Sample records for differential stepwise evolution

  1. Modelling the evolution and diversity of cumulative culture

    PubMed Central

    Enquist, Magnus; Ghirlanda, Stefano; Eriksson, Kimmo

    2011-01-01

    Previous work on mathematical models of cultural evolution has mainly focused on the diffusion of simple cultural elements. However, a characteristic feature of human cultural evolution is the seemingly limitless appearance of new and increasingly complex cultural elements. Here, we develop a general modelling framework to study such cumulative processes, in which we assume that the appearance and disappearance of cultural elements are stochastic events that depend on the current state of culture. Five scenarios are explored: evolution of independent cultural elements, stepwise modification of elements, differentiation or combination of elements and systems of cultural elements. As one application of our framework, we study the evolution of cultural diversity (in time as well as between groups). PMID:21199845

  2. Directed evolution of bacteriorhodopsin for applications in bioelectronics

    PubMed Central

    Wagner, Nicole L.; Greco, Jordan A.; Ranaghan, Matthew J.; Birge, Robert R.

    2013-01-01

    In nature, biological systems gradually evolve through complex, algorithmic processes involving mutation and differential selection. Evolution has optimized biological macromolecules for a variety of functions to provide a comparative advantage. However, nature does not optimize molecules for use in human-made devices, as it would gain no survival advantage in such cooperation. Recent advancements in genetic engineering, most notably directed evolution, have allowed for the stepwise manipulation of the properties of living organisms, promoting the expansion of protein-based devices in nanotechnology. In this review, we highlight the use of directed evolution to optimize photoactive proteins, with an emphasis on bacteriorhodopsin (BR), for device applications. BR, a highly stable light-activated proton pump, has shown great promise in three-dimensional optical memories, real-time holographic processors and artificial retinas. PMID:23676894

  3. Stepwise Analysis of Differential Item Functioning Based on Multiple-Group Partial Credit Model.

    ERIC Educational Resources Information Center

    Muraki, Eiji

    1999-01-01

    Extended an Item Response Theory (IRT) method for detection of differential item functioning to the partial credit model and applied the method to simulated data using a stepwise procedure. Then applied the stepwise DIF analysis based on the multiple-group partial credit model to writing trend data from the National Assessment of Educational…

  4. Continuous Adaptive Population Reduction (CAPR) for Differential Evolution Optimization.

    PubMed

    Wong, Ieong; Liu, Wenjia; Ho, Chih-Ming; Ding, Xianting

    2017-06-01

    Differential evolution (DE) has been applied extensively in drug combination optimization studies in the past decade. It allows for identification of desired drug combinations with minimal experimental effort. This article proposes an adaptive population-sizing method for the DE algorithm. Our new method presents improvements in terms of efficiency and convergence over the original DE algorithm and constant stepwise population reduction-based DE algorithm, which would lead to a reduced number of cells and animals required to identify an optimal drug combination. The method continuously adjusts the reduction of the population size in accordance with the stage of the optimization process. Our adaptive scheme limits the population reduction to occur only at the exploitation stage. We believe that continuously adjusting for a more effective population size during the evolutionary process is the major reason for the significant improvement in the convergence speed of the DE algorithm. The performance of the method is evaluated through a set of unimodal and multimodal benchmark functions. In combining with self-adaptive schemes for mutation and crossover constants, this adaptive population reduction method can help shed light on the future direction of a completely parameter tune-free self-adaptive DE algorithm.

  5. The effect of thermal history on crystalline structure and mechanical properties of β-nucleated isotactic polypropylene

    NASA Astrophysics Data System (ADS)

    Tian, Yefei; Zhou, Jian; Feng, Jiachun

    2018-04-01

    The effect of thermal history on β-nucleated iPP was systematically investigated by comparing the variance of crystalline microstructures and mechanical property of stepwise crystallized sample and annealed sample, which experienced different thermal history. The mechanical property tests exhibit that that the toughness of stepwise crystallized sample and annealed sample were both decreased compared to control sample, while the tensile strength of the stepwise crystallized sample increased slightly. Structure investigation showed that the α-relaxation peak, which is related to the assignment of chains in rigid amorphous phase, moved to the high temperature region for stepwise crystallized sample, while it moved to the low temperature region for annealed sample. The results indicated the weakening in rigid amorphous fraction (RAF) and the increase in lamellar thickness of β-iPP after stepwise crystallization treatment. For annealed sample, the RAF strengthened and lamellar thickness decreased slightly after thermal treatment. A mechanism of crystalline microstructures evolution of restricted area between the main lamellar under different treatments was proposed.

  6. Ankylosaurid dinosaur tail clubs evolved through stepwise acquisition of key features.

    PubMed

    Arbour, Victoria M; Currie, Philip J

    2015-10-01

    Ankylosaurid ankylosaurs were quadrupedal, herbivorous dinosaurs with abundant dermal ossifications. They are best known for their distinctive tail club composed of stiff, interlocking vertebrae (the handle) and large, bulbous osteoderms (the knob), which may have been used as a weapon. However, tail clubs appear relatively late in the evolution of ankylosaurids, and seemed to have been present only in a derived clade of ankylosaurids during the last 20 million years of the Mesozoic Era. New evidence from mid Cretaceous fossils from China suggests that the evolution of the tail club occurred at least 40 million years earlier, and in a stepwise manner, with early ankylosaurids evolving handle-like vertebrae before the distal osteoderms enlarged and coossified to form a knob. © 2015 Anatomical Society.

  7. Monitoring heavy metal Cr in soil based on hyperspectral data using regression analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ningyu; Xu, Fuyun; Zhuang, Shidong; He, Changwei

    2016-10-01

    Heavy metal pollution in soils is one of the most critical problems in the global ecology and environment safety nowadays. Hyperspectral remote sensing and its application is capable of high speed, low cost, less risk and less damage, and provides a good method for detecting heavy metals in soil. This paper proposed a new idea of applying regression analysis of stepwise multiple regression between the spectral data and monitoring the amount of heavy metal Cr by sample points in soil for environmental protection. In the measurement, a FieldSpec HandHeld spectroradiometer is used to collect reflectance spectra of sample points over the wavelength range of 325-1075 nm. Then the spectral data measured by the spectroradiometer is preprocessed to reduced the influence of the external factors, and the preprocessed methods include first-order differential equation, second-order differential equation and continuum removal method. The algorithms of stepwise multiple regression are established accordingly, and the accuracy of each equation is tested. The results showed that the accuracy of first-order differential equation works best, which makes it feasible to predict the content of heavy metal Cr by using stepwise multiple regression.

  8. ISECG Global Exploration Roadmap: A Stepwise Approach to Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Martinez, Roland; Goodliff, Kandyce; Whitley, Ryan

    2013-01-01

    In 2011, ISECG released the Global Exploration Roadmap (GER), advancing the "Global Exploration Strategy: The Framework for Coordination" by articulating the perspectives of participating agencies on exploration goals and objectives, mission scenarios, and coordination of exploration preparatory activities. The GER featured a stepwise development and demonstration of capabilities ultimately required for human exploration of Mars. In 2013 the GER was updated to reflect the ongoing evolution of agency's exploration policies and plans, informed by individual agency and coordinated analysis activities that are relevant to various elements of the GER framework as well as coordinated stakeholder engagement activities. For this release of version 2 of the GER in the mid 2013 timeframe, a modified mission scenario is presented, more firmly reflecting the importance of a stepwise evolution of critical capabilities provided by multiple partners necessary for executing increasingly complex missions to multiple destinations and leading to human exploration of Mars. This paper will describe the updated mission scenario, the changes since the release of version 1, the mission themes incorporated into the scenario, and risk reduction for Mars missions provided by exploration at various destinations.

  9. Multiple-Objective Stepwise Calibration Using Luca

    USGS Publications Warehouse

    Hay, Lauren E.; Umemoto, Makiko

    2007-01-01

    This report documents Luca (Let us calibrate), a multiple-objective, stepwise, automated procedure for hydrologic model calibration and the associated graphical user interface (GUI). Luca is a wizard-style user-friendly GUI that provides an easy systematic way of building and executing a calibration procedure. The calibration procedure uses the Shuffled Complex Evolution global search algorithm to calibrate any model compiled with the U.S. Geological Survey's Modular Modeling System. This process assures that intermediate and final states of the model are simulated consistently with measured values.

  10. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits.

    PubMed

    Wang, Yaqiong; Ma, Hong

    2015-09-01

    Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes

    PubMed Central

    Matsubara, Kazumi; Tarui, Hiroshi; Toriba, Michihisa; Yamada, Kazuhiko; Nishida-Umehara, Chizuko; Agata, Kiyokazu; Matsuda, Yoichi

    2006-01-01

    All snake species exhibit genetic sex determination with the ZZ/ZW type of sex chromosomes. To investigate the origin and evolution of snake sex chromosomes, we constructed, by FISH, a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 109 cDNA clones. Eleven of the 109 clones were localized to the Z chromosome. All human and chicken homologues of the snake Z-linked genes were located on autosomes, suggesting that the sex chromosomes of snakes, mammals, and birds were all derived from different autosomal pairs of the common ancestor. We mapped the 11 Z-linked genes of E. quadrivirgata to chromosomes of two other species, the Burmese python (Python molurus bivittatus) and the habu (Trimeresurus flavoviridis), to investigate the process of W chromosome differentiation. All and 3 of the 11 clones were localized to both the Z and W chromosomes in P. molurus and E. quadrivirgata, respectively, whereas no cDNA clones were mapped to the W chromosome in T. flavoviridis. Comparative mapping revealed that the sex chromosomes are only slightly differentiated in P. molurus, whereas they are fully differentiated in T. flavoviridis, and E. quadrivirgata is at a transitional stage of sex-chromosome differentiation. The differentiation of sex chromosomes was probably initiated from the distal region on the short arm of the protosex chromosome of the common ancestor, and then deletion and heterochromatization progressed on the sex-specific chromosome from the phylogenetically primitive boids to the more advanced viperids. PMID:17110446

  12. RNA Polymerase Structure, Function, Regulation, Dynamics, Fidelity, and Roles in GENE EXPRESSION | Center for Cancer Research

    Cancer.gov

    Multi-subunit RNA polymerases (RNAP) are ornate molecular machines that translocate on a DNA template as they generate a complementary RNA chain. RNAPs are highly conserved in evolution among eukarya, eubacteria, archaea, and some viruses. As such, multi-subunit RNAPs appear to be an irreplaceable advance in the evolution of complex life on earth. Because of their stepwise

  13. Effect of Stepwise Pressure Change on Porosity Evolution during Directional Solidification in Small Cylindrical Channels

    NASA Technical Reports Server (NTRS)

    Grugel, R.N.; Lee, C.P.; Cox, M.C.; Blandford, B.T.; Anilkumar, A.V.

    2008-01-01

    Controlled directional solidification experiments were performed in capillary channels, using nitrogen-saturated succinonitrile, to examine the effect of an in-situ stepwise processing pressure increase on an isolated pore evolution. Two experiments were performed using different processing pressure input profiles. The results indicate that a processing pressure increase has a transient effect on pore growth geometry characterized by an initial phase of decreasing pore diameter, followed by a recovery phase of increasing pore diameter. The experimental results also show that processing pressure can be used as a control parameter to either increase or terminate porosity formation. A theoretical model is introduced which indicates that the pore formation process is limited by the diffusion of solute-gas through the melt, and that the observed response toa pressure increase is attributed to the re-equilibration of solute concentration in the melt associated with the increased melt pressure.

  14. Targeting the (Un)differentiated State of Cancer.

    PubMed

    Kemeny, Lajos V; Fisher, David E

    2018-05-14

    Dedifferentation in cancer is associated with intrinsic and acquired resistance to therapies. In this issue of Cancer Cell, Tsoi et al. identify four differentiation states in melanoma and provide evidence that melanoma cells develop drug resistance through a stepwise dedifferentiation process, making them vulnerable to ferroptotic cell death-inducing compounds. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Stepwise Evolution of a Buried Inhibitor Peptide over 45 My.

    PubMed

    Jayasena, Achala S; Fisher, Mark F; Panero, Jose L; Secco, David; Bernath-Levin, Kalia; Berkowitz, Oliver; Taylor, Nicolas L; Schilling, Edward E; Whelan, James; Mylne, Joshua S

    2017-06-01

    The de novo evolution of genes and the novel proteins they encode has stimulated much interest in the contribution such innovations make to the diversity of life. Most research on this de novo evolution focuses on transcripts, so studies on the biochemical steps that can enable completely new proteins to evolve and the time required to do so have been lacking. Sunflower Preproalbumin with SFTI-1 (PawS1) is an unusual albumin precursor because in addition to producing albumin it also yields a potent, bicyclic protease-inhibitor called SunFlower Trypsin Inhibitor-1 (SFTI-1). Here, we show how this inhibitor peptide evolved stepwise over tens of millions of years. To trace the origin of the inhibitor peptide SFTI-1, we assembled seed transcriptomes for 110 sunflower relatives whose evolution could be resolved by a chronogram, which allowed dates to be estimated for the various stages of molecular evolution. A genetic insertion event in an albumin precursor gene ∼45 Ma introduced two additional cleavage sites for protein maturation and conferred duality upon PawS1-Like genes such that they also encode a small buried macrocycle. Expansion of this region, including two Cys residues, enlarged the peptide ∼34 Ma and made the buried peptides bicyclic. Functional specialization into a protease inhibitor occurred ∼23 Ma. These findings document the evolution of a novel peptide inside a benign region of a pre-existing protein. We illustrate how a novel peptide can evolve without de novo gene evolution and, critically, without affecting the function of what becomes the protein host. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Development of an in vitro culture method for stepwise differentiation of mouse embryonic stem cells and induced pluripotent stem cells into mature osteoclasts.

    PubMed

    Nishikawa, Keizo; Iwamoto, Yoriko; Ishii, Masaru

    2014-05-01

    The development of methods for differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) into functional cells have helped to analyze the mechanism regulating cellular processes and to explore cell-based assays for drug discovery. Although several reports have demonstrated methods for differentiation of mouse ESCs into osteoclast-like cells, it remains unclear whether these methods are applicable for differentiation of iPSCs to osteoclasts. In this study, we developed a simple method for stepwise differentiation of mouse ESCs and iPSCs into bone-resorbing osteoclasts based upon a monoculture approach consisting of three steps. First, based on conventional hanging-drop methods, embryoid bodies (EBs) were produced from mouse ESCs or iPSCs. Second, EBs were cultured in medium supplemented with macrophage colony-stimulating factor (M-CSF), and differentiated to osteoclast precursors, which expressed CD11b. Finally, ESC- or iPSC-derived osteoclast precursors stimulated with receptor activator of nuclear factor-B ligand (RANKL) and M-CSF formed large multinucleated osteoclast-like cells that expressed tartrate-resistant acid phosphatase and were capable of bone resorption. Molecular analysis showed that the expression of osteoclast marker genes such as Nfatc1, Ctsk, and Acp5 are increased in a RANKL-dependent manner. Thus, our procedure is simple and easy and would be helpful for stem cell-based bone research.

  17. Adaptive evolution of Escherichia coli to Ciprofloxacin in controlled stress environments: emergence of resistance in continuous and step-wise gradients

    NASA Astrophysics Data System (ADS)

    Deng, J.; Zhou, L.; Dong, Y.; Sanford, R. A.; Shechtman, L. A.; Alcalde, R.; Werth, C. J.; Fouke, B. W.

    2017-12-01

    Microorganisms in nature have evolved in response to a variety of environmental stresses, including gradients in pH, flow and chemistry. While environmental stresses are generally considered to be the driving force of adaptive evolution, the impact and extent of any specific stress needed to drive such changes has not been well characterized. In this study, a microfluidic diffusion chamber (MDC) and a batch culturing system were used to systematically study the effects of continuous versus step-wise stress increments on adaptation of E. coli to the antibiotic ciprofloxacin. In the MDC, a diffusion gradient of ciprofloxacin was established across a microfluidic well array to microscopically observe changes in Escherichia coli strain 307 replication and migration patterns that would indicate emergence of resistance due to genetic mutations. Cells recovered from the MDC only had resistance of 50-times the original minimum inhibition concentration (MICoriginal) of ciprofloxacin, although minimum exposure concentrations were over 80 × MICoriginal by the end of the experiment. In complementary batch experiments, E. coli 307 were exposed to step-wise daily increases of ciprofloxacin at rates equivalent to 0.1×, 0.2×, 0.4× or 0.8× times MICoriginal/day. Over a period of 18 days, E. coli cells were able to acquire resistance of up to 225 × MICoriginal, with exposure to ciprofloxacin concentration up to only 14.9 × MIC­original. The different levels of acquired resistance in the continuous MDC versus step-wise batch increment experiments suggests that the intrinsic rate of E. coli adaptation was exceeded in the MDC, while the step-wise experiments favor adaptation to the highest ciprofloxacin experiments. Genomic analyses of E. coli DNA extracted from the microfluidic cell and batch cultures indicated four single nucleotide polymorphism (SNP) mutations of amino acid 82, 83 and 87 in the gyrA gene. The progression of adaptation in the step-wise increments of ciprofloxacin indicate that the Ser83-Leu mutation gradually becomes dominant over other gyrA mutations with increased antibiotic resistance. Co-existence of the Ser83-Leu and Asp87—Gly mutations appear to provide the greatest level of resistance (i.e., 85 × to 225 × MICoriginal), and only emerged after the whole community acquired the Ser83—Leu mutation.

  18. Unfolding four-helix bundles

    NASA Astrophysics Data System (ADS)

    Gray, Harry B.; Winkler, Jay R.; Kozak, John J.

    2011-03-01

    A geometrical model has been developed to describe the early stages of unfolding of cytochromes c‧ and c-b562 . Calculations are based on a step-wise extension of the polypeptide chain subject to the constraint that the spatial relationship among the residues of each triplet is fixed by the native-state crystallographic data. The response of each protein to these structural perturbations allows the evolution of each of the four helices in these two proteins to be differentiated. It is found that the two external helices in c‧ unfold before its two internal helices, whereas exactly the opposite behaviour is demonstrated by c-b562 . Each of these cytochromes has an extended, internal, non-helical ('turning') region that initially lags behind the most labile helix but then, at a certain stage (identified for each cytochrome), unravels before any of the four helices present in the native structure. It is believed that these predictions will be useful in guiding future experimental studies on the unfolding of these two cytochromes.

  19. Stepwise Bay Annulation of Indigo for the Synthesis of Desymmetrized Electron Acceptors and Donor–Acceptor Constructs

    DOE PAGES

    Kolaczkowski, Matthew A.; He, Bo; Liu, Yi

    2016-10-10

    In this work, a selective stepwise annulation of indigo has been demonstrated as a means of providing both monoannulated and differentially double-annulated indigo derivatives. Disparate substitution of the electron accepting bay-annulated indigo system allows for fine control over both the electronic properties as well as donor-acceptor structural architectures. Optical and electronic properties were characterized computationally as well as through UV-vis absorption spectroscopy and cyclic voltammetry. Finally, this straightforward method provides a modular approach for the design of indigo-based materials with tailored optoelectronic properties.

  20. Relationships between vegetation and terrain variables in southeastern Arizona. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mouat, D. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Relationships were established between eight terrain variables and plant species and 31 vegetation types. Certain plant species are better than others for differentiating or discriminating groups of specified terrain variables. Certain terrain variables are better than others for differentiating or discriminating groups of vegetation types. Stepwise discriminant analysis was shown to be a useful tool in plant ecological studies.

  1. Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the Na+/K+ -ATPase of milkweed butterflies (lepidoptera: Danaini).

    PubMed

    Petschenka, Georg; Fandrich, Steffi; Sander, Nils; Wagschal, Vera; Boppré, Michael; Dobler, Susanne

    2013-09-01

    Despite the monarch butterfly (Danaus plexippus) being famous for its adaptations to the defensive traits of its milkweed host plants, little is known about the macroevolution of these traits. Unlike most other animal species, monarchs are largely insensitive to cardenolides, because their target site, the sodium pump (Na(+)/K(+) -ATPase), has evolved amino acid substitutions that reduce cardenolide binding (so-called target site insensitivity, TSI). Because many, but not all, species of milkweed butterflies (Danaini) are associated with cardenolide-containing host plants, we analyzed 16 species, representing all phylogenetic lineages of milkweed butterflies, for the occurrence of TSI by sequence analyses of the Na(+)/K(+) -ATPase gene and by enzymatic assays with extracted Na(+)/K(+) -ATPase. Here we report that sensitivity to cardenolides was reduced in a stepwise manner during the macroevolution of milkweed butterflies. Strikingly, not all Danaini typically consuming cardenolides showed TSI, but rather TSI was more strongly associated with sequestration of toxic cardenolides. Thus, the interplay between bottom-up selection by plant compounds and top-down selection by natural enemies can explain the evolutionary sequence of adaptations to these toxins. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  2. Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method.

    PubMed

    Ohnishi, Hiroe; Skerleva, Desislava; Kitajiri, Shin-ichiro; Sakamoto, Tatsunori; Yamamoto, Norio; Ito, Juichi; Nakagawa, Takayuki

    2015-07-10

    Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. [The research of establishing discriminant function for patients with angina pectoris by stepwise analysis based on serum inflammatory factors].

    PubMed

    Chen, Zhi-bin; Liang, Yan-bing; Tang, Hao; Wang, Zhong-hua; Zeng, Li-jin; Wu, Jing-guo; Li, Zhen-yu; Ma, Zhong-fu

    2012-12-01

    To improve cost-efficiency, discriminant functions in stepwise method was founded for the differential diagnosis of angina pectoris by detecting the serum level of high-sensitivity C-reactive protein (hs-CRP), macrophage migration inhibitory factor (MIF), interleukin-4 (IL-4) and interleukin-10 (IL-10) in patients with stable angina pectoris (SAP) and unstable angina pectoris (UAP). Thirty-nine SAP patients and 47 UAP patients were enrolled into the study, while 39 healthy volunteers were enrolled into the controlled group forming the entire set of training samples. The serum levels of hs-CRP, MIF, IL-4 and IL-10 were measured by enzyme linked immunosorbent assay (ELISA). Data was analyzed by software to define discriminant functions in the ways of "entering" and "stepwise". Both functions were evaluated by the results of validation. By the way of "enter independent together", the following discriminant functions were defined based on the data of training samples' age, hs-CRP, MIF, IL-4, IL-10: healthy control group =-129.858 + 2.869×age -2.451×hs-CRP + 1.393×MIF + 6.001×IL-4 + 4.848×IL-10; SAP group=-161.037 + 2.896×age-2.022×hs-CRP + 1.662×MIF + 6.703×IL-4 + 6.287×IL-10; UAP group=-199.087 + 2.468×age-1.440×hs-CRP + 3.404×MIF-13.875×IL-4 + 7.752×IL-10. Retrospective validation showed 4.8% of total miss-grouping, while cross-validation showed 5.6% of total miss-grouping. By the way of "stepwise", the above data was screened by software and training samples' age, MIF and IL-10 were suggested to define the following functions: healthy control group = - 125.218 + 2.659 × age + 0.599×MIF + 5.040 × IL-10; SAP group=-157.864 + 2.721×age + 1.008×MIF + 6.468×IL-10; UAP group=- 197.327 + 2.360×age + 2.932×MIF + 7.640×IL-10. Both retrospective and cross validation showed 6.4% of total miss-grouping. Both sets of discriminant functions had the same efficiency (100%) for differential diagnosis of SAP and UAP. The discriminant functions based on samples' age, MIF and IL-10, which were screened and suggested by stepwise method, may contribute to the differential diagnosis of atypical SAP and UAP, and therefore demonstrate better cost-efficiency.

  4. An Integration of Ground-Penetrating Radar, Remote Sensing, and Discharge Records of the Modern Kicking Horse River, BC

    NASA Astrophysics Data System (ADS)

    Cyples, N.; Ielpi, A.; Dirszowsky, R.

    2017-12-01

    The Kicking Horse River is a gravel-bed stream originating from glacial meltwater supplied by the Wapta Icefields in south-eastern British Columbia. An alluvial tract extends for 7 km through Field, BC, where the trunk channel undergoes diurnal and seasonal fluctuations in flow as a result of varying glacial-meltwater supply and runoff recharge. Prior studies erected the Kicking Horse River as a reference for proximal braided systems, and documented bar formation and sediment distribution patterns from ground observations. However, a consistent model of planform evolution and related stratigraphic signature is lacking. Specific objectives of this study are to examine the morphodynamic evolution and stratigraphic signature of channel-bar complexes using high-resolution satellite imagery, sedimentologic and discharge observations, and ground-penetrating radar (GPR). Remote sensing highlights rates of lateral channel migration of as much as 270 meters over eight years ( 34 meters/year), and demonstrates how flood stages are associated with stepwise episodes of channel braiding and anabranching. GPR analysis aided in the identification of five distinct radar facies, including: discontinuous, inclined, planar, trough-shaped, and mounded reflectors, which were respectively related to specific architectural elements and fluvial processes responsible for bar evolution. Across-stream GPR transects demonstrated higher heterogeneity in facies distribution, while downstream-oriented transects yielded a more monotonous distribution in radar facies. Notably, large-scale inclined reflectors related to step-wise bar accretion are depicted only in downstream-oriented transects, while discontinuous reflectors related to bedform stacking appear to be dominant in along-stream transects. Integration of sedimentological data with remote sensing, gauging records, and GPR analysis allows for high-resolution modelling of stepwise changes in alluvial morphology. Conceptual models stemming from such analyses can be employed to understand the depositional history and stratigraphic signature of proximal and coarse-grained fluvial systems.

  5. Big Bang Tumor Growth and Clonal Evolution.

    PubMed

    Sun, Ruping; Hu, Zheng; Curtis, Christina

    2018-05-01

    The advent and application of next-generation sequencing (NGS) technologies to tumor genomes has reinvigorated efforts to understand clonal evolution. Although tumor progression has traditionally been viewed as a gradual stepwise process, recent studies suggest that evolutionary rates in tumors can be variable with periods of punctuated mutational bursts and relative stasis. For example, Big Bang dynamics have been reported, wherein after transformation, growth occurs in the absence of stringent selection, consistent with effectively neutral evolution. Although first noted in colorectal tumors, effective neutrality may be relatively common. Additionally, punctuated evolution resulting from mutational bursts and cataclysmic genomic alterations have been described. In this review, we contrast these findings with the conventional gradualist view of clonal evolution and describe potential clinical and therapeutic implications of different evolutionary modes and tempos. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Tracing the role of human civilization in the globalization of plant pathogens

    Treesearch

    Alberto Santini; Andrew Liebhold; Duccio Migliorini; Steve Woodward

    2018-01-01

    Co-evolution between plants and parasites, including herbivores and pathogens, has arguably generated much of Earth’s biological diversity. Within an ecosystem, coevolution of plants and pathogens is a stepwise reciprocal evolutionary interaction: epidemics result in intense selection pressures on both host and pathogen populations, ultimately allowing long-term...

  7. The origin of conodonts and of vertebrate mineralized skeletons

    USGS Publications Warehouse

    Murdock, Duncan J.E.; Dong, Xi-Ping; Repetski, John E.; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C.J.

    2013-01-01

    Conodonts are an extinct group of jawless vertebrates whose tooth-like elements are the earliest instance of a mineralized skeleton in the vertebrate lineage, inspiring the ‘inside-out’ hypothesis that teeth evolved independently of the vertebrate dermal skeleton and before the origin of jaws. However, these propositions have been based on evidence from derived euconodonts. Here we test hypotheses of a paraconodont ancestry of euconodonts using synchrotron radiation X-ray tomographic microscopy to characterize and compare the microstructure of morphologically similar euconodont and paraconodont elements. Paraconodonts exhibit a range of grades of structural differentiation, including tissues and a pattern of growth common to euconodont basal bodies. The different grades of structural differentiation exhibited by paraconodonts demonstrate the stepwise acquisition of euconodont characters, resolving debate over the relationship between these two groups. By implication, the putative homology of euconodont crown tissue and vertebrate enamel must be rejected as these tissues have evolved independently and convergently. Thus, the precise ontogenetic, structural and topological similarities between conodont elements and vertebrate odontodes appear to be a remarkable instance of convergence. The last common ancestor of conodonts and jawed vertebrates probably lacked mineralized skeletal tissues. The hypothesis that teeth evolved before jaws and the inside-out hypothesis of dental evolution must be rejected; teeth seem to have evolved through the extension of odontogenic competence from the external dermis to internal epithelium soon after the origin of jaws.

  8. Multiple convergent supergene evolution events in mating-type chromosomes.

    PubMed

    Branco, Sara; Carpentier, Fantin; Rodríguez de la Vega, Ricardo C; Badouin, Hélène; Snirc, Alodie; Le Prieur, Stéphanie; Coelho, Marco A; de Vienne, Damien M; Hartmann, Fanny E; Begerow, Dominik; Hood, Michael E; Giraud, Tatiana

    2018-05-21

    Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes.

  9. Fos Promotes Early Stage Teno-Lineage Differentiation of Tendon Stem/Progenitor Cells in Tendon.

    PubMed

    Chen, Jialin; Zhang, Erchen; Zhang, Wei; Liu, Zeyu; Lu, Ping; Zhu, Ting; Yin, Zi; Backman, Ludvig J; Liu, Huanhuan; Chen, Xiao; Ouyang, Hongwei

    2017-11-01

    Stem cells have been widely used in tendon tissue engineering. The lack of refined and controlled differentiation strategy hampers the tendon repair and regeneration. This study aimed to find new effective differentiation factors for stepwise tenogenic differentiation. By microarray screening, the transcript factor Fos was found to be expressed in significantly higher amounts in postnatal Achilles tendon tissue derived from 1 day as compared with 7-days-old rats. It was further confirmed that expression of Fos decreased with time in postnatal rat Achilles tendon, which was accompanied with the decreased expression of multiply tendon markers. The expression of Fos also declined during regular in vitro cell culture, which corresponded to the loss of tendon phenotype. In a cell-sheet and a three-dimensional cell culture model, the expression of Fos was upregulated as compared with in regular cell culture, together with the recovery of tendon phenotype. In addition, significant higher expression of tendon markers was found in Fos-overexpressed tendon stem/progenitor cells (TSPCs), and Fos knock-down gave opposite results. In situ rat tendon repair experiments found more normal tendon-like tissue formed and higher tendon markers expression at 4 weeks postimplantation of Fos-overexpressed TSPCs derived nonscaffold engineering tendon (cell-sheet), as compared with the control group. This study identifies Fos as a new marker and functional driver in the early stage teno-lineage differentiation of tendon, which paves the way for effective stepwise tendon differentiation and future tendon regeneration. Stem Cells Translational Medicine 2017;6:2009-2019. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  10. An integrative top-down and bottom-up qualitative model construction framework for exploration of biochemical systems.

    PubMed

    Wu, Zujian; Pang, Wei; Coghill, George M

    Computational modelling of biochemical systems based on top-down and bottom-up approaches has been well studied over the last decade. In this research, after illustrating how to generate atomic components by a set of given reactants and two user pre-defined component patterns, we propose an integrative top-down and bottom-up modelling approach for stepwise qualitative exploration of interactions among reactants in biochemical systems. Evolution strategy is applied to the top-down modelling approach to compose models, and simulated annealing is employed in the bottom-up modelling approach to explore potential interactions based on models constructed from the top-down modelling process. Both the top-down and bottom-up approaches support stepwise modular addition or subtraction for the model evolution. Experimental results indicate that our modelling approach is feasible to learn the relationships among biochemical reactants qualitatively. In addition, hidden reactants of the target biochemical system can be obtained by generating complex reactants in corresponding composed models. Moreover, qualitatively learned models with inferred reactants and alternative topologies can be used for further web-lab experimental investigations by biologists of interest, which may result in a better understanding of the system.

  11. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    NASA Astrophysics Data System (ADS)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  12. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales.

    PubMed

    Deméré, Thomas A; McGowen, Michael R; Berta, Annalisa; Gatesy, John

    2008-02-01

    The origin of baleen in mysticete whales represents a major transition in the phylogenetic history of Cetacea. This key specialization, a keratinous sieve that enables filter-feeding, permitted exploitation of a new ecological niche and heralded the evolution of modern baleen-bearing whales, the largest animals on Earth. To date, all formally described mysticete fossils conform to two types: toothed species from Oligocene-age rocks ( approximately 24 to 34 million years old) and toothless species that presumably utilized baleen to feed (Recent to approximately 30 million years old). Here, we show that several Oligocene toothed mysticetes have nutrient foramina and associated sulci on the lateral portions of their palates, homologous structures in extant mysticetes house vessels that nourish baleen. The simultaneous occurrence of teeth and nutrient foramina implies that both teeth and baleen were present in these early mysticetes. Phylogenetic analyses of a supermatrix that includes extinct taxa and new data for 11 nuclear genes consistently resolve relationships at the base of Mysticeti. The combined data set of 27,340 characters supports a stepwise transition from a toothed ancestor, to a mosaic intermediate with both teeth and baleen, to modern baleen whales that lack an adult dentition but retain developmental and genetic evidence of their ancestral toothed heritage. Comparative sequence data for ENAM (enamelin) and AMBN (ameloblastin) indicate that enamel-specific loci are present in Mysticeti but have degraded to pseudogenes in this group. The dramatic transformation in mysticete feeding anatomy documents an apparently rare, stepwise mode of evolution in which a composite phenotype bridged the gap between primitive and derived morphologies; a combination of fossil and molecular evidence provides a multifaceted record of this macroevolutionary pattern.

  13. Isolation and characterization of Chinese standard fulvic acid sub-fractions separated from forest soil by stepwise elution with pyrophosphate buffer.

    PubMed

    Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P

    2015-03-04

    XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants.

  14. Isolation and Characterization of Chinese Standard Fulvic Acid Sub-fractions Separated from Forest Soil by Stepwise Elution with Pyrophosphate Buffer

    PubMed Central

    Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P.

    2015-01-01

    XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants. PMID:25735451

  15. The Evolution and Fossil History of Sensory Perception in Amniote Vertebrates

    NASA Astrophysics Data System (ADS)

    Müller, Johannes; Bickelmann, Constanze; Sobral, Gabriela

    2018-05-01

    Sensory perception is of crucial importance for animals to interact with their biotic and abiotic environment. In amniotes, the clade including modern mammals (Synapsida), modern reptiles (Reptilia), and their fossil relatives, the evolution of sensory perception took place in a stepwise manner after amniotes appeared in the Carboniferous. Fossil evidence suggests that Paleozoic taxa had only a limited amount of sensory capacities relative to later forms, with the majority of more sophisticated types of sensing evolving during the Triassic and Jurassic. Alongside the evolution of improved sensory capacities, various types of social communication evolved across different groups. At present there is no definitive evidence for a relationship between sensory evolution and species diversification. It cannot be excluded, however, that selection for improved sensing was partially triggered by biotic interactions, e.g., in the context of niche competition, whereas ecospace expansion, especially during the Mesozoic, might also have played an important role.

  16. Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning

    PubMed Central

    Kok, Kai Yit; Rajendran, Parvathy

    2016-01-01

    The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630

  17. Evolution of the Arctic-North Atlantic and the Western Tethys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziegler, P.A.

    1988-01-01

    This volume provides an overview of the late Paleozoic to recent geological evolution of the continents and shelves bordering the North Atlantic Ocean, the Norwegian-Greenland Sea, the Arctic Ocean, and the Mediterranean Sea. The evolution of these seas has been the subject of many studies and compilations, which discuss the evolution of oceanic basins on the basis of their magnetic sea-floor anomalies. The volume presented combines this information with geological data from the adjacent shelf and onshore areas. It retraces the evolution of sedimentary basins developed during the rifting phases that preceded the opening of these oceans and highlights themore » scope of the associated intra-plate phenomena. The author presents a reconstruction of the late Paleozoic and early Mesozoic development of Europe, northernmost Africa and northeastern North America-Greenland and discusses the different orogenic cycles that accompanied the stepwise assembly of Pangea and the early rifting phases heralding its break-up.« less

  18. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells.

    PubMed

    Wong, Amy P; Chin, Stephanie; Xia, Sunny; Garner, Jodi; Bear, Christine E; Rossant, Janet

    2015-03-01

    Airway epithelial cells are of great interest for research on lung development, regeneration and disease modeling. This protocol describes how to generate cystic fibrosis (CF) transmembrane conductance regulator protein (CFTR)-expressing airway epithelial cells from human pluripotent stem cells (PSCs). The stepwise approach from PSC culture to differentiation into progenitors and then mature epithelia with apical CFTR activity is outlined. Human PSCs that were inefficient at endoderm differentiation using our previous lung differentiation protocol were able to generate substantial lung progenitor cell populations. Augmented CFTR activity can be observed in all cultures as early as at 35 d of differentiation, and full maturation of the cells in air-liquid interface cultures occurs in <5 weeks. This protocol can be used for drug discovery, tissue regeneration or disease modeling.

  19. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Bi, Naishuang; Xu, Jingping; Nittrouer, Jeffrey A.; Yang, Zuosheng; Saito, Yoshiki; Wang, Houjie

    2017-09-01

    The presently active Yellow River (Huanghe) delta lobe has been formed since 1976 when the river was artificially diverted. The process and driving forces of morphological evolution of the present delta lobe still remain unclear. Here we examined the stepwise morphological evolution of the active Yellow River delta lobe including both the subaerial and the subaqueous components, and illustrated the critical roles of riverine discharge and sediment grain size in dominating the deltaic evolution. The critical sediment loads for maintaining the delta stability were also calculated from water discharge and sediment load measured at station Lijin, the last gauging station approximately 100 km upstream from the river mouth. The results indicated that the development of active delta lobe including both subaerial and subaqueous components has experienced four sequential stages. During the first stage (1976-1981) after the channel migration, the unchannelized river flow enhanced deposition within the channel and floodplain between Lijin station and the river mouth. Therefore, the critical sediment supply calculated by the river inputs obtained from station Lijin was the highest. However, the actual sediment load at this stage (0.84 Gt/yr) was more than twice of the critical sediment load ( 0.35 Gt/yr) for sustaining the active subaerial area, which favored a rapid seaward progradation of the Yellow River subaerial delta. During the second stage (1981-1996), the engineering-facilitated channelized river flow and the increase in median grain size of suspended sediment delivered to the sea resulted in the critical sediment load for keeping the delta stability deceasing to 0.29 Gt/yr. The active delta lobe still gradually prograded seaward at an accretion rate of 11.9 km2/yr at this stage as the annual sediment load at Lijin station was 0.55 Gt/yr. From 1996 to 2002, the critical sediment load further decreased to 0.15 Gt/yr with the sediment grain size increased to 22.5 μm; however, the delta suffered net erosion because of the insufficient sediment supply (0.11 Gt/yr). In the most recent stage (2002 - 2013), the intensive scouring of the lower river channel induced by the dam regulation provided relatively coarser sediment, which effectively reduced the critical sediment load to 0.06 Gt/yr, much lower than the corresponding sediment load at Lijin station ( 0.16 Gt/yr). Consequently, the subaerial Yellow River delta transitioned to a slight accretion phase. Overall, the evolution of the active Yellow River delta is highly correlated to riverine water and sediment discharge. The sediment supply for keeping the subaerial delta stability is inconstant and varying with the river channel morphology and sediment grain size. We conclude that the human-impacted riverine sediment discharge and grain-size composition play dominant roles in the stepwise morphological evolution of the active delta lobe.

  20. Two-generation analysis of pollen flow across a landscape. V. A stepwise approach for extracting factors contributing to pollen structure.

    Treesearch

    R. J. Dyer; R. D. Westfall; V. L. Sork; P. E. Smouse

    2004-01-01

    Patterns of pollen dispersal are central to both the ecology and evolution of plant populations. However, the mechanisms controlling either the dispersal process itself or our estimation of that process may be influenced by site-specific factors such as local forest structure and nonuniform adult genetic structure. Here, we present an extension of the AMOVA model...

  1. Stepwise differentiation of pluripotent stem cells into osteoblasts using four small molecules under serum-free and feeder-free conditions.

    PubMed

    Kanke, Kosuke; Masaki, Hideki; Saito, Taku; Komiyama, Yuske; Hojo, Hironori; Nakauchi, Hiromitsu; Lichtler, Alexander C; Takato, Tsuyoshi; Chung, Ung-Il; Ohba, Shinsuke

    2014-06-03

    Pluripotent stem cells are a promising tool for mechanistic studies of tissue development, drug screening, and cell-based therapies. Here, we report an effective and mass-producing strategy for the stepwise differentiation of mouse embryonic stem cells (mESCs) and mouse and human induced pluripotent stem cells (miPSCs and hiPSCs, respectively) into osteoblasts using four small molecules (CHIR99021 [CHIR], cyclopamine [Cyc], smoothened agonist [SAG], and a helioxanthin-derivative 4-(4-methoxyphenyl)pyrido[4',3':4,5]thieno[2,3-b]pyridine-2-carboxamide [TH]) under serum-free and feeder-free conditions. The strategy, which consists of mesoderm induction, osteoblast induction, and osteoblast maturation phases, significantly induced expressions of osteoblast-related genes and proteins in mESCs, miPSCs, and hiPSCs. In addition, when mESCs defective in runt-related transcription factor 2 (Runx2), a master regulator of osteogenesis, were cultured by the strategy, they molecularly recapitulated osteoblast phenotypes of Runx2 null mice. The present strategy will be a platform for biological and pathological studies of osteoblast development, screening of bone-augmentation drugs, and skeletal regeneration.

  2. Orientation-free and differentially pumped addition of a low-flux reactive gas beam to a surface analysis system.

    PubMed

    Harthcock, Colin; Jahanbekam, Abdolreza; Eskelsen, Jeremy R; Lee, David Y

    2016-11-01

    We describe an example of a piecewise gas chamber that can be customized to incorporate a low flux of gas-phase radicals with an existing surface analysis chamber for in situ and stepwise gas-surface interaction experiments without any constraint in orientation. The piecewise nature of this gas chamber provides complete angular freedom and easy alignment and does not require any modification of the existing surface analysis chamber. In addition, the entire gas-surface system is readily differentially pumped with the surface chamber kept under ultra-high-vacuum during the gas-surface measurements. This new design also allows not only straightforward reconstruction to accommodate the orientation of different surface chambers but also for the addition of other desired features, such as an additional pump to the current configuration. Stepwise interaction between atomic oxygen and a highly ordered pyrolytic graphite surface was chosen to test the effectiveness of this design, and the site-dependent O-atom chemisorption and clustering on the graphite surface were resolved by a scanning tunneling microscope in the nm-scale. X-ray photoelectron spectroscopy was used to further confirm the identity of the chemisorbed species on the graphite surface as oxygen.

  3. Multiobjective Optimization Using a Pareto Differential Evolution Approach

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.

  4. Evolution of the Pseudomonas aeruginosa Aminoglycoside Mutational Resistome In Vitro and in the Cystic Fibrosis Setting.

    PubMed

    López-Causapé, Carla; Rubio, Rosa; Cabot, Gabriel; Oliver, Antonio

    2018-04-01

    Inhaled administration of high doses of aminoglycosides is a key maintenance treatment of Pseudomonas aeruginosa chronic respiratory infections in cystic fibrosis (CF). We analyzed the dynamics and mechanisms of stepwise high-level tobramycin resistance development in vitro and compared the results with those of isogenic pairs of susceptible and resistant clinical isolates. Resistance development correlated with fusA1 mutations in vitro and in vivo. pmrB mutations, conferring polymyxin resistance, were also frequently selected in vitro In contrast, mutational overexpression of MexXY, a hallmark of aminoglycoside resistance in CF, was not observed in in vitro evolution experiments. Copyright © 2018 American Society for Microbiology.

  5. Dizziness and vertigo.

    PubMed

    Wipperman, Jennifer

    2014-03-01

    Dizziness is a common and challenging condition seen in the primary care office. Because dizziness is a vague term that can include a wide array of medical disorders, it is important to use a stepwise approach to differentiate between causes. This article focuses on vertigo and its four most common causes: benign paroxysmal peripheral vertigo, vestibular neuritis, vestibular migraine, and Meniere's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Utility of an Abbreviated Dizziness Questionnaire to Differentiate between Causes of Vertigo and Guide Appropriate Referral: A Multicenter Prospective Blinded Study

    PubMed Central

    Roland, Lauren T.; Kallogjeri, Dorina; Sinks, Belinda C.; Rauch, Steven D.; Shepard, Neil T.; White, Judith A.; Goebel, Joel A.

    2015-01-01

    Objective Test performance of a focused dizziness questionnaire’s ability to discriminate between peripheral and non-peripheral causes of vertigo. Study Design Prospective multi-center Setting Four academic centers with experienced balance specialists Patients New dizzy patients Interventions A 32-question survey was given to participants. Balance specialists were blinded and a diagnosis was established for all participating patients within 6 months. Main outcomes Multinomial logistic regression was used to evaluate questionnaire performance in predicting final diagnosis and differentiating between peripheral and non-peripheral vertigo. Univariate and multivariable stepwise logistic regression were used to identify questions as significant predictors of the ultimate diagnosis. C-index was used to evaluate performance and discriminative power of the multivariable models. Results 437 patients participated in the study. Eight participants without confirmed diagnoses were excluded and 429 were included in the analysis. Multinomial regression revealed that the model had good overall predictive accuracy of 78.5% for the final diagnosis and 75.5% for differentiating between peripheral and non-peripheral vertigo. Univariate logistic regression identified significant predictors of three main categories of vertigo: peripheral, central and other. Predictors were entered into forward stepwise multivariable logistic regression. The discriminative power of the final models for peripheral, central and other causes were considered good as measured by c-indices of 0.75, 0.7 and 0.78, respectively. Conclusions This multicenter study demonstrates a focused dizziness questionnaire can accurately predict diagnosis for patients with chronic/relapsing dizziness referred to outpatient clinics. Additionally, this survey has significant capability to differentiate peripheral from non-peripheral causes of vertigo and may, in the future, serve as a screening tool for specialty referral. Clinical utility of this questionnaire to guide specialty referral is discussed. PMID:26485598

  7. Utility of an Abbreviated Dizziness Questionnaire to Differentiate Between Causes of Vertigo and Guide Appropriate Referral: A Multicenter Prospective Blinded Study.

    PubMed

    Roland, Lauren T; Kallogjeri, Dorina; Sinks, Belinda C; Rauch, Steven D; Shepard, Neil T; White, Judith A; Goebel, Joel A

    2015-12-01

    Test performance of a focused dizziness questionnaire's ability to discriminate between peripheral and nonperipheral causes of vertigo. Prospective multicenter. Four academic centers with experienced balance specialists. New dizzy patients. A 32-question survey was given to participants. Balance specialists were blinded and a diagnosis was established for all participating patients within 6 months. Multinomial logistic regression was used to evaluate questionnaire performance in predicting final diagnosis and differentiating between peripheral and nonperipheral vertigo. Univariate and multivariable stepwise logistic regression were used to identify questions as significant predictors of the ultimate diagnosis. C-index was used to evaluate performance and discriminative power of the multivariable models. In total, 437 patients participated in the study. Eight participants without confirmed diagnoses were excluded and 429 were included in the analysis. Multinomial regression revealed that the model had good overall predictive accuracy of 78.5% for the final diagnosis and 75.5% for differentiating between peripheral and nonperipheral vertigo. Univariate logistic regression identified significant predictors of three main categories of vertigo: peripheral, central, and other. Predictors were entered into forward stepwise multivariable logistic regression. The discriminative power of the final models for peripheral, central, and other causes was considered good as measured by c-indices of 0.75, 0.7, and 0.78, respectively. This multicenter study demonstrates a focused dizziness questionnaire can accurately predict diagnosis for patients with chronic/relapsing dizziness referred to outpatient clinics. Additionally, this survey has significant capability to differentiate peripheral from nonperipheral causes of vertigo and may, in the future, serve as a screening tool for specialty referral. Clinical utility of this questionnaire to guide specialty referral is discussed.

  8. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer?

    PubMed Central

    Grove, Carolyn S.; Vassiliou, George S.

    2014-01-01

    Acute myeloid leukaemia (AML) is an uncontrolled clonal proliferation of abnormal myeloid progenitor cells in the bone marrow and blood. Advances in cancer genomics have revealed the spectrum of somatic mutations that give rise to human AML and drawn our attention to its molecular evolution and clonal architecture. It is now evident that most AML genomes harbour small numbers of mutations, which are acquired in a stepwise manner. This characteristic, combined with our ability to identify mutations in individual leukaemic cells and our detailed understanding of normal human and murine haematopoiesis, makes AML an excellent model for understanding the principles of cancer evolution. Furthermore, a better understanding of how AML evolves can help us devise strategies to improve the therapy and prognosis of AML patients. Here, we draw from recent advances in genomics, clinical studies and experimental models to describe the current knowledge of the clonal evolution of AML and its implications for the biology and treatment of leukaemias and other cancers. PMID:25056697

  9. Differences in Cell Division Rates Drive the Evolution of Terminal Differentiation in Microbes

    PubMed Central

    Matias Rodrigues, João F.; Rankin, Daniel J.; Rossetti, Valentina; Wagner, Andreas; Bagheri, Homayoun C.

    2012-01-01

    Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types –nitrogen fixing or photosynthetic– that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria. PMID:22511858

  10. Fast multi-dimensional NMR by minimal sampling

    NASA Astrophysics Data System (ADS)

    Kupče, Ēriks; Freeman, Ray

    2008-03-01

    A new scheme is proposed for very fast acquisition of three-dimensional NMR spectra based on minimal sampling, instead of the customary step-wise exploration of all of evolution space. The method relies on prior experiments to determine accurate values for the evolving frequencies and intensities from the two-dimensional 'first planes' recorded by setting t1 = 0 or t2 = 0. With this prior knowledge, the entire three-dimensional spectrum can be reconstructed by an additional measurement of the response at a single location (t1∗,t2∗) where t1∗ and t2∗ are fixed values of the evolution times. A key feature is the ability to resolve problems of overlap in the acquisition dimension. Applied to a small protein, agitoxin, the three-dimensional HNCO spectrum is obtained 35 times faster than systematic Cartesian sampling of the evolution domain. The extension to multi-dimensional spectroscopy is outlined.

  11. Evidence of correlated evolution and adaptive differentiation of stem and leaf functional traits in the herbaceous genus, Helianthus.

    PubMed

    Pilote, Alex J; Donovan, Lisa A

    2016-12-01

    Patterns of plant stem traits are expected to align with a "fast-slow" plant economic spectrum across taxa. Although broad patterns support such tradeoffs in field studies, tests of hypothesized correlated trait evolution and adaptive differentiation are more robust when taxa relatedness and environment are taken into consideration. Here we test for correlated evolution of stem and leaf traits and their adaptive differentiation across environments in the herbaceous genus, Helianthus. Stem and leaf traits of 14 species of Helianthus (28 populations) were assessed in a common garden greenhouse study. Phylogenetically independent contrasts were used to test for evidence of correlated evolution of stem hydraulic and biomechanical properties, correlated evolution of stem and leaf traits, and adaptive differentiation associated with source habitat environments. Among stem traits, there was evidence for correlated evolution of some hydraulic and biomechanical properties, supporting an expected tradeoff between stem theoretical hydraulic efficiency and resistance to bending stress. Population differentiation for suites of stem and leaf traits was found to be consistent with a "fast-slow" resource-use axis for traits related to water transport and use. Associations of population traits with source habitat characteristics supported repeated evolution of a resource-acquisitive "drought-escape" strategy in arid environments. This study provides evidence of correlated evolution of stem and leaf traits consistent with the fast-slow spectrum of trait combinations related to water transport and use along the stem-to-leaf pathway. Correlations of traits with source habitat characteristics further indicate that the correlated evolution is associated, at least in part, with adaptive differentiation of Helianthus populations among native habitats differing in climate. © 2016 Botanical Society of America.

  12. Immortalization of human AE pre-leukemia cells by hTERT allows leukemic transformation

    PubMed Central

    Wunderlich, Mark; Chou, Fu-Sheng; Mulloy, James C.

    2016-01-01

    Human CD34+ hematopoietic stem and progenitor cells (HSPC) expressing fusion protein AML1-ETO (AE), generated by the t(8;21)(q22;q22) rearrangement, manifest enhanced self-renewal and dysregulated differentiation without leukemic transformation, representing a pre-leukemia stage. Enabling replicative immortalization via telomerase reactivation is a crucial step in cancer development. However, AE expression alone is not sufficient to maintain high telomerase activity to immortalize human HSPC cells, which may hamper transformation. Here, we investigated the cooperativity of telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, and AE in disease progression. Enforced expression of hTERT immortalized human AE pre-leukemia cells in a telomere-lengthening independent manner, and improved the pre-leukemia stem cell function by enhancing cell proliferation and survival. AE-hTERT cells retained cytokine dependency and multi-lineage differentiation potential similar to parental AE clones. Over the short-term, AE-hTERT cells did not show features of stepwise transformation, with no leukemogenecity evident upon initial injection into immunodeficient mice. Strikingly, after extended culture, we observed full transformation of one AE-hTERT clone, which recapitulated the disease evolution process in patients and emphasizes the importance of acquiring cooperating mutations in t(8;21) AML leukemogenesis. In summary, achieving unlimited proliferative potential via hTERT activation, and thereby allowing for acquisition of additional mutations, is a critical link for transition from pre-leukemia to overt disease in human cells. AE-hTERT cells represent a tractable model to study cooperating genetic lesions important for t(8;21) AML disease progression. PMID:27509060

  13. From shoot to leaf: step-wise shifts in meristem and KNOX1 activity correlate with the evolution of a unifoliate body plan in Gesneriaceae.

    PubMed

    Nishii, Kanae; Huang, Bing-Hong; Wang, Chun-Neng; Möller, Michael

    2017-01-01

    Typical dicots possess equal-sized cotyledons and leaf-bearing shoots topped with a shoot apical meristem (SAM), the source of lateral organs, and where KNOX1 homeobox genes act as key regulators. New World Gesneriaceae show typical cotyledons, whereas Old World Gesneriaceae show anisocotyly, the unequal post-germination growth of cotyledons, and include unifoliate (one-leaf) plants. One-leaf plants show an extremely reduced body plan: the adult above-ground photosynthetic tissue consisting of a single cotyledon, a macrocotyledon enlarged by the basal meristem (BM), but lacking a SAM. To investigate the origin and evolution of the BM and one-leaf plants, the meristem activity and KNOX1 SHOOTMERISTEMLESS (STM) expression in cotyledons and leaves were systematically studied by RT-PCR and in situ hybridization across the family Gesneriaceae, Jovellana in Calceolariaceae (sister family to Gesneriaceae), and Antirrhinum in Plantaginaceae, all families of order Lamiales (asterids), in comparison to Arabidopsis (Brassicales, rosids). In all examined Lamiales samples, unlike Arabidopsis, BM activity accompanied by STM expression was found in both cotyledons in early stages. Foliage leaves of Gesneriaceae and Jovellana also showed the correlation of BM and STM expression. An extension of BM activity was found following a phylogenetic trajectory towards one-leaf plants where it is active throughout the lifetime of the macrocotyledon. Our results suggest that KNOX1 involvement in early cotyledon expansion originated early on in the diversification of Lamiales and is proposed as the prerequisite for the evolution of vegetative diversity in Gesneriaceae. Step-wise morphological shifts, driven by transfers of meristematic activity, as evidenced by shifts in KNOX1 expression, may be one mechanism by which morphological diversity evolves in plants.

  14. Differentiation of Commercial PDO Wines Produced in Istria (Croatia) According to Variety and Harvest Year Based on HS-SPME-GC/MS Volatile Aroma Compound Profiling.

    PubMed

    Lukić, Igor; Horvat, Ivana

    2017-03-01

    To differentiate monovarietal wines made from native and introduced varieties in Istria (Croatia), samples of Malvazija istarska, Chardonnay and Muscat yellow from two harvest years (2013 and 2014) were subjected to headspace solid-phase microextraction and gas chromatographic/mass spectrometric analysis (HS-SPME-GC/MS) of volatile aroma compounds. Significant effects of variety and harvest year were determined, but their interaction complicated the differentiation. Particular compounds were consistent as markers of variety in both years: nerol for Malvazija, ethyl cinnamate and a tentatively identified isomer of dimethylbenzaldehyde for Chardonnay, and terpenes for Muscat yellow. Wines from 2013 contained higher concentrations of the majority of important volatiles. A 100% correct differentiation of Malvazija istarska and Chardonnay wines according to both variety and harvest year was achieved by stepwise linear discriminant analysis.

  15. Directed differentiation of embryonic stem cells using a bead-based combinatorial screening method.

    PubMed

    Tarunina, Marina; Hernandez, Diana; Johnson, Christopher J; Rybtsov, Stanislav; Ramathas, Vidya; Jeyakumar, Mylvaganam; Watson, Thomas; Hook, Lilian; Medvinsky, Alexander; Mason, Chris; Choo, Yen

    2014-01-01

    We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid progenitor cell that has not previously been reported.

  16. Optimizing the deposition of hydrogen evolution sites on suspended semiconductor particles using on-line photocatalytic reforming of aqueous methanol solutions.

    PubMed

    Busser, G Wilma; Mei, Bastian; Muhler, Martin

    2012-11-01

    The deposition of hydrogen evolution sites on photocatalysts is a crucial step in the multistep process of synthesizing a catalyst that is active for overall photocatalytic water splitting. An alternative approach to conventional photodeposition was developed, applying the photocatalytic reforming of aqueous methanol solutions to deposit metal particles on semiconductor materials such as Ga₂O₃ and (Ga₀.₆ Zn₀.₄)(N₀.₆O₀.₄). The method allows optimizing the loading of the co-catalysts based on the stepwise addition of their precursors and the continuous online monitoring of the evolved hydrogen. Moreover, a synergetic effect between different co-catalysts can be directly established. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Constructive neutral evolution: exploring evolutionary theory's curious disconnect.

    PubMed

    Stoltzfus, Arlin

    2012-10-13

    Constructive neutral evolution (CNE) suggests that neutral evolution may follow a stepwise path to extravagance. Whether or not CNE is common, the mere possibility raises provocative questions about causation: in classical neo-Darwinian thinking, selection is the sole source of creativity and direction, the only force that can cause trends or build complex features. However, much of contemporary evolutionary genetics departs from the conception of evolution underlying neo-Darwinism, resulting in a widening gap between what formal models allow, and what the prevailing view of the causes of evolution suggests. In particular, a mutationist conception of evolution as a 2-step origin-fixation process has been a source of theoretical innovation for 40 years, appearing not only in the Neutral Theory, but also in recent breakthroughs in modeling adaptation (the "mutational landscape" model), and in practical software for sequence analysis. In this conception, mutation is not a source of raw materials, but an agent that introduces novelty, while selection is not an agent that shapes features, but a stochastic sieve. This view, which now lays claim to important theoretical, experimental, and practical results, demands our attention. CNE provides a way to explore its most significant implications about the role of variation in evolution. Alex Kondrashov, Eugene Koonin and Johann Peter Gogarten reviewed this article.

  18. Constructive neutral evolution: exploring evolutionary theory’s curious disconnect

    PubMed Central

    2012-01-01

    Abstract Constructive neutral evolution (CNE) suggests that neutral evolution may follow a stepwise path to extravagance. Whether or not CNE is common, the mere possibility raises provocative questions about causation: in classical neo-Darwinian thinking, selection is the sole source of creativity and direction, the only force that can cause trends or build complex features. However, much of contemporary evolutionary genetics departs from the conception of evolution underlying neo-Darwinism, resulting in a widening gap between what formal models allow, and what the prevailing view of the causes of evolution suggests. In particular, a mutationist conception of evolution as a 2-step origin-fixation process has been a source of theoretical innovation for 40 years, appearing not only in the Neutral Theory, but also in recent breakthroughs in modeling adaptation (the “mutational landscape” model), and in practical software for sequence analysis. In this conception, mutation is not a source of raw materials, but an agent that introduces novelty, while selection is not an agent that shapes features, but a stochastic sieve. This view, which now lays claim to important theoretical, experimental, and practical results, demands our attention. CNE provides a way to explore its most significant implications about the role of variation in evolution. Reviewers Alex Kondrashov, Eugene Koonin and Johann Peter Gogarten reviewed this article. PMID:23062217

  19. Growth of Pd Nanoclusters on Single-Layer Graphene on Cu(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soy, Esin; Guisinger, Nathan P.; Trenary, Michael

    We report scanning tunneling microscopy results on the nucleation and growth of Pd nanoclusters on a single layer of graphene on the Cu(111) surface. The shape, organization, and structural evolution of the Pd nanoclusters were investigated using two different growth methods, continuous and stepwise. The size and shape of the formed nanoclusters were found to greatly depend on the growth technique used. The size and density of spherical Pd nanoclusters increased with increasing coverage during stepwise deposition as a result of coarsening of existing clusters and continued nucleation of new clusters. In contrast, continuous deposition gave rise to well-defined triangularmore » Pd clusters as a result of anisotropic growth on the graphene surface. Exposure to ethylene caused a decrease in the size of the Pd clusters. As a result, this is attributed to the exothermic formation of ethylidyne on the cluster surfaces and an accompanying weakening of the Pd–Pd bonding.« less

  20. Growth of Pd Nanoclusters on Single-Layer Graphene on Cu(111)

    DOE PAGES

    Soy, Esin; Guisinger, Nathan P.; Trenary, Michael

    2017-07-05

    We report scanning tunneling microscopy results on the nucleation and growth of Pd nanoclusters on a single layer of graphene on the Cu(111) surface. The shape, organization, and structural evolution of the Pd nanoclusters were investigated using two different growth methods, continuous and stepwise. The size and shape of the formed nanoclusters were found to greatly depend on the growth technique used. The size and density of spherical Pd nanoclusters increased with increasing coverage during stepwise deposition as a result of coarsening of existing clusters and continued nucleation of new clusters. In contrast, continuous deposition gave rise to well-defined triangularmore » Pd clusters as a result of anisotropic growth on the graphene surface. Exposure to ethylene caused a decrease in the size of the Pd clusters. As a result, this is attributed to the exothermic formation of ethylidyne on the cluster surfaces and an accompanying weakening of the Pd–Pd bonding.« less

  1. A new astronomical dating of the Trojan war's end.

    NASA Astrophysics Data System (ADS)

    Papamarinopoulos, S.; Preka-Papadema, P.; Mitropetros, P.; Antonopoulos, P.; Mitropetrou, E.; Saranditis, G.

    A solar eclipse's evolution was described in the Iliad in a stepwise mode manifested in increasing gradual darkness, during a warm day at late noon; from Sarpedon's death time to few later from Patroclus' death time. We examined the solar eclipses within the time span 1400-1130 B.C. and we found that only the annular solar eclipse on 6th June 1218 yr B.C. observable in Troy with significant obscuration 75.2 % fits fully with the Homeric descriptions.

  2. Directed Differentiation of Embryonic Stem Cells Using a Bead-Based Combinatorial Screening Method

    PubMed Central

    Tarunina, Marina; Hernandez, Diana; Johnson, Christopher J.; Rybtsov, Stanislav; Ramathas, Vidya; Jeyakumar, Mylvaganam; Watson, Thomas; Hook, Lilian; Medvinsky, Alexander; Mason, Chris; Choo, Yen

    2014-01-01

    We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid progenitor cell that has not previously been reported. PMID:25251366

  3. Origin and evolution of the panarthropod head - A palaeobiological and developmental perspective.

    PubMed

    Ortega-Hernández, Javier; Janssen, Ralf; Budd, Graham E

    2017-05-01

    The panarthropod head represents a complex body region that has evolved through the integration and functional specialization of the anterior appendage-bearing segments. Advances in the developmental biology of diverse extant organisms have led to a substantial clarity regarding the relationships of segmental homology between Onychophora (velvet worms), Tardigrada (water bears), and Euarthropoda (e.g. arachnids, myriapods, crustaceans, hexapods). The improved understanding of the segmental organization in panarthropods offers a novel perspective for interpreting the ubiquitous Cambrian fossil record of these successful animals. A combined palaeobiological and developmental approach to the study of the panarthropod head through deep time leads us to propose a consensus hypothesis for the intricate evolutionary history of this important tagma. The contribution of exceptionally preserved brains in Cambrian fossils - together with the recognition of segmentally informative morphological characters - illuminate the polarity for major anatomical features. The euarthropod stem-lineage provides a detailed view of the step-wise acquisition of critical characters, including the origin of a multiappendicular head formed by the fusion of several segments, and the transformation of the ancestral protocerebral limb pair into the labrum, following the postero-ventral migration of the mouth opening. Stem-group onychophorans demonstrate an independent ventral migration of the mouth and development of a multisegmented head, as well as the differentiation of the deutocerebral limbs as expressed in extant representatives. The anterior organization of crown-group Tardigrada retains several ancestral features, such as an anterior-facing mouth and one-segmented head. The proposed model aims to clarify contentious issues on the evolution of the panarthropod head, and lays the foundation from which to further address this complex subject in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Detter, John C; Bruce, David C

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus 11B, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNAmore » than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudo genes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.« less

  5. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Detter, Chris; Bruce, David

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus lIB, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNAmore » than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudogenes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.« less

  6. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells.

    PubMed

    Prabakar, Kamalaveni R; Domínguez-Bendala, Juan; Molano, R Damaris; Pileggi, Antonello; Villate, Susana; Ricordi, Camillo; Inverardi, Luca

    2012-01-01

    We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.

  7. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun

    2015-02-11

    The relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a function of the applied strains.more » The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  8. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  9. Shape Optimization of Rubber Bushing Using Differential Evolution Algorithm

    PubMed Central

    2014-01-01

    The objective of this study is to design rubber bushing at desired level of stiffness characteristics in order to achieve the ride quality of the vehicle. A differential evolution algorithm based approach is developed to optimize the rubber bushing through integrating a finite element code running in batch mode to compute the objective function values for each generation. Two case studies were given to illustrate the application of proposed approach. Optimum shape parameters of 2D bushing model were determined by shape optimization using differential evolution algorithm. PMID:25276848

  10. A molecular description of the evolution of resistance

    NASA Technical Reports Server (NTRS)

    Ordoukhanian, P.; Joyce, G. F.

    1999-01-01

    BACKGROUND: In vitro evolution has been used to obtain nucleic acid molecules with interesting functional properties. The evolution process usually is carried out in a stepwise manner, involving successive rounds of selection, amplification and mutation. Recently, a continuous in vitro evolution system was devised for RNAs that catalyze the ligation of oligonucleotide substrates, allowing the evolution of catalytic function to be studied in real time. RESULTS: Continuous in vitro evolution of an RNA ligase ribozyme was carried out in the presence of a DNA enzyme that was capable of cleaving, and thereby inactivating, the ribozyme. The DNA concentration was increased steadily over 33.5 hours of evolution, reaching a final concentration that would have been sufficient to inactivate the starting population in one second. The evolved population of ribozymes developed resistance to the DNA enzyme, reducing their vulnerability to cleavage by 2000-fold but retaining their own catalytic function. Based on sequencing and kinetic analysis of the ribozymes, two mechanisms are proposed for this resistance. One involves three nucleotide substitutions, together with two compensatory mutations, that alter the site at which the DNA enzyme binds the ribozyme. The other involves enhancement of the ribozyme's ability to bind its own substrate in a way that protects it from cleavage by the DNA enzyme. CONCLUSIONS: The ability to direct the evolution of an enzyme's biochemical properties in response to the behavior of another macromolecule provides insight into the evolution of resistance and may be useful in developing enzymes with novel or enhanced function.

  11. Application of Differential Evolutionary Optimization Methodology for Parameter Structure Identification in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Nishikawa, T.

    2013-12-01

    With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.

  12. Habenula Circuit Development: Past, Present, and Future

    PubMed Central

    Beretta, Carlo A.; Dross, Nicolas; Guiterrez-Triana, Jose A.; Ryu, Soojin; Carl, Matthias

    2012-01-01

    The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development, and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction, and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the dorsal diencephalic conduction system (DDC) with the habenulae in its center at the end of the nineteenth century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain, and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left–right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques, and others that are needed to fully understand habenular circuit development. PMID:22536170

  13. Habenula circuit development: past, present, and future.

    PubMed

    Beretta, Carlo A; Dross, Nicolas; Guiterrez-Triana, Jose A; Ryu, Soojin; Carl, Matthias

    2012-01-01

    The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development, and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction, and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the dorsal diencephalic conduction system (DDC) with the habenulae in its center at the end of the nineteenth century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain, and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left-right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques, and others that are needed to fully understand habenular circuit development.

  14. Evolution of consciousness: Phylogeny, ontogeny, and emergence from general anesthesia

    PubMed Central

    Mashour, George A.; Alkire, Michael T.

    2013-01-01

    Are animals conscious? If so, when did consciousness evolve? We address these long-standing and essential questions using a modern neuroscientific approach that draws on diverse fields such as consciousness studies, evolutionary neurobiology, animal psychology, and anesthesiology. We propose that the stepwise emergence from general anesthesia can serve as a reproducible model to study the evolution of consciousness across various species and use current data from anesthesiology to shed light on the phylogeny of consciousness. Ultimately, we conclude that the neurobiological structure of the vertebrate central nervous system is evolutionarily ancient and highly conserved across species and that the basic neurophysiologic mechanisms supporting consciousness in humans are found at the earliest points of vertebrate brain evolution. Thus, in agreement with Darwin’s insight and the recent “Cambridge Declaration on Consciousness in Non-Human Animals,” a review of modern scientific data suggests that the differences between species in terms of the ability to experience the world is one of degree and not kind. PMID:23754370

  15. A systems approach to physiologic evolution: From micelles to consciousness.

    PubMed

    Torday, John S; Miller, William B

    2018-01-01

    A systems approach to evolutionary biology offers the promise of an improved understanding of the fundamental principles of life through the effective integration of many biologic disciplines. It is presented that any critical integrative approach to evolutionary development involves a paradigmatic shift in perspective, more than just the engagement of a large number of disciplines. Critical to this differing viewpoint is the recognition that all biological processes originate from the unicellular state and remain permanently anchored to that phase throughout evolutionary development despite their macroscopic appearances. Multicellular eukaryotic development can, therefore, be viewed as a series of connected responses to epiphenomena that proceeds from that base in continuous iterative maintenance of collective cellular homeostatic equipoise juxtaposed against an ever-changing and challenging environment. By following this trajectory of multicellular eukaryotic evolution from within unicellular First Principles of Physiology forward, the mechanistic nature of complex physiology can be identified through a step-wise analysis of a continuous arc of vertebrate evolution based upon serial exaptations. © 2017 Wiley Periodicals, Inc.

  16. Perfusion MR imaging detection of carcinoma arising from preexisting salivary gland pleomorphic adenoma by computer-assisted analysis of time-signal intensity maps

    PubMed Central

    Katayama, Ikuo; Eida, Sato; Fujita, Shuichi; Hotokezaka, Yuka; Sumi, Misa

    2017-01-01

    Tumor perfusion can be evaluated by analyzing the time-signal intensity curve (TIC) after dynamic contrast-enhanced (DCE) MR imaging. Accordingly, TIC profiles are characteristic of some benign and malignant salivary gland tumors. A carcinoma ex pleomorphic adenoma (CXPA) arises from a long-standing pleomorphic adenoma (PA) and has a distinctive prognostic risk depending on the tumor growth potential such as invasion beyond the preexisting capsule. Differentiating CXPA from PA can be very challenging. In this study, we have attempted to discriminate CXPA from PA based on a two-dimensional TIC mapping algorithm. TIC mapping analysis was performed on 8 patients with CXPA and 20 patients with PA after dynamic contrast-enhanced (DCE) MR imaging using a 1.5-T MR system. The TIC profiles obtained were automatically categorized into 5 types based on the enhancement ratio, maximum time, and washout ratio (Type 1 TIC with flat profile, Type 2 TIC with slow uptake, Type 3 TIC with rapid uptake and a low washout ratio, Type 4 TIC with rapid uptake and a high washout ratio, and Type 5 TIC not otherwise specific). The percentage tumor areas with each of the 5 TIC types were compared between CXPAs and PAs. Stepwise differentiation and cluster analysis using multiple TIC cut-off thresholds distinguished CXPAs from PAs with 75% sensitivity, 95% specificity, 86% accuracy, and 86% positive and 90% negative predictive values, when tumors with ≤1.1% Type 1 and ≥15% Type 4, or those with ≤1.1% Type 1, ≥78.1% Type 2, ≥16.1% Type 3, and <15% Type 4, or those with >1.1% Type 1, ≥78.1% Type 2, and ≥16.1% Type 3 areas were diagnosed as CXPAs. The overall TIC profiles predicted some aggressive CXPA growth patterns. These results suggest that stepwise differentiation based on TIC mapping is helpful in differentiating CXPAs from PAs. PMID:28531213

  17. Simple and Reliable Determination of Intravoxel Incoherent Motion Parameters for the Differential Diagnosis of Head and Neck Tumors

    PubMed Central

    Sasaki, Miho; Sumi, Misa; Eida, Sato; Katayama, Ikuo; Hotokezaka, Yuka; Nakamura, Takashi

    2014-01-01

    Intravoxel incoherent motion (IVIM) imaging can characterize diffusion and perfusion of normal and diseased tissues, and IVIM parameters are authentically determined by using cumbersome least-squares method. We evaluated a simple technique for the determination of IVIM parameters using geometric analysis of the multiexponential signal decay curve as an alternative to the least-squares method for the diagnosis of head and neck tumors. Pure diffusion coefficients (D), microvascular volume fraction (f), perfusion-related incoherent microcirculation (D*), and perfusion parameter that is heavily weighted towards extravascular space (P) were determined geometrically (Geo D, Geo f, and Geo P) or by least-squares method (Fit D, Fit f, and Fit D*) in normal structures and 105 head and neck tumors. The IVIM parameters were compared for their levels and diagnostic abilities between the 2 techniques. The IVIM parameters were not able to determine in 14 tumors with the least-squares method alone and in 4 tumors with the geometric and least-squares methods. The geometric IVIM values were significantly different (p<0.001) from Fit values (+2±4% and −7±24% for D and f values, respectively). Geo D and Fit D differentiated between lymphomas and SCCs with similar efficacy (78% and 80% accuracy, respectively). Stepwise approaches using combinations of Geo D and Geo P, Geo D and Geo f, or Fit D and Fit D* differentiated between pleomorphic adenomas, Warthin tumors, and malignant salivary gland tumors with the same efficacy (91% accuracy = 21/23). However, a stepwise differentiation using Fit D and Fit f was less effective (83% accuracy = 19/23). Considering cumbersome procedures with the least squares method compared with the geometric method, we concluded that the geometric determination of IVIM parameters can be an alternative to least-squares method in the diagnosis of head and neck tumors. PMID:25402436

  18. Investigation of gene expressions in differentiated cell derived bone marrow stem cells during bone morphogenetic protein-4 treatments with Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zafari, Jaber; Jouni, Fatemeh Javani; Ahmadvand, Ali; Abdolmaleki, Parviz; Soodi, Malihe; Zendehdel, Rezvan

    2017-02-01

    A model was set up to predict the differentiation patterns based on the data extracted from FTIR spectroscopy. For this reason, bone marrow stem cells (BMSCs) were differentiated to primordial germ cells (PGCs). Changes in cellular macromolecules in the time of 0, 24, 48, 72, and 96 h of differentiation, as different steps of the differentiation procedure were investigated by using FTIR spectroscopy. Also, the expression of pluripotency (Oct-4, Nanog and c-Myc) and specific genes (Mvh, Stella and Fragilis) were investigated by real-time PCR. However, the expression of genes in five steps of differentiation was predicted by FTIR spectroscopy. FTIR spectra showed changes in the template of band intensities at different differentiation steps. There are increasing changes in the stepwise differentiation procedure for the ratio area of CH2, which is symmetric to CH2 asymmetric stretching. An ensemble of expert methods, including regression tree (RT), boosting algorithm (BA), and generalized regression neural network (GRNN), was the best method to predict the gene expression by FTIR spectroscopy. In conclusion, the model was able to distinguish the pattern of different steps from cell differentiation by using some useful features extracted from FTIR spectra.

  19. Haematopoietic stem and progenitor cells from human pluripotent stem cells

    PubMed Central

    Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum; Soria-Valles, Clara; da Rocha, Edroaldo Lummertz; Lu, Yi-Fen; Goettel, Jeremy A.; Serrao, Erik; Rowe, R. Grant; Malleshaiah, Mohan; Wong, Irene; Sousa, Patricia; Zhu, Ted N.; Ditadi, Andrea; Keller, Gordon; Engelman, Alan N.; Snapper, Scott B.; Doulatov, Sergei; Daley, George Q.

    2018-01-01

    A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. PMID:28514439

  20. Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells.

    PubMed

    Maruotti, Julien; Sripathi, Srinivas R; Bharti, Kapil; Fuller, John; Wahlin, Karl J; Ranganathan, Vinod; Sluch, Valentin M; Berlinicke, Cynthia A; Davis, Janine; Kim, Catherine; Zhao, Lijun; Wan, Jun; Qian, Jiang; Corneo, Barbara; Temple, Sally; Dubey, Ramin; Olenyuk, Bogdan Z; Bhutto, Imran; Lutty, Gerard A; Zack, Donald J

    2015-09-01

    Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule-only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE.

  1. Small-molecule–directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells

    PubMed Central

    Maruotti, Julien; Sripathi, Srinivas R.; Bharti, Kapil; Fuller, John; Wahlin, Karl J.; Ranganathan, Vinod; Sluch, Valentin M.; Berlinicke, Cynthia A.; Davis, Janine; Kim, Catherine; Zhao, Lijun; Wan, Jun; Qian, Jiang; Corneo, Barbara; Temple, Sally; Dubey, Ramin; Olenyuk, Bogdan Z.; Bhutto, Imran; Lutty, Gerard A.; Zack, Donald J.

    2015-01-01

    Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule–only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE. PMID:26269569

  2. Aberrant transcriptional networks in step-wise neurogenesis of paroxysmal kinesigenic dyskinesia-induced pluripotent stem cells.

    PubMed

    Li, Chun; Ma, Yu; Zhang, Kunshan; Gu, Junjie; Tang, Fan; Chen, Shengdi; Cao, Li; Li, Siguang; Jin, Ying

    2016-08-16

    Paroxysmal kinesigenic dyskinesia (PKD) is an episodic movement disorder with autosomal-dominant inheritance and marked variability in clinical manifestations.Proline-rich transmembrane protein 2 (PRRT2) has been identified as a causative gene of PKD, but the molecular mechanism underlying the pathogenesis of PKD still remains a mystery. The phenotypes and transcriptional patterns of the PKD disease need further clarification. Here, we report the generation and neural differentiation of iPSC lines from two familial PKD patients with c.487C>T (p. Gln163X) and c.573dupT (p. Gly192Trpfs*8) PRRT2 mutations, respectively. Notably, an extremely lower efficiency in neural conversion from PKD-iPSCs than control-iPSCs is observed by a step-wise neural differentiation method of dual inhibition of SMAD signaling. Moreover, we show the high expression level of PRRT2 throughout the human brain and the expression pattern of PRRT2 in other human tissues for the first time. To gain molecular insight into the development of the disease, we conduct global gene expression profiling of PKD cells at four different stages of neural induction and identify altered gene expression patterns, which peculiarly reflect dysregulated neural transcriptome signatures and a differentiation tendency to mesodermal development, in comparison to control-iPSCs. Additionally, functional and signaling pathway analyses indicate significantly different cell fate determination between PKD-iPSCs and control-iPSCs. Together, the establishment of PKD-specific in vitro models and the illustration of transcriptome features in PKD cells would certainly help us with better understanding of the defects in neural conversion as well as further investigations in the pathogenesis of the PKD disease.

  3. Cloud computing task scheduling strategy based on improved differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Ge, Junwei; He, Qian; Fang, Yiqiu

    2017-04-01

    In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.

  4. Rooted tRNAomes and evolution of the genetic code

    PubMed Central

    Pak, Daewoo; Du, Nan; Kim, Yunsoo; Sun, Yanni

    2018-01-01

    ABSTRACT We advocate for a tRNA- rather than an mRNA-centric model for evolution of the genetic code. The mechanism for evolution of cloverleaf tRNA provides a root sequence for radiation of tRNAs and suggests a simplified understanding of code evolution. To analyze code sectoring, rooted tRNAomes were compared for several archaeal and one bacterial species. Rooting of tRNAome trees reveals conserved structures, indicating how the code was shaped during evolution and suggesting a model for evolution of a LUCA tRNAome tree. We propose the polyglycine hypothesis that the initial product of the genetic code may have been short chain polyglycine to stabilize protocells. In order to describe how anticodons were allotted in evolution, the sectoring-degeneracy hypothesis is proposed. Based on sectoring, a simple stepwise model is developed, in which the code sectors from a 1→4→8→∼16 letter code. At initial stages of code evolution, we posit strong positive selection for wobble base ambiguity, supporting convergence to 4-codon sectors and ∼16 letters. In a later stage, ∼5–6 letters, including stops, were added through innovating at the anticodon wobble position. In archaea and bacteria, tRNA wobble adenine is negatively selected, shrinking the maximum size of the primordial genetic code to 48 anticodons. Because 64 codons are recognized in mRNA, tRNA-mRNA coevolution requires tRNA wobble position ambiguity leading to degeneracy of the code. PMID:29372672

  5. Gender difference in health and its determinants in the old-aged population in India.

    PubMed

    Dhak, Biplab

    2009-09-01

    This paper examines the gender differential in health and its socioeconomic and demographic determinants in the old-age population of India based on the National Sample Survey 60th round data collected in 2004. As in developed countries, older women in India report poorer self-reported health and experience greater immobility compared with men. Stepwise logistic regression analysis shows that the gender differential in health is linked to various socioeconomic and demographic variables and that the gender gap could be narrowed with appropriate policy intervention. Specifically, paying special attention towards improving the socioeconomic status of widowed/separated women could attenuate a substantial portion of the observed gender gap in the health of the old-age population.

  6. Automation of peak-tracking analysis of stepwise perturbed NMR spectra.

    PubMed

    Banelli, Tommaso; Vuano, Marco; Fogolari, Federico; Fusiello, Andrea; Esposito, Gennaro; Corazza, Alessandra

    2017-02-01

    We describe a new algorithmic approach able to automatically pick and track the NMR resonances of a large number of 2D NMR spectra acquired during a stepwise variation of a physical parameter. The method has been named Trace in Track (TINT), referring to the idea that a gaussian decomposition traces peaks within the tracks recognised through 3D mathematical morphology. It is capable of determining the evolution of the chemical shifts, intensity and linewidths of each tracked peak.The performances obtained in term of track reconstruction and correct assignment on realistic synthetic spectra were high above 90% when a noise level similar to that of experimental data were considered. TINT was applied successfully to several protein systems during a temperature ramp in isotope exchange experiments. A comparison with a state-of-the-art algorithm showed promising results for great numbers of spectra and low signal to noise ratios, when the graduality of the perturbation is appropriate. TINT can be applied to different kinds of high throughput chemical shift mapping experiments, with quasi-continuous variations, in which a quantitative automated recognition is crucial.

  7. The dawn of the RNA World: Toward functional complexity through ligation of random RNA oligomers

    PubMed Central

    Briones, Carlos; Stich, Michael; Manrubia, Susanna C.

    2009-01-01

    A main unsolved problem in the RNA World scenario for the origin of life is how a template-dependent RNA polymerase ribozyme emerged from short RNA oligomers obtained by random polymerization on mineral surfaces. A number of computational studies have shown that the structural repertoire yielded by that process is dominated by topologically simple structures, notably hairpin-like ones. A fraction of these could display RNA ligase activity and catalyze the assembly of larger, eventually functional RNA molecules retaining their previous modular structure: molecular complexity increases but template replication is absent. This allows us to build up a stepwise model of ligation-based, modular evolution that could pave the way to the emergence of a ribozyme with RNA replicase activity, step at which information-driven Darwinian evolution would be triggered. PMID:19318464

  8. Stepwise evolution of protein native structure with electrospray into the gas phase, 10−12 to 102 s

    PubMed Central

    Breuker, Kathrin; McLafferty, Fred W.

    2008-01-01

    Mass spectrometry (MS) has been revolutionized by electrospray ionization (ESI), which is sufficiently “gentle” to introduce nonvolatile biomolecules such as proteins and nucleic acids (RNA or DNA) into the gas phase without breaking covalent bonds. Although in some cases noncovalent bonding can be maintained sufficiently for ESI/MS characterization of the solution structure of large protein complexes and native enzyme/substrate binding, the new gaseous environment can ultimately cause dramatic structural alterations. The temporal (picoseconds to minutes) evolution of native protein structure during and after transfer into the gas phase, as proposed here based on a variety of studies, can involve side-chain collapse, unfolding, and refolding into new, non-native structures. Control of individual experimental factors allows optimization for specific research objectives. PMID:19033474

  9. Competition drives trait evolution and character displacement between Mimulus species along an environmental gradient.

    PubMed

    Kooyers, Nicholas J; James, Brooke; Blackman, Benjamin K

    2017-05-01

    Closely related species may evolve to coexist stably in sympatry through niche differentiation driven by in situ competition, a process termed character displacement. Alternatively, past evolution in allopatry may have already sufficiently reduced niche overlap to permit establishment in sympatry, a process called ecological sorting. The relative importance of each process to niche differentiation is contentious even though they are not mutually exclusive and are both mediated via multivariate trait evolution. We explore how competition has impacted niche differentiation in two monkeyflowers, Mimulus alsinoides and M. guttatus, which often co-occur. Through field observations, common gardens, and competition experiments, we demonstrate that M. alsinoides is restricted to marginal habitats in sympatry and that the impacts of character displacement on niche differentiation are complex. Competition with M. guttatus alters selection gradients and has favored taller M. alsinoides with earlier seasonal flowering at low elevation and floral shape divergence at high elevation. However, no trait exhibits the pattern typically associated with character displacement, higher divergence between species in sympatry than allopatry. Thus, although character displacement was unlikely the process driving initial divergence along niche axes necessary for coexistence, we conclude that competition in sympatry has likely driven trait evolution along additional niche axes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  10. Application of differential evolution algorithm on self-potential data.

    PubMed

    Li, Xiangtao; Yin, Minghao

    2012-01-01

    Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods.

  11. Application of Differential Evolution Algorithm on Self-Potential Data

    PubMed Central

    Li, Xiangtao; Yin, Minghao

    2012-01-01

    Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods. PMID:23240004

  12. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE PAGES

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun; ...

    2015-02-11

    Here we report that the relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a functionmore » of the applied strains. The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  13. In silico modelling of directed evolution: Implications for experimental design and stepwise evolution.

    PubMed

    Wedge, David C; Rowe, William; Kell, Douglas B; Knowles, Joshua

    2009-03-07

    We model the process of directed evolution (DE) in silico using genetic algorithms. Making use of the NK fitness landscape model, we analyse the effects of mutation rate, crossover and selection pressure on the performance of DE. A range of values of K, the epistatic interaction of the landscape, are considered, and high- and low-throughput modes of evolution are compared. Our findings suggest that for runs of or around ten generations' duration-as is typical in DE-there is little difference between the way in which DE needs to be configured in the high- and low-throughput regimes, nor across different degrees of landscape epistasis. In all cases, a high selection pressure (but not an extreme one) combined with a moderately high mutation rate works best, while crossover provides some benefit but only on the less rugged landscapes. These genetic algorithms were also compared with a "model-based approach" from the literature, which uses sequential fixing of the problem parameters based on fitting a linear model. Overall, we find that purely evolutionary techniques fare better than do model-based approaches across all but the smoothest landscapes.

  14. Sequential evolution of bacterial morphology by co-option of a developmental regulator.

    PubMed

    Jiang, Chao; Brown, Pamela J B; Ducret, Adrien; Brun, Yves V

    2014-02-27

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.

  15. Transition from positive to neutral in mutation fixation along with continuing rising fitness in thermal adaptive evolution.

    PubMed

    Kishimoto, Toshihiko; Iijima, Leo; Tatsumi, Makoto; Ono, Naoaki; Oyake, Ayana; Hashimoto, Tomomi; Matsuo, Moe; Okubo, Masato; Suzuki, Shingo; Mori, Kotaro; Kashiwagi, Akiko; Furusawa, Chikara; Ying, Bei-Wen; Yomo, Tetsuya

    2010-10-21

    It remains to be determined experimentally whether increasing fitness is related to positive selection, while stationary fitness is related to neutral evolution. Long-term laboratory evolution in Escherichia coli was performed under conditions of thermal stress under defined laboratory conditions. The complete cell growth data showed common continuous fitness recovery to every 2°C or 4°C stepwise temperature upshift, finally resulting in an evolved E. coli strain with an improved upper temperature limit as high as 45.9°C after 523 days of serial transfer, equivalent to 7,560 generations, in minimal medium. Two-phase fitness dynamics, a rapid growth recovery phase followed by a gradual increasing growth phase, was clearly observed at diverse temperatures throughout the entire evolutionary process. Whole-genome sequence analysis revealed the transition from positive to neutral in mutation fixation, accompanied with a considerable escalation of spontaneous substitution rate in the late fitness recovery phase. It suggested that continually increasing fitness not always resulted in the reduction of genetic diversity due to the sequential takeovers by fit mutants, but caused the accumulation of a considerable number of mutations that facilitated the neutral evolution.

  16. Wrinkling pattern evolution of cylindrical biological tissues with differential growth.

    PubMed

    Jia, Fei; Li, Bo; Cao, Yan-Ping; Xie, Wei-Hua; Feng, Xi-Qiao

    2015-01-01

    Three-dimensional surface wrinkling of soft cylindrical tissues induced by differential growth is explored. Differential volumetric growth can cause their morphological stability, leading to the formation of hexagonal and labyrinth wrinkles. During postbuckling, multiple bifurcations and morphological transitions may occur as a consequence of continuous growth in the surface layer. The physical mechanisms underpinning the morphological evolution are examined from the viewpoint of energy. Surface curvature is found to play a regulatory role in the pattern evolution. This study may not only help understand the morphogenesis of soft biological tissues, but also inspire novel routes for creating desired surface patterns of soft materials.

  17. Automatic Clustering Using FSDE-Forced Strategy Differential Evolution

    NASA Astrophysics Data System (ADS)

    Yasid, A.

    2018-01-01

    Clustering analysis is important in datamining for unsupervised data, cause no adequate prior knowledge. One of the important tasks is defining the number of clusters without user involvement that is known as automatic clustering. This study intends on acquiring cluster number automatically utilizing forced strategy differential evolution (AC-FSDE). Two mutation parameters, namely: constant parameter and variable parameter are employed to boost differential evolution performance. Four well-known benchmark datasets were used to evaluate the algorithm. Moreover, the result is compared with other state of the art automatic clustering methods. The experiment results evidence that AC-FSDE is better or competitive with other existing automatic clustering algorithm.

  18. Evolution of tuf genes: ancient duplication, differential loss and gene conversion.

    PubMed

    Lathe, W C; Bork, P

    2001-08-03

    The tuf gene of eubacteria, encoding the EF-tu elongation factor, was duplicated early in the evolution of the taxon. Phylogenetic and genomic location analysis of 20 complete eubacterial genomes suggests that this ancient duplication has been differentially lost and maintained in eubacteria.

  19. Comparative genomics reveals conservation of filaggrin and loss of caspase-14 in dolphins.

    PubMed

    Strasser, Bettina; Mlitz, Veronika; Fischer, Heinz; Tschachler, Erwin; Eckhart, Leopold

    2015-05-01

    The expression of filaggrin and its stepwise proteolytic degradation are critical events in the terminal differentiation of epidermal keratinocytes and in the formation of the skin barrier to the environment. Here, we investigated whether the evolutionary transition from a terrestrial to a fully aquatic lifestyle of cetaceans, that is dolphins and whales, has been associated with changes in genes encoding filaggrin and proteins involved in the processing of filaggrin. We used comparative genomics, PCRs and re-sequencing of gene segments to screen for the presence and integrity of genes coding for filaggrin and proteases implicated in the maturation of (pro)filaggrin. Filaggrin has been conserved in dolphins (bottlenose dolphin, orca and baiji) but has been lost in whales (sperm whale and minke whale). All other S100 fused-type genes have been lost in cetaceans. Among filaggrin-processing proteases, aspartic peptidase retroviral-like 1 (ASPRV1), also known as saspase, has been conserved, whereas caspase-14 has been lost in all cetaceans investigated. In conclusion, our results suggest that filaggrin is dispensable for the acquisition of fully aquatic lifestyles of whales, whereas it appears to confer an evolutionary advantage to dolphins. The discordant evolution of filaggrin, saspase and caspase-14 in cetaceans indicates that the biological roles of these proteins are not strictly interdependent. © 2015 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  20. Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols.

    PubMed

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; El-Badri, Nagwa; Ghoneim, Mohamed A

    2014-01-01

    Many protocols were utilized for directed differentiation of mesenchymal stem cells (MSCs) to form insulin-producing cells (IPCs). We compared the relative efficiency of three differentiation protocols. Human bone marrow-derived MSCs (HBM-MSCs) were obtained from three insulin-dependent type 2 diabetic patients. Differentiation into IPCs was carried out by three protocols: conophylline-based (one-step protocol), trichostatin-A-based (two-step protocol), and β -mercaptoethanol-based (three-step protocol). At the end of differentiation, cells were evaluated by immunolabeling for insulin production, expression of pancreatic endocrine genes, and release of insulin and c-peptide in response to increasing glucose concentrations. By immunolabeling, the proportion of generated IPCs was modest ( ≃ 3%) in all the three protocols. All relevant pancreatic endocrine genes, insulin, glucagon, and somatostatin, were expressed. There was a stepwise increase in insulin and c-peptide release in response to glucose challenge, but the released amounts were low when compared with those of pancreatic islets. The yield of functional IPCs following directed differentiation of HBM-MSCs was modest and was comparable among the three tested protocols. Protocols for directed differentiation of MSCs need further optimization in order to be clinically meaningful. To this end, addition of an extracellular matrix and/or a suitable template should be attempted.

  1. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation.

    PubMed

    Colautti, Robert I; Lau, Jennifer A

    2015-05-01

    Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change. © 2015 John Wiley & Sons Ltd.

  2. Miscibility, Crystallization, and Rheological Behavior of Solution Casting Poly(3-hydroxybutyrate)/poly(ethylene succinate) Blends Probed by Differential Scanning Calorimetry, Rheology, and Optical Microscope Techniques

    NASA Astrophysics Data System (ADS)

    Sun, Wei-hua; Qiao, Xiao-ping; Cao, Qi-kun; Liu, Jie-ping

    2010-02-01

    The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybutyrate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.

  3. A POPULATION MEMETICS APPROACH TO CULTURAL EVOLUTION IN CHAFFINCH SONG: DIFFERENTIATION AMONG POPULATIONS.

    PubMed

    Lynch, Alejandro; Baker, Allan J

    1994-04-01

    We investigated cultural evolution in populations of common chaffinches (Fringilla coelebs) in the Atlantic islands (Azores, Madeira, and Canaries) and neighboring continental regions (Morocco and Iberia) by employing a population-memetic approach. To quantify differentiation, we used the concept of a song meme, defined as a single syllable or a series of linked syllables capable of being transmitted. The levels of cultural differentiation are higher among the Canaries populations than among the Azorean ones, even though the islands are on average closer to each other geographically. This is likely the result of reduced levels of migration, lower population sizes, and bottlenecks (possibly during the colonization of these populations) in the Canaries; all these factors produce a smaller effective population size and therefore accentuate the effects of differentiation by random drift. Significant levels of among-population differentiation in the Azores, in spite of substantial levels of migration, attest to the differentiating effects of high mutation rates of memes, which allow the accumulation of new mutants in different populations before migration can disperse them throughout the entire region. © 1994 The Society for the Study of Evolution.

  4. Design and Use of a Low Cost, Automated Morbidostat for Adaptive Evolution of Bacteria Under Antibiotic Drug Selection.

    PubMed

    Liu, Po C; Lee, Yi T; Wang, Chun Y; Yang, Ya-Tang

    2016-09-27

    We describe a low cost, configurable morbidostat for characterizing the evolutionary pathway of antibiotic resistance. The morbidostat is a bacterial culture device that continuously monitors bacterial growth and dynamically adjusts the drug concentration to constantly challenge the bacteria as they evolve to acquire drug resistance. The device features a working volume of ~10 ml and is fully automated and equipped with optical density measurement and micro-pumps for medium and drug delivery. To validate the platform, we measured the stepwise acquisition of trimethoprim resistance in Escherichia coli MG 1655, and integrated the device with a multiplexed microfluidic platform to investigate cell morphology and antibiotic susceptibility. The approach can be up-scaled to laboratory studies of antibiotic drug resistance, and is extendible to adaptive evolution for strain improvements in metabolic engineering and other bacterial culture experiments.

  5. Nitrogen fixation sustained productivity in the wake of the Palaeoproterozoic Great Oxygenation Event.

    PubMed

    Luo, Genming; Junium, Christopher K; Izon, Gareth; Ono, Shuhei; Beukes, Nicolas J; Algeo, Thomas J; Cui, Ying; Xie, Shucheng; Summons, Roger E

    2018-03-07

    The marine nitrogen cycle is dominated by redox-controlled biogeochemical processes and, therefore, is likely to have been revolutionised in response to Earth-surface oxygenation. The details, timing, and trajectory of nitrogen cycle evolution, however, remain elusive. Here we couple nitrogen and carbon isotope records from multiple drillcores through the Rooihoogte-Timeball Hill Formations from across the Carletonville area of the Kaapvaal Craton where the Great Oxygenation Event (GOE) and its aftermath are recorded. Our data reveal that aerobic nitrogen cycling, featuring metabolisms involving nitrogen oxyanions, was well established prior to the GOE and that ammonium may have dominated the dissolved nitrogen inventory. Pronounced signals of diazotrophy imply a stepwise evolution, with a temporary intermediate stage where both ammonium and nitrate may have been scarce. We suggest that the emergence of the modern nitrogen cycle, with metabolic processes that approximate their contemporary balance, was retarded by low environmental oxygen availability.

  6. Domain and rim growth kinetics in stratifying foam films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Yilixiati, Subinuer; Sharma, Vivek

    Foam films are freely standing thin liquid films that typically consist of two surfactant-laden surfaces that are ~5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification, which results in a thickness-dependent variation in reflected light intensity, visualized as progressively darker shades of gray. Thinner, darker domains spontaneously grow within foam films. During the initial expansion, a rim forms near the contact line between the growing thinner domain and the surrounding region, which influences the dynamics of domain growth as well as stratification Using newly developed interferometry digitial imaging optical microscopy (IDIOM) technique, we capture the rim evolution dynamics. Finally, we also develop a theoretical model to describe both rim evolution and domain growth dynamics.

  7. Development and Evolution of the Muscles of the Pelvic Fin

    PubMed Central

    Cole, Nicholas J.; Hall, Thomas E.; Don, Emily K.; Berger, Silke; Boisvert, Catherine A.; Neyt, Christine; Ericsson, Rolf; Joss, Jean; Gurevich, David B.; Currie, Peter D.

    2011-01-01

    Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition. PMID:21990962

  8. Modeling evolution of the mind and cultures: emotional Sapir-Whorf hypothesis

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.

    2009-05-01

    Evolution of cultures is ultimately determined by mechanisms of the human mind. The paper discusses the mechanisms of evolution of language from primordial undifferentiated animal cries to contemporary conceptual contents. In parallel with differentiation of conceptual contents, the conceptual contents were differentiated from emotional contents of languages. The paper suggests the neural brain mechanisms involved in these processes. Experimental evidence and theoretical arguments are discussed, including mathematical approaches to cognition and language: modeling fields theory, the knowledge instinct, and the dual model connecting language and cognition. Mathematical results are related to cognitive science, linguistics, and psychology. The paper gives an initial mathematical formulation and mean-field equations for the hierarchical dynamics of both the human mind and culture. In the mind heterarchy operation of the knowledge instinct manifests through mechanisms of differentiation and synthesis. The emotional contents of language are related to language grammar. The conclusion is an emotional version of Sapir-Whorf hypothesis. Cultural advantages of "conceptual" pragmatic cultures, in which emotionality of language is diminished and differentiation overtakes synthesis resulting in fast evolution at the price of self doubts and internal crises are compared to those of traditional cultures where differentiation lags behind synthesis, resulting in cultural stability at the price of stagnation. Multi-language, multi-ethnic society might combine the benefits of stability and fast differentiation. Unsolved problems and future theoretical and experimental directions are discussed.

  9. Probabilistic models of eukaryotic evolution: time for integration

    PubMed Central

    Lartillot, Nicolas

    2015-01-01

    In spite of substantial work and recent progress, a global and fully resolved picture of the macroevolutionary history of eukaryotes is still under construction. This concerns not only the phylogenetic relations among major groups, but also the general characteristics of the underlying macroevolutionary processes, including the patterns of gene family evolution associated with endosymbioses, as well as their impact on the sequence evolutionary process. All these questions raise formidable methodological challenges, calling for a more powerful statistical paradigm. In this direction, model-based probabilistic approaches have played an increasingly important role. In particular, improved models of sequence evolution accounting for heterogeneities across sites and across lineages have led to significant, although insufficient, improvement in phylogenetic accuracy. More recently, one main trend has been to move away from simple parametric models and stepwise approaches, towards integrative models explicitly considering the intricate interplay between multiple levels of macroevolutionary processes. Such integrative models are in their infancy, and their application to the phylogeny of eukaryotes still requires substantial improvement of the underlying models, as well as additional computational developments. PMID:26323768

  10. Pigment cell interactions and differential xanthophore recruitment underlying zebrafish stripe reiteration and Danio pattern evolution

    PubMed Central

    Patterson, Larissa B.; Bain, Emily J.; Parichy, David M.

    2014-01-01

    Fishes have diverse pigment patterns, yet mechanisms of pattern evolution remain poorly understood. In zebrafish, Danio rerio, pigment-cell autonomous interactions generate dark stripes of melanophores that alternate with light interstripes of xanthophores and iridophores. Here, we identify mechanisms underlying the evolution of a uniform pattern in D. albolineatus in which all three pigment cell classes are intermingled. We show that in this species xanthophores differentiate precociously over a wider area, and that cis regulatory evolution has increased expression of xanthogenic Colony Stimulating Factor-1 (Csf1). Expressing Csf1 similarly in D. rerio has cascading effects, driving the intermingling of all three pigment cell classes and resulting in the loss of stripes, as in D. albolineatus. Our results identify novel mechanisms of pattern development and illustrate how pattern diversity can be generated when a core network of pigment-cell autonomous interactions is coupled with changes in pigment cell differentiation. PMID:25374113

  11. Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing

    NASA Astrophysics Data System (ADS)

    Wülfing, Christoph; Purtic, Bozidar; Klem, Jennifer; Schatzle, John D.

    2003-06-01

    Cytolytic killing is a major effector mechanism in the elimination of virally infected and tumor cells. The innate cytolytic effectors, natural killer (NK) cells, and the adaptive effectors, cytotoxic T cells (CTL), despite differential immune recognition, both use the same lytic mechanism, cytolytic granule release. Using live cell video fluorescence microscopy in various primary cell models of NK cell and CTL killing, we show here that on tight target cell contact, a majority of the NK cells established cytoskeletal polarity required for effective lytic function slowly or incompletely. In contrast, CTLs established cytoskeletal polarity rapidly. In addition, NK cell killing was uniquely sensitive to minor interference with cytoskeletal dynamics. We propose that the stepwise NK cell cytoskeletal polarization constitutes a series of checkpoints in NK cell killing. In addition, the use of more deliberate progression to effector function to compensate for inferior immune recognition specificity provides a mechanistic explanation for how the same effector function can be used in the different functional contexts of the innate and adaptive immune response.

  12. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua.

    PubMed

    Manousaki, Tereza; Hull, Pincelli M; Kusche, Henrik; Machado-Schiaffino, Gonzalo; Franchini, Paolo; Harrod, Chris; Elmer, Kathryn R; Meyer, Axel

    2013-02-01

    The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)-from two Great Lakes and two crater lakes in Nicaragua-to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (δ(13)C and δ(15)N) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution. © 2012 Blackwell Publishing Ltd.

  13. Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells

    PubMed Central

    Gotoh, Shimpei; Ito, Isao; Nagasaki, Tadao; Yamamoto, Yuki; Konishi, Satoshi; Korogi, Yohei; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Funato, Michinori; Mae, Shin-Ichi; Toyoda, Taro; Sato-Otsubo, Aiko; Ogawa, Seishi; Osafune, Kenji; Mishima, Michiaki

    2014-01-01

    Summary No methods for isolating induced alveolar epithelial progenitor cells (AEPCs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs), we identified carboxypeptidase M (CPM) as a surface marker of NKX2-1+ “ventralized” anterior foregut endoderm cells (VAFECs) in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM+ cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM+ cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine. PMID:25241738

  14. Conceptual Comparison of Population Based Metaheuristics for Engineering Problems

    PubMed Central

    Green, Paul

    2015-01-01

    Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes. PMID:25874265

  15. Conceptual comparison of population based metaheuristics for engineering problems.

    PubMed

    Adekanmbi, Oluwole; Green, Paul

    2015-01-01

    Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes.

  16. An optimized digital watermarking algorithm in wavelet domain based on differential evolution for color image.

    PubMed

    Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai

    2018-01-01

    In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.

  17. A Differential Evolution Algorithm Based on Nikaido-Isoda Function for Solving Nash Equilibrium in Nonlinear Continuous Games

    PubMed Central

    He, Feng; Zhang, Wei; Zhang, Guoqiang

    2016-01-01

    A differential evolution algorithm for solving Nash equilibrium in nonlinear continuous games is presented in this paper, called NIDE (Nikaido-Isoda differential evolution). At each generation, parent and child strategy profiles are compared one by one pairwisely, adapting Nikaido-Isoda function as fitness function. In practice, the NE of nonlinear game model with cubic cost function and quadratic demand function is solved, and this method could also be applied to non-concave payoff functions. Moreover, the NIDE is compared with the existing Nash Domination Evolutionary Multiplayer Optimization (NDEMO), the result showed that NIDE was significantly better than NDEMO with less iterations and shorter running time. These numerical examples suggested that the NIDE method is potentially useful. PMID:27589229

  18. The early thermal evolution of Mars

    NASA Astrophysics Data System (ADS)

    Bhatia, G. K.; Sahijpal, S.

    2016-01-01

    Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.

  19. A stepwise approach to the evaluation and treatment of subclinical hyperthyroidism.

    PubMed

    Mai, Vinh Q; Burch, Henry B

    2012-01-01

    To review a stepwise approach to the evaluation and treatment of subclinical hyperthyroidism. English-language articles regarding clinical management of subclinical hyperthyroidism published between 2007 and 2012 were reviewed. Subclinical hyperthyroidism is encountered on a daily basis in clinical practice. When evaluating patients with a suppressed serum thyrotropin value, it is important to exclude other potential etiologies such as overt triiodothyronine toxicosis, drug effect, nonthyroidal illness, and central hypothyroidism. In younger patients with mild thyrotropin suppression, it is acceptable to perform testing again in 3 to 6 months to assess for persistence before performing further diagnostic testing. In older patients or patients with thyrotropin values less than 0.1 mIU/L, diagnostic testing should proceed without delay. Persistence of thyrotropin suppression is more typical of nodular thyroid autonomy, whereas thyroiditis and mild Graves disease frequently resolve spontaneously. The clinical consequences of subclinical hyperthyroidism, such as atrial dysrhythmia, accelerated bone loss, increased fracture rate, and higher rates of cardiovascular mortality, are dependent on age and severity. The decision to treat subclinical hyperthyroidism is directly tied to an assessment of the potential for clinical consequences in untreated disease. Definitive therapy is generally selected for patients with nodular autonomous function, whereas antithyroid drug therapy is more appropriate for mild, persistent Graves disease. The presented stepwise approach to the care of patients presenting with an isolated suppression of serum thyrotropin focuses on the differential diagnosis, a prediction of the likelihood of persistence, an assessment of potential risks posed to the patient, and, finally, a personalized choice of therapy.

  20. The earth and the moon /Harold Jeffreys Lecture/.

    NASA Technical Reports Server (NTRS)

    Press, F.

    1971-01-01

    The internal structures of the earth and the moon are compared in the light of the latest extensive data on the earth structure, mobility of the earth outer layers, and the properties of lunar crust. The Monte Carlo method is applied to develop an earth model by a stepwise process beginning with a random distribution of two elastic velocities and the density as a function of de pth. Lunar seismic, magnetic, and rock analysis data are used to infer the properties of the moon. The marked planetological contrast between the earth and the moon is shown to consist in that the earth is highly differentiated and still undergoes a large-scale differentiation, while the moon has lost its volatiles in its early history and has a cold dynamically inactive shell which has been without basic changes for three billion years.

  1. [An examination of the determinants of social withdrawal and affinity for social withdrawal].

    PubMed

    Watanabe, Asami; Matsui, Yutaka; Takatsuka, Yusuke

    2010-12-01

    This study examined the determinants of social withdrawal using data from a survey by the Tokyo Metropolitan Government Office for Youth Affairs and Public Safety (2008). In addition, this study identified young people who showed an affinity for social withdrawal although they were not in a state of withdrawal, and examined the determinants of an affinity for social withdrawal. The results of stepwise discriminant analysis showed that factors such as social phobia, depression, violence, and emotional bonds with family differentiated between the general youth group and the social withdrawal group and the "affinity group". Social phobia, violence, and refusal to be interfered in self-decision making differentiated between the social withdrawal group and the "affinity group". This study shows that an "affinity group" should be cared as well as an actual withdrawal group.

  2. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation

    PubMed Central

    Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru

    2016-01-01

    Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588

  3. Lunar initial Nd-143/Nd-144 - Differential evolution of the lunar crust and mantle

    NASA Technical Reports Server (NTRS)

    Lugmair, G. W.; Marti, K.

    1978-01-01

    The Sm-Nd evolution of Apollo 15 green glass is discussed. The ICE age (intercept with chondritic evolution) of 3.8 + or - 0.4 eons overlaps the range of reported (Ar-39)-(Ar-40) ages and implies a distinct source region for green glass, characterized by very low and unfractionated REE abundances. Evidence is presented that LINd (lunar initial Nd) is compatible with a 'chondritic'-type Nd isotopic evolution as observed in the Juvinas meteorite. This normalization is used to study the Sm-Nd system of various lunar rock types. The results obtained from a limited number of rocks clearly indicate differential Sm-Nd evolution for the lunar crust and mantle. High-Ti basalts returned by the Apollo 11 and 17 missions were derived from distinct source regions. The Nd-143 evolution in KREEP requires a source region which is clearly distinct from any mantle reservoir.

  4. Environmental degradation of Opalinus Clay with cyclic variations in relative humidity

    NASA Astrophysics Data System (ADS)

    Wild, Katrin; Walter, Patric; Madonna, Claudio; Amann, Florian

    2016-04-01

    Clay shales are considered as favorable host rocks for nuclear waste repositories due to their low permeability, high sorption capacity and the potential for self-sealing. However, the favorable characteristics of the rock mass may change during tunnel excavation. Excavation is accompanied by stress redistribution and the development of an excavation damage zone. Furthermore, unloading and exposure to atmospheric conditions with a lower relative humidity (RH) causes desaturation of the rock mass close to the tunnel. This leads to shrinkage and the formation of desiccation cracks. During the open drift stage, seasonal atmospheric changes, especially RH variations, may alter the rock mass and influence the long-term crack evolution. This contribution discusses the influence of RH variation on the mechanical behavior of OPA. A series of specimens were exposed to short-term and long-term, stepwise cyclic RH variations between about 60 and 95% at constant temperature. Strains were measured using strain gauges to monitor the volumetric response during RH cycles. After each applied RH cycle, Brazilian tensile strength (BTS) tests were performed to identify whether there is a change in tensile strength due to environmental damage caused by the change in RH. Swelling and shrinkage of the specimens accompanied by irreversible volumetric expansion was observed as a consequence of the exposure to RH cycles. However, the irreversible strain was limited to the direction normal to bedding suggesting that internal damage is restricted along the bedding planes. No significant effect of cyclic RH variations on the BTS of the specimens was observed. The strength parallel to bedding remained constant over several cycles while the strength normal to bedding shows a slightly decreasing trend after 2 cycles. Furthermore, the water retention characteristics of the specimens were not altered significantly during stepwise RH cycling as the evolution of the water content was reversible throughout the cycles. For the RH variation used, the results suggest that the long-term crack evolution around excavations in OPA is not expected to be significantly influenced by environmental degradation but dominated by other processes such as consolidation and creep.

  5. In vitro hepatic differentiation of human endometrial stromal stem cells.

    PubMed

    Yang, Xin-yuan; Wang, Wei; Li, Xu

    2014-02-01

    Human endometrial stromal stem cells (hESSCs) can differentiate into mesodermal and ectodermal cellular lineages in the endometrium. However, whether hESSCs can differentiate into functional hepatic-like cells is unknown. In this study, we developed a multiple-step induction protocol to differentiate hESSCs into functional hepatic-like cells in vitro. Endometrial stromal cells were isolated by magnetic affinity sorting using anti-epithelial cell adhesion molecule-coated Dynabeads. The enriched hESSCs were analyzed by flow cytometry and were able to differentiate into osteoblasts or adipocytes under proper induction media. To differentiate into hepatic-like cells, hESSCs were cultured in a stepwise system containing hepatocyte growth factor, fibroblast growth factor-4, oncostatin M, and trichostatin A for a total of 24 d. The hepatic-like cell differentiation was analyzed by confocal microscopy and immunocytochemical staining. Glycogen storage, cellular urea synthesis, and ammonia concentrations were measured. Hepatic-like cells were successfully generated from hESSCs and were identified by their epithelial-like shape characteristics and expression of specific biomarkers albumin and cytokeratin 8 accompanied with a reduction of alpha-fetoprotein and alpha-smooth muscle actin expression. The hepatic-like cells generated were functional as evidenced by urea synthesis and glycogen storage. Our study demonstrated that hESSCs were able to differentiate into hepatic-like cells in vitro. Thus, endometrial stromal cells may be used as an easily accessible alternative source of stem cells for potential therapeutic applications in liver disease.

  6. The cerebrum. Anatomy.

    PubMed

    Rhoton, Albert L

    2007-07-01

    The cerebrum is the crown jewel of creation and evolution. It is a remarkably delicate, intricate, and beautiful structure. The goal of this chapter is to provide the information needed to permit the neurosurgeon to navigate accurately, gently, and safely around and through the cerebrum and intracranial space. The location of deep structures is frequently described in relation to cranial and superficial cerebral landmarks in order to develop the concept of see-through, x-ray type knowledge of the cerebrum. In numerous illustrations, stepwise dissections are used to clarify the relationship between structures in different layers. Important clinical and surgical concepts are intermixed with the description of the cerebrum and its arteries, veins, and ventricles.

  7. Stepwise pumping approach to improve free phase light hydrocarbon recovery from unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.

    1995-04-01

    A stepwise, time-varying pumping approach is developed to improve free phase oil recovery of light non-aqueous phase liquids (LNAPL) from a homogeneous, unconfined aquifer. Stepwise pumping is used to contain the floating oil plume and obtain efficient free oil recovery. The graphical plots. The approach uses ARMOS ©, an areal two-dimensional multiphase flow, finite-element simulation model. Systematic simulations of free oil area changes to pumping rates are analyzed. Pumping rates are determined that achieve LNAPL plume containment at different times (i.e. 90, 180 and 360 days) for a planning period of 360 days. These pumping rates are used in reverse order as a stepwise (monotonically increasing) pumping strategy. This stepwise pumping strategy is analyzed further by performing additional simulations at different pumping rates for the last pumping period. The final stepwise pumping strategy is varied by factors of -25% and +30% to evaluate sensitivity in the free oil recovery process. Stepwise pumping is compared to steady pumping rates to determine the best free oil recovery strategy. Stepwise pumping is shown to improve oil recovery by increasing recoveredoil volume (11%) and decreasing residual oil (15%) when compared with traditional steady pumping strategies. The best stepwise pumping strategy recovers more free oil by reducing the amount of residual oil left in the system due to pumping drawdown. This stepwise pumping pproach can be used to enhance free oil recovery and provide for cost-effective design and management of LNAPL cleanup.

  8. Effect of differential speed rolling on the texture evolution of Mg-4Zn-1Gd alloy

    NASA Astrophysics Data System (ADS)

    Shim, Myeong-Shik; Suh, Byeong-Chan; Kim, Jae H.; Kim, Nack J.

    2015-05-01

    The microstructural and texture evolution during differential speed rolling process of Mg 4Zn-1Gd (wt%) alloy have been investigated by means of electron backscatter diffraction observation and texture analysis. The angular distribution of basal poles are inclined about 10° from the normal direction towards the rolling direction and the maximum intensities of basal poles are decreased, compared to the conventional rolling process. Such an inclination of angular distribution of basal poles can be induced by the operation of shear stress along the rolling direction, as much as one quarter of tensile stress along the RD and one quarter of compressive stress along the ND. When the reduction ratios in differential speed rolling increase, there is no difference in texture evolution although there is a significant change in activated twinning systems. In addition, the engineering stresses after differential speed rolling are also similar to that after conventional rolling process, while ductility and stretch formability in the former are worse than those in the latter.

  9. Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity

    PubMed Central

    2014-01-01

    Background Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of ‘adaptive differentiation with minimal gene flow’ in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Results Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Conclusions Our study reveals significant sensory trait differentiation in the presence of historical gene flow and suggests roles for both selection and plasticity in the evolution of echolocation variation in R. capensis. These results highlight the importance of population level analyses to i) illuminate the subtle interplay between selection, plasticity and gene flow in the evolution of adaptive traits and ii) demonstrate that evolutionary processes may act simultaneously and that their relative influence may vary across different environments. PMID:24674227

  10. Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity.

    PubMed

    Odendaal, Lizelle J; Jacobs, David S; Bishop, Jacqueline M

    2014-03-27

    Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of 'adaptive differentiation with minimal gene flow' in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Our study reveals significant sensory trait differentiation in the presence of historical gene flow and suggests roles for both selection and plasticity in the evolution of echolocation variation in R. capensis. These results highlight the importance of population level analyses to i) illuminate the subtle interplay between selection, plasticity and gene flow in the evolution of adaptive traits and ii) demonstrate that evolutionary processes may act simultaneously and that their relative influence may vary across different environments.

  11. Onset of chaos in a single-phase power electronic inverter.

    PubMed

    Avrutin, Viktor; Mosekilde, Erik; Zhusubaliyev, Zhanybai T; Gardini, Laura

    2015-04-01

    Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual transition from the domain of stable periodic dynamics (corresponding to the desired mode of operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D stroboscopic map derived from a non-autonomous ordinary differential equation with discontinuous right-hand side. By construction, this stroboscopic map has a high number of border points. It is shown that the onset of chaos occurs stepwise, via irregular cascades of different border collisions, some of which lead to bifurcations while others do not.

  12. Hypotheses on the appearance of life on Earth (review).

    PubMed

    Dose, K

    1986-01-01

    It is generally accepted within the natural sciences that life emerged on Earth by a kind of proto-Darwinian evolution from molecular assemblies that were predominantly formed from the various constituents of the primitive atmosphere and hydrosphere. Evolutionary stages under discussion are: the self-organization of spontaneously formed biomolecules into early precursors of life (protobionts), their stepwise evolution via (postulated) protocells to (postulated) progenotes and the Darwinian evolution from progenotes to the three kingdoms of contemporary organisms (archaebacteria, eubacteria and eukaryotes). Considerable discrepancies between scientists have arisen because all evolutionary stages from prebiotic molecules to progenotes are entirely hypothetical and so are the postulated environmental conditions. We can only theorize that all those environmental conditions that allow the existence of the various forms of contemporary life might have allowed also the development of their precursors. Because of all these difficulties the hypothesis that life came to our planet from a remote place of our universe (panspermia) has been revived. But experimental evidence only supports the view that spores can--under favorable circumstances--survive a relatively short journey within our solar system (interplanetary transfer of life). It is extremely unlikely that spores can survive a journey of hundreds or thousands of years through interstellar space.

  13. Controlled synthesis of organic single-crystalline nanowires via the synergy approach of the bottom-up/top-down processes.

    PubMed

    Zhuo, Ming-Peng; Zhang, Ye-Xin; Li, Zhi-Zhou; Shi, Ying-Li; Wang, Xue-Dong; Liao, Liang-Sheng

    2018-03-15

    The controlled fabrication of organic single-crystalline nanowires (OSCNWs) with a uniform diameter in the nanoscale via the bottom-up approach, which is just based on weak intermolecular interaction, is a great challenge. Herein, we utilize the synergy approach of the bottom-up and the top-down processes to fabricate OSCNWs with diameters of 120 ± 10 nm through stepwise evolution processes. Specifically, the evolution processes vary from the self-assembled organic micro-rods with a quadrangular pyramid-like end-structure bounded with {111}s and {11-1}s crystal planes to the "top-down" synthesized organic micro-rods with the flat cross-sectional {002}s plane, to the organic micro-tubes with a wall thickness of ∼115 nm, and finally to the organic nanowires. Notably, the anisotropic etching process caused by the protic solvent molecules (such as ethanol) is crucial for the evolution of the morphology throughout the whole top-down process. Therefore, our demonstration opens a new avenue for the controlled-fabrication of organic nanowires, and also contributes to the development of nanowire-based organic optoelectronics such as organic nanowire lasers.

  14. Turbomachinery Airfoil Design Optimization Using Differential Evolution

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.

  15. Adaptive array technique for differential-phase reflectometry in QUEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idei, H., E-mail: idei@triam.kyushu-u.ac.jp; Hanada, K.; Zushi, H.

    2014-11-15

    A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effectmore » was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.« less

  16. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation.

    PubMed

    Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku

    2017-01-01

    One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    PubMed

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  18. Differential effects of lower body negative pressure and upright tilt on splanchnic blood volume

    PubMed Central

    Taneja, Indu; Moran, Christopher; Medow, Marvin S.; Glover, June L.; Montgomery, Leslie D.; Stewart, Julian M.

    2015-01-01

    Upright posture and lower body negative pressure (LBNP) both induce reductions in central blood volume. However, regional circulatory responses to postural changes and LBNP may differ. Therefore, we studied regional blood flow and blood volume changes in 10 healthy subjects undergoing graded lower-body negative pressure (−10 to −50 mmHg) and 8 subjects undergoing incremental head-up tilt (HUT; 20°, 40°, and 70°) on separate days. We continuously measured blood pressure (BP), heart rate, and regional blood volumes and blood flows in the thoracic, splanchnic, pelvic, and leg segments by impedance plethysmography and calculated regional arterial resistances. Neither LBNP nor HUT altered systolic BP, whereas pulse pressure decreased significantly. Blood flow decreased in all segments, whereas peripheral resistances uniformly and significantly increased with both HUT and LBNP. Thoracic volume decreased while pelvic and leg volumes increased with HUT and LBNP. However, splanchnic volume changes were directionally opposite with stepwise decreases in splanchnic volume with LBNP and stepwise increases in splanchnic volume during HUT. Splanchnic emptying in LBNP models regional vascular changes during hemorrhage. Splanchnic filling may limit the ability of the splanchnic bed to respond to thoracic hypovolemia during upright posture. PMID:17085534

  19. Whole genome sequencing revealed host adaptation-focused genomic plasticity of pathogenic Leptospira

    PubMed Central

    Xu, Yinghua; Zhu, Yongzhang; Wang, Yuezhu; Chang, Yung-Fu; Zhang, Ying; Jiang, Xiugao; Zhuang, Xuran; Zhu, Yongqiang; Zhang, Jinlong; Zeng, Lingbing; Yang, Minjun; Li, Shijun; Wang, Shengyue; Ye, Qiang; Xin, Xiaofang; Zhao, Guoping; Zheng, Huajun; Guo, Xiaokui; Wang, Junzhi

    2016-01-01

    Leptospirosis, caused by pathogenic Leptospira spp., has recently been recognized as an emerging infectious disease worldwide. Despite its severity and global importance, knowledge about the molecular pathogenesis and virulence evolution of Leptospira spp. remains limited. Here we sequenced and analyzed 102 isolates representing global sources. A high genomic variability were observed among different Leptospira species, which was attributed to massive gene gain and loss events allowing for adaptation to specific niche conditions and changing host environments. Horizontal gene transfer and gene duplication allowed the stepwise acquisition of virulence factors in pathogenic Leptospira evolved from a recent common ancestor. More importantly, the abundant expansion of specific virulence-related protein families, such as metalloproteases-associated paralogs, were exclusively identified in pathogenic species, reflecting the importance of these protein families in the pathogenesis of leptospirosis. Our observations also indicated that positive selection played a crucial role on this bacteria adaptation to hosts. These novel findings may lead to greater understanding of the global diversity and virulence evolution of Leptospira spp. PMID:26833181

  20. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    DOE PAGES

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; ...

    2014-10-08

    Here, the hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We concludemore » that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.« less

  1. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    PubMed Central

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.

    2014-01-01

    The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534

  2. Transcriptional diversity during lineage commitment of human blood progenitors.

    PubMed

    Chen, Lu; Kostadima, Myrto; Martens, Joost H A; Canu, Giovanni; Garcia, Sara P; Turro, Ernest; Downes, Kate; Macaulay, Iain C; Bielczyk-Maczynska, Ewa; Coe, Sophia; Farrow, Samantha; Poudel, Pawan; Burden, Frances; Jansen, Sjoert B G; Astle, William J; Attwood, Antony; Bariana, Tadbir; de Bono, Bernard; Breschi, Alessandra; Chambers, John C; Consortium, Bridge; Choudry, Fizzah A; Clarke, Laura; Coupland, Paul; van der Ent, Martijn; Erber, Wendy N; Jansen, Joop H; Favier, Rémi; Fenech, Matthew E; Foad, Nicola; Freson, Kathleen; van Geet, Chris; Gomez, Keith; Guigo, Roderic; Hampshire, Daniel; Kelly, Anne M; Kerstens, Hindrik H D; Kooner, Jaspal S; Laffan, Michael; Lentaigne, Claire; Labalette, Charlotte; Martin, Tiphaine; Meacham, Stuart; Mumford, Andrew; Nürnberg, Sylvia; Palumbo, Emilio; van der Reijden, Bert A; Richardson, David; Sammut, Stephen J; Slodkowicz, Greg; Tamuri, Asif U; Vasquez, Louella; Voss, Katrin; Watt, Stephen; Westbury, Sarah; Flicek, Paul; Loos, Remco; Goldman, Nick; Bertone, Paul; Read, Randy J; Richardson, Sylvia; Cvejic, Ana; Soranzo, Nicole; Ouwehand, Willem H; Stunnenberg, Hendrik G; Frontini, Mattia; Rendon, Augusto

    2014-09-26

    Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine. Copyright © 2014, American Association for the Advancement of Science.

  3. Scalable hydrothermal synthesis of free-standing VO₂ nanowires in the M1 phase.

    PubMed

    Horrocks, Gregory A; Singh, Sujay; Likely, Maliek F; Sambandamurthy, G; Banerjee, Sarbajit

    2014-09-24

    VO2 nanostructures derived from solution-phase methods are often plagued by broadened and relatively diminished metal-insulator transitions and adventitious doping due to imperfect control of stoichiometry. Here, we demonstrate a stepwise scalable hydrothermal and annealing route for obtaining VO2 nanowires exhibiting almost 4 orders of magnitude abrupt (within 1 °C) metal-insulator transitions. The prepared nanowires have been characterized across their structural and electronic phase transitions using single-nanowire Raman microprobe analysis, ensemble differential scanning calorimetry, and single-nanowire electrical transport measurements. The electrical band gap is determined to be 600 meV and is consistent with the optical band gap of VO2, and the narrowness of differential scanning calorimetry profiles indicates homogeneity of stoichiometry. The preparation of high-quality free-standing nanowires exhibiting pronounced metal-insulator transitions by a solution-phase process allows for scalability, further solution-phase processing, incorporation within nanocomposites, and integration onto arbitrary substrates.

  4. Application of digital computer APU modeling techniques to control system design.

    NASA Technical Reports Server (NTRS)

    Bailey, D. A.; Burriss, W. L.

    1973-01-01

    Study of the required controls for a H2-O2 auxiliary power unit (APU) technology program for the Space Shuttle. A steady-state system digital computer program was prepared and used to optimize initial system design. Analytical models of each system component were included. The program was used to solve a nineteen-dimensional problem, and then time-dependent differential equations were added to the computer program to simulate transient APU system and control. Some system parameters were considered quasi-steady-state, and others were treated as differential variables. The dynamic control analysis proceeded from initial ideal control modeling (which considered one control function and assumed the others to be ideal), stepwise through the system (adding control functions), until all of the control functions and their interactions were considered. In this way, the adequacy of the final control design over the required wide range of APU operating conditions was established.

  5. Differentiation of depression and anxiety groups using defense mechanisms.

    PubMed

    Olson, Trevor R; Presniak, Michelle D; MacGregor, Michael Wm

    2009-11-01

    We examined whether participants in depressed and anxious groups could be classified correctly using observer and self-report measures of defense mechanisms. A sample of 1182 university students completed the Personality Assessment Inventory and those scoring in the clinical range on either depression or anxiety indices were selected for participation. In total, 25 participants met criteria for the depressed group and 94 met criteria for the anxious group. Individual defense scores from the Defense-Q and the Defense Style Questionnaire were separately entered into 2 stepwise discriminant analyses. After cross-validation, the Defense-Q and Defense Style Questionnaire analyses classified participants with 75.0% and 71.3% accuracy, respectively. The results indicated that depression and anxiety groups can be significantly differentiated by defense use alone. Important differences in defensive functioning between these groups were confirmed and differences between observer and self-report measures of defenses mechanisms and current challenges in defense research were highlighted.

  6. One-step simultaneous differential scanning calorimetry-FTIR microspectroscopy to quickly detect continuous pathways in the solid-state glucose/asparagine Maillard reaction.

    PubMed

    Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang

    2013-01-01

    The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.

  7. Comparative Sex Chromosome Genomics in Snakes: Differentiation, Evolutionary Strata, and Lack of Global Dosage Compensation

    PubMed Central

    Zektser, Yulia; Mahajan, Shivani; Bachtrog, Doris

    2013-01-01

    Snakes exhibit genetic sex determination, with female heterogametic sex chromosomes (ZZ males, ZW females). Extensive cytogenetic work has suggested that the level of sex chromosome heteromorphism varies among species, with Boidae having entirely homomorphic sex chromosomes, Viperidae having completely heteromorphic sex chromosomes, and Colubridae showing partial differentiation. Here, we take a genomic approach to compare sex chromosome differentiation in these three snake families. We identify homomorphic sex chromosomes in boas (Boidae), but completely heteromorphic sex chromosomes in both garter snakes (Colubridae) and pygmy rattlesnake (Viperidae). Detection of W-linked gametologs enables us to establish the presence of evolutionary strata on garter and pygmy rattlesnake sex chromosomes where recombination was abolished at different time points. Sequence analysis shows that all strata are shared between pygmy rattlesnake and garter snake, i.e., recombination was abolished between the sex chromosomes before the two lineages diverged. The sex-biased transmission of the Z and its hemizygosity in females can impact patterns of molecular evolution, and we show that rates of evolution for Z-linked genes are increased relative to their pseudoautosomal homologs, both at synonymous and amino acid sites (even after controlling for mutational biases). This demonstrates that mutation rates are male-biased in snakes (male-driven evolution), but also supports faster-Z evolution due to differential selective effects on the Z. Finally, we perform a transcriptome analysis in boa and pygmy rattlesnake to establish baseline levels of sex-biased expression in homomorphic sex chromosomes, and show that heteromorphic ZW chromosomes in rattlesnakes lack chromosome-wide dosage compensation. Our study provides the first full scale overview of the evolution of snake sex chromosomes at the genomic level, thus greatly expanding our knowledge of reptilian and vertebrate sex chromosomes evolution. PMID:24015111

  8. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Tomonobu M.; World Premier Initiative, iFREC, Osaka University, Osaka 565-0871; Higuchi, Sayaka

    Highlights: Black-Right-Pointing-Pointer Change in the epigenetic landscape during myogenesis was optically investigated. Black-Right-Pointing-Pointer Mobility of nuclear proteins was used to state the epigenetic status of the cell. Black-Right-Pointing-Pointer Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. Black-Right-Pointing-Pointer Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extentmore » of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage during myogenesis using the state diagram developed with the parameters obtained in this study.« less

  9. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    PubMed Central

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  10. Optimal Control for Stochastic Delay Evolution Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less

  11. Greater association of peak neuromuscular performance with cortical bone geometry, bone mass and bone strength than bone density: A study in 417 older women.

    PubMed

    Belavý, Daniel L; Armbrecht, Gabriele; Blenk, Tilo; Bock, Oliver; Börst, Hendrikje; Kocakaya, Emine; Luhn, Franziska; Rantalainen, Timo; Rawer, Rainer; Tomasius, Frederike; Willnecker, Johannes; Felsenberg, Dieter

    2016-02-01

    We evaluated which aspects of neuromuscular performance are associated with bone mass, density, strength and geometry. 417 women aged 60-94years were examined. Countermovement jump, sit-to-stand test, grip strength, forearm and calf muscle cross-sectional area, areal bone mineral content and density (aBMC and aBMD) at the hip and lumbar spine via dual X-ray absorptiometry, and measures of volumetric vBMC and vBMD, bone geometry and section modulus at 4% and 66% of radius length and 4%, 38% and 66% of tibia length via peripheral quantitative computed tomography were performed. The first principal component of the neuromuscular variables was calculated to generate a summary neuromuscular variable. Percentage of total variance in bone parameters explained by the neuromuscular parameters was calculated. Step-wise regression was also performed. At all pQCT bone sites (radius, ulna, tibia, fibula), a greater percentage of total variance in measures of bone mass, cortical geometry and/or bone strength was explained by peak neuromuscular performance than for vBMD. Sit-to-stand performance did not relate strongly to bone parameters. No obvious differential in the explanatory power of neuromuscular performance was seen for DXA aBMC versus aBMD. In step-wise regression, bone mass, cortical morphology, and/or strength remained significant in relation to the first principal component of the neuromuscular variables. In no case was vBMD positively related to neuromuscular performance in the final step-wise regression models. Peak neuromuscular performance has a stronger relationship with leg and forearm bone mass and cortical geometry as well as proximal forearm section modulus than with vBMD. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Cytopathologic differential diagnosis of low-grade urothelial carcinoma and reactive urothelial proliferation in bladder washings: a logistic regression analysis.

    PubMed

    Cakir, Ebru; Kucuk, Ulku; Pala, Emel Ebru; Sezer, Ozlem; Ekin, Rahmi Gokhan; Cakmak, Ozgur

    2017-05-01

    Conventional cytomorphologic assessment is the first step to establish an accurate diagnosis in urinary cytology. In cytologic preparations, the separation of low-grade urothelial carcinoma (LGUC) from reactive urothelial proliferation (RUP) can be exceedingly difficult. The bladder washing cytologies of 32 LGUC and 29 RUP were reviewed. The cytologic slides were examined for the presence or absence of the 28 cytologic features. The cytologic criteria showing statistical significance in LGUC were increased numbers of monotonous single (non-umbrella) cells, three-dimensional cellular papillary clusters without fibrovascular cores, irregular bordered clusters, atypical single cells, irregular nuclear overlap, cytoplasmic homogeneity, increased N/C ratio, pleomorphism, nuclear border irregularity, nuclear eccentricity, elongated nuclei, and hyperchromasia (p ˂ 0.05), and the cytologic criteria showing statistical significance in RUP were inflammatory background, mixture of small and large urothelial cells, loose monolayer aggregates, and vacuolated cytoplasm (p ˂ 0.05). When these variables were subjected to a stepwise logistic regression analysis, four features were selected to distinguish LGUC from RUP: increased numbers of monotonous single (non-umbrella) cells, increased nuclear cytoplasmic ratio, hyperchromasia, and presence of small and large urothelial cells (p = 0.0001). By this logistic model of the 32 cases with proven LGUC, the stepwise logistic regression analysis correctly predicted 31 (96.9%) patients with this diagnosis, and of the 29 patients with RUP, the logistic model correctly predicted 26 (89.7%) patients as having this disease. There are several cytologic features to separate LGUC from RUP. Stepwise logistic regression analysis is a valuable tool for determining the most useful cytologic criteria to distinguish these entities. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  13. Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma.

    PubMed

    Kim, Tae-Min; An, Chang Hyeok; Rhee, Je-Keun; Jung, Seung-Hyun; Lee, Sung Hak; Baek, In-Pyo; Kim, Min Sung; Lee, Sug Hyung; Chung, Yeun-Jun

    2015-09-29

    Although the colorectal adenoma-to-carcinoma sequence represents a classical cancer progression model, the evolution of the mutational landscape underlying this model is not fully understood. In this study, we analyzed eight synchronous pairs of colorectal high-grade adenomas and carcinomas, four microsatellite-unstable (MSU) and four-stable (MSS) pairs, using whole-exome sequencing. In the MSU adenoma-carcinoma pairs, we observed no subclonal mutations in adenomas that became fixed in paired carcinomas, suggesting a 'parallel' evolution of synchronous adenoma-to-carcinoma, rather than a 'stepwise' evolution. The abundance of indel (in MSU and MSS pairs) and microsatellite instability (in MSU pairs) was noted in the later adenoma- or carcinoma-specific mutations, indicating that the mutational processes and functional constraints operative in early and late colorectal carcinogenesis are different. All MSU cases exhibited clonal, truncating mutations in ACVR2A, TGFBR2, and DNA mismatch repair genes, but none were present in APC or KRAS. In three MSS pairs, both APC and KRAS mutations were identified as both early and clonal events, often accompanying clonal copy number changes. An MSS case uniquely exhibited clonal ERBB2 amplification, followed by APC and TP53 mutations as carcinoma-specific events. Along with the previously unrecognized clonal origins of synchronous colorectal adenoma-carcinoma pairs, our study revealed that the preferred sequence of mutational events during colorectal carcinogenesis can be context-dependent.

  14. Co-evolution of MHC class I and variable NK cell receptors in placental mammals.

    PubMed

    Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo G; Parham, Peter

    2015-09-01

    Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability.

    PubMed

    Kim, Sun Mi; Han, Heon; Park, Jeong Mi; Choi, Yoon Jung; Yoon, Hoi Soo; Sohn, Jung Hee; Baek, Moon Hee; Kim, Yoon Nam; Chae, Young Moon; June, Jeon Jong; Lee, Jiwon; Jeon, Yong Hwan

    2012-10-01

    To determine which Breast Imaging Reporting and Data System (BI-RADS) descriptors for ultrasound are predictors for breast cancer using logistic regression (LR) analysis in conjunction with interobserver variability between breast radiologists, and to compare the performance of artificial neural network (ANN) and LR models in differentiation of benign and malignant breast masses. Five breast radiologists retrospectively reviewed 140 breast masses and described each lesion using BI-RADS lexicon and categorized final assessments. Interobserver agreements between the observers were measured by kappa statistics. The radiologists' responses for BI-RADS were pooled. The data were divided randomly into train (n = 70) and test sets (n = 70). Using train set, optimal independent variables were determined by using LR analysis with forward stepwise selection. The LR and ANN models were constructed with the optimal independent variables and the biopsy results as dependent variable. Performances of the models and radiologists were evaluated on the test set using receiver-operating characteristic (ROC) analysis. Among BI-RADS descriptors, margin and boundary were determined as the predictors according to stepwise LR showing moderate interobserver agreement. Area under the ROC curves (AUC) for both of LR and ANN were 0.87 (95% CI, 0.77-0.94). AUCs for the five radiologists ranged 0.79-0.91. There was no significant difference in AUC values among the LR, ANN, and radiologists (p > 0.05). Margin and boundary were found as statistically significant predictors with good interobserver agreement. Use of the LR and ANN showed similar performance to that of the radiologists for differentiation of benign and malignant breast masses.

  16. Neurophysiological capacity in a working memory task differentiates dependent from nondependent heavy drinkers and controls.

    PubMed

    Wesley, Michael J; Lile, Joshua A; Fillmore, Mark T; Porrino, Linda J

    2017-06-01

    Determining the neurobehavioral profiles that differentiate heavy drinkers who are and are not alcohol dependent will inform treatment efforts. Working memory is linked to substance use disorders and can serve as a representation of the demand placed on the neurophysiology associated with cognitive control. Behavior and brain activity (via fMRI) were recorded during an N-Back working memory task in controls (CTRL), nondependent heavy drinkers (A-ND) and dependent heavy drinkers (A-D). Typical and novel step-wise analyses examined profiles of working memory load and increasing task demand, respectively. Performance was significantly decreased in A-D during high working memory load (2-Back), compared to CTRL and A-ND. Analysis of brain activity during high load (0-Back vs. 2- Back) showed greater responses in the dorsal lateral and medial prefrontal cortices of A-D than CTRL, suggesting increased but failed compensation. The step-wise analysis revealed that the transition to Low Demand (0-Back to 1-Back) was associated with robust increases and decreases in cognitive control and default-mode brain regions, respectively, in A-D and A-ND but not CTRL. The transition to High Demand (1-Back to 2-Back) resulted in additional engagement of these networks in A-ND and CTRL, but not A-D. Heavy drinkers engaged working memory neural networks at lower demand than controls. As demand increased, nondependent heavy drinkers maintained control performance but relied on additional neurophysiological resources, and dependent heavy drinkers did not display further resource engagement and had poorer performance. These results support targeting these brain areas for treatment interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Microevolution of Pandemic Vibrio parahaemolyticus Assessed by the Number of Repeat Units in Short Sequence Tandem Repeat Regions

    PubMed Central

    García, Katherine; Gavilán, Ronnie G.; Höfle, Manfred G.; Martínez-Urtaza, Jaime; Espejo, Romilio T.

    2012-01-01

    The emergence of the pandemic strain Vibrio parahaemolyticus O3:K6 in 1996 caused a large increase of diarrhea outbreaks related to seafood consumption in Southeast Asia, and later worldwide. Isolates of this strain constitutes a clonal complex, and their effectual differentiation is possible by comparison of their variable number tandem repeats (VNTRs). The differentiation of the isolates by the differences in VNTRs will allow inferring the population dynamics and microevolution of this strain but this requires knowing the rate and mechanism of VNTRs' variation. Our study of mutants obtained after serial cultivation of clones showed that mutation rates of the six VNTRs examined are on the order of 10−4 mutant per generation and that difference increases by stepwise addition of single mutations. The single stepwise mutation (SSM) was deduced because mutants with 1, 2, 3, or more repeat unit deletions or insertions follow a geometric distribution. Plausible phylogenetic trees are obtained when, according to SSM, the genetic distance between clusters with different number of repeats is assessed by the absolute differences in repeats. Using this approach, mutants originated from different isolates of pandemic V. parahaemolyticus after serial cultivation are clustered with their parental isolates. Additionally, isolates of pandemic V. parahaemolyticus from Southeast Asia, Tokyo, and northern and southern Chile are clustered according their geographical origin. The deepest split in these four populations is observed between the Tokyo and southern Chile populations. We conclude that proper phylogenetic relations and successful tracing of pandemic V. parahaemolyticus requires measuring the differences between isolates by the absolute number of repeats in the VNTRs considered. PMID:22292049

  18. Integrator complex plays an essential role in adipose differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otani, Yuichiro; Nakatsu, Yusuke; Sakoda, Hideyuki

    2013-05-03

    Highlights: •IntS6 and IntS11 are subunits of the Integrator complex. •Expression levels of IntS6 and IntS11 were very low in 3T3-L1 fibroblast. •IntS6 and IntS11 were upregulated during adipose differentiation. •Suppression of IntS6 or IntS11 expression inhibited adipose differentiation. -- Abstract: The dynamic process of adipose differentiation involves stepwise expressions of transcription factors and proteins specific to the mature fat cell phenotype. In this study, it was revealed that expression levels of IntS6 and IntS11, subunits of the Integrator complex, were increased in 3T3-L1 cells in the period when the cells reached confluence and differentiated into adipocytes, while being reducedmore » to basal levels after the completion of differentiation. Suppression of IntS6 or IntS11 expression using siRNAs in 3T3-L1 preadipocytes markedly inhibited differentiation into mature adipocytes, based on morphological findings as well as mRNA analysis of adipocyte-specific genes such as Glut4, perilipin and Fabp4. Although Pparγ2 protein expression was suppressed in IntS6 or IntS11-siRNA treated cells, adenoviral forced expression of Pparγ2 failed to restore the capacity for differentiation into mature adipocytes. Taken together, these findings demonstrate that increased expression of Integrator complex subunits is an indispensable event in adipose differentiation. Although further study is necessary to elucidate the underlying mechanism, the processing of U1, U2 small nuclear RNAs may be involved in cell differentiation steps.« less

  19. Vesta Evolution from Surface Mineralogy: Mafic and Ultramafic Mineral Distribution

    NASA Technical Reports Server (NTRS)

    DeSanctis, M. C.; Ammannito, E.; Palomba, E.; Longobardo, A.; Mittlefehldt, D. W.; McSween, H. Y; Marchi, S.; Capria, M. T.; Capaccioni, F.; Frigeri, A.; hide

    2014-01-01

    Vesta is the only intact, differentiated, rocky protoplanet and it is the parent body of HED meterorites. Howardite, eucrite and diogenite (HED) meteorites represent regolith, basaltic-crust, lower-crust and possibly ultramafic-mantle samples of asteroid Vesta. Only a few of these meteorites, the orthopyroxene-rich diogenites, contain olivine, a mineral that is a major component of the mantles of differentiated bodies, including Vesta. The HED parent body experienced complex igneous processes that are not yet fully understood and olivine and diogenite distribution is a key measurement to understand Vesta evolution. Here we report on the distribution of olivine and its constraints on vestan evolution models.

  20. Internal constitution and evolution of the moon.

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Toksoz, M. N.

    1973-01-01

    The composition, structure and evolution of the moon's interior are narrowly constrained by a large assortment of physical and chemical data. Models of the thermal evolution of the moon that fit the chronology of igneous activity on the lunar surface, the stress history of the lunar lithosphere implied by the presence of mascons, and the surface concentrations of radioactive elements, involve extensive differentiation early in lunar history. This differentiation may be the result of rapid accretion and large-scale melting or of primary chemical layering during accretion; differences in present-day temperatures for these two possibilities are significant only in the inner 1000 km of the moon and may not be resolvable.

  1. Population genomics of the killer whale indicates ecotype evolution in sympatry involving both selection and drift.

    PubMed

    Moura, Andre E; Kenny, John G; Chaudhuri, Roy; Hughes, Margaret A; J Welch, Andreanna; Reisinger, Ryan R; de Bruyn, P J Nico; Dahlheim, Marilyn E; Hall, Neil; Hoelzel, A Rus

    2014-11-01

    The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift. © 2014 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

  2. Population genomics of the killer whale indicates ecotype evolution in sympatry involving both selection and drift

    PubMed Central

    Moura, Andre E; Kenny, John G; Chaudhuri, Roy; Hughes, Margaret A; J Welch, Andreanna; Reisinger, Ryan R; de Bruyn, P J Nico; Dahlheim, Marilyn E; Hall, Neil; Hoelzel, A Rus

    2014-01-01

    The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift. PMID:25244680

  3. Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees.

    PubMed

    Grüter, Christoph; Segers, Francisca H I D; Menezes, Cristiano; Vollet-Neto, Ayrton; Falcón, Tiago; von Zuben, Lucas; Bitondi, Márcia M G; Nascimento, Fabio S; Almeida, Eduardo A B

    2017-02-23

    The differentiation of workers into morphological castes represents an important evolutionary innovation that is thought to improve division of labor in insect societies. Given the potential benefits of task-related worker differentiation, it is puzzling that physical worker castes, such as soldiers, are extremely rare in social bees and absent in wasps. Following the recent discovery of soldiers in a stingless bee, we studied the occurrence of worker differentiation in 28 stingless bee species from Brazil and found that several species have specialized soldiers for colony defence. Our results reveal that worker differentiation evolved repeatedly during the last ~ 25 million years and coincided with the emergence of parasitic robber bees, a major threat to many stingless bee species. Furthermore, our data suggest that these robbers are a driving force behind the evolution of worker differentiation as targets of robber bees are four times more likely to have nest guards of increased size than non-targets. These findings reveal unexpected diversity in the social organization of stingless bees.Although common in ants and termites, worker differentiation into physical castes is rare in social bees and unknown in wasps. Here, Grüter and colleagues find a guard caste in ten species of stingless bees and show that the evolution of the guard caste is associated with parasitization by robber bees.

  4. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.

    PubMed

    Sridhar, Akshayalakshmi; Ohlemacher, Sarah K; Langer, Kirstin B; Meyer, Jason S

    2016-04-01

    The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has allowed for the development of novel approaches to studies of human development and disease. However, traditional methods of generating hiPSCs involve the risks of genomic integration and potential constitutive expression of pluripotency factors and often exhibit low reprogramming efficiencies. The recent description of cellular reprogramming using synthetic mRNA molecules might eliminate these shortcomings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed hiPSCs were established and were subsequently differentiated into a retinal fate using established protocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-derived hiPSC counterparts. Thus, given that hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell research, in particular, those for translational applications. In the current report, the ability to derive mRNA-reprogrammed human induced pluripotent stem cells (hiPSCs), followed by the differentiation of these cells toward a retinal lineage, including photoreceptors, retinal ganglion cells, and retinal pigment epithelium, has been demonstrated. The use of mRNA reprogramming to yield pluripotency represents a unique ability to derive pluripotent stem cells without the use of DNA vectors, ensuring the lack of genomic integration and constitutive expression. The studies reported in the present article serve to establish a more reproducible system with which to derive retinal cell types from hiPSCs through the prevention of genomic integration of delivered genes and should also eliminate the risk of constitutive expression of these genes. Such ability has important implications for the study of, and development of potential treatments for, retinal degenerative disorders and the development of novel therapeutic approaches to the treatment of these diseases. ©AlphaMed Press.

  5. Processes and patterns of interaction as units of selection: An introduction to ITSNTS thinking.

    PubMed

    Doolittle, W Ford; Inkpen, S Andrew

    2018-04-17

    Many practicing biologists accept that nothing in their discipline makes sense except in the light of evolution, and that natural selection is evolution's principal sense-maker. But what natural selection actually is (a force or a statistical outcome, for example) and the levels of the biological hierarchy (genes, organisms, species, or even ecosystems) at which it operates directly are still actively disputed among philosophers and theoretical biologists. Most formulations of evolution by natural selection emphasize the differential reproduction of entities at one or the other of these levels. Some also recognize differential persistence, but in either case the focus is on lineages of material things: even species can be thought of as spatiotemporally restricted, if dispersed, physical beings. Few consider-as "units of selection" in their own right-the processes implemented by genes, cells, species, or communities. "It's the song not the singer" (ITSNTS) theory does that, also claiming that evolution by natural selection of processes is more easily understood and explained as differential persistence than as differential reproduction. ITSNTS was formulated as a response to the observation that the collective functions of microbial communities (the songs) are more stably conserved and ecologically relevant than are the taxa that implement them (the singers). It aims to serve as a useful corrective to claims that "holobionts" (microbes and their animal or plant hosts) are aggregate "units of selection," claims that often conflate meanings of that latter term. But ITSNS also seems broadly applicable, for example, to the evolution of global biogeochemical cycles and the definition of ecosystem function.

  6. Stellar differential rotation and coronal time-scales

    NASA Astrophysics Data System (ADS)

    Gibb, G. P. S.; Jardine, M. M.; Mackay, D. H.

    2014-10-01

    We investigate the time-scales of evolution of stellar coronae in response to surface differential rotation and diffusion. To quantify this, we study both the formation time and lifetime of a magnetic flux rope in a decaying bipolar active region. We apply a magnetic flux transport model to prescribe the evolution of the stellar photospheric field, and use this to drive the evolution of the coronal magnetic field via a magnetofrictional technique. Increasing the differential rotation (i.e. decreasing the equator-pole lap time) decreases the flux rope formation time. We find that the formation time is dependent upon the lap time and the surface diffusion time-scale through the relation τ_Form ∝ √{τ_Lapτ_Diff}. In contrast, the lifetimes of flux ropes are proportional to the lap time (τLife∝τLap). With this, flux ropes on stars with a differential rotation of more than eight times the solar value have a lifetime of less than 2 d. As a consequence, we propose that features such as solar-like quiescent prominences may not be easily observable on such stars, as the lifetimes of the flux ropes which host the cool plasma are very short. We conclude that such high differential rotation stars may have very dynamical coronae.

  7. Sexual and reproductive behaviour of Drosophila melanogaster from a microclimatically interslope differentiated population of "Evolution Canyon" (Mount Carmel, Israel).

    PubMed

    Iliadi, K; Iliadi, N; Rashkovetsky, E; Minkov, I; Nevo, E; Korol, A

    2001-11-22

    The strong microscale interslope environmental differences in "Evolution Canyon" provide an excellent natural model for sympatric speciation. Our previous studies revealed significant slope-specific differences for a fitness complex of Drosophila. This complex involved either adaptation traits (tolerance to high temperature, different viability and longevity pattern) or behavioural differentiation, manifested in habitat choice and non-random mating. This remarkable differentiation has evolved despite a very small interslope distance (a few hundred metres only). Our hypothesis is that strong interslope microclimatic contrast caused differential selection for fitness-related traits accompanied by behavioural differentiation and reinforced by some sexual isolation, which started incipient speciation. Here we describe the results of a systematic analysis of sexual behaviour in a non-choice situation and several reproductive parameters of D. melanogaster populations from the opposite slopes of "Evolution Canyon". The evidence indicates that: (i) mate choice derives from differences in mating propensity and discrimination; (ii) females from the milder north-facing slope discriminate strongly against males of the opposite slope; (iii) both sexes of the south-facing slope display distinct reproductive and behavioural patterns with females showing increased fecundity, shorter time before remating and relatively higher receptivity, and males showing higher mating propensity. These patterns represent adaptive life strategies contributing to higher fitness.

  8. The economics of transboundary air pollution in Europe.

    PubMed

    Van Ierland, E C

    1991-01-01

    Acid rain is causing substantial damage in all Eastern and Western European countries. This article presents a stepwise linear optimisation model, that places transboundary air pollution by SO2 and NOx in a game theoretical framework. The national authorities of 28 countries are perceived as players in a game in which they can choose optimal strategies. It is illustrated that optimal national abatement programmes may be far from optimal if considered from an international point of view. Several scenarios are discussed, including a reference case, full cooperation, Pareto optimality and a critical loads approach. The need for international cooperation and regional differentiation of abatement programmes is emphasised.

  9. Study of the thermal properties of selected PCMs for latent heat storage in buildings

    NASA Astrophysics Data System (ADS)

    Valentova, Katerina; Pechackova, Katerina; Prikryl, Radek; Ostry, Milan; Zmeskal, Oldrich

    2017-07-01

    The paper is focused on measurements of thermal properties of selected phase change materials (PCMs) which can be used for latent heat storage in building structures. The thermal properties were measured by the transient step-wise method and analyzed by the thermal spectroscopy. The results of three different materials (RT18HC, RT28HC, and RT35HC) and their thermal properties in solid, liquid, and phase change region were determined. They were correlated with the differential scanning calorimetry (DSC) measurement. The results will be used to determine the optimum ratio of components for the construction of drywall and plasters containing listed ingredients, respectively.

  10. Highly efficient spin polarizer based on individual heterometallic cubane single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Dong, Damin

    2015-09-01

    The spin-polarized transport across a single-molecule magnet [Mn3Zn(hmp)3O(N3)3(C3H5O2)3].2CHCl3 has been investigated using a density functional theory combined with Keldysh non-equilibrium Green's function formalism. It is shown that this single-molecule magnet has perfect spin filter behaviour. By adsorbing Ni3 cluster onto non-magnetic Au electrode, a large magnetoresistance exceeding 172% is found displaying molecular spin valve feature. Due to the tunneling via discrete quantum-mechanical states, the I-V curve has a stepwise character and negative differential resistance behaviour.

  11. Alleviation of streptozotocin-induced diabetes in nude mice by stem cells derived from human first trimester umbilical cord.

    PubMed

    Cao, M; Zhang, J B; Dong, D D; Mou, Y; Li, K; Fang, J; Wang, Z Y; Chen, C; Zhao, J; Yie, S M

    2015-10-16

    Cells isolated from human first trimester umbilical cord perivascular layer (hFTM-PV) tissues display the pluripotent characteristics of stem cells. In this study, we examined whether hFTM-PV cells can differentiate into islet-like clusters (ILCs) in vitro, and whether transplantation of the hFTM-PV cells with and without differentiation in vitro can alleviate diabetes in nude mice. The hFTM-PV cells were differentiated into ILCs in vitro through a simple stepwise culture protocol. To examine the in vivo effects of the cells, the hFTM-PV cells with and without differentiation in vitro were transplanted into the abdominal cavity of nude mice with streptozotocin (STZ)-induced diabetes. Blood glucose levels, body weight, and the survival probability of the diabetic nude mice were then statistically analyzed. The hFTM-PV cells were successfully induced into ILCs that could release insulin in response to elevated concentrations of glucose in vitro. In transplantation experiments, we observed that mice transplanted with the undifferentiated hFTM-PV cells, embryonic body-like cell aggregations, or ILCs all demonstrated normalized hyperglycemia and showed improved survival rate compared with those without cell transplantation. The hFTM-PV cells have the ability to differentiate into ILCs in vitro and transplantations of undifferentiated and differentiated cells can alleviate STZ-induced diabetes in nude mice. This may offer a potential cell source for stem cell-based therapy for treating diabetes in the future.

  12. Natural selection and neutral evolution jointly drive population divergence between alpine and lowland ecotypes of the allopolyploid plant Anemone multifida (Ranunculaceae).

    PubMed

    McEwen, Jamie R; Vamosi, Jana C; Rogers, Sean M

    2013-01-01

    Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074-0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST  = 0.041-0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence.

  13. Electroperturbation of human stratum corneum fine structure by high voltage pulses: a freeze-fracture electron microscopy and differential thermal analysis study.

    PubMed

    Jadoul, A; Tanojo, H; Préat, V; Bouwstra, J A; Spies, F; Boddé, H E

    1998-08-01

    Application of high voltage pulses (HVP) to the skin has been shown to promote the transdermal drug delivery by a mechanism involving skin electroporation. The aim of this study was to detect potential changes in lipid phase and ultrastructure induced in human stratum corneum by various HVP protocols, using differential thermal analysis and freeze-fracture electron microscopy. Due to the time involved between the moment the electric field is switched off and the analysis, only "secondary" phenomena rather than primary events could be observed. A decrease in enthalpies for the phase transitions observed at 70 degrees C and 85 degrees C was detected by differential thermal analysis after HVP treatment. No changes in transition temperature could be seen. The freeze-fracture electron microscopy study revealed a dramatic perturbation of the lamellar ordering of the intercellular lipid after application of HVP. Most of the planes displayed rough surfaces. The lipid lamellae exhibited rounded off steps or a vanished stepwise order. There was no evidence for perturbation of the corneocytes content. In conclusion, the freeze-fracture electron microscopy and differential thermal analysis studies suggest that HVP application induces a general perturbation of the stratum corneum lipid ultrastructure.

  14. Lie symmetries for systems of evolution equations

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos; Tsamparlis, Michael

    2018-01-01

    The Lie symmetries for a class of systems of evolution equations are studied. The evolution equations are defined in a bimetric space with two Riemannian metrics corresponding to the space of the independent and dependent variables of the differential equations. The exact relation of the Lie symmetries with the collineations of the bimetric space is determined.

  15. Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goryainov, V V

    2015-01-31

    The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution familymore » of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles.« less

  16. Production of Functional Glucagon-Secreting α-Cells From Human Embryonic Stem Cells

    PubMed Central

    Rezania, Alireza; Riedel, Michael J.; Wideman, Rhonda D.; Karanu, Francis; Ao, Ziliang; Warnock, Garth L.; Kieffer, Timothy J.

    2011-01-01

    OBJECTIVE Differentiation of human embryonic stem (hES) cells to fully developed cell types holds great therapeutic promise. Despite significant progress, the conversion of hES cells to stable, fully differentiated endocrine cells that exhibit physiologically regulated hormone secretion has not yet been achieved. Here we describe an efficient differentiation protocol for the in vitro conversion of hES cells to functional glucagon-producing α- cells. RESEARCH DESIGN AND METHODS Using a combination of small molecule screening and empirical testing, we developed a six-stage differentiation protocol for creating functional α-cells. An extensive in vitro and in vivo characterization of the differentiated cells was performed. RESULTS A high rate of synaptophysin expression (>75%) and robust expression of glucagon and the α-cell transcription factor ARX was achieved. After a transient polyhormonal state in which cells coexpress glucagon and insulin, maturation in vitro or in vivo resulted in depletion of insulin and other β-cell markers with concomitant enrichment of α-cell markers. After transplantation, these cells secreted fully processed, biologically active glucagon in response to physiologic stimuli including prolonged fasting and amino acid challenge. Moreover, glucagon release from transplanted cells was sufficient to reduce demand for pancreatic glucagon, resulting in a significant decrease in pancreatic α-cell mass. CONCLUSIONS These results indicate that fully differentiated pancreatic endocrine cells can be created via stepwise differentiation of hES cells. These cells may serve as a useful screening tool for the identification of compounds that modulate glucagon secretion as well as those that promote the transdifferentiation of α-cells to β-cells. PMID:20971966

  17. Health Sector Evolution Plan in Iran; Equity and Sustainability Concerns.

    PubMed

    Moradi-Lakeh, Maziar; Vosoogh-Moghaddam, Abbas

    2015-08-31

    In 2014, a series of reforms, called as the Health Sector Evolution Plan (HSEP), was launched in the health system of Iran in a stepwise process. HSEP was mainly based on the fifth 5-year health development national strategies (2011-2016). It included different interventions to: increase population coverage of basic health insurance, increase quality of care in the Ministry of Health and Medical Education (MoHME) affiliated hospitals, reduce out-of-pocket (OOP) payments for inpatient services, increase quality of primary healthcare, launch updated relative value units (RVUs) of clinical services, and update tariffs to more realistic values. The reforms resulted in extensive social reaction and different professional feedback. The official monitoring program shows general public satisfaction. However, there are some concerns for sustainability of the programs and equity of financing. Securing financial sources and fairness of the financial contribution to the new programs are the main concerns of policy-makers. Healthcare providers' concerns (as powerful and influential stakeholders) potentially threat the sustainability and efficiency of HSEP. Previous experiences on extending health insurance coverage show that they can lead to a regressive healthcare financing and threat financial equity. To secure financial sources and to increase fairness, the contributions of people to new interventions should be progressive by their income and wealth. A specific progressive tax would be the best source, however, since it is not immediately feasible, a stepwise increase in the progressivity of financing must be followed. Technical concerns of healthcare providers (such as nonplausible RVUs for specific procedures or nonefficient insurance-provider processes) should be addressed through proper revision(s) while nontechnical concerns (which are derived from conflicting interests) must be responded through clarification and providing transparent information. The requirements of HSEP and especially the key element of progressive tax should be considered properly in the coming sixth national development plan (2016-2021). © 2015 by Kerman University of Medical Sciences.

  18. Health Sector Evolution Plan in Iran; Equity and Sustainability Concerns

    PubMed Central

    Moradi-Lakeh, Maziar; Vosoogh-Moghaddam, Abbas

    2015-01-01

    In 2014, a series of reforms, called as the Health Sector Evolution Plan (HSEP), was launched in the health system of Iran in a stepwise process. HSEP was mainly based on the fifth 5-year health development national strategies (2011-2016). It included different interventions to: increase population coverage of basic health insurance, increase quality of care in the Ministry of Health and Medical Education (MoHME) affiliated hospitals, reduce out-of-pocket (OOP) payments for inpatient services, increase quality of primary healthcare, launch updated relative value units (RVUs) of clinical services, and update tariffs to more realistic values. The reforms resulted in extensive social reaction and different professional feedback. The official monitoring program shows general public satisfaction. However, there are some concerns for sustainability of the programs and equity of financing. Securing financial sources and fairness of the financial contribution to the new programs are the main concerns of policy-makers. Healthcare providers’ concerns (as powerful and influential stakeholders) potentially threat the sustainability and efficiency of HSEP. Previous experiences on extending health insurance coverage show that they can lead to a regressive healthcare financing and threat financial equity. To secure financial sources and to increase fairness, the contributions of people to new interventions should be progressive by their income and wealth. A specific progressive tax would be the best source, however, since it is not immediately feasible, a stepwise increase in the progressivity of financing must be followed. Technical concerns of healthcare providers (such as nonplausible RVUs for specific procedures or nonefficient insurance-provider processes) should be addressed through proper revision(s) while nontechnical concerns (which are derived from conflicting interests) must be responded through clarification and providing transparent information. The requirements of HSEP and especially the key element of progressive tax should be considered properly in the coming sixth national development plan (2016-2021). PMID:26673172

  19. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood

    2018-03-01

    The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.

  20. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages

    PubMed Central

    de Mendoza, Alex; Sebé-Pedrós, Arnau; Šestak, Martin Sebastijan; Matejčić, Marija; Torruella, Guifré; Domazet-Lošo, Tomislav; Ruiz-Trillo, Iñaki

    2013-01-01

    Transcription factors (TFs) are the main players in transcriptional regulation in eukaryotes. However, it remains unclear what role TFs played in the origin of all of the different eukaryotic multicellular lineages. In this paper, we explore how the origin of TF repertoires shaped eukaryotic evolution and, in particular, their role into the emergence of multicellular lineages. We traced the origin and expansion of all known TFs through the eukaryotic tree of life, using the broadest possible taxon sampling and an updated phylogenetic background. Our results show that the most complex multicellular lineages (i.e., those with embryonic development, Metazoa and Embryophyta) have the most complex TF repertoires, and that these repertoires were assembled in a stepwise manner. We also show that a significant part of the metazoan and embryophyte TF toolkits evolved earlier, in their respective unicellular ancestors. To gain insights into the role of TFs in the development of both embryophytes and metazoans, we analyzed TF expression patterns throughout their ontogeny. The expression patterns observed in both groups recapitulate those of the whole transcriptome, but reveal some important differences. Our comparative genomics and expression data reshape our view on how TFs contributed to eukaryotic evolution and reveal the importance of TFs to the origins of multicellularity and embryonic development. PMID:24277850

  1. Ecosystem variability and early human habitats in eastern Africa.

    PubMed

    Magill, Clayton R; Ashley, Gail M; Freeman, Katherine H

    2013-01-22

    The role of savannas during the course of early human evolution has been debated for nearly a century, in part because of difficulties in characterizing local ecosystems from fossil and sediment records. Here, we present high-resolution lipid biomarker and isotopic signatures for organic matter preserved in lake sediments at Olduvai Gorge during a key juncture in human evolution about 2.0 Ma--the emergence and dispersal of Homo erectus (sensu lato). Using published data for modern plants and soils, we construct a framework for ecological interpretations of stable carbon-isotope compositions (expressed as δ(13)C values) of lipid biomarkers from ancient plants. Within this framework, δ(13)C values for sedimentary leaf lipids and total organic carbon from Olduvai Gorge indicate recurrent ecosystem variations, where open C(4) grasslands abruptly transitioned to closed C(3) forests within several hundreds to thousands of years. Carbon-isotopic signatures correlate most strongly with Earth's orbital geometry (precession), and tropical sea-surface temperatures are significant secondary predictors in partial regression analyses. The scale and pace of repeated ecosystem variations at Olduvai Gorge contrast with long-held views of directional or stepwise aridification and grassland expansion in eastern Africa during the early Pleistocene and provide a local perspective on environmental hypotheses of human evolution.

  2. Restructuring and Hydrogen Evolution on Pt Nanoparticle† †Electronic supplementary information (ESI) available: Discussions on the structures of Pt clusters and the stability of the subsurface H atoms in Pt cluster, TS structure of H–H coupling on {111} facets of Pt44H80, XYZ coordinate of Pt44 and Pt44H80. Movie of structure evolution at Pt44H50 See DOI: 10.1039/c4sc02806f Click here for additional data file. Click here for additional data file.

    PubMed Central

    Wei, Guang-Feng

    2015-01-01

    The restructuring of nanoparticles at the in situ condition is a common but complex phenomenon in nanoscience. Here, we present the first systematic survey on the structure dynamics and its catalytic consequence for hydrogen evolution reaction (HER) on Pt nanoparticles, as represented by a magic number Pt44 octahedron (∼1 nm size). Using a first principles calculation based global structure search method, we stepwise follow the significant nanoparticle restructuring under HER conditions as driven by thermodynamics to expose {100} facets, and reveal the consequent large activity enhancement due to the marked increase of the concentration of the active site, being identified to be apex atoms. The enhanced kinetics is thus a “byproduct” of the thermodynamical restructuring. Based on the results, the best Pt catalyst for HER is predicted to be ultrasmall Pt particles without core atoms, a size below ∼20 atoms. PMID:29560237

  3. Ecosystem variability and early human habitats in eastern Africa

    PubMed Central

    Magill, Clayton R.; Ashley, Gail M.; Freeman, Katherine H.

    2013-01-01

    The role of savannas during the course of early human evolution has been debated for nearly a century, in part because of difficulties in characterizing local ecosystems from fossil and sediment records. Here, we present high-resolution lipid biomarker and isotopic signatures for organic matter preserved in lake sediments at Olduvai Gorge during a key juncture in human evolution about 2.0 Ma—the emergence and dispersal of Homo erectus (sensu lato). Using published data for modern plants and soils, we construct a framework for ecological interpretations of stable carbon-isotope compositions (expressed as δ13C values) of lipid biomarkers from ancient plants. Within this framework, δ13C values for sedimentary leaf lipids and total organic carbon from Olduvai Gorge indicate recurrent ecosystem variations, where open C4 grasslands abruptly transitioned to closed C3 forests within several hundreds to thousands of years. Carbon-isotopic signatures correlate most strongly with Earth’s orbital geometry (precession), and tropical sea-surface temperatures are significant secondary predictors in partial regression analyses. The scale and pace of repeated ecosystem variations at Olduvai Gorge contrast with long-held views of directional or stepwise aridification and grassland expansion in eastern Africa during the early Pleistocene and provide a local perspective on environmental hypotheses of human evolution. PMID:23267092

  4. Outpost in Jovian system - a stepwise long-term undertaking

    NASA Astrophysics Data System (ADS)

    Yasaka, Tetsuo

    2003-11-01

    Space has been attracting human attention since the dawn of our history, and clues thus given have triggered scientific and cultural evolutions. Now the space is in our hands. Near earth space has been developed, providing benefits to daily life. Moon and Mars will become the stage of human activity in a few decades. What will be the next logical step? The next step should be an undertaking that promises substantial influence to human history, both in knowledge and productive activities. Looking into the future directions of technology development combined with their outcome, Kyushu University selected a stepwise long-term undertaking toward establishment of an outpost in the Jovian system. Jupiter is our closest gas planet, which is a replica of the Sun. Its true understanding is essential to our knowledge of the universe. Its satellites abounds versatility providing not only the crucial knowledge of science but energy and materials vital to space activities. Jovian outpost consists of the central station on or around Callisto, controlling several laboratories on other Galilean satellites and dispatching probes to the main planet including Jovian-Crafts to cruise within its atmosphere and Deep Probes to explore the depth of the hydrogen ocean. Utilization of materials especially water on Europa will enable energy management of the stations and probes, and will further provide sound base toward exploration of the outskirts of the solar system and beyond. This understanding needs a long term endeavor that should be handed over many generations. This is a technology development program but education is an essential part of the process. The task is based on a series of short (5 year) targets. Each target provides stepwise solution to the objective, yet provides substantial outputs to the society and industries in a timely manner. The paper describes the overall program and details of the first 5 year targets.

  5. Outpost in Jovian system—a stepwise long-term undertaking

    NASA Astrophysics Data System (ADS)

    Yasaka, Tetsuo

    2006-10-01

    Space has been attracting human attention since the dawn of our history, and clues thus given have triggered scientific and cultural evolutions. Now the space is in our hands. Near earth space has been developed, providing benefits to daily life. Moon and Mars will become the stage of human activity in a few decades. What will be the next logical step? The next step should be an undertaking that promises substantial influence to human history, both in knowledge and productive activities. Looking into the future directions of technology development combined with their outcome, Kyushu University selected a stepwise long-term undertaking toward establishment of an outpost in the Jovian system. Jupiter is our closest gas planet, which is a replica of the Sun. Its true understanding is essential to our knowledge of the universe. Its satellites abounds versatility providing not only the crucial knowledge of science but energy and materials vital to space activities. Jovian outpost consists of the central station on or around Callisto, controlling several laboratories on other Galilean satellites and dispatching probes to the main planet including Jovian-Crafts to cruise within its atmosphere and Deep Probes to explore the depth of the hydrogen ocean. Utilization of materials especially water on Europa will enable energy management of the stations and probes, and will further provide sound base toward exploration of the outskirts of the solar system and beyond. This understanding needs a long-term endeavor that should be handed over many generations. This is a technology development program but education is an essential part of the process. The task is based on a series of short (5 year) targets. Each target provides stepwise solution to the objective, yet provides substantial outputs to the society and industries in a timely manner. The paper describes the overall program and details of the first 5 year targets.

  6. Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell.

    PubMed

    Holthaus, Karin Brigit; Strasser, Bettina; Sipos, Wolfgang; Schmidt, Heiko A; Mlitz, Veronika; Sukseree, Supawadee; Weissenbacher, Anton; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2016-03-01

    The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Evolution in fluctuating environments: decomposing selection into additive components of the Robertson-Price equation.

    PubMed

    Engen, Steinar; Saether, Bernt-Erik

    2014-03-01

    We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  8. Implications of monotreme and marsupial chromosome evolution on sex determination and differentiation.

    PubMed

    Deakin, Janine E

    2017-04-01

    Studies of chromosomes from monotremes and marsupials endemic to Australasia have provided important insight into the evolution of their genomes as well as uncovering fundamental differences in their sex determination/differentiation pathways. Great advances have been made this century into solving the mystery of the complicated sex chromosome system in monotremes. Monotremes possess multiple different X and Y chromosomes and a candidate sex determining gene has been identified. Even greater advancements have been made for marsupials, with reconstruction of the ancestral karyotype enabling the evolutionary history of marsupial chromosomes to be determined. Furthermore, the study of sex chromosomes in intersex marsupials has afforded insight into differences in the sexual differentiation pathway between marsupials and eutherians, together with experiments showing the insensitivity of the mammary glands, pouch and scrotum to exogenous hormones, led to the hypothesis that there is a gene (or genes) on the X chromosome responsible for the development of either pouch or scrotum. This review highlights the major advancements made towards understanding chromosome evolution and how this has impacted on our understanding of sex determination and differentiation in these interesting mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Progress toward a general species concept.

    PubMed

    Hausdorf, Bernhard

    2011-04-01

    New insights in the speciation process and the nature of "species" that accumulated in the past decade demand adjustments of the species concept. The standing of some of the most broadly accepted or most innovative species concepts in the light of the growing evidence that reproductive barriers are semipermeable to gene flow, that species can differentiate despite ongoing interbreeding, that a single species can originate polyphyletically by parallel evolution, and that uniparental organisms are organised in units that resemble species of biparental organisms is discussed. As a synthesis of ideas in existing concepts and the new insights, a generalization of the genic concept is proposed that defines species as groups of individuals that are reciprocally characterized by features that would have negative fitness effects in other groups and that cannot be regularly exchanged between groups upon contact. The benefits of this differential fitness species concept are that it classifies groups that keep differentiated and keep on differentiating despite interbreeding as species, that it is not restricted to specific mutations or mechanisms causing speciation, and that it can be applied to the whole spectrum of organisms from uni- to biparentals. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  10. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    PubMed Central

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809

  11. Constrained multi-objective optimization of storage ring lattices

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  12. Multi Sensor Fusion Using Fitness Adaptive Differential Evolution

    NASA Astrophysics Data System (ADS)

    Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam

    The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).

  13. Parameter optimization of differential evolution algorithm for automatic playlist generation problem

    NASA Astrophysics Data System (ADS)

    Alamag, Kaye Melina Natividad B.; Addawe, Joel M.

    2017-11-01

    With the digitalization of music, the number of collection of music increased largely and there is a need to create lists of music that filter the collection according to user preferences, thus giving rise to the Automatic Playlist Generation Problem (APGP). Previous attempts to solve this problem include the use of search and optimization algorithms. If a music database is very large, the algorithm to be used must be able to search the lists thoroughly taking into account the quality of the playlist given a set of user constraints. In this paper we perform an evolutionary meta-heuristic optimization algorithm, Differential Evolution (DE) using different combination of parameter values and select the best performing set when used to solve four standard test functions. Performance of the proposed algorithm is then compared with normal Genetic Algorithm (GA) and a hybrid GA with Tabu Search. Numerical simulations are carried out to show better results from Differential Evolution approach with the optimized parameter values.

  14. Enhanced differential evolution to combine optical mouse sensor with image structural patches for robust endoscopic navigation.

    PubMed

    Luo, Xiongbiao; Jayarathne, Uditha L; McLeod, A Jonathan; Mori, Kensaku

    2014-01-01

    Endoscopic navigation generally integrates different modalities of sensory information in order to continuously locate an endoscope relative to suspicious tissues in the body during interventions. Current electromagnetic tracking techniques for endoscopic navigation have limited accuracy due to tissue deformation and magnetic field distortion. To avoid these limitations and improve the endoscopic localization accuracy, this paper proposes a new endoscopic navigation framework that uses an optical mouse sensor to measure the endoscope movements along its viewing direction. We then enhance the differential evolution algorithm by modifying its mutation operation. Based on the enhanced differential evolution method, these movement measurements and image structural patches in endoscopic videos are fused to accurately determine the endoscope position. An evaluation on a dynamic phantom demonstrated that our method provides a more accurate navigation framework. Compared to state-of-the-art methods, it improved the navigation accuracy from 2.4 to 1.6 mm and reduced the processing time from 2.8 to 0.9 seconds.

  15. Structure and Evolution of the Lunar Interior

    NASA Technical Reports Server (NTRS)

    Andrews-Hanna, J. C.; Weber, R. C.; Ishihara, Y.; Kamata, S.; Keane, J.; Kiefer, W. S.; Matsuyama, I.; Siegler, M.; Warren, P.

    2017-01-01

    Early in its evolution, the Moon underwent a magma ocean phase leading to its differentiation into a feldspathic crust, cumulate mantle, and iron core. However, far from the simplest view of a uniform plagioclase flotation crust, the present-day crust of the Moon varies greatly in thickness, composition, and physical properties. Recent significant improvements in both data and analysis techniques have yielded fundamental advances in our understanding of the structure and evolution of the lunar interior. The structure of the crust is revealed by gravity, topography, magnetics, seismic, radar, electromagnetic, and VNIR remote sensing data. The mantle structure of the Moon is revealed primarily by seismic and laser ranging data. Together, this data paints a picture of a Moon that is heterogeneous in all directions and across all scales, whose structure is a result of its unique formation, differentiation, and subsequent evolution. This brief review highlights a small number of recent advances in our understanding of lunar structure.

  16. Step-wise refolding of recombinant proteins.

    PubMed

    Tsumoto, Kouhei; Arakawa, Tsutomu; Chen, Linda

    2010-04-01

    Protein refolding is still on trial-and-error basis. Here we describe step-wise dialysis refolding, in which denaturant concentration is altered in step-wise fashion. This technology controls the folding pathway by adjusting the concentrations of the denaturant and other solvent additives to induce sequential folding or disulfide formation.

  17. Testing inferences in developmental evolution: the forensic evidence principle.

    PubMed

    Larsson, Hans C E; Wagner, Günter P

    2012-09-01

    Developmental evolution (DE) examines the influence of developmental mechanisms on biological evolution. Here we consider the question: "what is the evidence that allows us to decide whether a certain developmental scenario for an evolutionary change is in fact "correct" or at least falsifiable?" We argue that the comparative method linked with what we call the "forensic evidence principle" (FEP) is sufficient to conduct rigorous tests of DE scenarios. The FEP states that different genetically mediated developmental causes of an evolutionary transformation will leave different signatures in the development of the derived character. Although similar inference rules have been used in practically every empirical science, we expand this approach here in two ways: (1) we justify the validity of this principle with reference to a well-known result from mathematical physics, known as the symmetry principle, and (2) propose a specific form of the FEP for DE: given two or more developmental explanations for a certain evolutionary event, say an evolutionary novelty, then the evidence discriminating between these hypotheses will be found in the most proximal internal drivers of the derived character. Hence, a detailed description of the ancestral and derived states, and their most proximal developmental drivers are necessary to discriminate between various evolutionary developmental hypotheses. We discuss how this stepwise order of testing is necessary, establishes a formal test, and how skipping this order of examination may violate a more accurate examination of DE. We illustrate the approach with an example from avian digit evolution. © 2012 Wiley Periodicals, Inc.

  18. Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir

    NASA Astrophysics Data System (ADS)

    Husson, Jon M.; Peters, Shanan E.

    2017-02-01

    Atmospheric oxygen concentration has increased over Earth history, from ∼0 before 2.5 billion years ago to its present-day concentration of 21%. The initial rise in pO2 approximately 2.3 billion years ago required oxygenic photosynthesis, but the evolution of this key metabolic pathway was not sufficient to propel atmospheric oxygen to modern levels, which were not sustained until approximately two billion years later. The protracted lag between the origin of oxygenic photosynthesis and abundant O2 in the surface environment has many implications for the evolution of animals, but the reasons for the delay remain unknown. Here we show that the history of sediment accumulation on continental crust covaries with the history of atmospheric oxygen concentration. A forward model based on the empirical record of net organic carbon burial and oxidative weathering of the crust predicts two significant rises in pO2 separated by three comparatively stable plateaus, a pattern that reproduces major biological transitions and proxy-based pO2 records. These results suggest that the two-phased oxygenation of Earth's surface environment, and the long delays between the origin of life, the evolution of metazoans, and their subsequent diversification during the Cambrian Explosion, was caused by step-wise shifts in the ability of the continents to accumulate and store sedimentary organic carbon. The geodynamic mechanisms that promote and inhibit sediment accumulation on continental crust have, therefore, exerted a first-order control on the evolution of Earth's life and environment.

  19. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics

    PubMed Central

    Sawada, Hitoshi; Satoh, Noriyuki

    2016-01-01

    Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs. PMID:27253604

  20. The Population Genomics of Repeated Evolution in the Blind Cavefish Astyanax mexicanus

    PubMed Central

    Bradic, Martina; Teotónio, Henrique; Borowsky, Richard L.

    2013-01-01

    Distinct populations of Astyanax mexicanus cavefish offer striking examples of repeatable convergence or parallelism in their independent evolutions from surface to cave phenotypes. However, the extent to which the repeatability of evolution occurred at the genetic level remains poorly understood. To address this, we first characterized the genetic diversity of 518 single-nucleotide polymorphisms (SNPs), obtained through RAD tag sequencing and distributed throughout the genome, in seven cave and three groups of surface populations. The cave populations represented two distinct lineages (old and new). Thirty-one SNPs were significantly differentiated between surface and old cave populations, two SNPs were differentiated between surface and new cave populations, and 44 SNPs were significantly differentiated in both old and new cave populations. In addition, we determined whether these SNPs map to the same locations of previously described quantitative trait loci (QTL) between surface and cave populations. A total of 25 differentiated SNPs co-map with several QTL, such as one containing a fibroblast growth factor gene (Fgf8) involved in eye development and lens size. Further, the identity of many SNPs that co-mapped with QTL was the same in independently derived cave populations. These conclusions were further confirmed by haplotype analyses of SNPs within QTL regions. Our findings indicate that the repeatability of evolution at the genetic level is substantial, suggesting that ancestral standing genetic variation significantly contributed to the population genetic variability used in adaptation to the cave environment. PMID:23927992

  1. Quasi-Newton methods for parameter estimation in functional differential equations

    NASA Technical Reports Server (NTRS)

    Brewer, Dennis W.

    1988-01-01

    A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.

  2. MicroRNAs Associated with Caste Determination and Differentiation in a Primitively Eusocial Insect

    PubMed Central

    Collins, David H.; Mohorianu, Irina; Beckers, Matthew; Moulton, Vincent; Dalmay, Tamas; Bourke, Andrew F. G.

    2017-01-01

    In eusocial Hymenoptera (ants, bees and wasps), queen and worker adult castes typically arise via environmental influences. A fundamental challenge is to understand how a single genome can thereby produce alternative phenotypes. A powerful approach is to compare the molecular basis of caste determination and differentiation along the evolutionary trajectory between primitively and advanced eusocial species, which have, respectively, relatively undifferentiated and strongly differentiated adult castes. In the advanced eusocial honeybee, Apis mellifera, studies suggest that microRNAs (miRNAs) play an important role in the molecular basis of caste determination and differentiation. To investigate how miRNAs affect caste in eusocial evolution, we used deep sequencing and Northern blots to isolate caste-associated miRNAs in the primitively eusocial bumblebee Bombus terrestris. We found that the miRNAs Bte-miR-6001-5p and -3p are more highly expressed in queen- than in worker-destined late-instar larvae. These are the first caste-associated miRNAs from outside advanced eusocial Hymenoptera, so providing evidence for caste-associated miRNAs occurring relatively early in eusocial evolution. Moreover, we found little evidence that miRNAs previously shown to be associated with caste in A. mellifera were differentially expressed across caste pathways in B. terrestris, suggesting that, in eusocial evolution, the caste-associated role of individual miRNAs is not conserved. PMID:28361900

  3. Thermal evolution of the earth

    NASA Technical Reports Server (NTRS)

    Spohn, T.

    1984-01-01

    The earth's heat budget and models of the earth's thermal evolution are discussed. Sources of the planetary heat are considered and modes of heat transport are addressed, including conduction, convection, and chemical convection. Thermal and convectional models of the earth are covered, and models of thermal evolution are discussed in detail, including changes in the core, the influence of layered mantle convection on the thermal evolution, and the effect of chemical differentiation on the continents.

  4. Natural Selection and Neutral Evolution Jointly Drive Population Divergence between Alpine and Lowland Ecotypes of the Allopolyploid Plant Anemone multifida (Ranunculaceae)

    PubMed Central

    McEwen, Jamie R.; Vamosi, Jana C.; Rogers, Sean M.

    2013-01-01

    Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074–0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST  = 0.041–0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence. PMID:23874801

  5. Supported Silver Nanoparticle and Near-Interface Solution Dynamics in a Deep Eutectic Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, Joshua A.; Ustarroz, Jon; Muselle, Thibault

    2016-01-28

    Type III deep eutectic solvents (DES) have attracted significant interest as both environmentally friendly and functional solvents that are, in some ways, advantageous to traditional aqueous systems. While these solvents continue to produce remarkable thin films and nanoparticle assemblies, their interactions with metallic surfaces are complex and difficult to manipulate. In this study, the near-surface region (2–600 nm) of a carbon surface is investigated immediately following silver nanoparticle nucleation and growth. This is accomplished, in situ, using a novel grazing transmission small-angle X-ray scattering approach with simultaneous voltammetry and electrochemical impedance spectroscopy. With this physical and electrochemical approach, the timemore » evolution of three distinct surface interaction phenomena is observed: aggregation and coalescence of Ag nanoparticles, multilayer perturbations induced by nonaggregated Ag nanoparticles, and a stepwise transport of dissolved Ag species from the carbon surface. The multilayer perturbations contain charge-separated regions of positively charged choline-ethylene and negatively charged Ag and Cl species. Both aggregation-coalescence and the stepwise decrease in Ag precursor near the surface are observed to be very slow (~2 h) processes, as both ion and particle transport are significantly impeded in a DES as compared to aqueous electrolytes. Finally, altogether, this study shows how the unique chemistry of the DES changes near the surface and in the presence of nanoparticles that adsorb the constituent species.« less

  6. Stepwise formation of H3O(+)(H2O)n in an ion drift tube: Empirical effective temperature of association/dissociation reaction equilibrium in an electric field.

    PubMed

    Nakai, Yoichi; Hidaka, Hiroshi; Watanabe, Naoki; Kojima, Takao M

    2016-06-14

    We measured equilibrium constants for H3O(+)(H2O)n-1 + H2O↔H3O(+)(H2O)n (n = 4-9) reactions taking place in an ion drift tube with various applied electric fields at gas temperatures of 238-330 K. The zero-field reaction equilibrium constants were determined by extrapolation of those obtained at non-zero electric fields. From the zero-field reaction equilibrium constants, the standard enthalpy and entropy changes, ΔHn,n-1 (0) and ΔSn,n-1 (0), of stepwise association for n = 4-8 were derived and were in reasonable agreement with those measured in previous studies. We also examined the electric field dependence of the reaction equilibrium constants at non-zero electric fields for n = 4-8. An effective temperature for the reaction equilibrium constants at non-zero electric field was empirically obtained using a parameter describing the electric field dependence of the reaction equilibrium constants. Furthermore, the size dependence of the parameter was thought to reflect the evolution of the hydrogen-bond structure of H3O(+)(H2O)n with the cluster size. The reflection of structural information in the electric field dependence of the reaction equilibria is particularly noteworthy.

  7. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago.

    PubMed

    Bindeman, I N; Zakharov, D O; Palandri, J; Greber, N D; Dauphas, N; Retallack, G J; Hofmann, A; Lackey, J S; Bekker, A

    2018-05-01

    The history of the growth of continental crust is uncertain, and several different models that involve a gradual, decelerating, or stepwise process have been proposed 1-4 . Even more uncertain is the timing and the secular trend of the emergence of most landmasses above the sea (subaerial landmasses), with estimates ranging from about one billion to three billion years ago 5-7 . The area of emerged crust influences global climate feedbacks and the supply of nutrients to the oceans 8 , and therefore connects Earth's crustal evolution to surface environmental conditions 9-11 . Here we use the triple-oxygen-isotope composition of shales from all continents, spanning 3.7 billion years, to provide constraints on the emergence of continents over time. Our measurements show a stepwise total decrease of 0.08 per mille in the average triple-oxygen-isotope value of shales across the Archaean-Proterozoic boundary. We suggest that our data are best explained by a shift in the nature of water-rock interactions, from near-coastal in the Archaean era to predominantly continental in the Proterozoic, accompanied by a decrease in average surface temperatures. We propose that this shift may have coincided with the onset of a modern hydrological cycle owing to the rapid emergence of continental crust with near-modern average elevation and aerial extent roughly 2.5 billion years ago.

  8. Telecommunications issues of intelligent database management for ground processing systems in the EOS era

    NASA Technical Reports Server (NTRS)

    Touch, Joseph D.

    1994-01-01

    Future NASA earth science missions, including the Earth Observing System (EOS), will be generating vast amounts of data that must be processed and stored at various locations around the world. Here we present a stepwise-refinement of the intelligent database management (IDM) of the distributed active archive center (DAAC - one of seven regionally-located EOSDIS archive sites) architecture, to showcase the telecommunications issues involved. We develop this architecture into a general overall design. We show that the current evolution of protocols is sufficient to support IDM at Gbps rates over large distances. We also show that network design can accommodate a flexible data ingestion storage pipeline and a user extraction and visualization engine, without interference between the two.

  9. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling.

    PubMed

    Grzybek, Maciej; Golonko, Aleksandra; Walczak, Marta; Lisowski, Pawel

    2017-03-01

    The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells.

    PubMed

    Jafarian, Arefeh; Taghikhani, Mohammad; Abroun, Saeid; Pourpak, Zahra; Allahverdi, Amir; Soleimani, Masoud

    2014-07-01

    Allogenic islet transplantation is a most efficient approach for treatment of diabetes mellitus. However, the scarcity of islets and long term need for an immunosuppressant limits its application. Recently, cell replacement therapies that generate of unlimited sources of β cells have been developed to overcome these limitations. In this study we have described a stage specific differentiation protocol for the generation of insulin producing islet-like clusters from human bone marrow mesenchymal stem cells (hBM-MSCs). This specific stepwise protocol induced differentiation of hMSCs into definitive endoderm, pancreatic endoderm and pancreatic endocrine cells that expressed of sox17, foxa2, pdx1, ngn3, nkx2.2, insulin, glucagon, somatostatin, pancreatic polypeptide, and glut2 transcripts respectively. In addition, immunocytochemical analysis confirmed protein expression of the above mentioned genes. Western blot analysis discriminated insulin from proinsulin in the final differentiated cells. In derived insulin producing cells (IPCs), secreted insulin and C-peptide was in a glucose dependent manner. We have developed a protocol that generates effective high-yield human IPCs from hBM-MSCs in vitro. These finding suggest that functional IPCs generated by this procedure can be used as a cell-based approach for insulin dependent diabetes mellitus.

  11. Mineral evolution and Earth history

    USGS Publications Warehouse

    Bradley, Dwight C.

    2015-01-01

    The field of mineral evolution—a merger of mineralogy and Earth history—coalesced in 2008 with the first of several global syntheses by Robert Hazen and coworkers in the American Mineralogist. They showed that the cumulative abundance of mineral species has a stepwise trend with first appearances tied to various transitions in Earth history such as the end of planetary accretion at ca. 4.55 Ga and the onset of bio-mediated mineralogy at ca. >2.5 Ga. A global age distribution is best established for zircon. Observed abundance of zircon fluctuates through more than an order of magnitude during successive supercontinent cycles. The pulse of the Earth is also recorded, albeit imperfectly, by the 87Sr/86Sr composition of marine biogenic calcite; the Sr-isotopic ratio of this mineral reflects the balance of inputs of primitive strontium at mid-ocean ridges and evolved strontium that drains off the continents. A global mineral evolution database, currently in the works, will greatly facilitate the compilation and analysis of extant data and the expansion of research in mineralogy outside its traditional bounds and into more interdisciplinary realms.

  12. Linear discriminant analysis of dermoscopic parameters for the differentiation of early melanomas from Clark naevi.

    PubMed

    Oka, Hiroshi; Tanaka, Masaru; Kobayashi, Seiichiro; Argenziano, Giuseppe; Soyer, H Peter; Nishikawa, Takeji

    2004-04-01

    As a first step to develop a screening system for pigmented skin lesions, we performed digital discriminant analyses between early melanomas and Clark naevi. A total of 59 cases of melanoma, including 23 melanoma in situ and 36 thin invasive melanomas (Breslow thickness < or =0.75 mm), and 188 clinically equivocal, histopathologically diagnosed Clark naevi were used in our study. After calculating 62 mathematical variables related to the colour, texture, asymmetry and circularity based on the dermoscopic findings of the pigmented skin lesions, we performed multivariate stepwise discriminant analysis using these variables to differentiate melanomas from naevi. The sensitivities and specificities of our model were 94.4 and 98.4%, respectively, for discriminating between melanomas (Breslow thickness < or =0.75 mm) and Clark naevi, and 73.9 and 85.6%, respectively, for discriminating between melanoma in situ and Clark naevi. Our algorithm accurately discriminated invasive melanomas from Clark naevi, but not melanomas in situ from Clark naevi.

  13. Microfluidic differential immunocapture biochip for specific leukocyte counting

    PubMed Central

    Hassan, Umer; Watkins, Nicholas N; Reddy, Bobby; Damhorst, Gregory; Bashir, Rashid

    2016-01-01

    Enumerating specific cell types from whole blood can be very useful for research and diagnostic purposes—e.g., for counting of cD4 and cD8 t cells in HIV/aIDs diagnostics. We have developed a biosensor based on a differential immunocapture technology to enumerate specific cells in 30 min using 10 µl of blood. this paper provides a comprehensive stepwise protocol to replicate our biosensor for cD4 and cD8 cell counts. the biochip can also be adapted to enumerate other specific cell types such as somatic cells or cells from tissue or liquid biopsies. capture of other specific cells requires immobilization of their corresponding antibodies within the capture chamber. therefore, this protocol is useful for research into areas surrounding immunocapture-based biosensor development. the biosensor production requires 24 h, a one-time cell capture optimization takes 6–9 h, and the final cell counting experiment in a laboratory environment requires 30 min to complete. PMID:26963632

  14. Linkage and Anomeric Differentiation in Trisaccharides by Sequential Fragmentation and Variable-Wavelength Infrared Photodissociation

    NASA Astrophysics Data System (ADS)

    Tan, Yanglan; Polfer, Nicolas C.

    2015-02-01

    Carbohydrates and their derivatives play important roles in biological systems, but their isomeric heterogeneity also presents a considerable challenge for analytical techniques. Here, a stepwise approach using infrared multiple-photon dissociation (IRMPD) via a tunable CO2 laser (9.2-10.7 μm) was employed to characterize isomeric variants of glucose-based trisaccharides. After the deprotonated trisaccharides were trapped and fragmented to disaccharide C2 fragments in a Fourier transform ion cyclotron resonance (FTICR) cell, a further variable-wavelength infrared irradiation of the C2 ion produced wavelength-dependent dissociation patterns that are represented as heat maps. The photodissociation patterns of these C2 fragments are shown to be strikingly similar to the photodissociation patterns of disaccharides with identical glycosidic bonds. Conversely, the photodissociation patterns of different glycosidic linkages exhibit considerable differences. On the basis of these results, the linkage position and anomericity of glycosidic bonds of disaccharide units in trisaccharides can be systematically differentiated and identified, providing a promising approach to characterize the structures of isomeric oligosaccharides.

  15. Clonal evolution of acute myeloid leukemia highlighted by latest genome sequencing studies.

    PubMed

    Zhang, Xuehong; Lv, Dekang; Zhang, Yu; Liu, Quentin; Li, Zhiguang

    2016-09-06

    Decades of years might be required for an initiated cell to become a fully-pledged, metastasized tumor. DNA mutations are accumulated during this process including background mutations that emerge scholastically, as well as driver mutations that selectively occur in a handful of cancer genes and confer the cell a growth advantage over its neighbors. A clone of tumor cells could be superseded by another clone that acquires new mutations and grows more aggressively. Tumor evolutional patterns have been studied for years using conventional approaches that focus on the investigation of a single or a couple of genes. Latest deep sequencing technology enables a global view of tumor evolution by deciphering almost all genome aberrations in a tumor. Tumor clones and the fate of each clone during tumor evolution can be depicted with the help of the concept of variant allele frequency. Here, we summarize the new insights of cancer evolutional progression in acute myeloid leukemia. Cancer evolution is currently thought to start from a clone that has accumulated the requisite somatically-acquired genetic aberrations through a series of increasingly disordered clinical and pathological phases, eventually leading to malignant transformation [1-3]. The observations in invasive colorectal cancer that usually emerges from an antecedent benign adenomatous polyp and in cervical cancer that proceeds through intraepithelial neoplasia support the idea of stepwise or linear cancerous progression [3-5]. Genetically, such progression is achieved by successive waves of clonal expansion during which cells acquire novel genomic alterations including single nucleotide variants (SNVs), small insertions and deletions (indels), and/or copy number variations (CNVs) [6]. The latest improvement in sequencing technology has allowed the deciphering of the whole exome or genome in different types of tumor and normal tissue pairs, providing detailed catalogue about genome aberrations during tumor initiation and progression, which have been reviewed in several papers [7-10]. Here, we focus on demonstrating the cancer clonal evolution pattern revealed by recent deep sequencing studies of samples from acute myeloid leukemia (AML) patients.

  16. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.

    PubMed

    Allen, Vivian; Bates, Karl T; Li, Zhiheng; Hutchinson, John R

    2013-05-02

    Locomotion in living birds (Neornithes) has two remarkable features: feather-assisted flight, and the use of unusually crouched hindlimbs for bipedal support and movement. When and how these defining functional traits evolved remains controversial. However, the advent of computer modelling approaches and the discoveries of exceptionally preserved key specimens now make it possible to use quantitative data on whole-body morphology to address the biomechanics underlying this issue. Here we use digital body reconstructions to quantify evolutionary trends in locomotor biomechanics (whole-body proportions and centre-of-mass position) across the clade Archosauria. We use three-dimensional digital reconstruction to estimate body shape from skeletal dimensions for 17 archosaurs along the ancestral bird line, including the exceptionally preserved, feathered taxa Microraptor, Archaeopteryx, Pengornis and Yixianornis, which represent key stages in the evolution of the avian body plan. Rather than a discrete transition from more-upright postures in the basal-most birds (Avialae) and their immediate outgroup deinonychosauria, our results support hypotheses of a gradual, stepwise acquisition of more-crouched limb postures across much of theropod evolution, although we find evidence of an accelerated change within the clade Maniraptora (birds and their closest relatives, such as deinonychosaurs). In addition, whereas reduction of the tail is widely accepted to be the primary morphological factor correlated with centre-of-mass position and, hence, evolution of hindlimb posture, we instead find that enlargement of the pectoral limb and several associated trends have a much stronger influence. Intriguingly, our support for the onset of accelerated morpho-functional trends within Maniraptora is closely correlated with the evolution of flight. Because we find that the evolution of enlarged forelimbs is strongly linked, via whole-body centre of mass, to hindlimb function during terrestrial locomotion, we suggest that the evolution of avian flight is linked to anatomical novelties in the pelvic limb as well as the pectoral.

  17. Conspecific Crop-Weed Introgression Influences Evolution of Weedy Rice (Oryza sativa f. spontanea) across a Geographical Range

    PubMed Central

    Xia, Han-Bing; Wang, Wei; Xia, Hui; Zhao, Wei; Lu, Bao-Rong

    2011-01-01

    Background Introgression plays an important role in evolution of plant species via its influences on genetic diversity and differentiation. Outcrossing determines the level of introgression but little is known about the relationships of outcrossing rates, genetic diversity, and differentiation particularly in a weedy taxon that coexists with its conspecific crop. Methodology/Principal Findings Eleven weedy rice (Oryza sativa f. spontanea) populations from China were analyzed using microsatellite (SSR) fingerprints to study outcrossing rate and its relationship with genetic variability and differentiation. To estimate outcrossing, six highly polymorphic SSR loci were used to analyze >5500 progeny from 216 weedy rice families, applying a mixed mating model; to estimate genetic diversity and differentiation, 22 SSR loci were analyzed based on 301 weedy individuals. Additionally, four weed-crop shared SSR loci were used to estimate the influence of introgression from rice cultivars on weedy rice differentiation. Outcrossing rates varied significantly (0.4∼11.7%) among weedy rice populations showing relatively high overall Nei's genetic diversity (0.635). The observed heterozygosity was significantly correlated with outcrossing rates among populations (r2 = 0.783; P<0.001) although no obvious correlation between outcrossing rates and genetic diversity parameters was observed. Allelic introgression from rice cultivars to their coexisting weedy rice was detected. Weedy rice populations demonstrated considerable genetic differentiation that was correlated with their spatial distribution (r2 = 0.734; P<0.001), and possibly also influenced by the introgression from rice cultivars. Conclusions/Significance Outcrossing rates can significantly affect heterozygosity of populations, which may shape the evolutionary potential of weedy rice. Introgression from the conspecific crop rice can influence the genetic differentiation and possibly evolution of its coexisting weedy rice populations. PMID:21249201

  18. Magma oceanography. I - Thermal evolution. [of lunar surface

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Longhi, J.

    1977-01-01

    Fractional crystallization and flotation of cumulate plagioclase in a cooling 'magma ocean' provides the simplest explanation for early emplacement of a thick feldspar-rich lunar crust. The complementary mafic cumulates resulting from the differentiation of such a magma ocean have been identified as the ultimate source of mare basalt liquids on the basis or rare-earth abundance patterns and experimental petrology studies. A study is conducted concerning the thermal evolution of the early differentiation processes. A range of models of increasing sophistication are considered. The models developed contain the essence of the energetics and the time scale for magma ocean differentiation. Attention is given to constraints on a magma ocean, modeling procedures, single-component magma oceans, fractionating magma oceans, and evolving magma oceans.

  19. Gene duplication and the evolution of phenotypic diversity in insect societies.

    PubMed

    Chau, Linh M; Goodisman, Michael A D

    2017-12-01

    Gene duplication is an important evolutionary process thought to facilitate the evolution of phenotypic diversity. We investigated if gene duplication was associated with the evolution of phenotypic differences in a highly social insect, the honeybee Apis mellifera. We hypothesized that the genetic redundancy provided by gene duplication could promote the evolution of social and sexual phenotypes associated with advanced societies. We found a positive correlation between sociality and rate of gene duplications across the Apoidea, indicating that gene duplication may be associated with sociality. We also discovered that genes showing biased expression between A. mellifera alternative phenotypes tended to be found more frequently than expected among duplicated genes than singletons. Moreover, duplicated genes had higher levels of caste-, sex-, behavior-, and tissue-biased expression compared to singletons, as expected if gene duplication facilitated phenotypic differentiation. We also found that duplicated genes were maintained in the A. mellifera genome through the processes of conservation, neofunctionalization, and specialization, but not subfunctionalization. Overall, we conclude that gene duplication may have facilitated the evolution of social and sexual phenotypes, as well as tissue differentiation. Thus this study further supports the idea that gene duplication allows species to evolve an increased range of phenotypic diversity. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  20. Diels–Alder Reactions of Allene with Benzene and Butadiene: Concerted, Stepwise, and Ambimodal Transition States

    PubMed Central

    2015-01-01

    Multiconfigurational complete active space methods (CASSCF and CASPT2) have been used to investigate the (4 + 2) cycloadditions of allene with butadiene and with benzene. Both concerted and stepwise radical pathways were examined to determine the mechanism of the Diels–Alder reactions with an allene dienophile. Reaction with butadiene occurs via a single ambimodal transition state that can lead to either the concerted or stepwise trajectories along the potential energy surface, while reaction with benzene involves two separate transition states and favors the concerted mechanism relative to the stepwise mechanism via a diradical intermediate. PMID:25216056

  1. Mathematics in Physics Education: Scanning Historical Evolution of the Differential to Find a More Appropriate Model for Teaching Differential Calculus in Physics

    ERIC Educational Resources Information Center

    Martinez-Torregrosa, Joaquin; Lopez-Gay, Rafael; Gras-Marti, Albert

    2006-01-01

    Despite its frequent use, there is little understanding of the concept of differential among upper high school and undergraduate students of physics. As a first step to identify the origin of this situation and to revert it, we have done a historic and epistemological study aimed at clarifying the role and the meaning of the differential in…

  2. Testing the link between population genetic differentiation and clade diversification in Costa Rican orchids.

    PubMed

    Kisel, Yael; Moreno-Letelier, Alejandra C; Bogarín, Diego; Powell, Martyn P; Chase, Mark W; Barraclough, Timothy G

    2012-10-01

    Species population genetics could be an important factor explaining variation in clade species richness. Here, we use newly generated amplified fragment length polymorphism (AFLP) data to test whether five pairs of sister clades of Costa Rican orchids that differ greatly in species richness also differ in average neutral genetic differentiation within species, expecting that if the strength of processes promoting differentiation within species is phylogenetically heritable, then clades with greater genetic differentiation should diversify more. Contrary to expectation, neutral genetic differentiation does not correlate directly with total diversification in the clades studied. Neutral genetic differentiation varies greatly among species and shows no heritability within clades. Half of the variation in neutral genetic differentiation among populations can be explained by ecological variables, and species-level traits explain the most variation. Unexpectedly, we find no isolation by distance in any species, but genetic differentiation is greater between populations occupying different niches. This pattern corresponds with those observed for microscopic eukaryotes and could reflect effective widespread dispersal of tiny and numerous orchid seeds. Although not providing a definitive answer to whether population genetics processes affect clade diversification, this work highlights the potential for addressing new macroevolutionary questions using a comparative population genetic approach. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  3. Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest.

    PubMed

    Steinfartz, Sebastian; Weitere, Markus; Tautz, Diethard

    2007-11-01

    Mechanisms and processes of ecologically driven adaptive speciation are best studied in natural situations where the splitting process is still occurring, i.e. before complete reproductive isolation is achieved. Here, we present a case of an early stage of adaptive differentiation under sympatric conditions in the fire salamander, Salamandra salamandra, that allows inferring the underlying processes for the split. Larvae of S. salamandra normally mature in small streams until metamorphosis, but in an old, continuous forest area near Bonn (the Kottenforst), we found salamander larvae not only in small streams but also in shallow ponds, which are ecologically very different from small streams. Common-environment experiments with larvae from both habitat types reveal specific adaptations to these different ecological conditions. Mitochondrial and microsatellite analyses show that the two ecologically differentiated groups also show signs of genetic differentiation. A parallel analysis of animals from a neighbouring much larger forest area (the Eifel), in which larvae mature only in streams, shows no signs of genetic differentiation, indicating that gene flow between ecologically similar types can occur over large distances. Hence, geographical factors cannot explain the differential larval habitat adaptations in the Kottenforst, in particular since adult life and mating of S. salamandra is strictly terrestrial and not associated with larval habitats. We propose therefore that the evolution of these adaptations was coupled with the evolution of cues for assortative mating which would be in line with models of sympatric speciation that suggest a co-evolution of habitat adaptations and associated mating signals.

  4. Genetic diversity and differentiation in a wide ranging anadromous fish, American shad (Alosa sapidissima), is correlated with latitude.

    PubMed

    Hasselman, Daniel J; Ricard, Daniel; Bentzen, Paul

    2013-03-01

    Studies that span entire species ranges can provide insight into the relative roles of historical contingency and contemporary factors that influence population structure and can reveal patterns of genetic variation that might otherwise go undetected. American shad is a wide ranging anadromous clupeid fish that exhibits variation in demographic histories and reproductive strategies (both semelparity and iteroparity) and provides a unique perspective on the evolutionary processes that govern the genetic architecture of anadromous fishes. Using 13 microsatellite loci, we examined the magnitude and spatial distribution of genetic variation among 33 populations across the species' range to (i) determine whether signals of historical demography persist among contemporary populations and (ii) assess the effect of different reproductive strategies on population structure. Patterns of genetic diversity and differentiation among populations varied widely and reflect the differential influences of historical demography, microevolutionary processes and anthropogenic factors across the species' range. Sequential reductions of diversity with latitude among formerly glaciated rivers are consistent with stepwise postglacial colonization and successive population founder events. Weak differentiation among U.S. iteroparous populations may be a consequence of human-mediated gene flow, while weak differentiation among semelparous populations probably reflects natural gene flow. Evidence for an effect of reproductive strategy on population structure suggests an important role for environmental variation and suggests that the factors that are responsible for shaping American shad life history patterns may also influence population genetic structure. © 2013 Blackwell Publishing Ltd.

  5. Perception of self and significant others by alcoholics and nonalcoholics.

    PubMed

    Quereshi, M Y; Soat, D M

    1976-01-01

    Ratings of self and 15 significant others on four personality factors by 47 alcoholic and 90 nonalcoholic males were analyzed by means of step-wise regression analysis and multivariate analysis of covariance. Alcoholics rated themselves less positively on extraversion and self-assertiveness (lower mean on extraversion and higher on self-assertiveness) and also judged intimate others (father, mother, and spouse) less positively on unhappiness, extraversion, and productive persistence (higher mean on unhappiness and lower means on extraversion and productive persistence). There were no significant differences between the two groups in judging persons as a whole or in the degree of differentiation that was exhibited in rating all 16 persons including self.

  6. Organoid culture systems for prostate epithelial tissue and prostate cancer tissue

    PubMed Central

    Drost, Jarno; Karthaus, Wouter R.; Gao, Dong; Driehuis, Else; Sawyers, Charles L.; Chen, Yu; Clevers, Hans

    2016-01-01

    Summary This protocol describes a recently developed strategy to generate 3D prostate organoid cultures from healthy mouse and human prostate (either bulk or FAC-sorted single luminal and basal cells), metastatic prostate cancer lesions and circulating tumour cells. Organoids derived from healthy material contain the differentiated luminal and basal cell types, whereas organoids derived from prostate cancer tissue mimic the histology of the tumour. The stepwise establishment of these cultures and the fully defined serum-free conditioned medium that is required to sustain organoid growth are outlined. Organoids established using this protocol can be used to study many different aspects of prostate biology, including homeostasis, tumorigenesis and drug discovery. PMID:26797458

  7. Sex-dependent selection differentially shapes genetic variation on and off the guppy Y chromosome.

    PubMed

    Postma, Erik; Spyrou, Nicolle; Rollins, Lee Ann; Brooks, Robert C

    2011-08-01

    Because selection is often sex-dependent, alleles can have positive effects on fitness in one sex and negative effects in the other, resulting in intralocus sexual conflict. Evolutionary theory predicts that intralocus sexual conflict can drive the evolution of sex limitation, sex-linkage, and sex chromosome differentiation. However, evidence that sex-dependent selection results in sex-linkage is limited. Here, we formally partition the contribution of Y-linked and non-Y-linked quantitative genetic variation in coloration, tail, and body size of male guppies (Poecilia reticulata)-traits previously implicated as sexually antagonistic. We show that these traits are strongly genetically correlated, both on and off the Y chromosome, but that these correlations differ in sign and magnitude between both parts of the genome. As predicted, variation in attractiveness was found to be associated with the Y-linked, rather than with the non-Y-linked component of genetic variation in male ornamentation. These findings show how the evolution of Y-linkage may be able to resolve sexual conflict. More generally, they provide unique insight into how sex-specific selection has the potential to differentially shape the genetic architecture of fitness traits across different parts of the genome. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  8. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae.

    PubMed

    Ishikawa, Masaaki; Ohnishi, Hiroe; Skerleva, Desislava; Sakamoto, Tatsunori; Yamamoto, Norio; Hotta, Akitsu; Ito, Juichi; Nakagawa, Takayuki

    2017-06-01

    The present study examined the efficacy of a neural induction method for human induced pluripotent stem (iPS) cells to eliminate undifferentiated cells and to determine the feasibility of transplanting neurally induced cells into guinea-pig cochleae for replacement of spiral ganglion neurons (SGNs). A stepwise method for differentiation of human iPS cells into neurons was used. First, a neural induction method was established on Matrigel-coated plates; characteristics of cell populations at each differentiation step were assessed. Second, neural stem cells were differentiated into neurons on a three-dimensional (3D) collagen matrix, using the same protocol of culture on Matrigel-coated plates; neuron subtypes in differentiated cells on a 3D collagen matrix were examined. Then, human iPS cell-derived neurons cultured on a 3D collagen matrix were transplanted into intact guinea-pig cochleae, followed by histological analysis. In vitro analyses revealed successful induction of neural stem cells from human iPS cells, with no retention of undifferentiated cells expressing OCT3/4. After the neural differentiation of neural stem cells, approximately 70% of cells expressed a neuronal marker, 90% of which were positive for vesicular glutamate transporter 1 (VGLUT1). The expression pattern of neuron subtypes in differentiated cells on a 3D collagen matrix was identical to that of the differentiated cells on Matrigel-coated plates. In addition, the survival of transplant-derived neurons was achieved when inflammatory responses were appropriately controlled. Our preparation method for human iPS cell-derived neurons efficiently eliminated undifferentiated cells and contributed to the settlement of transplant-derived neurons expressing VGLUT1 in guinea-pig cochleae. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Differential Activity-Driven Instabilities in Biphasic Active Matter

    NASA Astrophysics Data System (ADS)

    Weber, Christoph A.; Rycroft, Chris H.; Mahadevan, L.

    2018-06-01

    Active stresses can cause instabilities in contractile gels and living tissues. Here we provide a generic hydrodynamic theory that treats these systems as a mixture of two phases of varying activity and different mechanical properties. We find that differential activity between the phases causes a uniform mixture to undergo a demixing instability. We follow the nonlinear evolution of the instability and characterize a phase diagram of the resulting patterns. Our study complements other instability mechanisms in mixtures driven by differential adhesion, differential diffusion, differential growth, and differential motion.

  10. Poorly Differentiated Thyroid Carcinoma.

    PubMed

    Setia, Namrata; Barletta, Justine A

    2014-12-01

    Poorly differentiated thyroid carcinoma (PDTC) has been recognized for the past 30 years as an entity showing intermediate differentiation and clinical behavior between well-differentiated thyroid carcinomas (ie, papillary thyroid carcinoma and follicular thyroid carcinoma) and anaplastic thyroid carcinoma; however, there has been considerable controversy around the definition of PDTC. In this review, the evolution in the definition of PDTC, current diagnostic criteria, differential diagnoses, potentially helpful immunohistochemical studies, and molecular alterations are discussed with the aim of highlighting where the diagnosis of PDTC currently stands. Published by Elsevier Inc.

  11. Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell

    PubMed Central

    Holthaus, Karin Brigit; Strasser, Bettina; Sipos, Wolfgang; Schmidt, Heiko A.; Mlitz, Veronika; Sukseree, Supawadee; Weissenbacher, Anton; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2016-01-01

    The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation. PMID:26601937

  12. Volatile fraction composition and physicochemical parameters as tools for the differentiation of lemon blossom honey and orange blossom honey.

    PubMed

    Kadar, Melinda; Juan-Borrás, Marisol; Carot, Jose M; Domenech, Eva; Escriche, Isabel

    2011-12-01

    Volatile fraction profile and physicochemical parameters were studied with the aim of evaluating their effectiveness for the differentiation between lemon blossom honey (Citrus limon L.) and orange blossom honey (Citrus spp.). They would be useful complementary tools to the traditional analysis based on the percentage of pollen. A stepwise discriminant analysis constructed using 37 volatile compounds (extracted by purge and trap and analysed by gas chromatography-mass spectrometry), and physicochemical and colour parameters (diastase, conductivity, Pfund colour and CIE L a b) together provided a model that permitted the correct classification of 98.3% of the original and 96.6% of the cross-validated cases, indicating its efficiency and robustness. This model proved its effectiveness in the differentiation of both types of honey with another set of batches from the following year. This model, developed from the volatile compounds, physicochemical and colour parameters, has been useful for the differentiation of lemon and orange blossom honeys. Furthermore, it may be of particular interest for the attainment of a suitable classification of orange honey in which the pollen count is very low. These capabilities imply an evident marketing advantage for the beekeeping sector, since lemon blossom honey could be commercialized as unifloral honey and not as generic citrus honey and orange blossom honey could be correctly characterized. Copyright © 2011 Society of Chemical Industry.

  13. Relationship between shift work and peripheral total and differential leukocyte counts in Chinese steel workers.

    PubMed

    Lu, Li-Fen; Wang, Chao-Ping; Tsai, I-Ting; Hung, Wei-Chin; Yu, Teng-Hung; Wu, Cheng-Ching; Hsu, Chia-Chang; Lu, Yung-Chuan; Chung, Fu-Mei; Jean, Mei-Chu Yen

    2016-01-01

    Even though shift work has been suspected to be a risk factor for cardiovascular disease, little research has been done to determine the logical underlying inflammation mechanisms. This study investigated the association between shift work and circulating total and differential leukocyte counts among Chinese steel workers. The subjects were 1,654 line workers in a steel plant, who responded to a cross-sectional survey with a questionnaire on basic attributes, life style, and sleep. All workers in the plant received a periodic health checkup. Total and differential leukocytes counts were also examined in the checkup. Shift workers had higher rates of alcohol use, smoking, poor sleep, poor physical exercise, and obesity than daytime workers. In further analysis, we found that the peripheral total WBC, monocyte, neutrophil, and lymphocyte counts were also greater in shift workers than in daytime workers. When subjects were divided into quartiles according to total WBC, neutrophil, monocyte, and lymphocyte counts, increased leukocyte count was associated with shift work. Using stepwise linear regression analysis, smoking, obesity, and shift work were independently associated with total WBC, monocyte, neutrophil, and lymphocyte counts. This study indicates that peripheral total and differential leukocyte counts are significantly higher in shift workers, which suggests that shift work may be a risk factor of cardiovascular disease. Applicable intervention strategies are needed for prevention of cardiovascular disease for shift workers.

  14. Is there a step-wise migration in Nigeria? A case study of the migrational histories of migrants in Lagos.

    PubMed

    Afolayan, A A

    1985-09-01

    "The paper sets out to test whether or not the movement pattern of people in Nigeria is step-wise. It examines the spatial order in the country and the movement pattern of people. It then analyzes the survey data and tests for the validity of step-wise migration in the country. The findings show that step-wise migration cannot adequately describe all the patterns observed." The presence of large-scale circulatory migration between rural and urban areas is noted. Ways to decrease the pressure on Lagos by developing intermediate urban areas are considered. excerpt

  15. An interactive approach based on a discrete differential evolution algorithm for a class of integer bilevel programming problems

    NASA Astrophysics Data System (ADS)

    Li, Hong; Zhang, Li; Jiao, Yong-Chang

    2016-07-01

    This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.

  16. Potential for the evolution of heavy metal tolerance in Bryum argenteum, a moss. II. Generalized tolerances among diverse populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, A.J.; Albright, D.L.

    Tolerance of copper, zinc, lead, and nickel were measured in two individuals from each of seven populations of Bryum argenteum. The populations represented a range of habitats including industrial sites subject to atmospheric metal deposition, metal-contaminated mine tailings, serpentine barrens, and urban areas. Nevertheless, there was no evidence of adaptive differentiation in tolerance to any of the metals. Populations did differ significantly in general growth vigor across all experimental treatments. These observations contrast with results from studies of angiosperms, in which the evolution of heavy-metal tolerance almost always involves ecotypic differentiation among populations, but fit an emerging picture of B.more » argenteum as a plastic, broadly tolerant species with surprisingly little genetic differentiation among populations.« less

  17. The magma ocean concept and lunar evolution

    NASA Technical Reports Server (NTRS)

    Warren, P. H.

    1985-01-01

    The model of lunar evolution in which the anorthositic plagioclase-rich oldest crust of the moon is formed over a period of 300 Myr or less by crystallization as it floats on a global ocean of magma tens or hundreds of km thick is examined in a review of petrological and theoretical studies. Consideration is given to the classification of lunar rocks, the evidence for primordial deep global differentiation, constraints on the depth of the molten zone, the effects of pressure on mineral stability relationships, mainly-liquid vs mainly-magmifer ocean models, and the evidence for multiple ancient differentiation episodes. A synthesis of the model of primordial differentiation and its aftereffects is presented, and the generalization of the model to the earth and to Mars, Mercury, Venus, and the asteroids is discussed.

  18. Stochastic Evolution Equations Driven by Fractional Noises

    DTIC Science & Technology

    2016-11-28

    rate of convergence to zero or the error and the limit in distribution of the error fluctuations. We have studied time discrete numerical schemes...error fluctuations. We have studied time discrete numerical schemes based on Taylor expansions for rough differential equations and for stochastic...variations of the time discrete Taylor schemes for rough differential equations and for stochastic differential equations driven by fractional Brownian

  19. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R.

    1985-01-01

    The existence of Chandrasekhar equations for linear time-invariant systems defined on Hilbert spaces is investigated. An important consequence is that the solution to the evolutional Riccati equation is strongly differentiable in time, and that a strong solution of the Riccati differential equation can be defined. A discussion of the linear-quadratic optimal-control problem for hereditary differential systems is also included.

  20. Evolution of the human-specific microRNA miR-941

    PubMed Central

    Hu, Hai Yang; He, Liu; Fominykh, Kseniya; Yan, Zheng; Guo, Song; Zhang, Xiaoyu; Taylor, Martin S.; Tang, Lin; Li, Jie; Liu, Jianmei; Wang, Wen; Yu, Haijing; Khaitovich, Philipp

    2012-01-01

    MicroRNA-mediated gene regulation is important in many physiological processes. Here we explore the roles of a microRNA, miR-941, in human evolution. We find that miR-941 emerged de novo in the human lineage, between six and one million years ago, from an evolutionarily volatile tandem repeat sequence. Its copy-number remains polymorphic in humans and shows a trend for decreasing copy-number with migration out of Africa. Emergence of miR-941 was accompanied by accelerated loss of miR-941-binding sites, presumably to escape regulation. We further show that miR-941 is highly expressed in pluripotent cells, repressed upon differentiation and preferentially targets genes in hedgehog- and insulin-signalling pathways, thus suggesting roles in cellular differentiation. Human-specific effects of miR-941 regulation are detectable in the brain and affect genes involved in neurotransmitter signalling. Taken together, these results implicate miR-941 in human evolution, and provide an example of rapid regulatory evolution in the human linage. PMID:23093182

  1. Continuing the International Roadmapping Effort - An Introduction to the Evolution of the ISECG Global Exploration Roadmap

    NASA Astrophysics Data System (ADS)

    Schlutz, Juergen; Hufenbach, Bernhard; Laurini, Kathy; Spiero, Francois

    2016-07-01

    Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As ISECG agencies advance their individual planning, they also advance the mission themes and reference architecture of the GER to consolidate common goals, near-term mission scenarios and initial opportunities for collaboration. In this context, particular focus has been given to the Better understanding and further refinement of cislunar infrastructure and potential lunar transportation architecture Interaction with international science communities to identify and articulate the scientific opportunities of the near-term exploration mission themes Coordination and consolidation of interest in lunar polar volatiles prospecting and potential for in-situ resource utilisation Identification and articulation of the benefits from exploration and the technology transfer activities The paper discusses the ongoing roadmapping activity of the ISECG agencies. It provides an insight into the status of the above activities and an outlook towards the evolution of the GER that is currently foreseen in the 2017 timeframe.

  2. Microstructural evolution during thermal annealing of ice-Ih

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine

    2017-06-01

    We studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice pre-deformed in uniaxial compression at temperature of -7 °C to macroscopic strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes. Decrease in average intragranular misorientation at the sample scale and modification of the misorientation across subgrain boundaries provide evidence for recovery from the earliest stages of annealing. This initial evolution is similar for all studied samples irrespective of their initial strain or annealing temperature. After an incubation period ≥1.5 h, recovery is accompanied by recrystallization (nucleation and grain boundary migration). Grain growth proceeds at the expense of domains with high intragranular misorientations, consuming first the most misorientated parts of primary grains. Grain growth kinetics fits the parabolic growth law with grain growth exponents in the range of 2.4-4.0. Deformation-induced tilt boundaries and kink bands may slow down grain boundary migration. They are stable features during early stages of static recrystallization, only erased by normal growth, which starts after >24 h of annealing.

  3. Evolution of Rubisco activase gene in plants.

    PubMed

    Nagarajan, Ragupathi; Gill, Kulvinder S

    2018-01-01

    Rubisco activase of plants evolved in a stepwise manner without losing its function to adapt to the major evolutionary events including endosymbiosis and land colonization. Rubisco activase is an essential enzyme for photosynthesis, which removes inhibitory sugar phosphates from the active sites of Rubisco, a process necessary for Rubisco activation and carbon fixation. The gene probably evolved in cyanobacteria as different species differ for its presence. However, the gene is present in all other plant species. At least a single gene copy was maintained throughout plant evolution; but various genome and gene duplication events, which occurred during plant evolution, increased its copy number in some species. The exons and exon-intron junctions of present day higher plant's Rca, which is conserved in most species seem to have evolved in charophytes. A unique tandem duplication of Rca gene occurred in a common grass ancestor, and the two genes evolved differently for gene structure, sequence, and expression pattern. At the protein level, starting with a primitive form in cyanobacteria, RCA of chlorophytes evolved by integrating chloroplast transit peptide (cTP), and N-terminal domains to the ATPase, Rubisco recognition and C-terminal domains. The redox regulated C-terminal extension (CTE) and the associated alternate splicing mechanism, which splices the RCA-α and RCA-β isoforms were probably gained from another gene in charophytes, conserved in most species except the members of Solanaceae family.

  4. Modular evolution of phosphorylation-based signalling systems

    PubMed Central

    Jin, Jing; Pawson, Tony

    2012-01-01

    Phosphorylation sites are formed by protein kinases (‘writers’), frequently exert their effects following recognition by phospho-binding proteins (‘readers’) and are removed by protein phosphatases (‘erasers’). This writer–reader–eraser toolkit allows phosphorylation events to control a broad range of regulatory processes, and has been pivotal in the evolution of new functions required for the development of multi-cellular animals. The proteins that comprise this system of protein kinases, phospho-binding targets and phosphatases are typically modular in organization, in the sense that they are composed of multiple globular domains and smaller peptide motifs with binding or catalytic properties. The linkage of these binding and catalytic modules in new ways through genetic recombination, and the selection of particular domain combinations, has promoted the evolution of novel, biologically useful processes. Conversely, the joining of domains in aberrant combinations can subvert cell signalling and be causative in diseases such as cancer. Major inventions such as phosphotyrosine (pTyr)-mediated signalling that flourished in the first multi-cellular animals and their immediate predecessors resulted from stepwise evolutionary progression. This involved changes in the binding properties of interaction domains such as SH2 and their linkage to new domain types, and alterations in the catalytic specificities of kinases and phosphatases. This review will focus on the modular aspects of signalling networks and the mechanism by which they may have evolved. PMID:22889906

  5. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago.

    PubMed

    Keller, C Brenhin; Schoene, Blair

    2012-05-23

    The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias. Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5 Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary, these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting--leading to abundant tonalite-trondhjemite-granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.

  6. Wild tobacco genomes reveal the evolution of nicotine biosynthesis.

    PubMed

    Xu, Shuqing; Brockmöller, Thomas; Navarro-Quezada, Aura; Kuhl, Heiner; Gase, Klaus; Ling, Zhihao; Zhou, Wenwu; Kreitzer, Christoph; Stanke, Mario; Tang, Haibao; Lyons, Eric; Pandey, Priyanka; Pandey, Shree P; Timmermann, Bernd; Gaquerel, Emmanuel; Baldwin, Ian T

    2017-06-06

    Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.

  7. Tracing Primordial Protein Evolution through Structurally Guided Stepwise Segment Elongation*

    PubMed Central

    Watanabe, Hideki; Yamasaki, Kazuhiko; Honda, Shinya

    2014-01-01

    The understanding of how primordial proteins emerged has been a fundamental and longstanding issue in biology and biochemistry. For a better understanding of primordial protein evolution, we synthesized an artificial protein on the basis of an evolutionary hypothesis, segment-based elongation starting from an autonomously foldable short peptide. A 10-residue protein, chignolin, the smallest foldable polypeptide ever reported, was used as a structural support to facilitate higher structural organization and gain-of-function in the development of an artificial protein. Repetitive cycles of segment elongation and subsequent phage display selection successfully produced a 25-residue protein, termed AF.2A1, with nanomolar affinity against the Fc region of immunoglobulin G. AF.2A1 shows exquisite molecular recognition ability such that it can distinguish conformational differences of the same molecule. The structure determined by NMR measurements demonstrated that AF.2A1 forms a globular protein-like conformation with the chignolin-derived β-hairpin and a tryptophan-mediated hydrophobic core. Using sequence analysis and a mutation study, we discovered that the structural organization and gain-of-function emerged from the vicinity of the chignolin segment, revealing that the structural support served as the core in both structural and functional development. Here, we propose an evolutionary model for primordial proteins in which a foldable segment serves as the evolving core to facilitate structural and functional evolution. This study provides insights into primordial protein evolution and also presents a novel methodology for designing small sized proteins useful for industrial and pharmaceutical applications. PMID:24356963

  8. The direction of evolution: the rise of cooperative organization.

    PubMed

    Stewart, John E

    2014-09-01

    Two great trends are evident in the evolution of life on Earth: towards increasing diversification and towards increasing integration. Diversification has spread living processes across the planet, progressively increasing the range of environments and free energy sources exploited by life. Integration has proceeded through a stepwise process in which living entities at one level are integrated into cooperative groups that become larger-scale entities at the next level, and so on, producing cooperative organizations of increasing scale (for example, cooperative groups of simple cells gave rise to the more complex eukaryote cells, groups of these gave rise to multi-cellular organisms, and cooperative groups of these organisms produced animal societies). The trend towards increasing integration has continued during human evolution with the progressive increase in the scale of human groups and societies. The trends towards increasing diversification and integration are both driven by selection. An understanding of the trajectory and causal drivers of the trends suggests that they are likely to culminate in the emergence of a global entity. This entity would emerge from the integration of the living processes, matter, energy and technology of the planet into a global cooperative organization. Such an integration of the results of previous diversifications would enable the global entity to exploit the widest possible range of resources across the varied circumstances of the planet. This paper demonstrates that it's case for directionality meets the tests and criticisms that have proven fatal to previous claims for directionality in evolution. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Thermal evolution of a partially differentiated H chondrite parent body

    NASA Astrophysics Data System (ADS)

    Abrahams, J. N. H.; Bryson, J. F. J.; Weiss, B. P.; Nimmo, F.

    2016-12-01

    It has traditionally been assumed that planetesimals either melted entirely or remained completely undifferentiated as they accreted. The unmelted textures and cooling histories of chondrites have been used to argue that these meteorites originated from bodies that never differentiated. However, paleomagnetic measurements indicate that some chondrites (e.g., the H chondrite Portales Valley and several CV chondrites) were magnetized by a core dynamo magnetic field, implying that their parent bodies were partially differentiated. It has been unclear, however, whether planetesimal histories consistent with dynamo production can also be consistent with the diversity of chondrite cooling rates and ages. To address this, we modeled the thermal evolution of the H chondrite parent body, considering a variety of accretion histories and parent body radii. We considered partial differentiation using two-stage accretion involving the initial formation and differentiation of a small body, followed by the later addition of low thermal conductivity chondritic material that remains mostly unmelted. We were able to reproduce the measured thermal evolution of multiple H chondrites for a range of parent body parameters, including initial radii from 70-150 km, chondritic layer thicknesses from 50 km to over 100 km, and second stage accretion times of 2.5-3 Myr after solar system formation. Our predicted rates of core cooling and crystallization are consistent with dynamo generation by compositional convection beginning 60-200 Myr after solar system formation and lasting for at least tens of millions of years. This is consistent with magnetic studies of Portales Valley [Bryson et al., this meeting]. In summary, we find that thermal models of partial differentiation are consistent the radiometric ages, magnetization, and cooling rates of a diversity H chondrites.

  10. Time-resolved pulsed hydrogen/deuterium exchange mass spectrometry probes gaseous proteins structural kinetics.

    PubMed

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX.

  11. Progressive Recombination Suppression and Differentiation in Recently Evolved Neo-sex Chromosomes

    PubMed Central

    Natri, Heini M.; Shikano, Takahito; Merilä, Juha

    2013-01-01

    Recombination suppression leads to the structural and functional differentiation of sex chromosomes and is thus a crucial step in the process of sex chromosome evolution. Despite extensive theoretical work, the exact processes and mechanisms of recombination suppression and differentiation are not well understood. In threespine sticklebacks (Gasterosteus aculeatus), a different sex chromosome system has recently evolved by a fusion between the Y chromosome and an autosome in the Japan Sea lineage, which diverged from the ancestor of other lineages approximately 2 Ma. We investigated the evolutionary dynamics and differentiation processes of sex chromosomes based on comparative analyses of these divergent lineages using 63 microsatellite loci. Both chromosome-wide differentiation patterns and phylogenetic inferences with X and Y alleles indicated that the ancestral sex chromosomes were extensively differentiated before the divergence of these lineages. In contrast, genetic differentiation appeared to have proceeded only in a small region of the neo-sex chromosomes. The recombination maps constructed for the Japan Sea lineage indicated that recombination has been suppressed or reduced over a large region spanning the ancestral and neo-sex chromosomes. Chromosomal regions exhibiting genetic differentiation and suppressed or reduced recombination were detected continuously and sequentially in the neo-sex chromosomes, suggesting that differentiation has gradually spread from the fusion point following the extension of recombination suppression. Our study illustrates an ongoing process of sex chromosome differentiation, providing empirical support for the theoretical model postulating that recombination suppression and differentiation proceed in a gradual manner in the very early stage of sex chromosome evolution. PMID:23436913

  12. The impact of therapeutic reference pricing on innovation in cardiovascular medicine.

    PubMed

    Sheridan, Desmond; Attridge, Jim

    2006-12-01

    Therapeutic reference pricing (TRP) places medicines to treat the same medical condition into groups or 'clusters' with a single common reimbursed price. Underpinning this economic measure is an implicit assumption that the products included in the cluster have an equivalent effect on a typical patient with this disease. 'Truly innovative' products can be exempt from inclusion in the cluster. This increasingly common approach to cost containment allocates products into one of two categories - truly innovative or therapeutically equivalent. This study examines the implications of TRP against the step-wise evolution of drugs for cardiovascular conditions over the past 50 years. It illustrates the complex interactions between advances in understanding of cellular and molecular disease mechanisms, diagnostic techniques, treatment concepts, and the synthesis, testing and commercialisation of products. It confirms the highly unpredictable and incremental nature of the innovation process. Medical progress in terms of improvement in patient outcomes over the long-term depends on the cumulative effect of year after year of painstaking incremental advances. It shows that the parallel processes of advances in scientific knowledge and the industrial 'investment-innovative cycle' involve highly developed sets of complementary capabilities and resources. A framework is developed to assess the impact of TRP upon research and development investment decisions and the development of therapeutic classes. We conclude that a simple categorisation of products as either 'truly innovative' or 'therapeutically equivalent' is inconsistent with the incremental processes of innovation and the resulting differentiated product streams revealed by our analysis. Widespread introduction of TRP would probably have prematurely curtailed development of many incremental innovations that became the preferred 'product of choice' by physicians for some indications and patients in managing the incidence of cardiovascular disease.

  13. Differential Evolution algorithm applied to FSW model calibration

    NASA Astrophysics Data System (ADS)

    Idagawa, H. S.; Santos, T. F. A.; Ramirez, A. J.

    2014-03-01

    Friction Stir Welding (FSW) is a solid state welding process that can be modelled using a Computational Fluid Dynamics (CFD) approach. These models use adjustable parameters to control the heat transfer and the heat input to the weld. These parameters are used to calibrate the model and they are generally determined using the conventional trial and error approach. Since this method is not very efficient, we used the Differential Evolution (DE) algorithm to successfully determine these parameters. In order to improve the success rate and to reduce the computational cost of the method, this work studied different characteristics of the DE algorithm, such as the evolution strategy, the objective function, the mutation scaling factor and the crossover rate. The DE algorithm was tested using a friction stir weld performed on a UNS S32205 Duplex Stainless Steel.

  14. Differential evolution-simulated annealing for multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.

    2017-10-01

    Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.

  15. Improving meat quality of organic pork through post mortem handling of carcasses: an innovative approach.

    PubMed

    Therkildsen, Margrethe; Kristensen, Lars; Kyed, Sybille; Oksbjerg, Niels

    2012-06-01

    This study was conducted to examine the best combination of post mortem chilling, suspension and ageing in order to optimize tenderness of organic pork at slaughter, which may be tougher than conventionally produced pork, because of lower daily gain. Combinations of stepwise chilling with a holding period of 6h at 10°C or traditional blast tunnel chilling, suspension in the pelvic bone or Achilles Tendon and ageing 2 or 4 days post mortem were tested. Stepwise chilling and ageing improved tenderness of the loin, and the effects were additive, whereas pelvic suspension was less effective in texture improvements, and non-additive to stepwise chilling. Stepwise chilling improved tenderness to a similar degree as can be obtained within 2-4 days of extended ageing, however, the minimum temperature during the holding period seems to be crucial in order to obtain a positive effect of stepwise chilling, and it should be above 7.5°C. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Language and emotions: emotional Sapir-Whorf hypothesis.

    PubMed

    Perlovsky, Leonid

    2009-01-01

    An emotional version of Sapir-Whorf hypothesis suggests that differences in language emotionalities influence differences among cultures no less than conceptual differences. Conceptual contents of languages and cultures to significant extent are determined by words and their semantic differences; these could be borrowed among languages and exchanged among cultures. Emotional differences, as suggested in the paper, are related to grammar and mostly cannot be borrowed. The paper considers conceptual and emotional mechanisms of language along with their role in the mind and cultural evolution. Language evolution from primordial undifferentiated animal cries is discussed: while conceptual contents increase, emotional reduced. Neural mechanisms of these processes are suggested as well as their mathematical models: the knowledge instinct, the dual model connecting language and cognition, neural modeling fields. Mathematical results are related to cognitive science, linguistics, and psychology. Experimental evidence and theoretical arguments are discussed. Dynamics of the hierarchy-heterarchy of human minds and cultures is formulated using mean-field approach and approximate equations are obtained. The knowledge instinct operating in the mind heterarchy leads to mechanisms of differentiation and synthesis determining ontological development and cultural evolution. These mathematical models identify three types of cultures: "conceptual" pragmatic cultures in which emotionality of language is reduced and differentiation overtakes synthesis resulting in fast evolution at the price of uncertainty of values, self doubts, and internal crises; "traditional-emotional" cultures where differentiation lags behind synthesis, resulting in cultural stability at the price of stagnation; and "multi-cultural" societies combining fast cultural evolution and stability. Unsolved problems and future theoretical and experimental directions are discussed.

  17. Stepwise introduction of laparoscopic liver surgery: validation of guideline recommendations.

    PubMed

    van der Poel, Marcel J; Huisman, Floor; Busch, Olivier R; Abu Hilal, Mohammad; van Gulik, Thomas M; Tanis, Pieter J; Besselink, Marc G

    2017-10-01

    Uncontrolled introduction of laparoscopic liver surgery (LLS) could compromise postoperative outcomes. A stepwise introduction of LLS combined with structured training is advised. This study aimed to evaluate the impact of such a stepwise introduction. A retrospective, single-center case series assessing short term outcomes of all consecutive LLS in the period November 2006-January 2017. The technique was implemented in a stepwise fashion. To evaluate the impact of this stepwise approach combined with structured training, outcomes of LLS before and after a laparoscopic HPB fellowship were compared. A total of 135 laparoscopic resections were performed. Overall conversion rate was 4% (n = 5), clinically relevant complication rate 13% (n = 18) and mortality 0.7% (n = 1). A significant increase in patients with major LLS, multiple liver resections, previous abdominal surgery, malignancies and lesions located in posterior segments was observed after the fellowship as well as a decrease in the use of hand-assistance. Increasing complexity in the post fellowship period was reflected by an increase in operating times, but without comprising other surgical outcomes. A stepwise introduction of LLS combined with structured training reduced the clinical impact of the learning curve, thereby confirming guideline recommendations. Copyright © 2017 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  18. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R. K.

    1985-01-01

    Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.

  19. Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles.

    PubMed

    van Gestel, Jordi; Nowak, Martin A

    2016-02-01

    Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a 'sticky' cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles.

  20. Meteoritic and Asteroidal Constraints on the Identification and Collisional Evolution of Asteroid Families

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.; Kelley, Michael S.; Hardersen, Paul S.

    2002-01-01

    Studies of meteorites and observations of asteroids can provide important constraints on the formation and evolution of asteroid families. The iron meteorites alone require the disruption of 85 differentiated asteroids, and the potential formation of 85 families. Additional information is contained in the original extended abstract.

  1. Darwinism Defined: The Difference Between Fact and Theory.

    ERIC Educational Resources Information Center

    Gould, Stephen Jay

    1987-01-01

    Discusses various developments in both science and theology following the work of Charles Darwin on evolution. Differentiates between the facts regarding evolution and the theory of natural selection as a mechanism for evolutionary change. Warns that the differences between facts and theory have not been adequately emphasized by scientists. (TW)

  2. The multifaceted functions of C/EBPα in normal and malignant haematopoiesis.

    PubMed

    Ohlsson, E; Schuster, M B; Hasemann, M; Porse, B T

    2016-04-01

    The process of blood formation, haematopoiesis, depends upon a small number of haematopoietic stem cells (HSCs) that reside in the bone marrow. Differentiation of HSCs is characterised by decreased expression of genes associated with self-renewal accompanied by a stepwise activation of genes promoting differentiation. Lineage branching is further directed by groups of cooperating and counteracting genes forming complex networks of lineage-specific transcription factors. Imbalances in such networks can result in blockage of differentiation, lineage reprogramming and malignant transformation. CCAAT/enhancer-binding protein-α (C/EBPα) was originally identified 30 years ago as a transcription factor that binds both promoter and enhancer regions. Most of the early work focused on the role of C/EBPα in regulating transcriptional processes as well as on its functions in key differentiation processes during liver, adipogenic and haematopoietic development. Specifically, C/EBPα was shown to control differentiation by its ability to coordinate transcriptional output with cell cycle progression. Later, its role as an important tumour suppressor, mainly in acute myeloid leukaemia (AML), was recognised and has been the focus of intense studies by a number of investigators. More recent work has revisited the role of C/EBPα in normal haematopoiesis, especially its function in HSCs, and also started to provide more mechanistic insights into its role in normal and malignant haematopoiesis. In particular, the differential actions of C/EBPα isoforms, as well as its importance in chromatin remodelling and cellular reprogramming, are beginning to be elucidated. Finally, recent work has also shed light on the dichotomous function of C/EBPα in AML by demonstrating its ability to act as both a tumour suppressor and promoter. In the present review, we will summarise the current knowledge on the functions of C/EBPα during normal and malignant haematopoiesis with special emphasis on the recent work.

  3. Structure and Dynamics of the tRNA-like Structure Domain of Brome Mosaic Virus

    NASA Astrophysics Data System (ADS)

    Vieweger, Mario; Nesbitt, David

    2014-03-01

    Conformational switching is widely accepted as regulatory mechanism in gene expression in bacterial systems. More recently, similar regulation mechanisms are emerging for viral systems. One of the most abundant and best studied systems is the tRNA-like structure domain that is found in a number of plant viruses across eight genera. In this work, the folding dynamics of the tRNA-like structure domain of Brome Mosaic Virus are investigated using single-molecule Fluorescence Resonance Energy Transfer techniques. In particular, Burst fluorescence is applied to observe metal-ion induced folding in freely diffusing RNA constructs resembling the 3'-terminal 169nt of BMV RNA3. Histograms of EFRET probabilities reveal a complex equilibrium of three distinct populations. A step-wise kinetic model for TLS folding is developed in accord with the evolution of conformational populations and structural information in the literature. In this mechanism, formation of functional TLS domains from unfolded RNAs requires two consecutive steps; 1) hybridization of a long-range stem interaction followed by 2) formation of a 3' pseudoknot. This three-state equilibrium is well described by step-wise dissociation constants K1(328(30) μM) and K2(1092(183) μM) for [Mg2+] and K1(74(6) mM) and K2(243(52) mM) for [Na+]-induced folding. The kinetic model is validated by oligo competition with the STEM interaction. Implications of this conformational folding mechanism are discussed in regards to regulation of virus replication.

  4. Mechanistic studies of the photocatalytic degradation of methyl green: an investigation of products of the decomposition processes.

    PubMed

    Chen, Chiing-Chang; Lu, Chung-Shin

    2007-06-15

    The methyl green (MG) dye dissolves into an alkaline solution when the pH value is too high (pH 9). The cationic MG dye molecules are converted into the colorless carbinol base (CB) and produce crystal violet (CV) dye and ethanol by hydroxide anion. Thirty-three intermediates of the process were separated, identified, and characterized by HPLC-ESI-MS technique in this study and their evolution during the photocatalytic reaction is presented. Moreover, the other intermediates formed in the photocatalytic degradation MG processes were separated and identified by HPLC-PDA technique. The results indicated that the N-de-methylated degradation of CV dye took place in a stepwise manner to yield N-de-methylated CV species, and the N-de-alkylated degradation of CB also took place in a stepwise manner to yield N-de-alkylated CB species generated during the processes. Moreover, the oxidative degradation of the CV dye (or CB) occurs to yield 4-(N,N-dimethylamino)phenol (DAP), 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino)benzophenone (DDBP) and their N-de-methylated products [or to yield 4-(N-ethyl-N,N-dimethyl)aminophenol (EDAP), DDBP, 4-(N-ethyl-N,N-dimethylamino)-4'-(N',N'-dimethylamino)benzophenone (EDDBP), DAP, and their N-de-alkylated products], which were found for the first time. A proposed degradation pathway of CV and CB is presented, involving mainly the N-de-alkylation and oxidation reaction.

  5. Separated by sand, fused by dropping water: habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations in Lake Tanganyika.

    PubMed

    Koblmüller, Stephan; Salzburger, Walter; Obermüller, Beate; Eigner, Eva; Sturmbauer, Christian; Sefc, Kristina M

    2011-06-01

    The conditions of phenotypic and genetic population differentiation allow inferences about the evolution, preservation and loss of biological diversity. In Lake Tanganyika, water level fluctuations are assumed to have had a major impact on the evolution of stenotopic littoral species, though this hypothesis has not been specifically examined so far. The present study investigates whether subtly differentiated colour patterns of adjacent Tropheus moorii populations are maintained in isolation or in the face of continuous gene flow, and whether the presumed influence of water level fluctuations on lacustrine cichlids can be demonstrated in the small-scale population structure of the strictly stenotopic, littoral Tropheus. Distinct population differentiation was found even across short geographic distances and minor habitat barriers. Population splitting chronology and demographic histories comply with our expectation of old and rather stable populations on steeper sloping shore, and more recently established populations in a shallower region. Moreover, population expansions seem to coincide with lake level rises in the wake of Late Pleistocene megadroughts ~100 KYA. The imprint of hydrologic events on current population structure in the absence of ongoing gene flow suggests that phenotypic differentiation among proximate Tropheus populations evolves and persists in genetic isolation. Sporadic gene flow is effected by lake level fluctuations following climate changes and controlled by the persistence of habitat barriers during lake level changes. Since similar demographic patterns were previously reported for Lake Malawi cichlids, our data furthermore strengthen the hypothesis that major climatic events synchronized facets of cichlid evolution across the East African Great Lakes. © 2011 Blackwell Publishing Ltd.

  6. Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.

    PubMed

    Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R

    2012-08-01

    A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.

  7. A multi-populations multi-strategies differential evolution algorithm for structural optimization of metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Fan, Tian-E.; Shao, Gui-Fang; Ji, Qing-Shuang; Zheng, Ji-Wen; Liu, Tun-dong; Wen, Yu-Hua

    2016-11-01

    Theoretically, the determination of the structure of a cluster is to search the global minimum on its potential energy surface. The global minimization problem is often nondeterministic-polynomial-time (NP) hard and the number of local minima grows exponentially with the cluster size. In this article, a multi-populations multi-strategies differential evolution algorithm has been proposed to search the globally stable structure of Fe and Cr nanoclusters. The algorithm combines a multi-populations differential evolution with an elite pool scheme to keep the diversity of the solutions and avoid prematurely trapping into local optima. Moreover, multi-strategies such as growing method in initialization and three differential strategies in mutation are introduced to improve the convergence speed and lower the computational cost. The accuracy and effectiveness of our algorithm have been verified by comparing the results of Fe clusters with Cambridge Cluster Database. Meanwhile, the performance of our algorithm has been analyzed by comparing the convergence rate and energy evaluations with the classical DE algorithm. The multi-populations, multi-strategies mutation and growing method in initialization in our algorithm have been considered respectively. Furthermore, the structural growth pattern of Cr clusters has been predicted by this algorithm. The results show that the lowest-energy structure of Cr clusters contains many icosahedra, and the number of the icosahedral rings rises with increasing size.

  8. Speedup for quantum optimal control from automatic differentiation based on graphics processing units

    NASA Astrophysics Data System (ADS)

    Leung, Nelson; Abdelhafez, Mohamed; Koch, Jens; Schuster, David

    2017-04-01

    We implement a quantum optimal control algorithm based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them in the optimization process with ease. We show that the use of GPUs can speedup calculations by more than an order of magnitude. Our strategy facilitates efficient numerical simulations on affordable desktop computers and exploration of a host of optimization constraints and system parameters relevant to real-life experiments. We demonstrate optimization of quantum evolution based on fine-grained evaluation of performance at each intermediate time step, thus enabling more intricate control on the evolution path, suppression of departures from the truncated model subspace, as well as minimization of the physical time needed to perform high-fidelity state preparation and unitary gates.

  9. Villification of the gut

    NASA Astrophysics Data System (ADS)

    Tallinen, Tuomas; Shyer, Amy E.; Tabin, Clifford J.; Mahadevan, L.

    2014-03-01

    The villi of the human and chick gut are formed in similar stepwise progressions, wherein the mesenchyme and attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We combine biological manipulations and quantitative modeling to show that these steps of villification depend on the sequential differentiation of the distinct smooth muscle layers of the gut, which restrict the expansion of the growing endoderm and mesenchyme, generating compressive stresses that lead to their buckling and folding. Our computational model incorporates measured elastic properties and growth rates in the developing gut, recapitulating the morphological patterns seen during villification in a variety of species. Our study provides a mechanical basis for the genesis of these epithelial protrusions that are essential for providing sufficient surface area for nutrient absorption.

  10. Memory for self-generated narration in the elderly.

    PubMed

    Drevenstedt, J; Bellezza, F S

    1993-06-01

    The story mnemonic technique, an effective encoding and retrieval strategy for young adults, was used as a procedure to study encoding and recall in elderly women. Experiment 1 (15 undergraduate and 14 elderly women) showed the technique to be reliable over 3 weeks and without practice effects in both age groups. In Experiment 2, 67 elderly women (mean age = 72 years) were found to make up 3 distinctive subgroupings in patterns of narration cohesiveness and recall accuracy, consistent with pilot data on the technique. A stepwise multiple regression equation found narration cohesiveness, an adaptation of the Daneman-Carpenter (1980) working-memory measure and vocabulary to predict word recall. Results suggested that a general memory factor differentiated the 3 elderly subgroups.

  11. Experimental physics characteristics of a heavy-metal-reflected fast-spectrum critical assembly

    NASA Technical Reports Server (NTRS)

    Heneveld, W. H.; Paschall, R. K.; Springer, T. H.; Swanson, V. A.; Thiele, A. W.; Tuttle, R. J.

    1971-01-01

    A zero-power critical assembly was designed, constructed, and operated for the purpose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7 cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power electric conversion system. The experimental program consisted basically of measuring the differential neutron spectra and the changes in critical mass that accompanied the stepwise addition of (Li-7)3N, Hf, Ta, and W to a basic core fueled with U metal in a pin-type Ta honeycomb structure. In addition, experimental results were obtained on power distributions, control characteristics, neutron lifetime, and reactivity worths of numerous absorber, structural, and scattering materials.

  12. Role of the testis interstitial compartment in spermatogonial stem cell function

    PubMed Central

    Potter, Sarah J.; DeFalco, Tony

    2017-01-01

    Male fertility is maintained through intricate cellular and molecular interactions that ensure spermatogonial stem cells (SSCs) proceed in a step-wise differentiation process through spermatogenesis and spermiogenesis to produce sperm. SSCs lie within the seminiferous tubule compartment, which provides a nurturing environment for the development of sperm. Cells outside of the tubules, such as interstitial and peritubular cells, also help direct SSC activity. This review focuses on interstitial (interstitial macrophages, Leydig cells, and vasculature) and peritubular (peritubular macrophages, peritubular myoid cells) cells and their role in regulating SSC self-renewal and differentiation in mammals. Leydig cells, the major steroidogenic cells in the testis, influence SSCs through secreted factors, such as insulin growth factor 1 (IGF1) and colony stimulating factor 1 (CSF1). Macrophages interact with SSCs through various potential mechanisms, such as CSF1 and retinoic acid (RA), to induce proliferation or differentiation of SSCs, respectively. Vasculature influences SSC dynamics through CSF1, vascular endothelial growth factor (VEGF), and regulating oxygen levels. Lastly, peritubular myoid cells produce one of the most well-known factors that is required for SSC self-renewal, glial cell line derived neurotrophic factor (GDNF), as well as CSF1. Overall, SSC interactions with interstitial and peritubular cells are critical for SSC function and are an important underlying factor promoting male fertility. PMID:28115580

  13. Changes in migration mode of brine and supercritical CO2 in imbibition process under steady flow state of very slow fluid velocities

    NASA Astrophysics Data System (ADS)

    Kogure, Tetsuya; Zhang, Yi; Nishizawa, Osamu; Xue, Ziqiu

    2018-05-01

    Relative permeability curves and flow mechanisms of CO2 and brine in Berea sandstone were investigated during a two-phase flow imbibition process, where CO2 saturation in the rock decreased from 55 per cent to 9 per cent by stepwise decrease of CO2/brine injection ratios. Total fluid flow velocity was 4.25 × 10-6 m/s, corresponding to the capillary number of order ˜10-8 for CO2 flow. The relative permeability curves showed a slight hysteresis compared to those during the drainage process. Local CO2 saturation and the differential pressure showed temporal fluctuations when the average differential pressure showed constant values or very small trends. The fluctuations in local CO2 saturation correlate with local porosity distributions. The differential pressure between the inlet and outlet ends showed the largest fluctuation when the CO2/brine ratio equals to one. A final brine-only injection resulted in more CO2 trapped within low porosity zones. These results suggest important roles of ganglion dynamics in the low flow rate ranges, where fluid pathways undergo repetitive brine snap-off and coalescence of CO2 ganglia that causes morphological changes in distributions of CO2 pathways.

  14. Invasive placenta previa: Placental bulge with distorted uterine outline and uterine serosal hypervascularity at 1.5T MRI - useful features for differentiating placenta percreta from placenta accreta.

    PubMed

    Chen, Xin; Shan, Ruiqin; Zhao, Lianxin; Song, Qingxu; Zuo, Changting; Zhang, Xinjuan; Wang, Shanshan; Shi, Honglu; Gao, Fei; Qian, Tianyi; Wang, Guangbin; Limperopoulos, Catherine

    2018-02-01

    To characterise MRI features of invasive placenta previa and to identify specific features for differentiating placenta percreta (PP) from placenta accreta (PA). Forty-five women with PP and 93 women with PA who underwent 1.5T placental MRI were included. Two radiologists independently evaluated the MRI features of invasive placenta previa, including our novel type of placental bulge (i.e. placental bulge type-II, characterized by placental bulge with distorted uterine outline). Pearson's chi-squared or Fisher's two-sided exact test was performed to compare the MRI features between PP and PA. Logistic stepwise regression analysis and the area under the receiver operating characteristic curve (AUC) were performed to select the optimal features for differentiating PP from PA. Significant differences were found in nine MRI features between women with PP and those with PA (P <0.05). Placental bulge type-II and uterine serosal hypervascularity were independently associated with PP (odds ratio = 48.618, P < 0.001; odds ratio = 4.165, P = 0.018 respectively), and the combination of the two MRI features to distinguish PP from PA yielded an AUC of 0.92 for its predictive performance. Placental bulge type-II and uterine serosal hypervascularity are useful MRI features for differentiating PP from PA. • Placental bulge type-II demonstrated the strongest independent association with PP. • Uterine serosal hypervascularity is a useful feature for differentiating PP from PA. • MRI features associated with abnormal vessels increase the risk of massive haemorrhage.

  15. Variable selection with stepwise and best subset approaches

    PubMed Central

    2016-01-01

    While purposeful selection is performed partly by software and partly by hand, the stepwise and best subset approaches are automatically performed by software. Two R functions stepAIC() and bestglm() are well designed for stepwise and best subset regression, respectively. The stepAIC() function begins with a full or null model, and methods for stepwise regression can be specified in the direction argument with character values “forward”, “backward” and “both”. The bestglm() function begins with a data frame containing explanatory variables and response variables. The response variable should be in the last column. Varieties of goodness-of-fit criteria can be specified in the IC argument. The Bayesian information criterion (BIC) usually results in more parsimonious model than the Akaike information criterion. PMID:27162786

  16. Melanin fluorescence spectra by step-wise three photon excitation

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Kerimo, Josef; DiMarzio, Charles A.

    2012-03-01

    Melanin is the characteristic chromophore of human skin with various potential biological functions. Kerimo discovered enhanced melanin fluorescence by stepwise three-photon excitation in 2011. In this article, step-wise three-photon excited fluorescence (STPEF) spectrum between 450 nm -700 nm of melanin is reported. The melanin STPEF spectrum exhibited an exponential increase with wavelength. However, there was a probability of about 33% that another kind of step-wise multi-photon excited fluorescence (SMPEF) that peaks at 525 nm, shown by previous research, could also be generated using the same process. Using an excitation source at 920 nm as opposed to 830 nm increased the potential for generating SMPEF peaks at 525 nm. The SMPEF spectrum peaks at 525 nm photo-bleached faster than STPEF spectrum.

  17. A Proficiency Based Stepwise Endovascular Curricular Training (PROSPECT) Program Enhances Operative Performance in Real Life: A Randomised Controlled Trial.

    PubMed

    Maertens, H; Aggarwal, R; Moreels, N; Vermassen, F; Van Herzeele, I

    2017-09-01

    Healthcare evolution requires optimisation of surgical training to provide safe patient care. Operating room performance after completion of proficiency based training in vascular surgery has not been investigated. A randomised controlled trial evaluated the impact of a Proficiency based Stepwise Endovascular Curricular Training program (PROSPECT) on the acquisition of endovascular skills and the transferability of these skills to real life interventions. All subjects performed two endovascular interventions treating patients with symptomatic iliac and/or superficial femoral artery stenosis under supervision. Primary outcomes were technical performances (Global Rating Scale [GRS]; Examiner Checklist), operative metrics, and patient outcomes, adjusted for case difficulty and trainee experience. Secondary outcomes included knowledge and technical performance after 6 weeks and 3 months. Thirty-two general surgical trainees were randomised into three groups. Besides traditional training, the first group (n = 11) received e-learning and simulation training (PROSPECT), the second group (n = 10) only had access to e-learning, while controls (n = 11) did not receive supplementary training. Twenty-nine trainees (3 dropouts) performed 58 procedures. Trainees who completed PROSPECT showed superior technical performance (GRS 39.36 ± 2.05; Checklist 63.51 ± 3.18) in real life with significantly fewer supervisor takeovers compared with trainees receiving e-learning alone (GRS 28.42 ± 2.15; p = .001; Checklist 53.63 ± 3.34; p = .027) or traditional education (GRS 23.09 ± 2.18; p = .001; Checklist 38.72 ± 3.38; p = .001). Supervisors felt more confident in allowing PROSPECT trained physicians to perform basic (p = .006) and complex (p = .003) procedures. No differences were detected in procedural parameters (such as fluoroscopy time, DAP, procedure time, etc.) or complications. Proficiency levels were maintained up to 3 months. A structured, stepwise, proficiency based endovascular curriculum including e-learning and simulation based training should be integrated early into training programs to enhance trainee performance. Copyright © 2017. Published by Elsevier Ltd.

  18. Back to basics--how the evolution of the extracellular matrix underpinned vertebrate evolution.

    PubMed

    Huxley-Jones, Julie; Pinney, John W; Archer, John; Robertson, David L; Boot-Handford, Raymond P

    2009-04-01

    The extracellular matrix (ECM) is a complex substrate that is involved in and influences a spectrum of behaviours such as growth and differentiation and is the basis for the structure of tissues. Although a characteristic of all metazoans, the ECM has elaborated into a variety of tissues unique to vertebrates, such as bone, tendon and cartilage. Here we review recent advances in our understanding of the molecular evolution of the ECM. Furthermore, we demonstrate that ECM genes represent a pivotal family of proteins the evolution of which appears to have played an important role in the evolution of vertebrates.

  19. Breaking Off of Large Ice Masses From Hanging Glaciers

    NASA Astrophysics Data System (ADS)

    Pralong, A.; Funk, M.

    In order to reduce damage to settlements or other installations (roads, railway, etc) and avoid loss of life, a forecast of the final failure time of ice masses is required. At present, the most promising approach for such a prediction is based on the regularity by which certain large ice masses accelerate prior to the instant of collapse. The lim- itation of this forecast lies in short-term irregularities and in the difficulties to obtain sufficiently accurate data. A better physical understanding of the breaking off process is required, in order to improve the forecasting method. Previous analyze has shown that a stepwise crack extension coupling with a viscous flow leads to the observed acceleration function. We propose another approach by considering a local damage evolution law (gener- alized Kachanow's law) coupled with Glen's flow law to simulate the spatial evolu- tion of damage in polycristalline ice, using a finite element computational model. The present study focuses on the transition from a diffuse to a localised damage reparti- tion occurring during the damage evolution. The influence of inhomogeneous initial conditions (inhomogeneity of the mechanical properties of ice, damage inhomogene- ity) and inhomogeneous boundary conditions on the damage repartition are especially investigated.

  20. Integrated pipeline for inferring the evolutionary history of a gene family embedded in the species tree: a case study on the STIMATE gene family.

    PubMed

    Song, Jia; Zheng, Sisi; Nguyen, Nhung; Wang, Youjun; Zhou, Yubin; Lin, Kui

    2017-10-03

    Because phylogenetic inference is an important basis for answering many evolutionary problems, a large number of algorithms have been developed. Some of these algorithms have been improved by integrating gene evolution models with the expectation of accommodating the hierarchy of evolutionary processes. To the best of our knowledge, however, there still is no single unifying model or algorithm that can take all evolutionary processes into account through a stepwise or simultaneous method. On the basis of three existing phylogenetic inference algorithms, we built an integrated pipeline for inferring the evolutionary history of a given gene family; this pipeline can model gene sequence evolution, gene duplication-loss, gene transfer and multispecies coalescent processes. As a case study, we applied this pipeline to the STIMATE (TMEM110) gene family, which has recently been reported to play an important role in store-operated Ca 2+ entry (SOCE) mediated by ORAI and STIM proteins. We inferred their phylogenetic trees in 69 sequenced chordate genomes. By integrating three tree reconstruction algorithms with diverse evolutionary models, a pipeline for inferring the evolutionary history of a gene family was developed, and its application was demonstrated.

  1. Modular evolution of the Cetacean vertebral column.

    PubMed

    Buchholtz, Emily A

    2007-01-01

    Modular theory predicts that hierarchical developmental processes generate hierarchical phenotypic units that are capable of independent modification. The vertebral column is an overtly modular structure, and its rapid phenotypic transformation in cetacean evolution provides a case study for modularity. Terrestrial mammals have five morphologically discrete vertebral series that are now known to be coincident with Hox gene expression patterns. Here, I present the hypothesis that in living Carnivora and Artiodactyla, and by inference in the terrestrial ancestors of whales, the series are themselves components of larger precaudal and caudal modular units. Column morphology in a series of fossil and living whales is used to predict the type and sequence of developmental changes responsible for modification of that ancestral pattern. Developmental innovations inferred include independent meristic additions to the precaudal column in basal archaeocetes and basilosaurids, stepwise homeotic reduction of the sacral series in protocetids, and dissociation of the caudal series into anterior tail and fluke subunits in basilosaurids. The most dramatic change was the novel association of lumbar and anterior caudal vertebrae in a module that crosses the precaudal/caudal boundary. This large unit is defined by shared patterns of vertebral morphology, count, and size in all living whales (Neoceti).

  2. Adaptive laboratory evolution of Klebsiella pneumoniae for improving 2,3-butanediol production

    PubMed Central

    Li, Hongbiao; Zhang, Genlin; Dang, Yanyan

    2016-01-01

    ABSTRACT Microbial production of 2,3-butanediol is limited by the toxic components in the lignocellulose hydrolysate. To improve the 2,3-butanediol production via Klebsiella pneumoniae from cotton stalk hydrolysate, a method coupling a high tolerance of strain and detoxification of the hydrolysate was thus investigated in this study. The strain tolerance of K. pneumoniae to the cotton stalk hydrolysate was improved via an adaptive laboratory evolution, which involved a stepwise increase in the hydrolysate concentration in the medium. Compared with the initial strain, the resulting strain increased the biomass 3.2-fold in a medium of 20 g/L hydrolysate and produced 10.45 g/L of 2,3-butanediol at an optimal concentration of 60 g/L hydrolysate. After detoxification of cotton stalk hydrolysate, the cell metabolism of K. pneumoniae was further promoted, and the 2,3-butanediol production increased by 1.2 folds. Using fed-batch fermentation, the concentration of 2,3-butanediol reached 35.5 g/L with a yield of 0.43 g/g. The results demonstrated that the bioconversion of low-cost cotton stalk hydrolysate into 2,3-butanediol improves the economics of microbial 2,3-butanediol production. PMID:27442598

  3. New insights into the earliest stages of colorectal tumorigenesis.

    PubMed

    Sievers, Chelsie K; Grady, William M; Halberg, Richard B; Pickhardt, Perry J

    2017-08-01

    Tumors in the large intestine have been postulated to arise via a stepwise accumulation of mutations, a process that takes up to 20 years. Recent advances in lineage tracing and DNA sequencing, however, are revealing new evolutionary models that better explain the vast amount of heterogeneity observed within and across colorectal tumors. Areas covered: A review of the literature supporting a novel model of colorectal tumor evolution was conducted. The following commentary examines the basic science and clinical evidence supporting a modified view of tumor initiation and progression in the colon. Expert commentary: The proposed 'cancer punctuated equilibrium' model of tumor evolution better explains the variability seen within and across polyps of the colon and rectum. Small colorectal polyps (6-9mm) followed longitudinally by interval imaging with CT colonography have been reported to have multiple fates: some growing, some remaining static in size, and others regressing in size over time. This new model allows for this variability in growth behavior and supports the hypothesis that some tumors can be 'born to be bad' as originally postulated by Sottoriva and colleagues, with very early molecular events impacting tumor fitness and growth behavior in the later stages of the disease process.

  4. Simple picture for neutrino flavor transformation in supernovae

    NASA Astrophysics Data System (ADS)

    Duan, Huaiyu; Fuller, George M.; Qian, Yong-Zhong

    2007-10-01

    We can understand many recently discovered features of flavor evolution in dense, self-coupled supernova neutrino and antineutrino systems with a simple, physical scheme consisting of two quasistatic solutions. One solution closely resembles the conventional, adiabatic single-neutrino Mikheyev-Smirnov-Wolfenstein (MSW) mechanism, in that neutrinos and antineutrinos remain in mass eigenstates as they evolve in flavor space. The other solution is analogous to the regular precession of a gyroscopic pendulum in flavor space, and has been discussed extensively in recent works. Results of recent numerical studies are best explained with combinations of these solutions in the following general scenario: (1) Near the neutrino sphere, the MSW-like many-body solution obtains. (2) Depending on neutrino vacuum mixing parameters, luminosities, energy spectra, and the matter density profile, collective flavor transformation in the nutation mode develops and drives neutrinos away from the MSW-like evolution and toward regular precession. (3) Neutrino and antineutrino flavors roughly evolve according to the regular precession solution until neutrino densities are low. In the late stage of the precession solution, a stepwise swapping develops in the energy spectra of νe and νμ/ντ. We also discuss some subtle points regarding adiabaticity in flavor transformation in dense-neutrino systems.

  5. Reconstructing the flow pattern evolution in inner region of the Fennoscandian Ice Sheet by glacial landforms from Gausdal Vestfjell area, south-central Norway

    NASA Astrophysics Data System (ADS)

    Putniņš, Artūrs; Henriksen, Mona

    2017-05-01

    More than 17 000 landforms from detailed LiDAR data sets have been mapped in the Gausdal Vestfjell area, south-central Norway. The spatial distribution and relationships between the identified subglacial bedforms, mainly streamlined landforms and ribbed moraine ridges, have provided new insight on the glacial dynamics and the sequence of glacial events during the last glaciation. This established evolution of the Late Weichselian ice flow pattern at this inner region of the Fennoscandian Ice Sheet is stepwise where a topography independent ice flow (Phase I) are followed by a regional (Phase II) before a strongly channelized, topography driven ice flow (Phase III). The latter phase is divided into several substages where the flow sets are becoming increasingly confined into the valleys, likely separated by colder, less active ice before down-melting of ice took place. A migrating ice divide and lowering of the ice surface seems to be the main reasons for these changes in ice flow pattern. Formation of ribbed moraine can occur both when the ice flow slows down and speeds up, forming respectively broad fields and elongated belts of ribbed moraines.

  6. NARMAX model identification of a palm oil biodiesel engine using multi-objective optimization differential evolution

    NASA Astrophysics Data System (ADS)

    Mansor, Zakwan; Zakaria, Mohd Zakimi; Nor, Azuwir Mohd; Saad, Mohd Sazli; Ahmad, Robiah; Jamaluddin, Hishamuddin

    2017-09-01

    This paper presents the black-box modelling of palm oil biodiesel engine (POB) using multi-objective optimization differential evolution (MOODE) algorithm. Two objective functions are considered in the algorithm for optimization; minimizing the number of term of a model structure and minimizing the mean square error between actual and predicted outputs. The mathematical model used in this study to represent the POB system is nonlinear auto-regressive moving average with exogenous input (NARMAX) model. Finally, model validity tests are applied in order to validate the possible models that was obtained from MOODE algorithm and lead to select an optimal model.

  7. Multiobjective Aerodynamic Shape Optimization Using Pareto Differential Evolution and Generalized Response Surface Metamodels

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. The DE algorithm has been recently extended to multiobjective optimization problem by using a Pareto-based approach. In this paper, a Pareto DE algorithm is applied to multiobjective aerodynamic shape optimization problems that are characterized by computationally expensive objective function evaluations. To improve computational expensive the algorithm is coupled with generalized response surface meta-models based on artificial neural networks. Results are presented for some test optimization problems from the literature to demonstrate the capabilities of the method.

  8. Analysis of high-order SNP barcodes in mitochondrial D-loop for chronic dialysis susceptibility.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2016-10-01

    Positively identifying disease-associated single nucleotide polymorphism (SNP) markers in genome-wide studies entails the complex association analysis of a huge number of SNPs. Such large numbers of SNP barcode (SNP/genotype combinations) continue to pose serious computational challenges, especially for high-dimensional data. We propose a novel exploiting SNP barcode method based on differential evolution, termed IDE (improved differential evolution). IDE uses a "top combination strategy" to improve the ability of differential evolution to explore high-order SNP barcodes in high-dimensional data. We simulate disease data and use real chronic dialysis data to test four global optimization algorithms. In 48 simulated disease models, we show that IDE outperforms existing global optimization algorithms in terms of exploring ability and power to detect the specific SNP/genotype combinations with a maximum difference between cases and controls. In real data, we show that IDE can be used to evaluate the relative effects of each individual SNP on disease susceptibility. IDE generated significant SNP barcode with less computational complexity than the other algorithms, making IDE ideally suited for analysis of high-order SNP barcodes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Adaptation and colonization history affect the evolution of clines in two introduced species.

    PubMed

    Keller, Stephen R; Sowell, Dexter R; Neiman, Maurine; Wolfe, Lorne M; Taylor, Douglas R

    2009-08-01

    Phenotypic and genetic clines have long been synonymous with adaptive evolution. However, other processes (for example, migration, range expansion, invasion) may generate clines in traits or loci across geographical and environmental gradients. It is therefore important to distinguish between clines that represent adaptive evolution and those that result from selectively neutral demographic or genetic processes. We tested for the differentiation of phenotypic traits along environmental gradients using two species in the genus Silene, whilst statistically controlling for colonization history and founder effects. We sampled seed families from across the native and introduced ranges, genotyped individuals and estimated phenotypic differentiation in replicated common gardens. The results suggest that post-glacial expansion of S. vulgaris and S. latifolia involved both neutral and adaptive genetic differentiation (clines) of life history traits along major axes of environmental variation in Europe and North America. Phenotypic clines generally persisted when tested against the neutral expectation, although some clines disappeared (and one cline emerged) when the effects of genetic ancestry were statistically removed. Colonization history, estimated using genetic markers, is a useful null model for tests of adaptive trait divergence, especially during range expansion and invasion when selection and gene flow may not have reached equilibrium.

  10. Structure and tectonic evolution of the NE segment of the Polish-Ukrainian Carpathians during the Late Cenozoic: subsurface cross-sections and palinspastic models

    NASA Astrophysics Data System (ADS)

    Kuśmierek, Jan; Baran, Urszula

    2016-08-01

    The discrepant arrangement of the Carpathian nappes and syntectonic deposits of the Carpathian Foredeep reveals the oroclinal migration of the subduction direction of the platform margin during the Late Cenozoic. Formation of the nappes was induced by their detachment from disintegrated segments of the European Platform; the segments were shortened as a result of their vertical rotation in zones of compressional sutures. It finds expression in local occurrence of the backward vergence of folding against the generally forward vergence toward the Carpathian Foredeep. The precompressional configuration of sedimentation areas of particular nappes was reconstructed with application of the palinspastic method, on the basis of the hitherto undervalued model which emphasizes the influence of the subduction and differentiated morphology of the platform basement on the tectonic evolution of the fold and thrust belt. Superposition of the palaeogeographic representations and the present geometry of the orogen allows understanding of the impact of the magnitudes of tectonic displacements on the differentiation of the geological structure in the NE segment of the Carpathians. The differentiation has inspired different views of Polish and Ukrainian geologists on structural classification and evolution of the frontal thrusts.

  11. Demography and the Evolution of Educational Inequality.

    ERIC Educational Resources Information Center

    Mare, Robert D.

    The combined effects of differential fertility, differential mortality, and intergenerational educational mobility on the distribution of educational attainment in the United States were studied for women in the past half century. A simple model for the reproduction of educational hierarchies was used that takes these factors, plus age structure…

  12. An Improved Binary Differential Evolution Algorithm to Infer Tumor Phylogenetic Trees.

    PubMed

    Liang, Ying; Liao, Bo; Zhu, Wen

    2017-01-01

    Tumourigenesis is a mutation accumulation process, which is likely to start with a mutated founder cell. The evolutionary nature of tumor development makes phylogenetic models suitable for inferring tumor evolution through genetic variation data. Copy number variation (CNV) is the major genetic marker of the genome with more genes, disease loci, and functional elements involved. Fluorescence in situ hybridization (FISH) accurately measures multiple gene copy number of hundreds of single cells. We propose an improved binary differential evolution algorithm, BDEP, to infer tumor phylogenetic tree based on FISH platform. The topology analysis of tumor progression tree shows that the pathway of tumor subcell expansion varies greatly during different stages of tumor formation. And the classification experiment shows that tree-based features are better than data-based features in distinguishing tumor. The constructed phylogenetic trees have great performance in characterizing tumor development process, which outperforms other similar algorithms.

  13. Monitoring on Xi'an ground fissures deformation with TerraSAR-X data

    USGS Publications Warehouse

    Zhao, C.; Zhang, Q.; Zhu, W.; Lu, Z.

    2012-01-01

    Owing to the fine resolution of TerraSAR-X data provided since 2007, this paper applied 6 TerraSAR data (strip mode) during 3rd Dec. 2009 to 23rd Mar. 2010 to detect and monitor the active fissures over Xi'an region. Three themes have been designed for high precision detection and monitoring of Xi'an-Chang'an fissures, as small baseline subsets (SBAS) to test the atmospheric effects of differential interferograms pair stepwise, 2-pass differential interferogram with very short baseline perpendicular to generate the whole deformation map with 44 days interval, and finally, corner reflector (CR) technique was used to closely monitor the relative deformation time series between two CRs settled crossing two ground fissures. Results showed that TerraSAR data are a good choice for small-scale ground fissures detection and monitoring, while special considerations should be taken for their great temporal and baseline decorrelation. Secondly, ground fissures in Xi'an were mostly detected at the joint section of stable and deformable regions. Lastly, CR-InSAR had potential ability to monitor relative deformation crossing fissures with millimeter precision.

  14. Progenitor Epithelium

    PubMed Central

    Marty-Santos, Leilani

    2015-01-01

    Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell–cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages. PMID:26216134

  15. Convergent evolution of heat-inducibility during subfunctionalization of the Hsp70 gene family

    PubMed Central

    2013-01-01

    Background Heat-shock proteins of the 70 kDa family (Hsp70s) are essential chaperones required for key cellular functions. In eukaryotes, four subfamilies can be distinguished according to their function and localisation in different cellular compartments: cytosol, endoplasmic reticulum, mitochondria and chloroplasts. Generally, multiple cytosol-type Hsp70s can be found in metazoans that show either constitutive expression and/or stress-inducibility, arguing for the evolution of different tasks and functions. Information about the hsp70 copy number and diversity in microbial eukaryotes is, however, scarce, and detailed knowledge about the differential gene expression in most protists is lacking. Therefore, we have characterised the Hsp70 gene family of Paramecium caudatum to gain insight into the evolution and differential heat stress response of the distinct family members in protists and to investigate the diversification of eukaryotic hsp70s focusing on the evolution of heat-inducibility. Results Eleven putative hsp70 genes could be detected in P. caudatum comprising homologs of three major Hsp70-subfamilies. Phylogenetic analyses revealed five evolutionarily distinct Hsp70-groups, each with a closer relationship to orthologous sequences of Paramecium tetraurelia than to another P. caudatum Hsp70-group. These highly diverse, paralogous groups resulted from duplications preceding Paramecium speciation, underwent divergent evolution and were subject to purifying selection. Heat-shock treatments were performed to test for differential expression patterns among the five Hsp70-groups as well as for a functional conservation within Paramecium. These treatments induced exceptionally high mRNA up-regulations in one cytosolic group with a low basal expression, indicative for the major heat inducible hsp70s. All other groups showed comparatively high basal expression levels and moderate heat-inducibility, signifying constitutively expressed genes. Comparative EST analyses for P. tetraurelia hsp70s unveiled a corresponding expression pattern, which supports a functionally conserved evolution of the Hsp70 gene family in Paramecium. Conclusions Our analyses suggest an independent evolution of the heat-inducible cytosol-type hsp70s in Paramecium and in its close relative Tetrahymena, as well as within higher eukaryotes. This result indicates convergent evolution during hsp70 subfunctionalization and implies that heat-inducibility evolved several times during the course of eukaryotic evolution. PMID:23433225

  16. Stepwise hydrolysis to improve carbon releasing efficiency from sludge.

    PubMed

    Liu, Hongbo; Wang, Yuanyuan; Wang, Ling; Yu, Tiantian; Fu, Bo; Liu, He

    2017-08-01

    Based on thermal alkaline hydrolysis (TAH), a novel strategy of stepwise hydrolysis was developed to improve carbon releasing efficiency from waste activated sludge (WAS). By stepwise increasing hydrolysis intensity, conventional sludge hydrolysis (the control) was divided into four stages for separately recovering sludge carbon sources with different bonding strengths, namely stage 1 (60 °C, pH 6.0-8.0), stage 2 (80 °C, pH 6.0-8.0), stage 3 (80 °C, pH 10.0) and stage 4 (90 °C, pH 12.0). Results indicate stepwise hydrolysis could enhance the amount of released soluble chemical oxygen demand (SCOD) for almost 2 times, from 7200 to 14,693 mg/L, and the released carbon presented better biodegradability, with BOD/COD of 0.47 and volatile fatty acids (VFAs) yield of 0.37 g VFAs/g SCOD via anaerobic fermentation. Moreover, stepwise hydrolysis also improved the dewaterability of hydrolyzed sludge, capillary suction time (CST) reducing from 2500 to 1600 s. Economic assessment indicates stepwise hydrolysis shows less alkali demand and lower thermal energy consumption than those of the control. Furthermore, results of this study help support the concepts of improving carbon recovery in wastewater by manipulating WAS composition and the idea of classifiably recovering the nutrients in WAS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The fine-scale genetic structure and evolution of the Japanese population.

    PubMed

    Takeuchi, Fumihiko; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua; Teo, Yik-Ying; Kato, Norihiro

    2017-01-01

    The contemporary Japanese populations largely consist of three genetically distinct groups-Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics.

  18. Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains

    NASA Astrophysics Data System (ADS)

    Adler, V. E.

    2018-04-01

    We consider differential-difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.

  19. On the effects of higher convection modes on the thermal evolution of small planetary bodies

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, J.

    1979-01-01

    The effects of higher modes of convection on the thermal evolution of a small planetary body is investigated. Three sets of models are designed to specify an initially cold and differentiated, an initially hot and differentiated, and an initially cold and undifferentiated Moon-type body. The strong temperature dependence of viscosity enhances the thickening of lithosphere so that a lithosphere of about 400 km thickness is developed within the first billion years of the evolution of a Moon-type body. The thermally isolating effect of such a lithosphere hampers the heat flux out of the body and increases the temperature of the interior, causing the solid-state convection to occur with high velocity so that even the lower modes of convection can maintain an adiabatic temperature gradient there. It is demonstrated that the effect of solid-state convection on the thermal evolution of the models may be adequately determined by a combination of convection modes up to the third or the fourth order harmonic. The inclusion of higher modes does not affect the results significantly.

  20. Battery parameterisation based on differential evolution via a boundary evolution strategy

    NASA Astrophysics Data System (ADS)

    Yang, Guangya

    2014-01-01

    Attention has been given to the battery modelling in the electric engineering field following the current development of renewable energy and electrification of transportation. The establishment of the equivalent circuit model of the battery requires data preparation and parameterisation. Besides, as the equivalent circuit model is an abstract map of the battery electric characteristics, the determination of the possible ranges of parameters can be a challenging task. In this paper, an efficient yet easy to implement method is proposed to parameterise the equivalent circuit model of batteries utilising the advances of evolutionary algorithms (EAs). Differential evolution (DE) is selected and modified to parameterise an equivalent circuit model of lithium-ion batteries. A boundary evolution strategy (BES) is developed and incorporated into the DE to update the parameter boundaries during the parameterisation. The method can parameterise the model without extensive data preparation. In addition, the approach can also estimate the initial SOC and the available capacity. The efficiency of the approach is verified through two battery packs, one is an 8-cell battery module and one from an electrical vehicle.

  1. Discrimination of Geographical Origin of Asian Garlic Using Isotopic and Chemical Datasets under Stepwise Principal Component Analysis.

    PubMed

    Liu, Tsang-Sen; Lin, Jhen-Nan; Peng, Tsung-Ren

    2018-01-16

    Isotopic compositions of δ 2 H, δ 18 O, δ 13 C, and δ 15 N and concentrations of 22 trace elements from garlic samples were analyzed and processed with stepwise principal component analysis (PCA) to discriminate garlic's country of origin among Asian regions including South Korea, Vietnam, Taiwan, and China. Results indicate that there is no single trace-element concentration or isotopic composition that can accomplish the study's purpose and the stepwise PCA approach proposed does allow for discrimination between countries on a regional basis. Sequentially, Step-1 PCA distinguishes garlic's country of origin among Taiwanese, South Korean, and Vietnamese samples; Step-2 PCA discriminates Chinese garlic from South Korean garlic; and Step-3 and Step-4 PCA, Chinese garlic from Vietnamese garlic. In model tests, countries of origin of all audit samples were correctly discriminated by stepwise PCA. Consequently, this study demonstrates that stepwise PCA as applied is a simple and effective approach to discriminating country of origin among Asian garlics. © 2018 American Academy of Forensic Sciences.

  2. Generation of hematopoietic stem cells from human embryonic stem cells using a defined, stepwise, serum-free, and serum replacement-free monolayer culture method.

    PubMed

    Kim, So-Jung; Jung, Ji-Won; Ha, Hye-Yeong; Koo, Soo Kyung; Kim, Eung-Gook; Kim, Jung-Hyun

    2017-03-01

    Embryonic stem cells (ESCs) can be expanded infinitely in vitro and have the potential to differentiate into hematopoietic stem cells (HSCs); thus, they are considered a useful source of cells for HSC production. Although several technical in vitro methods for engineering HSCs from pluripotent stem cells have been developed, clinical application of HSCs engineered from pluripotent stem cells is restricted because of the possibility of xenogeneic contamination resulting from the use of murine materials. Human ESCs (CHA-hES15) were cultured on growth factor-reduced Matrigel-coated dishes in the mTeSR1 serum-free medium. When the cells were 70% confluent, we initiated HSC differentiation by three methods involving (1) knockout serum replacement (KSR), cytokines, TGFb1, EPO, and FLT3L; (2) KSR, cytokines, and bFGF; or (3) cytokines and bFGF. Among the three differentiation methods, the minimal number of cytokines without KSR resulted in the greatest production of HSCs. The optimized method resulted in a higher proportion of CD34 + CD43 + hematopoietic progenitor cells (HPCs) and CD34 + CD45 + HPCs compared to the other methods. In addition, the HSCs showed the potential to differentiate into multiple lineages of hematopoietic cells in vitro . In this study, we optimized a two-step, serum-free, animal protein-free, KSR-free, feeder-free, chemically defined monolayer culture method for generation of HSCs and hematopoietic stem and progenitor cells (HSPCs) from human ESCs.

  3. Perturbed thymopoiesis in vitro in the absence of Suppressor of Cytokine Signalling 1 and 3

    PubMed Central

    Croom, Hayley A.; Izon, David J.; Chong, Mark M.; Curtis, David J.; Roberts, Andrew W.; Kay, Thomas W.H.; Hilton, Douglas J.; Alexander, Warren S.; Starr, Robyn

    2014-01-01

    Cytokine signals are central to the differentiation of thymocytes and their stepwise progression through defined developmental stages. The intensity and duration of cytokine signals are regulated by the suppressor of cytokine signalling (SOCS) proteins. A clear role for SOCS1 during the later stages of thymopoiesis has been established, but little is known about its role during early thymopoiesis, nor the function of its closest relative, SOCS3. Here, we find that both SOCS1 and SOCS3 are expressed during early thymopoiesis, with expression coincident during the double negative (DN)2 and DN3 stages. We examined thymocyte differentiation in vitro by co-culture of SOCS-deficient bone marrow cells with OP9 cells expressing the Notch ligand Delta-like1 (OP9-DL1). Cells lacking SOCS1 were retarded at the DN3:DN4 transition and appeared unable to differentiate into double positive (DP) thymocytes. Cells lacking both SOCS1 and SOCS3 were more severely affected, and displayed an earlier block in T cell differentiation at DN2, the stage at which expression of SOCS1 and SOCS3 coincides. This indicates that, in addition to their specific roles, SOCS1 and SOCS3 share overlapping roles during thymopoiesis. This is the first demonstration of functional redundancy within the SOCS family, and has uncovered a vital role for SOCS1 and SOCS3 during two important checkpoints in early T cell development. PMID:18321577

  4. Biochemical studies of the differentiation of HL-60 cells into monocytes by either IFN, VIT, D/sub 3/ or TPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, S.; Whyzmuzis, C.; Oronsky, B.

    The authors have studied the differentiation process of the human promyelocytic cell line, HL-60, by treatment of these cells with either gamma interferon, 1, 25 dihydroxyvitamin D/sub 3/ or a phorbol ester, TPA. The cells were grown in RPMI 1640, 10% FCS with each respective agent, then pulsed labeled with /sup 35/S-Met, harvested, lysed and subfractionated by centrifugation into post-ribosomal and ribosomal salt was fractions (RSW). These fractions were examined by SDS gel electrophoresis. The culture supernatant from the treated cells was dialyzed and passed over a heparin agarose affinity column. The absorbed material was eluted from the column bymore » a step-wise salt gradient and analyzed by SDS gel electrophoresis. They have also observed that in a rabbit reticulocyte lysate assay, the RSW from control cells show inhibition of protein synthesis. The RSW from cells treated with either high concentrations (200-1000 units/ml) of gamma interferon, Vit D/sub 3/ or TPA did not show this inhibition. Some possible explanations for this phenomenon are the loss or inactivation of a component necessary for protein synthesis which is triggered by differentiation, or the differentiation-related modulation of translational inhibitor(s). They have used FPLC to further analyze the RSW, but because the factor(s) are present in such small quantities further analytical and more sensitive procedures need to be pursued.« less

  5. The cultural evolution of emergent group-level traits.

    PubMed

    Smaldino, Paul E

    2014-06-01

    Many of the most important properties of human groups - including properties that may give one group an evolutionary advantage over another - are properly defined only at the level of group organization. Yet at present, most work on the evolution of culture has focused solely on the transmission of individual-level traits. I propose a conceptual extension of the theory of cultural evolution, particularly related to the evolutionary competition between cultural groups. The key concept in this extension is the emergent group-level trait. This type of trait is characterized by the structured organization of differentiated individuals and constitutes a unit of selection that is qualitatively different from selection on groups as defined by traditional multilevel selection (MLS) theory. As a corollary, I argue that the traditional focus on cooperation as the defining feature of human societies has missed an essential feature of cooperative groups. Traditional models of cooperation assume that interacting with one cooperator is equivalent to interacting with any other. However, human groups involve differential roles, meaning that receiving aid from one individual is often preferred to receiving aid from another. In this target article, I discuss the emergence and evolution of group-level traits and the implications for the theory of cultural evolution, including ramifications for the evolution of human cooperation, technology, and cultural institutions, and for the equivalency of multilevel selection and inclusive fitness approaches.

  6. From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation.

    PubMed

    Norris, Scott A; Brenner, Michael P; Aziz, Michael J

    2009-06-03

    We develop a methodology for deriving continuum partial differential equations for the evolution of large-scale surface morphology directly from molecular dynamics simulations of the craters formed from individual ion impacts. Our formalism relies on the separation between the length scale of ion impact and the characteristic scale of pattern formation, and expresses the surface evolution in terms of the moments of the crater function. We demonstrate that the formalism reproduces the classical Bradley-Harper results, as well as ballistic atomic drift, under the appropriate simplifying assumptions. Given an actual set of converged molecular dynamics moments and their derivatives with respect to the incidence angle, our approach can be applied directly to predict the presence and absence of surface morphological instabilities. This analysis represents the first work systematically connecting molecular dynamics simulations of ion bombardment to partial differential equations that govern topographic pattern-forming instabilities.

  7. Color separation in forensic image processing using interactive differential evolution.

    PubMed

    Mushtaq, Harris; Rahnamayan, Shahryar; Siddiqi, Areeb

    2015-01-01

    Color separation is an image processing technique that has often been used in forensic applications to differentiate among variant colors and to remove unwanted image interference. This process can reveal important information such as covered text or fingerprints in forensic investigation procedures. However, several limitations prevent users from selecting the appropriate parameters pertaining to the desired and undesired colors. This study proposes the hybridization of an interactive differential evolution (IDE) and a color separation technique that no longer requires users to guess required control parameters. The IDE algorithm optimizes these parameters in an interactive manner by utilizing human visual judgment to uncover desired objects. A comprehensive experimental verification has been conducted on various sample test images, including heavily obscured texts, texts with subtle color variations, and fingerprint smudges. The advantage of IDE is apparent as it effectively optimizes the color separation parameters at a level indiscernible to the naked eyes. © 2014 American Academy of Forensic Sciences.

  8. Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Heger, A.; Woosley, S. E.; Spruit, H. C.

    2005-06-01

    As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic instabilities and also by magnetic torques from fields generated by the differential rotation. We present the first stellar evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these effects, magnetic and nonmagnetic, from the zero-age main sequence until the onset of iron-core collapse. The evolution and action of the magnetic fields is as described by Spruit in 2002, and a range of uncertain parameters is explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about a factor of 30-50 when compared with the nonmagnetic counterparts. Angular momentum in that part of the presupernova star destined to become a neutron star is an increasing function of main-sequence mass. That is, pulsars derived from more massive stars rotate faster and rotation plays a more important role in the star's explosion. The final angular momentum of the core has been determined-to within a factor of 2-by the time the star ignites carbon burning. For the lighter stars studied, around 15 Msolar, we predict pulsar periods at birth near 15 ms, though a factor of 2 range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star, especially by fallback, are explored.

  9. Species-Specific 5 mC and 5 hmC Genomic Landscapes Indicate Epigenetic Contribution to Human Brain Evolution

    PubMed Central

    Madrid, Andy; Chopra, Pankaj; Alisch, Reid S.

    2018-01-01

    Human evolution from non-human primates has seen substantial change in the central nervous system, with the molecular mechanisms underlying human brain evolution remaining largely unknown. Methylation of cytosine at the fifth carbon (5-methylcytosine; 5 mC) is an essential epigenetic mark linked to neurodevelopment, as well as neurological disease. The emergence of another modified form of cytosine (5-hydroxymethylcytosine; 5 hmC) that is enriched in the brain further substantiates a role for these epigenetic marks in neurodevelopment, yet little is known about the evolutionary importance of these marks in brain development. Here, human and monkey brain tissue were profiled, identifying 5,516 and 4,070 loci that were differentially methylated and hydroxymethylated, respectively, between the species. Annotation of these loci to the human genome revealed genes critical for the development of the nervous system and that are associated with intelligence and higher cognitive functioning, such as RELN and GNAS. Moreover, ontological analyses of these differentially methylated and hydroxymethylated genes revealed a significant enrichment of neuronal/immunological–related processes, including neurogenesis and axon development. Finally, the sequences flanking the differentially methylated/hydroxymethylated loci contained a significant enrichment of binding sites for neurodevelopmentally important transcription factors (e.g., OTX1 and PITX1), suggesting that DNA methylation may regulate gene expression by mediating transcription factor binding on these transcripts. Together, these data support dynamic species-specific epigenetic contributions in the evolution and development of the human brain from non-human primates. PMID:29491831

  10. The evolution of duplicate gene expression in mammalian organs

    PubMed Central

    Guschanski, Katerina; Warnefors, Maria; Kaessmann, Henrik

    2017-01-01

    Gene duplications generate genomic raw material that allows the emergence of novel functions, likely facilitating adaptive evolutionary innovations. However, global assessments of the functional and evolutionary relevance of duplicate genes in mammals were until recently limited by the lack of appropriate comparative data. Here, we report a large-scale study of the expression evolution of DNA-based functional gene duplicates in three major mammalian lineages (placental mammals, marsupials, egg-laying monotremes) and birds, on the basis of RNA sequencing (RNA-seq) data from nine species and eight organs. We observe dynamic changes in tissue expression preference of paralogs with different duplication ages, suggesting differential contribution of paralogs to specific organ functions during vertebrate evolution. Specifically, we show that paralogs that emerged in the common ancestor of bony vertebrates are enriched for genes with brain-specific expression and provide evidence for differential forces underlying the preferential emergence of young testis- and liver-specific expressed genes. Further analyses uncovered that the overall spatial expression profiles of gene families tend to be conserved, with several exceptions of pronounced tissue specificity shifts among lineage-specific gene family expansions. Finally, we trace new lineage-specific genes that may have contributed to the specific biology of mammalian organs, including the little-studied placenta. Overall, our study provides novel and taxonomically broad evidence for the differential contribution of duplicate genes to tissue-specific transcriptomes and for their importance for the phenotypic evolution of vertebrates. PMID:28743766

  11. Evolution of Particle Size Distributions in Fragmentation Over Time

    NASA Astrophysics Data System (ADS)

    Charalambous, C. A.; Pike, W. T.

    2013-12-01

    We present a new model of fragmentation based on a probabilistic calculation of the repeated fracture of a particle population. The resulting continuous solution, which is in closed form, gives the evolution of fragmentation products from an initial block, through a scale-invariant power-law relationship to a final comminuted powder. Models for the fragmentation of particles have been developed separately in mainly two different disciplines: the continuous integro-differential equations of batch mineral grinding (Reid, 1965) and the fractal analysis of geophysics (Turcotte, 1986) based on a discrete model with a single probability of fracture. The first gives a time-dependent development of the particle-size distribution, but has resisted a closed-form solution, while the latter leads to the scale-invariant power laws, but with no time dependence. Bird (2009) recently introduced a bridge between these two approaches with a step-wise iterative calculation of the fragmentation products. The development of the particle-size distribution occurs with discrete steps: during each fragmentation event, the particles will repeatedly fracture probabilistically, cascading down the length scales to a final size distribution reached after all particles have failed to further fragment. We have identified this process as the equivalent to a sequence of trials for each particle with a fixed probability of fragmentation. Although the resulting distribution is discrete, it can be reformulated as a continuous distribution in maturity over time and particle size. In our model, Turcotte's power-law distribution emerges at a unique maturation index that defines a regime boundary. Up to this index, the fragmentation is in an erosional regime with the initial particle size setting the scaling. Fragmentation beyond this index is in a regime of comminution with rebreakage of the particles down to the size limit of fracture. The maturation index can increment continuously, for example under grinding conditions, or as discrete steps, such as with impact events. In both cases our model gives the energy associated with the fragmentation in terms of the developing surface area of the population. We show the agreement of our model to the evolution of particle size distributions associated with episodic and continuous fragmentation and how the evolution of some popular fractals may be represented using this approach. C. A. Charalambous and W. T. Pike (2013). Multi-Scale Particle Size Distributions of Mars, Moon and Itokawa based on a time-maturation dependent fragmentation model. Abstract Submitted to the AGU 46th Fall Meeting. Bird, N. R. A., Watts, C. W., Tarquis, A. M., & Whitmore, A. P. (2009). Modeling dynamic fragmentation of soil. Vadose Zone Journal, 8(1), 197-201. Reid, K. J. (1965). A solution to the batch grinding equation. Chemical Engineering Science, 20(11), 953-963. Turcotte, D. L. (1986). Fractals and fragmentation. Journal of Geophysical Research: Solid Earth 91(B2), 1921-1926.

  12. Magnetic reversal frequency in the Lower Cambrian Niutitang Formation, Hunan Province, South China

    NASA Astrophysics Data System (ADS)

    Duan, Zongqi; Liu, Qingsong; Ren, Shoumai; Li, Lihui; Deng, Xiaolong; Liu, Jianxing

    2018-05-01

    The reversal frequency of the paleomagnetic field bears great information of evolution of the Earth's deep interior. However, there are still debates on the frequency pattern during the older periods of the Phanerozoic. This study investigated the Niutitang Formation (Lower Cambrian) of the Ciye 1 Hole from south China. Rock magnetic results indicate that the dominant magnetic carrier is magnetite. Characteristic remanence magnetizations have been successfully isolated for the weakly-magnetized shale rocks through stepwise alternated field demagnetization using the 2 G Enterprises Rapid System Magnetometer with a low-noise thin-walled quartz-glass sample holder. Constrained by radiometric ages, our paleomagnetic results indicated frequent polarity reversals during the period of ˜524-514 Ma, which backs up the speculation about the episode of the Ediacaran-Cambrian (˜550-500 Ma) with a character of reversal hyperactivity.

  13. Tropical Rainfall Analysis Using TRMM in Combination With Other Satellite Gauge Data: Comparison with Global Precipitation Climatology Project (GPCP) Results

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) information as the key calibration tool in a merged analysis on a 1 deg x 1 deg latitude/longitude monthly scale based on multiple satellite sources and raingauge analysis. The procedure used to produce the GPCP data set is a stepwise approach which first combines the satellite low-orbit microwave and geosynchronous IR observations into a "multi-satellite" product and than merges that result with the raingauge analysis. Preliminary results produced with the still-stabilizing TRMM algorithms indicate that TRMM shows tighter spatial gradients in tropical rain maxima with higher peaks in the center of the maxima. The TRMM analyses will be used to evaluate the evolution of the 1998 ENSO variations, again in comparison with the GPCP analyses.

  14. A coarse-grained Monte Carlo approach to diffusion processes in metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Hauser, Andreas W.; Schnedlitz, Martin; Ernst, Wolfgang E.

    2017-06-01

    A kinetic Monte Carlo approach on a coarse-grained lattice is developed for the simulation of surface diffusion processes of Ni, Pd and Au structures with diameters in the range of a few nanometers. Intensity information obtained via standard two-dimensional transmission electron microscopy imaging techniques is used to create three-dimensional structure models as input for a cellular automaton. A series of update rules based on reaction kinetics is defined to allow for a stepwise evolution in time with the aim to simulate surface diffusion phenomena such as Rayleigh breakup and surface wetting. The material flow, in our case represented by the hopping of discrete portions of metal on a given grid, is driven by the attempt to minimize the surface energy, which can be achieved by maximizing the number of filled neighbor cells.

  15. Insulin degludec/insulin aspart once daily in Type 2 diabetes: a comparison of simple or stepwise titration algorithms (BOOST® : SIMPLE USE).

    PubMed

    Park, S W; Bebakar, W M W; Hernandez, P G; Macura, S; Hersløv, M L; de la Rosa, R

    2017-02-01

    To compare the efficacy and safety of two titration algorithms for insulin degludec/insulin aspart (IDegAsp) administered once daily with metformin in participants with insulin-naïve Type 2 diabetes mellitus. This open-label, parallel-group, 26-week, multicentre, treat-to-target trial, randomly allocated participants (1:1) to two titration arms. The Simple algorithm titrated IDegAsp twice weekly based on a single pre-breakfast self-monitored plasma glucose (SMPG) measurement. The Stepwise algorithm titrated IDegAsp once weekly based on the lowest of three consecutive pre-breakfast SMPG measurements. In both groups, IDegAsp once daily was titrated to pre-breakfast plasma glucose values of 4.0-5.0 mmol/l. Primary endpoint was change from baseline in HbA 1c (%) after 26 weeks. Change in HbA 1c at Week 26 was IDegAsp Simple -14.6 mmol/mol (-1.3%) (to 52.4 mmol/mol; 6.9%) and IDegAsp Stepwise -11.9 mmol/mol (-1.1%) (to 54.7 mmol/mol; 7.2%). The estimated between-group treatment difference was -1.97 mmol/mol [95% confidence interval (CI) -4.1, 0.2] (-0.2%, 95% CI -0.4, 0.02), confirming the non-inferiority of IDegAsp Simple to IDegAsp Stepwise (non-inferiority limit of ≤ 0.4%). Mean reduction in fasting plasma glucose and 8-point SMPG profiles were similar between groups. Rates of confirmed hypoglycaemia were lower for IDegAsp Stepwise [2.1 per patient years of exposure (PYE)] vs. IDegAsp Simple (3.3 PYE) (estimated rate ratio IDegAsp Simple /IDegAsp Stepwise 1.8; 95% CI 1.1, 2.9). Nocturnal hypoglycaemia rates were similar between groups. No severe hypoglycaemic events were reported. In participants with insulin-naïve Type 2 diabetes mellitus, the IDegAsp Simple titration algorithm improved HbA 1c levels as effectively as a Stepwise titration algorithm. Hypoglycaemia rates were lower in the Stepwise arm. © 2016 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

  16. Using some results about the Lie evolution of differential operators to obtain the Fokker-Planck equation for non-Hamiltonian dynamical systems of interest

    NASA Astrophysics Data System (ADS)

    Bianucci, Marco

    2018-05-01

    Finding the generalized Fokker-Planck Equation (FPE) for the reduced probability density function of a subpart of a given complex system is a classical issue of statistical mechanics. Zwanzig projection perturbation approach to this issue leads to the trouble of resumming a series of commutators of differential operators that we show to correspond to solving the Lie evolution of first order differential operators along the unperturbed Liouvillian of the dynamical system of interest. In this paper, we develop in a systematic way the procedure to formally solve this problem. In particular, here we show which the basic assumptions are, concerning the dynamical system of interest, necessary for the Lie evolution to be a group on the space of first order differential operators, and we obtain the coefficients of the so-evolved operators. It is thus demonstrated that if the Liouvillian of the system of interest is not a first order differential operator, in general, the FPE structure breaks down and the master equation contains all the power of the partial derivatives, up to infinity. Therefore, this work shed some light on the trouble of the ubiquitous emergence of both thermodynamics from microscopic systems and regular regression laws at macroscopic scales. However these results are very general and can be applied also in other contexts that are non-Hamiltonian as, for example, geophysical fluid dynamics, where important events, like El Niño, can be considered as large time scale phenomena emerging from the observation of few ocean degrees of freedom of a more complex system, including the interaction with the atmosphere.

  17. Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles

    PubMed Central

    van Gestel, Jordi; Nowak, Martin A.

    2016-01-01

    Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a ‘sticky’ cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles. PMID:26894881

  18. Derivation and characterization of Chinese human embryonic stem cell line with high potential to differentiate into pancreatic and hepatic cells.

    PubMed

    Shi, Cheng; Shen, Huan; Jiang, Wei; Song, Zhi-Hua; Wang, Cheng-Yan; Wei, Li-Hui

    2011-04-01

    Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background, which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use, especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability. Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propagate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells. We generated a new Chinese human embryonic stem cells line, CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines: normal morphology, karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line. This newly established Chinese cell line, CH1, which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells, will provide a useful tool for embryo development research, along with clinical treatments for diabetes and some hepatic diseases.

  19. The Hartman-Grobman theorem for semilinear hyperbolic evolution equations

    NASA Astrophysics Data System (ADS)

    Hein, Marie-Luise; Prüss, Jan

    2016-10-01

    The famous Hartman-Grobman theorem for ordinary differential equations is extended to abstract semilinear hyperbolic evolution equations in Banach spaces by means of simple direct proof. It is also shown that the linearising map is Hölder continuous. Several applications to abstract and specific damped wave equations are given, to demonstrate the strength of our results.

  20. Evolution of marginal populations of an invasive vine increases the likelihood of future spread

    Treesearch

    Francis F. Kilkenny; Laura F. Galloway

    2015-01-01

    The prediction of invasion patterns may require an understanding of intraspecific differentiation in invasive species and its interaction with climate change. We compare Japanese honeysuckle (Lonicera japonica) plants from the core (100-150 yr old) and northern margin (< 65 yr old) of their North American invaded range to determine whether evolution...

  1. Differential Accumulation of Retroelements and Diversification of NB-LRR Disease Resistance Genes in Duplicated Regions Following Polyploidy in the Ancestor of Soybean

    USDA-ARS?s Scientific Manuscript database

    The genomes of most flowering plants have undergone polyploidization at some point in their evolution. How such polyploidization events have impacted the subsequent evolution of genome structure is poorly understood. We sequenced two homoeologous regions in soybean (Glycine max), which underwent a...

  2. Thermal evolution of magma reservoirs in the shallow crust and incidence on magma differentiation: the St-Jean-du-Doigt layered intrusion (Brittany, France)

    NASA Astrophysics Data System (ADS)

    Barboni, M.; Bussy, F.; Ovtcharova, M.; Schoene, B.

    2009-12-01

    Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, thermal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are controlled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evidence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. We show however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt bimodal intrusion, France. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built laccolith. Early m-thick mafic sills are homogeneous and fine-grained with planar contacts with neighbouring felsic sills; within a minimal 0.5 Ma time span, the system gets warmer, adjacent sills interact and mingle, and mafic sills are differentiating in the top 40 cm of the layer. Rheological and thermal modelling show that observed in-situ differentiation-accumulation processes may be achieved in less than 10 years at shallow depth, provided that (1) the differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens, (2) the early mafic sills accreted under the roof of the laccolith as a 100m thick top layer within 0.5 My, and (3) subsequent and sustained magmatic activity occurred on a short time scale (years) at an injection rate of ca. 0.5m/y. Extraction of differentiated residual liquids might eventually take place and mix with newly injected magma as documented in active syn-emplacement shear-zones. These low-pressure differentiated liquids can potentially contribute to subaerial volcanic activity along the major shear-zones.

  3. Performance Review of Harmony Search, Differential Evolution and Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Mohan Pandey, Hari

    2017-08-01

    Metaheuristic algorithms are effective in the design of an intelligent system. These algorithms are widely applied to solve complex optimization problems, including image processing, big data analytics, language processing, pattern recognition and others. This paper presents a performance comparison of three meta-heuristic algorithms, namely Harmony Search, Differential Evolution, and Particle Swarm Optimization. These algorithms are originated altogether from different fields of meta-heuristics yet share a common objective. The standard benchmark functions are used for the simulation. Statistical tests are conducted to derive a conclusion on the performance. The key motivation to conduct this research is to categorize the computational capabilities, which might be useful to the researchers.

  4. Cloud computing task scheduling strategy based on differential evolution and ant colony optimization

    NASA Astrophysics Data System (ADS)

    Ge, Junwei; Cai, Yu; Fang, Yiqiu

    2018-05-01

    This paper proposes a task scheduling strategy DEACO based on the combination of Differential Evolution (DE) and Ant Colony Optimization (ACO), aiming at the single problem of optimization objective in cloud computing task scheduling, this paper combines the shortest task completion time, cost and load balancing. DEACO uses the solution of the DE to initialize the initial pheromone of ACO, reduces the time of collecting the pheromone in ACO in the early, and improves the pheromone updating rule through the load factor. The proposed algorithm is simulated on cloudsim, and compared with the min-min and ACO. The experimental results show that DEACO is more superior in terms of time, cost, and load.

  5. Time Evolution of Modeled Reynolds Stresses in Planar Homogeneous Flows

    NASA Technical Reports Server (NTRS)

    Jongen, T.; Gatski, T. B.

    1997-01-01

    The analytic expression of the time evolution of the Reynolds stress anisotropy tensor in all planar homogeneous flows is obtained by exact integration of the modeled differential Reynolds stress equations. The procedure is based on results of tensor representation theory, is applicable for general pressure-strain correlation tensors, and can account for any additional turbulence anisotropy effects included in the closure. An explicit solution of the resulting system of scalar ordinary differential equations is obtained for the case of a linear pressure-strain correlation tensor. The properties of this solution are discussed, and the dynamic behavior of the Reynolds stresses is studied, including limit cycles and sensitivity to initial anisotropies.

  6. A Self Adaptive Differential Evolution Algorithm for Global Optimization

    NASA Astrophysics Data System (ADS)

    Kumar, Pravesh; Pant, Millie

    This paper presents a new Differential Evolution algorithm based on hybridization of adaptive control parameters and trigonometric mutation. First we propose a self adaptive DE named ADE where choice of control parameter F and Cr is not fixed at some constant value but is taken iteratively. The proposed algorithm is further modified by applying trigonometric mutation in it and the corresponding algorithm is named as ATDE. The performance of ATDE is evaluated on the set of 8 benchmark functions and the results are compared with the classical DE algorithm in terms of average fitness function value, number of function evaluations, convergence time and success rate. The numerical result shows the competence of the proposed algorithm.

  7. [Feature extraction for breast cancer data based on geometric algebra theory and feature selection using differential evolution].

    PubMed

    Li, Jing; Hong, Wenxue

    2014-12-01

    The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

  8. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    PubMed

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  9. Variation of facial features among three African populations: Body height match analyses.

    PubMed

    Taura, M G; Adamu, L H; Gudaji, A

    2017-01-01

    Body height is one of the variables that show a correlation with facial craniometry. Here we seek to discriminate the three populations (Nigerians, Ugandans and Kenyans) using facial craniometry based on different categories of body height of adult males. A total of 513 individuals comprising 234 Nigerians, 169 Ugandans and 110 Kenyans with mean age of 25.27, s=5.13 (18-40 years) participated. Paired and unpaired facial features were measured using direct craniometry. Multivariate and stepwise discriminate function analyses were used for differentiation of the three populations. The result showed significant overall facial differences among the three populations in all the body height categories. Skull height, total facial height, outer canthal distance, exophthalmometry, right ear width and nasal length were significantly different among the three different populations irrespective of body height categories. Other variables were sensitive to body height. Stepwise discriminant function analyses included maximum of six variables for better discrimination between the three populations. The single best discriminator of the groups was total facial height, however, for body height >1.70m the single best discriminator was nasal length. Most of the variables were better used with function 1, hence, better discrimination than function 2. In conclusion, adult body height in addition to other factors such as age, sex, and ethnicity should be considered in making decision on facial craniometry. However, not all the facial linear dimensions were sensitive to body height. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Quantifying Ciliary Dynamics during Assembly Reveals Step-wise Waveform Maturation in Airway Cells.

    PubMed

    Oltean, Alina; Schaffer, Andrew J; Bayly, Philip V; Brody, Steven L

    2018-05-31

    Motile cilia are essential for clearance of particulates and pathogens from airways. For effective transport, ciliary motor proteins and axonemal structures interact to generate the rhythmic, propulsive bending, but the mechanisms that produce a dynamic waveform remain incompletely understood. Biomechanical measures of human cilia motion and their relationships to cilia assembly are needed to illuminate the biophysics of normal cilia function, and to quantify dysfunction in ciliopathies. To these ends, we analyzed cilia motion from high-speed video microscopy of ciliated cells sampled from human lung airways compared to primary-culture cells that undergo ciliogenesis in vitro. Quantitative assessment of waveform parameters showed variations in waveform shape between individual cilia; however, general trends in waveform parameters emerged, associated with progression of cilia length and stage of differentiation. When cilia emerged from cultured cells, beat frequency was initially elevated, then fell and remained stable as cilia lengthened. In contrast, the average bending amplitude and the ability to generate force gradually increased and eventually approached values observed in ex vivo samples. Dynein arm motor proteins DNAH5, DNAH9, DNAH11, and DNAH6 were localized within specific regions of the axoneme in the ex vivo cells; however distinct stages of in vitro waveform development identified by biomechanical features were associated with the progressive movement of dyneins to the appropriate proximal or distal sections of the cilium. These observations suggest that the step-wise variation in waveform development during ciliogenesis is dependent on cilia length and potentially outer dynein arm assembly.

  11. The landscape of sex-differential transcriptome and its consequent selection in human adults.

    PubMed

    Gershoni, Moran; Pietrokovski, Shmuel

    2017-02-07

    The prevalence of several human morbid phenotypes is sometimes much higher than intuitively expected. This can directly arise from the presence of two sexes, male and female, in one species. Men and women have almost identical genomes but are distinctly dimorphic, with dissimilar disease susceptibilities. Sexually dimorphic traits mainly result from differential expression of genes present in both sexes. Such genes can be subject to different, and even opposing, selection constraints in the two sexes. This can impact human evolution by differential selection on mutations with dissimilar effects on the two sexes. We comprehensively mapped human sex-differential genetic architecture across 53 tissues. Analyzing available RNA-sequencing data from 544 adults revealed thousands of genes differentially expressed in the reproductive tracts and tissues common to both sexes. Sex-differential genes are related to various biological systems, and suggest new insights into the pathophysiology of diverse human diseases. We also identified a significant association between sex-specific gene transcription and reduced selection efficiency and accumulation of deleterious mutations, which might affect the prevalence of different traits and diseases. Interestingly, many of the sex-specific genes that also undergo reduced selection efficiency are essential for successful reproduction in men or women. This seeming paradox might partially explain the high incidence of human infertility. This work provides a comprehensive overview of the sex-differential transcriptome and its importance to human evolution and human physiology in health and in disease.

  12. Genomics of Parallel Ecological Speciation in Lake Victoria Cichlids.

    PubMed

    Meier, Joana Isabel; Marques, David Alexander; Wagner, Catherine Elise; Excoffier, Laurent; Seehausen, Ole

    2018-06-01

    The genetic basis of parallel evolution of similar species is of great interest in evolutionary biology. In the adaptive radiation of Lake Victoria cichlid fishes, sister species with either blue or red-back male nuptial coloration have evolved repeatedly, often associated with shallower and deeper water, respectively. One such case is blue and red-backed Pundamilia species, for which we recently showed that a young species pair may have evolved through "hybrid parallel speciation". Coalescent simulations suggested that the older species P. pundamilia (blue) and P. nyererei (red-back) admixed in the Mwanza Gulf and that new "nyererei-like" and "pundamilia-like" species evolved from the admixed population. Here, we use genome scans to study the genomic architecture of differentiation, and assess the influence of hybridization on the evolution of the younger species pair. For each of the two species pairs, we find over 300 genomic regions, widespread across the genome, which are highly differentiated. A subset of the most strongly differentiated regions of the older pair are also differentiated in the younger pair. These shared differentiated regions often show parallel allele frequency differences, consistent with the hypothesis that admixture-derived alleles were targeted by divergent selection in the hybrid population. However, two-thirds of the genomic regions that are highly differentiated between the younger species are not highly differentiated between the older species, suggesting independent evolutionary responses to selection pressures. Our analyses reveal how divergent selection on admixture-derived genetic variation can facilitate new speciation events.

  13. Natural Selection and Adaptive Evolution of Leptin in the Ochotona Family Driven by the Cold Environmental Stress

    PubMed Central

    Yang, Jie; Wang, Zhen Long; Zhao, Xin Quan; Wang, De Peng; Qi, De Lin; Xu, Bao Hong; Ren, Yong Hong; Tian, Hui Fang

    2008-01-01

    Background Environmental stress can accelerate the evolutionary rate of specific stress-response proteins and create new functions specialized for different environments, enhancing an organism's fitness to stressful environments. Pikas (order Lagomorpha), endemic, non-hibernating mammals in the modern Holarctic Region, live in cold regions at either high altitudes or high latitudes and have a maximum distribution of species diversification confined to the Qinghai-Tibet Plateau. Variations in energy metabolism are remarkable for them living in cold environments. Leptin, an adipocyte-derived hormone, plays important roles in energy homeostasis. Methodology/Principal Findings To examine the extent of leptin variations within the Ochotona family, we cloned the entire coding sequence of pika leptin from 6 species in two regions (Qinghai-Tibet Plateau and Inner Mongolia steppe in China) and the leptin sequences of plateau pikas (O. curzonia) from different altitudes on Qinghai-Tibet Plateau. We carried out both DNA and amino acid sequence analyses in molecular evolution and compared modeled spatial structures. Our results show that positive selection (PS) acts on pika leptin, while nine PS sites located within the functionally significant segment 85-119 of leptin and one unique motif appeared only in pika lineages-the ATP synthase α and β subunit signature site. To reveal the environmental factors affecting sequence evolution of pika leptin, relative rate test was performed in pikas from different altitudes. Stepwise multiple regression shows that temperature is significantly and negatively correlated with the rates of non-synonymous substitution (Ka) and amino acid substitution (Aa), whereas altitude does not significantly affect synonymous substitution (Ks), Ka and Aa. Conclusions/Significance Our findings support the viewpoint that adaptive evolution may occur in pika leptin, which may play important roles in pikas' ecological adaptation to extreme environmental stress. We speculate that cold, and probably not hypoxia, may be the primary environmental factor for driving adaptive evolution of pika leptin. PMID:18213380

  14. Novel insights of microRNAs in the development of systemic lupus erythematosus.

    PubMed

    Le, Xiong; Yu, Xiang; Shen, Nan

    2017-09-01

    To provide a brief overview of recent progress in microRNA biogenesis and homeostasis, its function in immune system and systemic lupus erythematosus (SLE), as well as successful microRNA-based therapy in vivo. Stepwise microRNA biogenesis is elaborately regulated at multiple levels, ranging from transcription to ultimate function. Mature microRNAs have inhibitory effects on various biological molecules, which are crucial for stabilizing and normalizing differentiation and function of immune cells. Abnormality in microRNA expression contributes to dysfunction of lupus immune cells and resident cells in local tissues. Manipulation of dysregulated microRNAs in vivo through microRNA delivery or targeting microRNA might be promising for SLE treatment. Recent advances highlight that microRNAs are important in immunity, lupus autoimmunity and as potential therapy target for SLE.

  15. Effects of stepwise dry/wet-aging and freezing on meat quality of beef loins.

    PubMed

    Kim, Yuan H Brad; Meyers, Brandon; Kim, Hyun-Wook; Liceaga, Andrea M; Lemenager, Ronald P

    2017-01-01

    The objective of this study was to evaluate the effects of stepwise dry/wet-aging and freezing method on quality attributes of beef loins. Paired loins (M. Longissimus lumborum) from eight carcasses were assigned to either stepwise dry/wet-aging (carcass dry-aging for 10days then further wet-aging for 7days in vacuum bags) or carcass dry-aging only for 17days. Then, each loin was divided into three sections for freezing (never-frozen, blast or cryogenic freezing). Stepwise dry/wet-aged loin had lower purge/drip loss and shear force than conventionally dry-aged loin (P<0.05), but similar color and sensory characteristics (P>0.05). The cryogenic freezing resulted in a significant decrease in shear force values and a significant improvement in water-holding capacity (WHC). These findings indicate that the stepwise dry/wet-aging coupled with cryogenic freezing could provide beneficial impacts to the local meat industry by providing equivalent quality attributes as conventional dry-aging and improving WHC of frozen/thawed meat, while reducing the time needed for dry-aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline.

    PubMed

    Hinnant, Taylor D; Alvarez, Arturo A; Ables, Elizabeth T

    2017-09-01

    Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken together, these findings provide further insight into the regulation of cell proliferation and the acquisition of differentiated cell fate, with broad implications across developing tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Local repair of stoma prolapse: Case report of an in vivo application of linear stapler devices.

    PubMed

    Monette, Margaret M; Harney, Rodney T; Morris, Melanie S; Chu, Daniel I

    2016-11-01

    One of the most common late complications following stoma construction is prolapse. Although the majority of prolapse can be managed conservatively, surgical revision is required with incarceration/strangulation and in certain cases laparotomy and/or stoma reversal are not appropriate. This report will inform surgeons on safe and effective approaches to revising prolapsed stomas using local techniques. A 58 year old female with an obstructing rectal cancer previously received a diverting transverse loop colostomy. On completion of neoadjuvant treatment, re-staging found new lung metastases. She was scheduled for further chemotherapy but incarcerated a prolapsed segment of her loop colostomy. As there was no plan to resect her primary rectal tumor at the time, a local revision was preferred. Linear staplers were applied to the prolapsed stoma in step-wise fashion to locally revise the incarcerated prolapse. Post-operative recovery was satisfactory with no complications or recurrence of prolapse. We detail in step-wise fashion a technique using linear stapler devices that can be used to locally revise prolapsed stoma segments and therefore avoid a laparotomy. The procedure is technically easy to perform with satisfactory post-operative outcomes. We additionally review all previous reports of local repairs and show the evolution of local prolapse repair to the currently reported technique. This report offers surgeons an alternative, efficient and effective option for addressing the complications of stoma prolapse. While future studies are needed to assess long-term outcomes, in the short-term, our report confirms the safety and effectiveness of this local technique.

  18. The rise and fall of periodic 'drumbeat' seismicity at Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Bell, Andrew F.; Hernandez, Stephen; Gaunt, H. Elizabeth; Mothes, Patricia; Ruiz, Mario; Sierra, Daniel; Aguaiza, Santiago

    2017-10-01

    Highly periodic 'drumbeat' long period (LP) earthquakes have been described from several andesitic and dacitic volcanoes, commonly accompanying incremental ascent and effusion of viscous magma. However, the processes controlling the occurrence and characteristics of drumbeat, and LP earthquakes more generally, remain contested. Here we use new quantitative tools to describe the emergence, evolution, and degradation of drumbeat LP seismicity at the andesitic Tungurahua volcano, Ecuador, in April 2015. The signals were recorded during an episode of minor explosive activity and ash emission, without lava effusion, and are the first to be reported at Tungurahua during the ongoing 17 yrs of eruption. Following four days of high levels of continuous and 'pulsed' tremor, highly-periodic LP earthquakes first appear on 10 April. Over the next four days, inter-event times and event amplitudes evolve through a series of step-wise transitions between stable behaviors, each involving a decrease in the degree of periodicity. Families of similar waveforms persist before, during, and after drumbeat activity, but the activity levels of different families change coincidentally with transitions in event rate, amplitude, and periodicity. A complex micro-seismicity 'initiation' sequence shows pulse-like and stepwise changes in inter-event times and amplitudes in the hours preceding the onset of drumbeat activity that indicate a partial de-coupling between event size and rate. The observations increase the phenomenology of drumbeat LP earthquakes, and suggest that at Tungurahua they result from gas flux and rapid depressurization controlled by shear failure of the margins of the ascending magma column.

  19. Mass balance evaluation of polybrominated diphenyl ethers in landfill leachate and potential for transfer from e-waste.

    PubMed

    Danon-Schaffer, Monica N; Mahecha-Botero, Andrés; Grace, John R; Ikonomou, Michael

    2013-09-01

    Previous research on brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) has largely focussed on their concentrations in the environment and their adverse effects on human health. This paper explores their transfer from waste streams to water and soil. A comprehensive mass balance model is developed to track polybrominated diphenyl ethers (PBDEs), originating from e-waste and non-e-waste solids leaching from a landfill. Stepwise debromination is assumed to occur in three sub-systems (e-waste, aqueous leachate phase, and non-e-waste solids). Analysis of landfill samples and laboratory results from a solid-liquid contacting chamber are used to estimate model parameters to simulate an urban landfill system, for past and future scenarios. Sensitivity tests to key model parameters were conducted. Lower BDEs require more time to disappear than high-molecular weight PBDEs, since debromination takes place in a stepwise manner, according to the simplified reaction scheme. Interphase mass transfer causes the decay pattern to be similar in all three sub-systems. The aqueous phase is predicted to be the first sub-system to eliminate PBDEs if their input to the landfill were to be stopped. The non-e-waste solids would be next, followed by the e-waste sub-system. The model shows that mass transfer is not rate-limiting, but the evolution over time depends on the kinetic degradation parameters. Experimental scatter makes model testing difficult. Nevertheless, the model provides qualitative understanding of the influence of key variables. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A Population Biology Perspective on the Stepwise Infection Process of the Bacterial Pathogen Pasteuria ramosa in Daphnia.

    PubMed

    Ebert, Dieter; Duneau, David; Hall, Matthew D; Luijckx, Pepijn; Andras, Jason P; Du Pasquier, Louis; Ben-Ami, Frida

    2016-01-01

    The infection process of many diseases can be divided into series of steps, each one required to successfully complete the parasite's life and transmission cycle. This approach often reveals that the complex phenomenon of infection is composed of a series of more simple mechanisms. Here we demonstrate that a population biology approach, which takes into consideration the natural genetic and environmental variation at each step, can greatly aid our understanding of the evolutionary processes shaping disease traits. We focus in this review on the biology of the bacterial parasite Pasteuria ramosa and its aquatic crustacean host Daphnia, a model system for the evolutionary ecology of infectious disease. Our analysis reveals tremendous differences in the degree to which the environment, host genetics, parasite genetics and their interactions contribute to the expression of disease traits at each of seven different steps. This allows us to predict which steps may respond most readily to selection and which steps are evolutionarily constrained by an absence of variation. We show that the ability of Pasteuria to attach to the host's cuticle (attachment step) stands out as being strongly influenced by the interaction of host and parasite genotypes, but not by environmental factors, making it the prime candidate for coevolutionary interactions. Furthermore, the stepwise approach helps us understanding the evolution of resistance, virulence and host ranges. The population biological approach introduced here is a versatile tool that can be easily transferred to other systems of infectious disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. An Enhanced Differential Evolution Algorithm Based on Multiple Mutation Strategies.

    PubMed

    Xiang, Wan-li; Meng, Xue-lei; An, Mei-qing; Li, Yin-zhen; Gao, Ming-xia

    2015-01-01

    Differential evolution algorithm is a simple yet efficient metaheuristic for global optimization over continuous spaces. However, there is a shortcoming of premature convergence in standard DE, especially in DE/best/1/bin. In order to take advantage of direction guidance information of the best individual of DE/best/1/bin and avoid getting into local trap, based on multiple mutation strategies, an enhanced differential evolution algorithm, named EDE, is proposed in this paper. In the EDE algorithm, an initialization technique, opposition-based learning initialization for improving the initial solution quality, and a new combined mutation strategy composed of DE/current/1/bin together with DE/pbest/bin/1 for the sake of accelerating standard DE and preventing DE from clustering around the global best individual, as well as a perturbation scheme for further avoiding premature convergence, are integrated. In addition, we also introduce two linear time-varying functions, which are used to decide which solution search equation is chosen at the phases of mutation and perturbation, respectively. Experimental results tested on twenty-five benchmark functions show that EDE is far better than the standard DE. In further comparisons, EDE is compared with other five state-of-the-art approaches and related results show that EDE is still superior to or at least equal to these methods on most of benchmark functions.

  2. Multiobjective Model of Time-of-Use and Stepwise Power Tariff for Residential Consumers in Regulated Power Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Bin; Yang, Rui; Li, Canbing

    Here, time-of-use (TOU) rates and stepwise power tariff (SPT) are important economic levers to motivate residents to shift their electricity usage in response to electricity price. In this paper, a new multiobjective optimal tariff-making model of time-of-use and stepwise power tariff (TOUSPT) is proposed, which combines the complementary characteristics of two power tariffs, for residential energy conservation and peak load shaving. In the proposed approach, the residential demand response with price elasticity in regulated power market is considered to determine the optimum peak-valley TOU tariffs for each stepwise electricity partition. Furthermore, a practical case study is implemented to test themore » effectiveness of the proposed TOUSPT, and the results demonstrate that TOUSPT can achieve efficient end-use energy saving and also shift load from peak to off-peak periods.« less

  3. Multiobjective Model of Time-of-Use and Stepwise Power Tariff for Residential Consumers in Regulated Power Markets

    DOE PAGES

    Zhou, Bin; Yang, Rui; Li, Canbing; ...

    2017-07-04

    Here, time-of-use (TOU) rates and stepwise power tariff (SPT) are important economic levers to motivate residents to shift their electricity usage in response to electricity price. In this paper, a new multiobjective optimal tariff-making model of time-of-use and stepwise power tariff (TOUSPT) is proposed, which combines the complementary characteristics of two power tariffs, for residential energy conservation and peak load shaving. In the proposed approach, the residential demand response with price elasticity in regulated power market is considered to determine the optimum peak-valley TOU tariffs for each stepwise electricity partition. Furthermore, a practical case study is implemented to test themore » effectiveness of the proposed TOUSPT, and the results demonstrate that TOUSPT can achieve efficient end-use energy saving and also shift load from peak to off-peak periods.« less

  4. The fine-scale genetic structure and evolution of the Japanese population

    PubMed Central

    Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua

    2017-01-01

    The contemporary Japanese populations largely consist of three genetically distinct groups—Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics. PMID:29091727

  5. The incremental validity of a computerised assessment added to clinical rating scales to differentiate adult ADHD from autism spectrum disorder.

    PubMed

    Groom, Madeleine J; Young, Zoe; Hall, Charlotte L; Gillott, Alinda; Hollis, Chris

    2016-09-30

    There is a clinical need for objective evidence-based measures that are sensitive and specific to ADHD when compared with other neurodevelopmental disorders. This study evaluated the incremental validity of adding an objective measure of activity and computerised cognitive assessment to clinical rating scales to differentiate adult ADHD from Autism spectrum disorders (ASD). Adults with ADHD (n=33) or ASD (n=25) performed the QbTest, comprising a Continuous Performance Test with motion-tracker to record physical activity. QbTest parameters measuring inattention, impulsivity and hyperactivity were combined to provide a summary score ('QbTotal'). Binary stepwise logistic regression measured the probability of assignment to the ADHD or ASD group based on scores on the Conners Adult ADHD Rating Scale-subscale E (CAARS-E) and Autism Quotient (AQ10) in the first step and then QbTotal added in the second step. The model fit was significant at step 1 (CAARS-E, AQ10) with good group classification accuracy. These predictors were retained and QbTotal was added, resulting in a significant improvement in model fit and group classification accuracy. All predictors were significant. ROC curves indicated superior specificity of QbTotal. The findings present preliminary evidence that adding QbTest to clinical rating scales may improve the differentiation of ADHD and ASD in adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Origin and thermal evolution of Mars

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Solomon, Sean C.; Turcotte, D. L.; Drake, M. J.; Sleep, N. H.

    1993-01-01

    The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle and mantle heat production. Geological, geophysical, and geochemical observations of the composition and structure of the interior and of the timing of major events in Martian evolution, such as global differentiation, atmospheric outgassing and the formation of the hemispherical dichotomy and Tharsis, are used to constrain the model computations. Isotope systematics of SNC meteorites suggest core formation essentially contemporaneously with the completion of accretion. Other aspects of this investigation are discussed.

  7. Culture rather than genes provides greater scope for the evolution of large-scale human prosociality

    PubMed Central

    Bell, Adrian V.; Richerson, Peter J.; McElreath, Richard

    2009-01-01

    Whether competition among large groups played an important role in human social evolution is dependent on how variation, whether cultural or genetic, is maintained between groups. Comparisons between genetic and cultural differentiation between neighboring groups show how natural selection on large groups is more plausible on cultural rather than genetic variation. PMID:19822753

  8. No evidence for faster male hybrid sterility in population crosses of an intertidal copepod (Tigriopus californicus).

    PubMed

    Willett, Christopher S

    2008-06-01

    Two different forces are thought to contribute to the rapid accumulation of hybrid male sterility that has been observed in many inter-specific crosses, namely the faster male and the dominance theories. For male heterogametic taxa, both faster male and dominance would work in the same direction to cause the rapid evolution of male sterility; however, for taxa lacking differentiated sex chromosomes only the faster male theory would explain the rapid evolution of male hybrid sterility. It is currently unknown what causes the faster evolution of male sterility, but increased sexual selection on males and the sensitivity of genes involved in male reproduction are two hypotheses that could explain the observation. Here, patterns of hybrid sterility in crosses of genetically divergent copepod populations are examined to test potential mechanisms of faster male evolution. The study species, Tigriopus californicus, lacks differentiated, hemizygous sex chromosomes and appears to have low levels of divergence caused by sexual selection acting upon males. Hybrid sterility does not accumulate more rapidly in males than females in these crosses suggesting that in this taxon male reproductive genes are not inherently more prone to disruption in hybrids.

  9. Cognitive algorithms: dynamic logic, working of the mind, evolution of consciousness and cultures

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.

    2007-04-01

    The paper discusses evolution of consciousness driven by the knowledge instinct, a fundamental mechanism of the mind which determines its higher cognitive functions. Dynamic logic mathematically describes the knowledge instinct. It overcomes past mathematical difficulties encountered in modeling intelligence and relates it to mechanisms of concepts, emotions, instincts, consciousness and unconscious. The two main aspects of the knowledge instinct are differentiation and synthesis. Differentiation is driven by dynamic logic and proceeds from vague and unconscious states to more crisp and conscious states, from less knowledge to more knowledge at each hierarchical level of the mind. Synthesis is driven by dynamic logic operating in a hierarchical organization of the mind; it strives to achieve unity and meaning of knowledge: every concept finds its deeper and more general meaning at a higher level. These mechanisms are in complex relationship of symbiosis and opposition, which leads to complex dynamics of evolution of consciousness and cultures. Modeling this dynamics in a population leads to predictions for the evolution of consciousness, and cultures. Cultural predictive models can be compared to experimental data and used for improvement of human conditions. We discuss existing evidence and future research directions.

  10. SaLEM (v1.0) - the Soil and Landscape Evolution Model (SaLEM) for simulation of regolith depth in periglacial environments

    NASA Astrophysics Data System (ADS)

    Bock, Michael; Conrad, Olaf; Günther, Andreas; Gehrt, Ernst; Baritz, Rainer; Böhner, Jürgen

    2018-04-01

    We propose the implementation of the Soil and Landscape Evolution Model (SaLEM) for the spatiotemporal investigation of soil parent material evolution following a lithologically differentiated approach. Relevant parts of the established Geomorphic/Orogenic Landscape Evolution Model (GOLEM) have been adapted for an operational Geographical Information System (GIS) tool within the open-source software framework System for Automated Geoscientific Analyses (SAGA), thus taking advantage of SAGA's capabilities for geomorphometric analyses. The model is driven by palaeoclimatic data (temperature, precipitation) representative of periglacial areas in northern Germany over the last 50 000 years. The initial conditions have been determined for a test site by a digital terrain model and a geological model. Weathering, erosion and transport functions are calibrated using extrinsic (climatic) and intrinsic (lithologic) parameter data. First results indicate that our differentiated SaLEM approach shows some evidence for the spatiotemporal prediction of important soil parental material properties (particularly its depth). Future research will focus on the validation of the results against field data, and the influence of discrete events (mass movements, floods) on soil parent material formation has to be evaluated.

  11. The nonlinear evolution of modes on unstable stratified shear layers

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas; Dando, Andrew; Hall, Philip

    1993-01-01

    The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.

  12. Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty

    PubMed Central

    Lei, Xiaohui; Wang, Chao; Yue, Dong; Xie, Xiangpeng

    2017-01-01

    Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications. PMID:28961262

  13. Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil.

    PubMed

    Xu, Jinlan; Deng, Xin; Cui, Yiwei; Kong, Fanxing

    2016-12-15

    Fenton pre-oxidation provides nutrients to promote bioremediation. However, the effects of the indigenous bacteria that remain following Fenton oxidation on nutrient mobilization and subsequent bioremediation remain unclear. Experiments were performed with inoculation with native bacteria and foreign bacteria or without inoculation after four regimens of stepwise pre-oxidations. The effects of the indigenous bacteria remaining after stepwise oxidation on nutrient mobilization and subsequent bioremediation over 80 days were investigated. After stepwise Fenton pre-oxidation at a low H 2 O 2 concentration (225×4), the remaining indigenous bacterial populations reached their peak (4.8±0.17×10 6 CFU/g), the nutrients were mobilized rapidly, and the subsequent bioremediation of crude oil was improved (biodegradation efficiency of 35%). However, after stepwise Fenton pre-oxidation at a high H 2 O 2 concentration (450×4), only 3.6±0.16×10 3 CFU/g of indigenous bacteria remained, and the indigenous bacteria that degrade C 15 -C 30 alkanes were inhibited. The nutrient mobilization was then highly limited, and only 19% of total petroleum hydrocarbon was degraded. Furthermore, the recovery period after the low H 2 O 2 concentration stepwise Fenton pre-oxidation (225×4) was less than 20 days, which was 20-30 days shorter than with the other pre-oxidation treatments. Therefore, stepwise Fenton pre-oxidation at a low H 2 O 2 concentration protects indigenous bacterial populations and improves the nutrient mobilization and subsequent bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Molecular evolution and the latitudinal biodiversity gradient.

    PubMed

    Dowle, E J; Morgan-Richards, M; Trewick, S A

    2013-06-01

    Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.

  15. Protein interactions and ligand binding: from protein subfamilies to functional specificity.

    PubMed

    Rausell, Antonio; Juan, David; Pazos, Florencio; Valencia, Alfonso

    2010-02-02

    The divergence accumulated during the evolution of protein families translates into their internal organization as subfamilies, and it is directly reflected in the characteristic patterns of differentially conserved residues. These specifically conserved positions in protein subfamilies are known as "specificity determining positions" (SDPs). Previous studies have limited their analysis to the study of the relationship between these positions and ligand-binding specificity, demonstrating significant yet limited predictive capacity. We have systematically extended this observation to include the role of differential protein interactions in the segregation of protein subfamilies and explored in detail the structural distribution of SDPs at protein interfaces. Our results show the extensive influence of protein interactions in the evolution of protein families and the widespread association of SDPs with protein interfaces. The combined analysis of SDPs in interfaces and ligand-binding sites provides a more complete picture of the organization of protein families, constituting the necessary framework for a large scale analysis of the evolution of protein function.

  16. First-passage times for pattern formation in nonlocal partial differential equations

    NASA Astrophysics Data System (ADS)

    Cáceres, Manuel O.; Fuentes, Miguel A.

    2015-10-01

    We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated by invading fronts.

  17. First-passage times for pattern formation in nonlocal partial differential equations.

    PubMed

    Cáceres, Manuel O; Fuentes, Miguel A

    2015-10-01

    We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated by invading fronts.

  18. Social cohesion among kin, gene flow without dispersal and the evolution of population genetic structure in the killer whale (Orcinus orca).

    PubMed

    Pilot, M; Dahlheim, M E; Hoelzel, A R

    2010-01-01

    In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.

  19. Differential evolution-based multi-objective optimization for the definition of a health indicator for fault diagnostics and prognostics

    NASA Astrophysics Data System (ADS)

    Baraldi, P.; Bonfanti, G.; Zio, E.

    2018-03-01

    The identification of the current degradation state of an industrial component and the prediction of its future evolution is a fundamental step for the development of condition-based and predictive maintenance approaches. The objective of the present work is to propose a general method for extracting a health indicator to measure the amount of component degradation from a set of signals measured during operation. The proposed method is based on the combined use of feature extraction techniques, such as Empirical Mode Decomposition and Auto-Associative Kernel Regression, and a multi-objective Binary Differential Evolution (BDE) algorithm for selecting the subset of features optimal for the definition of the health indicator. The objectives of the optimization are desired characteristics of the health indicator, such as monotonicity, trendability and prognosability. A case study is considered, concerning the prediction of the remaining useful life of turbofan engines. The obtained results confirm that the method is capable of extracting health indicators suitable for accurate prognostics.

  20. The (De-)evolution of Evolution Games: A Content Analysis of the Representation of Evolution Through Natural Selection in Digital Games

    NASA Astrophysics Data System (ADS)

    Leith, Alex P.; Ratan, Rabindra A.; Wohn, Donghee Yvette

    2016-08-01

    Given the diversity and complexity of education game mechanisms and topics, this article contributes to a theoretical understanding of how game mechanisms "map" to educational topics through inquiry-based learning. Namely, the article examines the presence of evolution through natural selection (ENS) in digital games. ENS is a fundamentally important and widely misunderstood theory. This analysis of ENS portrayal in digital games provides insight into the use of games in teaching ENS. Systematic database search results were coded for the three principles of ENS: phenotypic variation, differential fitness, and fitness heritability. Though thousands of games use the term evolution, few presented elements of evolution, and even fewer contained all principles of ENS. Games developed to specifically teach evolution were difficult to find through Web searches. These overall deficiencies in ENS games reflect the inherent incompatibility between game control elements and the automatic process of ENS.

  1. Differentiation of infiltrative cholangiocarcinoma from benign common bile duct stricture using three-dimensional dynamic contrast-enhanced MRI with MRCP.

    PubMed

    Yu, X-R; Huang, W-Y; Zhang, B-Y; Li, H-Q; Geng, D-Y

    2014-06-01

    To retrospectively evaluate the criteria for discriminating infiltrative cholangiocarcinoma from benign common bile duct (CBD) stricture using three-dimensional dynamic contrast-enhanced (3D-DCE) magnetic resonance imaging (MRI) combined with magnetic resonance cholangiopancreatography (MRCP) imaging and to determine the predictors for cholangiocarcinoma versus benign CBD stricture. 3D-DCE MRI and MRCP images in 28 patients with infiltrative cholangiocarcinoma and 23 patients with benign causes of CBD stricture were reviewed retrospectively. The final diagnosis was based on surgical or biopsy records. Two radiologists analysed the MRI images for asymmetry, including the wall thickness, length, and enhancement pattern of the narrowed CBD segment, and upstream CBD dilatation. MRI findings that could be used as predictors were identified by univariate analysis and multivariable stepwise logistic regression analysis. Malignant strictures were significantly thicker (4.4 ± 1.2 mm) and longer (16.7 ± 7.7 mm) than the benign strictures (p < 0.05), and upstream CBD dilatation was larger in the infiltrative cholangiocarcinoma cases (20.7 ± 5.7 mm) than in the benign cases (16.5 ± 5.2 mm; p = 0.018). During both the portal venous and equilibrium phases, hyperenhancement was more frequently observed in malignant cases than in benign cases (p < 0.001). The results of the multivariable stepwise logistic regression analysis showed that both hyperenhancement of the involved CBD during the equilibrium phase and the ductal thickness were significant predictors for malignant strictures. When two diagnostic predictive values were used in combination, almost all patients with malignant strictures (n = 26, 92.9%) and benign strictures (n = 21, 91.3%) were correctly identified; the overall accuracy was 92.2% with correct classifications in 47 of the 51 patients. Infiltrative cholangiocarcinoma and benign CBD strictures could be effectively differentiated using DCE-MRI and MRCP based on hyperenhancement during the equilibrium phase and bile wall thickness of the involved segment. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  2. In Vitro Expanded Stem Cells from the Developing Retina Fail to Generate Photoreceptors but Differentiate into Myelinating Oligodendrocytes

    PubMed Central

    Czekaj, Magdalena; Haas, Jochen; Gebhardt, Marlen; Müller-Reichert, Thomas; Humphries, Peter; Farrar, Jane; Bartsch, Udo; Ader, Marius

    2012-01-01

    Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive ‘retinal stem cells’ (‘RSCs’) can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, ‘RSCs’, by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, ‘RSCs’ can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that ‘RSCs’ expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina. PMID:22848612

  3. Growth and differentiation of a murine interleukin-3-producing myelomonocytic leukemia cell line in a protein-free chemically defined medium.

    PubMed

    Kajigaya, Y; Ikuta, K; Sasaki, H; Matsuyama, S

    1990-10-01

    We established the continuous growth of WEHI-3B D+ cells in protein-free chemically defined F-12 medium by stepwise decreases in the concentration of fetal calf serum. This cell line, designated as WEHI-3B-Y1, has now been propagated in protein-free F-12 medium for 3 years. The population-doubling time of the cells in culture is about 24 hr. WEHI-3B-Y1 cells are immature undifferentiated cells which show positive staining for naphthol ASD chloroacetate esterase and alpha-naphthyl butyrate esterase and spontaneously exhibit a low level of differentiation to mature granulocytes and macrophages. Medium conditioned by WEHI-3B-Y1 cells stimulated the proliferation of an interleukin-3 (IL-3)-dependent FDCP-2 cell line. This conditioned medium was shown to have erythroid burst-promoting activity when assayed using normal murine bone marrow. The colony formation of WEHI-3B-Y1 cells in semi-solid agar culture was not stimulated by purified recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, in the presence of human transferrin, rhG-CSF enhanced the number of colonies of WEHI-3B-Y1 cells but did not induce their differentiation. These results suggest that WEHI-3B-Y1 cells cultured in protein-free medium produced murine IL-3. In addition, human G-CSF enhanced the clonal growth but did not induce the differentiation of WEHI-3B-Y1 cells cultured in serum-free medium.

  4. Novel candidate genes of the PARK7 interactome as mediators of apoptosis and acetylation in multiple sclerosis: An in silico analysis.

    PubMed

    Vavougios, George D; Zarogiannis, Sotirios G; Krogfelt, Karen Angeliki; Gourgoulianis, Konstantinos; Mitsikostas, Dimos Dimitrios; Hadjigeorgiou, Georgios

    2018-01-01

    currently only 4 studies have explored the potential role of PARK7's dysregulation in MS pathophysiology Currently, no study has evaluated the potential role of the PARK7 interactome in MS. The aim of our study was to assess the differential expression of PARK7 mRNA in peripheral blood mononuclears (PBMCs) donated from MS versus healthy patients using data mining techniques. The PARK7 interactome data from the GDS3920 profile were scrutinized for differentially expressed genes (DEGs); Gene Enrichment Analysis (GEA) was used to detect significantly enriched biological functions. 27 differentially expressed genes in the MS dataset were detected; 12 of these (NDUFA4, UBA2, TDP2, NPM1, NDUFS3, SUMO1, PIAS2, KIAA0101, RBBP4, NONO, RBBP7 AND HSPA4) are reported for the first time in MS. Stepwise Linear Discriminant Function Analysis constructed a predictive model (Wilk's λ = 0.176, χ 2 = 45.204, p = 1.5275e -10 ) with 2 variables (TIDP2, RBBP4) that achieved 96.6% accuracy when discriminating between patients and controls. Gene Enrichment Analysis revealed that induction and regulation of programmed / intrinsic cell death represented the most salient Gene Ontology annotations. Cross-validation on systemic lupus erythematosus and ischemic stroke datasets revealed that these functions are unique to the MS dataset. Based on our results, novel potential target genes are revealed; these differentially expressed genes regulate epigenetic and apoptotic pathways that may further elucidate underlying mechanisms of autorreactivity in MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Feasibility of detecting aflatoxin B1 on inoculated maize kernels surface using Vis/NIR hyperspectral imaging.

    PubMed

    Wang, Wei; Heitschmidt, Gerald W; Windham, William R; Feldner, Peggy; Ni, Xinzhi; Chu, Xuan

    2015-01-01

    The feasibility of using a visible/near-infrared hyperspectral imaging system with a wavelength range between 400 and 1000 nm to detect and differentiate different levels of aflatoxin B1 (AFB1 ) artificially titrated on maize kernel surface was examined. To reduce the color effects of maize kernels, image analysis was limited to a subset of original spectra (600 to 1000 nm). Residual staining from the AFB1 on the kernels surface was selected as regions of interest for analysis. Principal components analysis (PCA) was applied to reduce the dimensionality of hyperspectral image data, and then a stepwise factorial discriminant analysis (FDA) was performed on latent PCA variables. The results indicated that discriminant factors F2 can be used to separate control samples from all of the other groups of kernels with AFB1 inoculated, whereas the discriminant factors F1 can be used to identify maize kernels with levels of AFB1 as low as 10 ppb. An overall classification accuracy of 98% was achieved. Finally, the peaks of β coefficients of the discrimination factors F1 and F2 were analyzed and several key wavelengths identified for differentiating maize kernels with and without AFB1 , as well as those with differing levels of AFB1 inoculation. Results indicated that Vis/NIR hyperspectral imaging technology combined with the PCA-FDA was a practical method to detect and differentiate different levels of AFB1 artificially inoculated on the maize kernels surface. However, indicated the potential to detect and differentiate naturally occurring toxins in maize kernel. © 2014 Institute of Food Technologists®

  6. Evidence of Adaptive Evolution and Relaxed Constraints in Sex-Biased Genes of South American and West Indies Fruit Flies (Diptera: Tephritidae).

    PubMed

    Congrains, Carlos; Campanini, Emeline B; Torres, Felipe R; Rezende, Víctor B; Nakamura, Aline M; de Oliveira, Janaína L; Lima, André L A; Chahad-Ehlers, Samira; Sobrinho, Iderval S; de Brito, Reinaldo A

    2018-01-01

    Several studies have demonstrated that genes differentially expressed between sexes (sex-biased genes) tend to evolve faster than unbiased genes, particularly in males. The reason for this accelerated evolution is not clear, but several explanations have involved adaptive and nonadaptive mechanisms. Furthermore, the differences of sex-biased expression patterns of closely related species are also little explored out of Drosophila. To address the evolutionary processes involved with sex-biased expression in species with incipient differentiation, we analyzed male and female transcriptomes of Anastrepha fraterculus and Anastrepha obliqua, a pair of species that have diverged recently, likely in the presence of gene flow. Using these data, we inferred differentiation indexes and evolutionary rates and tested for signals of selection in thousands of genes expressed in head and reproductive transcriptomes from both species. Our results indicate that sex-biased and reproductive-biased genes evolve faster than unbiased genes in both species, which is due to both adaptive pressure and relaxed constraints. Furthermore, among male-biased genes evolving under positive selection, we identified some related to sexual functions such as courtship behavior and fertility. These findings suggest that sex-biased genes may have played important roles in the establishment of reproductive isolation between these species, due to a combination of selection and drift, and unveil a plethora of genetic markers useful for more studies in these species and their differentiation. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Effect of deformation path on microstructure, microhardness and texture evolution of interstitial free steel fabricated by differential speed rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamad, Kotiba; Chung, Bong Kwon; Ko, Young Gun, E-mail: younggun@ynu.ac.kr

    2014-08-15

    This paper reports the effect of the deformation path on the microstructure, microhardness, and texture evolution of interstitial free (IF) steel processed by differential speed rolling (DSR) method. For this purpose, total height reductions of 50% and 75% were imposed on the samples by a series of differential speed rolling operations with various height reductions per pass (deformation levels) ranging from 10 to 50% under a fixed roll speed ratio of 1:4 for the upper and lower rolls, respectively. Microstructural observations using transmission electron microscopy and electron backscattered diffraction measurements showed that the samples rolled at deformation level of 50%more » had the finest mean grain size (∼ 0.5 μm) compared to the other counterparts; also the samples rolled at deformation level of 50% showed a more uniform microstructure. Based on the microhardness measurements along the thickness direction of the deformed samples, gradual evolution of the microhardness value and its homogeneity was observed with the increase of the deformation level per pass. Texture analysis showed that, as the deformation level per pass increased, the fraction of alpha fiber and gamma fiber in the deformed samples increased. The textures obtained by the differential speed rolling process under the lubricated condition would be equivalent to those obtained by the conventional rolling. - Highlights: • Effect of DSR deformation path on microstructure of IF steel is significant. • IF steel rolled at deformation level of 50% has the ultrafine grains of ∼ 0.5 μm. • Rolling texture components are pronounced with increasing deformation level.« less

  8. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster.

    PubMed

    Schrider, Daniel R; Hahn, Matthew W; Begun, David J

    2016-05-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. [Who benefits from stepwise occupational reintegration provided under the statutory pension insurance scheme?].

    PubMed

    Bürger, W; Streibelt, M

    2011-06-01

    Stepwise occupational reintegration (SOR) - since law amendments in April 2004 also provided under the German pension insurance scheme (Deutsche Rentenversicherung, DRV) - is an instrument intended to support insurants on sick-leave in reintegrating into work step by step after long-term illness. In 2008, the effectiveness of SOR regarding return to work was affirmed for the first time in a comprehensive study. However, in view of the growing amount of SOR, the question of differential effects of SOR in special subgroups is raised. This paper presents a re-analysis of data collected in the 2008 study. A total of 696 patients after medical rehabilitation were included in the analyses, 348 with SOR provided by the DRV, and a control group of 348 patients without SOR matched on a multitude of different variables using the Propensity Scores. Successful outcome was measured using a combined criterion "Return to work in good health", that is, patients returning to gainful activity and with sick leave of under 6 weeks and no intention to retire within a one-year follow-period after medical rehabilitation. Differentiating criteria are age gender, rehab indication, periods of sick leave in the year before medical rehabilitation, kind of and access to medical rehabilitation. The data indicate especially good results of SOR for patients with mental disorders (OR=2.49), patients who were requested to participate in medical rehabilitation by a health insurance fund because of long-term sick leave (OR=2.71), and patients with longer periods of sick leave before medical rehabilitation (3 to <6 months: OR=2.41, 6 months and more: OR=2.23). In contrast, there are only minimal effects (statistically not significant) of SOR in patients with medical rehabilitation directly after a hospital stay ("Anschlussheilbehandlung"), patients with cardiac or oncological diseases, and in younger (age 19-34) and older patients (age 55-60). In-depth analyses show that SOR success is more marked in patients with poorer return to work prospects. The findings indicate differential effects of SOR after medical rehabilitation for subgroups, effects associated in particular with return to work problems, kind of disease, and age. There is evidence for greater benefits of SOR in groups of patients with a high risk of non-successful reintegration. Hence, SOR opens up new options after medical rehabilitation in patients with especially severe impairments. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Concepts in solid tumor evolution.

    PubMed

    Sidow, Arend; Spies, Noah

    2015-04-01

    Evolutionary mechanisms in cancer progression give tumors their individuality. Cancer evolution is different from organismal evolution, however, and we discuss where concepts from evolutionary genetics are useful or limited in facilitating an understanding of cancer. Based on these concepts we construct and apply the simplest plausible model of tumor growth and progression. Simulations using this simple model illustrate the importance of stochastic events early in tumorigenesis, highlight the dominance of exponential growth over linear growth and differentiation, and explain the clonal substructure of tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evolutional Optimization on Material Ordering and Inventory Control of Supply Chain through Incentive Scheme

    NASA Astrophysics Data System (ADS)

    Prasertwattana, Kanit; Shimizu, Yoshiaki; Chiadamrong, Navee

    This paper studied the material ordering and inventory control of supply chain systems. The effect of controlling policies is analyzed under three different configurations of the supply chain systems, and the formulated problem has been solved by using an evolutional optimization method known as Differential Evolution (DE). The numerical results show that the coordinating policy with the incentive scheme outperforms the other policies and can improve the performance of the overall system as well as all members under the concept of supply chain management.

  12. Os isotopes in SNC meteorites and their implications to the early evolution of Mars and Earth

    NASA Technical Reports Server (NTRS)

    Jagoutz, E.; Luck, J. M.; Othman, D. Ben; Wanke, H.

    1993-01-01

    A new development on the measurement of the Os isotopic composition by mass spectrometry using negative ions opened a new field of applications. The Re-Os systematic provides time information on the differentiation of the nobel metals. The nobel metals are strongly partitioned into metal and sulphide phases, but also the generation of silicate melts might fractionate the Re-Os system. Compared to the other isotopic systems which are mainly dating the fractionation of the alkalis and alkali-earth elements, the Re-Os system is expected to disclose entirely new information about the geochemistry. Especially the differentiation and early evolution of the planets such as the formation of the core will be elucidated with this method.

  13. Feature Selection in Classification of Eye Movements Using Electrooculography for Activity Recognition

    PubMed Central

    Mala, S.; Latha, K.

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185

  14. Feature selection in classification of eye movements using electrooculography for activity recognition.

    PubMed

    Mala, S; Latha, K

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.

  15. Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae

    PubMed Central

    Zowawi, Hosam M.; Forde, Brian M.; Alfaresi, Mubarak; Alzarouni, Abdulqadir; Farahat, Yasser; Chong, Teik-Min; Yin, Wai-Fong; Chan, Kok-Gan; Li, Jian; Schembri, Mark A.; Beatson, Scott A.; Paterson, David L.

    2015-01-01

    Carbapenem resistant Enterobacteriaceae (CRE) pose an urgent risk to global human health. CRE that are non-susceptible to all commercially available antibiotics threaten to return us to the pre-antibiotic era. Using Single Molecule Real Time (SMRT) sequencing we determined the complete genome of a pandrug-resistant Klebsiella pneumoniae isolate, representing the first complete genome sequence of CRE resistant to all commercially available antibiotics. The precise location of acquired antibiotic resistance elements, including mobile elements carrying genes for the OXA-181 carbapenemase, were defined. Intriguingly, we identified three chromosomal copies of an ISEcp1-blaOXA-181 mobile element, one of which has disrupted the mgrB regulatory gene, accounting for resistance to colistin. Our findings provide the first description of pandrug-resistant CRE at the genomic level, and reveal the critical role of mobile resistance elements in accelerating the emergence of resistance to other last resort antibiotics. PMID:26478520

  16. Analysis of photosystem II biogenesis in cyanobacteria.

    PubMed

    Heinz, Steffen; Liauw, Pasqual; Nickelsen, Jörg; Nowaczyk, Marc

    2016-03-01

    Photosystem II (PSII), a large multisubunit membrane protein complex found in the thylakoid membranes of cyanobacteria, algae and plants, catalyzes light-driven oxygen evolution from water and reduction of plastoquinone. Biogenesis of PSII requires coordinated assembly of at least 20 protein subunits, as well as incorporation of various organic and inorganic cofactors. The stepwise assembly process is facilitated by numerous protein factors that have been identified in recent years. Further analysis of this process requires the development or refinement of specific methods for the identification of novel assembly factors and, in particular, elucidation of the unique role of each. Here we summarize current knowledge of PSII biogenesis in cyanobacteria, focusing primarily on the impact of methodological advances and innovations. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Computer simulations of structural transitions in large ferrofluid aggregates

    NASA Astrophysics Data System (ADS)

    Yoon, Mina; Tomanek, David

    2003-03-01

    We have developed a quaternion molecular dynamics formalism to study structural transitions in systems of ferrofluid particles in colloidal suspensions. Our approach takes advantage of the viscous damping provided by the surrounding liquid and enables us to study the time evolution of these systems over milli-second time periods as a function of the number of particles, initial geometry, and an externally applied magnetic field. Our computer simulations for aggregates containing tens to hundreds of ferrofluid particles suggest that these systems relax to the global optimum structure in a step-wise manner. During the relaxation process, the potential energy decreases by two mechanisms, which occur on different time scales. Short time periods associated with structural relaxations within a given morphology are followed by much slower processes that generally lead to a simpler morphology. We discuss possible applications of these externally driven structural transitions for targeted medication delivery.

  18. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals.

    PubMed

    Chen, Xi; Ling, Hong-Fei; Vance, Derek; Shields-Zhou, Graham A; Zhu, Maoyan; Poulton, Simon W; Och, Lawrence M; Jiang, Shao-Yong; Li, Da; Cremonese, Lorenzo; Archer, Corey

    2015-05-18

    The early diversification of animals (∼ 630 Ma), and their development into both motile and macroscopic forms (∼ 575-565 Ma), has been linked to stepwise increases in the oxygenation of Earth's surface environment. However, establishing such a linkage between oxygen and evolution for the later Cambrian 'explosion' (540-520 Ma) of new, energy-sapping body plans and behaviours has proved more elusive. Here we present new molybdenum isotope data, which demonstrate that the areal extent of oxygenated bottom waters increased in step with the early Cambrian bioradiation of animals and eukaryotic phytoplankton. Modern-like oxygen levels characterized the ocean at ∼ 521 Ma for the first time in Earth history. This marks the first establishment of a key environmental factor in modern-like ecosystems, where animals benefit from, and also contribute to, the 'homeostasis' of marine redox conditions.

  19. The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2007-01-01

    A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  20. Adaptive evolution of complex innovations through stepwise metabolic niche expansion.

    PubMed

    Szappanos, Balázs; Fritzemeier, Jonathan; Csörgő, Bálint; Lázár, Viktória; Lu, Xiaowen; Fekete, Gergely; Bálint, Balázs; Herczeg, Róbert; Nagy, István; Notebaart, Richard A; Lercher, Martin J; Pál, Csaba; Papp, Balázs

    2016-05-20

    A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes.

  1. Adaptive evolution of complex innovations through stepwise metabolic niche expansion

    PubMed Central

    Szappanos, Balázs; Fritzemeier, Jonathan; Csörgő, Bálint; Lázár, Viktória; Lu, Xiaowen; Fekete, Gergely; Bálint, Balázs; Herczeg, Róbert; Nagy, István; Notebaart, Richard A.; Lercher, Martin J.; Pál, Csaba; Papp, Balázs

    2016-01-01

    A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes. PMID:27197754

  2. Vacuum FTIR observation on hygroscopic properties and phase transition of malonic acid aerosols

    NASA Astrophysics Data System (ADS)

    Shao, Xu; Zhang, Yun; Pang, Shu-Feng; Zhang, Yun-Hong

    2017-02-01

    A novel approach based on a combination of a pulse relative humidity (RH) controlling system and a rapid scan vacuum FTIR spectrometer was utilized to investigate the hygroscopic property and phase transition of malonic acid (MA) aerosols. By using this approach, both water vapor amount around the aerosols and water content within aerosols with sub-second time resolution were obtained. Based on the features of FTIR absorbing bands, it can be known that the evolution of hydrogen-bonding structures of malonic acid aerosols took place from (H2O)n-MA to MA-MA accompanying with phase transition in the dehumidifying process. And in present paper, the stepwise efflorescence of MA aerosols and nucleation rates at different RHs are first reported. Our observation has shown that the efflorescence of MA started at ∼17% RH and the nucleation rates increased with decreasing RH.

  3. Magnetic field restructuring associated with two successive solar eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Rui; Liu, Ying D.; Yang, Zhongwei

    2014-08-20

    We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity and suggest that the changes of the sign of the helicity injection rate might be associated with the eruptions. Through the investigation of the magnetic fieldmore » evolution, we find that the appearance of the 'implosion' phenomenon has a strong relationship with the occurrence of the first X-class flare. Meanwhile, the magnetic field changes of the successive eruptions with implosion and without implosion were well observed.« less

  4. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals

    PubMed Central

    Chen, Xi; Ling, Hong-Fei; Vance, Derek; Shields-Zhou, Graham A.; Zhu, Maoyan; Poulton, Simon W.; Och, Lawrence M.; Jiang, Shao-Yong; Li, Da; Cremonese, Lorenzo; Archer, Corey

    2015-01-01

    The early diversification of animals (∼630 Ma), and their development into both motile and macroscopic forms (∼575–565 Ma), has been linked to stepwise increases in the oxygenation of Earth's surface environment. However, establishing such a linkage between oxygen and evolution for the later Cambrian ‘explosion' (540–520 Ma) of new, energy-sapping body plans and behaviours has proved more elusive. Here we present new molybdenum isotope data, which demonstrate that the areal extent of oxygenated bottom waters increased in step with the early Cambrian bioradiation of animals and eukaryotic phytoplankton. Modern-like oxygen levels characterized the ocean at ∼521 Ma for the first time in Earth history. This marks the first establishment of a key environmental factor in modern-like ecosystems, where animals benefit from, and also contribute to, the ‘homeostasis' of marine redox conditions. PMID:25980960

  5. The SMM model as a boundary value problem using the discrete diffusion equation.

    PubMed

    Campbell, Joel

    2007-12-01

    A generalized single-step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  6. Cushing's syndrome: Stepwise approach to diagnosis

    PubMed Central

    Lila, Anurag R.; Sarathi, Vijaya; Jagtap, Varsha S.; Bandgar, Tushar; Menon, Padmavathy; Shah, Nalini S.

    2011-01-01

    The projected prevalence of Cushing's syndrome (CS) inclusive of subclinical cases in the adult population ranges from 0.2–2% and it may no longer be considered as an orphan disease (2–3 cases/million/year). The recognition of CS by physicians is important for early diagnosis and treatment. Late-night salivary cortisol, dexamethasone suppressiontesti, or 24-h urine free cortisol are good screening tests. Positively screened cases need stepwise evaluation by an endocrinologist. This paper discusses the importance of screening for CS and suggests a stepwise diagnostic approach to a case of suspected hypercortisolism. PMID:22145134

  7. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin.

    PubMed

    Chen, Wei-Liang; Li, Fang; Tang, Yan; Yang, Shu-di; Li, Ji-Zhao; Yuan, Zhi-Qiang; Liu, Yang; Zhou, Xiao-Feng; Liu, Chun; Zhang, Xue-Nong

    2017-01-01

    Physicochemical properties, including particle size, zeta potential, and drug release behavior, affect targeting efficiency, cellular uptake, and antitumor effect of nanocarriers in a formulated drug-delivery system. In this study, a novel stepwise pH-responsive nanodrug delivery system was developed to efficiently deliver and significantly promote the therapeutic effect of doxorubicin (DOX). The system comprised dimethylmaleic acid-chitosan-urocanic acid and elicited stepwise responses to extracellular and intracellular pH. The nanoparticles (NPs), which possessed negative surface charge under physiological conditions and an appropriate nanosize, exhibited advantageous stability during blood circulation and enhanced accumulation in tumor sites via enhanced permeability and retention effect. The tumor cellular uptake of DOX-loaded NPs was significantly promoted by the first-step pH response, wherein surface charge reversion of NPs from negative to positive was triggered by the slightly acidic tumor extracellular environment. After internalization into tumor cells, the second-step pH response in endo/lysosome acidic environment elicited the on-demand intracellular release of DOX from NPs, thereby increasing cytotoxicity against tumor cells. Furthermore, stepwise pH-responsive NPs showed enhanced antiproliferation effect and reduced systemic side effect in vivo. Hence, the stepwise pH-responsive NPs provide a promising strategy for efficient delivery of antitumor agents.

  8. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin

    PubMed Central

    Chen, Wei-liang; Li, Fang; Tang, Yan; Yang, Shu-di; Li, Ji-zhao; Yuan, Zhi-qiang; Liu, Yang; Zhou, Xiao-feng; Liu, Chun; Zhang, Xue-nong

    2017-01-01

    Physicochemical properties, including particle size, zeta potential, and drug release behavior, affect targeting efficiency, cellular uptake, and antitumor effect of nanocarriers in a formulated drug-delivery system. In this study, a novel stepwise pH-responsive nanodrug delivery system was developed to efficiently deliver and significantly promote the therapeutic effect of doxorubicin (DOX). The system comprised dimethylmaleic acid-chitosan-urocanic acid and elicited stepwise responses to extracellular and intracellular pH. The nanoparticles (NPs), which possessed negative surface charge under physiological conditions and an appropriate nanosize, exhibited advantageous stability during blood circulation and enhanced accumulation in tumor sites via enhanced permeability and retention effect. The tumor cellular uptake of DOX-loaded NPs was significantly promoted by the first-step pH response, wherein surface charge reversion of NPs from negative to positive was triggered by the slightly acidic tumor extracellular environment. After internalization into tumor cells, the second-step pH response in endo/lysosome acidic environment elicited the on-demand intracellular release of DOX from NPs, thereby increasing cytotoxicity against tumor cells. Furthermore, stepwise pH-responsive NPs showed enhanced antiproliferation effect and reduced systemic side effect in vivo. Hence, the stepwise pH-responsive NPs provide a promising strategy for efficient delivery of antitumor agents. PMID:28652730

  9. Bell-polynomial approach and Wronskian determinant solutions for three sets of differential-difference nonlinear evolution equations with symbolic computation

    NASA Astrophysics Data System (ADS)

    Qin, Bo; Tian, Bo; Wang, Yu-Feng; Shen, Yu-Jia; Wang, Ming

    2017-10-01

    Under investigation in this paper are the Belov-Chaltikian (BC), Leznov and Blaszak-Marciniak (BM) lattice equations, which are associated with the conformal field theory, UToda(m_1,m_2) system and r-matrix, respectively. With symbolic computation, the Bell-polynomial approach is developed to directly bilinearize those three sets of differential-difference nonlinear evolution equations (NLEEs). This Bell-polynomial approach does not rely on any dependent variable transformation, which constitutes the key step and main difficulty of the Hirota bilinear method, and thus has the advantage in the bilinearization of the differential-difference NLEEs. Based on the bilinear forms obtained, the N-soliton solutions are constructed in terms of the N × N Wronskian determinant. Graphic illustrations demonstrate that those solutions, more general than the existing results, permit some new properties, such as the solitonic propagation and interactions for the BC lattice equations, and the nonnegative dark solitons for the BM lattice equations.

  10. The evolution of the moon and the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Toksoez, M. N.; Johnston, D. H.

    1974-01-01

    The thermal evolutions of the Moon, Mars, Venus and Mercury are calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical and geophysical data are used to constrain both the present day temperatures and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. The moon, smallest in size, is characterized as a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. Mars, intermediate in size, is assumed to have differentiated an Fe-FeS core. Venus is characterized as a planet not unlike the earth in many respects. Core formation has occurred probably during the first billion years after the formation. Mercury, which probably has a large core, may have a 500 km thick solid lithosphere and a partially molten core if it is assumed that some heat sources exist in the core.

  11. Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821.

    PubMed

    Li, Meng; Semchonok, Dmitry A; Boekema, Egbert J; Bruce, Barry D

    2014-03-01

    Photosystem I (PSI) is a reaction center associated with oxygenic photosynthesis. Unlike the monomeric reaction centers in green and purple bacteria, PSI forms trimeric complexes in most cyanobacteria with a 3-fold rotational symmetry that is primarily stabilized via adjacent PsaL subunits; however, in plants/algae, PSI is monomeric. In this study, we discovered a tetrameric form of PSI in the thermophilic cyanobacterium Chroococcidiopsis sp TS-821 (TS-821). In TS-821, PSI forms tetrameric and dimeric species. We investigated these species by Blue Native PAGE, Suc density gradient centrifugation, 77K fluorescence, circular dichroism, and single-particle analysis. Transmission electron microscopy analysis of native membranes confirms the presence of the tetrameric PSI structure prior to detergent solubilization. To investigate why TS-821 forms tetramers instead of trimers, we cloned and analyzed its psaL gene. Interestingly, this gene product contains a short insert between the second and third predicted transmembrane helices. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria, some of which also have a tetrameric form of PSI. These results are discussed in light of chloroplast evolution, and we propose that PSI evolved stepwise from a trimeric form to tetrameric oligomer en route to becoming monomeric in plants/algae.

  12. The genetic basis of a plant–insect coevolutionary key innovation

    PubMed Central

    Wheat, Christopher W.; Vogel, Heiko; Wittstock, Ute; Braby, Michael F.; Underwood, Dessie; Mitchell-Olds, Thomas

    2007-01-01

    Ehrlich and Raven formally introduced the concept of stepwise coevolution using butterfly and angiosperm interactions in an attempt to account for the impressive biological diversity of these groups. However, many biologists currently envision butterflies evolving 50 to 30 million years (Myr) after the major angiosperm radiation and thus reject coevolutionary origins of butterfly biodiversity. The unresolved central tenet of Ehrlich and Raven's theory is that evolution of plant chemical defenses is followed closely by biochemical adaptation in insect herbivores, and that newly evolved detoxification mechanisms result in adaptive radiation of herbivore lineages. Using one of their original butterfly-host plant systems, the Pieridae, we identify a pierid glucosinolate detoxification mechanism, nitrile-specifier protein (NSP), as a key innovation. Larval NSP activity matches the distribution of glucosinolate in their host plants. Moreover, by using five different temporal estimates, NSP seems to have evolved shortly after the evolution of the host plant group (Brassicales) (≈10 Myr). An adaptive radiation of these glucosinolate-feeding Pierinae followed, resulting in significantly elevated species numbers compared with related clades. Mechanistic understanding in its proper historical context documents more ancient and dynamic plant–insect interactions than previously envisioned. Moreover, these mechanistic insights provide the tools for detailed molecular studies of coevolution from both the plant and insect perspectives. PMID:18077380

  13. The Boring Billion, a slingshot for Complex Life on Earth.

    PubMed

    Mukherjee, Indrani; Large, Ross R; Corkrey, Ross; Danyushevsky, Leonid V

    2018-03-13

    The period 1800 to 800 Ma ("Boring Billion") is believed to mark a delay in the evolution of complex life, primarily due to low levels of oxygen in the atmosphere. Earlier studies highlight the remarkably flat C, Cr isotopes and low trace element trends during the so-called stasis, caused by prolonged nutrient, climatic, atmospheric and tectonic stability. In contrast, we suggest a first-order variability of bio-essential trace element availability in the oceans by combining systematic sampling of the Proterozoic rock record with sensitive geochemical analyses of marine pyrite by LA-ICP-MS technique. We also recall that several critical biological evolutionary events, such as the appearance of eukaryotes, origin of multicellularity & sexual reproduction, and the first major diversification of eukaryotes (crown group) occurred during this period. Therefore, it appears possible that the period of low nutrient trace elements (1800-1400 Ma) caused evolutionary pressures which became an essential trigger for promoting biological innovations in the eukaryotic domain. Later periods of stress-free conditions, with relatively high nutrient trace element concentration, facilitated diversification. We propose that the "Boring Billion" was a period of sequential stepwise evolution and diversification of complex eukaryotes, triggering evolutionary pathways that made possible the later rise of micro-metazoans and their macroscopic counterparts.

  14. Takotsubo cardiomyopathy in the case of 72-year-old teacher after work-related psychological stress. Evolution of left ventricular longitudinal strain - Delayed but complete recovery in automated function imaging (AFI).

    PubMed

    Wierzbowska-Drabik, Karina; Marcinkiewicz, Andrzej; Hamala, Piotr; Trzos, Ewa; Lipiec, Piotr; Kurpesa, Małgorzata; Kręcki, Radosław; Plewka, Michał; Kasprzak, Jarosław D

    2017-06-19

    Takotsubo cardiomyopathy (TC) is related to a transient systolic dysfunction of left ventricle (LV), accompanied by clinical and electrocardiographic symptoms of myocardial ischemia in the absence of hemodynamically significant coronary artery disease. Takotsubo cardiomyopathy is usually provoked by a psychologically or/and physically stressful event which may be related to occupational activities. Although visually assessed evolution of LV function is well documented, the data concerning strain changes is sparse and various patterns of deformation abnormalities are suggested. We have described a 72-year-old woman with chest pain related to a lecture given at the meeting of the Senior University, fulfilling all the Mayo Clinic criteria of the TC. The longitudinal strain analysis with automated function imaging (AFI) documented severe impairment and stepwise recovery of regional and global LV contractility. The case described confirms that accurate diagnosis, treatment and documenting of functional improvement in takotsubo cardiomyopathy may enable the return to occupational activities even for elderly persons. Int J Occup Med Environ Health 2017;30(4):681-683. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  15. Palaeogeographic, climatic and tectonic change in southeastern Australia: the Late Neogene evolution of the Murray Basin

    NASA Astrophysics Data System (ADS)

    McLaren, Sandra; Wallace, Malcolm W.; Gallagher, Stephen J.; Miranda, John A.; Holdgate, Guy R.; Gow, Laura J.; Snowball, Ian; Sandgren, Per

    2011-05-01

    The Murray Basin is a low-lying but extensive intracratonic depocentre in southeastern Australia, preserving an extraordinary record of Late Neogene sedimentation. New stratigraphic and sedimentologic data allow the long-term evolution of the basin to be re-evaluated and suggest a significant role for: (1) tectonism in controlling basin evolution, and (2) progressive and step-wise climatic change beginning in the early Pleistocene. Tectonic change is associated with regional uplift, occurring at approximately the same rate from the early Pliocene until the present day, and possibly associated with changing mantle circulation patterns or plate boundary processes. This uplift led to the defeat and re-routing of the Murray River, Australia's major continental drainage system. Key to our interpretation is recognition of timing relationships between four prominent palaeogeographic features - the Loxton-Parilla Sands strandplain, the Gambier coastal plain, palaeo megalake Bungunnia and the Kanawinka Escarpment. Geomorphic and stratigraphic evidence suggest that during the Early Pliocene the ancestral Murray River was located in western Victoria, flowing south along the Douglas Depression. Relatively small amounts of regional uplift (<200 m) defeated this drainage system, dramatically changing the palaeogeography of southeastern Australia and forming Plio-Pleistocene megalake Bungunnia. At its maximum extent Lake Bungunnia covered more than 50,000 km 2, making it one of the largest known palaeo- or modern-lakes in an intracontinental setting. Magnetostratigraphic constraints suggest lake formation c. 2.4 Ma. The formation of Lake Bungunnia influenced the Pliocene coastal dynamics, depriving the coastline of a sediment source and changing the coastal system from a prograding strandline system to an erosional one. Erosion during this period formed the Kanawinka Escarpment, a palaeo sea-cliff and one of the most prominent and laterally extensive geomorphic features in southeastern Australia. Marine sediments c. 800 ka to c. 1.16 Ma represent the time of re-establishment of depositional coastal dynamics and of a permanent outlet for the Murray River. This age range is consistent with our best estimate of the age of the youngest Lake Bungunnia sediments and points towards an early Pleistocene age for the demise of the lake system. The youngest Lake Bungunnia sediment, present on a number of distinct terraces, suggests that progressive, step-wise climatic change played a role in the demise of the lake. However, in order for the ancestral Murray River system to have been able to breach the pre-existing tectonic dam, it is likely that tectonic change and/or temporarily enhanced discharge was also significant. This scenario indicates that the modern Murray River has only been in existence for at most 700 ka.

  16. Portent of Heine's Reciprocal Square Root Identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohl, H W

    Precise efforts in theoretical astrophysics are needed to fully understand the mechanisms that govern the structure, stability, dynamics, formation, and evolution of differentially rotating stars. Direct computation of the physical attributes of a star can be facilitated by the use of highly compact azimuthal and separation angle Fourier formulations of the Green's functions for the linear partial differential equations of mathematical physics.

  17. Phylogeography and alpha taxonomy of the common dolphin (Delphinus sp.).

    PubMed

    Natoli, A; Cañadas, A; Peddemors, V M; Aguilar, A; Vaquero, C; Fernández-Piqueras, P; Hoelzel, A R

    2006-05-01

    The resolution of taxonomic classifications for delphinid cetaceans has been problematic, especially for species in the genera Delphinus, Tursiops and Stenella. The frequent lack of correspondence between morphological and genetic differentiation in these species raises questions about the mechanisms responsible for their evolution. In this study we focus on the genus Delphinus, and use molecular markers to address questions about speciation and the evolution of population structure. Delphinus species have a worldwide distribution and show a high degree of morphological variation. Two distinct morphotypes, long-beaked and short-beaked, have been considered different species named D. capensis and D. delphis, respectively. However, genetic differentiation between these two forms has only been demonstrated in the Pacific. We analysed samples from eight different geographical regions, including two morphologically defined long-beaked form populations, and compared these with the eastern North Pacific populations. We found high differentiation among the populations described as long-beaked instead of the expected monophyly, suggesting that these populations may have evolved from independent events converging on the same morphotype. We observed low genetic differentiation among the short-beaked populations across a large geographical scale. We interpret these phylogeographical patterns in the context of life history and population structure in related species.

  18. Evolution of plant growth and defense in a continental introduction.

    PubMed

    Agrawal, Anurag A; Hastings, Amy P; Bradburd, Gideon S; Woods, Ellen C; Züst, Tobias; Harvey, Jeffrey A; Bukovinszky, Tibor

    2015-07-01

    Substantial research has addressed adaptation of nonnative biota to novel environments, yet surprisingly little work has integrated population genetic structure and the mechanisms underlying phenotypic differentiation in ecologically important traits. We report on studies of the common milkweed Asclepias syriaca, which was introduced from North America to Europe over the past 400 years and which lacks most of its specialized herbivores in the introduced range. Using 10 populations from each continent grown in a common environment, we identified several growth and defense traits that have diverged, despite low neutral genetic differentiation between continents. We next developed a Bayesian modeling approach to account for relationships between molecular and phenotypic differences, confirming that continental trait differentiation was greater than expected from neutral genetic differentiation. We found evidence that growth-related traits adaptively diverged within and between continents. Inducible defenses triggered by monarch butterfly herbivory were substantially reduced in European populations, and this reduction in inducibility was concordant with altered phytohormonal dynamics, reduced plant growth, and a trade-off with constitutive investment. Freedom from the community of native and specialized herbivores may have favored constitutive over induced defense. Our replicated analysis of plant growth and defense, including phenotypically plastic traits, suggests adaptive evolution following a continental introduction.

  19. Differential expression of non-coding RNAs and continuous evolution of the X chromosome in testicular transcriptome of two mouse species.

    PubMed

    Homolka, David; Ivanek, Robert; Forejt, Jiri; Jansa, Petr

    2011-02-14

    Tight regulation of testicular gene expression is a prerequisite for male reproductive success, while differentiation of gene activity in spermatogenesis is important during speciation. Thus, comparison of testicular transcriptomes between closely related species can reveal unique regulatory patterns and shed light on evolutionary constraints separating the species. Here, we compared testicular transcriptomes of two closely related mouse species, Mus musculus and Mus spretus, which diverged more than one million years ago. We analyzed testicular expression using tiling arrays overlapping Chromosomes 2, X, Y and mitochondrial genome. An excess of differentially regulated non-coding RNAs was found on Chromosome 2 including the intronic antisense RNAs, intergenic RNAs and premature forms of Piwi-interacting RNAs (piRNAs). Moreover, striking difference was found in the expression of X-linked G6pdx gene, the parental gene of the autosomal retrogene G6pd2. The prevalence of non-coding RNAs among differentially expressed transcripts indicates their role in species-specific regulation of spermatogenesis. The postmeiotic expression of G6pdx in Mus spretus points towards the continuous evolution of X-chromosome silencing and provides an example of expression change accompanying the out-of-the X-chromosomal retroposition.

  20. Mantle convection and the distribution of geochemical reservoirs in the silicate shell of the Earth

    NASA Astrophysics Data System (ADS)

    Walzer, Uwe; Hendel, Roland

    2010-05-01

    We present a dynamic 3-D spherical-shell model of mantle convection and the evolution of the chemical reservoirs of the Earth`s silicate shell. Chemical differentiation, convection, stirring and thermal evolution constitute an inseparable dynamic system. Our model is based on the solution of the balance equations of mass, momentum, energy, angular momentum, and four sums of the number of atoms of the pairs 238U-206Pb, 235U-207Pb, 232Th-208Pb, and 40K-40Ar. Similar to the present model, the continental crust of the real Earth was not produced entirely at the start of the evolution but developed episodically in batches [1-7]. The details of the continental distribution of the model are largely stochastic, but the spectral properties are quite similar to the present real Earth. The calculated Figures reveal that the modeled present-day mantle has no chemical stratification but we find a marble-cake structure. If we compare the observational results of the present-day proportion of depleted MORB mantle with the model then we find a similar order of magnitude. The MORB source dominates under the lithosphere. In our model, there are nowhere pure unblended reservoirs in the mantle. It is, however, remarkable that, in spite of 4500 Ma of solid-state mantle convection, certain strong concentrations of distributed chemical reservoirs continue to persist in certain volumes, although without sharp abundance boundaries. We deal with the question of predictable and stochastic portions of the phenomena. Although the convective flow patterns and the chemical differentiation of oceanic plateaus are coupled, the evolution of time-dependent Rayleigh number, Rat , is relatively well predictable and the stochastic parts of the Rat(t)-curves are small. Regarding the juvenile growth rates of the total mass of the continents, predictions are possible only in the first epoch of the evolution. Later on, the distribution of the continental-growth episodes is increasingly stochastic. Independently of the varying individual runs, our model shows that the total mass of the present-day continents is not generated in a single process at the beginning of the thermal evolution of the Earth but in episodically distributed processes in the course of geological time. This is in accord with observation. Finally, we present results regarding the numerical method, implementation, scalability and performance. References [1] Condie, K. C., Episodie continental growth models: Afterthoughts and extensions, Tectonophysics, 322 (2000), 153-162. [2] Davidson, J. P. and Arculus, R. J., The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust, edited by M. Brown and T. Rushmer (2006), 135-172, Cambridge Univ. Press, Cambridge, UK. [3] Hofmann, A. W., Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements, in Treatise on Geochemistry, Vol. 2: The Mantle and the Core, edited by R. W. Carlson (2003), 61-101, Elsevier, Amsterdam. [4] Rollinson, H., Crustal generation in the Archean, in Evolution and Differentiation of the Continental Crust, edited by M. Brown and T. Rushmer (2006), 173-230, Cambridge Univ. Press, Cambridge, UK: [5] Taylor, S. R. and McLennan, S. M., Planetary Crusts. Their Composition, Origin and Evolution. (2009), 1-378, Cambridge Univ. Press, Cambridge, UK. [6] Walzer, U. and Hendel, R., Mantle convection and evolution with growing continents. J. Geophys. Res. 113 (2008), B09405, doi: 10.1029/2007JB005459 [7] http://www.igw.uni-jena.de/geodyn

  1. Continuum Model for River Networks

    NASA Astrophysics Data System (ADS)

    Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.

    1995-07-01

    The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.

  2. Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2

    NASA Astrophysics Data System (ADS)

    Sawicki, Marcin; Thompson, David

    2006-05-01

    We use very deep UnGRI multifield imaging obtained at the Keck telescope to study the evolution of the rest-frame 1700 Å galaxy luminosity function as the universe doubles its age from z~4 to ~2. We use exactly the same filters and color-color selection as those used by the Steidel team but probe significantly fainter limits, well below L*. The depth of our imaging allows us to constrain the faint end of the luminosity function, reaching M1700~-18.5 at z~3 (equivalent to ~1 Msolar yr-1), accounting for both N1/2 uncertainty in the number of galaxies and cosmic variance. We carefully examine many potential sources of systematic bias in our LF measurements before drawing the following conclusions. We find that the luminosity function of Lyman break galaxies evolves with time and that this evolution is differential with luminosity. The result is best constrained between the epochs at z~4 and ~3, where we find that the number density of sub-L* galaxies increases with time by at least a factor of 2.3 (11 σ statistical confidence); while the faint end of the LF evolves, the bright end appears to remain virtually unchanged, indicating that there may be differential, luminosity-dependent evolution (98.5% statistical probability). Potential systematic biases restrict our ability to draw strong conclusions about continued evolution of the luminosity function to lower redshifts, z~2.2 and ~1.7, but, nevertheless, it appears certain that the number density of z~2.2 galaxies at all luminosities we studied, -22>M1700>-18, is at least as high as that of their counterparts at z~3. While it is not yet clear what mechanism underlies the observed evolution, the fact that this evolution is differential with luminosity opens up new avenues of improving our understanding of how galaxies form and evolve at high redshift. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  3. Bringing Together Evolution on Serpentine and Polyploidy: Spatiotemporal History of the Diploid-Tetraploid Complex of Knautia arvensis (Dipsacaceae)

    PubMed Central

    Kolář, Filip; Fér, Tomáš; Štech, Milan; Trávníček, Pavel; Dušková, Eva; Schönswetter, Peter; Suda, Jan

    2012-01-01

    Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae), a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary ‘dead-ends’ but rather dynamic systems with a potential to further influence the surrounding populations, e.g., via independent polyplodization and hybridization. The complex eco-geographical pattern together with the incidence of both primary and secondary diploid-tetraploid contact zones makes K. arvensis a unique system for addressing general questions of polyploid research. PMID:22792207

  4. Imaging and examination strategies of normal male and female sex development and anatomy.

    PubMed

    Wünsch, Lutz; Schober, Justine M

    2007-09-01

    Over recent years a variety of new details on the developmental biology of sexual differentiation has been discovered. Moreover, important advances have been made in imaging and examination strategies for urogenital organs, and these have added new knowledge to our understanding of the 'normal' anatomy of the sexes. Both aspects contribute to the comprehension of phenotypic sex development, but they are not commonly presented in the same context. This will be attempted in this chapter, which aims to link discoveries in developmental biology to anatomical details shown by modern examination techniques. A review of the literature concerning the link between sexual development and imaging of urogenital organs was performed. Genes, proteins and pathways related to sexual differentiation were related to some organotypic features revealed by clinical examination techniques. Early 'organotypic' patterns can be identified in prostatic, urethral and genital development and followed into postnatal life. New imaging and endoscopy techniques allow for detailed descriptive anatomical studies, hopefully resulting in a broader understanding of sex development and a better genotype-phenotype correlation in defined disorders. Clinical description relying on imaging techniques should be related to knowledge of the genetic and endocrine factors influencing sex development in a specific and stepwise manner.

  5. Advancing a Model-Validated Statistical Method for Decomposing the Key Oceanic Drivers of Regional Climate: Focus on Northern and Tropical African Climate Variability in the Community Earth System Model (CESM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Fuyao; Yu, Yan; Notaro, Michael

    This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled controlmore » run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.« less

  6. Advancing a Model-Validated Statistical Method for Decomposing the Key Oceanic Drivers of Regional Climate: Focus on Northern and Tropical African Climate Variability in the Community Earth System Model (CESM)

    DOE PAGES

    Wang, Fuyao; Yu, Yan; Notaro, Michael; ...

    2017-09-27

    This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled controlmore » run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.« less

  7. The evolution of complex life cycles when parasite mortality is size- or time-dependent.

    PubMed

    Ball, M A; Parker, G A; Chubb, J C

    2008-07-07

    In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission.

  8. Adaptive landscape and functional diversity of Neotropical cichlids: implications for the ecology and evolution of Cichlinae (Cichlidae; Cichliformes).

    PubMed

    Arbour, J H; López-Fernández, H

    2014-11-01

    Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise-AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  9. On the effect of networks of cycle-tracks on the risk of cycling. The case of Seville.

    PubMed

    Marqués, R; Hernández-Herrador, V

    2017-05-01

    We analyze the evolution of the risk of cycling in Seville before and after the implementation of a network of segregated cycle tracks in the city. Specifically, we study the evolution of the risk for cyclists of being involved in a collision with a motor vehicle, using data reported by the traffic police along the period 2000-2013, i.e. seven years before and after the network was built. A sudden drop of such risk was observed after the implementation of the network of bikeways. We study, through a multilinear regression analysis, the evolution of the risk by means of explanatory variables representing changes in the built environment, specifically the length of the bikeways and a stepwise jump variable taking the values 0/1 before/after the network was implemented. We found that this last variable has a high value as explanatory variable, even higher than the length of the network, thus suggesting that networking the bikeways has a substantial effect on cycling safety by itself and beyond the mere increase in the length of the bikeways. We also analyze safety in numbers through a non-linear regression analysis. Our results fully agree qualitatively and quantitatively with the results previously reported by Jacobsen (2003), thus providing an independent confirmation of Jacobsen's results. Finally, the mutual causal relationships between the increase in safety, the increase in the number of cyclists and the presence of the network of bikeways are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Classifying northern forests using Thematic Mapper Simulator data

    NASA Technical Reports Server (NTRS)

    Nelson, R. F.; Latty, R. S.; Mott, G.

    1984-01-01

    Thematic Mapper Simulator data were collected over a 23,200 hectare forested area near Baxter State Park in north-central Maine. Photointerpreted ground reference information was used to drive a stratified random sampling procedure for waveband discriminant analyses and to generate training statistics and test pixel accuracies. Stepwise discriminant analyses indicated that the following bands best differentiated the thirteen level II - III cover types (in order of entry): near infrared (0.77 to 0.90 micron), blue (0.46 0.52 micron), first middle infrared (1.53 to 1.73 microns), second middle infrared (2.06 to 2.33 microsn), red (0.63 to 0.69 micron), thermal (10.32 to 12.33 microns). Classification accuracies peaked at 58 percent for thirteen level II-III land-cover classes and at 65 percent for ten level II classes.

  11. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models.

    PubMed

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A; van't Veld, Aart A

    2012-03-15

    To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Memory effects on mechanically stimulated electric signal; diversification of stimuli impact on material memory and comments on the observed features

    NASA Astrophysics Data System (ADS)

    Kyriazis, Panagiotis; Stavrakas, Ilias; Anastasiadis, Cimon; Triantis, Dimos; Stonham, John

    2010-05-01

    Memory is defined as the ability of marble and generally of brittle geomaterials to retain 'imprints' from previous treatments and to reproduce information about these treatments under certain conditions, by analogy to the memory of human beings. Memory effects have been observed in the evolution of a variety of physical properties like the acoustic emissions of brittle materials during fracture. The existence of memory effects for the mechanically stimulated electric signal, either by Pressure (PSC) or by Bending (BSC), is examined in this work, alongside with an attempt to distinguish between the two different manifestations of 'memory' based on the electrification mechanism that is triggered at different levels of externally applied load on samples. Having identified two main mechanisms (i.e. the dynamic and the cracking) and following the human memory model, we suggest the separation of memory of a material specimen into two levels i.e. the short or temporary and long or permanent memory. For the observation and analysis of the short memory of brittle materials we have conducted experiments using the PSC technique in marble specimens. The materials are imposed to cyclic stepwise loading of the same level, scheme and direction (axial stress - unchanged position of material) in order to comply with the conditions that are proposed as suitable for memory effects study by other researchers. We have also conducted experimental tests of cyclic high level stepwise loading on amphibolite rock specimens in order to verify and study the existence of permanent memory effects. Modelling the signal recordings and studying the effects of memory on the signals, we have identified certain trends manifestation for the two types of memory that are summarised to the following points. (a) Both types of memory influence the PSC peaks evolution (exponential decrease) in cyclic loadings of the same level. (b) Permanent memory cannot be erased and affects PSC signal permanently and severely. (c) The short memory has temporary influence on the PSC signal and the impacts on the signal are milder. The main properties of the PSC signal, which are affected by the existence of memory, converge to an inertial attitude of the material to the same stimuli and they are quite common with the properties of other fracture induced signals (i.e. AE). Namely, they are the following: (a) The PSC peak evolution over loading cycles is a changing signal property either in the case of permanent or of temporary memory, with respect to the time interval between events, especially in the latter case. (b) The decrease of the dissipated electric energy during cyclic loading tests. (c) The PSC slower relaxation in each loading, quantified by the relaxation process parameters evolution. (d) The PSC signal response delay in each loading cycle increase The existence of memory effects on the mechanically stimulated electric signal is an indication that information about the deformation history (paleostresses) of the material reside inside the material. Under certain conditions such information can be revealed by analysis of the PSC signal response to specific external mechanical triggering.

  13. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds.

    PubMed

    Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.

  14. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds

    PubMed Central

    Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds. PMID:27974884

  15. Differential Adhesion between Moving Particles as a Mechanism for the Evolution of Social Groups

    PubMed Central

    Garcia, Thomas; Brunnet, Leonardo Gregory; De Monte, Silvia

    2014-01-01

    The evolutionary stability of cooperative traits, that are beneficial to other individuals but costly to their carrier, is considered possible only through the establishment of a sufficient degree of assortment between cooperators. Chimeric microbial populations, characterized by simple interactions between unrelated individuals, restrain the applicability of standard mechanisms generating such assortment, in particular when cells disperse between successive reproductive events such as happens in Dicyostelids and Myxobacteria. In this paper, we address the evolutionary dynamics of a costly trait that enhances attachment to others as well as group cohesion. By modeling cells as self-propelled particles moving on a plane according to local interaction forces and undergoing cycles of aggregation, reproduction and dispersal, we show that blind differential adhesion provides a basis for assortment in the process of group formation. When reproductive performance depends on the social context of players, evolution by natural selection can lead to the success of the social trait, and to the concomitant emergence of sizeable groups. We point out the conditions on the microscopic properties of motion and interaction that make such evolutionary outcome possible, stressing that the advent of sociality by differential adhesion is restricted to specific ecological contexts. Moreover, we show that the aggregation process naturally implies the existence of non-aggregated particles, and highlight their crucial evolutionary role despite being largely neglected in theoretical models for the evolution of sociality. PMID:24586133

  16. Evolution of Karyotypes in Chameleons

    PubMed Central

    Rovatsos, Michail; Altmanová, Marie; Johnson Pokorná, Martina; Velenský, Petr; Kratochvíl, Lukáš

    2017-01-01

    The reconstruction of the evolutionary dynamics of karyotypes and sex determining systems in squamate reptiles is precluded by the lack of data in many groups including most chameleons (Squamata: Acrodonta: Chamaeleonidae). We performed cytogenetic analysis in 16 species of chameleons from 8 genera covering the phylogenetic diversity of the family and also phylogenetic reconstruction of karyotype evolution in this group. In comparison to other squamates, chameleons demonstrate rather variable karyotypes, differing in chromosome number, morphology and presence of interstitial telomeric signal (ITS). On the other hand, the location of rDNA is quite conserved among chameleon species. Phylogenetic analysis combining our new results and previously published data tentatively suggests that the ancestral chromosome number for chameleons is 2n = 36, which is the same as assumed for other lineages of the clade Iguania, i.e., agamids and iguanas. In general, we observed a tendency for the reduction of chromosome number during the evolution of chameleons, however, in Rieppeleon brevicaudatus, we uncovered a chromosome number of 2n = 62, very unusual among squamates, originating from a number of chromosome splits. Despite the presence of the highly differentiated ZZ/ZW sex chromosomes in the genus Furcifer, we did not detect any unequivocal sexual differences in the karyotypes of any other studied species of chameleons tested using differential staining and comparative genomic hybridization, suggesting that sex chromosomes in most chameleons are only poorly differentiated. PMID:29231849

  17. The origin and evolution of a differentiated Mimas

    NASA Astrophysics Data System (ADS)

    Neveu, M.; Rhoden, A. R.

    2017-11-01

    In stark contrast with its neighbor moon Enceladus, Mimas is surprisingly geologically quiet, despite an eccentric orbit and distance to Saturn prone to levels of tidal dissipation 30 times higher. While Mimas' lack of geological activity could be due to a stiff, frigid interior, libration data acquired using the Cassini spacecraft suggest that its interior is not homogeneous. Here, we present one-dimensional models of the thermal, structural, and orbital evolution of Mimas under two accretion scenarios: primordial, undifferentiated formation in the Saturnian sub-nebula, and late, layered formation from a debris ring created by the disruption of one or more previous moons. We find it difficult to reproduce a differentiated, eccentric Mimas under a primordial accretion scenario: either Mimas never differentiates, or the internal warming that leads to differentiation increases tidal dissipation, yielding runaway heating that produces a persistent ocean, thereby circularizing Mimas' orbit. Only if Mimas accretes very early (so that the decay of short-lived radionuclides initiates differentiation) but its rheology is not highly dissipative (in order to stop runaway tidal heating even if the eccentricity is not negligible) can the simulations match the observational constraints. Alternatively, a late, layered accretion scenario yields a present-day Mimas that matches observational constraints, independently of the magnitude of tidal dissipation. Consistent with previous findings, these models do not produce an ocean on Enceladus unless its orbital eccentricity is higher than today's value.

  18. Differential pleiotropy and HOX functional organization.

    PubMed

    Sivanantharajah, Lovesha; Percival-Smith, Anthony

    2015-02-01

    Key studies led to the idea that transcription factors are composed of defined modular protein motifs or domains, each with separable, unique function. During evolution, the recombination of these modular domains could give rise to transcription factors with new properties, as has been shown using recombinant molecules. This archetypic, modular view of transcription factor organization is based on the analyses of a few transcription factors such as GAL4, which may represent extreme exemplars rather than an archetype or the norm. Recent work with a set of Homeotic selector (HOX) proteins has revealed differential pleiotropy: the observation that highly-conserved HOX protein motifs and domains make small, additive, tissue specific contributions to HOX activity. Many of these differentially pleiotropic HOX motifs may represent plastic sequence elements called short linear motifs (SLiMs). The coupling of differential pleiotropy with SLiMs, suggests that protein sequence changes in HOX transcription factors may have had a greater impact on morphological diversity during evolution than previously believed. Furthermore, differential pleiotropy may be the genetic consequence of an ensemble nature of HOX transcription factor allostery, where HOX proteins exist as an ensemble of states with the capacity to integrate an extensive array of developmental information. Given a new structural model for HOX functional domain organization, the properties of the archetypic TF may require reassessment. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. (Editor)

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics.

  20. Differential paralog divergence modulates genome evolution across yeast species

    PubMed Central

    Lynch, Bryony; Huang, Mei; Alcantara, Erica; DeSevo, Christopher G.; Pai, Dave A.; Hoang, Margaret L.

    2017-01-01

    Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200–500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution. PMID:28196070

  1. Karyological characterization of the endemic Iberian rock lizard, Iberolacerta monticola (Squamata, Lacertidae): insights into sex chromosome evolution.

    PubMed

    Rojo, V; Giovannotti, M; Naveira, H; Nisi Cerioni, P; González-Tizón, A M; Caputo Barucchi, V; Galán, P; Olmo, E; Martínez-Lage, A

    2014-01-01

    Rock lizards of the genus Iberolacerta constitute a promising model to examine the process of sex chromosome evolution, as these closely related taxa exhibit remarkable diversity in the degree of sex chromosome differentiation with no clear phylogenetic segregation, ranging from cryptic to highly heteromorphic ZW chromosomes and even multiple chromosome systems (Z1Z1Z2Z2/Z1Z2W). To gain a deeper insight into the patterns of karyotype and sex chromosome evolution, we performed a cytogenetic analysis based on conventional staining, banding techniques and fluorescence in situ hybridization in the species I. monticola, for which previous cytogenetic investigations did not detect differentiated sex chromosomes. The karyotype is composed of 2n = 36 acrocentric chromosomes. NORs and the major ribosomal genes were located in the subtelomeric region of chromosome pair 6. Hybridization signals of the telomeric sequences (TTAGGG)n were visualized at the telomeres of all chromosomes and interstitially in 5 chromosome pairs. C-banding showed constitutive heterochromatin at the centromeres of all chromosomes, as well as clear pericentromeric and light telomeric C-bands in several chromosome pairs. These results highlight some chromosomal markers which can be useful to identify species-specific diagnostic characters, although they may not accurately reflect the phylogenetic relationships among the taxa. In addition, C-banding revealed the presence of a heteromorphic ZW sex chromosome pair, where W is smaller than Z and almost completely heterochromatic. This finding sheds light on sex chromosome evolution in the genus Iberolacerta and suggests that further comparative cytogenetic analyses are needed to understand the processes underlying the origin, differentiation and plasticity of sex chromosome systems in lacertid lizards. © 2013 S. Karger AG, Basel.

  2. MULGRES: a computer program for stepwise multiple regression analysis

    Treesearch

    A. Jeff Martin

    1971-01-01

    MULGRES is a computer program source deck that is designed for multiple regression analysis employing the technique of stepwise deletion in the search for most significant variables. The features of the program, along with inputs and outputs, are briefly described, with a note on machine compatibility.

  3. On non-autonomous dynamical systems

    NASA Astrophysics Data System (ADS)

    Anzaldo-Meneses, A.

    2015-04-01

    In usual realistic classical dynamical systems, the Hamiltonian depends explicitly on time. In this work, a class of classical systems with time dependent nonlinear Hamiltonians is analyzed. This type of problems allows to find invariants by a family of Veronese maps. The motivation to develop this method results from the observation that the Poisson-Lie algebra of monomials in the coordinates and momenta is clearly defined in terms of its brackets and leads naturally to an infinite linear set of differential equations, under certain circumstances. To perform explicit analytic and numerical calculations, two examples are presented to estimate the trajectories, the first given by a nonlinear problem and the second by a quadratic Hamiltonian with three time dependent parameters. In the nonlinear problem, the Veronese approach using jets is shown to be equivalent to a direct procedure using elliptic functions identities, and linear invariants are constructed. For the second example, linear and quadratic invariants as well as stability conditions are given. Explicit solutions are also obtained for stepwise constant forces. For the quadratic Hamiltonian, an appropriated set of coordinates relates the geometric setting to that of the three dimensional manifold of central conic sections. It is shown further that the quantum mechanical problem of scattering in a superlattice leads to mathematically equivalent equations for the wave function, if the classical time is replaced by the space coordinate along a superlattice. The mathematical method used to compute the trajectories for stepwise constant parameters can be applied to both problems. It is the standard method in quantum scattering calculations, as known for locally periodic systems including a space dependent effective mass.

  4. Differentiating major depressive disorder in youths with attention deficit hyperactivity disorder.

    PubMed

    Diler, Rasim Somer; Daviss, W Burleson; Lopez, Adriana; Axelson, David; Iyengar, Satish; Birmaher, Boris

    2007-09-01

    Youths with attention deficit hyperactivity disorders (ADHD) frequently have comorbid major depressive disorders (MDD) sharing overlapping symptoms. Our objective was to examine which depressive symptoms best discriminate MDD among youths with ADHD. One-hundred-eleven youths with ADHD (5.2-17.8 years old) and their parents completed interviews with the K-SADS-PL and respective versions of the child or the parent Mood and Feelings Questionnaire (MFQ-C, MFQ-P). Controlling for group differences, logistic regression was used to calculate odds ratios reflecting the accuracy with which various depressive symptoms on the MFQ-C or MFQ-P discriminated MDD. Stepwise logistic regression then identified depressive symptoms that best discriminated the groups with and without MDD, using cross-validated misclassification rate as the criterion. Symptoms that discriminated youths with MDD (n=18) from those without MDD (n=93) were 4 of 6 mood/anhedonia symptoms, all 14 depressed cognition symptoms, and only 3 of 11 physical/vegetative symptoms. Mild irritability, miserable/unhappy moods, and symptoms related to sleep, appetite, energy levels and concentration did not discriminate MDD. A stepwise logistic regression correctly classified 89% of the comorbid MDD subjects, with only age, anhedonia at school, thoughts about killing self, thoughts that bad things would happen, and talking more slowly remaining in the final model. Results of this study may not generalize to community samples because subjects were drawn largely from a university-based outpatient psychiatric clinic. These findings stress the importance of social withdrawal, anhedonia, depressive cognitions, suicidal thoughts, and psychomotor retardation when trying to identify MDD among ADHD youths.

  5. Finite cohesion due to chain entanglement in polymer melts.

    PubMed

    Cheng, Shiwang; Lu, Yuyuan; Liu, Gengxin; Wang, Shi-Qing

    2016-04-14

    Three different types of experiments, quiescent stress relaxation, delayed rate-switching during stress relaxation, and elastic recovery after step strain, are carried out in this work to elucidate the existence of a finite cohesion barrier against free chain retraction in entangled polymers. Our experiments show that there is little hastened stress relaxation from step-wise shear up to γ = 0.7 and step-wise extension up to the stretching ratio λ = 1.5 at any time before or after the Rouse time. In contrast, a noticeable stress drop stemming from the built-in barrier-free chain retraction is predicted using the GLaMM model. In other words, the experiment reveals a threshold magnitude of step-wise deformation below which the stress relaxation follows identical dynamics whereas the GLaMM or Doi-Edwards model indicates a monotonic acceleration of the stress relaxation dynamics as a function of the magnitude of the step-wise deformation. Furthermore, a sudden application of startup extension during different stages of stress relaxation after a step-wise extension, i.e. the delayed rate-switching experiment, shows that the geometric condensation of entanglement strands in the cross-sectional area survives beyond the reptation time τd that is over 100 times the Rouse time τR. Our results point to the existence of a cohesion barrier that can prevent free chain retraction upon moderate deformation in well-entangled polymer melts.

  6. The evolution of the moon and the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Toksoez, M. N.; Johnston, D. H.

    1977-01-01

    The thermal evolutions of the Moon, Mars, Venus, and Mercury were calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical, and geophysical data were used to constrain both the present day temperature and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history.

  7. Small-x asymptotics of the quark helicity distribution: Analytic results

    DOE PAGES

    Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.

    2017-06-15

    In this Letter, we analytically solve the evolution equations for the small-x asymptotic behavior of the (flavor singlet) quark helicity distribution in the large- N c limit. Here, these evolution equations form a set of coupled integro-differential equations, which previously could only be solved numerically. This approximate numerical solution, however, revealed simplifying properties of the small-x asymptotics, which we exploit here to obtain an analytic solution.

  8. Differential evolution algorithm-based kernel parameter selection for Fukunaga-Koontz Transform subspaces construction

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin

    2015-10-01

    The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.

  9. Study of the fractional order proportional integral controller for the permanent magnet synchronous motor based on the differential evolution algorithm.

    PubMed

    Zheng, Weijia; Pi, Youguo

    2016-07-01

    A tuning method of the fractional order proportional integral speed controller for a permanent magnet synchronous motor is proposed in this paper. Taking the combination of the integral of time and absolute error and the phase margin as the optimization index, the robustness specification as the constraint condition, the differential evolution algorithm is applied to search the optimal controller parameters. The dynamic response performance and robustness of the obtained optimal controller are verified by motor speed-tracking experiments on the motor speed control platform. Experimental results show that the proposed tuning method can enable the obtained control system to achieve both the optimal dynamic response performance and the robustness to gain variations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity

    PubMed Central

    DeFelipe, Javier

    2011-01-01

    The tremendous expansion and the differentiation of the neocortex constitute two major events in the evolution of the mammalian brain. The increase in size and complexity of our brains opened the way to a spectacular development of cognitive and mental skills. This expansion during evolution facilitated the addition of microcircuits with a similar basic structure, which increased the complexity of the human brain and contributed to its uniqueness. However, fundamental differences even exist between distinct mammalian species. Here, we shall discuss the issue of our humanity from a neurobiological and historical perspective. PMID:21647212

  11. Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales.

    PubMed

    Zhong, Jinshun; Kellogg, Elizabeth A

    2015-08-01

    • CYCLOIDEA2 (CYC2)-like and RADIALIS (RAD)-like genes are needed for the normal development of corolla bilateral symmetry in Antirrhinum majus L. (snapdragon, Plantaginaceae, Lamiales). However, if and how changes in expression of CYC2-like and RAD-like genes correlate with the origin of corolla bilateral symmetry early in Lamiales remains largely unknown. The asymmetrical expression of CYC2-like and/or RAD-like genes during floral meristem development could be ancestral or derived in Plantaginaceae.• We used in situ RNA localization to examine the expression of CYC2-like and RAD-like genes in two early-diverging Lamiales.• CYC2-like and RAD-like genes are expressed broadly in the floral meristems in early-diverging Lamiales with radially symmetrical corollas, in contrast to their restricted expression in adaxial/lateral regions in core Lamiales. The expression pattern of CYC2-like genes has evolved in stepwise fashion, in that CYC2-like genes are likely expressed briefly in the floral meristem during flower development in sampled Oleaceae; prolonged expression of CYC2-like genes in petals originated in the common ancestor of Tetrachondraceae and core Lamiales, and asymmetrical expression in adaxial/lateral petals appeared later, in the common ancestor of the core Lamiales. Likewise, expression of RAD-like genes in petals appeared in early-diverging Lamiales or earlier; asymmetrical expression in adaxial/lateral petals then appeared in core Lamiales.• These data plus published reports of CYC2-like and RAD-like genes show that asymmetrical expression of these two genes is likely derived and correlates with the origins of corolla bilateral symmetry. © 2015 Botanical Society of America, Inc.

  12. Gradual and contingent evolutionary emergence of leaf mimicry in butterfly wing patterns.

    PubMed

    Suzuki, Takao K; Tomita, Shuichiro; Sezutsu, Hideki

    2014-11-25

    Special resemblance of animals to natural objects such as leaves provides a representative example of evolutionary adaptation. The existence of such sophisticated features challenges our understanding of how complex adaptive phenotypes evolved. Leaf mimicry typically consists of several pattern elements, the spatial arrangement of which generates the leaf venation-like appearance. However, the process by which leaf patterns evolved remains unclear. In this study we show the evolutionary origin and process for the leaf pattern in Kallima (Nymphalidae) butterflies. Using comparative morphological analyses, we reveal that the wing patterns of Kallima and 45 closely related species share the same ground plan, suggesting that the pattern elements of leaf mimicry have been inherited across species with lineage-specific changes of their character states. On the basis of these analyses, phylogenetic comparative methods estimated past states of the pattern elements and enabled reconstruction of the wing patterns of the most recent common ancestor. This analysis shows that the leaf pattern has evolved through several intermediate patterns. Further, we use Bayesian statistical methods to estimate the temporal order of character-state changes in the pattern elements by which leaf mimesis evolved, and show that the pattern elements changed their spatial arrangement (e.g., from a curved line to a straight line) in a stepwise manner and finally establish a close resemblance to a leaf venation-like appearance. Our study provides the first evidence for stepwise and contingent evolution of leaf mimicry.  Leaf mimicry patterns evolved in a gradual, rather than a sudden, manner from a non-mimetic ancestor. Through a lineage of Kallima butterflies, the leaf patterns evolutionarily originated through temporal accumulation of orchestrated changes in multiple pattern elements.

  13. The effect of elevated methane pressure on methane hydrate dissociation

    USGS Publications Warehouse

    Circone, S.; Stern, L.A.; Kirby, S.H.

    2004-01-01

    Methane hydrate, equilibrated at P, T conditions within the hydrate stability field, was rapidly depressurized to 1.0 or 2.0 MPa and maintained at isobaric conditions outside its stability field, while the extent and rate of hydrate dissociation was measured at fixed, externally maintained temperatures between 250 and 288 K. The dissociation rate decreases with increasing pressure at a given temperature. Dissociation rates at 1.0 MPa parallel the complex, reproducible T-dependence previously observed between 250 and 272 K at 0.1 MPa. The lowest rates were observed near 268 K, such that >50% of the sample can persist for more than two weeks at 0.1 MPa to more than a month at 1 and 2 MPa. Varying the pressure stepwise in a single experiment increased or decreased the dissociation rate in proportion to the rates observed in the isobaric experiments, similar to the rate reversibility previously observed with stepwise changes in temperature at 0.1 MPa. At fixed P, T conditions, the rate of methane hydrate dissociation decreases monotonically with time, never achieving a steady rate. The relationship between time (t) and the extent of hydrate dissociation is empirically described by: Evolved gas (%) = A??tB where the pre-exponential term A ranges from 0 to 16% s-B and the exponent B is generally <1. Based on fits of the dissociation results to Equation 1 for the full range of temperatures (204 to 289 K) and pressures (0.1 to 2.0 MPa) investigated, the derived parameters can be used to predict the methane evolution curves for pure, porous methane hydrate to within ??5%. The effects of sample porosity and the presence of quartz sand and seawater on methane hydrate dissociation are also described using Equation 1.

  14. Experience, Reflect, Critique: The End of the "Learning Cycles" Era

    ERIC Educational Resources Information Center

    Seaman, Jayson

    2008-01-01

    According to prevailing models, experiential learning is by definition a stepwise process beginning with direct experience, followed by reflection, followed by learning. It has been argued, however, that stepwise models inadequately explain the holistic learning processes that are central to learning from experience, and that they lack scientific…

  15. A Latent-Variable Causal Model of Faculty Reputational Ratings.

    ERIC Educational Resources Information Center

    King, Suzanne; Wolfle, Lee M.

    A reanalysis was conducted of Saunier's research (1985) on sources of variation in the National Research Council (NRC) reputational ratings of university faculty. Saunier conducted a stepwise regression analysis using 12 predictor variables. Due to problems with multicollinearity and because of the atheoretical nature of stepwise regression,…

  16. Testing Different Model Building Procedures Using Multiple Regression.

    ERIC Educational Resources Information Center

    Thayer, Jerome D.

    The stepwise regression method of selecting predictors for computer assisted multiple regression analysis was compared with forward, backward, and best subsets regression, using 16 data sets. The results indicated the stepwise method was preferred because of its practical nature, when the models chosen by different selection methods were similar…

  17. Spatial evolutionary epidemiology of spreading epidemics

    PubMed Central

    2016-01-01

    Most spatial models of host–parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. PMID:27798295

  18. Spatial evolutionary epidemiology of spreading epidemics.

    PubMed

    Lion, S; Gandon, S

    2016-10-26

    Most spatial models of host-parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. © 2016 The Author(s).

  19. Geologic Evolution of North America: Geologic features suggest that the continent has grown and differentiated through geologic time.

    PubMed

    Engel, A E

    1963-04-12

    The oldest decipherable rock complexes within continents (more than 2.5 billion years old) are largely basaltic volcanics and graywacke. Recent and modern analogs are the island arcs formed along and adjacent to the unstable interface of continental and oceanic crusts. The major interfacial reactions (orogenies) incorporate pre-existing sial, oceanic crust, and mantle into crust of a more continental type. Incipient stages of continental evolution, more than 3 billion years ago, remain obscure. They may involve either a cataclysmic granite-forming event or a succession of volcanic-sedimentary and granite-forming cycles. Intermediate and recent stages of continental evolution, as indicated by data for North America, involve accretion of numerous crustal interfaces with fragments of adjacent continental crust and their partial melting, reinjection, elevation, unroofing, and stabilization. Areas of relict provinces defined by ages of granites suggest that continental growth is approximately linear. But the advanced differentiation found in many provinces and the known overlaps permit wide deviation from linearity in the direction of a more explosive early or intermediate growth.

  20. Thermophysical property and pore structure evolution in stressed and non-stressed neutron irradiated IG-110 nuclear graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Lance; Contescu, Christian I.; Byun, Thak Sang

    2016-08-01

    The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 *C up to 9.3E25 n/m2 (E > 0.1 MeV). Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free conditions. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3e40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less

  1. Thermophysical property and pore structure evolution in stressed and non-stressed neutron irradiated IG-110 nuclear graphite

    DOE PAGES

    Snead, Lance L.; Contescu, C. I.; Byun, T. S.; ...

    2016-04-23

    The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 C up to 9.3x10 25 n/m 2 (E>0.1 MeV.) Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free condition. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3-40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less

  2. Rapid quantitative analysis of individual anthocyanin content based on high-performance liquid chromatography with diode array detection with the pH differential method.

    PubMed

    Wang, Huayin

    2014-09-01

    A new quantitative technique for the simultaneous quantification of the individual anthocyanins based on the pH differential method and high-performance liquid chromatography with diode array detection is proposed in this paper. The six individual anthocyanins (cyanidin 3-glucoside, cyanidin 3-rutinoside, petunidin 3-glucoside, petunidin 3-rutinoside, and malvidin 3-rutinoside) from mulberry (Morus rubra) and Liriope platyphylla were used for demonstration and validation. The elution of anthocyanins was performed using a C18 column with stepwise gradient elution and individual anthocyanins were identified by high-performance liquid chromatography with tandem mass spectrometry. Based on the pH differential method, the high-performance liquid chromatography peak areas of maximum and reference absorption wavelengths of anthocyanin extracts were conducted to quantify individual anthocyanins. The calibration curves for these anthocyanins were linear within the range of 10-5500 mg/L. The correlation coefficients (r(2)) all exceeded 0.9972, and the limits of detection were in the range of 1-4 mg/L at a signal-to-noise ratio ≥5 for these anthocyanins. The proposed quantitative analysis was reproducible with good accuracy of all individual anthocyanins ranging from 96.3 to 104.2% and relative recoveries were in the range 98.4-103.2%. The proposed technique is performed without anthocyanin standards and is a simple, rapid, accurate, and economical method to determine individual anthocyanin contents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Making sense of 'lower' and 'upper' stem-group Euarthropoda, with comments on the strict use of the name Arthropoda von Siebold, 1848.

    PubMed

    Ortega-Hernández, Javier

    2016-02-01

    The ever-increasing number of studies that address the origin and evolution of Euarthropoda - whose extant representatives include chelicerates, myriapods, crustaceans and hexapods - are gradually reaching a consensus with regard to the overall phylogenetic relationships of some of the earliest representatives of this phylum. The stem-lineage of Euarthropoda includes numerous forms that reflect the major morphological transition from a lobopodian-type to a completely arthrodized body organization. Several methods of classification that aim to reflect such a complex evolutionary history have been proposed as a consequence of this taxonomic diversity. Unfortunately, this has also led to a saturation of nomenclatural schemes, often in conflict with each other, some of which are incompatible with cladistic-based methodologies. Here, I review the convoluted terminology associated with the classification of stem-group Euarthropoda, and propose a synapomorphy-based distinction that allows 'lower stem-Euarthropoda' (e.g. lobopodians, radiodontans) to be separated from 'upper stem-Euarthropoda' (e.g. fuxianhuiids, Cambrian bivalved forms) in terms of the structural organization of the head region and other aspects of overall body architecture. The step-wise acquisition of morphological features associated with the origins of the crown-group indicate that the node defining upper stem-Euarthropoda is phylogenetically stable, and supported by numerous synapomorphic characters; these include the presence of a deutocerebral first appendage pair, multisegmented head region with one or more pairs of post-ocular differentiated limbs, complete body arthrodization, posterior-facing mouth associated with the hypostome/labrum complex, and post-oral biramous arthropodized appendages. The name 'Deuteropoda' nov. is proposed for the scion (monophyletic group including the crown-group and an extension of the stem-group) that comprises upper stem-Euarthropoda and Euarthropoda. A brief account of common terminological inaccuracies in recent palaeontological studies evinces the utility of Deuteropoda nov. as a reference point for discussing aspects of early euarthropod phylogeny. © 2014 Cambridge Philosophical Society.

  4. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    NASA Technical Reports Server (NTRS)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  5. The Fossilized Size Distribution of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Durda, D.; Nesvorny, D.; Jedicke, R.; Morbidelli, A.

    2003-05-01

    At present, we do not understand how the main asteroid belt evolved into its current state. During the planet formation epoch, the primordial main belt (PMB) contained several Earth masses of material, enough to allow the asteroids to accrete on relatively short timescales (e.g., Weidenschilling 1977). The present-day main belt, however, only contains 5e-4 Earth masses of material (Petit et al. 2002). Constraints on this evolution come from (i) the observed fragments of differentiated asteroids, (ii) meteorites collected from numerous differentiated parent bodies, (iii) the presence of ˜ 10 prominent asteroid families, (iv) the "wavy" size-frequency distribution of the main belt, which has been shown to be a by-product of substantial collisional evolution (e.g., Durda et al. 1997), and (v) the still-intact crust of (4) Vesta. To explain the contradictions in the above constraints, we suggest the PMB evolved in this fashion: Planetesimals and planetary embryos accreted (and differentiated) in the PMB during the first few Myr of the solar system. Gravitational perturbations from these embryos dynamically stirred the main belt, enough to initiate fragmentation. When Jupiter reached its full size, some 10 Myr after the solar system's birth, its perturbations, together with those of the embryos, dynamically depleted the main belt region of ˜ 99% of its bodies. Much of this material was sent to high (e,i) orbits, where it continued to pummel the surviving main belt bodies at high impact velocities for more than 100 Myr. While some differentiated bodies in the PMB were disrupted, most were instead scattered; only small fragments from this population remain. This period of comminution and dynamical evolution in the PMB created, among other things, the main belt's wavy size distribution, such that it can be considered a "fossil" from this violent early epoch. From this time forward, however, relatively little collisional evolution has taken place in the main belt, consistent with the surprising paucity of prominent asteroid families. Preliminary modeling results of this scenario and implications will be presented.

  6. Distinguishing Intestinal Lymphoma From Inflammatory Bowel Disease in Canine Duodenal Endoscopic Biopsy Samples.

    PubMed

    Carrasco, V; Rodríguez-Bertos, A; Rodríguez-Franco, F; Wise, A G; Maes, R; Mullaney, T; Kiupel, M

    2015-07-01

    Inflammatory bowel disease (IBD) and intestinal lymphoma are intestinal disorders in dogs, both causing similar chronic digestive signs, although with a different prognosis and different treatment requirements. Differentiation between these 2 conditions is based on histopathologic evaluation of intestinal biopsies. However, an accurate diagnosis is often difficult based on histology alone, especially when only endoscopic biopsies are available to differentiate IBD from enteropathy-associated T-cell lymphoma (EATL) type 2, a small cell lymphoma. The purpose of this study was to evaluate the utility of histopathology; immunohistochemistry (IHC) for CD3, CD20, and Ki-67; and polymerase chain reaction (PCR) for antigen receptor rearrangement (T-cell clonality) in the differential diagnosis of severe IBD vs intestinal lymphoma. Endoscopic biopsies from 32 dogs with severe IBD or intestinal lymphoma were evaluated. The original diagnosis was based on microscopic examination of hematoxylin and eosin (HE)-stained sections alone followed by a second evaluation using morphology in association with IHC for CD3 and CD20 and a third evaluation using PCR for clonality. Our results show that, in contrast to feline intestinal lymphomas, 6 of 8 canine small intestinal lymphomas were EATL type 1 (large cell) lymphomas. EATL type 2 was uncommon. Regardless, in dogs, intraepithelial lymphocytes were not an important diagnostic feature to differentiate IBD from EATL as confirmed by PCR. EATL type 1 had a significantly higher Ki-67 index than did EATL type 2 or IBD cases. Based on the results of this study, a stepwise diagnostic approach using histology as the first step, followed by immunophenotyping and determining the Ki67 index and finally PCR for clonality, improves the accuracy of distinguishing intestinal lymphoma from IBD in dogs. © The Author(s) 2014.

  7. Effect of the stellar spin history on the tidal evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.

    2012-08-01

    Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.

  8. Infrared laser driven double proton transfer. An optimal control theory study

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, Mahmoud K.; Kühn, Oliver

    2010-02-01

    Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.

  9. Response time of mitochondrial oxygen consumption following stepwise changes in cardiac energy demand.

    PubMed

    van Beek, J H; Westerhof, N

    1990-01-01

    We determined the speed with which mitochondrial oxygen consumption and therefore the mitochondrial ATP-synthesis adapted to changes in metabolic demand in the rabbit heart. This was done by measuring the oxygen uptake of the whole heart during a stepwise change in heart rate and correcting for the time taken by diffusion and by convective transport in the blood vessels. Data for the correction for transport time were obtained from the response of venous oxygen concentration to a stepwise change of arterial oxygen concentration. The time constant of the response of mitochondrial oxygen consumption to a step change in heart rate was found to be 4-8 s.

  10. Application of stepwise multiple regression techniques to inversion of Nimbus 'IRIS' observations.

    NASA Technical Reports Server (NTRS)

    Ohring, G.

    1972-01-01

    Exploratory studies with Nimbus-3 infrared interferometer-spectrometer (IRIS) data indicate that, in addition to temperature, such meteorological parameters as geopotential heights of pressure surfaces, tropopause pressure, and tropopause temperature can be inferred from the observed spectra with the use of simple regression equations. The technique of screening the IRIS spectral data by means of stepwise regression to obtain the best radiation predictors of meteorological parameters is validated. The simplicity of application of the technique and the simplicity of the derived linear regression equations - which contain only a few terms - suggest usefulness for this approach. Based upon the results obtained, suggestions are made for further development and exploitation of the stepwise regression analysis technique.

  11. [Focal lymphoid hyperplasia (pseudolymphoma) of the terminal ileum in adults].

    PubMed

    Molas, G; Potet, F; Nogig, P

    1985-01-01

    We report two cases of focal lymphoid hyperplasia (FLH) of terminal ileum in adult patients. Both cases showed identical morphological findings. The first was discovered during cholecystectomy in a 75-year-old woman who complained mild non-specific abdominal discomfort. The second was manifested by right lower quadrant abdominal pain in a 32-year-old man. The surgical specimens revealed a thickened wall, a narrowed lumen and multiple ulcerations. The histologic features were small cell, well differentiated lymphocyte infiltration, with several follicles showing large germinal centers; regional lymph nodes revealed a conspicuous reactive size enlargement. Further clinical investigations revealed no other abnormalities. Clinical course showed benign evolution after 6 and 3 years of respective follow-up. FLH should be differentiated from terminal ileum inflammatory and infectious diseases. It can be differentiated from Crohn's disease by the absence of characteristic histological features; from Yersinia infection by the absence of significant rates of specific serum antibodies. Moreover, FLH can be differentiated from malignant lymphoma by the presence of follicles and enlarged germinal centers and by the long-term benign evolution. The nature of FLH in terminal ileum, as well as those of the stomach and colo-rectum is still to be determined. Several hypothesis are proposed: reactive, benign neoplastic, or prelymphomatous lesion?

  12. Longitudinal trends in climate drive flowering time clines in North American Arabidopsis thaliana.

    PubMed

    Samis, Karen E; Murren, Courtney J; Bossdorf, Oliver; Donohue, Kathleen; Fenster, Charles B; Malmberg, Russell L; Purugganan, Michael D; Stinchcombe, John R

    2012-06-01

    Introduced species frequently show geographic differentiation, and when differentiation mirrors the ancestral range, it is often taken as evidence of adaptive evolution. The mouse-ear cress (Arabidopsis thaliana) was introduced to North America from Eurasia 150-200 years ago, providing an opportunity to study parallel adaptation in a genetic model organism. Here, we test for clinal variation in flowering time using 199 North American (NA) accessions of A. thaliana, and evaluate the contributions of major flowering time genes FRI, FLC, and PHYC as well as potential ecological mechanisms underlying differentiation. We find evidence for substantial within population genetic variation in quantitative traits and flowering time, and putatively adaptive longitudinal differentiation, despite low levels of variation at FRI, FLC, and PHYC and genome-wide reductions in population structure relative to Eurasian (EA) samples. The observed longitudinal cline in flowering time in North America is parallel to an EA cline, robust to the effects of population structure, and associated with geographic variation in winter precipitation and temperature. We detected major effects of FRI on quantitative traits associated with reproductive fitness, although the haplotype associated with higher fitness remains rare in North America. Collectively, our results suggest the evolution of parallel flowering time clines through novel genetic mechanisms.

  13. Differential Expression of Non-Coding RNAs and Continuous Evolution of the X Chromosome in Testicular Transcriptome of Two Mouse Species

    PubMed Central

    Homolka, David; Ivanek, Robert; Forejt, Jiri; Jansa, Petr

    2011-01-01

    Background Tight regulation of testicular gene expression is a prerequisite for male reproductive success, while differentiation of gene activity in spermatogenesis is important during speciation. Thus, comparison of testicular transcriptomes between closely related species can reveal unique regulatory patterns and shed light on evolutionary constraints separating the species. Methodology/Principal Findings Here, we compared testicular transcriptomes of two closely related mouse species, Mus musculus and Mus spretus, which diverged more than one million years ago. We analyzed testicular expression using tiling arrays overlapping Chromosomes 2, X, Y and mitochondrial genome. An excess of differentially regulated non-coding RNAs was found on Chromosome 2 including the intronic antisense RNAs, intergenic RNAs and premature forms of Piwi-interacting RNAs (piRNAs). Moreover, striking difference was found in the expression of X-linked G6pdx gene, the parental gene of the autosomal retrogene G6pd2. Conclusions/Significance The prevalence of non-coding RNAs among differentially expressed transcripts indicates their role in species-specific regulation of spermatogenesis. The postmeiotic expression of G6pdx in Mus spretus points towards the continuous evolution of X-chromosome silencing and provides an example of expression change accompanying the out-of-the X-chromosomal retroposition. PMID:21347268

  14. Evolutionary model selection and parameter estimation for protein-protein interaction network based on differential evolution algorithm

    PubMed Central

    Huang, Lei; Liao, Li; Wu, Cathy H.

    2016-01-01

    Revealing the underlying evolutionary mechanism plays an important role in understanding protein interaction networks in the cell. While many evolutionary models have been proposed, the problem about applying these models to real network data, especially for differentiating which model can better describe evolutionary process for the observed network urgently remains as a challenge. The traditional way is to use a model with presumed parameters to generate a network, and then evaluate the fitness by summary statistics, which however cannot capture the complete network structures information and estimate parameter distribution. In this work we developed a novel method based on Approximate Bayesian Computation and modified Differential Evolution (ABC-DEP) that is capable of conducting model selection and parameter estimation simultaneously and detecting the underlying evolutionary mechanisms more accurately. We tested our method for its power in differentiating models and estimating parameters on the simulated data and found significant improvement in performance benchmark, as compared with a previous method. We further applied our method to real data of protein interaction networks in human and yeast. Our results show Duplication Attachment model as the predominant evolutionary mechanism for human PPI networks and Scale-Free model as the predominant mechanism for yeast PPI networks. PMID:26357273

  15. PHONATION TAKES PRECEDENCE IN DEVELOPMENT AS WELL AS EVOLUTION OF LANGUAGE

    PubMed Central

    Oller, D. Kimbrough

    2014-01-01

    Early development of vocalization in humans is characterized by emerging control of phonation, rather than of prosody or supraglottal articulation. This fact offers an opportunity to the authors of the target article to enrich their characterization of the evolution of differential brain mechanisms in human and non-human primates. Phonation, I suggest, is the initial target of human-specific brain changes in sound-making capability upon which language is founded. PMID:25514957

  16. Bayesian phylogeny of sucrose transporters: ancient origins, differential expansion and convergent evolution in monocots and dicots

    PubMed Central

    Peng, Duo; Gu, Xi; Xue, Liang-Jiao; Leebens-Mack, James H.; Tsai, Chung-Jui

    2014-01-01

    Sucrose transporters (SUTs) are essential for the export and efficient movement of sucrose from source leaves to sink organs in plants. The angiosperm SUT family was previously classified into three or four distinct groups, Types I, II (subgroup IIB), and III, with dicot-specific Type I and monocot-specific Type IIB functioning in phloem loading. To shed light on the underlying drivers of SUT evolution, Bayesian phylogenetic inference was undertaken using 41 sequenced plant genomes, including seven basal lineages at key evolutionary junctures. Our analysis supports four phylogenetically and structurally distinct SUT subfamilies, originating from two ancient groups (AG1 and AG2) that diverged early during terrestrial colonization. In both AG1 and AG2, multiple intron acquisition events in the progenitor vascular plant established the gene structures of modern SUTs. Tonoplastic Type III and plasmalemmal Type II represent evolutionarily conserved descendants of AG1 and AG2, respectively. Type I and Type IIB were previously thought to evolve after the dicot-monocot split. We show, however, that divergence of Type I from Type III SUT predated basal angiosperms, likely associated with evolution of vascular cambium and phloem transport. Type I SUT was subsequently lost in monocots along with vascular cambium, and independent evolution of Type IIB coincided with modified monocot vasculature. Both Type I and Type IIB underwent lineage-specific expansion. In multiple unrelated taxa, the newly-derived SUTs exhibit biased expression in reproductive tissues, suggesting a functional link between phloem loading and reproductive fitness. Convergent evolution of Type I and Type IIB for SUT function in phloem loading and reproductive organs supports the idea that differential vascular development in dicots and monocots is a strong driver for SUT family evolution in angiosperms. PMID:25429293

  17. Reactivity of Household Oxygen Bleaches: A Stepwise Laboratory Exercise in High School Chemistry Course

    ERIC Educational Resources Information Center

    Nakano, Masayoshi; Ogasawara, Haruka; Wada, Takeshi; Koga, Nobuyoshi

    2016-01-01

    This paper reports on a learning program designed for high school chemistry classes that involves laboratory exercises using household oxygen bleaches. In this program, students are taught the chemistry of oxygen bleaches through a stepwise inquiry using laboratory exercises organized with different pedagogical intents. Through comparative…

  18. Adaptive evolution of Escherichia coli to Ciprofloxacin in controlled stress environments: emergence of tolerance in spatial and temporal gradients

    NASA Astrophysics Data System (ADS)

    Deng, J.; Sanford, R. A.; Dong, Y.; Shechtman, L. A.; Zhou, L.; Alcalde, R.; Werth, C. J.; Fouke, B. W.

    2016-12-01

    Microorganisms in nature have evolved in response to a variety of environmental stresses, including gradients of temperature, pH, substrate availability and aqueous chemistry. While environmental stresses are considered to be the driving forces of adaptive evolution, the impact and extent of any specific stress needed to drive such changes has not been well characterized. In this study, the antibiotic Ciprofloxacin was used as a stressor and systematically applied to E. coli st. 307 cells via a spatial gradient in a microfluidic pore network and a temporal gradient in batch cultures. The microfluidic device facilitated in vitro real-time tracking of bacterial abundances and dynamic spatial distributions in response to the gradients of both the antibiotic and nutrients. Cells collected from the microfluidic device showed growth on plates containing up to 10-times the original minimum inhibition concentration (MIC). In batch systems, Ciprofloxacin was used to evaluate adaptive responses via temporal gradients, in which the stressor concentration was incrementally increased over time with each transfer of the culture after 24 hours of growth. Responses of E. coli 307 to these stress patterns were measured by quantifying changes in the MIC for Ciprofloxacin. Over a period of 18 days of step-wise concentration increments, bacterial cells were observed to acquire tolerance gradually and eventually adapt to a 28-fold increase in the original MIC. Samples at different stages within the temporal Ciprofloxacin gradient treatment show different extents of resistance. All samples exhibited resistance exceeding the highest exposure stress concentration. In combination with the spatial and temporal gradient systems, this work provides the first comprehensive measure of the dynamic resistance of E. coli in response to Ciprofloxacin concentration gradients. These will provide invaluable insights to understand the effects of antibiotic stresses on bacterial adaptive evolution in medical settings and shed light on understanding the mechanics of microbial evolution.

  19. Transient and sustained elementary flux mode networks on a catalytic string-based chemical evolution model.

    PubMed

    Pereira, José A

    2014-08-01

    Theoretical models designed to test the metabolism-first hypothesis for prebiotic evolution have yield strong indications about the hypothesis validity but could sometimes use a more extensive identification between model objects and real objects towards a more meaningful interpretation of results. In an attempt to go in that direction, the string-based model SSE ("steady state evolution") was developed, where abstract molecules (strings) and catalytic interaction rules are based on some of the most important features of carbon compounds in biological chemistry. The system is open with a random inflow and outflow of strings but also with a permanent string food source. Although specific catalysis is a key aspect of the model, used to define reaction rules, the focus is on energetics rather than kinetics. Standard energy change tables were constructed and used with standard formation reactions to track energy flows through the interpretation of equilibrium constant values. Detection of metabolic networks on the reaction system was done with elementary flux mode (EFM) analysis. The combination of these model design and analysis options enabled obtaining metabolic and catalytic networks showing several central features of biological metabolism, some more clearly than in previous models: metabolic networks with stepwise synthesis, energy coupling, catalysts regulation, SN2 coupling, redox coupling, intermediate cycling, coupled inverse pathways (metabolic cycling), autocatalytic cycles and catalytic cascades. The results strongly suggest that the main biological metabolism features, including the genotype-phenotype interpretation, are caused by the principles of catalytic systems and are prior to modern genetic systems principles. It also gives further theoretical support to the thesis that the basic features of biologic metabolism are a consequence of the time evolution of a random catalyst search working on an open system with a permanent food source. The importance of the food source characteristics and evolutionary possibilities are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. The concern of emergence of multi-station reaction pathways that might make stepwise the mechanism of the 1,3-dipolar cycloadditions of azides and alkynes

    NASA Astrophysics Data System (ADS)

    Mohtat, Bita; Siadati, Seyyed Amir; Khalilzadeh, Mohammad Ali; Zareyee, Daryoush

    2018-03-01

    After hot debates on the concerted or stepwise nature of the mechanism of the catalyst-free 1,3-dipolar cycloadditions (DC)s, nowadays, it is being believed that for the reaction of each dipole and dipolarophile, there is a possibility that the reaction mechanism becomes stepwise, intermediates emerge, and the reaction becomes non-stereospecific. Yield of even minimal amounts of unwanted side products or stereoisomers as impurities could bring many troubles like difficult purification steps. In this project, we have made attempts to study all probable reaction channels of the azide cycloadditions with two functionalized alkynes, in order to answer this question: "is there any possibility that intermediates evolve in the catalyst-free click 1,3-DC reaction of azide-alkynes?". During the calculations, several multi-station reaction pathways supporting the stepwise and concerted mechanisms were detected. Also, the born-oppenheimer molecular dynamic (BOMD) simulation was used to find trustable geometries which could be emerged during the reaction coordinate.

  1. Theoretical study on the reaction mechanism of hydrogenation of furfural to furfuryl alcohol on Lewis acidic BEA zeolites: effects of defect structure and tetravalent metals substitution.

    PubMed

    Injongkol, Yuwanda; Maihom, Thana; Treesukul, Piti; Sirijaraensre, Jakkapan; Boekfa, Bundet; Limtrakul, Jumras

    2017-09-13

    Furfural acquired from agricultural sources is receiving extensive attention in the petrochemical industry as it offers an alternative route to generate more valuable hydrocarbon compounds. Herein, we investigate the furfural hydrogenation to furfuryl alcohol catalyzed by Lewis acidic BEA zeolites at the molecular level by means of the M06-L density functional theory. The mechanistic pictures in the catalytic procedure are revealed. The possible reaction pathways are considered to proceed via either concerted or stepwise mechanisms. With the contribution of zeolite oxygen bridging for the H-H splitting, the rate determining step activation barrier for the stepwise mechanism is 14.7 kcal mol -1 lower than that for the concerted mechanism. The stepwise reaction therefore seems to be favored compared to the concerted one. The catalytic effect of the defect zeolite framework on the stepwise mechanism is also investigated. The activation energy for the stepwise rate-determining step over this site is significantly lower than the corresponding step over the perfect one by 14.1 kcal mol -1 . Finally, the catalytic activity of tetravalent metal centers (Sn, Ge, Zr and Hf) substituted in BEA is also preliminarily compared and it is found to follow the order of Hf > Zr > Sn > Ge based on activation energies and the reaction rate. The difference in the activation energy can be traced back to the difference in the charge transfer from the catalytic site to the adsorbed molecules.

  2. Controlled breathing protocols probe human autonomic cardiovascular rhythms

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Cox, J. F.; Diedrich, A. M.; Taylor, J. A.; Beightol, L. A.; Ames, J. E. 4th; Hoag, J. B.; Seidel, H.; Eckberg, D. L.

    1998-01-01

    The purpose of this study was to determine how breathing protocols requiring varying degrees of control affect cardiovascular dynamics. We measured inspiratory volume, end-tidal CO2, R-R interval, and arterial pressure spectral power in 10 volunteers who followed the following 5 breathing protocols: 1) uncontrolled breathing for 5 min; 2) stepwise frequency breathing (at 0.3, 0.25, 0.2, 0.15, 0.1, and 0.05 Hz for 2 min each); 3) stepwise frequency breathing as above, but with prescribed tidal volumes; 4) random-frequency breathing (approximately 0.5-0.05 Hz) for 6 min; and 5) fixed-frequency breathing (0.25 Hz) for 5 min. During stepwise breathing, R-R interval and arterial pressure spectral power increased as breathing frequency decreased. Control of inspired volume reduced R-R interval spectral power during 0.1 Hz breathing (P < 0.05). Stepwise and random-breathing protocols yielded comparable coherence and transfer functions between respiration and R-R intervals and systolic pressure and R-R intervals. Random- and fixed-frequency breathing reduced end-tidal CO2 modestly (P < 0.05). Our data suggest that stringent tidal volume control attenuates low-frequency R-R interval oscillations and that fixed- and random-rate breathing may decrease CO2 chemoreceptor stimulation. We conclude that autonomic rhythms measured during different breathing protocols have much in common but that a stepwise protocol without stringent control of inspired volume may allow for the most efficient assessment of short-term respiratory-mediated autonomic oscillations.

  3. A stepwise protocol for the treatment of refractory gastroesophageal reflux-induced chronic cough

    PubMed Central

    Xu, Xianghuai; Lv, Hanjing; Yu, Li; Chen, Qiang; Liang, Siwei

    2016-01-01

    Background Refractory gastroesophageal reflux-induced chronic cough (GERC) is difficult to manage. The purpose of the study is to evaluate the efficacy of a novel stepwise protocol for treating this condition. Methods A total of 103 consecutive patients with suspected refractory reflux-induced chronic cough failing to a standard anti-reflux therapy were treated with a stepwise therapy. Treatment commences with high-dose omeprazole and, if necessary, is escalated to subsequent sequential treatment with ranitidine and finally baclofen. The primary end-point was overall cough resolution, and the secondary end-point was cough resolution after each treatment step. Results High-dose omeprazole eliminated or improved cough in 28.1% of patients (n=29). Further stepwise of treatment with the addition of ranitide yielded a favorable response in an additional 12.6% (n=13) of patients, and subsequent escalation to baclofen provoked response in another 36.9% (n=38) of patients. Overall, this stepwise protocol was successful in 77.6% (n=80) of patients. The diurnal cough symptom score fell from 3 [1] to 1 [0] (Z=6.316, P=0.000), and the nocturnal cough symptom score decreased from 1 [1] to 0 [1] (Z=–4.511, P=0.000), with a corresponding reduction in the Gastroesophageal Reflux Diagnostic Questionnaire score from 8.6±1.7 to 6.8±0.7 (t=3.612, P=0.000). Conversely, the cough threshold C2 to capsaicin was increased from 0.49 (0.49) µmol/L to 1.95 (2.92) µmol/L (Z=–5.892, P=0.000), and the cough threshold C5 was increased from 1.95 (2.92) µmol/L to 7.8 (5.85) µmol/L (Z=–5.171, P=0.000). Conclusions Sequential stepwise anti-reflux therapy is a useful therapeutic strategy for refractory reflux-induced chronic cough. PMID:26904227

  4. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  5. A Model Parameter Extraction Method for Dielectric Barrier Discharge Ozone Chamber using Differential Evolution

    NASA Astrophysics Data System (ADS)

    Amjad, M.; Salam, Z.; Ishaque, K.

    2014-04-01

    In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.

  6. Optimization of seasonal ARIMA models using differential evolution - simulated annealing (DESA) algorithm in forecasting dengue cases in Baguio City

    NASA Astrophysics Data System (ADS)

    Addawe, Rizavel C.; Addawe, Joel M.; Magadia, Joselito C.

    2016-10-01

    Accurate forecasting of dengue cases would significantly improve epidemic prevention and control capabilities. This paper attempts to provide useful models in forecasting dengue epidemic specific to the young and adult population of Baguio City. To capture the seasonal variations in dengue incidence, this paper develops a robust modeling approach to identify and estimate seasonal autoregressive integrated moving average (SARIMA) models in the presence of additive outliers. Since the least squares estimators are not robust in the presence of outliers, we suggest a robust estimation based on winsorized and reweighted least squares estimators. A hybrid algorithm, Differential Evolution - Simulated Annealing (DESA), is used to identify and estimate the parameters of the optimal SARIMA model. The method is applied to the monthly reported dengue cases in Baguio City, Philippines.

  7. Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease.

    PubMed

    Vivekanandan, T; Sriman Narayana Iyengar, N Ch

    2017-11-01

    Enormous data growth in multiple domains has posed a great challenge for data processing and analysis techniques. In particular, the traditional record maintenance strategy has been replaced in the healthcare system. It is vital to develop a model that is able to handle the huge amount of e-healthcare data efficiently. In this paper, the challenging tasks of selecting critical features from the enormous set of available features and diagnosing heart disease are carried out. Feature selection is one of the most widely used pre-processing steps in classification problems. A modified differential evolution (DE) algorithm is used to perform feature selection for cardiovascular disease and optimization of selected features. Of the 10 available strategies for the traditional DE algorithm, the seventh strategy, which is represented by DE/rand/2/exp, is considered for comparative study. The performance analysis of the developed modified DE strategy is given in this paper. With the selected critical features, prediction of heart disease is carried out using fuzzy AHP and a feed-forward neural network. Various performance measures of integrating the modified differential evolution algorithm with fuzzy AHP and a feed-forward neural network in the prediction of heart disease are evaluated in this paper. The accuracy of the proposed hybrid model is 83%, which is higher than that of some other existing models. In addition, the prediction time of the proposed hybrid model is also evaluated and has shown promising results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Contrasting patterns of diversity and population differentiation at the innate immunity gene toll-like receptor 2 (TLR2) in two sympatric rodent species.

    PubMed

    Tschirren, Barbara; Andersson, Martin; Scherman, Kristin; Westerdahl, Helena; Råberg, Lars

    2012-03-01

    Comparing patterns of diversity and divergence between populations at immune genes and neutral markers can give insights into the nature and geographic scale of parasite-mediated selection. To date, studies investigating such patterns of selection in vertebrates have primarily focused on the acquired branch of the immune system, whereas it remains largely unknown how parasite-mediated selection shapes innate immune genes both within and across vertebrate populations. Here, we present a study on the diversity and population differentiation at the innate immune gene Toll-like receptor 2 (TLR2) across nine populations of yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) in southern Sweden. In yellow-necked mice, TLR2 diversity was very low, as was TLR2 population differentiation compared to neutral loci. In contrast, several TLR2 haplotypes co-occurred at intermediate frequencies within and across bank vole populations, and pronounced isolation by distance between populations was observed. The diversity and differentiation at neutral loci was similar in the two species. These results indicate that parasite-mediated selection has been acting in dramatically different ways on a given immune gene in ecologically similar and sympatric species. Furthermore, the finding of TLR2 population differentiation at a small geographical scale in bank voles highlights that vertebrate innate immune defense may be evolutionarily more dynamic than has previously been appreciated. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  9. Myeloma Cell Dynamics in Response to Treatment Supports a Model of Hierarchical Differentiation and Clonal Evolution.

    PubMed

    Tang, Min; Zhao, Rui; van de Velde, Helgi; Tross, Jennifer G; Mitsiades, Constantine; Viselli, Suzanne; Neuwirth, Rachel; Esseltine, Dixie-Lee; Anderson, Kenneth; Ghobrial, Irene M; San Miguel, Jesús F; Richardson, Paul G; Tomasson, Michael H; Michor, Franziska

    2016-08-15

    Since the pioneering work of Salmon and Durie, quantitative measures of tumor burden in multiple myeloma have been used to make clinical predictions and model tumor growth. However, such quantitative analyses have not yet been performed on large datasets from trials using modern chemotherapy regimens. We analyzed a large set of tumor response data from three randomized controlled trials of bortezomib-based chemotherapy regimens (total sample size n = 1,469 patients) to establish and validate a novel mathematical model of multiple myeloma cell dynamics. Treatment dynamics in newly diagnosed patients were most consistent with a model postulating two tumor cell subpopulations, "progenitor cells" and "differentiated cells." Differential treatment responses were observed with significant tumoricidal effects on differentiated cells and less clear effects on progenitor cells. We validated this model using a second trial of newly diagnosed patients and a third trial of refractory patients. When applying our model to data of relapsed patients, we found that a hybrid model incorporating both a differentiation hierarchy and clonal evolution best explains the response patterns. The clinical data, together with mathematical modeling, suggest that bortezomib-based therapy exerts a selection pressure on myeloma cells that can shape the disease phenotype, thereby generating further inter-patient variability. This model may be a useful tool for improving our understanding of disease biology and the response to chemotherapy regimens. Clin Cancer Res; 22(16); 4206-14. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Heterotopic Gastric Mucosa in the Distal Part of Esophagus in a Teenager: Case Report.

    PubMed

    Lupu, Vasile Valeriu; Ignat, Ancuta; Paduraru, Gabriela; Mihaila, Doina; Burlea, Marin; Ciubara, Anamaria

    2015-10-01

    Heterotopic gastric mucosa (HGM) of the esophagus is a congenital anomaly consisting of ectopic gastric mucosa. It may be connected with disorders of the upper gastrointestinal tract, exacerbated by Helicobacter pylori. The diagnosis of HGM is confirmed via endoscopy with biopsy. Histopathology provides the definitive diagnosis by demonstrating gastric mucosa adjacent to normal esophageal mucosa. HGM located in the distal esophagus needs differentiation from Barrett's esophagus. Barrett's esophagus is a well-known premalignant injury for adenocarcinoma of the esophagus. Malignant progression of HGM occurs in a stepwise pattern, following the metaplasia-dysplasia-adenocarcinoma sequence.We present a rare case of a teenage girl with HGM located in the distal esophagus, associated with chronic gastritis and biliary duodenogastric reflux. Endoscopy combined with biopsies is a mandatory method in clinical evaluation of metaplastic and nonmetaplastic changes within HGM of the esophagus.

  11. The active analog approach applied to the pharmacophore identification of benzodiazepine receptor ligands

    NASA Astrophysics Data System (ADS)

    Tebib, Souhail; Bourguignon, Jean-Jacques; Wermuth, Camille-Georges

    1987-07-01

    Applied to seven potent benzodiazepine-receptor ligands belonging to chemically different classes, the active analog approach allowed the stepwise identification of the pharmacophoric pattern associated with the recognition by the benzodiazepine receptor. A unique pharmacophore model was derived which involves six critical zones: (a) a π-electron rich aromatic (PAR) zone; (b) two electron-rich zones δ1 and δ2 placed at 5.0 and 4.5 Å respectively from the reference centroid in the PAR zone; (c) a freely rotating aromatic ring (FRA) region; (d) an out-of-plane region (OPR), strongly associated with agonist properties; and (e) an additional hydrophobic region (AHR). The model accommodates all presently known ligands of the benzodiazepine receptor, identifies sensitivity to steric hindrance close to the δ1 zone, accounts for R and S differential affinities and distinguishes requirements for agonist versus non-agonist activity profiles.

  12. Unraveling the Stepwise Melting of an Ionic Liquid.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-04

    Differential scanning calorimetry, X-ray diffraction, and Raman spectroscopy were used to reveal the premelting events precursors of melting of the ionic liquid triethylsulfonium bis(trifluoromethanesufonyl)imide, [S 222 ][NTf 2 ]. On heating the crystalline phase of [S 222 ][NTf 2 ], melting occurs along a sequence of at least three steps. First, the crystalline long-range order breaks down, but local order is retained. The second step is characterized by conformational freedom of the ethyl chains of cations related to premelting of nonpolar domains, and the complete melting finally occurs when anions acquire conformational freedom. This work provides a microscopic view on the mechanism of melting of [S 222 ][NTf 2 ] in line with the picture of melting taking place as a sequence of structural changes. The results of this work shed light on the understanding of the complex melting process of ionic liquids.

  13. Finite difference methods for transient signal propagation in stratified dispersive media

    NASA Technical Reports Server (NTRS)

    Lam, D. H.

    1975-01-01

    Explicit difference equations are presented for the solution of a signal of arbitrary waveform propagating in an ohmic dielectric, a cold plasma, a Debye model dielectric, and a Lorentz model dielectric. These difference equations are derived from the governing time-dependent integro-differential equations for the electric fields by a finite difference method. A special difference equation is derived for the grid point at the boundary of two different media. Employing this difference equation, transient signal propagation in an inhomogeneous media can be solved provided that the medium is approximated in a step-wise fashion. The solutions are generated simply by marching on in time. It is concluded that while the classical transform methods will remain useful in certain cases, with the development of the finite difference methods described, an extensive class of problems of transient signal propagating in stratified dispersive media can be effectively solved by numerical methods.

  14. Leading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole Showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulat, Falko; Höche, Stefan; Prestel, Stefan

    We compute the next-to-leading order corrections to soft-gluon radiation differentially in the one-emission phase space. We show that their contribution to the evolution of color dipoles can be obtained in a modified subtraction scheme, such that both one- and two-emission terms are amenable to Monte-Carlo integration. The two-loop cusp anomalous dimension is recovered naturally upon integration over the full phase space. We present two independent implementations of the new algorithm in the two event generators Pythia and Sherpa, and we compare the resulting fully differential simulation to the CMW scheme.

  15. Simulation of Stochastic Processes by Coupled ODE-PDE

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2008-01-01

    A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.

  16. Thermal evolution of a differentiated Ganymede and implications for surface features

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Stevenson, D. J.

    1987-01-01

    Thermodynamic models are developed for the processes which controlled the evolution of the surface Ganymede, an icy Jovian satellite assumed to have a rock-rich core surrounded by a water-ice mantle. Account is taken of a heat pulse which would have arisen from a Rayleigh-Taylor instability at a deep-seated liquid-solid water interface, rapid fracturing from global stresses imposed by warm ice diapiric upwelling, impacts by large meteorites, and resurfacing by ice flows (rather than core formation). Comparisons are made with existing models for the evolution of Callisto, and the difficulties in defining a mechanism which produced the groove terrain of Ganymede are discussed.

  17. Nonmathematical models for evolution of altruism, and for group selection (peck order-territoriality-ant colony-dual-determinant model-tri-determinant model).

    PubMed

    Darlington, P J

    1972-02-01

    Mathematical biologists have failed to produce a satisfactory general model for evolution of altruism, i.e., of behaviors by which "altruists" benefit other individuals but not themselves; kin selection does not seem to be a sufficient explanation of nonreciprocal altruism. Nonmathematical (but mathematically acceptable) models are now proposed for evolution of negative altruism in dual-determinant and of positive altruism in tri-determinant systems. Peck orders, territorial systems, and an ant society are analyzed as examples. In all models, evolution is primarily by individual selection, probably supplemented by group selection. Group selection is differential extinction of populations. It can act only on populations preformed by selection at the individual level, but can either cancel individual selective trends (effecting evolutionary homeostasis) or supplement them; its supplementary effect is probably increasingly important in the evolution of increasingly organized populations.

  18. Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest.

    PubMed

    Bracewell, Ryan R; Bentz, Barbara J; Sullivan, Brian T; Good, Jeffrey M

    2017-11-17

    Genome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine beetle. We find a broad continuum of intrinsic incompatibilities in hybrid males that increase in strength with geographic distance between reproductively isolated populations. This striking progression of reproductive isolation is coupled with extensive gene specialization, natural selection, and elevated genetic differentiation on both sex chromosomes. Closely related populations isolated by hybrid male sterility also show fixation of alternative neo-Y haplotypes that differ in structure and male-specific gene content. Our results suggest that neo-sex chromosome evolution can drive rapid functional divergence between closely related populations irrespective of ecological drivers of divergence.

  19. The relationship between crustal tectonics and internal evolution in the moon and Mercury

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1977-01-01

    The relationship between crustal tectonics and thermal evolution is discussed in terms of the moon and Mercury. Finite strain theory and depth and temperature-dependent thermal expansion are used to evaluate previous conclusions about early lunar history. Factors bringing about core differentiation in the first 0.6 b.y. of Mercurian evolution are described. The influence of concentrating radioactive heat sources located in Mercury's crust on the predicted contraction is outlined. The predicted planetary volume change is explored with regard to quantitative limits on the extent of Mercurian core solidification. Lunar and Mercurian thermal stresses involved in thermal evolution are reviewed, noting the history of surface volcanism. It is concluded that surface faulting and volcanism are closely associated with the thermal evolution of the whole planetary volume. As the planet cools or is heated, several types of tectonic and volcanic effects may be produced by thermal stress occurring in the lithosphere.

  20. Characterization and Evolution of Tetrameric Photosystem I from the Thermophilic Cyanobacterium Chroococcidiopsis sp TS-821[C][W][OPEN

    PubMed Central

    Li, Meng; Semchonok, Dmitry A.; Boekema, Egbert J.; Bruce, Barry D.

    2014-01-01

    Photosystem I (PSI) is a reaction center associated with oxygenic photosynthesis. Unlike the monomeric reaction centers in green and purple bacteria, PSI forms trimeric complexes in most cyanobacteria with a 3-fold rotational symmetry that is primarily stabilized via adjacent PsaL subunits; however, in plants/algae, PSI is monomeric. In this study, we discovered a tetrameric form of PSI in the thermophilic cyanobacterium Chroococcidiopsis sp TS-821 (TS-821). In TS-821, PSI forms tetrameric and dimeric species. We investigated these species by Blue Native PAGE, Suc density gradient centrifugation, 77K fluorescence, circular dichroism, and single-particle analysis. Transmission electron microscopy analysis of native membranes confirms the presence of the tetrameric PSI structure prior to detergent solubilization. To investigate why TS-821 forms tetramers instead of trimers, we cloned and analyzed its psaL gene. Interestingly, this gene product contains a short insert between the second and third predicted transmembrane helices. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria, some of which also have a tetrameric form of PSI. These results are discussed in light of chloroplast evolution, and we propose that PSI evolved stepwise from a trimeric form to tetrameric oligomer en route to becoming monomeric in plants/algae. PMID:24681621

  1. Stepwise artificial evolution of a plant disease resistance gene.

    PubMed

    Harris, C Jake; Slootweg, Erik J; Goverse, Aska; Baulcombe, David C

    2013-12-24

    Genes encoding plant nucleotide-binding leucine-rich repeat (NB-LRR) proteins confer dominant resistance to diverse pathogens. The wild-type potato NB-LRR protein Rx confers resistance against a single strain of potato virus X (PVX), whereas LRR mutants protect against both a second PVX strain and the distantly related poplar mosaic virus (PopMV). In one of the Rx mutants there was a cost to the broad-spectrum resistance because the response to PopMV was transformed from a mild disease on plants carrying wild-type Rx to a trailing necrosis that killed the plant. To explore the use of secondary mutagenesis to eliminate this cost of broad-spectrum resistance, we performed random mutagenesis of the N-terminal domains of this broad-recognition version of Rx and isolated four mutants with a stronger response against the PopMV coat protein due to enhanced activation sensitivity. These mutations are located close to the nucleotide-binding pocket, a highly conserved structure that likely controls the "switch" between active and inactive NB-LRR conformations. Stable transgenic plants expressing one of these versions of Rx are resistant to the strains of PVX and the PopMV that previously caused trailing necrosis. We conclude from this work that artificial evolution of NB-LRR disease resistance genes in crops can be enhanced by modification of both activation and recognition phases, to both accentuate the positive and eliminate the negative aspects of disease resistance.

  2. RNA-Seq based phylogeny recapitulates previous phylogeny of the genus Flaveria (Asteraceae) with some modifications.

    PubMed

    Lyu, Ming-Ju Amy; Gowik, Udo; Kelly, Steve; Covshoff, Sarah; Mallmann, Julia; Westhoff, Peter; Hibberd, Julian M; Stata, Matt; Sage, Rowan F; Lu, Haorong; Wei, Xiaofeng; Wong, Gane Ka-Shu; Zhu, Xin-Guang

    2015-06-18

    The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the genus Flaveria contains 21 of the 23 known Flaveria species and has been previously constructed using a combination of morphological data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnL-F). Here we developed a new strategy to update the phylogenetic tree of 16 Flaveria species based on RNA-Seq data. The updated phylogeny is largely congruent with the previously published tree but with some modifications. We propose that the data collection method provided in this study can be used as a generic method for phylogenetic tree reconstruction if the target species has no genomic information. We also showed that a "F. pringlei" genotype recently used in a number of labs may be a hybrid between F. pringlei (C3) and F. angustifolia (C3-C4). We propose that the new strategy of obtaining phylogenetic sequences outlined in this study can be used to construct robust trees in a larger number of taxa. The updated Flaveria phylogenetic tree also supports a hypothesis of stepwise and parallel evolution of C4 photosynthesis in the Flavaria clade.

  3. Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina.

    PubMed

    Montagna, Cristina Mónica; Gauna, Lidia Ester; D'Angelo, Ana Pechen de; Anguiano, Olga Liliana

    2012-06-01

    Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold) and deltamethrin (162-fold) and a small increase in resistance to the organophosphate azinphos methyl (2-fold) were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisio, Alessandro; D’Ariano, Giacomo Mauro; Tosini, Alessandro, E-mail: alessandro.tosini@unipv.it

    We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound withmore » experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be efficiently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of a hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics. - Highlights: • The free Dirac field in one space dimension as a quantum cellular automaton. • Large scale limit of the automaton and the emergence of the Dirac equation. • Dispersive differential equation for the evolution of smooth states on the automaton. • Optimal discrimination between the automaton evolution and the Dirac equation.« less

  5. Transmissible cancers in an evolutionary context.

    PubMed

    Ujvari, Beata; Papenfuss, Anthony T; Belov, Katherine

    2016-07-01

    Cancer is an evolutionary and ecological process in which complex interactions between tumour cells and their environment share many similarities with organismal evolution. Tumour cells with highest adaptive potential have a selective advantage over less fit cells. Naturally occurring transmissible cancers provide an ideal model system for investigating the evolutionary arms race between cancer cells and their surrounding micro-environment and macro-environment. However, the evolutionary landscapes in which contagious cancers reside have not been subjected to comprehensive investigation. Here, we provide a multifocal analysis of transmissible tumour progression and discuss the selection forces that shape it. We demonstrate that transmissible cancers adapt to both their micro-environment and macro-environment, and evolutionary theories applied to organisms are also relevant to these unique diseases. The three naturally occurring transmissible cancers, canine transmissible venereal tumour (CTVT) and Tasmanian devil facial tumour disease (DFTD) and the recently discovered clam leukaemia, exhibit different evolutionary phases: (i) CTVT, the oldest naturally occurring cell line is remarkably stable; (ii) DFTD exhibits the signs of stepwise cancer evolution; and (iii) clam leukaemia shows genetic instability. While all three contagious cancers carry the signature of ongoing and fairly recent adaptations to selective forces, CTVT appears to have reached an evolutionary stalemate with its host, while DFTD and the clam leukaemia appear to be still at a more dynamic phase of their evolution. Parallel investigation of contagious cancer genomes and transcriptomes and of their micro-environment and macro-environment could shed light on the selective forces shaping tumour development at different time points: during the progressive phase and at the endpoint. A greater understanding of transmissible cancers from an evolutionary ecology perspective will provide novel avenues for the prevention and treatment of both contagious and non-communicable cancers. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  6. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas

    PubMed Central

    Jacobs, Jonathan M.; Pesce, Céline; Lefeuvre, Pierre; Koebnik, Ralf

    2015-01-01

    Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors. PMID:26136759

  7. A synthesis of Plio-Pleistocene leaf wax biomarker records of hydrological variation in East Africa and their relationship with hominin evolution

    NASA Astrophysics Data System (ADS)

    Lupien, R.; Russell, J. M.; Campisano, C. J.; Feibel, C. S.; Deino, A. L.; Kingston, J.; Potts, R.; Cohen, A. S.

    2017-12-01

    Climate change is thought to play a critical role in human evolution. However, the mechanisms behind this relationship are difficult to test due to a lack of long, high-quality paleoclimate records from hominin fossil locales. We improve the understanding of this relationship by examining Plio-Pleistocene lake sediment cores from East Africa that were drilled by the Hominin Sites and Paleolakes Drilling Project, an international effort to study the environment in which our hominin ancestors evolved and dispersed. We have analyzed organic geochemical signals of climate from drill cores from Ethiopia and Kenya spanning the Pliocene to recent time (from north to south: paleolake Hadar, Lake Turkana, Lake Baringo, and paleolake Koora). Specifically, we analyzed the hydrogen isotopic composition of terrestrial leaf waxes, which records changes in regional atmospheric circulation and hydrology. We reconstructed quantitative records of rainfall amount at each of the study sites, which host sediment spanning different geologic times and regions. By compiling these records, we test hominin evolutionary hypotheses as well as crucial questions about climate trend and variability. We find that there is a gradual or step-wise enrichment in δDwax, signifying a trend from a wet to dry climate, from the Pliocene to the Pleistocene, perhaps implying an influence of global temperature, ice sheet extent, and/or atmospheric greenhouse gas concentrations on East African climate. However, the shift is small relative to the amplitude of orbital-scale isotopic variations. The records indicate a strong influence of eccentricity-modulated orbital precession, and imply that local insolation effects are the likely cause of East African precipitation. Several of the intervals of high isotopic variability coincide with key hominin fossil or technological transitions, suggesting that climate variability plays a key role in hominin evolution.

  8. In-Situ Sampling Analysis of a Jupiter Trojan Asteroid by High Resolution Mass Spectrometry in the Solar Power Sail Mission

    NASA Astrophysics Data System (ADS)

    Kebukawa, Y.; Aoki, J.; Ito, M.; Kawai, Y.; Okada, T.; Matsumoto, J.; Yano, H.; Yurimoto, H.; Terada, K.; Toyoda, M.; Yabuta, H.; Nakamura, R.; Cottin, H.; Grand, N.; Mori, O.

    2017-12-01

    The Solar Power Sail (SPS) mission is one of candidates for the upcoming strategic middle-class space exploration to demonstrate the first outer Solar System journey of Japan. The mission concept includes in-situ sampling analysis of the surface and subsurface (up to 1 m) materials of a Jupiter Trojan asteroid using high resolution mass spectrometry (HRMS). The candidates for the HRMS are multi-turn time-of-flight mass spectrometer (MULTUM) type and Cosmorbitrap type. We plan to analyze isotopic and elemental compositions of volatile materials from organic matter, hydrated minerals, and ice (if any), in order to understand origin and evolution of the Jupiter Trojan asteroids. It will provide insights into planet formation/migration theories, evolution and distribution of volatiles in the Solar System, and missing link between asteroids and comets on evolutional. The HRMS system allows to measure H, N, C, O isotopic compositions and elemental compositions of molecules prepared by various pre-MS procedures including stepwise heating up to 600ºC, gas chromatography (GC), and high-temperature pyrolysis with catalyst to decompose the samples into simple gaseous molecules (e.g., H2, CO, and N2) for isotopic ratio analysis. The required mass resolution should be at least 30,000 for analyzing isotopic ratios for simple gaseous molecules. For elemental compositions, mass accuracy of 10 ppm is required to determine elemental compositions for molecules with m/z up to 300 (as well as compound specific isotopic compositions for smaller molecules). Our planned analytical sequences consist of three runs for both surface and subsurface samples. In addition, `sniff mode' which simply introduces environmental gaseous molecules into a HRMS will be done by the system.

  9. Social media enhances languages differentiation: a mathematical description.

    PubMed

    Vidal-Franco, Ignacio; Guiu-Souto, Jacobo; Muñuzuri, Alberto P

    2017-05-01

    Understanding and predicting the evolution of competing languages is a topic of high interest in a world with more than 6000 languages competing in a highly connected environment. We consider a reasonable mathematical model describing a situation of competition between two languages and analyse the effect of the speakers' connectivity (i.e. social networks). Surprisingly, instead of homogenizing the system, a high degree of connectivity helps to introduce differentiation for the appropriate parameters.

  10. Some Considerations on the Partial Credit Model

    ERIC Educational Resources Information Center

    Verhelst, N. D.; Verstralen, H. H. F. M.

    2008-01-01

    The Partial Credit Model (PCM) is sometimes interpreted as a model for stepwise solution of polytomously scored items, where the item parameters are interpreted as difficulties of the steps. It is argued that this interpretation is not justified. A model for stepwise solution is discussed. It is shown that the PCM is suited to model sums of binary…

  11. Stepwise Inquiry into Hard Water in a High School Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kakisako, Mami; Nishikawa, Kazuyuki; Nakano, Masayoshi; Harada, Kana S.; Tatsuoka, Tomoyuki; Koga, Nobuyoshi

    2016-01-01

    This study focuses on the design of a learning program to introduce complexometric titration as a method for determining water hardness in a high school chemistry laboratory. Students are introduced to the different properties and reactions of hard water in a stepwise manner so that they gain the necessary chemical knowledge and conceptual…

  12. Variation, differential reproduction and oscillation: the evolution of nucleic acid hybridization.

    PubMed

    Suárez-Díaz, Edna

    2013-01-01

    This paper builds upon Hans-Jörg Rheinberger ideas on the oscillation and intercalation of epistemic things and technical objects in experimental systems, to give a fine-grained analysis of what here is called the problems of "adaptation" between our material and cognitive tools and the phenomena of the material world. To do so, it relies on the case-study of the evolution of nucleic acid hybridization and the stabilization of satellite DNA.

  13. [Cranial metastasis of thyroid follicular carcinoma. Report of a case].

    PubMed

    Calderón-Garcidueñas, A L; González-Schaffinni, M A; Farías-García, R; Rey-Laborde, R

    2001-01-01

    Thyroid follicular carcinoma is able to produce metastatic lesions before the vanishing of the primary lesion. We present a case of a woman with a lytic, solitary, asymptomatic parietal bone lesion of 2 years of evolution. Autopsy revealed a thyroid gland with two small cystic areas and renal metastasis. Thyroid carcinoma should be included in the differential diagnosis in cases of lytic bone lesions with long evolution in patients 60 years of age or older.

  14. Molecular development of fibular reduction in birds and its evolution from dinosaurs.

    PubMed

    Botelho, João Francisco; Smith-Paredes, Daniel; Soto-Acuña, Sergio; O'Connor, Jingmai; Palma, Verónica; Vargas, Alexander O

    2016-03-01

    Birds have a distally reduced, splinter-like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid-related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis-like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo-tibial disparity. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  15. Mitochondria and the evolutionary roots of cancer

    NASA Astrophysics Data System (ADS)

    Davila, Alfonso F.; Zamorano, Pedro

    2013-04-01

    Cancer disease is inherent to, and widespread among, metazoans. Yet, some of the hallmarks of cancer such as uncontrolled cell proliferation, lack of apoptosis, hypoxia, fermentative metabolism and free cell motility (metastasis) are akin to a prokaryotic lifestyle, suggesting a link between cancer disease and evolution. In this hypothesis paper, we propose that cancer cells represent a phenotypic reversion to the earliest stage of eukaryotic evolution. This reversion is triggered by the dysregulation of the mitochondria due to cumulative oxidative damage to mitochondrial and nuclear DNA. As a result, the phenotype of normal, differentiated cells gradually reverts to the phenotype of a facultative anaerobic, heterotrophic cell optimized for survival and proliferation in hypoxic environments. This phenotype matches the phenotype of the last eukaryotic common ancestor (LECA) that resulted from the endosymbiosis between an α-proteobacteria (which later became the mitochondria) and an archaebacteria. As such, the evolution of cancer within one individual can be viewed as a recapitulation of the evolution of the eukaryotic cell from fully differentiated cells to LECA. This evolutionary model of cancer is compatible with the current understanding of the disease, and explains the evolutionary basis for most of the hallmarks of cancer, as well as the link between the disease and aging. It could also open new avenues for treatment directed at reestablishing the synergy between the mitochondria and the cancerous cell.

  16. Evolution of relative drifts and temperature anisotropies in expanding collisionless plasmas—1.5D vs. 2.5D hybrid simulations

    NASA Astrophysics Data System (ADS)

    Maneva, Y. G.; Poedts, S.; Araneda, J. A.

    2016-02-01

    We compare the results from 1.5D and 2.5D hybrid simulations (with fluid electrons, and kinetic/particle-in-cell protons and α particles) to investigate the effect of the solar wind expansion on the evolution of ion relative drifts in collisionless fast wind streams. We initialize the system with initial relative drifts and follow its evolution in time within and without the expanding box model, which takes into account the gradual solar wind expansion in the interplanetary medium. The decay of the differential streaming follows similar pattern in the 1.5D and 2.5D non-expanding cases. For the 1.5D studies we find no difference in the evolution of the initial relative drift speed with and without expansion, whereas in the two-dimensional case the differential streaming is further suppressed once the solar wind expansion is taken into account. This implies that a stronger acceleration source is required to compensate for the effect of the expansion and produce the observed solar wind acceleration rate. The 1.5D case shows stronger oscillations in all plasma properties with higher temperature anisotropies for the minor ions in the first few hundred gyro-periods of the simulations. Yet the preferential perpendicular heating for the minor ions is stronger in the 2.5D case with higher temperature anisotropies at the final stage.

  17. Genome rearrangement shapes Prochlorococcus ecological adaptation.

    PubMed

    Yan, Wei; Wei, Shuzhen; Wang, Qiong; Xiao, Xilin; Zeng, Qinglu; Jiao, Nianzhi; Zhang, Rui

    2018-06-18

    Prochlorococcus is the most abundant and smallest known free-living photosynthetic microorganism and is a key player in marine ecosystems and biogeochemical cycles. Prochlorococcus can be broadly divided into high-light-adapted (HL) and low-light-adapted (LL) clades. In this study, we isolated two low-light-adapted I (LLI) strains from the western Pacific Ocean and obtained their genomic data. We reconstructed Prochlorococcus evolution based on genome rearrangement. Our results showed that genome rearrangement might have played an important role in Prochlorococcus evolution. We also found that the Prochlorococcus clades with streamlined genomes maintained relatively high synteny throughout most of their genomes, and several regions served as rearrangement hotspots. Backbone analysis showed that different clades shared a conserved backbone but also had clade-specific regions, and the genes in these regions were associated with ecological adaptations. Importance Prochlorococcus , the most abundant and smallest known free-living photosynthetic microorganism, play a key role in marine ecosystems and biogeochemical cycles. The Prochlorococcus genome evolution is a fundamental question related to how Prochlorococcus clades adapted to different ecological niches. Recent studies revealed that the gene gain and loss is crucial to the clade differentiation. The significance of our research is that we interpreted the Prochlorococcus genome evolution from the perspective of genome structure, and associated the genome rearrangement with the Prochlorococcus clade differentiation and subsequent ecological adaptation. Copyright © 2018 Yan et al.

  18. CRevolution 2—Origin and evolution of the Colorado River system, workshop abstracts

    USGS Publications Warehouse

    Beard, L. Sue; Karlstrom, Karl E.; Young, Richard A.; Billingsley, George H.

    2011-01-01

    A 2010 Colorado River symposium, held in Flagstaff, Arizona, involved 70 participants who engaged in intense debate about the origin and evolution of the Colorado River system. This symposium, built upon two previous decadal scientific meetings, focused on forging scientific consensus, where possible, while articulating continued controversies regarding the Cenozoic evolution of the Colorado River System and the landscapes of the Colorado Plateau-Rocky Mountain region that it drains. New developments involved hypotheses that Neogene mantle flow is driving plateau tilting and differential uplift and new and controversial hypotheses for the pre-6 Ma presence and evolution of ancestral rivers that may be important in the history and birth of the present Colorado River. There is a consensus that plateau tilt and uplift models must be tested with multidisciplinary studies involving differential incision studies and additional geochronology and thermochronology to determine the relative importance of tectonic and geomorphic forces that shape the spectacular landscapes of the Colorado Plateau, Arizona and region. In addition to the scientific goals, the meeting participants emphasized the iconic status of Grand Canyon for geosciences and the importance of good communication between the research community, the geoscience education/interpretation community, the public, and the media. Building on a century-long tradition, this region still provides a globally important natural laboratory for studies of the interactions of erosion and tectonism in shaping the landscape of elevated plateaus.

  19. About Tidal Evolution of Quasi-Periodic Orbits of Satellites

    NASA Astrophysics Data System (ADS)

    Ershkov, Sergey V.

    2017-06-01

    Tidal interactions between Planet and its satellites are known to be the main phenomena, which are determining the orbital evolution of the satellites. The modern ansatz in the theory of tidal dissipation in Saturn was developed previously by the international team of scientists from various countries in the field of celestial mechanics. Our applying to the theory of tidal dissipation concerns the investigating of the system of ODE-equations (ordinary differential equations) that govern the orbital evolution of the satellites; such an extremely non-linear system of 2 ordinary differential equations describes the mutual internal dynamics for the eccentricity of the orbit along with involving the semi-major axis of the proper satellite into such a monstrous equations. In our derivation, we have presented the elegant analytical solutions to the system above; so, the motivation of our ansatz is to transform the previously presented system of equations to the convenient form, in which the minimum of numerical calculations are required to obtain the final solutions. Preferably, it should be the analytical solutions; we have presented the solution as a set of quasi- periodic cycles via re-inversing of the proper ultra- elliptical integral. It means a quasi-periodic character of the evolution of the eccentricity, of the semi-major axis for the satellite orbit as well as of the quasi-periodic character of the tidal dissipation in the Planet.

  20. Solar radiation and landscape evolution: co-evolution of topography, vegetation, and erosion rates in a semi-arid ecosystem

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, Erkan; Yetemen, Omer

    2016-04-01

    In this study CHILD landscape evolution model (LEM) is used to study the role of solar radiation on the co-evolution of landscape morphology, vegetation patterns, and erosion rates in a central New Mexico catchment. In the study site north facing slopes (NFS) are characterized by steep diffusion-dominated planar hillslopes covered by co-exiting juniper pine and grass vegetation. South facing slopes (SFS) are characterized by shallow slopes and covered by sparse shrub vegetation. Measured short-term and Holocene-averaged erosion rates show higher soil loss on SFS than NFS. In this study CHILD LEM is first confirmed with ecohydrologic field data and used to systematically examine the co-evolution of topography, vegetation pattern, and erosion rates. Aspect- and network-control are identified as the two main topographic drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of solar radiation driven ecohdrologic patterns emerged in modeled landscape: NFS supported denser vegetation cover and became steeper and planar, while on SFS vegetation grew sparser and slopes declined with more fluvial activity. At the landscape scale, these differential erosion processes led to asymmetric development of catchment forms, consistent with regional observations. While the general patterns of vegetation and topography were reproduced by the model using a stationary representation of the current climate, the observed differential Holocene erosion rates were captured by the model only when cyclic climate is used. This suggests sensitivity of Holocene erosion rates to long-term climate fluctuations.

Top