicast NRZ/PolSK signal before being transmitted back to optical line terminal (OLT). We also investigated the proposed WDM-PON system for variable optical input power, transmission distance of single mode fiber in multicast enable and disable mode. The measured Quality factor for all unicast and multicast signal is in acceptable range (>6). The original contribution of this paper is to propose a bandwidth efficient WDM-PON system that could be projected even in high speed scenario at reduced channel spacing and expected to be more technical viable due to use of optical orthogonal modulation formats.

  11. Exothermic furnace module development. [space processing

    NASA Technical Reports Server (NTRS)

    Darnell, R. R.; Poorman, R. M.

    1982-01-01

    An exothermic furnace module was developed to rapidly heat and cool a 0.820-in. (2.1 cm) diameter by 2.75-in. (7.0 cm) long TZM molybdenum alloy crucible. The crucible contains copper, oxygen, and carbon for processing in a low-g environment. Peak temperatures of 1270 C were obtainable 3.5 min after start of ignition, and cooling below 950 C some 4.5 min later. These time-temperature relationships were conditioned for a foam-copper experiment, Space Processing Applications Rocket experiment 77-9, in a sounding rocket having a low-g period of 5 min.

  12. Space station common module power system network topology and hardware development

    NASA Technical Reports Server (NTRS)

    Landis, D. M.

    1985-01-01

    Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task.

  13. STS-42 crewmembers work in the IML-1 module located in OV-103's payload bay

    NASA Image and Video Library

    1992-01-30

    STS042-201-009 (22-30 Jan 1992) --- Canadian Roberta L. Bondar, payload specialist representing the Canadian Space Agency (CSA), works at the International Microgravity Laboratory's (IML-1) biorack while astronaut Stephen S. Oswald, pilot, changes a film magazine on the IMAX camera. The two were joined by five fellow crew members for eight-days of scientific research aboard the Space Shuttle Discovery in Earth-orbit. Most of their on-duty time was spent in this IML-1 Science Module, positioned in the cargo bay and attached via a tunnel to Discovery's airlock.

  14. Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound.

    PubMed

    Virmani, Jitendra; Kumar, Vinod; Kalra, Naveen; Khandelwal, Niranjan

    2014-08-01

    A neural network ensemble (NNE) based computer-aided diagnostic (CAD) system to assist radiologists in differential diagnosis between focal liver lesions (FLLs), including (1) typical and atypical cases of Cyst, hemangioma (HEM) and metastatic carcinoma (MET) lesions, (2) small and large hepatocellular carcinoma (HCC) lesions, along with (3) normal (NOR) liver tissue is proposed in the present work. Expert radiologists, visualize the textural characteristics of regions inside and outside the lesions to differentiate between different FLLs, accordingly texture features computed from inside lesion regions of interest (IROIs) and texture ratio features computed from IROIs and surrounding lesion regions of interests (SROIs) are taken as input. Principal component analysis (PCA) is used for reducing the dimensionality of the feature space before classifier design. The first step of classification module consists of a five class PCA-NN based primary classifier which yields probability outputs for five liver image classes. The second step of classification module consists of ten binary PCA-NN based secondary classifiers for NOR/Cyst, NOR/HEM, NOR/HCC, NOR/MET, Cyst/HEM, Cyst/HCC, Cyst/MET, HEM/HCC, HEM/MET and HCC/MET classes. The probability outputs of five class PCA-NN based primary classifier is used to determine the first two most probable classes for a test instance, based on which it is directed to the corresponding binary PCA-NN based secondary classifier for crisp classification between two classes. By including the second step of the classification module, classification accuracy increases from 88.7 % to 95 %. The promising results obtained by the proposed system indicate its usefulness to assist radiologists in differential diagnosis of FLLs.

  15. SPX-8 SpaceX Dragon Spacecraft Approach

    NASA Image and Video Library

    2016-04-10

    iss047e050943 (4/10/2016) --- The SpaceX Dragon cargo spaceship begins the final approach to the International Space Station. On the left, the solar arrays of Orbital ATK’s Cygnus cargo craft can be seen. Dragon’s arrival marked the first time two commercial cargo vehicles have been docked simultaneously at the space station. Orbital ATK’s Cygnus spacecraft arrived to the station just over two weeks ago. With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six. The spacecraft is delivering about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM.

  16. KENNEDY SPACE CENTER, FLA. - Workers watch as the Multi-Purpose Logistics Module Raffaello is lowered toward a work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved across the floor to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - Workers watch as the Multi-Purpose Logistics Module Raffaello is lowered toward a work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved across the floor to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  17. KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello is lifted from its stand in the Space Station Processing Facility to move to another work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello is lifted from its stand in the Space Station Processing Facility to move to another work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  18. KENNEDY SPACE CENTER, FLA. - A worker on the floor watches as the Multi-Purpose Logistics Module Raffaello moves toward another work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved across the floor to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - A worker on the floor watches as the Multi-Purpose Logistics Module Raffaello moves toward another work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved across the floor to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  19. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Raffaello glides above the floor as it moves to another stand on the other side. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Raffaello glides above the floor as it moves to another stand on the other side. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  20. KENNEDY SPACE CENTER, FLA. - An overhead crane is attached to the Multi-Purpose Logistics Module Raffaello in order to move it to another work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - An overhead crane is attached to the Multi-Purpose Logistics Module Raffaello in order to move it to another work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  1. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility prepare to release the overhead crane from the Multi-Purpose Logistics Module Raffaello now secure on a new work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility prepare to release the overhead crane from the Multi-Purpose Logistics Module Raffaello now secure on a new work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  2. The impact of goal-oriented task design on neurofeedback learning for brain-computer interface control.

    PubMed

    McWhinney, S R; Tremblay, A; Boe, S G; Bardouille, T

    2018-02-01

    Neurofeedback training teaches individuals to modulate brain activity by providing real-time feedback and can be used for brain-computer interface control. The present study aimed to optimize training by maximizing engagement through goal-oriented task design. Participants were shown either a visual display or a robot, where each was manipulated using motor imagery (MI)-related electroencephalography signals. Those with the robot were instructed to quickly navigate grid spaces, as the potential for goal-oriented design to strengthen learning was central to our investigation. Both groups were hypothesized to show increased magnitude of these signals across 10 sessions, with the greatest gains being seen in those navigating the robot due to increased engagement. Participants demonstrated the predicted increase in magnitude, with no differentiation between hemispheres. Participants navigating the robot showed stronger left-hand MI increases than those with the computer display. This is likely due to success being reliant on maintaining strong MI-related signals. While older participants showed stronger signals in early sessions, this trend later reversed, suggesting greater natural proficiency but reduced flexibility. These results demonstrate capacity for modulating neurofeedback using MI over a series of training sessions, using tasks of varied design. Importantly, the more goal-oriented robot control task resulted in greater improvements.

  3. Functional characterization of the extraclassical receptive field in macaque V1: contrast, orientation, and temporal dynamics.

    PubMed

    Henry, Christopher A; Joshi, Siddhartha; Xing, Dajun; Shapley, Robert M; Hawken, Michael J

    2013-04-03

    Neurons in primary visual cortex, V1, very often have extraclassical receptive fields (eCRFs). The eCRF is defined as the region of visual space where stimuli cannot elicit a spiking response but can modulate the response of a stimulus in the classical receptive field (CRF). We investigated the dependence of the eCRF on stimulus contrast and orientation in macaque V1 cells for which the laminar location was determined. The eCRF was more sensitive to contrast than the CRF across the whole population of V1 cells with the greatest contrast differential in layer 2/3. We confirmed that many V1 cells experience stronger suppression for collinear than orthogonal stimuli in the eCRF. Laminar analysis revealed that the predominant bias for collinear suppression was found in layers 2/3 and 4b. The laminar pattern of contrast and orientation dependence suggests that eCRF suppression may derive from different neural circuits in different layers, and may be comprised of two distinct components: orientation-tuned and untuned suppression. On average tuned suppression was delayed by ∼25 ms compared with the onset of untuned suppression. Therefore, response modulation by the eCRF develops dynamically and rapidly in time.

  4. A new method for calculating differential distributions directly in Mellin space

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander

    2006-12-01

    We present a new method for the calculation of differential distributions directly in Mellin space without recourse to the usual momentum-fraction (or z-) space. The method is completely general and can be applied to any process. It is based on solving the integration-by-parts identities when one of the powers of the propagators is an abstract number. The method retains the full dependence on the Mellin variable and can be implemented in any program for solving the IBP identities based on algebraic elimination, like Laporta. General features of the method are: (1) faster reduction, (2) smaller number of master integrals compared to the usual z-space approach and (3) the master integrals satisfy difference instead of differential equations. This approach generalizes previous results related to fully inclusive observables like the recently calculated three-loop space-like anomalous dimensions and coefficient functions in inclusive DIS to more general processes requiring separate treatment of the various physical cuts. Many possible applications of this method exist, the most notable being the direct evaluation of the three-loop time-like splitting functions in QCD.

  5. KSC-03pd0122

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- As billows of smoke and steam roll across the landscape, the fiery launch of Space Shuttle Columbia on mission STS-107 is reflected in nearby water. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  6. KSC-03pd0127

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- After a perfect launch, spectators try to catch a last glimpse of Space Shuttle Columbia, barely visible at the top end of the twisted column of smoke. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. Headed for a 16-day research mission, Columbia's crew will be taking part in more than 80 experiment, including FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  7. KSC-03pp0142

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - A closeup camera view shows Space Shuttle Columbia as it lifts off from Launch Pad 39A on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  8. KSC-03pd0111

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Photographers and spectators watch from across the turn basin as Space Shuttle Columbia begins a perfect launch from Pad 39A following a flawless and uneventful countdown. Liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  9. Numerical analysis of seismic events distributions on the planetary scale and celestial bodies astrometrical parameters

    NASA Astrophysics Data System (ADS)

    Bulatova, Dr.

    2012-04-01

    Modern research in the domains of Earth sciences is developing from the descriptions of each individual natural phenomena to the systematic complex research in interdisciplinary areas. For studies of its kind in the form numerical analysis of three-dimensional (3D) systems, the author proposes space-time Technology (STT), based on a Ptolemaic geocentric system, consist of two modules, each with its own coordinate system: (1) - 3D model of a Earth, the coordinates of which provides databases of the Earth's events (here seismic), and (2) - a compact model of the relative motion of celestial bodies in space - time on Earth known as the "Method of a moving source" (MDS), which was developed in MDS (Bulatova, 1998-2000) for the 3D space. Module (2) was developed as a continuation of the geocentric Ptolemaic system of the world, built on the astronomical parameters heavenly bodies. Based on the aggregation data of Space and Earth Sciences, systematization, and cooperative analysis, this is an attempt to establish a cause-effect relationship between the position of celestial bodies (Moon, Sun) and Earth's seismic events.

  10. KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  11. KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  12. KSC-07pd0635

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd0632

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  14. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the TR modules, (ii) radar operation software which facilitates experimental parameter setting and operating the radar in different modes, (iii) beam steering software which computes the amplitude co-efficients and phases required for each TR module, for forming the beams selected for radar operation with the desired shape and (iv) Calibration software for calibrating the radar by measuring the differential insertion phase and amplitudes in all 1024 Transmit and Receive paths and correcting them. The TR module configuring software is a major task as it needs to control 1024 TR modules, which are located in the field about 150 m away from the RC system in the control room. Each TR module has a processor identified with a dedicated IP address, along with memory to store the instructions and parameters required for radar operation. A communication link is designed using Gigabit Ethernet (GbE) switches to realise 1 to 1024 way switching network. RC system computer communicates with the each processor using its IP address and establishes connection, via 1 to 1024 port GbE switching network. The experimental parameters data are pre-loaded parallely into all the TR modules along with the phase shifter data required for beam steering using this network. A reference timing pulse is sent to all the TR modules simultaneously, which indicates the start of radar operation. RC system also monitors the status parameters from the TR modules indicating their health during radar operation at regular intervals, via GbE switching network. Beam steering software generates the phase shift required for each TR module for the beams selected for operation. Radar operational software calls the phase shift data required for beam steering and adds it to the calibration phase obtained through calibration software and loads the resultant phase data into TR modules. Timed command/data transfer to/from subsystems and synchronisation of subsystems is essential for proper real-time operation of the active phased array radar and the RC system ensures that the commands/experimental parameter data are properly transferred to all subsystems especially to TR modules. In case of failure of any TR module, it is indicated to the user for further rectification. Realisation of the RC system is at an advanced stage. More details will be presented in the conference.

  15. Unitals and ovals of symmetric block designs in LDPC and space-time coding

    NASA Astrophysics Data System (ADS)

    Andriamanalimanana, Bruno R.

    2004-08-01

    An approach to the design of LDPC (low density parity check) error-correction and space-time modulation codes involves starting with known mathematical and combinatorial structures, and deriving code properties from structure properties. This paper reports on an investigation of unital and oval configurations within generic symmetric combinatorial designs, not just classical projective planes, as the underlying structure for classes of space-time LDPC outer codes. Of particular interest are the encoding and iterative (sum-product) decoding gains that these codes may provide. Various small-length cases have been numerically implemented in Java and Matlab for a number of channel models.

  16. KSC-07pd3172

    NASA Image and Video Library

    2007-11-07

    KENNEDY SPACE CENTER, FLA. -- Associate Administrator for NASA Space Operations William Gerstenmaier and Shuttle Program Manager Wayne Hale examine the thermal protection system on the wing of space shuttle Discovery after its landing at NASA's Kennedy Space Center. Discovery completed the 15-day mission STS-120, with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA//Kim Shiflett

  17. KSC-07pd3171

    NASA Image and Video Library

    2007-11-07

    KENNEDY SPACE CENTER, FLA. -- Shuttle Program Manager Wayne Hale points to the left wing of space shuttle Discovery after its landing at NASA's Kennedy Space Center. To the left is Associate Administrator for NASA Space Operations William Gerstenmaier. Discovery completed the 15-day mission STS-120, with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Kim Shiflett

  18. Solar Cycle Variability and Surface Differential Rotation from Ca II K-line Time Series Data

    NASA Astrophysics Data System (ADS)

    Scargle, Jeffrey D.; Keil, Stephen L.; Worden, Simon P.

    2013-07-01

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period ~ 11 yr), (b) quasi-periodic variations (periods ~ 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range ~0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  19. SOLAR CYCLE VARIABILITY AND SURFACE DIFFERENTIAL ROTATION FROM Ca II K-LINE TIME SERIES DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scargle, Jeffrey D.; Worden, Simon P.; Keil, Stephen L.

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period {approx} 11 yr), (b) quasi-periodic variations (periods {approx} 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structuremore » (a) and (b) at timescales in the range {approx}0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak{sub m}on/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.« less

  20. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  1. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility for uncrating. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  2. Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast

    PubMed Central

    Lu, Hangwen; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei

    2016-01-01

    Differential phase contrast (DPC) is a non-interferometric quantitative phase imaging method achieved by using an asymmetric imaging procedure. We report a pupil modulation differential phase contrast (PMDPC) imaging method by filtering a sample’s Fourier domain with half-circle pupils. A phase gradient image is captured with each half-circle pupil, and a quantitative high resolution phase image is obtained after a deconvolution process with a minimum of two phase gradient images. Here, we introduce PMDPC quantitative phase image reconstruction algorithm and realize it experimentally in a 4f system with an SLM placed at the pupil plane. In our current experimental setup with the numerical aperture of 0.36, we obtain a quantitative phase image with a resolution of 1.73μm after computationally removing system aberrations and refocusing. We also extend the depth of field digitally by 20 times to ±50μm with a resolution of 1.76μm. PMID:27828473

  3. Sirtuin 1-dependent resveratrol cytotoxicity and pro-differentiation activity on breast cancer cells.

    PubMed

    Deus, Cláudia M; Serafim, Teresa L; Magalhães-Novais, Silvia; Vilaça, Andreia; Moreira, Ana C; Sardão, Vilma A; Cardoso, Susana M; Oliveira, Paulo J

    2017-03-01

    Sirtuins regulate several processes associated with tumor development. Resveratrol was shown to stimulate sirtuin 1 and 3 (SIRT1/3) activities and to result in cytotoxicity for some tumor types. The relationship between modulation of sirtuin activities, cellular metabolic remodeling and resveratrol cytotoxicity mechanism on breast cancer cells is still an open question. Here, we evaluated whether sirtuin 1 and 3 are involved in resveratrol toxicity and whether resveratrol leads to a metabolic remodeling and cell differentiation. Results using the Extracellular Flux Analyzer indicated that resveratrol inhibits mitochondrial respiration in breast cancer cells. We also demonstrated here for the first time that resveratrol cytotoxic effects on breast cancer cells were modulated by SIRT1 and also involved mitochondrial complex I inhibition. Importantly, we also demonstrated that resveratrol reduced the pool of breast cancer cells with stemness markers through a SIRT1-dependent mechanism. Our data highlights the role of SIRT1 in regulating resveratrol induced differentiation and/or toxicity in breast cancer cells.

  4. Space-to-Space Communications System

    NASA Technical Reports Server (NTRS)

    Tu, Kwei; Gaylor, Kent; Vitalpur, Sharada; Sham, Cathy

    1999-01-01

    The Space-to-Space Communications System (SSCS) is an Ultra High Frequency (UHF) Time-Division-Multiple Access (TDMA) system that is designed, developed, and deployed by the NASA Johnson Space Center (JSC) to provide voice, commands, telemetry and data services in close proximity among three space elements: International Space Station (ISS), Space Shuttle Orbiter, and Extravehicular Mobility Units (EMU). The SSCS consists of a family of three radios which are, Space-to-Space Station Radio (SSSR), Space-to-Space Orbiter Radio (SSOR), and Space-to-Space Extravehicular Mobility Radio (SSER). The SSCS can support up to five such radios at a time. Each user has its own time slot within which to transmit voice and data. Continuous Phase Frequency Shift Keying (CPFSK) carrier modulation with a burst data rate of 695 kbps and a frequency deviation of 486.5 kHz is employed by the system. Reed-Solomon (R-S) coding is also adopted to ensure data quality. In this paper, the SSCS system requirements, operational scenario, detailed system architecture and parameters, link acquisition strategy, and link performance analysis will be presented and discussed

  5. Japanese Experiment Module (JEM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Japanese Experiment Module (JEM) pressure module is removed from its shipping crate and moved across the floor of the Space Station Processing Facility at Kennedy Space Center (KSC) to a work stand. A research laboratory, the pressurized module is the first element of the JEM, named 'Kibo' (Hope) to arrive at KSC. Japan's primary contribution to the International Space Station, the module will enhance unique research capabilities of the orbiting complex by providing an additional environment in which astronauts will conduct experiments. The JEM also includes an exposed facility or platform for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  6. KSC-07pd0636

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module, known as Kibo. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  7. Effects of chronic morphine and morphine withdrawal on gene expression in rat peripheral blood mononuclear cells.

    PubMed

    Desjardins, Stephane; Belkai, Emilie; Crete, Dominique; Cordonnier, Laurie; Scherrmann, Jean-Michel; Noble, Florence; Marie-Claire, Cynthia

    2008-12-01

    Chronic morphine treatment alters gene expression in brain structures. There are increasing evidences showing a correlation, in gene expression modulation, between blood cells and brain in psychological troubles. To test whether gene expression regulation in blood cells could be found in drug addiction, we investigated gene expression profiles in peripheral blood mononuclear (PBMC) cells of saline and morphine-treated rats. In rats chronically treated with morphine, the behavioral signs of spontaneous withdrawal were observed and a withdrawal score was determined. This score enabled to select the time points at which the animals displayed the mildest and strongest withdrawal signs (12 h and 36 h after the last injection). Oligonucleotide arrays were used to assess differential gene expression in the PBMCs and quantitative real-time RT-PCR to validate the modulation of several candidate genes 12 h and 36 h after the last injection. Among the 812 differentially expressed candidates, several genes (Adcy5, Htr2a) and pathways (Map kinases, G-proteins, integrins) have already been described as modulated in the brain of morphine-treated rats. Sixteen out of the twenty-four tested candidates were validated at 12 h, some of them showed a sustained modulation at 36 h while for most of them the modulation evolved as the withdrawal score increased. This study suggests similarities between the gene expression profile in PBMCs and brain of morphine-treated rats. Thus, the searching of correlations between the severity of the withdrawal and the PBMCs gene expression pattern by transcriptional analysis of blood cells could be promising for the study of the mechanisms of addiction.

  8. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.

    PubMed

    Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P

    2015-08-01

    Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.

  9. Reflight of the First Microgravity Science Laboratory: Quick Turnaround of a Space Shuttle Mission

    NASA Technical Reports Server (NTRS)

    Simms, Yvonne

    1998-01-01

    Due to the short flight of Space Shuttle Columbia, STS-83, in April 1997, NASA chose to refly the same crew, shuttle, and payload on STS-94 in July 1997. This was the first reflight of an entire mission complement. The reflight of the First Microgravity Science Laboratory (MSL-1) on STS-94 required an innovative approach to Space Shuttle payload ground processing. Ground processing time for the Spacelab Module, which served as the laboratory for MSL-1 experiments, was reduced by seventy-five percent. The Spacelab Module is a pressurized facility with avionics and thermal cooling and heating accommodations. Boeing-Huntsville, formerly McDonnell Douglas Aerospace, has been the Spacelab Integration Contractor since 1977. The first Spacelab Module flight was in 1983. An experienced team determined what was required to refurbish the Spacelab Module for reflight. Team members had diverse knowledge, skills, and background. An engineering assessment of subsystems, including mechanical, electrical power distribution, command and data management, and environmental control and life support, was performed. Recommendations for resolution of STS-83 Spacelab in-flight anomalies were provided. Inspections and tests that must be done on critical Spacelab components were identified. This assessment contributed to the successful reflight of MSL-1, the fifteenth Spacelab Module mission.

  10. Electro-Optic Time-to-Space Converter for Optical Detector Jitter Mitigation

    NASA Technical Reports Server (NTRS)

    Birnbaum, Kevin; Farr, William

    2013-01-01

    A common problem in optical detection is determining the arrival time of a weak optical pulse that may comprise only one to a few photons. Currently, this problem is solved by using a photodetector to convert the optical signal to an electronic signal. The timing of the electrical signal is used to infer the timing of the optical pulse, but error is introduced by random delay between the absorption of the optical pulse and the creation of the electrical one. To eliminate this error, a time-to-space converter separates a sequence of optical pulses and sends them to different photodetectors, depending on their arrival time. The random delay, called jitter, is at least 20 picoseconds for the best detectors capable of detecting the weakest optical pulses, a single photon, and can be as great as 500 picoseconds. This limits the resolution with which the timing of the optical pulse can be measured. The time-to-space converter overcomes this limitation. Generally, the time-to-space converter imparts a time-dependent momentum shift to the incoming optical pulses, followed by an optical system that separates photons of different momenta. As an example, an electro-optic phase modulator can be used to apply longitudinal momentum changes (frequency changes) that vary in time, followed by an optical spectrometer (such as a diffraction grating), which separates photons with different momenta into different paths and directs them to impinge upon an array of photodetectors. The pulse arrival time is then inferred by measuring which photodetector receives the pulse. The use of a time-to-space converter mitigates detector jitter and improves the resolution with which the timing of an optical pulse is determined. Also, the application of the converter enables the demodulation of a pulse position modulated signal (PPM) at higher bandwidths than using previous photodetector technology. This allows the creation of a receiver for a communication system with high bandwidth and high bits/photon efficiency.

  11. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  12. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  13. The Unity connecting module moves into payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module is moved toward the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88 . The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.

  14. Covariant information-density cutoff in curved space-time.

    PubMed

    Kempf, Achim

    2004-06-04

    In information theory, the link between continuous information and discrete information is established through well-known sampling theorems. Sampling theory explains, for example, how frequency-filtered music signals are reconstructible perfectly from discrete samples. In this Letter, sampling theory is generalized to pseudo-Riemannian manifolds. This provides a new set of mathematical tools for the study of space-time at the Planck scale: theories formulated on a differentiable space-time manifold can be equivalent to lattice theories. There is a close connection to generalized uncertainty relations which have appeared in string theory and other studies of quantum gravity.

  15. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  16. A Space and Atmospheric Visualization Science System

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.; Blanchard, P.; Mankofsky, A.; Goodrich, C.; Kamins, D.; Kulkarni, R.; Mcnabb, D.; Moroh, M.

    1994-01-01

    SAVS (a Space and Atmospheric Visualization Science system) is an integrated system with user-friendly functionality that employs a 'push-button' software environment that mimics the logical scientific processes in data acquisition, reduction, analysis, and visualization. All of this is accomplished without requiring a detailed understanding of the methods, networks, and modules that link the tools and effectively execute the functions. This report describes SAVS and its components, followed by several applications based on generic research interests in interplanetary and magnetospheric physics (IMP/ISTP), active experiments in space (CRRES), and mission planning focused on the earth's thermospheric, ionospheric, and mesospheric domains (TIMED). The final chapters provide a user-oriented description of interface functionalities, hands-on operations, and customized modules, with details of the primary modules presented in the appendices. The overall intent of the report is to reflect the accomplishments of the three-year development effort and to introduce potential users to the power and utility of the integrated data acquisition, analysis, and visualization system.

  17. KSC-07pd0898

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, stands in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The module will be delivered to the space station on mission STS-123. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  18. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) accompanies Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) accompanies Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  19. Analytical approach for the fractional differential equations by using the extended tanh method

    NASA Astrophysics Data System (ADS)

    Pandir, Yusuf; Yildirim, Ayse

    2018-07-01

    In this study, we consider analytical solutions of space-time fractional derivative foam drainage equation, the nonlinear Korteweg-de Vries equation with time and space-fractional derivatives and time-fractional reaction-diffusion equation by using the extended tanh method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, various exact analytical solutions consisting of trigonometric function solutions, kink-shaped soliton solutions and new exact solitary wave solutions are obtained.

  20. A model of the regulatory network involved in the control of the cell cycle and cell differentiation in the Caenorhabditis elegans vulva.

    PubMed

    Weinstein, Nathan; Ortiz-Gutiérrez, Elizabeth; Muñoz, Stalin; Rosenblueth, David A; Álvarez-Buylla, Elena R; Mendoza, Luis

    2015-03-13

    There are recent experimental reports on the cross-regulation between molecules involved in the control of the cell cycle and the differentiation of the vulval precursor cells (VPCs) of Caenorhabditis elegans. Such discoveries provide novel clues on how the molecular mechanisms involved in the cell cycle and cell differentiation processes are coordinated during vulval development. Dynamic computational models are helpful to understand the integrated regulatory mechanisms affecting these cellular processes. Here we propose a simplified model of the regulatory network that includes sufficient molecules involved in the control of both the cell cycle and cell differentiation in the C. elegans vulva to recover their dynamic behavior. We first infer both the topology and the update rules of the cell cycle module from an expected time series. Next, we use a symbolic algorithmic approach to find which interactions must be included in the regulatory network. Finally, we use a continuous-time version of the update rules for the cell cycle module to validate the cyclic behavior of the network, as well as to rule out the presence of potential artifacts due to the synchronous updating of the discrete model. We analyze the dynamical behavior of the model for the wild type and several mutants, finding that most of the results are consistent with published experimental results. Our model shows that the regulation of Notch signaling by the cell cycle preserves the potential of the VPCs and the three vulval fates to differentiate and de-differentiate, allowing them to remain completely responsive to the concentration of LIN-3 and lateral signal in the extracellular microenvironment.

  1. Continuous time of flight measurements in a Lissajous configuration.

    PubMed

    Dobos, G; Hárs, G

    2017-01-01

    Short pulses used by traditional time-of-flight mass spectrometers limit their duty cycle, pose space-charge issues, and require high speed detectors and electronics. The motivation behind the invention of continuous time of flight mass spectrometers was to mitigate these problems, by increasing the number of ions reaching the detector and eliminating the need for fast data acquisition systems. The most crucial components of these spectrometers are their modulators: they determine both the maximal modulation frequency and the modulation depth. Through these parameters they limit the achievable mass resolution and signal-to-noise ratio. In this paper, a new kind of setup is presented which modulates the beam by deflecting it in two perpendicular directions and collects ions on a position sensitive detector. Such an Lissajous time of flight spectrometer achieves modulation without the use of slits or apertures, making it possible for all ions to reach the detector, thereby increasing the transmission and signal-to-noise ratio. In this paper, we provide the mathematical description of the system, discuss its properties, and present a practical demonstration of the principle.

  2. Unity connecting module in the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.

  3. A comparison of the Method of Lines to finite difference techniques in solving time-dependent partial differential equations. [with applications to Burger equation and stream function-vorticity problem

    NASA Technical Reports Server (NTRS)

    Kurtz, L. A.; Smith, R. E.; Parks, C. L.; Boney, L. R.

    1978-01-01

    Steady state solutions to two time dependent partial differential systems have been obtained by the Method of Lines (MOL) and compared to those obtained by efficient standard finite difference methods: (1) Burger's equation over a finite space domain by a forward time central space explicit method, and (2) the stream function - vorticity form of viscous incompressible fluid flow in a square cavity by an alternating direction implicit (ADI) method. The standard techniques were far more computationally efficient when applicable. In the second example, converged solutions at very high Reynolds numbers were obtained by MOL, whereas solution by ADI was either unattainable or impractical. With regard to 'set up' time, solution by MOL is an attractive alternative to techniques with complicated algorithms, as much of the programming difficulty is eliminated.

  4. KSC-07pp2286

    NASA Image and Video Library

    2007-08-08

    KENNEDY SPACE CENTER, FLA. -- Blue mach diamonds appear beneath the main engines on Space Shuttle Endeavour as it hurtles into the sky on mission STS-118. The 22nd shuttle flight to the International Space Station, the mission will continue space station construction by delivering a third starboard truss segment, S5, and other payloads such as the SPACEHAB module and the external stowage platform 3. Liftoff of Endeavour was on time at 6:36 p.m. EDT. Photo credit: NASA/Jerry Cannon, Mike Kerley

  5. Scattering characteristics of electromagnetic waves in time and space inhomogeneous weakly ionized dusty plasma sheath

    NASA Astrophysics Data System (ADS)

    Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua

    2018-05-01

    The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.

  6. Outcomes of a service teaching module on ODEs for physics students

    NASA Astrophysics Data System (ADS)

    Hyland, Diarmaid; van Kampen, Paul; Nolan, Brien C.

    2018-07-01

    This paper reports on the first part of a multiphase research project that seeks to identify and address the difficulties encountered by physics students when studying differential equations. Differential equations are used extensively by undergraduate physics students, particularly in the advanced modules of their degree. It is, therefore, necessary that students develop conceptual understanding of differential equations in addition to procedural skills. We have investigated the difficulties encountered by third-year students at Dublin City University in an introductory differential equations module. We developed a survey to identify these difficulties and administered it to students who had recently completed the module. We found that students' mathematical ability in relation to procedural competence is an issue in their study of differential equations, but not as severe an issue as their conceptual understanding. Mathematical competence alone is insufficient if we expect our students to be able to recognize the need for differential equations in a physical context and to be able to set up, solve and interpret the solutions of such equations. We discuss the implications of these results for the next stages of the research project.

  7. The APC/C Coordinates Retinal Differentiation with G1 Arrest through the Nek2-Dependent Modulation of Wingless Signaling.

    PubMed

    Martins, Torcato; Meghini, Francesco; Florio, Francesca; Kimata, Yuu

    2017-01-09

    The cell cycle is coordinated with differentiation during animal development. Here we report a cell-cycle-independent developmental role for a master cell-cycle regulator, the anaphase-promoting complex or cyclosome (APC/C), in the regulation of cell fate through modulation of Wingless (Wg) signaling. The APC/C controls both cell-cycle progression and postmitotic processes through ubiquitin-dependent proteolysis. Through an RNAi screen in the developing Drosophila eye, we found that partial APC/C inactivation severely inhibits retinal differentiation independently of cell-cycle defects. The differentiation inhibition coincides with hyperactivation of Wg signaling caused by the accumulation of a Wg modulator, Drosophila Nek2 (dNek2). The APC/C degrades dNek2 upon synchronous G1 arrest prior to differentiation, which allows retinal differentiation through local suppression of Wg signaling. We also provide evidence that decapentaplegic signaling may posttranslationally regulate this APC/C function. Thus, the APC/C coordinates cell-fate determination with the cell cycle through the modulation of developmental signaling pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Spots and Flares: Stellar Activity in the Time Domain Era

    NASA Astrophysics Data System (ADS)

    Davenport, James R. A.

    Time domain photometric surveys for large numbers of stars have ushered in a new era of statistical studies of astrophysics. This new parameter space allows us to observe how stars behave and change on a human timescale, and facilitates ensemble studies to understand how stars change over cosmic timescales. With current and planned time domain stellar surveys, we will be able to put the Sun in a Galactic context, and discover how typical or unique our parent star truly is. The goal of this thesis is to develop techniques for detecting and analyzing the most prominent forms of magnetic activity from low-mass stars in modern time domain surveys: starspots and flares. Magnetic field strength is a fundamental property that decays over a star's life. As a result, flux modulations from both flares and starspots become smaller amplitude and more infrequent in light curves. Methods for detecting these forms of magnetic activity will be extensible to future time domain surveys, and helpful in characterizing the properties of stars as they age. Flares can be detected in sparsely sampled wide field surveys by searching for bright single-point outliers in light curves. Using both red optical and near infrared data from ground-based surveys over many years, I have constrained the rate of flares in multiple wavelengths for an ensemble of M dwarfs. Studying flares in these existing ground-based datasets will enable predictions for future survey yields. Space-based photometry enables continuous and precise monitoring of stars for many years, which is crucial for obtaining a complete census of flares from a single star. Using 11 months of 1-minute photometry for the M dwarf GJ 1243, I have amassed over 6100 flare events, the largest sample of white light flares for any low-mass star. I have also created the first high fidelity empirical white light flare template, which shows three distinct phases in typical flare light curves. With this template, I demonstrate that complex multi-peaked flares can be decomposed into their constituent flare events. This is the first modern study of the detailed white light morphology of stellar flares. Space-based survey data is also ideal for studying starspots, whose photometric modulation amplitude is typically much smaller than for flares. Using 4 years of 30 minute photometry for GJ 1243, I have traced the sizes and longitudes for multiple large starspots. A primary starspot is found that is stable in position and size over the 4 years of data, as well as secondary starspot features that decay on 100 to 500 day timescales and evolve in longitude. The secular longitude evolution of the secondary starspots indicates a very low rate of differential rotation on this rapidly rotating low-mass star. The presence of a transiting exoplanet can provide a great deal of information about the sizes and locations of starspots on the host star. When the planet crosses in front of a starspot, a small deviation in the predicted transit light curve is observed. By tracing these transit anomalies, I have detected more than 100 distinct starspots in 4 years of data on the young G2 dwarf, Kepler 17. These starspots are up to an order of magnitude larger than those on the Sun, and this star shows an almost four times larger amplitude of differential rotation than on the Sun.

  9. Computer simulation of two-dimensional unsteady flows in estuaries and embayments by the method of characteristics : basic theory and the formulation of the numerical method

    USGS Publications Warehouse

    Lai, Chintu

    1977-01-01

    Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)

  10. Differential Effects of Motor Efference Copies and Proprioceptive Information on Response Evaluation Processes

    PubMed Central

    Stock, Ann-Kathrin; Wascher, Edmund; Beste, Christian

    2013-01-01

    It is well-kown that sensory information influences the way we execute motor responses. However, less is known about if and how sensory and motor information are integrated in the subsequent process of response evaluation. We used a modified Simon Task to investigate how these streams of information are integrated in response evaluation processes, applying an in-depth neurophysiological analysis of event-related potentials (ERPs), time-frequency decomposition and sLORETA. The results show that response evaluation processes are differentially modulated by afferent proprioceptive information and efference copies. While the influence of proprioceptive information is mediated via oscillations in different frequency bands, efference copy based information about the motor execution is specifically mediated via oscillations in the theta frequency band. Stages of visual perception and attention were not modulated by the interaction of proprioception and motor efference copies. Brain areas modulated by the interactive effects of proprioceptive and efference copy based information included the middle frontal gyrus and the supplementary motor area (SMA), suggesting that these areas integrate sensory information for the purpose of response evaluation. The results show how motor response evaluation processes are modulated by information about both the execution and the location of a response. PMID:23658624

  11. KSC-07pd0633

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  12. KSC-07pd0634

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside onto a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd0631

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers in the hold of a ship attach a crane to the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The ship brought the module from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  14. Identification of Differentially Expressed miRNAs in Colorado Potato Beetles (Leptinotarsa decemlineata (Say)) Exposed to Imidacloprid.

    PubMed

    Morin, Mathieu D; Lyons, Pierre J; Crapoulet, Nicolas; Boquel, Sébastien; Morin, Pier Jr

    2017-12-16

    The Colorado potato beetle ( Leptinotarsa decemlineata (Say)) is a significant pest of potato plants that has been controlled for more than two decades by neonicotinoid imidacloprid. L. decemlineata can develop resistance to this agent even though the molecular mechanisms underlying this resistance are not well characterized. MicroRNAs (miRNAs) are short ribonucleic acids that have been linked to response to various insecticides in several insect models. Unfortunately, the information is lacking regarding differentially expressed miRNAs following imidacloprid treatment in L. decemlineata . In this study, next-generation sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were used to identify modulated miRNAs in imidacloprid-treated versus untreated L. decemlineata . This approach identified 33 differentially expressed miRNAs between the two experimental conditions. Of interest, miR-282 and miR-989, miRNAs previously shown to be modulated by imidacloprid in other insects, and miR-100, a miRNA associated with regulation of cytochrome P450 expression, were significantly modulated in imidacloprid-treated beetles. Overall, this work presents the first report of a miRNA signature associated with imidacloprid exposure in L. decemlineata using a high-throughput approach. It also reveals interesting miRNA candidates that potentially underly imidacloprid response in this insect pest.

  15. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1992-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.

  16. Parametric-Studies and Data-Plotting Modules for the SOAP

    NASA Technical Reports Server (NTRS)

    2008-01-01

    "Parametric Studies" and "Data Table Plot View" are the names of software modules in the Satellite Orbit Analysis Program (SOAP). Parametric Studies enables parameterization of as many as three satellite or ground-station attributes across a range of values and computes the average, minimum, and maximum of a specified metric, the revisit time, or 21 other functions at each point in the parameter space. This computation produces a one-, two-, or three-dimensional table of data representing statistical results across the parameter space. Inasmuch as the output of a parametric study in three dimensions can be a very large data set, visualization is a paramount means of discovering trends in the data (see figure). Data Table Plot View enables visualization of the data table created by Parametric Studies or by another data source: this module quickly generates a display of the data in the form of a rotatable three-dimensional-appearing plot, making it unnecessary to load the SOAP output data into a separate plotting program. The rotatable three-dimensionalappearing plot makes it easy to determine which points in the parameter space are most desirable. Both modules provide intuitive user interfaces for ease of use.

  17. First Materials Science Research Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  18. A New Tool For The Hospital Lab

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The multi-module AutoMicrobic System (AMS), whose development stemmed from space-biomedical research, is an automatic, time-saving system for detecting and identifying disease-producing microorganisms in the human body.

  19. External airlock assembly/Mir docking system being loaded

    NASA Image and Video Library

    1994-11-15

    S95-00057 (15 Nov 1994) --- In Rockwell's Building 290 at Downey, California, the external airlock assembly/Mir docking system is rotated into position for crating up for shipment to the Kennedy Space Center (KSC) in Florida. Jointly developed by Rockwell and RSC Energia, the external airlock assembly and Mir docking system will be mounted in the cargo bay of the Space Shuttle Atlantis to enable the shuttle to link up to Russia's Mir space station. The docking system contains hooks and latches compatible with the system currently housed on the Mir's Krystall module, to which Atlantis will attach for the first time next spring. STS-71 will carry two Russian cosmonauts, who will replace a three-man crew aboard Mir including Norman E. Thagard, a NASA astronaut. The combined 10-person crew will conduct almost five days of joint life sciences investigations both aboard Mir and in the Space Shuttle Atlantis's Spacelab module.

  20. Divergence identities in curved space-time a resolution of the stress-energy problem

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hüseyin

    1989-03-01

    It is noted that the joint use of two basic differential identities in curved space-time, namely, 1) the Einstein-Hilbert identity (1915), and 2) the identity of P. Freud (1939), permits a viable alternative to general relativity and a resolution of the "field stress-energy" problem of the gravitational theory. (A tribute to Eugene P. Wigner's 1957 presidential address to the APS)

  1. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  2. A model of partial differential equations for HIV propagation in lymph nodes

    NASA Astrophysics Data System (ADS)

    Marinho, E. B. S.; Bacelar, F. S.; Andrade, R. F. S.

    2012-01-01

    A system of partial differential equations is used to model the dissemination of the Human Immunodeficiency Virus (HIV) in CD4+T cells within lymph nodes. Besides diffusion terms, the model also includes a time-delay dependence to describe the time lag required by the immunologic system to provide defenses to new virus strains. The resulting dynamics strongly depends on the properties of the invariant sets of the model, consisting of three fixed points related to the time independent and spatial homogeneous tissue configurations in healthy and infected states. A region in the parameter space is considered, for which the time dependence of the space averaged model variables follows the clinical pattern reported for infected patients: a short scale primary infection, followed by a long latency period of almost complete recovery and third phase characterized by damped oscillations around a value with large HIV counting. Depending on the value of the diffusion coefficient, the latency time increases with respect to that one obtained for the space homogeneous version of the model. It is found that same initial conditions lead to quite different spatial patterns, which depend strongly on the latency interval.

  3. Blind ICA detection based on second-order cone programming for MC-CDMA systems

    NASA Astrophysics Data System (ADS)

    Jen, Chih-Wei; Jou, Shyh-Jye

    2014-12-01

    The multicarrier code division multiple access (MC-CDMA) technique has received considerable interest for its potential application to future wireless communication systems due to its high data rate. A common problem regarding the blind multiuser detectors used in MC-CDMA systems is that they are extremely sensitive to the complex channel environment. Besides, the perturbation of colored noise may negatively affect the performance of the system. In this paper, a new coherent detection method will be proposed, which utilizes the modified fast independent component analysis (FastICA) algorithm, based on approximate negentropy maximization that is subject to the second-order cone programming (SOCP) constraint. The aim of the proposed coherent detection is to provide robustness against small-to-medium channel estimation mismatch (CEM) that may arise from channel frequency response estimation error in the MC-CDMA system, which is modulated by downlink binary phase-shift keying (BPSK) under colored noise. Noncoherent demodulation schemes are preferable to coherent demodulation schemes, as the latter are difficult to implement over time-varying fading channels. Differential phase-shift keying (DPSK) is therefore the natural choice for an alternative modulation scheme. Furthermore, the new blind differential SOCP-based ICA (SOCP-ICA) detection without channel estimation and compensation will be proposed to combat Doppler spread caused by time-varying fading channels in the DPSK-modulated MC-CDMA system under colored noise. In this paper, numerical simulations are used to illustrate the robustness of the proposed blind coherent SOCP-ICA detector against small-to-medium CEM and to emphasize the advantage of the blind differential SOCP-ICA detector in overcoming Doppler spread.

  4. Space Shuttle Projects

    NASA Image and Video Library

    1995-11-01

    This is a view of the Russian Mir Space Station photographed by a crewmember of the second Shuttle/Mir docking mission, STS-74. The image shows: top - Progress supply vehicle, Kvant-1 module, and the Core module; middle left - Spektr module; middle center - Kristall module and Docking module; middle right - Kvant-2 module; and bottom - Soyuz. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.

  5. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moro, Erik A.

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offeringmore » robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated interferometric sensor depends on an appropriate performance function (e.g., desired displacement range, accuracy, robustness, etc.). In this dissertation, the performance limitations of a bundled differential intensity-modulated displacement sensor are analyzed, where the bundling configuration has been designed to optimize performance. The performance limitations of a white light Fabry-Perot displacement sensor are also analyzed. Both these sensors are non-contacting, but they have access to different regions of the performance-space. Further, both these sensors have different degrees of sensitivity to experimental uncertainty. Made in conjunction with careful analysis, the decision of which sensor to deploy need not be an uninformed one.« less

  6. KSC-07pd3189

    NASA Image and Video Library

    2007-11-07

    KENNEDY SPACE CENTER, FLA. -- STS-120 mission specialist Scott Parazynski is happy to back at NASA's Kennedy Space Center after the 15-day mission to the International Space Station. The Discovery crew completed mission STS-120 with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Kim Shiflett

  7. Applications of Space-Time Duality

    NASA Astrophysics Data System (ADS)

    Plansinis, Brent W.

    The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms periodically at finite propagation lengths. Numerical simulations are performed for the specific case where the moving boundary is produced through cross-phase modulation. In this case, the Kerr nonlinearity causes the boundary to change during propagation, leading to unique temporal and spectral behavior.

  8. KSC-07pd0902

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Experiment Logistics Module Pressurized Section of the Japanese Experiment Module sits on top of a stand in the Space Station Processing Facility. Earlier, NASA and Japanese Space Agency (JAXA) officials welcomed the arrival of the logistics module, which will be delivered to the space station on mission STS-123. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  9. KSC-07pd0626

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  10. KSC-07pd0628

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd0627

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  12. KSC-07pd0629

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is tied up at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  13. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, workers monitor progress as a huge crane is used to remove the top of the crate carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  14. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is revealed after the top of the crate is removed. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  15. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, the JEM Experiment Logistics Module Pressurized Section is lowered onto a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  16. KSC-07pd0896

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Bill Parsons, director of Kennedy Space Center; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The logistics module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  17. Decorin modulates matrix mineralization in vitro

    NASA Technical Reports Server (NTRS)

    Mochida, Yoshiyuki; Duarte, Wagner R.; Tanzawa, Hideki; Paschalis, Eleftherios P.; Yamauchi, Mitsuo

    2003-01-01

    Decorin (DCN), a member of small leucine-rich proteoglycans, is known to modulate collagen fibrillogenesis. In order to investigate the potential roles of DCN in collagen matrix mineralization, several stable osteoblastic cell clones expressing higher (sense-DCN, S-DCN) and lower (antisense-DCN, As-DCN) levels of DCN were generated and the mineralized nodules formed by these clones were characterized. In comparison with control cells, the onset of mineralization by S-DCN clones was significantly delayed; whereas it was markedly accelerated and the number of mineralized nodules was significantly increased in As-DCN clones. The timing of mineralization was inversely correlated with the level of DCN synthesis. In these clones, the patterns of cell proliferation and differentiation appeared unaffected. These results suggest that DCN may act as an inhibitor of collagen matrix mineralization, thus modulating the timing of matrix mineralization.

  18. Design of video interface conversion system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Heng; Wang, Xiang-jun

    2014-11-01

    This paper presents a FPGA based video interface conversion system that enables the inter-conversion between digital and analog video. Cyclone IV series EP4CE22F17C chip from Altera Corporation is used as the main video processing chip, and single-chip is used as the information interaction control unit between FPGA and PC. The system is able to encode/decode messages from the PC. Technologies including video decoding/encoding circuits, bus communication protocol, data stream de-interleaving and de-interlacing, color space conversion and the Camera Link timing generator module of FPGA are introduced. The system converts Composite Video Broadcast Signal (CVBS) from the CCD camera into Low Voltage Differential Signaling (LVDS), which will be collected by the video processing unit with Camera Link interface. The processed video signals will then be inputted to system output board and displayed on the monitor.The current experiment shows that it can achieve high-quality video conversion with minimum board size.

  19. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds.

    PubMed

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-07-12

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.

  20. A Comparison of Potential IM-CW Lidar Modulation Techniques for ASCENDS CO2 Column Measurements From Space

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Ismail, Syed

    2014-01-01

    Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Decadal Survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column-mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different carrier based modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, and Binary Phase Shift Keying (BPSK). Techniques are investigated that reduce or eliminate sidelobes. These techniques have excellent auto-correlation properties while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space. A comparison of various properties such as signal to noise ratio (SNR) and time-bandwidth product are discussed.

  1. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (center, foreground) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (center, foreground) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  2. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  3. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  4. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  5. KENNEDY SPACE CENTER, FLA. - Executive Director of NASDA Koji Yamamoto (left) is welcomed to KSC by Center Director Roy Bridges Jr. (right). Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module. His visit includes a tour of the Columbia Debris Hangar.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Executive Director of NASDA Koji Yamamoto (left) is welcomed to KSC by Center Director Roy Bridges Jr. (right). Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module. His visit includes a tour of the Columbia Debris Hangar.

  6. Space Shuttle Projects

    NASA Image and Video Library

    1997-01-01

    This is a view of the Russian Mir Space Station photographed by a crewmember of the fifth Shuttle/Mir docking mission, STS-81. The image shows: upper center - Progress supply vehicle, Kvant-1 module, and Core module; center left - Priroda module; center right - Spektr module; bottom left - Kvant-2 module; bottom center - Soyuz; and bottom right - Kristall module and Docking module. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars, by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. Priroda's main purpose was Earth remote sensing. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.

  7. Pseudogap and electronic structure of electron-doped Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Moutenet, Alice; Georges, Antoine; Ferrero, Michel

    2018-04-01

    We present a theoretical investigation of the effects of correlations on the electronic structure of the Mott insulator Sr2IrO4 upon electron doping. A rapid collapse of the Mott gap upon doping is found, and the electronic structure displays a strong momentum-space differentiation at low doping level: The Fermi surface consists of pockets centered around (π /2 ,π /2 ) , while a pseudogap opens near (π ,0 ) . Its physical origin is shown to be related to short-range spin correlations. The pseudogap closes upon increasing doping, but a differentiated regime characterized by a modulation of the spectral intensity along the Fermi surface persists to higher doping levels. These results, obtained within the cellular dynamical mean-field-theory framework, are discussed in comparison to recent photoemission experiments and an overall good agreement is found.

  8. Electromagnetic beam diffraction by a finite lamellar structure: an aperiodic coupled-wave method.

    PubMed

    Guizal, Brahim; Barchiesi, Dominique; Felbacq, Didier

    2003-12-01

    We have developed a new formulation of the coupled-wave method (CWM) to handle aperiodic lamellar structures, and it will be referred to as the aperiodic coupled-wave method (ACWM). The space is still divided into three regions, but the fields are written by use of their Fourier integrals instead of the Fourier series. In the modulated region the relative permittivity is represented by its Fourier transform, and then a set of integro-differential equations is derived. Discretizing the last system leads to a set of ordinary differential equations that is reduced to an eigenvalue problem, as is usually done in the CWM. To assess the method, we compare our results with three independent formalisms: the Rayleigh perturbation method for small samples, the volume integral method, and the finite-element method.

  9. KSC-03pd0132

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- A mirror image in nearby water reflects the perfect launch of Space Shuttle Columbia on a perfect Florida day. Following a flawless and uneventful countdown, liftoff of the Shuttle on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  10. KSC-03pd0112

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Billows of white clouds of steam and smoke frame Space Shuttle Columbia as it rises above the launch tower on Launch Pad 39A on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  11. KSC-03pd0131

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- A mirror image in nearby water reflects the perfect launch of Space Shuttle Columbia on a perfect Florida day. Following a flawless and uneventful countdown, liftoff of the Shuttle on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.

  12. KSC-03pd0133

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- As billows of smoke and steam roll across the landscape, the fiery launch of Space Shuttle Columbia on mission STS-107 is reflected in nearby water. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews

  13. Manned Mission Space Exploration Utilizing a Flexible Universal Module

    NASA Astrophysics Data System (ADS)

    Humphries, P.; Barez, F.; Gowda, A.

    2018-02-01

    The proposed ASMS, Inc. "Flexible Universal Module" is in support of NASA's Deep Space Gateway project. The Flexible Universal Module provides a possible habitation or manufacturing environment in support of Manned Mission for Space Exploration.

  14. KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  15. Evidence for a connection between photospheric and wind structure in HD 64760

    NASA Astrophysics Data System (ADS)

    Kaufer, A.; Prinja, R. K.; Stahl, O.

    2002-02-01

    We report on the results of an extended optical spectroscopic monitoring campaign on the early-type B supergiant HD 64760 (B0.5 Ib). The study is based on high-resolution echelle spectra obtained with the Landessternwarte Heidelberg's HEROS instrument at ESO La Silla. Ninety-nine spectra were collected over 103 nights between January 19 and May 1, 1996. The Hα line shows a characteristic profile with a central photospheric absorption superimposed by symmetrically blue- and red-shifted wind-emission humps. The time-averaged line profile is well described by a differentially rotating and expanding radiation-driven wind: the redistribution of the wind emission flux into a double peak profile is interpreted in terms of the resonance zone effect in rotating winds as first described by Petrenz & Puls (\\cite{Pet96}). Detailed time-series analyses of the line profile variations across the Hα profile reveal for the first time in an optical data set of HD 64760 a periodic 2.4-day modulation of the inner and outer flanks of the Hα emission humps. The stronger modulations of the inner flanks of the emission humps at photospheric velocities are due to complex width variations of the underlying photospheric Hα profile. The weaker variations of the outer flanks are in phase and reflect variations at the base of the stellar wind. The detected 2.4-day modulation period together with a second period of 1.2 days (in the red emission hump only) is in excellent agreement with the outer-wind modulation periods as reported by Fullerton et al. (\\cite{Ful97}) from intensive IUE UV time-series observations in 1993 and 1995. The 2.4-day period is further detected in the photospheric He I lambda4026 line as prograde traveling (pseudo-)absorption and emission features. The observed variability pattern is indicative for low-order non-radial pulsations in the photosphere of HD 64760. The non-radial pulsations are identified as the source of persistent, regularly spaced stellar surface structure which is maintained throughout the photosphere - wind transition zone (this work) out into the UV regime of the terminal velocity outflow. Based on observations collected at the European Southern Observatory at La Silla, Chile (Proposal ID 56.D-0235).

  16. The SSM/PMAD automated test bed project

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module/Power Management and Distribution (SSM/PMAD) autonomous subsystem project was initiated in 1984. The project's goal has been to design and develop an autonomous, user-supportive PMAD test bed simulating the SSF Hab/Lab module(s). An eighteen kilowatt SSM/PMAD test bed model with a high degree of automated operation has been developed. This advanced automation test bed contains three expert/knowledge based systems that interact with one another and with other more conventional software residing in up to eight distributed 386-based microcomputers to perform the necessary tasks of real-time and near real-time load scheduling, dynamic load prioritizing, and fault detection, isolation, and recovery (FDIR).

  17. The Design Manager's Aid for Intelligent Decomposition (DeMAID)

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1994-01-01

    Before the design of new complex systems such as large space platforms can begin, the possible interactions among subsystems and their parts must be determined. Once this is completed, the proposed system can be decomposed to identify its hierarchical structure. The design manager's aid for intelligent decomposition (DeMAID) is a knowledge based system for ordering the sequence of modules and identifying a possible multilevel structure for design. Although DeMAID requires an investment of time to generate and refine the list of modules for input, it could save considerable money and time in the total design process, particularly in new design problems where the ordering of the modules has not been defined.

  18. Teaching Cardiovascular Physiology with Equivalent Electronic Circuits in a Practically Oriented Teaching Module

    ERIC Educational Resources Information Center

    Ribaric, Samo; Kordas, Marjan

    2011-01-01

    Here, we report on a new tool for teaching cardiovascular physiology and pathophysiology that promotes qualitative as well as quantitative thinking about time-dependent physiological phenomena. Quantification of steady and presteady-state (transient) cardiovascular phenomena is traditionally done by differential equations, but this is time…

  19. Trigger and Reconstruction Algorithms for the Japanese Experiment Module- Extreme Universe Space Observatory (JEM-EUSO)

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Andreev, Valeri; Christl, M. J.; Cline, David B.; Crawford, Hank; Judd, E. G.; Pennypacker, Carl; Watts, J. W.

    2007-01-01

    The JEM-EUSO collaboration intends to study high energy cosmic ray showers using a large downward looking telescope mounted on the Japanese Experiment Module of the International Space Station. The telescope focal plane is instrumented with approx.300k pixels operating as a digital camera, taking snapshots at approx. 1MHz rate. We report an investigation of the trigger and reconstruction efficiency of various algorithms based on time and spatial analysis of the pixel images. Our goal is to develop trigger and reconstruction algorithms that will allow the instrument to detect energies low enough to connect smoothly to ground-based observations.

  20. Longitudinal bunch shaping of picosecond high-charge MeV electron beams

    DOE PAGES

    Beaudoin, B. L.; Thangaraj, J. C. T.; Edstrom, Jr., D.; ...

    2016-10-20

    With ever increasing demands for intensities in modern accelerators, the understanding of space-charge effects becomes crucial. Herein are presented measurements of optically shaped picosecond-long electron beams in a superconducting L-band linac over a wide range of charges, from 0.2 nC to 3.4 nC. At low charges, the shape of the electron beam is preserved, while at higher charge densities, modulations on the beam convert to energy modulations. Here, energy profile measurements using a spectrometer and time profile measurements using a streak camera reveal the dynamics of longitudinal space-charge on MeV-scale electron beams.

  1. PERSONNEL - PREFLIGHT - APOLLO-SOYUZ TEST PROJECT (ASTP) - EL-BAZ, FAROUK - JSC

    NASA Image and Video Library

    1975-07-08

    S75-28229 (8 July 1975) --- The three American ASTP prime crew astronauts participate in a photography mission briefing in Building 5 with Dr. Farouk El-Baz (wearing face mask) during Apollo-Soyuz Test Project preflight activity at NASA's Johnson Space Center. They are, left to right, Thomas P. Stafford, commander; Vance D. Brand, command module pilot; Dr. El-Baz; and Donald K. Slayton, docking module pilot. Dr. El-Baz is with the Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution. The face mask is to protect the crewmen from possible exposure to disease prior to launch time. Photo credit: NASA

  2. Diffractive optical elements for transformation of modes in lasers

    DOEpatents

    Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2015-09-01

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  3. Diffractive optical elements for transformation of modes in lasers

    DOEpatents

    Sridharan, Arun K; Pax, Paul H; Heebner, John E; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2016-06-21

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  4. Magnesium sulfate differentially modulates fetal membrane inflammation in a time-dependent manner.

    PubMed

    Cross, Sarah N; Nelson, Rachel A; Potter, Julie A; Norwitz, Errol R; Abrahams, Vikki M

    2018-04-30

    Chorioamnionitis and infection-associated inflammation are major causes of preterm birth. Magnesium sulfate (MgSO 4 ) is widely used in obstetrics as a tocolytic; however, its mechanism of action is unclear. This study sought to investigate how MgSO 4 modulates infection-associated inflammation in fetal membranes (FMs), and whether the response was time dependent. Human FM explants were treated with or without bacterial lipopolysaccharide (LPS); with or without MgSO 4 added either: 1 hour before LPS; at the same time as LPS; 1 hour post-LPS; or 2 hours post-LPS. Explants were also treated with or without viral dsRNA and LPS, alone or in combination; and MgSO 4 added 1 hour post-LPS After 24 hours, supernatants were measured for cytokines/chemokines; and tissue lysates measured for caspase-1 activity. Lipopolysaccharide-induced FM inflammation by upregulating the secretion of a number of inflammatory cytokines/chemokines. Magnesium sulfate administered 1-hour post-LPS inhibited FM secretion of IL-1β, IL-6, G-CSF, RANTES, and TNFα. Magnesium sulfate administered 2 hours post-LPS augmented FM secretion of these factors as well as IL-8, IFNγ, VEGF, GROα and IP-10. Magnesium sulfate delivered 1- hour post-LPS inhibited LPS-induced caspase-1 activity, and inhibited the augmented IL-1β response triggered by combination viral dsRNA and LPS. Magnesium sulfate differentially modulates LPS-induced FM inflammation in a time-dependent manner, in part through its modulation of caspase-1 activity. Thus, the timing of MgSO 4 administration may be critical in optimizing its anti-inflammatory effects in the clinical setting. MgSO 4 might also be useful at preventing FM inflammation triggered by a polymicrobial viral-bacterial infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Localized spatially nonlinear matter waves in atomic-molecular Bose-Einstein condensates with space-modulated nonlinearity

    PubMed Central

    Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming

    2016-01-01

    The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634

  6. Lonchakov holds Space Science P/L Kristallizator Module-1 experiment hardware in the SM during Joint Operations

    NASA Image and Video Library

    2008-10-15

    ISS017-E-018411 (15 Oct. 2008) --- Russian Federal Space Agency cosmonaut Yury Lonchakov, Expedition 18 flight engineer, looks over a procedures checklist while holding Space Science P/L Crystallizer Module-1 experiment hardware in the Zvezda Service Module of the International Space Station.

  7. Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years

    NASA Astrophysics Data System (ADS)

    Faranda, Davide; Messori, Gabriele; Alvarez-Castro, M. Carmen; Yiou, Pascal

    2017-12-01

    Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect - or are linked to phenomena which affect - human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes - namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948-2013. The results show that (i) despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii) the precipitation field has a higher dimensionality; and (iii) the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.

  8. Approximate solution of space and time fractional higher order phase field equation

    NASA Astrophysics Data System (ADS)

    Shamseldeen, S.

    2018-03-01

    This paper is concerned with a class of space and time fractional partial differential equation (STFDE) with Riesz derivative in space and Caputo in time. The proposed STFDE is considered as a generalization of a sixth-order partial phase field equation. We describe the application of the optimal homotopy analysis method (OHAM) to obtain an approximate solution for the suggested fractional initial value problem. An averaged-squared residual error function is defined and used to determine the optimal convergence control parameter. Two numerical examples are studied, considering periodic and non-periodic initial conditions, to justify the efficiency and the accuracy of the adopted iterative approach. The dependence of the solution on the order of the fractional derivative in space and time and model parameters is investigated.

  9. Digital TV tri-state delta modulation system for Space Shuttle ku-band downlink

    NASA Technical Reports Server (NTRS)

    Udalov, S.; Huth, G. K.; Roberts, D.; Batson, B. H.

    1982-01-01

    A tri-state delta modulation/demodulation (TSDM) technique which provides for efficient run-length coding of constant-intensity segments of a TV picture is described. Aspects of the hardware implementation of a high-speed TSDM transmitter and receiver for black-and-white TV or field-sequential color or NTSC format color are reviewed. Run-length encoding of the TSDM output can consistently reduce the required channel data rate well below one bit per sample. As compared with a bistate delta modulation system, the present technique eliminates granularity in the reconstructed video without degrading rise or fall times. About 40 chips are used by TSDM when used to handle the luminance information in a color link. A possible overall space and ground functional configuration to accommodate Shuttle digital TV with scrambling for privacy is presented.

  10. Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature.

    PubMed

    Pang, Xiaodan; Ozolins, Oskars; Schatz, Richard; Storck, Joakim; Udalcovs, Aleksejs; Navarro, Jaime Rodrigo; Kakkar, Aditya; Maisons, Gregory; Carras, Mathieu; Jacobsen, Gunnar; Popov, Sergei; Lourdudoss, Sebastian

    2017-09-15

    Gigabit free-space transmissions are experimentally demonstrated with a quantum cascaded laser (QCL) emitting at mid-wavelength infrared of 4.65 μm, and a commercial infrared photovoltaic detector. The QCL operating at room temperature is directly modulated using on-off keying and, for the first time, to the best of our knowledge, four- and eight-level pulse amplitude modulations (PAM-4, PAM-8). By applying pre- and post-digital equalizations, we achieve up to 3  Gbit/s line data rate in all three modulation configurations with a bit error rate performance of below the 7% overhead hard decision forward error correction limit of 3.8×10 -3 . The proposed transmission link also shows a stable operational performance in the lab environment.

  11. Inverse Problems for Semilinear Wave Equations on Lorentzian Manifolds

    NASA Astrophysics Data System (ADS)

    Lassas, Matti; Uhlmann, Gunther; Wang, Yiran

    2018-06-01

    We consider inverse problems in space-time ( M, g), a 4-dimensional Lorentzian manifold. For semilinear wave equations {\\square_g u + H(x, u) = f}, where {\\square_g} denotes the usual Laplace-Beltrami operator, we prove that the source-to-solution map {L: f → u|_V}, where V is a neighborhood of a time-like geodesic {μ}, determines the topological, differentiable structure and the conformal class of the metric of the space-time in the maximal set, where waves can propagate from {μ} and return back. Moreover, on a given space-time ( M, g), the source-to-solution map determines some coefficients of the Taylor expansion of H in u.

  12. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (right) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (right) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  13. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (left) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (left) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  14. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells

    PubMed Central

    Huszar, Jessica M.; Payne, Christopher J.

    2014-01-01

    Chromatin remodeling is important for cell differentiation. Histone methyltransferase EZH2 and histone demethylase JMJD3 (KDM6B) modulate levels of histone H3 lysine 27 trimethylation (H3K27me3). Interplay between the two modulators influence lineage specification in stem cells. Here, we identified microRNA MIR146A to be a negative regulator of JMJD3. In the osteogenic differentiation of human mesenchymal stem cells (hMSCs), we observed an upregulation of JMJD3 and a downregulation of MIR146A. Blocking JMJD3 activity in differentiating hMSCs reduced transcript levels of osteogenic gene RUNX2. H3K27me3 levels decreased at the RUNX2 promoter during cell differentiation. Modulation of MIR146A levels in hMSCs altered JMJD3 and RUNX2 expression and affected osteogenic differentiation. We conclude that JMJD3 promotes osteogenesis in differentiating hMSCs, with MIR146A regulating JMJD3. PMID:24726732

  15. The finite element method scheme for a solution of an evolution variational inequality with a nonlocal space operator

    NASA Astrophysics Data System (ADS)

    Glazyrina, O. V.; Pavlova, M. F.

    2016-11-01

    We consider the parabolic inequality with monotone with respect to a gradient space operator, which is depended on integral with respect to space variables solution characteristic. We construct a two-layer differential scheme for this problem with use of penalty method, semidiscretization with respect to time variable method and the finite element method (FEM) with respect to space variables. We proved a convergence of constructed mothod.

  16. Concatenated Coding Using Trellis-Coded Modulation

    NASA Technical Reports Server (NTRS)

    Thompson, Michael W.

    1997-01-01

    In the late seventies and early eighties a technique known as Trellis Coded Modulation (TCM) was developed for providing spectrally efficient error correction coding. Instead of adding redundant information in the form of parity bits, redundancy is added at the modulation stage thereby increasing bandwidth efficiency. A digital communications system can be designed to use bandwidth-efficient multilevel/phase modulation such as Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK) or Quadrature Amplitude Modulation (QAM). Performance gain can be achieved by increasing the number of signals over the corresponding uncoded system to compensate for the redundancy introduced by the code. A considerable amount of research and development has been devoted toward developing good TCM codes for severely bandlimited applications. More recently, the use of TCM for satellite and deep space communications applications has received increased attention. This report describes the general approach of using a concatenated coding scheme that features TCM and RS coding. Results have indicated that substantial (6-10 dB) performance gains can be achieved with this approach with comparatively little bandwidth expansion. Since all of the bandwidth expansion is due to the RS code we see that TCM based concatenated coding results in roughly 10-50% bandwidth expansion compared to 70-150% expansion for similar concatenated scheme which use convolution code. We stress that combined coding and modulation optimization is important for achieving performance gains while maintaining spectral efficiency.

  17. Intensity Modulation Techniques for Continuous-Wave Lidar for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Kooi, S. A.; Fan, T. F.; Meadows, B.; Browell, E. V.; Erxleben, W. H.; McGregor, D.; Dobler, J. T.; Pal, S.; O'Dell, C.

    2017-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) and Linear Swept Frequency modulations to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that take advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. We compare BPSK to linear swept frequency and introduce a new technique to eliminate sidelobes in situations from linear swept frequency where the SNR is high with results that rival BPSK. We also investigate the effects of non-linear modulators, which can in some circumstances degrade the orthogonality of the waveforms, and show how to avoid this. These techniques are used in a new data processing architecture written in the C language to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  18. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-08-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  19. An introduction to Space Weather Integrated Modeling

    NASA Astrophysics Data System (ADS)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  20. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  1. Education and Outreach on Space Sciences and Technologies in Taiwan

    NASA Astrophysics Data System (ADS)

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  2. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation

    PubMed Central

    Fuchs, Gilad; Shema, Efrat; Vesterman, Rita; Kotler, Eran; Wolchinsky, Zohar; Wilder, Sylvia; Golomb, Lior; Pribluda, Ariel; Zhang, Feng; Haj-Yahya, Mahmood; Feldmesser, Ester; Brik, Ashraf; Yu, Xiaochun; Hanna, Jacob; Aberdam, Daniel; Domany, Eytan; Oren, Moshe

    2012-01-01

    Summary Embryonic stem cells (ESC) maintain high genomic plasticity, essential for their capacity to enter diverse differentiation pathways. Post-transcriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner. PMID:22681888

  3. A cryogenic multichannel electronically scanned pressure module

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Fox, Robert L.; Adcock, Edward E.; Kahng, Seun K.

    1992-01-01

    Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.

  4. KSC-97pc670

    NASA Image and Video Library

    1997-04-17

    The Spacelab long transfer tunnel that leads from the Space Shuttle Orbiter Columbia’s crew airlock to the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the spaceplane’s payload bay is removed by KSC paylaod processing employees in Orbiter Processing Facility 1. The tunnel was taken out to allow better access to the MSL-1 module during reservicing operations to prepare it for its reflight as MSL-1R. That mission is now scheduled to lift off July 1. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day reflight, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments

  5. KSC-97pc671

    NASA Image and Video Library

    1997-04-17

    The Spacelab long transfer tunnel that leads from the Space Shuttle Orbiter Columbia’s crew airlock to the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the spaceplane’s payload bay is removed in Orbiter Processing Facility 1. The tunnel was taken out to allow better access to the MSL-1 module during reservicing operations to prepare it for its reflight as MSL-1R. That mission is now scheduled to lift off July 1. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day reflight, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments

  6. Discrete-Time Demodulator Architectures for Free-Space Broadband Optical Pulse-Position Modulation

    NASA Technical Reports Server (NTRS)

    Gray, A. A.; Lee, C.

    2004-01-01

    The objective of this work is to develop discrete-time demodulator architectures for broadband optical pulse-position modulation (PPM) that are capable of processing Nyquist or near-Nyquist data rates. These architectures are motivated by the numerous advantages of realizing communications demodulators in digital very large scale integrated (VLSI) circuits. The architectures are developed within a framework that encompasses a large body of work in optical communications, synchronization, and multirate discrete-time signal processing and are constrained by the limitations of the state of the art in digital hardware. This work attempts to create a bridge between theoretical communication algorithms and analysis for deep-space optical PPM and modern digital VLSI. The primary focus of this work is on the synthesis of discrete-time processing architectures for accomplishing the most fundamental functions required in PPM demodulators, post-detection filtering, synchronization, and decision processing. The architectures derived are capable of closely approximating the theoretical performance of the continuous-time algorithms from which they are derived. The work concludes with an outline of the development path that leads to hardware.

  7. KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

    NASA Image and Video Library

    2003-05-30

    KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

  8. Conceptual design of an on-board optical processor with components

    NASA Technical Reports Server (NTRS)

    Walsh, J. R.; Shackelford, R. G.

    1977-01-01

    The specification of components for a spacecraft on-board optical processor was investigated. A space oriented application of optical data processing and the investigation of certain aspects of optical correlators were examined. The investigation confirmed that real-time optical processing has made significant advances over the past few years, but that there are still critical components which will require further development for use in an on-board optical processor. The devices evaluated were the coherent light valve, the readout optical modulator, the liquid crystal modulator, and the image forming light modulator.

  9. The Unity connecting module moves into payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Looking like a painting, this wide-angle view shows the Unity connecting module being moved toward the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.

  10. The Unity connecting module moves into payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Viewed from below, the Unity connecting module is moved into the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.

  11. Payload Specialist Taylor Wang performs repairs on Drop Dynamics Module

    NASA Image and Video Library

    1985-05-01

    51B-03-035 (29 April-6 May 1985) --- Payload specialist Taylor G. Wang performs a repair task on the Drop Dynamics Module (DDM) in the Science Module aboard the Earth-orbiting Space Shuttle Challenger. The photo was taken with a 35mm camera. Dr. Wang is principal investigator for the first time-to-fly experiment, developed by his team at NASA?s Jet Propulsion Laboratory (JPL), Pasadena, California. This photo was among the first to be released by NASA upon return to Earth by the Spacelab 3 crew.

  12. KSC-07pd0630

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is ready for lifting out of the hold of the ship that brought it from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  13. Hadfield plays guitar in the Cupola Module

    NASA Image and Video Library

    2012-12-25

    ISS034-E-009787 (25 Dec. 2012) --- Canadian Space Agency astronaut Chris Hadfield strums his guitar in the International Space Station's Cupola on Dec. 25, 2012. Hadfield, a long-time member of an astronaut band called Max Q, later joined with the other five Expedition 34 crew members in a more spacious location to provide an assortment of Christmas carols for the public.

  14. Hadfield plays guitar in the Cupola Module

    NASA Image and Video Library

    2012-12-25

    ISS034-E-009799 (25 Dec. 2012) --- Canadian Space Agency astronaut Chris Hadfield strums his guitar in the International Space Station's Cupola on Dec. 25, 2012. Hadfield, a long-time member of an astronaut band called Max Q, later joined with the other five Expedition 34 crew members in a more spacious location to provide an assortment of Christmas carols for the public.

  15. Hadfield plays guitar in the Cupola Module

    NASA Image and Video Library

    2012-12-25

    ISS034-E-010295 (25 Dec. 2012) --- Canadian Space Agency astronaut Chris Hadfield strums his guitar in the International Space Station's Cupola on Dec. 25, 2012. Hadfield, a long-time member of an astronaut band called Max Q, later joined with the other five Expedition 34 crew members in a more spacious location to provide an assortment of Christmas carols for the public.

  16. MHD Electrode and wall constructions

    DOEpatents

    Way, Stewart; Lempert, Joseph

    1984-01-01

    Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.

  17. Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.

    1990-01-01

    During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.

  18. KSC-08pd1743

    NASA Image and Video Library

    2008-06-14

    CAPE CANAVERAL, Fla. – Following the successful landing of space shuttle Discovery at NASA's Kennedy Space Center to end the 14-day, STS-124 mission, the crew sits for a press conference. Mission Specialist Ron Garan describes his favorite view from orbit. The mission delivered the Japan Aerospace Exploration Agency's large Japanese Pressurized Module and its remote manipulator system to the International Space Station. The landing was on time at 11:15 a.m. EDT. Photo credit: NASA/Kim Shiflett

  19. Working Safety in Confined Spaces. Module SH-32. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on working safely in confined spaces in one of 50 modules concerned with job safety and health. This module explains how to recognize potential hazards in confined spaces, how to deal with these hazards, and how planning can prevent accidents. Following the introduction, 17 objectives (each keyed to a page in the text) the…

  20. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    An overhead crane moves the JEM Experiment Logistics Module Pressurized Section above the floor of the Space Station Processing Facility to a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

Top