Sample records for differential surface stress

  1. Differential surface stress sensor for detection of chemical and biological species

    NASA Astrophysics Data System (ADS)

    Kang, K.; Nilsen-Hamilton, M.; Shrotriya, P.

    2008-10-01

    We report a sensor consisting of two micromachined cantilevers (a sensing/reference pair) that is suitable for detection of chemical and biological species. The sensing strategy involves coating the sensing cantilever with receptors that have high affinities for the analyte. The presence of analyte is detected by determining the differential surface stress associated with its adsorption/absorption to the sensing cantilever. An interferometric technique is utilized to measure the differential bending of the sensing cantilever with respect to reference. Surface stress associated with hybridization of single stranded DNA is measured to demonstrate the unique advantages of the sensor.

  2. Role of the unfolded protein response in topography-induced osteogenic differentiation in rat bone marrow mesenchymal stem cells.

    PubMed

    Shi, Mengqi; Song, Wen; Han, Tianxiao; Chang, Bei; Li, Guangwen; Jin, Jianfeng; Zhang, Yumei

    2017-05-01

    The topography of biomaterials can significantly influence the osteogenic differentiation of cells. Understanding topographical signal transduction is critical for developing biofunctional surfaces, but the current knowledge is insufficient. Recently, numerous reports have suggested that the unfolded protein response (UPR) and osteogenic differentiation are inter-linked. Therefore, we hypothesize that the UPR pathway may be involved in the topography-induced osteogenesis. In the present study, different surface topographies were fabricated on pure titanium foils and the endoplasmic reticulum (ER) stress and UPR pathway were systematically investigated. We found that ER stress and the PERK-eIF2α-ATF4 pathway were activated in a time- and topography-dependent manner. Additionally, the activation of the PERK-eIF2α-ATF4 pathway by different topographies was in line with their osteogenic induction capability. More specifically, the osteogenic differentiation could be enhanced or weakened when the PERK-eIF2α-ATF4 pathway was promoted or inhibited, respectively. Furthermore, tuning of the degree of ER stress with different concentrations of thapsigargin revealed that mild ER stress promotes osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Taken together, our findings suggest that the UPR may play a critical role in topography-induced osteogenic differentiation, which may help to provide new insights into topographical signal transduction. Suitable implant surface topography can effectively improve bioactivity and eventual bone affinity. However, the mechanism of topographical signaling transduction is unclear and criteria for designation of an appropriate implant surface topography is lacking. This study shows that the ER stress and PERK-eIF2α-ATF4 pathway were activated by micro- and micro/nano-topographies, which is corresponding to the osteogenic induction abilities of these topographies. Furthermore, we have found that mild ER stress improves osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Our findings demonstrate that the UPR plays a critical role in the topography induced osteogenic differentiation, which may help to provide new insights into the topographical signaling transduction. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Combined Effects of Diurnal and Nonsynchronous Surface Stresses on Europa

    NASA Technical Reports Server (NTRS)

    Stempel, M. M.; Pappalardo, R. T.; Wahr, J.; Barr, A. C.

    2004-01-01

    To date, modeling of the surface stresses on Europa has considered tidal, nonsynchronous, and polar wander sources of stress. The results of such models can be used to match lineament orientations with candidate stress patterns. We present a rigorous surface stress model for Europa that will facilitate comparison of principal stresses to lineament orientation, and which will be available in the public domain. Nonsynchronous rotation and diurnal motion contribute to a stress pattern that deforms the surface of Europa. Over the 85-hour orbital period, the diurnal stress pattern acts on the surface, with a maximum magnitude of approximately 0.1 MPa. The nonsynchronous stress pattern sweeps over the surface due to differential rotation of the icy shell relative to the tidally locked interior of the moon. Nonsynchronous stress builds cumulatively with approximately 0.1 MPa per degree of shell rotation.

  4. Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency

    PubMed Central

    Xie, Yufen; Zhou, Sichang; Jiang, Zhongliang; Dai, Jing; Puscheck, Elizabeth E; Lee, Icksoo; Parker, Graham; Hüttemann, Maik; Rappolee, Daniel A

    2014-01-01

    Dysfunctional stem cell differentiation into placental lineages is associated with gestational diseases. Of the differentiated lineages available to trophoblast stem cells (TSC), elevated O2 and mitochondrial function are necessary to placental lineages at the maternal-placental surface and important in the etiology of preeclampsia. TSC lineage imbalance leads to embryonic failure during uterine implantation. Stress at implantation exacerbates stem cell depletion by decreasing proliferation and increasing differentiation. Implantation site O2 is normally ~2%. In culture, exposure to 2% O2 and fibroblast growth factor (FGF)4 enabled highest mouse TSC multipotency and proliferation. In contrast, hypoxic stress (0.5% O2) initiated the most TSC differentiation after 24 hr despite FGF4. However, hypoxic stress supported differentiation poorly after 4–7 days, despite FGF4 removal. At all tested O2 levels, FGF4 maintained Warburg metabolism; mitochondrial inactivity and aerobic glycolysis. However, hypoxic stress suppressed mitochondrial membrane potential, maintained low mitochondrial cytochrome c oxidase (oxidative phosphorylation/OxPhos), and high pyruvate kinase M2 (glycolysis) despite FGF4 removal. Inhibiting OxPhos inhibited differentiation at the differentiation optimum at 20% O2. Moreover, adding differentiation-inducing hyperosmolar stress failed to induce differentiation during hypoxia. Thus, differentiation depended on OxPhos at 20% O2; hypoxic and hyperosmolar stresses did not induce differentiation at 0.5% O2. Hypoxia-limited differentiation and mitochondrial inhibition and activation suggest that differentiation into two lineages of the labyrinthine placenta requires O2>0.5–2% and mitochondrial function. Stress-activated protein kinase increases an early lineage and suppresses later lineages in proportion to the deviation from optimal O2 for multipotency, thus it is the first enzyme reported to prioritize differentiation. PMID:25239494

  5. Differential Group-Velocity Detection of Fluid Paths Leland Timothy Long

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Leland Timothy

    2003-06-01

    The objective of differential surface-wave interpretation is to identify and locate temporal perturbations in the shear-wave velocity. Perturbations in phase velocity are created when the stress and/or fluid content of soils changes, such as in pumping to remove or flush out contaminants. Differential surface wave analysis is a potential method to track the movement of fluids during remediation programs. This proposal is to develop and test this new technology to aid in the selection and design of remediation options in shallow aquifers.

  6. Conformal dynamics of precursors to fracture

    NASA Astrophysics Data System (ADS)

    Barra, F.; Herrera, M.; Procaccia, I.

    2003-09-01

    An exact integro-differential equation for the conformal map from the unit circle to the boundary of an evolving cavity in a stressed 2-dimensional solid is derived. This equation provides an accurate description of the dynamics of precursors to fracture when surface diffusion is important. The solution predicts the creation of sharp grooves that eventually lead to material failure via rapid fracture. Solutions of the new equation are demonstrated for the dynamics of an elliptical cavity and the stability of a circular cavity under biaxial stress, including the effects of surface stress.

  7. Micromechanical calorimetric sensor

    DOEpatents

    Thundat, Thomas G.; Doktycz, Mitchel J.

    2000-01-01

    A calorimeter sensor apparatus is developed utilizing microcantilevered spring elements for detecting thermal changes within a sample containing biomolecules which undergo chemical and biochemical reactions. The spring element includes a bimaterial layer of chemicals on a coated region on at least one surface of the microcantilever. The chemicals generate a differential thermal stress across the surface upon reaction of the chemicals with an analyte or biomolecules within the sample due to the heat of chemical reactions in the sample placed on the coated region. The thermal stress across the spring element surface creates mechanical bending of the microcantilever. The spring element has a low thermal mass to allow detection and measuring of heat transfers associated with chemical and biochemical reactions within a sample placed on or near the coated region. A second surface may have a different material, or the second surface and body of microcantilever may be of an inert composition. The differential thermal stress between the surfaces of the microcantilever create bending of the cantilever. Deflections of the cantilever are detected by a variety of detection techniques. The microcantilever may be approximately 1 to 200 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. A sensitivity for detection of deflections is in the range of 0.01 nanometers. The microcantilever is extremely sensitive to thermal changes in samples as small as 30 microliters.

  8. Thermally tailored gradient topography surface on elastomeric thin films.

    PubMed

    Roy, Sudeshna; Bhandaru, Nandini; Das, Ritopa; Harikrishnan, G; Mukherjee, Rabibrata

    2014-05-14

    We report a simple method for creating a nanopatterned surface with continuous variation in feature height on an elastomeric thin film. The technique is based on imprinting the surface of a film of thermo-curable elastomer (Sylgard 184), which has continuous variation in cross-linking density introduced by means of differential heating. This results in variation of viscoelasticity across the length of the surface and the film exhibits differential partial relaxation after imprinting with a flexible stamp and subjecting it to an externally applied stress for a transient duration. An intrinsic perfect negative replica of the stamp pattern is initially created over the entire film surface as long as the external force remains active. After the external force is withdrawn, there is partial relaxation of the applied stresses, which is manifested as reduction in amplitude of the imprinted features. Due to the spatial viscoelasticity gradient, the extent of stress relaxation induced feature height reduction varies across the length of the film (L), resulting in a surface with a gradient topography with progressively varying feature heights (hF). The steepness of the gradient can be controlled by varying the temperature gradient as well as the duration of precuring of the film prior to imprinting. The method has also been utilized for fabricating wettability gradient surfaces using a high aspect ratio biomimetic stamp. The use of a flexible stamp allows the technique to be extended for creating a gradient topography on nonplanar surfaces as well. We also show that the gradient surfaces with regular structures can be used in combinatorial studies related to pattern directed dewetting.

  9. A Viscoelastic Hybrid Shell Finite Element

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur

    1999-01-01

    An elastic large displacement thick-shell hybrid finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at he element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses in included in the mixed variational functional. Nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to numerically simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.

  10. Shear-induced surface alignment of polymer dispersed liquid crystal microdroplets on the boundary layer

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.

  11. A model for the plastic flow of landslides

    USGS Publications Warehouse

    Savage, William Z.; Smith, William K.

    1986-01-01

    To further the understanding of the mechanics of landslide flow, we present a model that predicts many of the observed attributes of landslides. The model is based on an integration of the hyperbolic differential equations for stress and velocity fields in a two-dimensional, inclined, semi-infinite half-space of Coulomb plastic material under elevated pore pressure and gravity. Our landslide model predicts commonly observed features. For example, compressive (passive), plug, or extending (active) flow will occur under appropriate longitudinal strain rates. Also, the model predicts that longitudinal stresses increase elliptically with depth to the basal slide plane, and that stress and velocity characteristics, surfaces along which discontinuities in stress and velocity are propagated, are coincident. Finally, the model shows how thrust and normal faults develop at the landslide surface in compressive and extending flow.

  12. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    PubMed

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2013-01-01

    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  13. Quasi-Static Viscoelastic Finite Element Model of an Aircraft Tire

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.

    1999-01-01

    An elastic large displacement thick-shell mixed finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at the element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses is included in the mixed variational functional. The nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the nonlinear elastic equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to computationally simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.

  14. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  15. Characteristics of EMI generated by negative metal-positive dielectric voltage stresses due to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Chaky, R. C.; Inouye, G. T.

    1985-01-01

    Charging of spacecraft surfaces by the environmental plasma can result in differential potentials between metallic structure and adjacent dielectric surfaces in which the relative polarity of the voltage stress is either negative dielectric/positive metal or negative metal/positive dielectric. Negative metal/positive dielectric is a stress condition that may arise if relatively large areas of spacecraft surface metals are shadowed from solar UV and/or if the UV intensity is reduced as in the situation in which the spacecraft is entering into or leaving eclipse. The results of experimental studies of negative metal/positive dielectric systems are given. Information is given on: enhanced electron emission I-V curves; e(3) corona noise vs e(3) steady-state current; the localized nature of e(3) and negative metal arc discharge currents; negative metal arc discharges at stress thresholds below 1 kilovolt; negative metal arc discharge characteristics; dependence of blowoff arc discharge current on spacecraft capacitance to space (linear dimension); and damage to second surface mirrors due to negative metal arcs.

  16. Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate

    USGS Publications Warehouse

    Tormann, Theresa; Wiemer, Stefan; Metzger, Sabrina; Michael, Andrew J.; Hardebeck, Jeanne L.

    2013-01-01

    The nucleation area of the series of M6 events in Parkfield has been shown to be characterized by low b-values throughout the seismic cycle. Since low b-values represent high differential stresses, the asperity structure seems to be always stably stressed and even unaffected by the latest main shock in 2004. However, because fault loading rates and applied shear stress vary with time, some degree of temporal variability of the b-value within stable blocks is to be expected. We discuss in this study adequate techniques and uncertainty treatment for a detailed analysis of the temporal evolution of b-values. We show that the derived signal for the Parkfield asperity correlates with changes in surface creep, suggesting a sensitive time resolution of the b-value stress meter, and confirming near-critical loading conditions within the Parkfield asperity.

  17. Numerical simulation of the world ocean circulation

    NASA Technical Reports Server (NTRS)

    Takano, K.; Mintz, Y.; Han, Y. J.

    1973-01-01

    A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat.

  18. Postbuckling behaviors of nanorods including the effects of nonlocal elasticity theory and surface stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thongyothee, Chawis, E-mail: chawist@hotmail.com; Chucheepsakul, Somchai

    2013-12-28

    This paper is concerned with postbuckling behaviors of nanorods subjected to an end concentrated load. One end of the nanorod is clamped while the other end is fixed to a support that can slide in the slot. The governing equation is developed from static equilibrium and geometrical conditions by using the exact curvature corresponding to the elastica theory. The nonlocal elasticity, the effect of surface stress, and their combined effects are taken into account in Euler–Bernoulli beam theory. Differential equations in this problem can be solved numerically by using the shooting-optimization technique for the postbuckling loads and the buckled configurations.more » The results show that nanorods with the nonlocal elasticity effect undergo increasingly large deformation while the effect of surface stress in combination with nonlocal elasticity decreases the deflection of nanorods under the same postbuckling load.« less

  19. DIFFERENTIAL DIAGNOSTIC PROCESS AND CLINICAL DECISION MAKING IN A YOUNG ADULT FEMALE WITH LATERAL HIP PAIN: A CASE REPORT.

    PubMed

    Livingston, Jennifer I; Deprey, Sara M; Hensley, Craig P

    2015-10-01

    differential diagnosis and clinical decision making. Young adults with lateral hip pain are often referred to physical therapy (PT). A thorough examination is required to obtain a diagnosis and guide management. The purpose of this case report is to describe the physical therapist's differential diagnostic process and clinical decision making for a subject with the referring diagnosis of trochanteric bursitis. A 29-year-old female presented to PT with limited sitting and running tolerance secondary to right lateral hip pain. Her symptoms began three months prior when she abruptly changed her running intensity and frequency of weight bearing activities, including running and low impact plyometrics for the lower extremity. Physical examination revealed a positive Trendelenburg sign, manual muscle test that was weak and painless of the right hip abductors, and pain elicited when performing a vertical hop on a concrete surface (+single leg hop test), but pain-free when performing the same single leg hop on a foam surface. Examination findings warranted discussion with the referring physician for further diagnostic imaging. Magnetic resonance imaging revealed a focus of edema in the posterior acetabulum, suspicious for an acetabular stress fracture. The subject was subsequently diagnosed with an acetabular stress fracture and restricted from running and plyometrics for four weeks. Thorough examination and appropriate clinical decision making by the physical therapist at the initial examination led to the diagnosis of an acetabular stress fracture in this subject. Clinicians must be aware of symptoms and signs which place the subject at risk for stress fracture for timely referral and management. 4.

  20. Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells

    NASA Technical Reports Server (NTRS)

    Hu, Shaohua; Chen, Jianxin; Fabry, Ben; Numaguchi, Yasushi; Gouldstone, Andrew; Ingber, Donald E.; Fredberg, Jeffrey J.; Butler, James P.; Wang, Ning

    2003-01-01

    We describe a novel synchronous detection approach to map the transmission of mechanical stresses within the cytoplasm of an adherent cell. Using fluorescent protein-labeled mitochondria or cytoskeletal components as fiducial markers, we measured displacements and computed stresses in the cytoskeleton of a living cell plated on extracellular matrix molecules that arise in response to a small, external localized oscillatory load applied to transmembrane receptors on the apical cell surface. Induced synchronous displacements, stresses, and phase lags were found to be concentrated at sites quite remote from the localized load and were modulated by the preexisting tensile stress (prestress) in the cytoskeleton. Stresses applied at the apical surface also resulted in displacements of focal adhesion sites at the cell base. Cytoskeletal anisotropy was revealed by differential phase lags in X vs. Y directions. Displacements and stresses in the cytoskeleton of a cell plated on poly-L-lysine decayed quickly and were not concentrated at remote sites. These data indicate that mechanical forces are transferred across discrete cytoskeletal elements over long distances through the cytoplasm in the living adherent cell.

  1. SM-1 REACTOR VESSEL COVER AND FLANGE STRESS ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, M.F.

    1962-02-19

    The maximum stress calculated for the SMl-1 reactor vessel closure studs occurs during operation at full power. This value is 27,180 psi of which 19,800 psi is tension and 7380 psi bending. This stress does not include a stress concentration factor for effect of threads. It was eonservatively assumed the studs were initially tightened to a code allowable stress of 20,000 psi as specified in the ASME Code rather than the lesser stress obtained by the normal operating procedure. The maximum calculated stress occurs at the outside surface of the cover where the stress ranges from 318 psi in tensionmore » to 90,660 psi in compression. The alternating stress is 50,000 psi. According to the Navy Code for a stress range of 50,000 psi, the eover material ean safely undergo a maximum of 1600 cycles. It was estimated that the SM-1 will go through approximately 000 startup and shutdown cycles during a 20-yr life period, so the calculated stress is regarded as safe. For a transient eondition of 30 deg F/hr during heat-up, approximate temperature differences between the inside and outside surfaces of the cover were obtained. Temperature differentials between the inside and outside surfaces of the cover are increased by roughly 10%; above the steady state condition. More exact calculations of the transient stresses did not appear necessary siuce they would be not more than 10% greater than the steady state thermal stress. (auth)« less

  2. Internal constitution and evolution of the moon.

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Toksoz, M. N.

    1973-01-01

    The composition, structure and evolution of the moon's interior are narrowly constrained by a large assortment of physical and chemical data. Models of the thermal evolution of the moon that fit the chronology of igneous activity on the lunar surface, the stress history of the lunar lithosphere implied by the presence of mascons, and the surface concentrations of radioactive elements, involve extensive differentiation early in lunar history. This differentiation may be the result of rapid accretion and large-scale melting or of primary chemical layering during accretion; differences in present-day temperatures for these two possibilities are significant only in the inner 1000 km of the moon and may not be resolvable.

  3. Modulated solar pressure-based surface shape control of paraboloid space reflectors with an off-axis Sun-line

    NASA Astrophysics Data System (ADS)

    Liu, Jiafu; McInnes, Colin R.

    2018-03-01

    This paper considers utilizing solar radiation pressure (SRP) to actively control the surface shape of a reflector consisting of a rigid hoop and slack membrane with embedded reflectivity control devices. The full nonlinear static partial differential governing equations for a reflector with negligible elastic deformations are established for the circumferential, radial and transverse directions respectively, in which the SRP force with ideal/non-perfect models, the centripetal force caused by the rotation of the reflector and the internal stresses are considered. The inverse problem is then formulated by assuming that the required surface shape is known, and then the governing algebraic-differential equations used to determine the required surface reflectivity, together with the internal stresses where are presented accordingly. The validity of the approach is verified by comparing the results in this paper with corresponding published results as benchmarks. The feasible regions of the angular velocity and Sun angle for a paraboloidal reflector with an invariant radius and focal length (case 1), and the achievable focal lengths with a specific angular velocity and Sun angle (case 2) are presented for two SRP models respectively, both by considering the constraints on the reflectivity and internal stresses. It is then found that the feasible region is toward a larger angular velocity and Sun angle when using the non-perfect SRP model, compared with the ideal one in case 1. The angular velocity of the spinning reflector should be within a certain range to make the required reflectivity profiles within a practical range, i.e., [0, 0.88], as indicated from prior NASA solar sail studies. In case 2, it is found that the smallest achievable focal length of the reflector with the non-perfect SRP model is smaller than that with the ideal SRP model. It is also found that the stress level is extremely low for all cases considered and that the typical real material strength available for the reflector is sufficient to withstand these internal stresses.

  4. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses.

    PubMed

    Hamed, Seham M; Selim, Samy; Klöck, Gerd; AbdElgawad, Hamada

    2017-10-01

    Depending on species, heavy metals, including copper (Cu), differentially affect algal growth and metabolism. Here, we aim to evaluate the differential responses of two green microalgae, Chlorella sorokiniana and Scenedesmus acuminatus, exposed to sub-lethal doses of Cu (25 and 50µM, respectively) for 7 days. The changes in growth, oxidative damage markers, and antioxidants were analysed. We found that S. acuminatus could acclimatise during long-term exposure to Cu stress. S. acuminatus accumulated lower Cu content and showed a slight decrease in H 2 O 2 levels when compared to C. sorokiniana. Cu stress induced membrane damage in the two microalgae species, however, this increase was slightly lower in S. acuminatus. To mitigate Cu stress impact, C. sorkiniana markedly increased proline, polyphenols, flavonoids, tocopherols, glutathione levels, as well as the activities of GST, APX, GR and SOD enzymes, which could explain less-stress sensitivity. On the other hand, S. acuminatus exhibited significant increases in proline, polyphenol, and tocopherol contents. Activity levels of POX, APX, GR and SOD enzymes, were also increased. These results suggest that the two microalgae differentially induced the antioxidant defence system to neutralise the oxidative damage induced by Cu stress. This study also provided new data for Cu tolerance and Cu removal abilities of two microalgal species, which commonly exist in surface water bodies, where low Cu uptake and efficient antioxidant defence system protected S. acuminatus against oxidative stress induced by Cu stress. This makes it feasible for treatment of Cu contaminated waters. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Xu, Yan; Zhou, Yong; Gong, Yinyan; Huang, Yongli; Sun, Chang Q.

    2017-11-01

    An incorporation of the hydrogen bond (O:Hsbnd O or HB) cooperativity notion, contact angle detection, and the differential phonon spectrometrics (DPS) has enabled us to gain refined information on the HCl, KCl and KOH solvation resolved solute-solvent molecular interactions and the solution surface stresses. Results show that ionic polarization stiffens the solvent Hsbnd O bond phonon from 3200 to 3480 cm-1 in the hydration shells. The HO- in alkaline solution, however, shares not only the same Hsbnd O phonon redshift of compressed water from 3200 to < 3100 cm-1 but also the dangling bonds of H2O surface featured at 3610 cm-1. Salt and alkaline solvation enhances the solution surface stress by K+ and Cl- ionic polarization. The excessive H+ proton in acid solution forms a H↔H anti-HB that depresses the solution surface stress, instead. The solute capability of transforming the fraction of the O:Hsbnd O bonds of the solvent matrix is featured by: fH = 0 and fx ∝ 1-exp(-C/C0) (x = HO-, K+ and Cl-) towards saturation. Exercises not only confirm the presence of the H↔H anti-HB point fragilization, the O:⇔:O super-HB point compression, and ionic polarization dominating the performance of the respective HCl, KOH, and KCl solutions, but also demonstrate the power of the DPS that enables high resolution of solute-solute-solvent interactions and correlation between HB relaxation and solution surface stress.

  6. Relative impact of uniaxial alignment vs. form-induced stress on differentiation of human adipose derived stem cells

    PubMed Central

    Huang, Samuel; Li, Julie Yi-Shuan; Chien, Shu; Zhang, Kang; Chen, Shaochen

    2013-01-01

    ADSCs are a great cell source for tissue engineering and regenerative medicine. However, the development of methods to appropriately manipulate these cells in vitro remains a challenge. Here the proliferation and differentiation of ADSCs on microfabricated surfaces with varying geometries were investigated. To create the patterned substrates, a maskless biofabrication method was developed based on dynamic optical projection stereolithography. Proliferation and early differentiation of ADSCs were compared across three distinct multicellular patterns, namely stripes (ST), symmetric fork (SF), and asymmetric fork (AF). The ST pattern was designed for uniaxial cell alignment while the SF and AF pattern were designed with altered cell directionality to different extents. The SF and AF patterns generated similar levels of regional peak stress, which were both significantly higher than those within the ST pattern. No significant difference in ADSC proliferation was observed among the three patterns. In comparison to the ST pattern, higher peak stress levels of the SF and AF patterns were associated with up-regulation of the chondrogenic and osteogenic markers SOX9 and RUNX2. Interestingly, uniaxial cell alignment in the ST pattern seemed to increase the expression of SM22α and smooth muscle α-actin, suggesting an early smooth muscle lineage progression. These results indicate that geometric cues that promote uniaxial alignment might be more potent for myogenesis than those with increased peak stress. Overall, the use of these patterned geometric cues for modulating cell alignment and form-induced stress can serve as a powerful and versatile technique towards controlling differentiation in ADSCs. PMID:24060419

  7. Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation.

    PubMed

    Hendrikson, Wim J; Deegan, Anthony J; Yang, Ying; van Blitterswijk, Clemens A; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen

    2017-01-01

    Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress-strain distributions throughout the scaffold depend on the scaffold's internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve scaffold design for tissue engineering purposes.

  8. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: The Effects of Vegetation on these Structural Integrity of Sandy Levees.

    DTIC Science & Technology

    1991-08-01

    cracking in earth dams commonly occurs by hydraulic fracturing . Hydraulic fracturing is a tensile separation along an internal surface in a 25 soil mass...stress. This hydraulic fracturing is facilitated by differential settle- ment and internal stress transfer in an earthen structure. Sherard also showed...the hydraulic fracturing . 42. BioLic activity, i.e., the actions of plant roots and burrowing animals, has provided a popular explanation for pipe

  9. Young-Laplace equation for liquid crystal interfaces

    NASA Astrophysics Data System (ADS)

    Rey, Alejandro D.

    2000-12-01

    This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.

  10. In vitro study on bone formation and surface topography from the standpoint of biomechanics.

    PubMed

    Kawahara, H; Soeda, Y; Niwa, K; Takahashi, M; Kawahara, D; Araki, N

    2004-12-01

    Effect of surface topography upon cell-adhesion, -orientation and -differentiation was investigated by in vitro study on cellular responses to titanium substratum with different surface roughness. Cell-shape, -function and -differentiation depending upon the surface topography were clarified by use of bone formative group cells (BFGCs) derived from bone marrow of beagle's femur. BFGCs consisted of hematopoietic stem cells (HSC) and osteogenetic stem cells (OSC). Cell differentiation of BFGCs was expressed and promoted by structural changes of cytoskeleton, and cell-organella, which was caused by mechanical stress with cytoplasmic stretching of cell adhesions to the substratum. Phagocytic monocytes of HSC differentiated to osteomediator cells (OMC) by cytoplasmic stretching with cell adhesion to the substratum. The OMC mediated and promoted cell differentiation from OSC to osteoblast through osteoblastic phenotype cell (OBC) by cell-aggregation of nodules with "pile up" phenomenon of OBC onto OMC. The osteogenesis might be performed by coupling work of both cells, OMC originated from monocyte of HSC and OBC originated from OSC, which were explained by SEM, TEM and fluorescent probe investigation on BFGCs on the test plate of cp titanium plates with different topographies. This osteogenetic process was proved by investigating cell proliferation, DNA contents, cell-adhesion, alkaline phosphatase activity and osteocalcine productivity for cells on the titanium plates with different topographies. The study showed increased osteogenic effects for cells cultured on Ti with increased surface roughness. Possible mechanisms were discussed from a biomechanical perspective.

  11. The influence of surface integrin binding patterns on specific biomaterial-cell interactions

    NASA Astrophysics Data System (ADS)

    Beranek, Maggi Marie

    As the future of biomaterials progresses toward bioactivity, the biomaterial surface must control non-specific protein adsorption and encourage selective protein and cell adsorption. Integrins alphavbeta3, alpha 1beta1, alpha5beta1 and alpha Mbeta2 are expressed on cells involved in endothelialization, inflammation, and intimal hyperplasia. These cellular events play a vital role in biomaterial biocompatibility, especially in the vascular environment. The overall hypothesis of these studies is that biomaterial surfaces exhibit selective integrin binding, which then specifies differential cell binding. To test this hypothesis, four specific aims were developed. The first aim was designed to determine whether metal and polymeric biomaterials exhibit selective integrin binding. The tested materials included 316L stainless steel, nitinol, gold, Elgiloy RTM, poly(D, L-lactide-co-glycolide), polycarbonate urethane and expanded polytetrafluoroethylene. Discrete integrin binding patterns were detected microscopically using integrin specific fluorescent antibodies. Stainless steel exhibited high level integrin alpha1beta 1 and low level integrin alphaMbeta2 binding pattern. This suggests that this metal surface should selectively encourage endothelial cell to inflammatory cell binding. In contrast, gold bound ten times the amount of integrin alphaMbeta2 compared to integrin alpha1beta1, which should encourage inflammatory cell adhesion. The 65/35 poly(D, L-lactide-co-glycolide) was the only polymeric biomaterial tested that had integrin binding levels comparable to metal biomaterials. Based on these observations, a combinational biomaterial with a surface pattern of 65/35 poly(D, L-lactide-co-glycolide) dots on a 316L stainless steel background was created. A pattern of high level integrin alpha1beta1 binding and low level integrin alpha Mbeta2 binding on this combinational surface indicates that this surface should selectively favor endothelial cell binding. In the second aim, the response of surface-bound integrins to flow-related shear stress was examined. Based on fluorescent analysis, total alphavbeta 3, alpha1beta1, and alpha5beta 1 appeared to increase on stainless steel after 90-minute low shear stress exposure, whereas only alpha5beta1 appeared to increase when exposed to high shear. 65/35 poly(D, L-lactide-co-glycolide) exhibited increased total binding of alpha5beta1 and alphaMbeta2, when exposed to either shear stress level. Exposure to either shear stress regimen appeared to increase binding of all integrins on the combinational surface. These responses to shear stress suggest differential integrin binding affinity compared to stainless steel. Using antibodies specific to the integrin subunits, the apparent increase in surface-bound integrins was found to be related to a surface disassociation of alpha and beta subunits. The third aim evaluated human aortic endothelial cells and acute monocytic leukemia cells (THP-1) cell binding to the tested biomaterial surfaces under both static and flow conditions. Both stainless steel and the combinational surface had increased endothelial cell binding compared to monocyte attachment. Pre-incubation of the surface with the specific integrins significantly inhibited human aortic endothelial cell binding. Aim four was designed to investigate the influence of surface bound integrins on human aortic endothelial cell migration under shear stress. If biomaterial surface integrin binding patterns are specific, then pre-bound surface integrins should competitively inhibit binding of cellular integrins to the surface. Cell migration distance on to alphavbeta3, alpha 1beta1, and alpha5beta1 pre-incubated stainless steel was decreased ten-fold, and decreased by three-fold on both 65/35 poly(D, L-lactide-coglycolide) and combinational surfaces compared to the respective bare surfaces. In contrast, migration distance on to alphaMbeta2 pre-coated stainless steel and combinational surface was decreased by only sixty percent and only fifty percent on alphaMbeta2 precoated 65/35 poly(D, L -lactide-co-glycolide). These results suggested that surface binding sites are selective and critical in governing endothelial cell migration. In conclusion, these results support the hypothesis that a surface that encourages specific integrin binding would promote differential cell binding. The novel integrin binding model used in this investigation may be a methodology that can be employed to evaluate potential vascular biomaterials.

  12. Optimal leveling of flow over one-dimensional topography by Marangoni stresses

    NASA Astrophysics Data System (ADS)

    Gramlich, C. M.; Homsy, G. M.; Kalliadasis, Serafim

    2001-11-01

    A thin viscous film flowing over a step down in topography exhibits a capillary ridge near the step, which may be undesirable in applications. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. Lubrication theory results in a differential equation for the free surface, which can be solved numerically for any given topography and temperature profile. Leveling the ridge is then formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. Optimized heaters with 'top-hat' or parabolic temperature profiles replace the original ridge with two smaller ridges of equal size, achieving leveling of better than 50%. An optimized asymmetric n-step temperature distribution results in (n+1) ridges and reduces the variation in surface height by a factor of better than 1/(n+1).

  13. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors.

    PubMed

    Xiang, Jie; Wu, Dai-Chen; Chen, Yuanting; Paulson, Robert F

    2015-03-12

    Tissue hypoxia induces a systemic response designed to increase oxygen delivery to tissues. One component of this response is increased erythropoiesis. Steady-state erythropoiesis is primarily homeostatic, producing new erythrocytes to replace old erythrocytes removed from circulation by the spleen. In response to anemia, the situation is different. New erythrocytes must be rapidly made to increase hemoglobin levels. At these times, stress erythropoiesis predominates. Stress erythropoiesis is best characterized in the mouse, where it is extramedullary and utilizes progenitors and signals that are distinct from steady-state erythropoiesis. In this report, we use an in vitro culture system that recapitulates the in vivo development of stress erythroid progenitors. We identify cell-surface markers that delineate a series of stress erythroid progenitors with increasing maturity. In addition, we use this in vitro culture system to expand human stress erythroid progenitor cells that express analogous cell-surface markers. Consistent with previous suggestions that human stress erythropoiesis is similar to fetal erythropoiesis, we demonstrate that human stress erythroid progenitors express fetal hemoglobin upon differentiation. These data demonstrate that similar to murine bone marrow, human bone marrow contains cells that can generate BMP4-dependent stress erythroid burst-forming units when cultured under stress erythropoiesis conditions. © 2015 by The American Society of Hematology.

  14. Three-dimensional elastic stress and displacement analysis of finite circular geometry solids containing cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Mendelson, A.; Kring, J.

    1973-01-01

    A seminumerical method is presented for solving a set of coupled partial differential equations subject to mixed and coupled boundary conditions. The use of this method is illustrated by obtaining solutions for two circular geometry and mixed boundary value problems in three-dimensional elasticity. Stress and displacement distributions are calculated in an axisymmetric, circular bar of finite dimensions containing a penny-shaped crack. Approximate results for an annular plate containing internal surface cracks are also presented.

  15. Variation of Wall Shear Stress and Reynolds Stress over a Flat Plate Downstream of a Boundary Layer Manipulator

    DTIC Science & Technology

    1990-06-01

    Layer Manipulator is placed AP differential pressure across the surface fence e, IC, mean and turbulent viscous dissipation Rt absolute viscosity of...feet long. The zero point for the traversing system is situated 3.3 feet from the inlet end of the blockhouse and ranges over 90% of the semi-open...tenth the absolute air pressure in millimeters of water. A voltage divider further reduces CD23 output voltage by one-half to accommodate the MASSCOMP

  16. Acoustic microscopy analyses to determine good vs. failed tissue engineered oral mucosa under normal or thermally stressed culture conditions.

    PubMed

    Winterroth, Frank; Lee, Junho; Kuo, Shiuhyang; Fowlkes, J Brian; Feinberg, Stephen E; Hollister, Scott J; Hollman, Kyle W

    2011-01-01

    This study uses scanning acoustic microscopy (SAM) ultrasonic profilometry to determine acceptable vs. failed tissue engineered oral mucosa. Specifically, ex vivo-produced oral mucosal equivalents (EVPOMEs) under normal or thermally stressed culture conditions were scanned with the SAM operator blinded to the culture conditions. As seeded cells proliferate, they fill in and smooth out the surface irregularities; they then stratify and produce a keratinized protective upper layer. Some of these transformations could alter backscatter of ultrasonic signals and in the case of the thermally stressed cells, produce backscatter similar to an unseeded device. If non-invasive ultrasonic monitoring could be developed, then tissue cultivation could be adjusted to measure biological variations in the stratified surface. To create an EVPOME device, oral mucosa keratinocytes were seeded onto acellular cadaveric dermis. Two sets of EVPOMEs were cultured: one at physiological temperature 37 °C and the other at 43 °C. The specimens were imaged with SAM consisting of a single-element transducer: 61 MHz center frequency, 32 MHz bandwidth, 1.52 f#. Profilometry for the stressed and unseeded specimens showed higher surface irregularities compared to unstressed specimens. Elevated thermal stress retards cellular differentiation, increasing root mean square values; these results show that SAM can potentially monitor cell/tissue development.

  17. Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation

    PubMed Central

    Hendrikson, Wim J.; Deegan, Anthony J.; Yang, Ying; van Blitterswijk, Clemens A.; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen

    2017-01-01

    Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress–strain distributions throughout the scaffold depend on the scaffold’s internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve scaffold design for tissue engineering purposes. PMID:28239606

  18. Seismic sounding of convection in the Sun

    NASA Astrophysics Data System (ADS)

    Sreenivasan, Katepalli R.

    2015-11-01

    Thermal convection is the dominant mechanism of energy transport in the outer envelope of the Sun (one-third by radius). It drives global fluid circulations and magnetic fields observed on the solar surface. Convection excites a broadband spectrum of acoustic waves that propagate within the interior and set up modal resonances. These acoustic waves, also called seismic waves, are observed at the surface of the Sun by space- and ground-based telescopes. Seismic sounding, the study of these seismic waves to infer the internal properties of the Sun, constitutes helioseismology. Here we review our knowledge of solar convection, especially that obtained through seismic inference. Several characteristics of solar convection, such as differential rotation, anisotropic Reynolds stresses, the influence of rotation on convection and supergranulation, are considered. On larger scales, several inferences suggest that convective velocities are substantially smaller than those predicted by theory and simulations. This discrepancy challenges the models of internal differential rotation that rely on convective stresses as a driving mechanism and provide an important benchmark for numerical simulations. In collaboration with Shravan Hanasoge, Tata Institute of Fundamental Research, Mumbai and Laurent Gizon, Max-Planck-Institut fuer Sonnensystemforschung, Goettingen.

  19. Graphitic and oxidised high pressure high temperature (HPHT) nanodiamonds induce differential biological responses in breast cancer cell lines.

    PubMed

    Woodhams, Benjamin; Ansel-Bollepalli, Laura; Surmacki, Jakub; Knowles, Helena; Maggini, Laura; de Volder, Michael; Atatüre, Mete; Bohndiek, Sarah

    2018-06-19

    Nanodiamonds have demonstrated potential as powerful sensors in biomedicine, however, their translation into routine use requires a comprehensive understanding of their effect on the biological system being interrogated. Under normal fabrication processes, nanodiamonds are produced with a graphitic carbon shell, but are often oxidized in order to modify their surface chemistry for targeting to specific cellular compartments. Here, we assessed the biological impact of this purification process, considering cellular proliferation, uptake, and oxidative stress for graphitic and oxidized nanodiamond surfaces. We show for the first time that oxidized nanodiamonds possess improved biocompatibility compared to graphitic nanodiamonds in breast cancer cell lines, with graphitic nanodiamonds inducing higher levels of oxidative stress despite lower uptake.

  20. Stress responses at the endometrial-placental interface regulate labyrinthine placental differentiation from trophoblast stem cells.

    PubMed

    Rappolee, D A; Zhou, S; Puscheck, E E; Xie, Y

    2013-05-01

    Development can happen in one of two ways. Cells performing a necessary function can differentiate from stem cells before the need for it arises and stress does not develop. Or need arises before function, stress develops and stress signals are part of the normal stimuli that regulate developmental mechanisms. These mechanisms adjust stem cell differentiation to produce function in a timely and proportional manner. In this review, we will interpret data from studies of null lethal mutants for placental stress genes that suggest the latter possibility. Acknowledged stress pathways participate in stress-induced and -regulated differentiation in two ways. These pathways manage the homeostatic response to maintain stem cells during the stress. Stress pathways also direct stem cell differentiation to increase the first essential lineage and suppress later lineages when stem cell accumulation is diminished. This stress-induced differentiation maintains the conceptus during stress. Pathogenic outcomes arise because population sizes of normal stem cells are first depleted by decreased accumulation. The fraction of stem cells is further decreased by differentiation that is induced to compensate for smaller stem cell populations. Analysis of placental lethal null mutant genes known to mediate stress responses suggests that the labyrinthine placenta develops during, and is regulated by, hypoxic stress.

  1. MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux.

    PubMed

    Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat

    2014-01-01

    This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer.

  2. Surface EMG crosstalk during phasic involuntary muscle activation in the nociceptive withdrawal reflex.

    PubMed

    Frahm, Ken S; Jensen, Michael B; Farina, Dario; Andersen, Ole K

    2012-08-01

    The human nociceptive withdrawal reflex is typically assessed using surface electromyography (sEMG). Based on sEMG, the reflex receptive field (RRF) can be mapped. However, EMG crosstalk can cause erroneous results in the RRF determination. Single differential (SD) vs. double differential (DD) surface EMG were evaluated. Different electrode areas and inter-electrode-distances (IED) were evaluated. The reflexes were elicited by electrical stimulation of the sole of the foot. EMG was obtained from both tibialis anterior (TA) and soleus (SOL) using both surface and intramuscular EMG (iEMG). The amount of crosstalk was significantly higher in SD recordings than in DD recordings (P < 0.05). Crosstalk increased when electrode measuring area increased (P < 0.05) and when IED increased (P < 0.05). Reflex detection sensitivity decreases with increasing measuring area and increasing IED. These results stress that for determination of RRF and similar tasks, DD recordings should be applied. Copyright © 2012 Wiley Periodicals, Inc.

  3. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development.

    PubMed

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-12-10

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  4. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    PubMed Central

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-01-01

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies. PMID:24710551

  5. Evaluation of lipid oxidative stress status and inflammation in atopic ocular surface disease

    PubMed Central

    Wakamatsu, Tais H.; Ayako, Igarashi; Takano, Yoji; Matsumoto, Yukihiro; Ibrahim, Osama M.A.; Okada, Naoko; Satake, Yoshiyuki; Fukagawa, Kazumi; Shimazaki, Jun; Tsubota, Kazuo; Fujishima, Hiroshi

    2010-01-01

    Background Although the oxidative stress status in atopic skin disease has been reported to be elevated, there are still no studies related to the status of oxidative stress in atopic ocular surface disease. The purpose of this study was to evaluate the ocular surface lipid oxidative stress status and inflammation in atopic keratoconjunctivitis (AKC) patients and normal subjects. Methods Twenty eight eyes of 14 patients (9 males, 5 females) with AKC and 18 eyes of 9 age and sex matched (4 males and 5 females) normal healthy controls were examined in this prospective study. The severity of atopic dermatitis (AD) was scored by the SCORing Atopic Dermatitis (SCORAD) index. All subjects underwent Schirmer test, tear film break up time (BUT), fluorescein/Rose Bengal stainings, tear collection, and brush cytology from the upper palpebral conjunctiva. The brush cytology samples were stained with Diff-Quik for differentiation of inflammatory cells and immunohistochemistry (IHC) staining with HEL (hexanoyl-lysine) and 4-HNE (4-hydroxy-2-nonenal) to study lipid oxidation. HEL and cytokine (interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ)) levels were measured by enzyme-linked immunosorbent assay (ELISA) from tear samples of AKC patients and control subjects. Toluidine Blue and IHC staining with HEL, 4-HNE and cluster of differentiation 45 (CD45) were performed on papillary samples of AKC patients. This study was conducted in compliance with the “Declaration of Helsinki.” Results The tear stability and vital staining scores were significantly worse in eyes of AKC patients (p<0.05) compared to the controls. Inflammatory cells and positively stained conjunctival epithelial cells for HEL and 4-HNE showed a significant elevation in brush cytology samples of AKC patients. Significantly higher levels of HEL and cytokines were detected in tears of AKC patients compared to controls. Papillary specimens also revealed many CD45 inflammatory cells as well as many cells positively stained with HEL and 4-HNE in IHC. A strong significant linear positive correlation between conjunctival inflammation and epithelial lipid oxidative stress status was observed. Conjunctival lipid oxidative stress also correlated strongly with tear HEL levels and epithelial damage scores. Conclusions The ocular surface disease in AKC was characterized by marked tear instability, ocular surface epithelial damage, increase in inflammatory infiltrates and presence of increased lipid oxidation. PMID:21139696

  6. High Glucose Inhibits Neural Stem Cell Differentiation Through Oxidative Stress and Endoplasmic Reticulum Stress.

    PubMed

    Chen, Xi; Shen, Wei-Bin; Yang, Penghua; Dong, Daoyin; Sun, Winny; Yang, Peixin

    2018-06-01

    Maternal diabetes induces neural tube defects by suppressing neurogenesis in the developing neuroepithelium. Our recent study further revealed that high glucose inhibited embryonic stem cell differentiation into neural lineage cells. However, the mechanism whereby high glucose suppresses neural differentiation is unclear. To investigate whether high glucose-induced oxidative stress and endoplasmic reticulum (ER) stress lead to the inhibition of neural differentiation, the effect of high glucose on neural stem cell (the C17.2 cell line) differentiation was examined. Neural stem cells were cultured in normal glucose (5 mM) or high glucose (25 mM) differentiation medium for 3, 5, and 7 days. High glucose suppressed neural stem cell differentiation by significantly decreasing the expression of the neuron marker Tuj1 and the glial cell marker GFAP and the numbers of Tuj1 + and GFAP + cells. The antioxidant enzyme superoxide dismutase mimetic Tempol reversed high glucose-decreased Tuj1 and GFAP expression and restored the numbers of neurons and glial cells differentiated from neural stem cells. Hydrogen peroxide treatment imitated the inhibitory effect of high glucose on neural stem cell differentiation. Both high glucose and hydrogen peroxide triggered ER stress, whereas Tempol blocked high glucose-induced ER stress. The ER stress inhibitor, 4-phenylbutyrate, abolished the inhibition of high glucose or hydrogen peroxide on neural stem cell differentiation. Thus, oxidative stress and its resultant ER stress mediate the inhibitory effect of high glucose on neural stem cell differentiation.

  7. Heat and phosphate starvation effects on the proteome, morphology and chemical composition of the biomining bacteria Acidithiobacillus ferrooxidans.

    PubMed

    Ribeiro, Daniela A; Maretto, Danilo A; Nogueira, Fábio C S; Silva, Márcio J; Campos, Francisco A P; Domont, Gilberto B; Poppi, Ronei J; Ottoboni, Laura M M

    2011-06-01

    Acidithiobacillus ferrooxidans is a Gram negative, acidophilic, chemolithoautotrophic bacterium that plays an important role in metal bioleaching. During bioleaching, the cells are subjected to changes in the growth temperature and nutrients starvation. The aim of this study was to gather information about the response of the A.ferrooxidans Brazilian strain LR to K2HPO4 starvation and heat stress through investigation of cellular morphology, chemical composition and differential proteome. The scanning electron microscopic results showed that under the tested stress conditions, A. ferrooxidans cells became elongated while the Fourier transform infrared spectroscopy (FT-IR) analysis showed alterations in the wavenumbers between 850 and 1,275 cm(-1), which are related to carbohydrates, phospholipids and phosphoproteins. These findings indicate that the bacterial cell surface is affected by the tested stress conditions. A proteomic analysis, using 2-DE and tandem mass spectrometry, enabled the identification of 44 differentially expressed protein spots, being 30 due to heat stress (40°C) and 14 due to K2HPO4 starvation. The identified proteins belonged to 11 different functional categories, including protein fate, energy metabolism and cellular processes. The upregulated proteins were mainly from protein fate and energy metabolism categories. The obtained results provide evidences that A. ferrooxidans LR responds to heat stress and K2HPO4 starvation by inducing alterations in cellular morphology and chemical composition of the cell surface. Also, the identification of several proteins involved in protein fate suggests that the bacteria cellular homesostasis was affected. In addition, the identification of proteins from different functional categories indicates that the A. ferrooxidans response to higher than optimal temperatures and phosphate starvation involves global changes in its physiology.

  8. Mineral resources of the Cabinet Mountains Wilderness, Lincoln and Sanders Counties, Montana

    USGS Publications Warehouse

    Lindsey, David A.; Wells, J.D.; Van Loenen, R. E.; Banister, D.P.; Welded, R.D.; Zilka, N.T.; Schmauch, S.W.

    1978-01-01

    This report describes the differential array, of seismometers recently installed at the Hollister, California, Municipal Airport. Such an array of relatively closely spaced seismometers has already been installed in El Centro and provided useful information for both engineering and seismological applications from the 1979 Imperial Valley earthquake. Differential ground motions, principally due to horizontally propagating surface waves, are important in determining the stresses in such extended structures as large mat foundations for nuclear power stations, dams, bridges and pipelines. Further, analyses of the records of the 1979 Imperial Valley earthquake from the differential array have demonstrated the utility of short-baseline array data in tracking the progress of the rupture wave front of an earthquake.

  9. Development and evaluation of an empirical diurnal sea surface temperature model

    NASA Astrophysics Data System (ADS)

    Weihs, R. R.; Bourassa, M. A.

    2013-12-01

    An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with accumulated wind stress and peak solar radiation to create an empirical relationship that approximates physical processes such as turbulence and heating memory (capacity) of the ocean. Weaknesses and strengths of the model, including potential spatial biases, will be discussed.

  10. Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing

    NASA Astrophysics Data System (ADS)

    Zhu, Chenyuan; Lv, Yuting; Qian, Chao; Qian, Haixin; Jiao, Ting; Wang, Liqiang; Zhang, Fuqiang

    2016-12-01

    The aims of this study were to fabricate a novel titanium/silicon carbide (Ti/SiC) metal matrix nanocomposite (MMNC) by friction stir processing (FSP) and to investigate its microstructure and mechanical properties. In addition, the adhesion, proliferation and osteogenic differentiation of rat bone marrow stromal cells (BMSCs) on the nanocomposite surface were investigated. The MMNC microstructure was observed by both scanning and transmission electron microscopy. Mechanical properties were characterized by nanoindentation and Vickers hardness testing. Integrin β1 immunofluorescence, cell adhesion, and MTT assays were used to evaluate the effects of the nanocomposite on cell adhesion and proliferation. Osteogenic and angiogenic differentiation were evaluated by alkaline phosphatase (ALP) staining, ALP activity, PCR and osteocalcin immunofluorescence. The observed microstructures and mechanical properties clearly indicated that FSP is a very effective technique for modifying Ti/SiC MMNC to contain uniformly distributed nanoparticles. In the interiors of recrystallized grains, characteristics including twins, fine recrystallized grains, and dislocations formed concurrently. Adhesion, proliferation, and osteogenic and angiogenic differentiation of rat BMSCs were all enhanced on the novel Ti/SiC MMNC surface. In conclusion, nanocomposites modified using FSP technology not only have superior mechanical properties under stress-bearing conditions but also provide improved surface and physicochemical properties for cell attachment and osseointegration.

  11. The two sides of the C-factor.

    PubMed

    Fok, Alex S L; Aregawi, Wondwosen A

    2018-04-01

    The aim of this paper is to investigate the effects on shrinkage strain/stress development of the lateral constraints at the bonded surfaces of resin composite specimens used in laboratory measurement. Using three-dimensional (3D) Hooke's law, a recently developed shrinkage stress theory is extended to 3D to include the additional out-of-plane strain/stress induced by the lateral constraints at the bonded surfaces through the Poisson's ratio effect. The model contains a parameter that defines the relative thickness of the boundary layers, adjacent to the bonded surfaces, that are under such multiaxial stresses. The resulting differential equation is solved for the shrinkage stress under different boundary conditions. The accuracy of the model is assessed by comparing the numerical solutions with a wide range of experimental data, which include those from both shrinkage strain and shrinkage stress measurements. There is good agreement between theory and experiments. The model correctly predicts the different instrument-dependent effects that a specimen's configuration factor (C-factor) has on shrinkage stress. That is, for noncompliant stress-measuring instruments, shrinkage stress increases with the C-factor of the cylindrical specimen; while the opposite is true for compliant instruments. The model also provides a correction factor, which is a function of the C-factor, Poisson's ratio and boundary layer thickness of the specimen, for shrinkage strain measured using the bonded-disc method. For the resin composite examined, the boundary layers have a combined thickness that is ∼11.5% of the specimen's diameter. The theory provides a physical and mechanical basis for the C-factor using principles of engineering mechanics. The correction factor it provides allows the linear shrinkage strain of a resin composite to be obtained more accurately from the bonded-disc method. Published by Elsevier Ltd.

  12. Preosteoblast production 55 hours after a 12.5-day spaceflight on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Garetto, L. P.; Gonsalves, M. R.; Morey, E. R.; Durnova, G.; Roberts, W. E.; Morey-Holton, E. (Principal Investigator)

    1990-01-01

    The influence of 12.5 days of spaceflight and a 55 h stressful recovery period (at 1 g) on fibroblastlike osteoblast precursor cells was assessed in the periodontal ligament (PDL) of rats that were 91 days old at launch. Nuclear morphometry was used as a marker for precursor cell differentiation in 3 microns sections cut in the midsagittal plane from the maxillary first molar. According to nuclear volume, cells were classified as preosteoblasts (C + D cells, greater than or equal to 120 microns 3) and less differentiated progenitor cells (A + A' cells, 40-79 microns 3). Compared with synchronous controls (simulated flight conditions), the 55 h postflight recovery period at 1 g resulted in a 40% decrease in the A + A' cell population, a 42% increase in the C + D cells, and a 39% increase in the number of PDL fibroblastlike cells near the bone surface. These results are consistent with a postflight osteogenic response in PDL. This recovery response occurred despite physiological stress in the flight animals that resulted in a highly significant (P less than or equal to 0.001) increase in adrenal weight. The data suggest that after spaceflight there is a strong and rapid recovery mechanism for osteoblast differentiation that is not suppressed by physiological stress.

  13. High-Resolution Mapping of Yield Curve Shape and Evolution for Porous Rock: The Effect of Inelastic Compaction on Porous Bassanite

    NASA Astrophysics Data System (ADS)

    Bedford, John D.; Faulkner, Daniel R.; Leclère, Henri; Wheeler, John

    2018-02-01

    Porous rock deformation has important implications for fluid flow in a range of crustal settings as compaction can increase fluid pressure and alter permeability. The onset of inelastic strain for porous materials is typically defined by a yield curve plotted in differential stress (Q) versus effective mean stress (P) space. Empirical studies have shown that these curves are broadly elliptical in shape. Here conventional triaxial experiments are first performed to document (a) the yield curve of porous bassanite (porosity ≈ 27-28%), a material formed from the dehydration of gypsum, and (b) the postyield behavior, assuming that P and Q track along the yield surface as inelastic deformation accumulates. The data reveal that after initial yield, the yield surface cannot be perfectly elliptical and must evolve significantly as inelastic strain is accumulated. To investigate this further, a novel stress-probing methodology is developed to map precisely the yield curve shape and subsequent evolution for a single sample. These measurements confirm that the high-pressure side of the curve is partly composed of a near-vertical limb. Yield curve evolution is shown to be dependent on the nature of the loading path. Bassanite compacted under differential stress develops a heterogeneous microstructure and has a yield curve with a peak that is almost double that of an equal porosity sample that has been compacted hydrostatically. The dramatic effect of different loading histories on the strength of porous bassanite highlights the importance of understanding the associated microstructural controls on the nature of inelastic deformation in porous rock.

  14. Volmer-Weber growth stages of polycrystalline metal films probed by in situ and real-time optical diagnostics

    NASA Astrophysics Data System (ADS)

    Abadias, G.; Simonot, L.; Colin, J. J.; Michel, A.; Camelio, S.; Babonneau, D.

    2015-11-01

    The Volmer-Weber growth of high-mobility metal films is associated with the development of a complex compressive-tensile-compressive stress behavior as the film deposition proceeds through nucleation of islands, coalescence, and formation of a continuous layer. The tensile force maximum has been attributed to the end of the islands coalescence stage, based on ex situ morphological observations. However, microstructural rearrangements are likely to occur in such films during post-deposition, somewhat biasing interpretations solely based on ex situ analysis. Here, by combining two simultaneous in situ and real-time optical sensing techniques, based on surface differential reflectance spectroscopy (SDRS) and change in wafer curvature probed by multibeam optical stress sensor (MOSS), we provide direct evidence that film continuity does coincide with tensile stress maximum during sputter deposition of a series of metal (Ag, Au, and Pd) films on amorphous SiOx. Stress relaxation after growth interruption was testified from MOSS, whose magnitude scaled with adatom mobility, while no change in SDRS signal could be revealed, ruling out possible changes of the surface roughness at the micron scale.

  15. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis.

    PubMed

    Li, Ruoyun; Xiong, Guotong; Yuan, Shukun; Wu, Zufang; Miao, Yingjie; Weng, Peifang

    2017-11-03

    Saccharomyces cerevisiae has been widely used for wine fermentation and bio-fuels production. A S. cerevisiae strain Sc131 isolated from tropical fruit shows good fermentation properties and ethanol tolerance, exhibiting significant potential in Chinese bayberry wine fermentation. In this study, RNA-sequence and RT-qPCR was used to investigate the transcriptome profile of Sc131 in response to ethanol stress. Scanning Electron Microscopy were carried out to observe surface morphology of yeast cells. Totally, 937 genes were identified differential expressed, including 587 up-regulated and 350 down-regulated genes, after 4-h ethanol stress (10% v/v). Transcriptomic analysis revealed that, most genes involved in regulating filamentous growth or pseudohyphal growth were significantly up-regulated in response to ethanol stress. The complex protein quality control machineries, Hsp90/Hsp70 and Hsp104/Hsp70/Hsp40 based chaperone system combining with ubiquitin-proteasome proteolytic pathway were both activated to recognize and degrade misfolding proteins. Genes related to biosynthesis and metabolism of two well-known stress-responsive substances trehalose and ergosterol were generally up-regulated, while genes associated with amino acids biosynthesis and metabolism processes were differentially expressed. Moreover, thiamine was also important in response to ethanol stress. This research may promote the potential applications of Sc131 in the fermentation of Chinese bayberry wine.

  16. Warpage Measurement of Thin Wafers by Reflectometry

    NASA Astrophysics Data System (ADS)

    Ng, Chi Seng; Asundi, Anand Krishna

    To cope with advances in the electronic and portable devices, electronic packaging industries have employed thinner and larger wafers to produce thinner packages/ electronic devices. As the thickness of the wafer decrease (below 250um), there is an increased tendency for it to warp. Large stresses are induced during manufacturing processes, particularly during backside metal deposition. The wafers bend due to these stresses. Warpage results from the residual stress will affect subsequent manufacturing processes. For example, warpage due to this residual stresses lead to crack dies during singulation process which will severely reorient the residual stress distributions, thus, weakening the mechanical and electrical properties of the singulated die. It is impossible to completely prevent the residual stress induced on thin wafers during the manufacturing processes. Monitoring of curvature/flatness is thus necessary to ensure reliability of device and its uses. A simple whole-field curvature measurement system using a novel computer aided phase shift reflection grating method has been developed and this project aims to take it to the next step for residual stress and full field surface shape measurement. The system was developed from our earlier works on Computer Aided Moiré Methods and Novel Techniques in Reflection Moiré, Experimental Mechanics (1994) in which novel structured light approach was shown for surface slope and curvature measurement. This method uses similar technology but coupled with a novel phase shift system to accurately measure slope and curvature. In this study, slope of the surface were obtain using the versatility of computer aided reflection grating method to manipulate and generate gratings in two orthogonal directions. The curvature and stress can be evaluated by performing a single order differentiation on slope data.

  17. Analyzing refractive index changes and differential bending in microcantilever arrays.

    PubMed

    Huber, François; Lang, Hans Peter; Hegner, Martin; Despont, Michel; Drechsler, Ute; Gerber, Christoph

    2008-08-01

    A new microcantilever array design is investigated comprising eight flexible microcantilevers introducing two solid bars, enabling to subtract contributions from differences in refractive index in an optical laser read out system. Changes in the refractive index do not contribute undesirably to bending signals at picomolar to micromolar DNA or protein concentrations. However, measurements of samples with high salt concentrations or serum are affected, requiring corrections for refractive index artifacts. Moreover, to obtain a deeper understanding of molecular stress formation, the differential curvature of cantilevers is analyzed by positioning the laser spots along the surface of the levers during pH experiments.

  18. Efficient hybrid evolutionary algorithm for optimization of a strip coiling process

    NASA Astrophysics Data System (ADS)

    Pholdee, Nantiwat; Park, Won-Woong; Kim, Dong-Kyu; Im, Yong-Taek; Bureerat, Sujin; Kwon, Hyuck-Cheol; Chun, Myung-Sik

    2015-04-01

    This article proposes an efficient metaheuristic based on hybridization of teaching-learning-based optimization and differential evolution for optimization to improve the flatness of a strip during a strip coiling process. Differential evolution operators were integrated into the teaching-learning-based optimization with a Latin hypercube sampling technique for generation of an initial population. The objective function was introduced to reduce axial inhomogeneity of the stress distribution and the maximum compressive stress calculated by Love's elastic solution within the thin strip, which may cause an irregular surface profile of the strip during the strip coiling process. The hybrid optimizer and several well-established evolutionary algorithms (EAs) were used to solve the optimization problem. The comparative studies show that the proposed hybrid algorithm outperformed other EAs in terms of convergence rate and consistency. It was found that the proposed hybrid approach was powerful for process optimization, especially with a large-scale design problem.

  19. Polymer Stress-Gradient Induced Migration in Thin Film Flow Over Topography

    NASA Astrophysics Data System (ADS)

    Tsouka, Sophia; Dimakopoulos, Yiannis; Tsamopoulos, John

    2014-11-01

    We consider the 2D, steady film flow of a dilute polymer solution over a periodic topography. We examine how the distribution of polymer in the planarization of topographical features is affected by flow intensity and physical properties. The thermodynamically acceptable, Mavrantzas-Beris two-fluid Hamiltonian model is used for polymer migration. The resulting system of differential equations is solved via the mixed FE method combined with an elliptic grid generation scheme. We present numerical results for polymer concentration, stress, velocity and flux of components as a function of the non-dimensional parameters of the problem (Deborah, Peclet, Reynolds and Capillary numbers, ratio of solvent viscosity to total liquid viscosity and geometric features of the topography). Polymer migration to the free surface is enhanced when the cavity gets steeper and deeper. This increases the spatial extent of the polymer depletion layer and induces strong banding in the stresses away from the substrate wall, especially in low polymer concentration. Macromolecules with longer relaxation times are predicted to migrate towards the free surface more easily, while high surface tension combined with a certain range of Reynolds numbers affects the free surface deformations. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.

  20. Fracture study of windshield glass panes

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y.

    1987-01-01

    The major stresses which cause crack propagation in windshield glass panes are induced by bending moments which result from the pressure differentials across the panes. Hence the stress intensity factors for the finite plate with the semi-elliptical surface flaw and edge crack under the bending moments are examined. The results show that the crack growth will be upperbound if it is computed by using the stress intensity factor for the finite plate with the edge crack subjected to pure bending moments. Furthermore, if the ratio of crack depth to plate thickness, a/t, is within 0.3, the stress intensity factor can be conservatively assumed to be constant at the value of a/t equal to zero. A simplified equation to predict the structural life of glass panes is derived based on constant stress intensity factor. The accuracy of structural life is mainly dependent on how close the empirical parameter, m, can be estimated.

  1. Estimating fluid-induced stress change from observed deformation

    DOE PAGES

    Vasco, D. W.; Harness, Paul; Pride, Steve; ...

    2016-12-19

    Observed deformation is sensitive to a changing stress field within the Earth. There are, however, several impediments to a direct inversion of geodetic measurements for changes in stress. Estimating six independent components of stress change from a smaller number of displacement or strain components is inherently non-unique. The reliance upon surface measurements leads to a loss of resolution, due to the attenuation of higher spatial frequencies in the displacement field with distance from a source. Here, we adopt a technique suited to the estimation of stress changes due to the injection and/or withdrawal of fluids at depth. In this approachmore » the surface displacement data provides an estimate of the volume change responsible for the deformation, rather than stress changes themselves. The inversion for volume change is constrained by the fluid fluxes into and out of the reservoir. The distribution of volume change is used to calculate the displacements in the region above the reservoir. Estimates of stress change follow from differentiating the displacement field in conjunction with a geomechanical model of the o verburden. We also apply the technique to Interferometric Synthetic Aperture Radar (InSAR) observations gathered over a petroleum reservoir in the San Joaquin Valley of California. An analysis of the InSAR range changes reveals that the stress field in the overburden varies rapidly both in space and in time. The inferred stress variations are found to be compatible with the documented failure of a well in the field.« less

  2. Estimating fluid-induced stress change from observed deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D. W.; Harness, Paul; Pride, Steve

    Observed deformation is sensitive to a changing stress field within the Earth. There are, however, several impediments to a direct inversion of geodetic measurements for changes in stress. Estimating six independent components of stress change from a smaller number of displacement or strain components is inherently non-unique. The reliance upon surface measurements leads to a loss of resolution, due to the attenuation of higher spatial frequencies in the displacement field with distance from a source. Here, we adopt a technique suited to the estimation of stress changes due to the injection and/or withdrawal of fluids at depth. In this approachmore » the surface displacement data provides an estimate of the volume change responsible for the deformation, rather than stress changes themselves. The inversion for volume change is constrained by the fluid fluxes into and out of the reservoir. The distribution of volume change is used to calculate the displacements in the region above the reservoir. Estimates of stress change follow from differentiating the displacement field in conjunction with a geomechanical model of the o verburden. We also apply the technique to Interferometric Synthetic Aperture Radar (InSAR) observations gathered over a petroleum reservoir in the San Joaquin Valley of California. An analysis of the InSAR range changes reveals that the stress field in the overburden varies rapidly both in space and in time. The inferred stress variations are found to be compatible with the documented failure of a well in the field.« less

  3. A differential CDM model for fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1992-01-01

    A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.

  4. Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing

    PubMed Central

    Zhu, Chenyuan; Lv, Yuting; Qian, Chao; Qian, Haixin; Jiao, Ting; Wang, Liqiang; Zhang, Fuqiang

    2016-01-01

    The aims of this study were to fabricate a novel titanium/silicon carbide (Ti/SiC) metal matrix nanocomposite (MMNC) by friction stir processing (FSP) and to investigate its microstructure and mechanical properties. In addition, the adhesion, proliferation and osteogenic differentiation of rat bone marrow stromal cells (BMSCs) on the nanocomposite surface were investigated. The MMNC microstructure was observed by both scanning and transmission electron microscopy. Mechanical properties were characterized by nanoindentation and Vickers hardness testing. Integrin β1 immunofluorescence, cell adhesion, and MTT assays were used to evaluate the effects of the nanocomposite on cell adhesion and proliferation. Osteogenic and angiogenic differentiation were evaluated by alkaline phosphatase (ALP) staining, ALP activity, PCR and osteocalcin immunofluorescence. The observed microstructures and mechanical properties clearly indicated that FSP is a very effective technique for modifying Ti/SiC MMNC to contain uniformly distributed nanoparticles. In the interiors of recrystallized grains, characteristics including twins, fine recrystallized grains, and dislocations formed concurrently. Adhesion, proliferation, and osteogenic and angiogenic differentiation of rat BMSCs were all enhanced on the novel Ti/SiC MMNC surface. In conclusion, nanocomposites modified using FSP technology not only have superior mechanical properties under stress-bearing conditions but also provide improved surface and physicochemical properties for cell attachment and osseointegration. PMID:27958394

  5. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    PubMed

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity.

  6. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-04-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  7. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-06-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  8. Feasibility study of determining axial stress in ferromagnetic bars using reciprocal amplitude of initial differential susceptibility obtained from static magnetization by permanent magnets

    NASA Astrophysics Data System (ADS)

    Deng, Dongge; Wu, Xinjun

    2018-03-01

    An electromagnetic method for determining axial stress in ferromagnetic bars is proposed. In this method, the tested bar is under the static magnetization provided by permanent magnets. The tested bar do not have to be magnetized up to the technical saturation because reciprocal amplitude of initial differential susceptibility (RAIDS) is adopted as the feature parameter. RAIDS is calculated from the radial magnetic flux density Br Lo = 0.5 at the Lift-off Lo = 0.5 mm, radial magnetic flux density Br Lo = 1 at the Lift-off Lo = 1 mm and axial magnetic flux density Bz Lo = 1 at the Lift-off Lo = 1 mm from the surface of the tested bar. Firstly, the theoretical derivation of RAIDS is carried out according to Gauss' law for magnetism, Ampere's Law and the Rayleigh relation in Rayleigh region. Secondly, the experimental system is set up for a 2-meter length and 20 mm diameter steel bar. Thirdly, an experiment is carried out on the steel bar to analyze the relationship between the obtained RAIDS and the axial stress. Experimental results show that the obtained RAIDS decreases almost linearly with the increment of the axial stress inside the steel bar in the initial elastic region. The proposed method has the potential to determine tensile axial stress in the slender cylindrical ferromagnetic bar.

  9. Mosquito control pesticides and sea surface temperatures have differential effects on the survival and oxidative stress response of coral larvae.

    PubMed

    Ross, Cliff; Olsen, Kevin; Henry, Michael; Pierce, Richard

    2015-04-01

    The declining health of coral reefs is intensifying worldwide at an alarming rate due to the combined effects of land-based sources of pollution and climate change. Despite the persistent use of mosquito control pesticides in populated coastal areas, studies examining the survival and physiological impacts of early life-history stages of non-targeted marine organisms are limited. In order to better understand the combined effects of mosquito pesticides and rising sea surface temperatures, we exposed larvae from the coral Porites astreoides to selected concentrations of two major mosquito pesticide ingredients, naled and permethrin, and seawater elevated +3.5 °C. Following 18-20 h of exposure, larvae exposed to naled concentrations of 2.96 µg L(-1) or greater had significantly reduced survivorship compared to controls. These effects were not detected in the presence of permethrin or elevated temperature. Furthermore, larval settlement, post-settlement survival and zooxanthellae density were not impacted by any treatment. To evaluate the sub-lethal stress response of larvae, several oxidative stress endpoints were utilized. Biomarker responses to pesticide exposure were variable and contingent upon pesticide type as well as the specific biomarker being employed. In some cases, such as with protein carbonylation and catalase gene expression, the effects of naled exposure and temperature were interactive. In other cases pesticide exposure failed to induce any sub-lethal stress response. Overall, these results demonstrate that P. astreoides larvae have a moderate degree of resistance against short-term exposure to ecologically relevant concentrations of pesticides even in the presence of elevated temperature. In addition, this work highlights the importance of considering the complexity and differential responses encountered when examining the impacts of combined stressors that occur on varying spatial scales.

  10. The Strength Analysis of Differential Planetary Gears of Gearbox for Concrete Mixer Truck

    NASA Astrophysics Data System (ADS)

    Bae, M. H.; Bae, T. Y.; Kim, D. J.

    2018-03-01

    The power train of mixer gearbox for concrete mixer truck includes differential planetary gears to get large reduction ratio for operating mixer a drum and simple structure. The planetary gears are very important part of a mixer gearbox where strength problems namely gear bending stress, gear compressive stress and scoring failure are the main concern. In the present study, calculating specifications of the differential planetary gears and analyzing the gear bending and compressive stresses as well as scoring factor of the differential planetary gears gearbox for an optimal design of the mixer gearbox in respect to cost and reliability are investigated. The analyses of actual gear bending and compressive stresses of the differential planetary gears using Lewes & Hertz equation and verifications of the calculated specifications of the differential planetary gears evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears. In addition, we also analyze actual gear scoring factor as well as evaluate the possibility of scoring failure of the differential planetary gear.

  11. Torque balance, Taylor's constraint and torsional oscillations in a numerical model of the geodynamo

    NASA Astrophysics Data System (ADS)

    Dumberry, Mathieu; Bloxham, Jeremy

    2003-11-01

    Theoretical considerations and observations suggest that, to a first approximation, the Earth's dynamo is in a quasi-Taylor state, where the axial Lorentz torque on cylindrical surfaces co-axial with the rotation axis vanishes, except for the part involved in torsional oscillations. The latter are rigid azimuthal accelerations of cylindrical surfaces which oscillate with typical periods of decades. We present a solution of a numerical model of the geodynamo in which rigid accelerations of cylinder surfaces are observed. The underlying dynamic state in the model is not a Taylor state because the Reynolds stresses and viscous torque remain large and provide an effective way to balance a large Lorentz torque. This is a consequence of the limited parameter regime which can be attained numerically. Nevertheless, departures in the torque equilibrium are primarily counterbalanced by rigid accelerations of cylindrical surfaces, which, in turn, excite rigid azimuthal oscillations of the surfaces. We show that the azimuthal motion is indeed quasi-rigid, though the torsional oscillations that are produced in the model probably differ from those in the Earth's core because of the large influence of the Reynolds stresses on their dynamics. We also show that the continual excitation of rigid cylindrical accelerations is produced by the advection of the non-axisymmetric structure of the fields by a mean differential rotation of the cylindrical surfaces which produces disconnections and reconnections and continual fluctuations in the Lorentz torque and Reynolds stresses. We propose that the torque balance in Earth's core may evolve in a similar chaotic fashion, except that the influence of the Reynolds stresses is probably weaker. If this is the case, the Lorentz torque on a cylindrical surface is continually fluctuating, even though its time-averaged value vanishes and satisfies Taylor's constraint. Rigid accelerations of cylindrical surfaces are continually excited by the fluctuations in the Lorentz torque, and the torsional oscillations observed in the geomagnetic data are a mixture of forced and free oscillations.

  12. Roughening of surfaces under intense and rapid heating

    NASA Astrophysics Data System (ADS)

    Andersen, Michael Louis

    The High Average Power Laser (HAPL) project is aimed at a chamber design with a solid first wall in pursuit of sustained Laser Inertial Confinement Fusion. The wall must be able to withstand cyclic high temperatures and the corresponding thermal stresses. Tungsten was proposed as a suitable armor for the wall, because as a refractory metal, it has a high melting temperature and can act as a stress dampener. The nature of the surface loading consists of x-rays, ions, and neutrons, which through mainly thermal loading, create a biaxial surface stress. This condition causes the surface to roughen as ridges and valleys form to relieve the elastic energy. As the valleys deepen they eventually become cracks and traditional fracture mechanics can be used to determine the life of the first wall. Beginning from the Asaro-Tiller-Grinfeld instability, sharp interface calculations can be performed to determine the surface profile as a result of the interplay between surface stress energy and mass transport mechanisms. One successful approach to determine interface evolution is phase field theory and its embodiment in the numerical level-set method. Applications of the method included problems of solid/liquid and solid/vapor interfaces. In the present method, however, we develop a numerical procedure for surface profile tracking directly without the need to develop partial differential equations for the phase field, which typically smooth out sharp interfaces. Surface roughening instabilities, which are driven by a competition between elastic and surface energy contributions, are shown to be significantly controlled by plastic energy dissipation. We consider here a general parametric description of the surface of a stressed solid and through a mechanical kinetic transport mechanism, follow the temporal evolution of the surface morphology. It is found that once a groove reaches a certain depth and curvature, an instability is created that cannot be followed through elasticity alone. It is shown in this thesis that these morphological instabilities do not experience unbounded growth, as predicted by consideration of elastic energy alone, and that their growth will be severely limited by dislocation emission from high curvature grooves. Comparisons between perturbation theory and the present numerical approach are given along with comparisons to results from laser, ion, and x-ray experiments. Finally, the model is applied to the conditions of Inertial Confinement Fusion chamber walls to determine the number of cycles for crack nucleation.

  13. Mycobacterial Cultures Contain Cell Size and Density Specific Sub-populations of Cells with Significant Differential Susceptibility to Antibiotics, Oxidative and Nitrite Stress

    PubMed Central

    Vijay, Srinivasan; Nair, Rashmi Ravindran; Sharan, Deepti; Jakkala, Kishor; Mukkayyan, Nagaraja; Swaminath, Sharmada; Pradhan, Atul; Joshi, Niranjan V.; Ajitkumar, Parthasarathi

    2017-01-01

    The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed from the SCDs of short-sized mother cells and having comparable growth rates, always showed comparable stress-susceptibility. These observations and the presence of M. tuberculosis SCs and NCs in pulmonary tuberculosis patients' sputum earlier reported by us imply a physiological role for the SCs and the NCs under the stress conditions. The plausible reasons for the higher stress susceptibility of SCs and lower stress susceptibility of NCs are discussed. PMID:28377757

  14. Hypoxic Stress Forces Irreversible Differentiation of a Majority of Mouse Trophoblast Stem Cells Despite FGF4.

    PubMed

    Yang, Yu; Arenas-Hernandez, Marcia; Gomez-Lopez, Nardhy; Dai, Jing; Parker, Graham C; Puscheck, Elizabeth E; Rappolee, Daniel A

    2016-11-01

    Hypoxic, hyperosmotic, and genotoxic stress slow mouse trophoblast stem cell (mTSC) proliferation, decrease potency/stemness, and increase differentiation. Previous reports suggest a period of reversibility in stress-induced mTSC differentiation. Here we show that hypoxic stress at 0.5% O 2 decreased potency factor protein by ∼60%-90% and reduced growth to nil. Hypoxia caused a 35-fold increase in apoptosis at Day 3 and a 2-fold increase at Day 6 above baseline. The baseline apoptosis rate was only 0.3%. Total protein was never less than baseline during hypoxic treatment, suggesting 0.5% O 2 is a robust, nonmorbid stressor. Hypoxic stress induced ∼50% of trophoblast giant cell (TGC) differentiation with a simultaneous 5- to 6-fold increase in the TGC product antiluteolytic prolactin family 3, subfamily d, member 1 (PRL3D1), despite the presence of fibroblast growth factor 4 (FGF4). Hypoxia-induced TGC differentiation was also supported by potency and differentiation mRNA marker analysis. FGF4 removal at 20% O 2 committed cell fate towards irreversible differentiation at 2 days, with similar TGC percentages after an additional 3 days of culture under potency conditions when FGF4 was readded or under differentiation conditions without FGF4. However, hypoxic stress required 4 days to irreversibly differentiate cells. Runted stem cell growth, forced differentiation of fewer cells, and irreversible differentiation limit total available stem cell population. Were mTSCs to respond to stress in a similar mode in vivo, miscarriage might occur as a result, which should be tested in the future. © 2016 by the Society for the Study of Reproduction, Inc.

  15. Surface enhanced Raman scattering on Tardigrada--towards monitoring and imaging molecular structures in live cryptobiotic organisms.

    PubMed

    Kneipp, Harald; Møbjerg, Nadja; Jørgensen, Aslak; Bohr, Henrik G; Hélix-Nielsen, Claus; Kneipp, Janina; Kneipp, Katrin

    2013-10-01

    Tardigrades are microscopic metazoans which are able to survive extreme physical and chemical conditions by entering a stress tolerant state called cryptobiosis. At present, the molecular mechanisms behind cryptobiosis are still poorly understood. We show that surface enhanced Raman scattering supported by plasmonic gold nanoparticles can measure molecular constituents and their local distribution in live tardigrades. Surface enhanced Raman signatures allow to differentiate between two species and indicate molecular structural differences between tardigrades in water and in a dry state. This opens new avenues for exploring cryptobiosis by studying molecular changes in live cryptobiotic organisms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Depth dependent stress revealed by aftershocks

    NASA Astrophysics Data System (ADS)

    Narteau, C.; Shebalin, P.

    2017-12-01

    Aftershocks occur in response to perturbations of the state of stress induced either by earthquakes or human activities. Along major strike-slip fault segments of the San Andreas fault system, the time-delay before the onset of the power-law aftershock decay rate (the c-value) varies by three orders of magnitude in the first twenty kilometers below the surface. Despite the influence of the lithostatic stress, there is no continuous change in c-value with respect to depth. Instead, two decay phases are separated by an abrupt increase at an intermediate depth range of 2 to 5 km. This transitional regime is the only one observed in fluid-injection-induced seismic areas. This provides strong evidence for the role of fluid and a porosity reduction mechanism at depth of few kilometers in active fault zones. Aftershock statistics can then be used to predict the evolution the differential shear stress with depth until the brittle-ductile transition is reached.

  17. Analytical Predictions of Thermal Stress in the Stardust PICA Heatshield Under Reentry Flight Conditions

    NASA Technical Reports Server (NTRS)

    Squire, Thomas; Milos, Frank; Agrawal, Parul

    2009-01-01

    We performed finite element analyses on a model of the Phenolic Impregnated Carbon Ablator (PICA) heatshield from the Stardust sample return capsule (SRC) to predict the thermal stresses in the PICA material during reentry. The heatshield on the Stardust SRC was a 0.83 m sphere cone, fabricated from a single piece of 5.82 cm-thick PICA. The heatshield performed successfully during Earth reentry of the SRC in January 2006. Material response analyses of the full, axisymmetric PICA heatshield were run using the Two-Dimensional Implicit Ablation, Pyrolysis, and Thermal Response Program (TITAN). Peak surface temperatures were predicted to be 3385K, while the temperature at the PICA backface remained at the estimated initial cold-soak temperature of 278K. Surface recession and temperature distribution results from TITAN, at several points in the reentry trajectory, were mapped onto an axisymmetric finite element model of the heatshield. We used the finite element model to predict the thermal stresses in the PICA from differential thermal expansion. The predicted peak compressive stress in the PICA heatshield was 1.38 MPa. Although this level of stress exceeded the chosen design limit for compressive stresses in PICA tiles for the design of the Orion crew exploration vehicle heatshield, the Stardust heatshield exhibited no obvious mechanical failures from thermal stress. The analyses of the Stardust heatshield were used to assess and adjust the level of conservatism in the finite element analyses in support of the Orion heatshield design.

  18. Influence of stress, weightlessness, and simulated weightlessness on differentiation of preosteoblasts

    NASA Technical Reports Server (NTRS)

    Roberts, W. E.

    1984-01-01

    The effects of 18.5 days of weightlessness aboard a satellite, stress of restricted feeding, stress of noise and vibration to simulate space flight and 21 days of head down suspension via the Morey-Holton model for simulated weightlessness was studied. Nuclear size of fibroblastlike cells in PDL on the anterior surface of maxillary first molars was classified as: (1) A-cells, self perpetuating precursors with a nuclear volume 80 micron B-cells, nonosteogenic fibroblasts with a nuclear volume of 80-119 micron 3, C-cells, preosteoblasts that are in G1 stage of the cell cycle with a nuclear size of 120-170 micro, and D-cells, preosteoblasts that are in G2 stage of the cell cycle with a nuclear size 170 micro.

  19. The relationship between crustal tectonics and internal evolution in the moon and Mercury

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1977-01-01

    The relationship between crustal tectonics and thermal evolution is discussed in terms of the moon and Mercury. Finite strain theory and depth and temperature-dependent thermal expansion are used to evaluate previous conclusions about early lunar history. Factors bringing about core differentiation in the first 0.6 b.y. of Mercurian evolution are described. The influence of concentrating radioactive heat sources located in Mercury's crust on the predicted contraction is outlined. The predicted planetary volume change is explored with regard to quantitative limits on the extent of Mercurian core solidification. Lunar and Mercurian thermal stresses involved in thermal evolution are reviewed, noting the history of surface volcanism. It is concluded that surface faulting and volcanism are closely associated with the thermal evolution of the whole planetary volume. As the planet cools or is heated, several types of tectonic and volcanic effects may be produced by thermal stress occurring in the lithosphere.

  20. Quantitative proteomic analysis of the Salmonella-lettuce interaction

    PubMed Central

    Zhang, Yuping; Nandakumar, Renu; Bartelt-Hunt, Shannon L; Snow, Daniel D; Hodges, Laurie; Li, Xu

    2014-01-01

    Human pathogens can internalize food crops through root and surface uptake and persist inside crop plants. The goal of the study was to elucidate the global modulation of bacteria and plant protein expression after Salmonella internalizes lettuce. A quantitative proteomic approach was used to analyse the protein expression of Salmonella enterica serovar Infantis and lettuce cultivar Green Salad Bowl 24 h after infiltrating S. Infantis into lettuce leaves. Among the 50 differentially expressed proteins identified by comparing internalized S. Infantis against S. Infantis grown in Luria Broth, proteins involved in glycolysis were down-regulated, while one protein involved in ascorbate uptake was up-regulated. Stress response proteins, especially antioxidant proteins, were up-regulated. The modulation in protein expression suggested that internalized S. Infantis might utilize ascorbate as a carbon source and require multiple stress response proteins to cope with stresses encountered in plants. On the other hand, among the 20 differentially expressed lettuce proteins, proteins involved in defense response to bacteria were up-regulated. Moreover, the secreted effector PipB2 of S. Infantis and R proteins of lettuce were induced after bacterial internalization into lettuce leaves, indicating human pathogen S. Infantis triggered the defense mechanisms of lettuce, which normally responds to plant pathogens. PMID:24512637

  1. Steeply dipping heaving bedrock, Colorado: Part 3 - Environmental controls and heaving processes

    USGS Publications Warehouse

    Noe, D.C.; Higgins, J.D.; Olsen, H.W.

    2007-01-01

    This paper examines the environmental processes and mechanisms that govern differential heaving in steeply dipping claystone bedrock near Denver, Colorado. Three potential heave mechanisms and causal processes were evaluated: (1) rebound expansion, from reduced overburden stress; (2) expansive gypsum-crystal precipitation, from oxidation of pyrite; and (3) swelling of clay minerals, from increased ground moisture. First, we documented the effect of short-term changes in overburden stress, atmospheric exposure, and ground moisture on bedrock at various field sites and in laboratory samples. Second, we documented differential heaving episodes in outcrops and at construction and developed sites. We found that unloading and exposure of the bedrock in construction-cut areas are essentially one-time processes that result in drying and desiccation of the near-surface bedrock, with no visible heaving response. In contrast, wetting produces a distinct swelling response in the claystone strata, and it may occur repeatedly as natural precipitation or from lawn irrigation. We documented 2.5 to 7.5 cm (1 to 3 in.) of differential heaving in 24 hours triggered by sudden infiltration of water at the exposed ground surface in outcrops and at construction sites. From these results, we interpret that rebound and pyrite weathering, both of which figure strongly into the long-term geologic evolution of the geologic framework, do not appear to be major heave mechanisms at these excavation depths. Heaving of the claystone takes two forms: (1) hydration swelling of dipping bentonitic beds or zones, and (2) hydration swelling within bedrock blocks accommodated by lateral, thrust-shear movements, along pre-existing bedding and fracture planes.

  2. Tunable osteogenic differentiation of hMPCs in tubular perfusion system bioreactor.

    PubMed

    Nguyen, Bao-Ngoc B; Ko, Henry; Fisher, John P

    2016-08-01

    The use of bioreactors for bone tissue engineering has been widely investigated. While the benefits of shear stress on osteogenic differentiation are well known, the underlying effects of dynamic culture on subpopulations within a bioreactor are less evident. In this work, we explore the influence of applied flow in the tubular perfusion system (TPS) bioreactor on the osteogenic differentiation of human mesenchymal progenitor cells (hMPCs), specifically analyzing the effects of axial position along the growth chamber. TPS bioreactor experiments conducted with unidirectional flow demonstrated enhanced expression of osteogenic markers in cells cultured downstream from the inlet flow. We utilized computational fluid dynamic modeling to confirm uniform shear stress distribution on the surface of the scaffolds and along the length of the growth chamber. The concept of paracrine signaling between cell populations was validated with the use of alternating flow, which diminished the differences in osteogenic differentiation between cells cultured at the inlet and outlet of the growth chamber. After the addition of controlled release of bone morphogenic protein-2 (BMP-2) into the system, osteogenic differentiation among subpopulations along the growth chamber was augmented, yet remained homogenous. These results allow for greater understanding of axial bioreactor cultures, their microenvironment, and how well-established parameters of osteogenic differentiation affect bone tissue development. With this work, we have demonstrated the capability of tuning osteogenic differentiation of hMPCs through the application of fluid flow and the addition of exogenous growth factors. Such precise control allows for the culture of distinct subpopulation within one dynamic system for the use of complex engineered tissue constructs. Biotechnol. Bioeng. 2016;113: 1805-1813. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Differentiation of Sclerotinia minor depends on thiol redox state and oxidative stress.

    PubMed

    Patsoukis, Nikolaos; Georgiou, Christos D

    2008-01-01

    Sclerotial differentiation in Sclerotinia minor is associated with oxidative stress and thiol redox state. The significance of oxidative stress to sclerotial differentiation was revealed by the higher oxidative stress of S. minor compared with a nonsclerotiogenic counterpart. The effect of thiol redox state on sclerotial differentiation was shown by the antioxidant action of the thiol (-SH) group of N-acetylcysteine and cysteine and by an unknown (not antioxidant) role of glutathione (GSH) on S. minor. The nonantioxidant role of GSH was indicated by the differentiation-inhibiting and differentiation-noninhibiting actions of the GSH biosynthesis inhibitor L-buthionine-S,R-sulfoximine and the GSH biosynthesis inducer L-2-oxo-thiazolidine-4-carboxylate, respectively, and by the increase of oxidative stress they caused during the transition from the undifferentiated to differentiated state of S. minor. Moreover, N-acetylcysteine can be used as a potent nontoxic fungicide against this phytopathogenic fungus by acting as a growth-inhibiting cytotoxic oxidant and by sustaining the fungus in the undifferentiated hyphal stage, which is vulnerable to degradation by soil microorganisms.

  4. Normal-faulting stress state associated with low differential stress in an overriding plate in northeast Japan prior to the 2011 Mw 9.0 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Otsubo, Makoto; Miyakawa, Ayumu; Imanishi, Kazutoshi

    2018-03-01

    Spatial and temporal variations in inland crustal stress prior to the 2011 Mw 9.0 Tohoku earthquake are investigated using focal mechanism solutions for shallow seismicity in Iwaki City, Japan. The multiple inverse method of stress tensor inversion detected two normal-faulting stress states that dominate in different regions. The stress field around Iwaki City changed from a NNW-SSE-trending triaxial extensional stress (stress regime A) to a NW-SE-trending axial tension (stress regime B) between 2005 and 2008. These stress changes may be the result of accumulated extensional stress associated with co- and post-seismic deformation due to the M7 class earthquakes. In this study we suggest that the stress state around Iwaki City prior to the 2011 Tohoku earthquake may have been extensional with a low differential stress. High pore pressure is required to cause earthquakes under such small differential stresses.

  5. Research on friction torque analysis of planetary roller screw mechanism considering load distribution

    NASA Astrophysics Data System (ADS)

    Gan, Fajin; Mao, Pengcheng; Zheng, Shicheng; Li, Guangliang; Xin, Shupeng

    2018-04-01

    Based on the Hertzian contact theory, frictional moment of planetary roller screw mechanism (RSM) caused by elastic hysteresis, roller's spinning sliding, and differential sliding was analyzed, which were considering load distribution of rollers threads. The relationship between friction torque of screw pairs and its input axial load were obtained. Finally, the frictional moment of the screw pairs under the situation overstress will created at some localized contact surfaces were discussed. Results shows that the frictional moment caused by elastic hysteresis gives the greatest rise to the total frictional moment and that due to differential sliding can be ignored. The stress uniformity has great influence on the frictional moment.

  6. A model for the origin of Martian polygonal terrain

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.

    1993-01-01

    Extensive areas of the Martian northern plains in Utopia and Acidalia Planitiae are characterized by 'polygonal terrain.' Polygonal terrain consists of material cut by complex troughs defining a pattern resembling mudcracks, columnar joints, or frost-wedge polygons on the Earth. However, the Martian polygons are orders of magnitude larger than these potential Earth analogs, leading to severe mechanical difficulties for genetic models based on simple analogy arguments. Stratigraphic studies show that the polygonally fractured material in Utopia Planitia was deposited on a land surface with significant topography, including scattered knobs and mesas, fragments of ancient crater rims, and fresh younger craters. Sediments or volcanics deposited over topographically irregular surfaces can experience differential compaction producing drape folds. Bending stresses due to these drape folds would be superposed on the pervasive tensile stresses due to desiccation or cooling, such that the probability of fracturing is enhanced above buried topographic highs and suppressed above buried topographic lows. Thus it was proposed that the scale of the Martian polygons is controlled by the spacing of topographic highs on the buried surface rather than by the physics of the shrinkage process.

  7. Relationship Between Earthquake b-Values and Crustal Stresses in a Young Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Wu, Yih-Min; Chen, Sean Kuanhsiang; Huang, Ting-Chung; Huang, Hsin-Hua; Chao, Wei-An; Koulakov, Ivan

    2018-02-01

    It has been reported that earthquake b-values decrease linearly with the differential stresses in the continental crust and subduction zones. Here we report a regression-derived relation between earthquake b-values and crustal stresses using the Anderson fault parameter (Aϕ) in a young orogenic belt of Taiwan. This regression relation is well established by using a large and complete earthquake catalog for Taiwan. The data set consists of b-values and Aϕ values derived from relocated earthquakes and focal mechanisms, respectively. Our results show that b-values decrease linearly with the Aϕ values at crustal depths with a high correlation coefficient of -0.9. Thus, b-values could be used as stress indicators for orogenic belts. However, the state of stress is relatively well correlated with the surface geological setting with respect to earthquake b-values in Taiwan. Temporal variations in the b-value could constitute one of the main reasons for the spatial heterogeneity of b-values. We therefore suggest that b-values could be highly sensitive to temporal stress variations.

  8. Influence of material ductility and crack surface roughness on fracture instability

    NASA Astrophysics Data System (ADS)

    Khezrzadeh, Hamed; Wnuk, Michael P.; Yavari, Arash

    2011-10-01

    This paper presents a stability analysis for fractal cracks. First, the Westergaard stress functions are proposed for semi-infinite and finite smooth cracks embedded in the stress fields associated with the corresponding self-affine fractal cracks. These new stress functions satisfy all the required boundary conditions and according to Wnuk and Yavari's (2003 Eng. Fract. Mech. 70 1659-74) embedded crack model they are used to derive the stress and displacement fields generated around a fractal crack. These results are then used in conjunction with the final stretch criterion to study the quasi-static stable crack extension, which in ductile materials precedes the global failure. The material resistance curves are determined by solving certain nonlinear differential equations and then employed in predicting the stress levels at the onset of stable crack growth and at the critical point, where a transition to the catastrophic failure occurs. It is shown that the incorporation of the fractal geometry into the crack model, i.e. accounting for the roughness of the crack surfaces, results in (1) higher threshold levels of the material resistance to crack propagation and (2) higher levels of the critical stresses associated with the onset of catastrophic fracture. While the process of quasi-static stable crack growth (SCG) is viewed as a sequence of local instability states, the terminal instability attained at the end of this process is identified with the global instability. The phenomenon of SCG can be used as an early warning sign in fracture detection and prevention.

  9. The Effect of n vs. iso Isomerization on the Thermophysical Properties of Aromatic and Non-aromatic Ionic Liquids.

    PubMed

    Rodrigues, Ana S M C; Almeida, Hugo F D; Freire, Mara G; Lopes-da-Silva, José A; Coutinho, João A P; Santos, Luís M N B F

    2016-09-15

    This work explores the n vs. iso isomerization effects on the physicochemical properties of different families of ionic liquids (ILs) with variable aromaticity and ring size. This study comprises the experimental measurements, in a wide temperature range, of the ILs' thermal behavior, heat capacities, densities, refractive indices, surface tensions, and viscosities. The results here reported show that the presence of the iso -alkyl group leads to an increase of the temperature of the glass transition, T g . The iso- pyrrolidinium (5 atoms ring cation core) and iso -piperidinium (6 atoms ring cation core) ILs present a strong differentiation in the enthalpy and entropy of melting. Non-aromatic ILs have higher molar heat capacities due to the increase of the atomic contribution, whereas it was not found any significant differentiation between the n and iso -alkyl isomers. A small increase of the surface tension was observed for the non-aromatic ILs, which could be related to their higher cohesive energy of the bulk, while the lower surface entropy observed for the iso isomers indicates a structural resemblance between the IL bulk and surface. The significant differentiation between ILs with a 5 and 6 atoms ring cation in the n -alkyl series (where 5 atoms ring cations have higher surface entropy) is an indication of a more efficient arrangement of the non-polar region at the surface in ILs with smaller cation cores. The ILs constituted by non-aromatic piperidinium cation, and iso -alkyl isomers were found to be the most viscous among the studied ILs due to their higher energy barriers for shear stress.

  10. The spatial distribution of earthquake stress rotations following large subduction zone earthquakes

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2017-01-01

    Rotations of the principal stress axes due to great subduction zone earthquakes have been used to infer low differential stress and near-complete stress drop. The spatial distribution of coseismic and postseismic stress rotation as a function of depth and along-strike distance is explored for three recent M ≥ 8.8 subduction megathrust earthquakes. In the down-dip direction, the largest coseismic stress rotations are found just above the Moho depth of the overriding plate. This zone has been identified as hosting large patches of large slip in great earthquakes, based on the lack of high-frequency radiated energy. The large continuous slip patches may facilitate near-complete stress drop. There is seismological evidence for high fluid pressures in the subducted slab around the Moho depth of the overriding plate, suggesting low differential stress levels in this zone due to high fluid pressure, also facilitating stress rotations. The coseismic stress rotations have similar along-strike extent as the mainshock rupture. Postseismic stress rotations tend to occur in the same locations as the coseismic stress rotations, probably due to the very low remaining differential stress following the near-complete coseismic stress drop. The spatial complexity of the observed stress changes suggests that an analytical solution for finding the differential stress from the coseismic stress rotation may be overly simplistic, and that modeling of the full spatial distribution of the mainshock static stress changes is necessary.

  11. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5

    NASA Astrophysics Data System (ADS)

    Buzan, J. R.; Oleson, K.; Huber, M.

    2014-08-01

    We implement and analyze 13 different metrics (4 moist thermodynamic quantities and 9 heat stress metrics) in the Community Land Model (CLM4.5), the land surface component of the Community Earth System Model (CESM). We call these routines the HumanIndexMod. These heat stress metrics embody three philosophical approaches: comfort, physiology, and empirically based algorithms. The metrics are directly connected to CLM4.5 BareGroundFuxesMod, CanopyFluxesMod, SlakeFluxesMod, and UrbanMod modules in order to differentiate between the distinct regimes even within one gridcell. This allows CLM4.5 to calculate the instantaneous heat stress at every model time step, for every land surface type, capturing all aspects of non-linearity in moisture-temperature covariance. Secondary modules for initialization and archiving are modified to generate the metrics as standard output. All of the metrics implemented depend on the covariance of near surface atmospheric variables: temperature, pressure, and humidity. Accurate wet bulb temperatures are critical for quantifying heat stress (used by 5 of the 9 heat stress metrics). Unfortunately, moist thermodynamic calculations for calculating accurate wet bulb temperatures are not in CLM4.5. To remedy this, we incorporated comprehensive water vapor calculations into CLM4.5. The three advantages of adding these metrics to CLM4.5 are (1) improved thermodynamic calculations within climate models, (2) quantifying human heat stress, and (3) that these metrics may be applied to other animals as well as industrial applications. Additionally, an offline version of the HumanIndexMod is available for applications with weather and climate datasets. Examples of such applications are the high temporal resolution CMIP5 archived data, weather and research forecasting models, CLM4.5 flux tower simulations (or other land surface model validation studies), and local weather station data analysis. To demonstrate the capabilities of the HumanIndexMod, we analyze the top 1% of heat stress events from 1901-2010 at a 4 × daily resolution from a global CLM4.5 simulation. We cross compare these events to the input moisture and temperature conditions, and with each metric. Our results show that heat stress may be divided into two regimes: arid and non-arid. The highest heat stress values are in areas with strong convection (±30° latitude). Equatorial regions have low variability in heat stress values (±20° latitude). Arid regions have large variability in extreme heat stress as compared to the low latitudes.

  12. Thermal evolution of a differentiated Ganymede and implications for surface features

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Stevenson, D. J.

    1987-01-01

    Thermodynamic models are developed for the processes which controlled the evolution of the surface Ganymede, an icy Jovian satellite assumed to have a rock-rich core surrounded by a water-ice mantle. Account is taken of a heat pulse which would have arisen from a Rayleigh-Taylor instability at a deep-seated liquid-solid water interface, rapid fracturing from global stresses imposed by warm ice diapiric upwelling, impacts by large meteorites, and resurfacing by ice flows (rather than core formation). Comparisons are made with existing models for the evolution of Callisto, and the difficulties in defining a mechanism which produced the groove terrain of Ganymede are discussed.

  13. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    NASA Astrophysics Data System (ADS)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  14. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  15. Differential impact of the first and second wave of a stress response on subsequent fear conditioning in healthy men.

    PubMed

    Antov, Martin I; Wölk, Christoph; Stockhorst, Ursula

    2013-10-01

    Stress is a process of multiple neuroendocrine changes over time. We examined effects of the first-wave and second-wave stress response on acquisition and immediate extinction of differential fear conditioning, assessed by skin conductance responses. In Experiment 1, we placed acquisition either close to the (second-wave) salivary cortisol peak, induced by a psychosocial stressor (experimental group, EG), or after non-stressful pretreatment (control group, CG). Contrary to predictions, groups did not differ in differential responding. In the EG only, mean differential responding was negatively correlated with cortisol increases. In Experiment 2, we placed conditioning near the first-wave stress response, induced by a cold pressor test (CPT), or after a warm-water condition (CG). CPT-stress increased extinction resistance. Moreover, acquisition performance after CPT was positively correlated with first-wave blood pressure increases. Data suggest that mediators of the first-wave stress response enhance fear maintenance whereas second-wave cortisol responsivity to stress might attenuate fear learning. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Optimal leveling of flow over one-dimensional topography by Marangoni stresses

    NASA Astrophysics Data System (ADS)

    Gramlich, C. M.; Kalliadasis, Serafim; Homsy, G. M.; Messer, C.

    2002-06-01

    A thin viscous film flowing over a step down in topography exhibits a capillary ridge preceding the step. In applications, a planar liquid surface is often desired and hence there is a need to level the ridge. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. The differential equation for the free surface based on lubrication theory and incorporating the effects of topography and temperature gradients is solved numerically for steps down in topography with different temperature profiles. Both rectangular "top-hat" and parabolic profiles, chosen to model physically realizable heaters, were found to be effective in reducing the height of the capillary ridge. Leveling the ridge is formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. With the optimized heaters, the variation in surface height is reduced by more than 50% compared to the original isothermal ridge. For more effective leveling, we consider an asymmetric n-step temperature distribution. The optimal n-step heater in this case results in (n+1) ridges of equal size; 2- and 3-step heaters reduce the variation in surface height by about 70% and 77%, respectively. Finally, we explore the potential of coolers and step temperature profiles for still more effective leveling.

  17. Aging and differentiation in yeast populations: elders with different properties and functions.

    PubMed

    Palková, Zdena; Wilkinson, Derek; Váchová, Libuše

    2014-02-01

    Over the past decade, it has become evident that similarly to cells forming metazoan tissues, yeast cells have the ability to differentiate and form specialized cell types. Examples of yeast cellular differentiation have been identified both in yeast liquid cultures and within multicellular structures occupying solid surfaces. Most current knowledge on different cell types comes from studies of the spatiotemporal internal architecture of colonies developing on various media. With a few exceptions, yeast cell differentiation often concerns nongrowing, stationary-phase cells and leads to the formation of cell subpopulations differing in stress resistance, cell metabolism, respiration, ROS production, and others. These differences can affect longevity of particular subpopulations. In contrast to liquid cultures, where various cell types are dispersed within stationary-phase populations, cellular differentiation depends on the specific position of particular cells within multicellular colonies. Differentiated colonies, thus, resemble primitive multicellular organisms, in which the gradients of certain compounds and the position of cells within the structure affect cellular differentiation. In this review, we summarize and compare the properties of diverse types of differentiated chronologically aging yeast cells that have been identified in colonies growing on different media, as well as of those found in liquid cultures. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Deformation of Reservoir Sandstones by Elastic versus Inelastic Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Pijnenburg, R.; Verberne, B. A.; Hangx, S.; Spiers, C. J.

    2016-12-01

    Hydrocarbon or groundwater production from sandstone reservoirs can result in surface subsidence and induced seismicity. Subsidence results from combined elastic and inelastic compaction of the reservoir due to a change in the effective stress state upon fluid extraction. The magnitude of elastic compaction can be accurately described using poroelasticity theory. However inelastic or time-dependent compaction is poorly constrained. Specifically, the underlying microphysical processes controlling sandstone compaction remain poorly understood. We use sandstones recovered by the field operator (NAM) from the Slochteren gas reservoir (Groningen, NE Netherlands) to study the importance of elastic versus inelastic deformation processes upon simulated pore pressure depletion. We conducted conventional triaxial tests under true in-situ conditions of pressure and temperature. To investigate the effect of applied differential stress (σ1 - σ3 = 0 - 50 MPa) and initial sample porosity (φi = 12 - 24%) on instantaneous and time-dependent inelastic deformation, we imposed multiple stages of axial loading and relaxation. The results show that inelastic strain develops at all stages of loading, and that its magnitude increases with increasing value of differential stress and initial porosity. The stress sensitivity of the axial creep strain rate and microstructural evidence suggest that inelastic compaction is controlled by a combination of intergranular slip and intragranular cracking. Intragranular cracking is shown to be more pervasive with increasing values of initial porosity. The results are consistent with a conceptual microphysical model, involving deformation by poro-elasticity combined with intergranular sliding and grain contact failure. This model aims to predict sandstone deformation behavior for a wide range of stress conditions.

  19. The Flow in a Model Rotating-Wall Bioreactor.

    NASA Astrophysics Data System (ADS)

    Smith, Marc K.; Neitzel, G. Paul

    1997-11-01

    Aggregates of mammalian cells can be grown on artificial polymer constructs in a reactor vessel in order to produce high-quality tissue for medical applications. The growth and differentiation of these cells is greatly affected by the fluid flow and mass transfer within the bioreactor. The surface shear stress on the constructs is an especially important quantity of interest. Here, we consider a bioreactor in the form of two concentric, independently-rotating cylinders with the axis of rotation in a horizontal plane. We shall examine the flow around a model tissue construct in the form of a disk fixed in the flow produced by the rotating walls of the bioreactor. Using CFD techniques, we shall determine the flow field and the surface shear stress distribution on the construct as a function of the wall velocities, the Reynolds number of the flow, and the construct size and position. The results will be compared to the PIV measurements of this system reported by Brown & Neitzel(1997 Meeting of the APS/DFD.).

  20. Results from Alloy 600 And Alloy 690 Caustic SCC Model Boiler Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Frederick D.; Thomas, Larry E.

    2009-08-03

    A versatile model boiler test methodology was developed and used to compare caustic stress corrosion cracking (SCC) of mill annealed Alloy 600 and thermally treated Alloy 690. The model boiler included simulated crevice devices that efficiently and consistently concentrated Na2CO3, resulting in volatilization of CO2 with the steam and concentration of NaOH at the tube surfaces. The test methodology also included variation in tube stress, either produced by the primary to secondary side pressure differential, or by a novel method that reproducibly yields a higher stress condition on the tube. The significant effect of residual stress on tube SCC wasmore » also considered. SCC of both Alloy 600 and Alloy 690 were evaluated as a function of temperature and stress. Analytical transmission electron microscopy (ATEM) evaluations of the cracks and the grain boundaries ahead of the cracks were performed, providing insight into the SCC mechanism. This model boiler test methodology may be applicable to a range of bulkwater secondary chemistries that concentrate to produce aggressive crevice environments.« less

  1. Matrix-assisted energy conversion in nanostructured piezoelectric arrays

    DOEpatents

    Sirbuly, Donald J.; Wang, Xianying; Wang, Yinmin

    2013-01-01

    A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of .about.20 nW/cm.sup.2 with heating temperatures of .about.65.degree. C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.

  2. Dynamo magnetic-field generation in turbulent accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1991-01-01

    Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.

  3. Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles.

    PubMed

    Pokhrel, Lok R; Dubey, Brajesh; Scheuerman, Phillip R

    2013-11-19

    Key understanding of potential transformations that may occur on silver nanoparticle (AgNP) surface upon interaction with naturally ubiquitous organic ligands (e.g., -SH (thoil), humic acid, or -COO (carboxylate)) is limited. Herein we investigated how dissolved organic carbon (DOC), -SH (in cysteine, a well-known Ag(+) chelating agent), and -COO (in trolox, a well-known antioxidant) could alter the colloidal stability, dissolution rate, and toxicity of citrate-functionalized AgNPs (citrate-AgNPs) against a keystone crustacean Daphnia magna. Cysteine, DOC, or trolox amendment of citrate-AgNPs differentially modified particle size, surface properties (charge, plasmonic spectra), and ion release dynamics, thereby attenuating (with cysteine or trolox) or promoting (with DOC) AgNP toxicity. Except with DOC amendment, the combined toxicity of AgNPs and released Ag under cysteine or trolox amendment was lower than of AgNO3 alone. The results of this study show that citrate-AgNP toxicity can be associated with oxidative stress, ion release, and the organism biology. Our evidence suggests that specific organic ligands available in the receiving waters can differentially surface modify AgNPs and alter their environmental persistence (changing dissolution dynamics) and subsequently the toxicity; hence, we caveat to generalize that surface modified nanoparticles upon environmental release may not be toxic to receptor organisms.

  4. Characterization and Application of a Disposable Rotating Bed Bioreactor for Mesenchymal Stem Cell Expansion.

    PubMed

    Neumann, Anne; Lavrentieva, Antonina; Heilkenbrinker, Alexandra; Loenne, Maren; Kasper, Cornelia

    2014-11-27

    Recruitment of mesenchymal stromal cells (MSC) into the field of tissue engineering is a promising development since these cells can be expanded vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into various cell lineages. Safety requirements and the necessity to obtain high cell numbers without frequent subcultivation of cells raised the question of the possibility of expanding MSC in one-way (single-use) disposable bioreactors. In this study, umbilical cord-derived MSC (UC-MSC) were expanded in a disposable Z 2000 H bioreactor under dynamic conditions. Z was characterized regarding residence time and mixing in order to evaluate the optimal bioreactor settings, enabling optimal mass transfer in the absence of shear stress, allowing an reproducible expansion of MSC, while maintaining their stemness properties. Culture of the UC-MSC in disposable Z 2000 H bioreactor resulted in a reproducible 8-fold increase of cell numbers after 5 days. Cells were shown to maintain specific MSC surface marker expression as well as trilineage differentiation potential and lack stress-induced premature senescence.

  5. High density electronic circuit and process for making

    DOEpatents

    Morgan, William P.

    1999-01-01

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing.

  6. Acute hypoxia stress induced abundant differential expression genes and alternative splicing events in heart of tilapia.

    PubMed

    Xia, Jun Hong; Li, Hong Lian; Li, Bi Jun; Gu, Xiao Hui; Lin, Hao Ran

    2018-01-10

    Hypoxia is one of the critical environmental stressors for fish in aquatic environments. Although accumulating evidences indicate that gene expression is regulated by hypoxia stress in fish, how genes undergoing differential gene expression and/or alternative splicing (AS) in response to hypoxia stress in heart are not well understood. Using RNA-seq, we surveyed and detected 289 differential expressed genes (DEG) and 103 genes that undergo differential usage of exons and splice junctions events (DUES) in heart of a hypoxia tolerant fish, Nile tilapia, Oreochromis niloticus following 12h hypoxic treatment. The spatio-temporal expression analysis validated the significant association of differential exon usages in two randomly selected DUES genes (fam162a and ndrg2) in 5 tissues (heart, liver, brain, gill and spleen) sampled at three time points (6h, 12h, and 24h) under acute hypoxia treatment. Functional analysis significantly associated the differential expressed genes with the categories related to energy conservation, protein synthesis and immune response. Different enrichment categories were found between the DEG and DUES dataset. The Isomerase activity, Oxidoreductase activity, Glycolysis and Oxidative stress process were significantly enriched for the DEG gene dataset, but the Structural constituent of ribosome and Structural molecule activity, Ribosomal protein and RNA binding protein were significantly enriched only for the DUES genes. Our comparative transcriptomic analysis reveals abundant stress responsive genes and their differential regulation function in the heart tissues of Nile tilapia under acute hypoxia stress. Our findings will facilitate future investigation on transcriptome complexity and AS regulation during hypoxia stress in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mountain building on Io driven by deep faulting

    USGS Publications Warehouse

    Bland, Michael T.; McKinnon, William B

    2016-01-01

    Jupiter’s volcanic moon Io possesses some of the highest relief in the Solar System: massive, isolated mountain blocks that tower up to 17 km above the surrounding plains. These mountains are likely to result from pervasive compressive stresses induced by subsidence of the surface beneath the near-continual emplacement of volcanic material. The stress state that results from subsidence and warming of Io’s lithosphere has been investigated in detail1, 2, 3, 4; however, the mechanism of orogenesis itself and its effect on regional tectonism and volcanism has not been firmly established. Here we present viscoelastic–plastic finite element simulations demonstrating that Io’s mountains form along deep-seated thrust faults that initiate at the base of the lithosphere and propagate upward. We show that faulting fundamentally alters the stress state of Io’s lithosphere by relieving the large volcanism-induced subsidence stresses. Notably, in the upper portion of the lithosphere, stresses become tensile (near-zero differential stress). A number of processes are therefore altered post-faulting, including magma transport through the lithosphere, interactions with tidal stresses and potentially the localization of mountain formation by thermoelastic stresses. We conclude that Io’s mountains form by a unique orogenic mechanism, compared with tectonic processes operating elsewhere in the Solar System.

  8. De novo transcriptome assembly and analysis of differential gene expression in response to drought in European beech

    PubMed Central

    Seifert, Sarah; Lübbe, Torben; Leuschner, Christoph; Finkeldey, Reiner

    2017-01-01

    Despite the ecological and economic importance of European beech (Fagus sylvatica L.) genomic resources of this species are still limited. This hampers an understanding of the molecular basis of adaptation to stress. Since beech will most likely be threatened by the consequences of climate change, an understanding of adaptive processes to climate change-related drought stress is of major importance. Here, we used RNA-seq to provide the first drought stress-related transcriptome of beech. In a drought stress trial with beech saplings, 50 samples were taken for RNA extraction at five points in time during a soil desiccation experiment. De novo transcriptome assembly and analysis of differential gene expression revealed 44,335 contigs, and 662 differentially expressed genes between the stress and normally watered control group. Gene expression was specific to the different time points, and only five genes were significantly differentially expressed between the stress and control group on all five sampling days. GO term enrichment showed that mostly genes involved in lipid- and homeostasis-related processes were upregulated, whereas genes involved in oxidative stress response were downregulated in the stressed seedlings. This study gives first insights into the genomic drought stress response of European beech, and provides new genetic resources for adaptation research in this species. PMID:28873454

  9. Human neuroblastoma SH-SY5Y cells show increased resistance to hyperthermic stress after differentiation, associated with elevated levels of Hsp72.

    PubMed

    Cheng, Lesley; Smith, Danielle J; Anderson, Robin L; Nagley, Phillip

    2011-01-01

    Terminally differentiated neurones in the central nervous system need to be protected from stress. We ask here whether differentiation of progenitor cells to neurones is accompanied by up-regulation of Hsp72, with acquisition of enhanced thermotolerance. Human neuroblastoma SH-SY5Y cells were propagated in an undifferentiated form and subsequently differentiated into neurone-like cells. Thermotolerance tests were carried out by exposure of cells to various temperatures, monitoring nuclear morphology as index of cell death. Abundance of Hsp72 was measured in cell lysates by western immunoblotting. The differentiation of SH-SY5Y cells was accompanied by increased expression of Hsp72. Further, in both cell states, exposure to mild hyperthermic stress (43°C for 30 min) increased Hsp72 expression. After differentiation, SH-SY5Y cells were more resistant to hyperthermic stress compared to their undifferentiated state, correlating with levels of Hsp72. Stable exogenous expression of Hsp72 in SH-SY5Y cells (transfected line 5YHSP72.1, containing mildly elevated levels of Hsp72), led to enhanced resistance to hyperthermic stress. Hsp72 was found to be inducible in undifferentiated 5YHSP72.1 cells; such heat-treated cells displayed enhanced thermotolerance. Treatment of cells with KNK437, a suppressor of Hsp72 induction, resulted in acute thermosensitisation of all cell types tested here. Hsp72 has a major role in the enhanced hyperthermic resistance acquired during neuronal differentiation of SH-SY5Y cells. These findings model the requirement in intact organisms for highly differentiated neurones to be specially protected against thermal stress.

  10. Effects of stress on heart rate complexity—A comparison between short-term and chronic stress

    PubMed Central

    Schubert, C.; Lambertz, M.; Nelesen, R.A.; Bardwell, W.; Choi, J.-B.; Dimsdale, J.E.

    2009-01-01

    This study examined chronic and short-term stress effects on heart rate variability (HRV), comparing time, frequency and phase domain (complexity) measures in 50 healthy adults. The hassles frequency subscale of the combined hassles and uplifts scale (CHUS) was used to measure chronic stress. Short-term stressor reactivity was assessed with a speech task. HRV measures were determined via surface electrocardiogram (ECG). Because respiration rate decreased during the speech task (p < .001), this study assessed the influence of respiration rate changes on the effects of interest. A series of repeated-measures analyses of covariance (ANCOVA) with Bonferroni adjustment revealed that short-term stress decreased HR D2 (calculated via the pointwise correlation dimension PD2) (p < .001), but increased HR mean (p < .001), standard deviation of R–R (SDRR) intervals (p < .001), low (LF) (p < .001) and high frequency band power (HF) (p = .009). Respiratory sinus arrhythmia (RSA) and LF/HF ratio did not change under short-term stress. Partial correlation adjusting for respiration rate showed that HR D2 was associated with chronic stress (r = −.35, p = .019). Differential effects of chronic and short-term stress were observed on several HRV measures. HR D2 decreased under both stress conditions reflecting lowered functionality of the cardiac pacemaker. The results confirm the importance of complexity metrics in modern stress research on HRV. PMID:19100813

  11. Effects of stress on heart rate complexity--a comparison between short-term and chronic stress.

    PubMed

    Schubert, C; Lambertz, M; Nelesen, R A; Bardwell, W; Choi, J-B; Dimsdale, J E

    2009-03-01

    This study examined chronic and short-term stress effects on heart rate variability (HRV), comparing time, frequency and phase domain (complexity) measures in 50 healthy adults. The hassles frequency subscale of the combined hassles and uplifts scale (CHUS) was used to measure chronic stress. Short-term stressor reactivity was assessed with a speech task. HRV measures were determined via surface electrocardiogram (ECG). Because respiration rate decreased during the speech task (p<.001), this study assessed the influence of respiration rate changes on the effects of interest. A series of repeated-measures analyses of covariance (ANCOVA) with Bonferroni adjustment revealed that short-term stress decreased HR D2 (calculated via the pointwise correlation dimension PD2) (p<.001), but increased HR mean (p<.001), standard deviation of R-R (SDRR) intervals (p<.001), low (LF) (p<.001) and high frequency band power (HF) (p=.009). Respiratory sinus arrhythmia (RSA) and LF/HF ratio did not change under short-term stress. Partial correlation adjusting for respiration rate showed that HR D2 was associated with chronic stress (r=-.35, p=.019). Differential effects of chronic and short-term stress were observed on several HRV measures. HR D2 decreased under both stress conditions reflecting lowered functionality of the cardiac pacemaker. The results confirm the importance of complexity metrics in modern stress research on HRV.

  12. Changes in crack shape and saturation during water penetration into stressed rock

    NASA Astrophysics Data System (ADS)

    Masuda, K.; Nishizawa, O.

    2012-12-01

    Open cracks and cavities in rocks play important roles in fluid transport. Water penetration induced microcrack activities and caused the failure of rocks. Fluids in cracks affect earthquake generation mechanism through physical and physicochemical effects. Methods of characterizing crack shape and water saturation of rocks underground are needed for many scientific and industrial applications. It would be desirable to estimate the status of cracks using readily observable data such as elastic-wave velocities. We demonstrate a laboratory method for estimating crack status inside a cylindrical rock sample based on least-squares fitting of a cracked solid model to measured P- and S-wave velocities, and porosity derived from strain data. We used a cylinder (50 mm in diameter and 100 mm in length) of medium-grained granite. We applied a differential stress of 370 MPa, which corresponds to about 70% of fracture strength, to the rock sample under 30 MPa confining pressure and held it constant throughout the experiment. When the primary creep stage and acoustic emission (AE) caused by the initial loading had ceased, we injected distilled water into the bottom end of the sample at a constant pressure of 25 MPa until macroscopic fracture occurred. During water migration, we measured P waves and S waves (Sv and Sh), in five directions parallel to the top and bottom surfaces of the sample. We also measured strains of the sample surface and monitored AE. We created X-ray computer tomography (CT) images of the rock sample after the experiment in order to recognize the location and shape of fractured surfaces. We observed the different patterns of velocity changes in the upper and lower portions of the rock sample. Changes in P-wave velocities can be interpreted based on the crack density. S-waves showed the splitting with Vsv being faster than Vsh, corresponding to the second kind of anisotropy. We estimated two crack characteristics, crack shape and the degree of water saturation, and their changes during the loading and water migration into a granitic rock subjected to confining pressure and differential stress. We found that during injection of water to induce failure of a stressed rock sample, the aspect ratio of cracks increased and the degree of water saturation increased to about 70%. Laboratory derived method can be applicable for the well-planned observation in the field experiments. Monitoring in situ crack situations with seismic waves are useful for industrial and scientific applications such as sequestrations of carbon dioxide and waste, and measuring the regional stress field.

  13. Isolation of stress responsive Psb A gene from rice (Oryza sativa l.) using differential display.

    PubMed

    Tyagi, Aruna; Chandra, Arti

    2006-08-01

    Differential display (DD) experiments were performed on drought-tolerant rice (Oryza sativa L.) genotype N22 to identify both upregulated and downregulated partial cDNAs with respect to moisture stress. DNA polymorphism was detected between drought-stressed and control leaf tissues on the DD gels. A partial cDNA showing differential expression, with respect to moisture stress was isolated from the gel. Northern blotting analysis was performed using this cDNA as a probe and it was observed that mRNA corresponding to this transcript was accumulated to high level in rice leaves under water deficit stress. At the DNA sequence level, the partial cDNA showed homology with psb A gene encoding for Dl protein.

  14. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress

    PubMed Central

    Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C.; van Wingen, Guido A.; Fernández, Guillén

    2016-01-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus–pituitary–adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. PMID:26668010

  15. Blastocyst-Derived Stem Cell Populations under Stress: Impact of Nutrition and Metabolism on Stem Cell Potency Loss and Miscarriage.

    PubMed

    Yang, Yu; Bolnick, Alan; Shamir, Alexandra; Abdulhasan, Mohammed; Li, Quanwen; Parker, G C; Puscheck, Elizabeth E; Rappolee, D A

    2017-08-01

    Data from in vitro and in vivo models suggest that malnutrition and stress trigger adaptive responses, leading to small for gestational age (SGA) blastocysts with fewer cell numbers. These stress responses are initially adaptive, but become maladaptive with increasing stress exposures. The common stress responses of the blastocyst-derived stem cells, pluripotent embryonic and multipotent placental trophoblast stem cells (ESCs and TSCs), are decreased growth and potency, and increased, imbalanced and irreversible differentiation. SGA embryos may fail to produce sufficient antiluteolytic placental hormone to maintain corpus luteum progesterone secretion that provides nutrition at the implantation site. Myriad stress inputs for the stem cells in the embryo can occur in vitro during in vitro fertilization/assisted reproductive technology (IVF/ART) or in vivo. Paradoxically, stresses that diminish stem cell growth lead to a higher level of differentiation simultaneously which further decreases ESC or TSC numbers in an attempt to functionally compensate for fewer cells. In addition, prolonged or strong stress can cause irreversible differentiation. Resultant stem cell depletion is proposed as a cause of miscarriage via a "quiet" death of an ostensibly adaptive response of stem cells instead of a reactive, violent loss of stem cells or their differentiated progenies.

  16. Gene expression profiling data of Schizosaccharomyces pombe under nitrosative stress using differential display.

    PubMed

    Biswas, Pranjal; Majumdar, Uddalak; Ghosh, Sanjay

    2016-03-01

    Excess production of nitric oxide (NO) and reactive nitrogen intermediates (RNIs) causes nitrosative stress on cells. Schizosaccharomyces pombe was used as a model to study nitrosative stress response. In the present data article, we have used differential display to identify the differentially expressed genes in the fission yeast under nitrosative stress conditions. We have used pure NO donor compound detaNONOate at final concentrations of 0.1 mM and 1 mM to treat the cells for 15 min alongside control before studying their gene expression profiles. At both the treated conditions, we identified genes which were commonly repressed while several genes were induced upon both 0.1 mM and 1 mM treatments. The differentially expressed genes were further analyzed in DAVID and categorized into several different pathways.

  17. A Microfluidic-Based Multi-Shear Device for Investigating the Effects of Low Fluid-Induced Stresses on Osteoblasts

    PubMed Central

    Yu, Weiliang; Qu, Hong; Hu, Guoqing; Zhang, Qian; Song, Kui; Guan, Haijie; Liu, Tingjiao; Qin, Jianhua

    2014-01-01

    Interstitial fluid flow (IFF) within the extracellular matrix (ECM) produces low magnitude shear stresses on cells. Fluid flow-induced stress (FSS) plays an important role during tissue morphogenesis. To investigate the effect of low FSS generated by IFF on cells, we developed a microfluidic-based cell culture device that can generate multiple low shear stresses. By changing the length and width of the flow-in channels, different continuous low level shear stresses could be generated in individual cell culture chambers. Numerical calculations demonstrate uniform shear stress distributions of the major cell culture area of each chamber. This calculation is further confirmed by the wall shear stress curves. The effects of low FSS on MC3T3-E1 proliferation and differentiation were studied using this device. It was found that FSS ranging from 1.5 to 52.6 µPa promoted MC3T3-E1 proliferation and differentiation, but FSS over 412 µPa inhibited the proliferation and differentiation of MC3T3-E1 cells. FSS ranging from 1.5 to 52.6 µPa also increased the expression of Runx2, a key transcription factor regulating osteoblast differentiation. It is suggested that Runx2 might be an important regulator in low FSS-induced MC3T3-E1 differentiation. This device allows for detailed study of the effect of low FSS on the behaviors of cells; thus, it would be a useful tool for analysis of the effects of IFF-induced shear stresses on cells. PMID:24587156

  18. Differential Effectiveness of Coping in Managing Stress and Burnout in Oncology Nurses.

    ERIC Educational Resources Information Center

    Rounds, James B., Jr.; Zevon, Michael A.

    High levels of stress experienced by primary care oncology nursing staff, and the competency impairment which results from such stress, has become a matter of much concern in health care settings. This study was conducted to identify the coping strategies employed by oncology nurses, and to relate these strategies to differential indices of stress…

  19. Differential continuum damage mechanics models for creep and fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1991-01-01

    Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.

  20. Differences in gas exchange contribute to habitat differentiation in Iberian columbines from contrasting light and water environments.

    PubMed

    Jaime, R; Serichol, C; Alcántara, J M; Rey, P J

    2014-03-01

    During photosynthesis, respiration and transpiration, gas exchange occurs via the stomata and so plants face a trade-off between maximising photosynthesis while minimising transpiration (expressed as water use efficiency, WUE). The ability to cope with this trade-off and regulate photosynthetic rate and stomatal conductance may be related to niche differentiation between closely related species. The present study explored this as a possible mechanism for habitat differentiation in Iberian columbines. The roles of irradiance and water stress were assessed to determine niche differentiation among Iberian columbines via distinct gas exchange processes. Photosynthesis-irradiance curves (P-I curves) were obtained for four taxa, and common garden experiments were conducted to examine plant responses to water and irradiance stress, by measuring instantaneous gas exchange and plant performance. Gas exchange was also measured in ten individuals using two to four field populations per taxon. The taxa had different P-I curves and gas exchange in the field. At the species level, water stress and irradiance explained habitat differentiation. Within each species, a combination of irradiance and water stress explained the between-subspecies habitat differentiation. Despite differences in stomatal conductance and CO2 assimilation, taxa did not have different WUE under field conditions, which suggests that the environment equally modifies photosynthesis and transpiration. The P-I curves, gas exchange in the field and plant responses to experimental water and irradiance stresses support the hypothesis that habitat differentiation is associated with differences among taxa in tolerance to abiotic stress mediated by distinct gas exchange responses. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Comparative Immune- and Stress-Related Transcript Response Induced by Air Exposure and Vibrio anguillarum Bacterin in Rainbow Trout (Oncorhynchus mykiss) and Gilthead Seabream (Sparus aurata) Mucosal Surfaces

    PubMed Central

    Khansari, Ali Reza; Balasch, Joan Carles; Vallejos-Vidal, Eva; Parra, David; Reyes-López, Felipe E.; Tort, Lluís

    2018-01-01

    Fish have to face various environmental challenges that may compromise the efficacy of the immune response in mucosal surfaces. Since the effect of acute stress on mucosal barriers in fish has still not been fully elucidated, we aimed to compare the short-term mucosal stress and immune transcriptomic responses in a freshwater (rainbow trout, Oncorhynchus mykiss) and a marine fish (gilthead seabream, Sparus aurata) to bacterial immersion (Vibrio anguillarum bacterin vaccine) and air exposure stress in skin, gills, and intestine. Air exposure and combined (vaccine + air) stressors exposure were found to be inducers of the cortisol secretion in plasma and skin mucus on both species in a time-dependent manner, while V. anguillarum bacterin exposure induced cortisol release in trout skin mucus only. This was coincident with a marked differential increase in transcriptomic patterns of stress- and immune-related gene expression profiles. Particularly in seabream skin, the expression of cytokines was markedly enhanced, whereas in gills the response was mainly suppressed. In rainbow trout gut, both air exposure and vaccine stimulated the transcriptomic response, whereas in seabream, stress and immune responses were mainly induced by air exposure. Therefore, our comparative survey on the transcriptomic mucosal responses demonstrates that skin and gut were generally more reactive in both species. However, the upregulation of immune transcripts was more pronounced in gills and gut of vaccinated trout, whereas seabream appeared to be more stress-prone and less responsive to V. anguillarum bacterin in gills and gut. When fish were subjected to both treatments no definite pattern was observed. Overall, the results indicate that (1) the immune response was not homogeneous among mucosae (2), it was greatly influenced by the specific traits of each stressor in each surface and (3) was highly species-specific, probably as a result of the adaptive life story of each species to the microbial load and environmental characteristics of their respective natural habitats. PMID:29770134

  2. Isothiocyanate from Moringa oleifera seeds mitigates hydrogen peroxide-induced cytotoxicity and preserved morphological features of human neuronal cells

    PubMed Central

    Shaari, Khozirah; Rosli, Rozita

    2018-01-01

    Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC) or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA) induced differentiated neuroblastoma cells (SHSY5Y) via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases. PMID:29723199

  3. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  4. Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  5. Isothiocyanate from Moringa oleifera seeds mitigates hydrogen peroxide-induced cytotoxicity and preserved morphological features of human neuronal cells.

    PubMed

    Jaafaru, Mohammed Sani; Nordin, Norshariza; Shaari, Khozirah; Rosli, Rozita; Abdull Razis, Ahmad Faizal

    2018-01-01

    Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC) or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA) induced differentiated neuroblastoma cells (SHSY5Y) via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases.

  6. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.).

    PubMed

    Jayaraman, Ananthi; Puranik, Swati; Rai, Neeraj Kumar; Vidapu, Sudhakar; Sahu, Pranav Pankaj; Lata, Charu; Prasad, Manoj

    2008-11-01

    Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.

  7. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress.

    PubMed

    Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén

    2016-04-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Three-dimensional coupled thermoelastodynamic stress and flux induced wave propagation for isotropic half-space with scalar potential functions

    NASA Astrophysics Data System (ADS)

    Hayati, Yazdan; Eskandari-Ghadi, Morteza

    2018-02-01

    An asymmetric three-dimensional thermoelastodynamic wave propagation with scalar potential functions is presented for an isotropic half-space, in such a way that the wave may be originated from an arbitrary either traction or heat flux applied on a patch at the free surface of the half-space. The displacements, stresses and temperature are presented within the framework of Biot's coupled thermoelasticity formulations. By employing a complete representation for the displacement and temperature fields in terms of two scalar potential functions, the governing equations of coupled thermoelasticity are uncoupled into a sixth- and a second-order partial differential equation in cylindrical coordinate system. By virtue of Fourier expansion and Hankel integral transforms, the angular and radial variables are suppressed respectively, and a 6{th}- and a 2{nd}-order ordinary differential equation in terms of depth are received, which are solved readily, from which the displacement, stresses and temperature fields are derived in transformed space by satisfying both the regularity and boundary conditions. By applying the inverse Hankel integral transforms, the displacements and temperature are numerically evaluated to determine the solutions in the real space. The numerical evaluations are done for three specific cases of vertical and horizontal time-harmonic patch traction and a constant heat flux passing through a circular disc on the surface of the half-space. It has been previously proved that the potential functions used in this paper are applicable from elastostatics to thermoelastodynamics. Thus, the analytical solutions presented in this paper are verified by comparing the results of this study with two specific problems reported in the literature, which are an elastodynamic problem and an axisymmetric quasi-static thermoelastic problem. To show the accuracy of numerical results, the solution of this study is also compared with the solution for elastodynamics exists in the literature for surface excitation, where a very good agreement is achieved. The formulations presented in this study may be used as benchmark for other related researches and it may be implemented in the related boundary integral equations.

  9. Longitudinal Course and Correlates of Parents' Differential Treatment of Siblings in Mexican-Origin Families.

    PubMed

    Padilla, Jenny; McHale, Susan M; Rodríguez De Jesús, Sue A; Updegraff, Kimberly A; Umaña-Taylor, Adriana J

    2017-11-02

    Parents' differential treatment (PDT) is a common family dynamic that has been linked to youth development and well-being, including adjustment problems and poor sibling relationships. Much less is known, however, about the developmental course of PDT and the conditions under which parents treat their children differently in adolescence and young adulthood. This study examined longitudinal changes in mothers' and fathers' differential warmth and conflict with their two offspring from early adolescence through young adulthood and examined parents' experiences of individual stress (depressive symptoms and role overload) and marital difficulties as time-varying correlates of (changes in) PDT. We also tested crossover effects to determine whether mothers' experiences of individual stress and marital difficulties were linked to fathers' differential treatment, and vice versa. Participants were mothers, fathers, and two siblings from 246 Mexican-origin families who were interviewed in their homes on three occasions over 8 years. Multilevel models revealed that mothers' and fathers' differential conflict with their two children increased until middle adolescence and then declined into young adulthood, but there were no changes over time for parents' differential warmth. In general, both mothers' and fathers' levels of differential treatment were exacerbated by their own experiences of individual stress and marital difficulties and also by the experiences of their spouses. However, in some cases, greater stress than usual was linked to less differential treatment than usual. © 2017 Family Process Institute.

  10. Gene expression profiling in the hippocampus of learned helpless and nonhelpless rats.

    PubMed

    Kohen, R; Kirov, S; Navaja, G P; Happe, H Kevin; Hamblin, M W; Snoddy, J R; Neumaier, J F; Petty, F

    2005-01-01

    In the learned helplessness (LH) animal model of depression, failure to attempt escape from avoidable environmental stress, LH, indicates behavioral despair, whereas nonhelpless (NH) behavior reflects behavioral resilience to the effects of environmental stress. Comparing hippocampal gene expression with large-scale oligonucleotide microarrays, we found that stress-resilient (NH) rats, although behaviorally indistinguishable from controls, showed a distinct gene expression profile compared to LH, sham stressed, and naïve control animals. Genes that were confirmed as differentially expressed in the NH group by quantitative PCR strongly correlated in their levels of expression across all four animal groups. Differential expression could not be confirmed at the protein level. We identified several shared degenerate sequence motifs in the 3' untranslated region (3'UTR) of differentially expressed genes that could be a factor in this tight correlation of expression levels among differentially expressed genes.

  11. Physical biology of human brain development.

    PubMed

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  12. Comparative Transcriptome Analysis of Desulfovibrio Vulgaris Grown in Planktonic Culture and Mature Biofilm on a Steel Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weiwen; Culley, David E.; Nie, Lei

    2007-08-01

    The build-up of biofilms of sulphate -reducing bacteria (SRB) on metals surfaces may lead to severe corrosion of iron. To understand the processes at molecular level, in this study, a whole-genome oligonucleotide microarray was used to examine differential expression patterns between planktonic populations and mature biofilm of model SRB species Desulfovibrio vulgaris. Statistical analysis revealed that 472 genes were differentially expressed (1.5 fold or more with a p value less than 0.025) when comparing biofilm to planktonic cells. Among the differentially expressed genes were several that corresponded to biofilm formation genes identified in many aerobic bacterial biofilms (i.e., Pseudomonas speciesmore » and Escherichia coli), such as down-regulation of genes encoding flagellin, flagellar motor switch protein and chemotaxis proteins involved in cell motility and induction of genes encoding sugar transferase and glycogen synthase involved in exopolysaccharide biosynthesis. In addition, D. vulgaris biofilm-bound cells exhibited decreased transcription of genes involved in protein synthesis, energy metabolism and sulfate reduction, as well as genes involved in general stress responses. These findings were all consistent with early suggestion that the average physiology of biofilm cells were similar to planktonic cells of stationary phases. Most notably, up-regulation of large number of outer membrane proteins was observed in D. vulgaris biofilm. Although their function is still unknown, the higher expression of these genes in D. vulgaris biofilm could implicate important roles formation and maintenance of multi-cellular consortium on metal surface. The study provided insights into the metabolic networks associated with D. vulgaris biofilm formation and maintenance on an iron surface.« less

  13. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    DOE PAGES

    Guo, Y.; Collins, D. M.; Tarleton, E.; ...

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished throughmore » the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.« less

  14. Multi-Scale Drought Analysis using Thermal Remote Sensing: A Case Study in Georgia’s Altamaha River Watershed

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Bhat, S.; Choi, M.; Mecikalski, J. R.; Anderson, M. C.

    2009-12-01

    The unprecedented recent droughts in the Southeast US caused reservoir levels to drop dangerously low, elevated wildfire hazard risks, reduced hydropower generation and caused severe economic hardships. Most drought indices are based on recent rainfall or changes in vegetation condition. However in heterogeneous landscapes, soils and vegetation (type and cover) combine to differentially stress regions even under similar weather conditions. This is particularly true for the heterogeneous landscapes and highly variable rainfall in the Southeastern United States. This research examines the spatiotemperal evolution of watershed scale drought using a remotely sensed stress index. Using thermal-infrared imagery, a fully automated inverse model of Atmosphere-Land Exchange (ALEXI), GIS datasets and analysis tools, modeled daily surface moisture stress is examined at a 10-km resolution grid covering central to southern Georgia. Regional results are presented for the 2000-2008 period. The ALEXI evaporative stress index (ESI) is compared to existing regional drought products and validated using local hydrologic measurements in Georgia’s Altamaha River watershed at scales from 10 to 10,000 km2.

  15. MicroCantilever (MC) based nanomechanical sensor for detection of molecular interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Kyung

    Specific aims of this study are to investigate the mechanism governing surface stress generation associated with chemical or molecular binding on functionalized microcantilevers. Formation of affinity complexes on cantilever surfaces leads to charge redistribution, configurational change and steric hindrance between neighboring molecules resulting in surface stress change and measureable cantilever deformation. A novel interferometry technique employing two adjacent micromachined cantilevers (a sensing/reference pair) was utilized to measure the cantilever deformation. The sensing principle is that binding/reaction of specific chemical or biological species on the sensing cantilever transduces to mechanical deformation. The differential bending of the sensing cantilever respect to themore » reference cantilever ensures that measured response is insensitive to environmental disturbances. As a proof of principle for the measurement technique, surface stress changes associated with: self-assembly of alkanethiol, hybridization of ssDNA, and the formation of cocaine-aptamer complexes were measured. Dissociation constant (K d) for each molecular reaction was utilized to estimate the surface coverage of affinity complexes. In the cases of DNA hybridization and cocaine-aptamer binding, measured surface stress was found to be dependent on the surface coverage of the affinity complexes. In order to achieve a better sensitivity for DNA hybridization, immobilization of receptor molecules was modified to enhance the deformation of underlying surface. Single-stranded DNA (ssDNA) strands with thiol-modification on both 3-foot and 5-foot ends were immobilized on the gold surface such that both ends are attached to the gold surface. Immobilization condition was controlled to obtain similar receptor density as single-thiolated DNA strands. Hybridization of double-thiolated DNA strands leads to an almost two orders of magnitude increase in cantilever deformation. In both DNA hybridization and the conventional mode for cocaine detection, the lowest detectable concentration was determined by binding activity between the ligand and receptor molecules. In order to overcome this limitation for cocaine detection, a novel competition sensing mode that relies on rate of aptamers unbinding from the cantilever due to either diffusion or reaction with cocaine as target ligands in solution was investigated. The rate of unbinding is found to be dependent on the concentration of cocaine molecules. A model based on diffusion-reaction equation was developed to explain the experimental observation. Experimental results indicate that the competition mode reduces the lowest detectable threshold to 200 nM which is comparable to that achieved analytical techniques such as mass spectrometry.« less

  16. Cellular stress associated with the differentiation of Plasmodium berghei ookinetes.

    PubMed

    Duran-Bedolla, Josefina; Téllez-Sosa, Juan; Valdovinos-Torres, Humberto; Pavón, Natalia; Buelna-Chontal, Mabel; Tello-López, Angel T; Argotte-Ramos, Rocio; Rodríguez, Mario Henry; Rodríguez, María Carmen

    2017-04-01

    For malaria transmission, Plasmodium parasites must develop in the mosquito vector. Oxidative stress in the insect midgut, triggered by environmental changes (e.g., pH and temperature), influences the cellular signaling involved in differentiation from gametocytes to mobile ookinetes for the purpose of parasite survival. Oxidative stress activates the homeostatic response to stress characterized by the phosphorylation eIF2α, the attenuation of protein synthesis, and the transcription of genes participating in the unfolded protein response and antioxidant processes, forming a part of an integrated stress response (ISR). We hypothesized that ISR operates during the differentiation of gametocytes to ookinetes to assure Plasmodium survival. Using in-vitro conditions resembling the mosquito midgut conditions, we cultured Plasmodium berghei gametocytes to ookinetes and evaluated the redox balance by detecting reactive oxygen species and superoxide dismutase activity. Additionally, we evaluated the phosphorylation of eIF2α, the attenuation of the global protein synthesis, and the gene expression of cellular stress markers (e.g., endoplasmic reticulum chaperones and antioxidant molecules, measured by reverse-transcription quantitative polymerase chain reaction), finding that these processes were all taking place, probably to improve survival during the differentiation of Plasmodium berghei ookinetes.

  17. High density electronic circuit and process for making

    DOEpatents

    Morgan, W.P.

    1999-06-29

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

  18. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    PubMed Central

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  19. Streambed Mobility and Dispersal of Aquatic Insect Larvae: Results from a Laboratory Study.

    NASA Astrophysics Data System (ADS)

    Kenworthy, S. T.

    2002-12-01

    Three series of flume experiments were conducted to quantify relationships between entrainment of surface layer gravels and displacement of benthic insect larvae. One series (B) utilized a sediment mixture with a median size 6.9 mm, maximum size 45 mm, and 10% < 2mm. Two other series examined the effects of locally coarsening the bed surface (Bc) and increasing the < 2mm fraction to 20% (S). Aquatic insect larvae were collected in the field and placed in an upstream segment of the flume bed. Flow rate, flume slope, and sediment transport rate were varied systematically among experiments. Displaced larvae were collected in a net at the end of the flume. The distribution of larvae remaining in the bed was obtained by sorting larvae from the sediment in 25 channel segments. Flow rate and mean boundary shear stress varied among runs by factors of 1.2 and 2.4 respectively. Proportional entrainment of >11mm surface grains ranged from <0.05 to >0.90. Displacement of insect larvae increased in a regular and consistent manner with increasing flow strength and surface sediment entrainment. Significant displacement occurred for some types of larvae (Ephemerellid mayflies) over a relatively low range of shear stress and bed surface entrainment. Other larvae (Atherix sp.) were displaced only at the highest levels of bed surface entrainment. Displacement was lower from coarsened bed surfaces in series Bc, and higher from sandier sediments in series S experiments. The differential effects of bed surface entrainment upon various types of larvae are consistent with anatomical and behavioral differences that influence exposure to near-bed flow and bedload transport. These results suggest that spatial patterns of sediment mobilization are important for understanding patterns of dispersal and disturbance of streambed communities.

  20. Sequential Data Assimilation for Seismicity: a Proof of Concept

    NASA Astrophysics Data System (ADS)

    van Dinther, Y.; Fichtner, A.; Kuensch, H. R.

    2015-12-01

    Our physical understanding and probabilistic forecasting ability of earthquakes is significantly hampered by limited indications of the state of stress and strength on faults and their governing parameters. Using the sequential data assimilation framework developed in meteorology and oceanography (e.g., Evensen, JGR, 1994) and a seismic cycle forward model based on Navier-Stokes Partial Differential Equations (van Dinther et al., JGR, 2013), we show that such information with its uncertainties is within reach, at least for laboratory setups. We aim to provide the first, thorough proof of concept for seismicity related PDE applications via a perfect model test of seismic cycles in a simplified wedge-like subduction setup. By evaluating the performance with respect to known numerical input and output, we aim to answer wether there is any probabilistic forecast value for this laboratory-like setup, which and how many parameters can be constrained, and how much data in both space and time would be needed to do so. Thus far our implementation of an Ensemble Kalman Filter demonstrated that probabilistic estimates of both the state of stress and strength on a megathrust fault can be obtained and utilized even when assimilating surface velocity data at a single point in time and space. An ensemble-based error covariance matrix containing velocities, stresses and pressure links surface velocity observations to fault stresses and strengths well enough to update fault coupling accordingly. Depending on what synthetic data show, coseismic events can then be triggered or inhibited.

  1. Matrix mechanics and fluid shear stress control stem cells fate in three dimensional microenvironment.

    PubMed

    Chen, Guobao; Lv, Yonggang; Guo, Pan; Lin, Chongwen; Zhang, Xiaomei; Yang, Li; Xu, Zhiling

    2013-07-01

    Stem cells have the ability to self-renew and to differentiate into multiple mature cell types during early life and growth. Stem cells adhesion, proliferation, migration and differentiation are affected by biochemical, mechanical and physical surface properties of the surrounding matrix in which stem cells reside and stem cells can sensitively feel and respond to the microenvironment of this matrix. More and more researches have proven that three dimensional (3D) culture can reduce the gap between cell culture and physiological environment where cells always live in vivo. This review summarized recent findings on the studies of matrix mechanics that control stem cells (primarily mesenchymal stem cells (MSCs)) fate in 3D environment, including matrix stiffness and extracellular matrix (ECM) stiffness. Considering the exchange of oxygen and nutrients in 3D culture, the effect of fluid shear stress (FSS) on fate decision of stem cells was also discussed in detail. Further, the difference of MSCs response to matrix stiffness between two dimensional (2D) and 3D conditions was compared. Finally, the mechanism of mechanotransduction of stem cells activated by matrix mechanics and FSS in 3D culture was briefly pointed out.

  2. Proteomics of drug resistance in Candida glabrata biofilms.

    PubMed

    Seneviratne, C Jayampath; Wang, Yu; Jin, Lijian; Abiko, Y; Samaranayake, Lakshman P

    2010-04-01

    Candida glabrata is a fungal pathogen that causes a variety of mucosal and systemic infections among compromised patient populations with higher mortality rates. Previous studies have shown that biofilm mode of the growth of the fungus is highly resistant to antifungal agents compared with the free-floating or planktonic mode of growth. Therefore, in the present study, we used 2-D DIGE to evaluate the differential proteomic profiles of C. glabrata under planktonic and biofilm modes of growth. Candida glabrata biofilms were developed on polystyrene surfaces and age-matched planktonic cultures were obtained in parallel. Initially, biofilm architecture, viability, and antifungal susceptibility were evaluated. Differentially expressed proteins more than 1.5-fold in DIGE analysis were subjected to MS/MS. The transcriptomic regulation of these biomarkers was evaluated by quantitative real-time PCR. Candida glabrata biofilms were highly resistant to the antifungals and biocides compared with the planktonic mode of growth. Candida glabrata biofilm proteome when compared with its planktonic proteome showed upregulation of stress response proteins, while glycolysis enzymes were downregulated. Similar trend could be observed at transcriptomic level. In conclusion, C. glabrata biofilms possess higher amount of stress response proteins, which may potentially contribute to the higher antifungal resistance seen in C. glabrata biofilms.

  3. The relationships between stressful life events during childhood and differentiation of self and intergenerational triangulation in adulthood.

    PubMed

    Peleg, Ora

    2014-12-01

    This study examined the relationships between stressful life events in childhood and differentiation of self and intergenerational triangulation in adulthood. The sample included 217 students (173 females and 44 males) from a college in northern Israel. Participants completed the Hebrew versions of Life Events Checklist (LEC), Differentiation of Self Inventory-Revised (DSI-R) and intergenerational triangulation (INTRI). The main findings were that levels of stressful life events during childhood and adolescence among both genders were positively correlated with the levels of fusion with others and intergenerational triangulation. The levels of positive life events were negatively related to levels of emotional reactivity, emotional cut-off and intergenerational triangulation. Levels of stressful life events in females were positively correlated with emotional reactivity. Intergenerational triangulation was correlated with emotional reactivity, emotional cut-off, fusion with others and I-position. Findings suggest that families that experience higher levels of stressful life events may be at risk for higher levels of intergenerational triangulation and lower levels of differentiation of self. © 2014 International Union of Psychological Science.

  4. Global transcriptomic profiling demonstrates induction of oxidative stress and of compensatory cellular stress responses in brown trout exposed to glyphosate and Roundup.

    PubMed

    Uren Webster, Tamsyn M; Santos, Eduarda M

    2015-01-31

    Glyphosate, the active ingredient in Roundup formulations, is the most widely used herbicide worldwide, and as a result contaminates surface waters and has been detected in food residues, drinking water and human urine, raising concerns for potential environmental and human health impacts. Research has shown that glyphosate and Roundup can induce a broad range of biological effects in exposed organisms, particularly via generation of oxidative stress. However, there has been no comprehensive investigation of the global molecular mechanisms of toxicity of glyphosate and Roundup for any species. We aimed to characterise and compare the global mechanisms of toxicity of glyphosate and Roundup in the liver of brown trout (Salmo trutta), an ecologically and economically important vertebrate species, using RNA-seq on an Illumina HiSeq 2500 platform. To do this, we exposed juvenile female brown trout to 0, 0.01, 0.5 and 10 mg/L of glyphosate and Roundup (glyphosate acid equivalent) for 14 days, and sequenced 6 replicate liver samples from each treatment. We assembled the brown trout transcriptome using an optimised de novo approach, and subsequent differential expression analysis identified a total of 1020 differentially-regulated transcripts across all treatments. These included transcripts encoding components of the antioxidant system, a number of stress-response proteins and pro-apoptotic signalling molecules. Functional analysis also revealed over-representation of pathways involved in regulating of cell-proliferation and turnover, and up-regulation of energy metabolism and other metabolic processes. These transcriptional changes are consistent with generation of oxidative stress and the widespread induction of compensatory cellular stress response pathways. The mechanisms of toxicity identified were similar across both glyphosate and Roundup treatments, including for environmentally relevant concentrations. The significant alterations in transcript expression observed at the lowest concentrations tested raises concerns for the potential toxicity of this herbicide to fish populations inhabiting contaminated rivers.

  5. Parents as a Resource in Times of Stress: Interactive Contributions of Socialization of Coping and Stress to Youth Psychopathology

    PubMed Central

    Abaied, Jamie L.; Rudolph, Karen D.

    2011-01-01

    This study examined the hypothesis that maternal socialization of coping would make a differential contribution to youth depression and externalizing psychopathology depending on youths’ level of exposure to life stress. A sample of 155 youth (M age = 12.41, SD = 1.21) and their maternal caregivers completed semi-structured interviews and questionnaires in a two-wave longitudinal study over a one-year period. Results provided evidence for two types of socialization x stress interactions—an amplification-effects model and a differential-effects model. In the context of interpersonal stress, findings supported an amplification-effects model wherein the risk and protective effects of engagement and disengagement socialization of coping emerged in youth exposed to high but not mild levels of stress. In the context of noninterpersonal stress, findings supported a differential-effects model wherein disengagement socialization of coping contributed to heightened risk among youth exposed to high stress but dampened risk among youth exposed to mild stress. This research identifies maternal socialization of coping as a noteworthy contributor to risk for youth psychopathology, and highlights the need to consider parenting x environment interactions when investigating parenting processes related to youth psychopathology. PMID:19908139

  6. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism.

    PubMed

    Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.

  7. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism

    PubMed Central

    Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment. PMID:27380174

  8. Clusterin in the eye: An old dog with new tricks at the ocular surface.

    PubMed

    Fini, M Elizabeth; Bauskar, Aditi; Jeong, Shinwu; Wilson, Mark R

    2016-06-01

    The multifunctional protein clusterin (CLU) was first described in 1983 as a secreted glycoprotein present in ram rete testis fluid that enhanced aggregation ('clustering') of a variety of cells in vitro. It was also independently discovered in a number of other systems. By the early 1990s, CLU was known under many names and its expression had been demonstrated throughout the body, including in the eye. Its homeostatic activities in proteostasis, cytoprotection, and anti-inflammation have been well documented, however its roles in health and disease are still not well understood. CLU is prominent at fluid-tissue interfaces, and in 1996 it was demonstrated to be the most highly expressed transcript in the human cornea, the protein product being localized to the apical layers of the mucosal epithelia of the cornea and conjunctiva. CLU protein is also present in human tears. Using a preclinical mouse model for desiccating stress that mimics human dry eye disease, the authors recently demonstrated that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration in the tears. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to LGALS3 (galectin-3), a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. CLU depletion from the ocular surface epithelia is seen in a variety of inflammatory conditions in humans and mice that lead to squamous metaplasia and a keratinized epithelium. This suggests that CLU might have a specific role in maintaining mucosal epithelial differentiation, an idea that can now be tested using the mouse model for desiccating stress. Most excitingly, the new findings suggest that CLU could serve as a novel biotherapeutic for dry eye disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory.

    PubMed

    Abbasi, Mohammad

    2018-04-01

    The nonlinear vibration behavior of a Tapping mode atomic force microscopy (TM-AFM) microcantilever under acoustic excitation force has been modeled and investigated. In dynamic AFM, the tip-surface interactions are strongly nonlinear, rapidly changing and hysteretic. First, the governing differential equation of motion and boundary conditions for dynamic analysis are obtained using the modified couple stress theory. Afterwards, closed-form expressions for nonlinear frequency and effective nonlinear damping ratio are derived utilizing perturbation method. The effect of tip connection position on the vibration behavior of the microcantilever are also analyzed. The results show that nonlinear frequency is size dependent. According to the results, an increase in the equilibrium separation between the tip and the sample surface reduces the overall effect of van der Waals forces on the nonlinear frequency, but its effect on the effective nonlinear damping ratio is negligible. The results also indicate that both the change in the distance between tip and cantilever free end and the reduction of tip radius have significant effects on the accuracy and sensitivity of the TM-AFM in the measurement of surface forces. The hysteretic behavior has been observed in the near resonance frequency response due to softening and hardening of the forced vibration response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Application of the microboudin method to palaeodifferential stress analysis of deformed impure marbles from Syros, Greece: Implications for grain-size and calcite-twin palaeopiezometers

    NASA Astrophysics Data System (ADS)

    Masuda, Toshiaki; Miyake, Tomoya; Kimura, Nozomi; Okamoto, Atsushi

    2011-01-01

    Microboudinage structures developed within glaucophane are found in the calcite matrix of blueschist-facies impure marbles from Syros, Greece. The presence of these structures enables the successful application of the microboudin method for palaeodifferential stress analysis, which was originally developed for rocks with a quartzose matrix. Application of the microboudin method reveals that differential stress increased during exhumation of the marble; the estimated maximum palaeodifferential stress values are approximately 9-15 MPa, an order of magnitude lower than the values estimated using the calcite-twin palaeopiezometer. This discrepancy reflects the fact that the two methods assess differential stress at different stages in the deformation history. Differential stresses in the Syros samples estimated using three existing equations for grain-size palaeopiezometry show a high degree of scatter, and no reliable results were obtained by a comparison between the results of the microboudin method and grain-size palaeopiezometry.

  11. Inefficient differentiation response to cell cycle stress leads to genomic instability and malignant progression of squamous carcinoma cells

    PubMed Central

    Alonso-Lecue, Pilar; de Pedro, Isabel; Coulon, Vincent; Molinuevo, Rut; Lorz, Corina; Segrelles, Carmen; Ceballos, Laura; López-Aventín, Daniel; García-Valtuille, Ana; Bernal, José M; Mazorra, Francisco; Pujol, Ramón M; Paramio, Jesús; Ramón Sanz, J; Freije, Ana; Toll, Agustí; Gandarillas, Alberto

    2017-01-01

    Squamous cell carcinoma (SCC) or epidermoid cancer is a frequent and aggressive malignancy. However in apparent paradox it retains the squamous differentiation phenotype except for very dysplastic lesions. We have shown that cell cycle stress in normal epidermal keratinocytes triggers a squamous differentiation response involving irreversible mitosis block and polyploidisation. Here we show that cutaneous SCC cells conserve a partial squamous DNA damage-induced differentiation response that allows them to overcome the cell division block. The capacity to divide in spite of drug-induced mitotic stress and DNA damage made well-differentiated SCC cells more genomically instable and more malignant in vivo. Consistently, in a series of human biopsies, non-metastatic SCCs displayed a higher degree of chromosomal alterations and higher expression of the S phase regulator Cyclin E and the DNA damage signal γH2AX than the less aggressive, non-squamous, basal cell carcinomas. However, metastatic SCCs lost the γH2AX signal and Cyclin E, or accumulated cytoplasmic Cyclin E. Conversely, inhibition of endogenous Cyclin E in well-differentiated SCC cells interfered with the squamous phenotype. The results suggest a dual role of cell cycle stress-induced differentiation in squamous cancer: the resulting mitotic blocks would impose, when irreversible, a proliferative barrier, when reversible, a source of genomic instability, thus contributing to malignancy. PMID:28661481

  12. Phylogeographic differentiation versus transcriptomic adaptation to warm temperatures in Zostera marina, a globally important seagrass.

    PubMed

    Jueterbock, A; Franssen, S U; Bergmann, N; Gu, J; Coyer, J A; Reusch, T B H; Bornberg-Bauer, E; Olsen, J L

    2016-11-01

    Populations distributed across a broad thermal cline are instrumental in addressing adaptation to increasing temperatures under global warming. Using a space-for-time substitution design, we tested for parallel adaptation to warm temperatures along two independent thermal clines in Zostera marina, the most widely distributed seagrass in the temperate Northern Hemisphere. A North-South pair of populations was sampled along the European and North American coasts and exposed to a simulated heatwave in a common-garden mesocosm. Transcriptomic responses under control, heat stress and recovery were recorded in 99 RNAseq libraries with ~13 000 uniquely annotated, expressed genes. We corrected for phylogenetic differentiation among populations to discriminate neutral from adaptive differentiation. The two southern populations recovered faster from heat stress and showed parallel transcriptomic differentiation, as compared with northern populations. Among 2389 differentially expressed genes, 21 exceeded neutral expectations and were likely involved in parallel adaptation to warm temperatures. However, the strongest differentiation following phylogenetic correction was between the three Atlantic populations and the Mediterranean population with 128 of 4711 differentially expressed genes exceeding neutral expectations. Although adaptation to warm temperatures is expected to reduce sensitivity to heatwaves, the continued resistance of seagrass to further anthropogenic stresses may be impaired by heat-induced downregulation of genes related to photosynthesis, pathogen defence and stress tolerance. © 2016 John Wiley & Sons Ltd.

  13. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions.

    PubMed

    Grover, Minakshi; Madhubala, R; Ali, Sk Z; Yadav, S K; Venkateswarlu, B

    2014-09-01

    Microorganisms isolated from stressed ecosystem may prove as ideal candidates for development of bio-inoculants for stressed agricultural production systems. In the present study, moisture stress tolerant rhizobacteria were isolated from the rhizosphere of sorghum, pigeonpea, and cowpea grown under semiarid conditions in India. Four isolates KB122, KB129, KB133, and KB142 from sorghum rhizosphere exhibited plant growth promoting traits and tolerance to salinity, high temperature, and moisture stress. These isolates were identified as Bacillus spp. by 16S rDNA sequence analysis. The strains were evaluated for growth promotion of sorghum seedlings under two different moisture stress conditions (set-I, continuous 50% soil water holding capacity (WHC) throughout the experiment and set-II, 75% soil WHC for 27 days followed by no irrigation for 5 days) under greenhouse conditions. Plate count and scanning electron microscope studies indicated successful root surface colonization by inoculated bacteria. Plants inoculated with Bacillus spp. strains showed better growth in terms of shoot length and root biomass with dark greenish leaves due to high chlorophyll content while un-inoculated plants showed rolling of the leaves, stunted appearance, and wilting under both stress conditions. Inoculation also improved leaf relative water content and soil moisture content. However, variation in proline and sugar content in the different treatments under two stress conditions indicated differential effect of microbial treatments on plant physiological parameters under stress conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress

    PubMed Central

    Li, Changning; Nong, Qian; Solanki, Manoj Kumar; Liang, Qiang; Xie, Jinlan; Liu, Xiaoyan; Li, Yijie; Wang, Weizan; Yang, Litao; Li, Yangrui

    2016-01-01

    Water stress causes considerable yield losses in sugarcane. To investigate differentially expressed genes under water stress, a pot experiment was performed with the sugarcane variety GT21 at three water-deficit levels (mild, moderate, and severe) during the elongation stage and gene expression was analyzed using microarray technology. Physiological parameters of sugarcane showed significant alterations in response to drought stress. Based on the expression profile of 15,593 sugarcane genes, 1,501 (9.6%) genes were differentially expressed under different water-level treatments; 821 genes were upregulated and 680 genes were downregulated. A gene similarity analysis showed that approximately 62.6% of the differentially expressed genes shared homology with functional proteins. In a Gene Ontology (GO) analysis, 901 differentially expressed genes were assigned to 36 GO categories. Moreover, 325 differentially expressed genes were classified into 101 pathway categories involved in various processes, such as the biosynthesis of secondary metabolites, ribosomes, carbon metabolism, etc. In addition, some unannotated genes were detected; these may provide a basis for studies of water-deficit tolerance. The reliability of the observed expression patterns was confirmed by RT-PCR. The results of this study may help identify useful genes for improving drought tolerance in sugarcane. PMID:27170459

  15. The Galilean Satellites

    NASA Image and Video Library

    1997-11-18

    This composite includes the four largest moons of Jupiter which are known as the Galilean satellites. From left to right, the moons shown are Ganymede, Callisto, Io, and Europa. The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. In order of increasing distance from Jupiter, Io is closest, followed by Europa, Ganymede, and Callisto. The order of these satellites from the planet Jupiter helps to explain some of the visible differences among the moons. Io is subject to the strongest tidal stresses from the massive planet. These stresses generate internal heating which is released at the surface and makes Io the most volcanically active body in our solar system. Europa appears to be strongly differentiated with a rock/iron core, an ice layer at its surface, and the potential for local or global zones of water between these layers. Tectonic resurfacing brightens terrain on the less active and partially differentiated moon Ganymede. Callisto, furthest from Jupiter, appears heavily cratered at low resolutions and shows no evidence of internal activity. North is to the top of this composite picture in which these satellites have all been scaled to a common factor of 10 kilometers (6 miles) per picture element. The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft obtained the Io and Ganymede images in June 1996, while the Europa images were obtained in September 1996. Because Galileo focuses on high resolution imaging of regional areas on Callisto rather than global coverage, the portrait of Callisto is from the 1979 flyby of NASA's Voyager spacecraft. http://photojournal.jpl.nasa.gov/catalog/PIA00601

  16. Optimization of micro-fabricated porous membranes for intestinal epithelial cell culture and in vitro modeling of the human intestinal barrier

    NASA Astrophysics Data System (ADS)

    Nair Gourikutty Sajay, Bhuvanendran; Yin, Chiam Su; Ramadan, Qasem

    2017-12-01

    In vitro modeling of organs could provide a controlled platform for studying physiological events and has great potential in the field of pharmaceutical development. Here, we describe the characterization of in vitro modeling of the human intestinal barrier mimicked using silicon porous membranes as a substrate. To mimic an intestinal in vivo setup as closely as possible, a porous substrate is required in a dynamic environment for the cells to grow rather than a static setup with an impermeable surface such as a petri dish. In this study, we focus on the detailed characterization of Caco-2 cells cultured on a silicon membrane with different pore sizes as well as the effect of dynamic fluid flow on the model. The porous silicon membrane together with continuous perfusion of liquid applying shear stress on the cells enhances the differentiation of polarized cells by providing access to the both their basal and apical surfaces. Membranes with pore sizes of 0.5-3 µm were used and a shear stress of ~0.03 dyne cm-2 was created by applying a low flow rate of 20 nl s-1. By providing these optimized conditions, cells were able to differentiate with columnar morphology, which developed microvilli structures on their apical side and tight junctions between adjacent cells like those in a healthy human intestinal barrier. In this setup, it is possible to study the important cellular functions of the intestine such as transport, absorption and secretion, and thus this model has great potential in drug screening.

  17. Effect of Ethanol on Differential Protein Production and Expression of Potential Virulence Functions in the Opportunistic Pathogen Acinetobacter baumannii

    PubMed Central

    Nwugo, Chika C.; Arivett, Brock A.; Zimbler, Daniel L.; Gaddy, Jennifer A.; Richards, Ashley M.; Actis, Luis A.

    2012-01-01

    Acinetobacter baumannii persists in the medical environment and causes severe human nosocomial infections. Previous studies showed that low-level ethanol exposure increases the virulence of A. baumannii ATCC 17978. To better understand the mechanisms involved in this response, 2-D gel electrophoresis combined with mass spectrometry was used to investigate differential protein production in bacteria cultured in the presence or absence of ethanol. This approach showed that the presence of ethanol significantly induces and represses the production of 22 and 12 proteins, respectively. Although over 25% of the ethanol-induced proteins were stress-response related, the overall bacterial viability was uncompromised when cultured under these conditions. Production of proteins involved in lipid and carbohydrate anabolism was increased in the presence of ethanol, a response that correlates with increased carbohydrate biofilm content, enhanced biofilm formation on abiotic surfaces and decrease bacterial motility on semi-solid surfaces. The presence of ethanol also induced the acidification of bacterial cultures and the production of indole-3-acetic acid (IAA), a ubiquitous plant hormone that signals bacterial stress-tolerance and promotes plant-bacteria interactions. These responses could be responsible for the significantly enhanced virulence of A. baumannii ATCC 17978 cells cultured in the presence of ethanol when tested with the Galleria mellonella experimental infection model. Taken together, these observations provide new insights into the effect of ethanol in bacterial virulence. This alcohol predisposes the human host to infections by A. baumannii and could favor the survival and adaptation of this pathogen to medical settings and adverse host environments. PMID:23284824

  18. Effect of ethanol on differential protein production and expression of potential virulence functions in the opportunistic pathogen Acinetobacter baumannii.

    PubMed

    Nwugo, Chika C; Arivett, Brock A; Zimbler, Daniel L; Gaddy, Jennifer A; Richards, Ashley M; Actis, Luis A

    2012-01-01

    Acinetobacter baumannii persists in the medical environment and causes severe human nosocomial infections. Previous studies showed that low-level ethanol exposure increases the virulence of A. baumannii ATCC 17978. To better understand the mechanisms involved in this response, 2-D gel electrophoresis combined with mass spectrometry was used to investigate differential protein production in bacteria cultured in the presence or absence of ethanol. This approach showed that the presence of ethanol significantly induces and represses the production of 22 and 12 proteins, respectively. Although over 25% of the ethanol-induced proteins were stress-response related, the overall bacterial viability was uncompromised when cultured under these conditions. Production of proteins involved in lipid and carbohydrate anabolism was increased in the presence of ethanol, a response that correlates with increased carbohydrate biofilm content, enhanced biofilm formation on abiotic surfaces and decrease bacterial motility on semi-solid surfaces. The presence of ethanol also induced the acidification of bacterial cultures and the production of indole-3-acetic acid (IAA), a ubiquitous plant hormone that signals bacterial stress-tolerance and promotes plant-bacteria interactions. These responses could be responsible for the significantly enhanced virulence of A. baumannii ATCC 17978 cells cultured in the presence of ethanol when tested with the Galleria mellonella experimental infection model. Taken together, these observations provide new insights into the effect of ethanol in bacterial virulence. This alcohol predisposes the human host to infections by A. baumannii and could favor the survival and adaptation of this pathogen to medical settings and adverse host environments.

  19. A study of radiometric surface temperatures: Their fluctuations, distribution and meaning. [Voves, France

    NASA Technical Reports Server (NTRS)

    Perrier, A.; Itier, B.; Boissard, P. (Principal Investigator); Goillot, C.; Belluomo, P.; Valery, P.

    1980-01-01

    A consecutive night and day flight and measurements on the ground, were made in the region of Voves, south of Chartres. The statistical analysis of the thermal scanner data permitted the establishment of criteria for the homogeneity of surfaces. These criteria were used in defining the surface temperature values which are most representative for use in an energy balance approach to evapotranspiration (day) and heat balance (night). For a number of maize fields that airborne thermal scanner data permitted a detailed energy analysis of different fields of a same crop to be carried out. Such a detailed analysis was not necessary for a calculation of crop evapotranspiration which could be evaluated from the mean temperature of the crop surface. A differential analysis day night is of interest for enhancing the contrast between types of surfaces, as well as for a better definition of the daily energy balance. It should be stressed that, for a homogeneous region, a study such as the present one, could be carried out on a relatively small part of the total surface, as the results for a surface of 2.5 x 2 sq km were not significantly different from those obtained from a surface three times larger.

  20. CFD Analysis of the Aerodynamics of a Business-Jet Airfoil with Leading-Edge Ice Accretion

    NASA Technical Reports Server (NTRS)

    Chi, X.; Zhu, B.; Shih, T. I.-P.; Addy, H. E.; Choo, Y. K.

    2004-01-01

    For rime ice - where the ice buildup has only rough and jagged surfaces but no protruding horns - this study shows two dimensional CFD analysis based on the one-equation Spalart-Almaras (S-A) turbulence model to predict accurately the lift, drag, and pressure coefficients up to near the stall angle. For glaze ice - where the ice buildup has two or more protruding horns near the airfoil's leading edge - CFD predictions were much less satisfactory because of the large separated region produced by the horns even at zero angle of attack. This CFD study, based on the WIND and the Fluent codes, assesses the following turbulence models by comparing predictions with available experimental data: S-A, standard k-epsilon, shear-stress transport, v(exp 2)-f, and differential Reynolds stress.

  1. Human Reactions to Psychological Stress.

    DTIC Science & Technology

    Theoretical issues relating stress, self -concept and attitude change are discussed. Differential effects of communicator credibility under high and... low stress are described. Methodological problems in stress research are explained. (Author)

  2. Effect of differential speed rolling on the texture evolution of Mg-4Zn-1Gd alloy

    NASA Astrophysics Data System (ADS)

    Shim, Myeong-Shik; Suh, Byeong-Chan; Kim, Jae H.; Kim, Nack J.

    2015-05-01

    The microstructural and texture evolution during differential speed rolling process of Mg 4Zn-1Gd (wt%) alloy have been investigated by means of electron backscatter diffraction observation and texture analysis. The angular distribution of basal poles are inclined about 10° from the normal direction towards the rolling direction and the maximum intensities of basal poles are decreased, compared to the conventional rolling process. Such an inclination of angular distribution of basal poles can be induced by the operation of shear stress along the rolling direction, as much as one quarter of tensile stress along the RD and one quarter of compressive stress along the ND. When the reduction ratios in differential speed rolling increase, there is no difference in texture evolution although there is a significant change in activated twinning systems. In addition, the engineering stresses after differential speed rolling are also similar to that after conventional rolling process, while ductility and stretch formability in the former are worse than those in the latter.

  3. Surface stress mediated image force and torque on an edge dislocation

    NASA Astrophysics Data System (ADS)

    Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh

    2018-07-01

    The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.

  4. Viscoplastic Model Development to Account for Strength Differential: Application to Aged Inconel 718 at Elevated Temperature. Degree awarded by Pennsylvania State Univ., 2000

    NASA Technical Reports Server (NTRS)

    Iyer, Saiganesh; Lerch, Brad (Technical Monitor)

    2001-01-01

    The magnitude of yield and flow stresses in aged Inconel 718 are observed to be different in tension and compression. This phenomenon, called the Strength differential (SD), contradicts the metal plasticity axiom that the second deviatoric stress invariant alone is sufficient for representing yield and flow. Apparently, at least one of the other two stress invariants is also significant. A unified viscoplastic model was developed that is able to account for the SD effect in aged Inconel 718. Building this model involved both theory and experiments. First, a general threshold function was proposed that depends on all three stress invariants and then the flow and evolution laws were developed using a potential-based thermodynamic framework. Judiciously chosen shear and axial tests were conducted to characterize the material. Shear tests involved monotonic loading, relaxation, and creep tests with different loading rates and load levels. The axial tests were tension and compression tests that resulted in sufficiently large inelastic strains. All tests were performed at 650 C. The viscoplastic material parameters were determined by optimizing the fit to the shear tests, during which the first and the third stress invariants remained zero. The threshold surface parameters were then fit to the tension and compression test data. An experimental procedure was established to quantify the effect of each stress invariant on inelastic deformation. This requires conducting tests with nonproportional three-dimensional load paths. Validation of the model was done using biaxial tests on tubular specimens of aged Inconel 718 using proportional and nonproportional axial-torsion loading. These biaxial tests also helped to determine the most appropriate form of the threshold function; that is, how to combine the stress invariants. Of the set of trial threshold functions, the ones that incorporated the third stress invariant give the best predictions. However, inclusion of the first stress invariant does not significantly improve the model predictions. The model shows excellent predictive capability for nonproportional load paths. Additionally, it reduces to the well-known models of Mises Drucker and Drucker-Prager. The requisite experiments involve reasonably simple load paths in the axial-shear stress plane and hence can be performed on a variety of different materials: be they metallic, geological. polymeric, ceramic or granular. The general form of the threshold function allows representation of inelastic deformation in a range of materials.

  5. Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.).

    PubMed

    Luo, Cong; He, Xin-Hua; Hu, Ying; Yu, Hai-xia; Ou, Shi-Jin; Fang, Zhong-Bin

    2014-09-15

    Differential display is a powerful technique for analyzing differences in gene expression. Oligo-dT cDNAstart codon targeted marker (cDNA-SCoT) technique is a novel, simple, cheap, rapid, and efficient method for differential gene expression research. In the present study, the oligo-dT anchored cDNA-SCoT technique was exploited to identify differentially expressed genes during several stress treatments in mango. A total of 37 primers combined with oligo-dT anchor primers 3side amplified approximately 150 fragments of 150 bp to 1500 bp in length. Up to 100 fragments were differentially expressed among the stress treatments and control samples, among which 92 were obtained and sequenced. Out of the 92 transcript derived fragments (TDFs), 70% were highly homologous to known genes, and 30% encoded unclassified proteins with unknown functions. The expression pattern of nine genes with known functions involved in several abiotic stresses in other species was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) under cold (4 °C), salinity (NaCl), polyethylene glycol (PEG, MW 6000), and heavy metal treatments in leaves and stems at different time points (0, 24, 48, and 72 h). The expression patterns of the genes (TDF4, TDF7, TDF23, TDF45, TDF49, TDF50, TDF57, TDF91 and TDF92) that had direct or indirect relationships with cold, salinity, drought and heavy metal stress response were analyzed through qRT-PCR. The possible roles of these genes are discussed. This study suggests that the oligo-dT anchored cDNA-SCoT differential display method is a useful tool to serve as an initial step for characterizing transcriptional changes induced by abiotic stresses and provide gene information for further study and application in genetic improvement and breeding in mango. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A fucose containing polymer-rich fraction from the brown alga Ascophyllum nodosum mediates lifespan increase and thermal-tolerance in Caenorhabditis elegans, by differential effects on gene and protein expression.

    PubMed

    Kandasamy, Saveetha; Khan, Wajahatullah; Evans, Franklin D; Critchley, Alan T; Zhang, Junzeng; Fitton, J H; Stringer, Damien N; Gardiner, Vicki-Anne; Prithiviraj, Balakrishnan

    2014-02-01

    The extracts of the brown alga, Ascophyllum nodosum, which contains several bioactive compounds, have been shown to impart biotic and abiotic stress tolerance properties when consumed by animals. However, the physiological, biochemical and molecular mechanism underlying such effects remain elusive. We investigated the effect of A. nodosum fucose-containing polymer (FCP) on tolerance to thermally induced stress using the invertebrate animal model, Caenorhabditis elegans. FCP at a concentration of 150 μg mL(-1) significantly improved the life span and tolerance against thermally induced stress in C. elegans. The treatment increased the C. elegans survival by approximately 24%, when the animals were under severe thermally induced stress (i.e. 35 °C) and 27% under mild stress (i.e. 30 °C) conditions. The FCP induced differential expression of genes and proteins is associated with stress response pathways. Under thermal stress, FCP treatment significantly altered the expression of 65 proteins (54 up-regulated & 11 down-regulated). Putative functional analysis of FCP-induced differential proteins signified an association of altered proteins in stress-related molecular and biochemical pathways of the model worm.

  7. Comparing crack damage evolution in rocks deformed under conventional and true triaxial loading

    NASA Astrophysics Data System (ADS)

    Browning, J.; Meredith, P. G.; Stuart, C.; Healy, D.; Harland, S. R.; Mitchell, T. M.

    2017-12-01

    The vast majority of experimental studies investigate damage evolution using conventional triaxial stress states (σ1 > σ2 = σ3, CTA), whereas in nature the stress state is generally truly triaxial (σ1 > σ2 > σ3, TTA). We present a comparative study of crack damage evolution during CTA vs. TTA stress conditions using results from measurements made on cubic samples of sandstone deformed in three orthogonal directions with independently controlled stress paths. We have measured, simultaneously with stress and strain, changes in wave velocities in the three principal directions, together with acoustic emission (AE) output. Changes in wave velocities are associated with both elastic closure and opening of pre-existing cracks, and the inelastic formation of new cracks. By contrast, AE is associated only with the inelastic growth of new crack damage. The onset of new damage is shown to be a function of differential stress regardless of the magnitude of mean stress. Hence, we show that damage can form due to a decrease in the minimum principal stress, which reduces mean stress but increases the differential stress. We find an approximately fivefold decrease in the number of AE events in the TTA case in comparison to the CTA case. In essence, we create two end-member crack distributions; one displaying cylindrical transverse isotropy and the other planar transverse isotropy. Taken together, the AE data, the velocities and the crack densities indicate that the intermediate principal stress plays a key role in suppressing the total amount of crack growth and concentrating it in planes sub-parallel to the minimum stress. However, the size of individual cracks remains constant. Hence, the differential stress at which rocks fail (i.e. strength) will be significantly higher under TTA stress (where σ2 > σ3) than under CTA stress (where σ2 = σ3). Cyclic loading tests show that while individual stress states are important, the stress path by which these stress states are reached is equally important. Whether the stress state has been `visited' before is key to determining and understanding damage states. Further damage commences only when the previous maximum differential stress is exceeded, regardless of whether this is achieved by increasing the maximum principal stress or by decreasing the minimum principal stress.

  8. Water stress impacts on bacterial carbon monoxide oxidation on recent volcanic deposits.

    PubMed

    Weber, Carolyn F; King, Gary M

    2009-12-01

    Water availability oscillates dramatically on young volcanic deposits, and may control the distribution and activity of microbes during early stages of biological succession. Carbon monoxide (CO)-oxidizing bacteria are among the pioneering colonists on volcanic deposits and are subjected to these water stresses. We report here the effects of water potential on CO-oxidizing bacteria in unvegetated (bare) and vegetated (canopy) sites on a 1959 volcanic deposit on Kilauea Volcano (Hawai'i). Time course measurements of water potential showed that average water potentials in the surface layer (0-1 cm) of canopy soil remained between -0.1 and 0 MPa, whereas dramatic diurnal oscillations (for example, between -60 and 0 MPa) occur in bare site surface cinders. During a moderate drying event in situ (-1.7 to 0 MPa), atmospheric CO consumption by intact bare site cores decreased 2.7-fold. For bare and canopy surface samples, maximum potential CO oxidation rates decreased 40 and 60%, respectively, when water potentials were lowered from 0 to -1.5 MPa in the laboratory. These observations indicated that CO oxidation is moderately sensitive to changes in water potential. Additional analyses showed that CO oxidation resumes within a few hours of rehydration, even after desiccation at -150 MPa for 63 days. Samples from both sites exposed to multiple cycles of drying and rewetting (-80 to 0 MPa), lost significant activity after the first cycle, but not after subsequent cycles. Similar responses of CO oxidation in both sites suggested that active CO-oxidizing communities in bare and canopy sites do not express differential adaptations to water stress.

  9. Proteomic changes in female rat hippocampus following exposure to a terrified sound stress.

    PubMed

    Yang, Juan; Hu, Lili; Song, Tusheng; Liu, Yong; Wu, Qiuhua; Zhao, Lingyu; Liu, Liying; Zhao, Xiaoge; Zhang, Dianzeng; Huang, Chen

    2014-06-01

    Stress plays a profound role in the onset of affective disorders, including an elevation in risk factors for depression and anxiety. Women are twice as vulnerable to stress as men because of greater sensitivity to a substance produced during times of anxiety. To better define the abnormal proteins implicated in cognitive deficits and other stress-induced dysfunction, female rats were exposed to terrified sound stress, and two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) were utilized to determine the differential protein expression in the hippocampus in sound-stressed female rats compared with controls. Quantitative differences were found in 44 protein spots which were differentially expressed between the stressed and control groups (fold change of >2; p < 0.01). Eighteen protein spots were downregulated, and 26 protein spots were upregulated in the stressed group. The seven most differentially expressed proteins were identified and validated as follows: dihydropyrimidinase-related protein 2 (DRP-2), creatine kinase B type, dynamin-1 protein, alpha-internexin, glial fibrillary acidic protein beta, gamma-enolase, and peptidyl-prolyl cis-trans isomerase A. Changes in protein levels were detected in the hippocampus of female rats subjected to terrified sound stress. The findings herein may open new opportunities for further investigations on the modulation induced in the hippocampus by stress at the molecular level, especially with respect to females stress.

  10. Stressor-specific effects of sex on HPA axis hormones and activation of stress-related neurocircuitry.

    PubMed

    Babb, Jessica A; Masini, Cher V; Day, Heidi E W; Campeau, Serge

    2013-11-01

    Experiencing stress can be physically and psychologically debilitating to an organism. Women have a higher prevalence of some stress-related mental illnesses, the reasons for which are unknown. These experiments explore differential HPA axis hormone release in male and female rats following acute stress. Female rats had a similar threshold of HPA axis hormone release following low intensity noise stress as male rats. Sex did not affect the acute release, or the return of HPA axis hormones to baseline following moderate intensity noise stress. Sensitive indices of auditory functioning obtained by modulation of the acoustic startle reflex by weak pre-pulses did not reveal any sexual dimorphism. Furthermore, male and female rats exhibited similar c-fos mRNA expression in the brain following noise stress, including several sex-influenced stress-related regions. The HPA axis response to noise stress was not affected by stage of estrous cycle, and ovariectomy significantly increased hormone release. Direct comparison of HPA axis hormone release to two different stressors in the same animals revealed that although female rats exhibit robustly higher HPA axis hormone release after restraint stress, the same effect was not observed following moderate and high intensity loud noise stress. Finally, the differential effect of sex on HPA axis responses to noise and restraint stress cannot readily be explained by differential social cues or general pain processing. These studies suggest the effect of sex on acute stress-induced HPA axis hormone activity is highly dependent on the type of stressor.

  11. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia

    PubMed Central

    Button, Brian; Picher, Maryse; Boucher, Richard C

    2007-01-01

    In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na+-channel-mediated Na+ absorption and stimulation of Cl− secretion through CFTR and the Ca2+-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749

  12. A closed form large deformation solution of plate bending with surface effects.

    PubMed

    Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen

    2017-01-04

    We study the effect of surface stress on the pure bending of a finite thickness plate under large deformation. The surface is assumed to be isotropic and its stress consists of a part that can be interpreted as a residual stress and a part that stiffens as the surface increases its area. Our results show that residual surface stress and surface stiffness can both increase the overall bending stiffness but through different mechanisms. For sufficiently large residual surface tension, we discover a new type of instability - the bending moment reaches a maximum at a critical curvature. Effects of surface stress on different stress components in the bulk of the plate are discussed and the possibility of self-bending due to asymmetry of the surface properties is also explored. The results of our calculations provide insights into surface stress effects in the large deformation regime and can be used as a test for implementation of finite element methods for surface elasticity.

  13. Direct Determination of the Dependence of the Surface Shear and Dilatational Viscosities on the Thermodynamic State of the Interface: Theoretical Foundations.

    PubMed

    Lopez; Hirsa

    1998-10-01

    Recent developments in nonlinear optical techniques for noninvasive probing of a surfactant influenced gas/liquid interface allow for the measurement of the surfactant surface concentration, c, and thus provide new opportunities for the direct determination of its intrinsic viscosities. Here, we present the theoretical foundations, based on the Boussinesq-Scriven surface model without the usual simplification of constant viscosities, for an experimental technique to directly measure the surface shear (µs) and dilatational (kappas) viscosities of a Newtonian interface as functions of the surfactant surface concentration. This ability to directly measure the surfactant concentration permits the use of a simple surface flow for the measurement of the surface viscosities. The requirements are that the interface must be nearly flat, and the flow steady, axisymmetric, and swirling; these flow conditions can be achieved in the deep-channel viscometer driven at relatively fast rates. The tangential stress balance on such an interface leads to two equations; the balance in the azimuthal direction involves only µs and its gradients, and the balance in the radial direction involves both µs and kappas and their gradients. By further exploiting recent developments in laser-based flow measuring techniques, the surface velocities and their gradients which appear in the two equations can be measured directly. The surface tension gradient, which appears in the radial balance equation, is incorporated from the equation of state for the surfactant system and direct measurements of the surfactant surface concentration distribution. The stress balance equations are then ordinary differential equations in the surface viscosities as functions of radial position, which can be readily integrated. Since c is measured as a function of radial position, we then have a direct measurement of µs and kappas as functions of c. Numerical computations of the Navier-Stokes equations are performed to determine the appropriate conditions to achieve the requisite secondary flow. Copyright 1998 Academic Press.

  14. Two-dimensional electron beam charging model for polymer films

    NASA Technical Reports Server (NTRS)

    Reeves, R. D.; Balmain, K. G.

    1981-01-01

    A two-dimensional model is developed to describe the charging of strips of thin polymer films above a grounded substrate exposed to a uniform mono-energetic electron beam. The study is motivated by the observed anomalous behavior of geosynchronous satellites, which has been attributed to differential charging of the satellite surfaces exposed to magnetospheric electrons. Surface and bulk electric fields are calcuated at steady state in order to identify regions of high electrical stress, with emphasis on behavior near the material's edge. The model is used to study the effects of some of the experimental parameters, notably beam energy, beam angle of incidence, beam current density, material thickness and material width. Also examined are the consequences of a central gap in the material and a discontinuity in the material thickness.

  15. Distinguishing differential susceptibility from diathesis-stress: recommendations for evaluating interaction effects.

    PubMed

    Roisman, Glenn I; Newman, Daniel A; Fraley, R Chris; Haltigan, John D; Groh, Ashley M; Haydon, Katherine C

    2012-05-01

    This report describes the state of the art in distinguishing data generated by differential susceptibility from diathesis-stress models. We discuss several limitations of existing practices for probing interaction effects and offer solutions that are designed to better differentiate differential susceptibility from diathesis-stress models and quantify their corresponding implications. In addition, we demonstrate the utility of these methods by revisiting published evidence suggesting that temperamental difficulty serves as a marker of enhanced susceptibility to early maternal caregiving across a range of outcome domains in the NICHD Study of Early Child Care and Youth Development. We find that, with the exception of mother reports of psychopathology, there is consistent evidence in the Study of Early Child Care and Youth Development that the predictive significance of early sensitivity is moderated by difficult temperament over time. However, differential susceptibility effects emerged primarily for teacher reports of academic skills, social competence, and symptomatology. In contrast, effects more consistent with the diathesis-stress model were obtained for mother reports of social skills and objective tests of academic skills. We conclude by discussing the value of the application of this work to the next wave of Gene × Environment studies focused on early caregiving experiences.

  16. Decreased expression of the stress protein HSP70 is an early event in murine erythroleukemic cell differentiation.

    PubMed Central

    Hensold, J O; Housman, D E

    1988-01-01

    Two-dimensional protein gels were used to systematically assess changes in gene expression in Friend erythroleukemia cells after exposure to inducers of differentiation. A rapid decrease in expression of the stress protein HSP70 was observed after exposure to inducers. The kinetics of this change suggest that it may be related to the cellular events that regulate the onset of differentiation. Images PMID:3164440

  17. Stress as a one-armed bandit: Differential effects of stress paradigms on the morphology, neurochemistry and behavior in the rodent amygdala

    PubMed Central

    Wilson, Marlene A.; Grillo, Claudia A.; Fadel, Jim R.; Reagan, Lawrence P.

    2015-01-01

    Neuroplasticity may be defined as the ability of the central nervous system (CNS) to respond to changes in the internal and external environment and it is well established that some stimuli have the ability to facilitate or impair neuroplasticity depending on the pre-existing milieu. A classic example of a stimulus that can both facilitate and impair neuroplasticity is stress. Indeed, the ability of CNS to respond to acute stress is often dependent upon the prior stress history of the individual. While responses to acute stress are often viewed as adaptive in nature, stress reactivity in subjects with prior chronic stress experiences are often linked to neuropsychiatric disorders, including major depressive disorder, post-traumatic stress disorder (PTSD) and anxiety. In rodent studies, chronic stress exposure produces structural and functional alterations in the hippocampus and medial prefrontal cortex that are consistent across different types of stress paradigms. Conversely, the amygdala appears to exhibit differential structural and functional responses to stress that are dependent on a variety of factors, including the type of stressor performed and the duration of the stress paradigm. This is most evident in output measures including morphological analysis of amygdala neurons, measurement of glutamatergic tone in amygdalar subdivisions and the analysis of amygdala-centric behaviors. Accordingly, this review will provide an overview of the effects of stress on the structural and functional plasticity of the rodent amygdala, especially in relation to the differential effects of repeated or chronic stress paradigms on dendritic architecture, neurochemistry of the glutamatergic system and behavior. PMID:26844236

  18. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    PubMed

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Differential Effectiveness of Paradoxical Interventions for More Versus Less Stress-Prone Individuals.

    ERIC Educational Resources Information Center

    Shoham-Salomon, Varda; Jancourt, Annick

    1985-01-01

    Forty-three undergraduates underwent stress induction and were then assigned to a paradoxical, stress management, or self-help treatment. In the stress management and self-help groups, better performance was exhibited by less stress-prone subjects. Initial stress proneness, continued stress, and resistance facilitated performance in the…

  20. Executive Well-Being: Stress and Administrators.

    ERIC Educational Resources Information Center

    Giammatteo, Michael C.; Giammatteo, Dolores M.

    This booklet explains the meaning and sources of stress, presents a model differentiating among several approaches to dealing with stress, and offers advice and self-help exercises to aid in alleviating the causes of stress. Each chapter topic is a component of the stress alleviation model: stress awareness, tolerance, stress reduction, and stress…

  1. On the role of stress anisotropy in the growth of stems.

    PubMed

    Baskin, Tobias I; Jensen, Oliver E

    2013-11-01

    We review the role of anisotropic stress in controlling the growth anisotropy of stems. Instead of stress, growth anisotropy is usually considered in terms of compliance. Anisotropic compliance is typical of cell walls, because they contain aligned cellulose microfibrils, and it appears to be sufficient to explain the growth anisotropy of an isolated cell. Nevertheless, a role for anisotropic stress in the growth of stems is indicated by certain growth responses that appear too rapid to be accounted for by changes in cell-wall compliance and because the outer epidermal wall of most growing stems has microfibrils aligned axially, an arrangement that would favour radial expansion based on cell-wall compliance alone. Efforts to quantify stress anisotropy in the stem have found that it is predominantly axial, and large enough in principle to explain the elongation of the epidermis, despite its axial microfibrils. That the epidermis experiences a stress deriving from the inner tissue, the so-called 'tissue stress', has been widely recognized; however, the origin of the dominant axial direction remains obscure. Based on geometry, an isolated cylindrical cell should have an intramural stress anisotropy favouring the transverse direction. Explanations for tissue stress have invoked differential elastic moduli, differential plastic deformation (so-called differential growth), and a phenomenon analogous to the maturation stress generated by secondary cell walls. None of these explanations has been validated. We suggest that understanding the role of stress anisotropy in plant growth requires a deeper understanding of the nature of stress in hierarchical, organic structures.

  2. The role of fluids in rock layering development: a pressure solution self-organized process revealed by laboratory experiments

    NASA Astrophysics Data System (ADS)

    Gratier, Jean-Pierre; Noiriel, Catherine; Renard, Francois

    2015-04-01

    Natural deformation of rocks is often associated with stress-driven differentiation processes leading to irreversible transformations of their microstructures. The development mechanisms of such processes during diagenesis, tectonic, metamorphism or fault differentiation are poorly known as they are difficult to reproduce experimentally due to the very slow kinetics of stress-driven chemical processes. Here, we show that experimental compaction with development of differentiated layering, similar to what happens in natural deformation, can be obtained by indenter techniques in laboratory conditions. Samples of plaster mixed with clay and of diatomite loosely interbedded with volcanic dust were loaded in presence of their saturated aqueous solutions during several months at 40°C and 150°C, respectively. High-resolution X-ray microtomography and scanning electron microscopy observations show that the layering development is a pressure solution self-organized process. Stress-driven dissolution of the soluble minerals (either gypsum or silica) is initiated in the areas initially richer in insoluble minerals (clays or volcanic dust) because the kinetics of diffusive mass transfer along the soluble/insoluble mineral interfaces is much faster than along the healed boundaries of the soluble minerals. The passive concentration of insoluble minerals amplifies the localization of dissolution along some layers oriented perpendicular to the maximum compressive stress. Conversely, in the areas with initial low content in insoluble minerals and clustered soluble minerals, dissolution is slower. Consequently, these areas are less deformed, they host the re-deposition of the soluble species and they act as rigid objects that concentrate the dissolution near their boundaries thus amplifying the differentiation. A crucial parameter required for self-organized process of pressure solution is the presence of a fluid that is a good solvent of at least some of the rock-forming minerals. Another general requirement for the development of such differentiated layering is the heterogeneous mixing of variously soluble and insoluble species. From a general point of view, the development of diagenetic or tectonic layering has crucial consequences in geological processes. The main one is to modify the composition and microstructure of rocks by dissolution of the most soluble species, passive concentration of the insoluble species and re-deposition of the dissolved species at a distance that depends on the transport efficiency (diffusion or advection). Consequently, layering development modifies both the rheological and the transfer properties of rocks. It is the most common strain localization process in the upper crust when a reactive fluid phase is present, complementary to other strain localization processes in the lithosphere. A specific effect is the development of anisotropic properties that may favor local sliding on weak surfaces. This is particularly important in fault zones where pressure solution processes are at work. Modeling of differentiated layering during natural deformation must be rooted in the stress-driven dissolution and transport properties of the various minerals forming the rocks, and on the evolution of their rheological properties. The strength evolution can be taken into account through a weakening factor in the zone of dissolution and a strengthening factor in the zone of deposition. The kinetics evolution is controlled by the critical parameters of pressure solution.

  3. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction

    PubMed Central

    Toh, Yi-Chin; Voldman, Joel

    2011-01-01

    Shear stress is a ubiquitous environmental cue experienced by stem cells when they are being differentiated or expanded in perfusion cultures. However, its role in modulating self-renewing stem cell phenotypes is unclear, since shear is usually only studied in the context of cardiovascular differentiation. We used a multiplex microfluidic array, which overcomes the limitations of macroperfusion systems in shear application throughput and precision, to initiate a comprehensive, quantitative study of shear effects on self-renewing mouse embryonic stem cells (mESCs), where shear stresses varying by >1000 times (0.016–16 dyn/cm2) are applied simultaneously. When compared with static controls in the presence or absence of a saturated soluble environment (i.e., mESC-conditioned medium), we ascertained that flow-induced shear stress specifically up-regulates the epiblast marker Fgf5. Epiblast-state transition in mESCs involves heparan sulfate proteoglycans (HSPGs), which have also been shown to transduce shear stress in endothelial cells. By disrupting (with sulfation inhibitors and heparinase) and partially reconstituting (with heparin) HSPG function, we show that mESCs also mechanically sense shear stress via HSPGs to modulate Fgf5 expression. This study demonstrates that self-renewing mESCs possess the molecular machinery to sense shear stress and provides quantitative shear application benchmarks for future scalable stem cell culture systems.—Toh, Y.-C., Voldman, J. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. PMID:21183594

  4. Biochemical analysis of 'kerosene tree' Hymenaea courbaril L. under heat stress.

    PubMed

    Gupta, Dinesh; Eldakak, Moustafa; Rohila, Jai S; Basu, Chhandak

    2014-01-01

    Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants.

  5. Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum.

    PubMed

    Venkataramanan, Keerthi P; Min, Lie; Hou, Shuyu; Jones, Shawn W; Ralston, Matthew T; Lee, Kelvin H; Papoutsakis, E Terry

    2015-01-01

    Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.

  6. Genome-Wide Identification of the PHD-Finger Family Genes and Their Responses to Environmental Stresses in Oryza sativa L.

    PubMed Central

    Sun, Mingzhe; Yang, Junkai; Cui, Na; Zhu, Yanming

    2017-01-01

    The PHD-finger family has been demonstrated to be involved in regulating plant growth and development. However, little information is given for its role in environmental stress responses. Here, we identified a total of 59 PHD family genes in the rice genome. These OsPHDs genes were located on eleven chromosomes and synteny analysis only revealed nine duplicated pairs within the rice PHD family. Phylogenetic analysis of all OsPHDs and PHDs from other species revealed that they could be grouped into two major clusters. Furthermore, OsPHDs were clustered into eight groups and members from different groups displayed a great divergence in terms of gene structure, functional domains and conserved motifs. We also found that with the exception of OsPHD6, all OsPHDs were expressed in at least one of the ten tested tissues and OsPHDs from certain groups were expressed in specific tissues. Moreover, our results also uncovered differential responses of OsPHDs expression to environmental stresses, including ABA (abscisic acid), water deficit, cold and high Cd. By using quantitative real-time PCR, we further confirmed the differential expression of OsPHDs under these stresses. OsPHD1/7/8/13/33 were differentially expressed under water deficit and Cd stresses, while OsPHD5/17 showed altered expression under water deficit and cold stresses. Moreover, OsPHD3/44/28 displayed differential expression under ABA and Cd stresses. In conclusion, our results provide valuable information on the rice PHD family in plant responses to environmental stress, which will be helpful for further characterizing their biological roles in responding to environmental stresses.

  7. microRNAs Associated with Drought Response in the Bioenergy Crop Sugarcane (Saccharum spp.)

    PubMed Central

    Vilela, Romel Duarte; Costa, Gustavo Gilson Lacerda; Dias, Lara Isys; Endres, Laurício; Menossi, Marcelo

    2012-01-01

    Sugarcane (Saccharum spp.) is one of the most important crops in the world. Drought stress is a major abiotic stress factor that significantly reduces sugarcane yields. However the gene network that mediates plant responses to water stress remains largely unknown in several crop species. Although several microRNAs that mediate post-transcriptional regulation during water stress have been described in other species, the role of the sugarcane microRNAs during drought stress has not been studied. The objective of this work was to identify sugarcane miRNAs that are differentially expressed under drought stress and to correlate this expression with the behavior of two sugarcane cultivars with different drought tolerances. The sugarcane cultivars RB867515 (higher drought tolerance) and RB855536 (lower drought tolerance) were cultivated in a greenhouse for three months and then subjected to drought for 2, 4, 6 or 8 days. By deep sequencing of small RNAs, we were able to identify 18 miRNA families. Among all of the miRNAs thus identified, seven were differentially expressed during drought. Six of these miRNAs were differentially expressed at two days of stress, and five miRNAs were differentially expressed at four days. The expression levels of five miRNAs (ssp-miR164, ssp-miR394, ssp-miR397, ssp-miR399-seq 1 and miR528) were validated by RT-qPCR (quantitative reverse transcriptase PCR). Six precursors and the targets of the differentially expressed miRNA were predicted using an in silico approach and validated by RT-qPCR; many of these targets may play important roles in drought tolerance. These findings constitute a significant increase in the number of identified miRNAs in sugarcane and contribute to the elucidation of the complex regulatory network that is activated by drought stress. PMID:23071617

  8. Differential modulatory effects of morphine on acute and chronic stress induced neurobehavioral and cellular markers in rats.

    PubMed

    Joshi, Jagdish C; Ray, Arunabha; Gulati, Kavita

    2014-04-15

    The present study evaluated the effects of morphine treatments on elevated plus maze test parameters, oxidative stress markers and Hsp70 expression in normal and stressed rats. Acute and chronic stress caused neurobehavioral suppression, altered prooxidant-antioxidant balance and increased Hsp70 expression in brain homogenates in a differential manner. Morphine (1 and 5mg/kg) attenuated RS induced anxiogenesis, changes in MDA and GSH but further enhanced Hsp70 expression. Similar anxiolytic and Hsp70 enhancing effects were seen after morphine in normal rats (no RS). Exposure to chronic RS did not elicit any appreciable neurobehavioral response in EPM but enhanced MDA, lowered GSH and exaggerated the Hsp70 expression. Pretreatment with morphine did not affect the neurobehavioral response to chronic RS, but reverted the GSH and Hsp70 expression. The results suggest that morphine differentially influences acute and chronic stress induced changes in anxiety behavior and complex interactions between oxidative stress markers and Hsp70 expression which may contribute to these effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of heat flux on differential rotation in turbulent convection.

    PubMed

    Kleeorin, Nathan; Rogachevskii, Igor

    2006-04-01

    We studied the effect of the turbulent heat flux on the Reynolds stresses in a rotating turbulent convection. To this end we solved a coupled system of dynamical equations which includes the equations for the Reynolds stresses, the entropy fluctuations, and the turbulent heat flux. We used a spectral tau approximation in order to close the system of dynamical equations. We found that the ratio of the contributions to the Reynolds stresses caused by the turbulent heat flux and the anisotropic eddy viscosity is of the order of approximately 10(L rho/l0)2, where l0 is the maximum scale of turbulent motions and L rho is the fluid density variation scale. This effect is crucial for the formation of the differential rotation and should be taken into account in the theories of the differential rotation of the Sun, stars, and planets. In particular, we demonstrated that this effect may cause the differential rotation which is comparable with the typical solar differential rotation.

  10. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion.

    PubMed

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E

    2016-09-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. © 2016 Hollerer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Micromechanics based simulation of ductile fracture in structural steels

    NASA Astrophysics Data System (ADS)

    Yellavajjala, Ravi Kiran

    The broader aim of this research is to develop fundamental understanding of ductile fracture process in structural steels, propose robust computational models to quantify the associated damage, and provide numerical tools to simplify the implementation of these computational models into general finite element framework. Mechanical testing on different geometries of test specimens made of ASTM A992 steels is conducted to experimentally characterize the ductile fracture at different stress states under monotonic and ultra-low cycle fatigue (ULCF) loading. Scanning electron microscopy studies of the fractured surfaces is conducted to decipher the underlying microscopic damage mechanisms that cause fracture in ASTM A992 steels. Detailed micromechanical analyses for monotonic and cyclic loading are conducted to understand the influence of stress triaxiality and Lode parameter on the void growth phase of ductile fracture. Based on monotonic analyses, an uncoupled micromechanical void growth model is proposed to predict ductile fracture. This model is then incorporated in to finite element program as a weakly coupled model to simulate the loss of load carrying capacity in the post microvoid coalescence regime for high triaxialities. Based on the cyclic analyses, an uncoupled micromechanics based cyclic void growth model is developed to predict the ULCF life of ASTM A992 steels subjected to high stress triaxialities. Furthermore, a computational fracture locus for ASTM A992 steels is developed and incorporated in to finite element program as an uncoupled ductile fracture model. This model can be used to predict the ductile fracture initiation under monotonic loading in a wide range of triaxiality and Lode parameters. Finally, a coupled microvoid elongation and dilation based continuum damage model is proposed, implemented, calibrated and validated. This model is capable of simulating the local softening caused by the various phases of ductile fracture process under monotonic loading for a wide range of stress states. Novel differentiation procedures based on complex analyses along with existing finite difference methods and automatic differentiation are extended using perturbation techniques to evaluate tensor derivatives. These tensor differentiation techniques are then used to automate nonlinear constitutive models into implicit finite element framework. Finally, the efficiency of these automation procedures is demonstrated using benchmark problems.

  12. An approach to an acute emotional stress reference scale.

    PubMed

    Garzon-Rey, J M; Arza, A; de-la-Camara, C; Lobo, A; Armario, A; Aguilo, J

    2017-06-16

    The clinical diagnosis aims to identify the degree of affectation of the psycho-physical state of the patient as a guide to therapeutic intervention. In stress, the lack of a measurement tool based on a reference makes it difficult to quantitatively assess this degree of affectation. To define and perform a primary assessment of a standard reference in order to measure acute emotional stress from the markers identified as indicators of the degree. Psychometric tests and biochemical variables are, in general, the most accepted stress measurements by the scientific community. Each one of them probably responds to different and complementary processes related to the reaction to a stress stimulus. The reference that is proposed is a weighted mean of these indicators by assigning them relative weights in accordance with a principal components analysis. An experimental study was conducted on 40 healthy young people subjected to the psychosocial stress stimulus of the Trier Social Stress Test in order to perform a primary assessment and consistency check of the proposed reference. The proposed scale clearly differentiates between the induced relax and stress states. Accepting the subjectivity of the definition and the lack of a subsequent validation with new experimental data, the proposed standard differentiates between a relax state and an emotional stress state triggered by a moderate stress stimulus, as it is the Trier Social Stress Test. The scale is robust. Although the variations in the percentage composition slightly affect the score, but they do not affect the valid differentiation between states.

  13. Hypoxic Three-Dimensional Scaffold-Free Aggregate Cultivation of Mesenchymal Stem Cells in a Stirred Tank Reactor.

    PubMed

    Egger, Dominik; Schwedhelm, Ivo; Hansmann, Jan; Kasper, Cornelia

    2017-05-23

    Extensive expansion of mesenchymal stem cells (MSCs) for cell-based therapies remains challenging since long-term cultivation and excessive passaging in two-dimensional conditions result in a loss of essential stem cell properties. Indeed, low survival rate of cells, alteration of surface marker profiles, and reduced differentiation capacity are observed after in vitro expansion and reduce therapeutic success in clinical studies. Remarkably, cultivation of MSCs in three-dimensional aggregates preserve stem cell properties. Hence, the large scale formation and cultivation of MSC aggregates is highly desirable. Besides other effects, MSCs cultivated under hypoxic conditions are known to display increased proliferation and genetic stability. Therefore, in this study we demonstrate cultivation of adipose derived human MSC aggregates in a stirred tank reactor under hypoxic conditions. Although aggregates were exposed to comparatively high average shear stress of 0.2 Pa as estimated by computational fluid dynamics, MSCs displayed a viability of 78-86% and maintained their surface marker profile and differentiation potential after cultivation. We postulate that cultivation of 3D MSC aggregates in stirred tank reactors is valuable for large-scale production of MSCs or their secreted compounds after further optimization of cultivation parameters.

  14. Caregiving and Developmental Factors Differentiating Young At-Risk Urban Children Showing Resilient Versus Stress-Affected Outcomes: A Replication and Extension.

    ERIC Educational Resources Information Center

    Wyman, Peter A.; And Others

    1999-01-01

    Tested hypotheses from an organizational-developmental model for childhood resilience among 7- to 9-year olds. Found that caregiving factors and early development differentiated children with resilient and stress-affected adaptations. Variables reflecting emotionally responsive, competent parenting were direct, proximal predictors of resilience…

  15. Measurement Differences from Rating Posttraumatic Stress Disorder Symptoms in Response to Differentially Distressing Traumatic Events

    ERIC Educational Resources Information Center

    Elhai, Jon D.; Fine, Thomas H.

    2012-01-01

    The authors explored differences in posttraumatic stress disorder (PTSD) symptoms as a result of rating symptoms from two separate, differentially distressing traumatic events. In an initial sample of 400 nonclinical participants, the authors inquired through a web survey about previous psychological trauma, instructing participants to nominate…

  16. Salmonella Enteritidis Strains from Poultry Exhibit Differential Responses to Acid Stress, Oxidative Stress, and Survival in the Egg Albumen

    PubMed Central

    Casavant, Carol; Hawley, Quincy; Addwebi, Tarek; Call, Douglas R.; Guard, Jean

    2012-01-01

    Abstract Salmonella Enteritidis is the major foodborne pathogen that is primarily transmitted by contaminated chicken meat and eggs. We recently demonstrated that Salmonella Enteritidis strains from poultry differ in their ability to invade human intestinal cells and cause disease in orally challenged mice. Here we hypothesized that the differential virulence of Salmonella Enteritidis strains is due to the differential fitness in the adverse environments that may be encountered during infection in the host. The responses of a panel of six Salmonella Enteritidis strains to acid stress, oxidative stress, survival in egg albumen, and the ability to cause infection in chickens were analyzed. This analysis allowed classification of strains into two categories, stress-sensitive and stress-resistant, with the former showing significantly (p<0.05) reduced survival in acidic (gastric phase of infection) and oxidative (intestinal and systemic phase of infection) stress. Stress-sensitive strains also showed impaired intestinal colonization and systemic dissemination in orally inoculated chickens and failed to survive/grow in egg albumen. Comparative genomic hybridization microarray analysis revealed no differences at the discriminatory level of the whole gene content between stress-sensitive and stress-resistant strains. However, sequencing of rpoS, a stress-regulatory gene, revealed that one of the three stress-sensitive strains carried an insertion mutation in the rpoS resulting in truncation of σS. Finding that one of the stress-sensitive strains carried an easily identifiable small polymorphism within a stress-response gene suggests that the other strains may also have small polymorphisms elsewhere in the genome, which likely impact regulation of stress or virulence associated genes in some manner. PMID:22304629

  17. Bacterial differentiation via gradual activation of global regulators.

    PubMed

    Kovács, Ákos T

    2016-02-01

    Bacteria have evolved to adapt to various conditions and respond to certain stress conditions. The ability to sense and efficiently reply to these environmental effects involve versatile array of sensors and global or specific regulators. Interestingly, modulation of the levels of active global regulators enables bacteria to respond to diverse signals via a single central transcriptional regulator and to activate or repress certain differentiation pathways at a spatio-temporal manner. The Gram-positive Bacillus subtilis is an ideal bacterium to study how membrane bound and cytoplasmic sensor kinases affect the level of phosphorylated global regulator, Spo0A which in response activates genes related to sliding, biofilm formation, and sporulation. In addition, other global regulators, including the two-component system DegS-DegU, modulate overlapping and complementary genes in B. subtilis related to surface colonization and biofilm formation. The intertwinement of global regulatory systems also allows the accurate modulation of differentiation pathways. Studies in the last decade enable us to get a deeper insight into the role of global regulators on the smooth transition of developmental processes in B. subtilis.

  18. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian

    2015-04-01

    Hydromechanical (HM) coupling in fractured rock play an important role when events including dam failures, landslides, surface subsidences due to water withdrawal or drainage, injection-induced earthquakes and others are analysed. Generally, hydromechanical coupling occurs when a rock mass contain interconnected pores and fractures which are filled with water and pore/fracture pressures evolves. In the on hand changes in the fluid pressure can lead to stress changes, deformations and failures of the rock mass. In the other hand rock mass stress changes and deformations can alter the hydraulic properties and fluid pressures of the rock mass. Herein well documented case studies focussing on surface subsidence due to water withdrawal, reversible deformations of large-scale valley flanks and failure as well as deformation processes of deep-seated rock slides in fractured rock masses are presented. Due to pore pressure variations HM coupling can lead to predominantly reversible rock mass deformations. Such processes can be considered by the theory of poroelasticity. Surface subsidence reaching magnitudes of few centimetres and are caused by water drainage into deep tunnels are phenomenas which can be assigned to processes of poroelasticity. Recently, particular focus was given on large tunnelling projects to monitor and predict surface subsidence in fractured rock mass in oder to avoid damage of surface structures such as dams of large reservoirs. It was found that surface subsidence due to tunnel drainage can adversely effect infrastructure when pore pressure drawdown is sufficiently large and spatially extended and differential displacements which can be amplified due to topographical effects e.g. valley closure are occurring. Reversible surface deformations were also ascertained on large mountain slopes and summits with the help of precise deformation measurements i.e. permanent GPS or episodic levelling/tacheometric methods. These reversible deformations are often in the range of millimetres to a very few centimetres and can be linked to annual groundwater fluctuations. Due to pore pressure variations HM coupling can influence seepage forces and effective stresses in the rock mass. Effective stress changes can adversely affect the stability and deformation behaviour of deep-seated rock slides by influencing the shear strength or the time dependent (viscous) material behaviour of the basal shear zone. The shear strength of active shear zones is often reasonably well described by Coulomb's law. In Coulomb's law the operative normal stresses to the shear surface/zone are effective stresses and hence pore pressures which should be taken into account reduces the shear strength. According to the time dependent material behaviour a few effective stress based viscous models exists which are able to consider pore pressures. For slowly moving rock slides HM coupling could be highly relevant when low-permeability clayey-silty shear zones (fault gouges) are existing. An important parameters therefore is the hydraulic diffusivity, which is controlled by the permeability and fluid-pore compressibility of the shear zone, and by fluid viscosity. Thus time dependent pore pressure diffusion in the shear zone can either control the stability condition or the viscous behaviour (creep) of the rock slide. Numerous cases studies show that HM coupling can effect deformability, shear strength and time dependent behaviour of fractured rock masses. A process-based consideration can be important to avoid unexpected impacts on infrastructures and to understand complex rock mass as well rock slide behaviour.

  19. Spatial learning impairment induced by chronic stress is related to individual differences in novelty reactivity: search for neurobiological correlates.

    PubMed

    Touyarot, K; Venero, C; Sandi, C

    2004-02-01

    Although chronic stress has been reported to induce deleterious effects on hippocampal structure and function, the possible existence of individual differences in the vulnerability to develop stress-induced cognitive alterations was hypothesized. This study was designed to evaluate (i) whether individual variability in behavioural reactivity to novelty could be related to a differential vulnerability to show spatial learning deficits after chronic stress in young adult rats, and (ii) to what extent, could individual differences in stress-induced cognitive alterations be related to alterations in specific neurobiological substrates. Four month-old Wistar male rats were classified according to their locomotor reactivity to a novel environment, as either low (LR) or highly (HR) reactive, and then either submitted to psychosocial stress for 21-days (consisting of the daily cohabitation of each young adult rat with a new middle-aged rat) or left undisturbed. The results showed that psychosocial stress induced a marked deficit in spatial learning in the water maze in HR, but not in LR, rats. Then, a second experiment investigated the possible differential expression of corticosteroid receptors (MR and GR) and cell adhesion molecules (NCAM and L1) in the hippocampus of HR and LR rats, both under basal conditions and after exposure to chronic social stress. Although chronic stress induced a reduction on the hippocampal expression of MRs and the NCAM-140 isoform, the levels of these molecules did not differ between stressed rats with and without spatial learning impairments; i.e., between HR- and LR-stressed rats, respectively. Nevertheless, it should be noted that the reduction of the hippocampal expression of NCAM-140 induced by psychosocial stress was particularly marked in HR stressed rats. However, the expression of GRs, NCAM-120 and NCAM-180 isoforms, and L1, was not affected by stress, regardless of the reactivity of the animals. Therefore, although we failed to find a neurobiological substrate that specifically correlated with the differential cognitive vulnerability to chronic stress shown by animals with a different novelty reactivity, this study confirms the hypothesis that rats differ in their susceptibility to display stress-induced impairments in hippocampus-dependent spatial learning tasks. In addition, it provides a model to further search for the neurobiological substrate(s) involved in the differential susceptibility to develop stress-induced cognitive impairments.

  20. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    NASA Astrophysics Data System (ADS)

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T.; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D.; Strong, Elizabeth; Aizenberg, Joanna

    2017-03-01

    Mechanical forces in the cell's natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.

  1. Involvement of STI1 protein in the differentiation process of Trypanosoma cruzi.

    PubMed

    Schmidt, Juliana C; Manhães, Lauro; Fragoso, Stenio P; Pavoni, Daniela P; Krieger, Marco A

    2018-04-01

    The protozoan Trypanosoma cruzi is a parasite exposed to several environmental stressors inside its invertebrate and vertebrate hosts. Although stress conditions are involved in its differentiation processes, little information is available about the stress response proteins engaged in these activities. This work reports the first known association of the stress-inducible protein 1 (STI1) with the cellular differentiation process in a unicellular eukaryote. Albeit STI1 expression is constitutive in epimastigotes and metacyclic trypomastigotes, higher protein levels were observed in late growth phase epimastigotes subjected to nutritional stress. Analysis by indirect immunofluorescence revealed that T. cruzi STI1 (TcSTI1) is located throughout the cell cytoplasm, with some cytoplasmic granules appearing in greater numbers in late growing epimastigotes and late growing epimastigotes subjected to nutritional stress. We observed that part of the fluorescence signal from both TcSTI1 and TcHSP70 colocalized around the nucleus. Gene silencing of sti1 in Trypanosoma brucei did not affect cell growth. Similarly, the growth of T. cruzi mutant parasites with a single allele sti1 gene knockout was not affected. However, the differentiation of epimastigotes in metacyclic trypomastigotes (metacyclogenesis) was compromised. Lower production rates and numbers of metacyclic trypomastigotes were obtained from the mutant parasites compared with the wild-type parasites. These data indicate that reduced levels of TcSTI1 decrease the rate of in vitro metacyclogenesis, suggesting that this protein may participate in the differentiation process of T. cruzi. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Laboratory Evidence of Strength Recovery of Healed Faults

    NASA Astrophysics Data System (ADS)

    Masuda, K.

    2015-12-01

    Fault zones consist of a fault core and a surrounding damage zone. Fault zones are typically characterized by the presence of many healed surfaces, the strength of which is unknown. If a healed fault recovers its strength such that its cohesion is equal to or greater than that of the host rock, repeated cycles of fracture and healing may be one mechanism producing wide fault zones. I present laboratory evidence supporting the strength recovery of healed fault surface, obtained by AE monitoring, strain measurements and X-ray CT techniques. The loading experiment was performed with a specimen collected from an exhumed fault zone. Healed surfaces of the rock sample were interpreted to be parallel to slip surfaces. The specimen was a cylinder with 50 mm diameter and 100 mm long. The long axis of the specimen was inclined with respect to the orientation of the healed surfaces. The compression test used a constant loading rate under 50 MPa of confining pressure. Macroscopic failure occurred when the applied differential stress reached 439 MPa. The macro-fracture surface created during the experiment was very close to the preexisting plane. The AE hypocenters closely match the locations of the preexisting healed surface and the new fault plane. The experiment also revealed details of the initial stage of fault development. The new fault zone developed near, but not precisely on the preexisting healed fault plane. An area of heterogeneous structure where stress appears to have concentrated, was where the AEs began, and it was also where the fracture started. This means that the healed surface was not a weak surface and that healing strengthened the fault such that its cohesion was equal to or greater than that of the intact host rock. These results suggest that repeated cycles of fracture and healing may be the main mechanism creating wide fault zones with multiple fault cores and damage zones.

  3. Structure and Fabrication of a Microscale Flow-Rate/Skin Friction Sensor

    NASA Technical Reports Server (NTRS)

    Chandrasekharan, Vijay (Inventor); Sells, Jeremy (Inventor); Sheplak, Mark (Inventor); Arnold, David P. (Inventor)

    2014-01-01

    A floating element shear sensor and method for fabricating the same are provided. According to an embodiment, a microelectromechanical systems (MEMS)-based capacitive floating element shear stress sensor is provided that can achieve time-resolved turbulence measurement. In one embodiment, a differential capacitive transduction scheme is used for shear stress measurement. The floating element structure for the differential capacitive transduction scheme incorporates inter digitated comb fingers forming differential capacitors, which provide electrical output proportional to the floating element deflection.

  4. Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation.

    PubMed

    Selvarajan, Dharshini; Mohan, Chakravarthi; Dhandapani, Vignesh; Nerkar, Gauri; Jayanarayanan, Ashwin Narayan; Vadakkancherry Mohanan, Manoj; Murugan, Naveenarani; Kaur, Lovejot; Chennappa, Mahadevaiah; Kumar, Ravinder; Meena, Minturam; Ram, Bakshi; Chinnaswamy, Appunu

    2018-04-01

    Sugarcane ( Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic genes were also differentially upregulated. Potential cold responsive genes and transcriptional factors involved in cold tolerance mechanism in cold tolerant S. spontaneum IND 00-1037 were identified. Together, this study provides insights into the cold tolerance to low temperature stress in S. spontaneum , thus opening applications in the genetic improvement of cold stress tolerance in sugarcane.

  5. Matching native electrical stimulation by graded chemical stimulation in isolated mouse adrenal chromaffin cells.

    PubMed

    Fulop, Tiberiu; Smith, Corey

    2007-11-30

    Adrenal chromaffin cells release multiple transmitters in response to sympathetic stimulation. Modest cell firing, matching sympathetic tone, releases small freely soluble catecholamines. Elevated electrical firing rates matching input under sympathetic stress results in release of catecholamines as well as semi-soluble vaso- and neuro-active peptides packaged within the dense core of the secretory granule. This activity-dependent differential transmitter release has been shown to rely on a mechanistic shift in the mode of exocytosis through the regulated dilation of the secretory fusion pore between granule and cell surface membranes. However, biochemical description of the mechanism regulating fusion pore dilation remains elusive. In the experimental setting, electrical stimulation designed to mimic sympathetic input, is achieved through single-cell voltage-clamp. While precise, this approach is incompatible with biochemical and proteomic analysis, both of which require large sample sizes. We address this limitation in the current study. We describe a bulk chemical stimulation paradigm calibrated to match defined electrical activity. We utilize calcium and single-cell amperometric measurements to match extracellular potassium concentrations to physiological electrical stimulation under sympathetic tone as well as acute stress conditions. This approach provides larger samples of uniformly stimulated cells for determining molecular players in activity-dependent differential transmitter release from adrenal chromaffin cells.

  6. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation

    PubMed Central

    Swift, Joe; Ivanovska, Irena L.; Buxboim, Amnon; Harada, Takamasa; Dingal, P. C. Dave P.; Pinter, Joel; Pajerowski, J. David; Spinler, Kyle R.; Shin, Jae-Won; Tewari, Manorama; Rehfeldt, Florian; Speicher, David W.; Discher, Dennis E.

    2014-01-01

    Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination. PMID:23990565

  7. Characteristics and interrelation of recovery stress and recovery strain of an ultrafine-grained Ni-50.2Ti alloy processed by high-ratio differential speed rolling

    NASA Astrophysics Data System (ADS)

    Lim, Y. G.; Kim, W. J.

    2017-03-01

    The characteristics of the recovery stress and strain of an ultrafine-grained Ni-50.2 at% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined, and the factors that influence the recovery stress and strain and the relation between the two were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The subsequent annealing treatment at 673 K, however, reduced the shape recovery properties. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed. The recovery strain increased as the yield stress increased. Thus, the maximum recovery stress increased with an increase in yield stress. The recovery stress measured at room temperature (i.e., residual recovery stress) was, on the other hand, affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased.

  8. Involvement of an Alternative Oxidase in Oxidative Stress and Mycelium-to-Yeast Differentiation in Paracoccidioides brasiliensis ▿ †

    PubMed Central

    Martins, Vicente P.; Dinamarco, Taisa M.; Soriani, Frederico M.; Tudella, Valéria G.; Oliveira, Sergio C.; Goldman, Gustavo H.; Curti, Carlos; Uyemura, Sérgio A.

    2011-01-01

    Paracoccidioides brasiliensis is a thermodimorphic human pathogenic fungus that causes paracoccidioidomycosis (PCM), which is the most prevalent systemic mycosis in Latin America. Differentiation from the mycelial to the yeast form (M-to-Y) is an essential step for the establishment of PCM. We evaluated the involvement of mitochondria and intracellular oxidative stress in M-to-Y differentiation. M-to-Y transition was delayed by the inhibition of mitochondrial complexes III and IV or alternative oxidase (AOX) and was blocked by the association of AOX with complex III or IV inhibitors. The expression of P. brasiliensis aox (Pbaox) was developmentally regulated through M-to-Y differentiation, wherein the highest levels were achieved in the first 24 h and during the yeast exponential growth phase; Pbaox was upregulated by oxidative stress. Pbaox was cloned, and its heterologous expression conferred cyanide-resistant respiration in Saccharomyces cerevisiae and Escherichia coli and reduced oxidative stress in S. cerevisiae cells. These results reinforce the role of PbAOX in intracellular redox balancing and demonstrate its involvement, as well as that of other components of the mitochondrial respiratory chain complexes, in the early stages of the M-to-Y differentiation of P. brasiliensis. PMID:21183691

  9. Low-Stress Upper Plate Near Subduction Zones and Implications for Temporal Changes in Loading Forces

    NASA Astrophysics Data System (ADS)

    Wang, K.; Hu, Y.; Yoshida, K.

    2016-12-01

    Subduction megathrusts are weak, often with effective friction coefficients as low as 0.03. Consequently, differential stress (S1 - S3) in the nearby upper plate is low. Compression due to plate coupling and tension due to gravity are in a subtle balance that can be tipped by small perturbations. For example, the 2011 M=9 Tohoku-oki earthquake, which has a rupture-zone-average stress drop of only a few MPa, switched offshore margin-normal stress from compression to tension and affected seismicity pattern and stress directions of various parts of the land area. The low differential stress is also reflected in spatial variations of stresses, such as with changes in topography. In the Andes, crustal earthquake focal mechanisms change from thrust-faulting in low-elevation areas to normal-faulting in high-elevation areas. Given the lack of evidence for a pervasively weak crust, the low differential stress may indicate that in general the crust near subduction zones is not critically stressed. If so, crustal earthquakes do not represent pervasive failure but only local failure due to stress, material, and fluid pressure heterogeneity. If distributed permanent deformation that creates topography is not the norm, it either happens in brief episodes or took place in the past. The outer wedge may enter a compressively or extensionally critical state due to coseismic strengthening or weakening, respectively, of the shallow megathrust in largest interplate earthquakes. Temporal changes in loading forces must occur also at much larger temporal and spatial scales in response to changes in the nature of the subducting plate and other tectonic conditions. We propose that submarine wedges and high topography in the upper plate attain their geometry in geologically brief episodes of high differential stress. They normally stay in a low-stress stable state, but their geometry often reflects high-stress episodes of critical states in the past. In other words, rocks have a sustained memory for the most traumatic moments. Except for the weaker outer wedge, the upper plate does not switch from one critical state to another in megathrust earthquake cycles, such as from compressional failure to gravitational collapse.

  10. RNA-Seq Transcriptome Profiling of Upland Cotton (Gossypium hirsutum L.) Root Tissue under Water-Deficit Stress

    PubMed Central

    Bowman, Megan J.; Park, Wonkeun; Bauer, Philip J.; Udall, Joshua A.; Page, Justin T.; Raney, Joshua; Scheffler, Brian E.; Jones, Don. C.; Campbell, B. Todd

    2013-01-01

    An RNA-Seq experiment was performed using field grown well-watered and naturally rain fed cotton plants to identify differentially expressed transcripts under water-deficit stress. Our work constitutes the first application of the newly published diploid D5 Gossypium raimondii sequence in the study of tetraploid AD1 upland cotton RNA-seq transcriptome analysis. A total of 1,530 transcripts were differentially expressed between well-watered and water-deficit stressed root tissues, in patterns that confirm the accuracy of this technique for future studies in cotton genomics. Additionally, putative sequence based genome localization of differentially expressed transcripts detected A2 genome specific gene expression under water-deficit stress. These data will facilitate efforts to understand the complex responses governing transcriptomic regulatory mechanisms and to identify candidate genes that may benefit applied plant breeding programs. PMID:24324815

  11. Differential metabolic responses of perennial grass Cynodon transvaalensis×Cynodon dactylon (C₄) and Poa Pratensis (C₃) to heat stress.

    PubMed

    Du, Hongmei; Wang, Zhaolong; Yu, Wenjuan; Liu, Yimin; Huang, Bingru

    2011-03-01

    Differential metabolic responses to heat stress may be associated with variations in heat tolerance between cool-season (C₃) and warm-season (C₄) perennial grass species. The main objective of this study was to identify metabolites associated with differential heat tolerance between C₄ bermudagrass and C₃ Kentucky bluegrass by performing metabolite profile analysis using gas chromatography-mass spectrometry. Plants of Kentucky bluegrass (Poa Pratensis'Midnight') and hybrid bermudagrass (Cynodon transvaalensis x Cynodon dactylon'Tifdwarf') were grown under optimum temperature conditions (20/15 °C for Kentucky bluegrass and 30/25 °C for bermudagrass) or heat stress (35/30 °C for Kentucky bluegrass and 45/40 °C for bermudagrass). Physiological responses to heat stress were evaluated by visual rating of grass quality, measuring photochemical efficiency (variable fluorescence to maximal fluorescence) and electrolyte leakage. All of these parameters indicated that bermudagrass exhibited better heat tolerance than Kentucky bluegrass. The metabolite analysis of leaf polar extracts revealed 36 heat-responsive metabolites identified in both grass species, mainly consisting of organic acids, amino acids, sugars and sugar alcohols. Most metabolites showed higher accumulation in bermudagrass compared with Kentucky bluegrass, especially following long-term (18 days) heat stress. The differentially accumulated metabolites included seven sugars (sucrose, fructose, galactose, floridoside, melibiose, maltose and xylose), a sugar alcohol (inositol), six organic acids (malic acid, citric acid, threonic acid, galacturonic acid, isocitric acid and methyl malonic acid) and nine amino acids (Asn, Ala, Val, Thr, γ-aminobutyric acid, IIe, Gly, Lys and Met). The differential accumulation of those metabolites could be associated with the differential heat tolerance between C₃ Kentucky bluegrass and C₄ bermudagrass. Copyright © Physiologia Plantarum 2010.

  12. Comparison of Surface Properties in Natural and Artificially Generated Fractures in a Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Vogler, Daniel; Walsh, Stuart D. C.; Bayer, Peter; Amann, Florian

    2017-11-01

    This work studies the roughness characteristics of fracture surfaces from a crystalline rock by analyzing differences in surface roughness between fractures of various types and sizes. We compare the surface properties of natural fractures sampled in situ and artificial (i.e., man-made) fractures created in the same source rock under laboratory conditions. The topography of the various fracture types is compared and characterized using a range of different measures of surface roughness. Both natural and artificial, and tensile and shear fractures are considered, along with the effects of specimen size on both the geometry of the fracture and its surface characterization. The analysis shows that fracture characteristics are substantially different between natural shear and artificial tensile fractures, while natural tensile fracture often spans the whole result domain of the two other fracture types. Specimen size effects are also evident, not only as scale sensitivity in the roughness metrics, but also as a by-product of the physical processes used to generate the fractures. Results from fractures generated with Brazilian tests show that fracture roughness at small scales differentiates fractures from different specimen sizes and stresses at failure.

  13. Colors Of Liquid Crystals Used To Measure Surface Shear Stresses

    NASA Technical Reports Server (NTRS)

    Reda, D. C.; Muratore, J. J., Jr.

    1996-01-01

    Developmental method of mapping shear stresses on aerodynamic surfaces involves observation, at multiple viewing angles, of colors of liquid-crystal surface coats illuminated by white light. Report describing method referenced in "Liquid Crystals Indicate Directions Of Surface Shear Stresses" (ARC-13379). Resulting maps of surface shear stresses contain valuable data on magnitudes and directions of skin friction forces associated with surface flows; data used to refine mathematical models of aerodynamics for research and design purposes.

  14. Genome-wide identification of heat stress-responsive small RNAs in tall fescue (Festuca arundinacea) by high-throughput sequencing.

    PubMed

    Li, Huiying; Hu, Tao; Amombo, Erick; Fu, Jinmin

    2017-06-01

    MicroRNAs (miRNAs) play vital roles in the adaptive response of plants to various abiotic and biotic stresses. Tall fescue (Festuca arundinacea Schreb.) is a major cool-season forage and turf grass species which is severely influenced by heat stress. To unravel possible heat stress-responsive miRNAs, high-throughput sequencing was employed for heat-tolerant PI578718 and heat-sensitive PI234881 genotypes growing in presence and absence of heat stress (40°C for 36h). By searching against the miRBase database, among 1421 reference monocotyledon miRNAs, more than 850 were identified in all samples. Among these miRNAs, 1.46% and 2.29% were differentially expressed in PI234881 and PI578718 under heat stress, respectively, and most of them were down-regulated. In addition, a total of 170 novel miRNAs belonging to 145 miRNA families were identified. Furthermore, putative targets of differentially expressed miRNAs were predicted. The regulation of selected miRNAs by heat stress was revalidated through quantitative reverse transcription PCR (qRT-PCR) analysis. Most of these miRNAs shared similar expression patterns; however, some showed distinct expression patterns under heat stress, with their putative targets displaying different transcription levels. This is the first genome-wide miRNA identification in tall fescue. miRNAs specific to PI578718, or those that exhibited differential expression profiles between the two genotypes under high temperature, were probably associated with the variation in thermotolerance of tall fescue. The differentially expressed miRNAs between these two tall fescue genotypes and their putative targeted genes will provide essential information for further study on miRNAs mediating heat response and facilitate to improve turf grass breeding. Copyright © 2017. Published by Elsevier GmbH.

  15. Hfq is a global regulator that controls the pathogenicity of Staphylococcus aureus.

    PubMed

    Liu, Yu; Wu, Na; Dong, Jie; Gao, Yaping; Zhang, Xin; Mu, Chunhua; Shao, Ningsheng; Yang, Guang

    2010-09-29

    The Hfq protein is reported to be an RNA chaperone, which is involved in the stress response and the virulence of several pathogens. In E. coli, Hfq can mediate the interaction between some sRNAs and their target mRNAs. But it is controversial whether Hfq plays an important role in S. aureus. In this study, we found that the deletion of hfq gene in S. aureus 8325-4 can increase the surface carotenoid pigments. The hfq mutant was more resistant to oxidative stress but the pathogenicity of the mutant was reduced. We reveal that the Hfq protein can be detected only in some S. aureus strains. Using microarray and qRT-PCR, we identified 116 genes in the hfq mutant which had differential expression from the wild type, most of which are related to the phenotype and virulence of S. aureus. Among the 116 genes, 49 mRNAs can specifically bind Hfq protein, which indicates that Hfq also acts as an RNA binding protein in S. aureus. Our data suggest that Hfq protein of S. aureus is a multifunctional regulator involved in stress and virulence.

  16. Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress.

    PubMed

    Lata, Charu; Sahu, Pranav Pankaj; Prasad, Manoj

    2010-03-19

    Dehydration stress is one of the most important abiotic stresses that adversely influence crop growth and productivity. With the aim to understand the molecular mechanisms underlying dehydration stress tolerance in foxtail millet (Setaria italica L.), a drought tolerant crop, we examined its transcriptome changes at two time points (early and late) of dehydration stress. Two suppression subtractive hybridization (SSH) forward libraries were constructed from 21-day old seedlings of tolerant cv. Prasad at 0.5 and 6h PEG-induced dehydration stress. A total of 327 unique ESTs were identified from both libraries and were classified into 11 different categories according to their putative functions. The plant response against dehydration stress was complex, representing major transcripts involved in metabolism, stress, signaling, transcription regulation, translation and proteolysis. By Reverse Northern (RN) technique we identified the differential expression pattern of 327 transcripts, 86 (about 26%) of which showed > or = 1.7-fold induction. Further the obtained results were validated by quantitative real-time PCR (qRT-PCR) to have a comparative expression profiling of randomly chosen 9 up-regulated transcripts (> or =2.5 fold induction) between cv. Prasad (tolerant) and cv. Lepakshi (sensitive) upon dehydration stress. These transcripts showed a differential expression pattern in both cultivars at different time points of stress treatment as analyzed by qRT-PCR. The possible relationship of the identified transcripts with dehydration tolerance mechanism is discussed. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Challenge and Hindrance Stress among Schoolteachers

    ERIC Educational Resources Information Center

    Stiglbauer, Barbara; Zuber, Julia

    2018-01-01

    The challenge-hindrance stress framework argues that certain job stressors have entirely detrimental effects (hindrance stress), but some may also have beneficial effects (challenge stress). Though the challenge-hindrance framework has largely been neglected in teacher stress research, we adopted it to provide a more differentiated view of the…

  18. Effect of large deformation and surface stiffening on the transmission of a line load on a neo-Hookean half space.

    PubMed

    Wu, Haibin; Liu, Zezhou; Jagota, Anand; Hui, Chung-Yuen

    2018-03-07

    A line force acting on a soft elastic solid, say due to the surface tension of a liquid drop, can cause significant deformation and the formation of a kink close to the point of force application. Analysis based on linearized elasticity theory shows that sufficiently close to its point of application, the force is borne entirely by the surface stress, not by the elasticity of the substrate; this local balance of three forces is called Neumann's triangle. However, it is not difficult to imagine realistic properties for which this force balance cannot be satisfied. For example, if the line force corresponds to surface tension of water, the numerical values of (unstretched) solid-vapor and solid-liquid surface stresses can easily be such that their sum is insufficient to balance the applied force. In such cases conventional (or naïve) Neumann's triangle of surface forces must break down. Here we study how force balance is rescued from the breakdown of naïve Neumann's triangle by a combination of (a) large hyperelastic deformations of the underlying bulk solid, and (b) increase in surface stress due to surface elasticity (surface stiffening). For a surface with constant surface stress (no surface stiffening), we show that the linearized theory remains accurate if the applied force is less than about 1.3 times the solid surface stress. For a surface in which the surface stress increases linearly with the surface stretch, we find that the Neumann's triangle construction works well as long as we replace the constant surface stress in the naïve Neumann triangle by the actual surface stress underneath the line load.

  19. Stress in titania nanoparticles: an atomistic study.

    PubMed

    Darkins, Robert; Sushko, Maria L; Liu, Jun; Duffy, Dorothy M

    2014-05-28

    Stress engineering is becoming an increasingly important method for controlling electronic, optical, and magnetic properties of nanostructures, although the concept of stress is poorly defined at the nanoscale. We outline a procedure for computing bulk and surface stress in nanoparticles using atomistic simulation. The method is applicable to ionic and non-ionic materials alike and may be extended to other nanostructures. We apply it to spherical anatase nanoparticles ranging from 2 to 6 nm in diameter and obtain a surface stress of 0.89 N m(-1), in agreement with experimental measurements. Based on the extent that stress inhomogeneities at the surface are transmitted into the bulk, two characteristic length-scales are identified: below 3 nm bulk and surface regions cannot be defined and the available analytic theories for stress are not applicable, and above about 5 nm the stress becomes well-described by the theoretical Young-Laplace equation. The effect of a net surface charge on the bulk stress is also investigated. It is found that moderate surface charges can induce significant bulk stresses, on the order of 100 MPa, in nanoparticles within this size range.

  20. Propagation of Axisymmetric Electroelastic Waves in a Hollow Layered Cylinder Under Mechanical Excitation

    NASA Astrophysics Data System (ADS)

    Grigorenko, A. Ya.; Loza, I. A.

    2017-09-01

    The problem on propagation of axisymmetric electroelastic waves in a hollow layered cylinder made of metallic and radially polarized piezoceramic layers is solved. The lateral surfaces of the cylinder are free of electrodes. The outside surface is free of mechanical loads, while the inside one undergoes harmonically varying pressure Pe. The problem was solved with a numerical-analytical method. By representing the components of the stress tensor, displacement vectors, electric-flux density, and electrostatic potential by traveling waves, the original electroelastic problem in partial derivatives is reduced to an inhomogeneous boundary-value problem for ordinary differential equations. To solve the problem, the stable numerical discrete-orthogonalization method is used. The results of the kinematic analysis of the layered cylinder both with metallic and piezoceramic (PZT 4) layers are presented. The numerical results are analyzed.

  1. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  2. Yields of Soviet underground nuclear explosions from seismic surface waves: Compliance with the Threshold Test Ban Treaty

    PubMed Central

    Sykes, Lynn R.; Cifuentes, Inés L.

    1984-01-01

    Magnitudes of the larger Soviet underground nuclear weapons tests from the start of the Threshold Test Ban Treaty in 1976 through 1982 are determined for short- and long-period seismic waves. Yields are calculated from the surface wave magnitude for those explosions at the eastern Kazakh test site that triggered a small-to-negligible component of tectonic stress and are used to calibrate body wave magnitude-yield relationship that can be used to determine the sizes of other explosions at that test site. The results confirm that a large bias, related to differential attenuation of P waves, exists between Nevada and Central Asia. The yields of the seven largest Soviet explosions are nearly identical and are close to 150 kilotons, the limit set by the Threshold Treaty. PMID:16593440

  3. Surface Plasmon Resonance Study of the Binding of PEO-PPO-PEO Triblock Copolymer and PEO Homopolymer to Supported Lipid Bilayers.

    PubMed

    Kim, Mihee; Vala, Milan; Ertsgaard, Christopher T; Oh, Sang-Hyun; Lodge, Timothy P; Bates, Frank S; Hackel, Benjamin J

    2018-06-12

    Poloxamer 188 (P188), a poly(ethylene oxide)- b-poly(propylene oxide)- b-poly(ethylene oxide) triblock copolymer, protects cell membranes against various external stresses, whereas poly(ethylene oxide) (PEO; 8600 g/mol) homopolymer lacks protection efficacy. As part of a comprehensive effort to elucidate the protection mechanism, we used surface plasmon resonance (SPR) to obtain direct evidence of binding of the polymers onto supported lipid bilayers. Binding kinetics and coverage of P188 and PEO were examined and compared. Most notably, PEO exhibited membrane association comparable to that of P188, evidenced by comparable association rate constants and coverage. This result highlights the need for additional mechanistic understanding beyond simple membrane association to explain the differential efficacy of P188 in therapeutic applications.

  4. The competition between thermal contraction and differentiation in the stress history of the moon

    NASA Astrophysics Data System (ADS)

    Kirk, Randolph L.; Stevenson, David J.

    1989-09-01

    The stress history of the moon is discussed, taking into consideration the effects of thermal contraction and differentiation. The amount of expansion caused by extracting basalt from undifferentiated lunar material is estimated taking account of the uncertainty in the knowledge of the appropriate compositions, and the resulting estimate of the expansion is used to compare the relative importance of the thermal and differentiation effects in the moon's volumetric history. The results of calculations show that differentiation is likely to be of major importance and, thus, thermal expansion is not the sole possible contributor to evolutionary changes in the lunar radius.

  5. Buffering Boys and Boosting Girls: The Protective and Promotive Effects of Early Head Start for Children's Expressive Language in the Context of Parenting Stress

    ERIC Educational Resources Information Center

    Vallotton, C. D.; Harewood, T.; Ayoub, C. A.; Pan, B.; Mastergeorge, A. M.; Brophy-Herb, H.

    2012-01-01

    Children's characteristics, including gender, influence their development by eliciting differential responses from their environments, and by influencing differential responses to their environments. Parenting-related stress, associated with poverty environments, negatively influences children's language, likely through its impact on parent-child…

  6. Vitamin D3 contributes to enhanced osteogenic differentiation of MSCs under oxidative stress condition via activating the endogenous antioxidant system.

    PubMed

    Zhou, J; Wang, F; Ma, Y; Wei, F

    2018-06-02

    The anti-oxidative effects of vitamin D3 (Vd3) on mesenchymal stem cells (MSCs) have not been studied before. The present study suggested that Vd3 could not only promote the osteogenic differentiation of MSCs under normal condition but also partly protect it from oxidative stress damage by activating the endogenous antioxidant system. Evolving evidence proved that oxidative stress caused by reactive oxygen species (ROS) overproduction might lead to bone loss. Vd3, a commonly used osteogenic induction drug, was proved to exhibit potent anti-oxidative effects on other cell types. The present study aims to investigate the protective effects of Vd3 on oxidative stress-induced dysfunctions of MSCs, as well as its underlying mechanisms. The H 2 O 2 was used as exogenous reactive oxygen species (ROS). The influence of ROS and anti-oxidative protection of Vd3 on MSCs were analyzed too. Multi-techniques were used to assess the beneficial effects of Vd3 on MSCs under oxidative stress condition. The results demonstrated that Vd3 could significantly attenuate the H 2 O 2 -induced cell injury of MSCs via Sirt1/FoxO1 signaling pathway, and reduced the H 2 O 2 exposure-induced intracellular oxidative stress status of MSCs. What's more, the H 2 O 2 exposure resulted in the decreased osteogenic differentiation of MSCs, as evidenced by decreased alkaline phosphatase activity, calcium deposition level, and osteogenic differentiation gene mRNA levels, but the injury was restored via Vd3 administration. The results suggested that Vd3 could not only promote the osteogenic differentiation of osteoblastic cells under normal condition but also partly protect the cell from oxidative stress damage by activating endogenous antioxidant system. The study shed light on the new roles of Vd3 in bone modeling and remodeling regulation.

  7. Transcriptome sequencing of Eucalyptus camaldulensis seedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection

    PubMed Central

    2012-01-01

    Background Water stress limits plant survival and production in many parts of the world. Identification of genes and alleles responding to water stress conditions is important in breeding plants better adapted to drought. Currently there are no studies examining the transcriptome wide gene and allelic expression patterns under water stress conditions. We used RNA sequencing (RNA-seq) to identify the candidate genes and alleles and to explore the evolutionary signatures of selection. Results We studied the effect of water stress on gene expression in Eucalyptus camaldulensis seedlings derived from three natural populations. We used reference-guided transcriptome mapping to study gene expression. Several genes showed differential expression between control and stress conditions. Gene ontology (GO) enrichment tests revealed up-regulation of 140 stress-related gene categories and down-regulation of 35 metabolic and cell wall organisation gene categories. More than 190,000 single nucleotide polymorphisms (SNPs) were detected and 2737 of these showed differential allelic expression. Allelic expression of 52% of these variants was correlated with differential gene expression. Signatures of selection patterns were studied by estimating the proportion of nonsynonymous to synonymous substitution rates (Ka/Ks). The average Ka/Ks ratio among the 13,719 genes was 0.39 indicating that most of the genes are under purifying selection. Among the positively selected genes (Ka/Ks > 1.5) apoptosis and cell death categories were enriched. Of the 287 positively selected genes, ninety genes showed differential expression and 27 SNPs from 17 positively selected genes showed differential allelic expression between treatments. Conclusions Correlation of allelic expression of several SNPs with total gene expression indicates that these variants may be the cis-acting variants or in linkage disequilibrium with such variants. Enrichment of apoptosis and cell death gene categories among the positively selected genes reveals the past selection pressures experienced by the populations used in this study. PMID:22853646

  8. The relationship between the deep-level structure in crust and brewing of strong earthquakes in Xingtai area

    NASA Astrophysics Data System (ADS)

    Xiao, Lan-Xi; Zhu, Yuan-Qing; Zhang, Shao-Quan; Liu, Xu; Guo, Yu

    1999-11-01

    In this paper, crust medium is treated as Maxwell medium, and crust model includes hard inclusion, soft inclusion, deep-level fault. The stress concentration and its evolution with time are obtained by using three-dimensional finite element method and differential method. The conclusions are draw as follows: (1) The average stress concentration and maximum shear stress concentration caused by non-heterogeneous of crust are very high in hard inclusion and around the deep fault. With the time passing by, the concentration of average stress in the model gradually trends to uniform. At the same time, the concentration of maximum shear stress in hard inclusion increases gradually. This character is favorable to transfer shear strain energy from soft inclusion to hard inclusion. (2) When the upper mantle beneath the inclusion upheave at a certain velocity of 1 cm/a, the changes of average stress concentration with time become complex, and the boundary of the hard and soft inclusion become unconspicuous, but the maximum shear stress concentration increases much more in the hard inclusion with time at a higher velocity. This feature make for transformation of energy from the soft inclusion to the hard inclusion. (3) The changes of average stress concentration and maximum shear stress concentration with time around the deep-level fault result in further accumulation of maximum shear stress concentration and finally cause the deep-level fault instable and accelerated creep along fault direction. (4) The changes of vertical displacement on the surface of the model, which is caused by the accelerated creep of the deep-level fault, is similar to that of the observation data before Xingtai strong earthquake.

  9. Hypoxia Stress Modifies Na+/K+-ATPase, H+/K+-ATPase, Na+/NH4+-ATPase, and nkaα1 Isoform Expression in the Brain of Immune-Challenged Air-Breathing Fish

    PubMed Central

    Peter, MC Subhash; Simi, Satheesan

    2017-01-01

    Fishes are equipped to sense stressful stimuli and are able to respond to environmental stressor such as hypoxia with varying pattern of stress response. The functional attributes of brain to hypoxia stress in relation to ion transport and its interaction during immune challenge have not yet delineated in fish. We, therefore, explored the pattern of ion transporter functions and messenger RNA (mRNA) expression of α1-subunit isoforms of Na+/K+-ATPase (NKA) in the brain segments, namely, prosencephalon (PC), mesencephalon (MC), and metencephalon (MeC) in an obligate air-breathing fish exposed either to hypoxia stress (30 minutes forced immersion in water) or challenged with zymosan treatment (25-200 ng g−1 for 24 hours) or both. Zymosan that produced nonspecific immune responses evoked differential regulation of NKA, H+/K+-ATPase (HKA), and Na+/NH4+-ATPase (NNA) in the varied brain segments. On the contrary, hypoxia stress that demanded activation of NKA in PC and MeC showed a reversed NKA activity pattern in MeC of immune-challenged fish. A compromised HKA and NNA regulation during hypoxia stress was found in immune-challenged fish, indicating the role of these brain ion transporters to hypoxia stress and immune challenges. The differential mRNA expression of α1-subunit isoforms of NKA, nkaα1a, nkaα1b, and nkaα1c, in hypoxia-stressed brain showed a shift in its expression pattern during hypoxia stress-immune interaction in PC and MC. Evidence is thus presented for the first time that ion transporters such as HKA and NNA along with NKA act as functional brain markers which respond differentially to both hypoxia stress and immune challenges. Taken together, the data further provide evidence for a differential Na+, K+, H+, and NH4+ ion signaling that exists in brain neuronal clusters during hypoxia stress-immune interaction as a result of modified regulations of NKA, HKA, and NNA transporter functions and nkaα1 isoform regulation. PMID:29238219

  10. Hypoxia Stress Modifies Na+/K+-ATPase, H+/K+-ATPase, [Formula: see text], and nkaα1 Isoform Expression in the Brain of Immune-Challenged Air-Breathing Fish.

    PubMed

    Peter, Mc Subhash; Simi, Satheesan

    2017-01-01

    Fishes are equipped to sense stressful stimuli and are able to respond to environmental stressor such as hypoxia with varying pattern of stress response. The functional attributes of brain to hypoxia stress in relation to ion transport and its interaction during immune challenge have not yet delineated in fish. We, therefore, explored the pattern of ion transporter functions and messenger RNA (mRNA) expression of α1-subunit isoforms of Na + /K + -ATPase (NKA) in the brain segments, namely, prosencephalon (PC), mesencephalon (MC), and metencephalon (MeC) in an obligate air-breathing fish exposed either to hypoxia stress (30 minutes forced immersion in water) or challenged with zymosan treatment (25-200 ng g -1 for 24 hours) or both. Zymosan that produced nonspecific immune responses evoked differential regulation of NKA, H + /K + -ATPase (HKA), and [Formula: see text] (NNA) in the varied brain segments. On the contrary, hypoxia stress that demanded activation of NKA in PC and MeC showed a reversed NKA activity pattern in MeC of immune-challenged fish. A compromised HKA and NNA regulation during hypoxia stress was found in immune-challenged fish, indicating the role of these brain ion transporters to hypoxia stress and immune challenges. The differential mRNA expression of α1-subunit isoforms of NKA, nkaα1a , nkaα1b , and nkaα1c , in hypoxia-stressed brain showed a shift in its expression pattern during hypoxia stress-immune interaction in PC and MC. Evidence is thus presented for the first time that ion transporters such as HKA and NNA along with NKA act as functional brain markers which respond differentially to both hypoxia stress and immune challenges. Taken together, the data further provide evidence for a differential Na + , K + , H + , and [Formula: see text] ion signaling that exists in brain neuronal clusters during hypoxia stress-immune interaction as a result of modified regulations of NKA, HKA, and NNA transporter functions and nkaα1 isoform regulation.

  11. microRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency.

    PubMed

    Giusti, Lorenzo; Mica, Erica; Bertolini, Edoardo; De Leonardis, Anna Maria; Faccioli, Primetta; Cattivelli, Luigi; Crosatti, Cristina

    2017-05-01

    Plant stress response is a complex molecular process based on transcriptional and posttranscriptional regulation of many stress-related genes. microRNAs are the best-studied class of small RNAs known to play key regulatory roles in plant response to stress, besides being involved in plant development and organogenesis. We analyzed the leaf miRNAome of two durum wheat cultivars (Cappelli and Ofanto) characterized by a contrasting water use efficiency, exposed to heat stress, and mild and severe drought stress. On the whole, we identified 98 miRNA highly similar to previously known miRNAs and grouped in 47 MIR families, as well as 85 novel candidate miRNA, putatively wheat specific. A total of 80 known and novel miRNA precursors were found differentially expressed between the two cultivars or modulated by stress and many of them showed a cultivar-specific expression profile. Interestingly, most in silico predicted targets of the miRNAs coming from the differentially expressed precursors have been experimentally linked in other species to mechanisms controlling stomatal movement, a finding in agreement with previous results showing that Cappelli has a lower stomatal conductance than Ofanto. Selected miRNAs were validated through a standardized and reliable stem-loop qRT-PCR procedure.

  12. Differentiation of Mesenchymal Stem Cells Towards Nephrogenic Lineage and Their Enhanced Resistance to Oxygen Peroxide-induced Oxidative Stress.

    PubMed

    Tayyeb, Asima; Shahzad, Naveed; Ali, Gibran

    2017-07-01

    Mesenchymal stem cells (MSCs) have been publicized to ameliorate kidney injury both in vitro and in vivo. However, very less is known if MSCs can be differentiated towards renal lineages and their further application potential in kidney injuries. The present study developed a conditioning system of growth factors fibroblast growth factor 2, transforming growth factor-β2, and leukemia inhibitory factor for in vitro differentiation of MSCs isolated from different sources towards nephrogenic lineage. Less invasively isolated adipose-derived MSCs were also compared to bone marrow-derived MSCs for their differentiation potential to induce renal cell. Differentiated MSCs were further evaluated for their resistance to oxidative stress induced by oxygen peroxide. A combination of growth factors successfully induced differentiation of MSCs. Both types of differentiated cells showed significant expression of pronephrogenic markers (Wnt4, Wt1, and Pax2) and renal epithelial markers (Ecad and ZO1). In contrast, expression of mesenchymal stem cells marker Oct4 and Vim were downregulated. Furthermore, differentiated adipose-derived MSCs and bone marrow-derived MSCs showed enhanced and comparable resistance to oxygen peroxide-induced oxidative stress. Adipose-derived MSC provides a promising alternative to bone marrow-derived MSC as a source of autologous stem cells in human kidney injuries. In addition, differentiated MSCs with further in vivo investigations may serve as a cell source for tissue engineering or cell therapy in different renal ailments.

  13. Detoxification strategies and regulation of oxygen production and flowering of Platanus acerifolia under lead (Pb) stress by transcriptome analysis.

    PubMed

    Wang, Limin; Yang, Haijiao; Liu, Rongning; Fan, Guoqiang

    2015-08-01

    Toxic metal pollution is a major environmental problem that has received wide attention. Platanus acerifolia (London plane tree) is an important greening tree species that can adapt to environmental pollution. The genetic basis and molecular mechanisms associated with the ability of P. acerifolia to respond lead (Pb) stress have not been reported so far. In this study, 16,246 unigenes differentially expressed unigenes that were obtained from P. acerifolia under Pb stress using next-generation sequencing. Essential pathways such as photosynthesis, and gibberellins and glutathione metabolism were enriched among the differentially expressed unigenes. Furthermore, many important unigenes, including antioxidant enzymes, plants chelate compounds, and metal transporters involved in defense and detoxification mechanisms, were differentially expressed in response to Pb stress. The unigenes encoding the oxygen-evolving enhancer Psb and OEE protein families were downregulated in Pb-stressed plants, implying that oxygen production might decrease in plants under Pb stress. The relationship between gibberellin and P. acerifolia flowering is also discussed. The information and new insights obtained in this study will contribute to further investigations into the molecular regulation mechanisms of Pb accumulation and tolerance in greening tree species.

  14. Anti-stress and neuronal cell differentiation induction effects of Rosmarinus officinalis L. essential oil.

    PubMed

    Villareal, Myra O; Ikeya, Ayumi; Sasaki, Kazunori; Arfa, Abdelkarim Ben; Neffati, Mohamed; Isoda, Hiroko

    2017-12-22

    Mood disorder accounts for 13 % of global disease burden. And while therapeutic agents are available, usually orally administered, most have unwanted side effects, and thus making the inhalation of essential oils (EOs) an attractive alternative therapy. Rosmarinus officinalis EO (ROEO), Mediterranean ROEO reported to improve cognition, mood, and memory, the effect on stress of which has not yet been determined. Here, the anti-stress effect of ROEO on stress was evaluated in vivo and in vitro. Six-week-old male ICR mice were made to inhale ROEO and subjected to tail suspension test (TST). To determine the neuronal differentiation effect of ROEO in vitro, induction of ROEO-treated PC12 cells differentiation was observed. Intracellular acetylcholine and choline, as well as the Gap43 gene expression levels were also determined. Inhalation of ROEO significantly decreased the immobility time of ICR mice and serum corticosterone level, accompanied by increased brain dopamine level. Determination of the underlying mechanism in vitro revealed a PC12 differentiation-induction effect through the modulation of intracellular acetylcholine, choline, and Gap43 gene expression levels. ROEO activates the stress response system through the NGF pathway and the hypothalamus-pituitary-adrenal axis, promoting dopamine production and secretion. The effect of ROEO may be attributed to its bioactive components, specifically to α-pinene, one of its major compounds that has anxiolytic property. The results of this study suggest that ROEO inhalation has therapeutic potential against stress-related psychiatric disorders.

  15. Shape-Shifted Red Blood Cells: A Novel Red Blood Cell Stage?

    PubMed Central

    Chico, Verónica; Puente-Marin, Sara; Ciordia, Sergio; Mena, María Carmen; Carracedo, Begoña; Mercado, Luis; Coll, Julio

    2018-01-01

    Primitive nucleated erythroid cells in the bloodstream have long been suggested to be more similar to nucleated red cells of fish, amphibians, and birds than the red cells of fetal and adult mammals. Rainbow trout Ficoll-purified red blood cells (RBCs) cultured in vitro undergo morphological changes, especially when exposed to stress, and enter a new cell stage that we have coined shape-shifted RBCs (shRBCs). We have characterized these shRBCs using transmission electron microscopy (TEM) micrographs, Wright–Giemsa staining, cell marker immunostaining, and transcriptomic and proteomic evaluation. shRBCs showed reduced density of the cytoplasm, hemoglobin loss, decondensed chromatin in the nucleus, and striking expression of the B lymphocyte molecular marker IgM. In addition, shRBCs shared some features of mammalian primitive pyrenocytes (extruded nucleus surrounded by a thin rim of cytoplasm and phosphatidylserine (PS) exposure on cell surface). These shRBCs were transiently observed in heat-stressed rainbow trout bloodstream for three days. Functional network analysis of combined transcriptomic and proteomic studies resulted in the identification of proteins involved in pathways related to the regulation of cell morphogenesis involved in differentiation, cellular response to stress, and immune system process. In addition, shRBCs increased interleukin 8 (IL8), interleukin 1 β (IL1β), interferon ɣ (IFNɣ), and natural killer enhancing factor (NKEF) protein production in response to viral hemorrhagic septicemia virus (VHSV). In conclusion, shRBCs may represent a novel cell stage that participates in roles related to immune response mediation, homeostasis, and the differentiation and development of blood cells. PMID:29671811

  16. Shape-Shifted Red Blood Cells: A Novel Red Blood Cell Stage?

    PubMed

    Chico, Verónica; Puente-Marin, Sara; Nombela, Iván; Ciordia, Sergio; Mena, María Carmen; Carracedo, Begoña; Villena, Alberto; Mercado, Luis; Coll, Julio; Ortega-Villaizan, María Del Mar

    2018-04-19

    Primitive nucleated erythroid cells in the bloodstream have long been suggested to be more similar to nucleated red cells of fish, amphibians, and birds than the red cells of fetal and adult mammals. Rainbow trout Ficoll-purified red blood cells (RBCs) cultured in vitro undergo morphological changes, especially when exposed to stress, and enter a new cell stage that we have coined shape-shifted RBCs (shRBCs). We have characterized these shRBCs using transmission electron microscopy (TEM) micrographs, Wright⁻Giemsa staining, cell marker immunostaining, and transcriptomic and proteomic evaluation. shRBCs showed reduced density of the cytoplasm, hemoglobin loss, decondensed chromatin in the nucleus, and striking expression of the B lymphocyte molecular marker IgM. In addition, shRBCs shared some features of mammalian primitive pyrenocytes (extruded nucleus surrounded by a thin rim of cytoplasm and phosphatidylserine (PS) exposure on cell surface). These shRBCs were transiently observed in heat-stressed rainbow trout bloodstream for three days. Functional network analysis of combined transcriptomic and proteomic studies resulted in the identification of proteins involved in pathways related to the regulation of cell morphogenesis involved in differentiation, cellular response to stress, and immune system process. In addition, shRBCs increased interleukin 8 (IL8), interleukin 1 β (IL1β), interferon ɣ (IFNɣ), and natural killer enhancing factor (NKEF) protein production in response to viral hemorrhagic septicemia virus (VHSV). In conclusion, shRBCs may represent a novel cell stage that participates in roles related to immune response mediation, homeostasis, and the differentiation and development of blood cells.

  17. Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; He, Kun; Yuan, Y. F.; Ma, Xiao-Ni; Li, Ying

    2014-02-01

    Sandblasting is one of the most effective methods to modify a metal surface and improve its properties for application. Micro-arc oxidation (MAO) could produce a ceramic coating on a dental implant, facilitating cellular differentiation and osseocomposite on it. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by an optimum composite technique to improve the bioactive performance. The effect of sandblasting intensity on microstructures and properties of the implant coatings is examined, and the modified surfaces are characterized in terms of their topography, phase, chemical composition, mechanical properties and hydroxyapatite (HA)-inducing ability. The results show that a moderate sandblasting micromachines the substrate in favorable combination of rough and residual stresses; its MAO coating deposits nano-hydroxyapatite after immersion in simulated body fluid (SBF) for 5 days exhibiting better bioactivity. The further improvement of the implant surface performance is attributed to an optimized composite technique.

  18. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    PubMed Central

    Yang, Liming; Fountain, Jake C.; Wang, Hui; Ni, Xinzhi; Ji, Pingsheng; Lee, Robert D.; Kemerait, Robert C.; Scully, Brian T.; Guo, Baozhu

    2015-01-01

    Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding. PMID:26492235

  19. Adrenaline inhibits osteogenesis via repressing miR-21 expression.

    PubMed

    Chen, Danying; Wang, Zuolin

    2017-01-01

    Sympathetic signaling is involved in bone homeostasis; however, the cellular and molecular mechanisms remain unknown. In this study, we found that the psychological stress mediator adrenaline inhibited osteogenic differentiation of human bone marrow-derived stem cells (hMSC) by reducing microRNA-21 (miR-21) expression. Briefly, adrenaline significantly inhibited the osteogenic differentiation of hMSCs, as observed with both Alizarin red staining and maker gene expression (RUNX2, OSX, OCN, and OPN). During this process, miR-21 was suppressed by adrenaline via inhibition of histone acetylation, as verified by H3K9Ac chromatin immunoprecipitation (ChIP) assay. MiR-21 was confirmed to promote hMSC osteogenic differentiation, and overexpression of miR-21 reversed the impeditive effect of adrenaline on hMSC osteogenic differentiation. Our results demonstrate that down-regulation of miR-21 is responsible for the adrenaline-mediated inhibition of hMSC osteogenic differentiation. These findings indicate a regulation of bone metabolism by psychological stress and also provide a molecular basis for psychological stress-associated bone diseases. © 2016 International Federation for Cell Biology.

  20. Synchrotron X-ray measurement of residual strain within the nose of a worn manganese steel railway crossing

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Zhang, Y.; Xu, R.; Danielsen, HK; Jensen, D. Juul

    2017-07-01

    Switches and crossings are an integral part of any railway network. Plastic deformation associated with wear and rolling contact fatigue due to repeated passage of trains cause severe damage leading to the formation of surface and sub-surface cracks which ultimately may result in rail failure. Knowledge of the internal stress distribution adds to the understanding of crack propagation and may thus help to prevent catastrophic rail failures. In this work, the residual strains inside the bulk of a damaged nose of a manganese railway crossing that was in service for five years has been investigated by using differential aperture synchrotron X-ray diffraction. The main purpose of this paper is to describe how this method allows non-destructive measurement of residual strains in selected local volumes in the bulk of the rail. Measurements were conducted on the transverse surface at a position about 6.5 mm from the rail running surface of a crossing nose. The results revealed the presence of significant compressive residual strains along the running direction of the rail.

  1. Antioxidants Maintain E-Cadherin Levels to Limit Drosophila Prohemocyte Differentiation

    PubMed Central

    Gao, Hongjuan; Wu, Xiaorong; Simon, LaTonya; Fossett, Nancy

    2014-01-01

    Mitochondrial reactive oxygen species (ROS) regulate a variety of biological processes by networking with signal transduction pathways to maintain homeostasis and support adaptation to stress. In this capacity, ROS have been shown to promote the differentiation of progenitor cells, including mammalian embryonic and hematopoietic stem cells and Drosophila hematopoietic progenitors (prohemocytes). However, many questions remain about how ROS alter the regulatory machinery to promote progenitor differentiation. Here, we provide evidence for the hypothesis that ROS reduce E-cadherin levels to promote Drosophila prohemocyte differentiation. Specifically, we show that knockdown of the antioxidants, Superoxide dismutatase 2 and Catalase reduce E-cadherin protein levels prior to the loss of Odd-skipped-expressing prohemocytes. Additionally, over-expression of E-cadherin limits prohemocyte differentiation resulting from paraquat-induced oxidative stress. Furthermore, two established targets of ROS, Enhancer of Polycomb and FOS, control the level of E-cadherin protein expression. Finally, we show that knockdown of either Superoxide dismutatase 2 or Catalase leads to an increase in the E-cadherin repressor, Serpent. As a result, antioxidants and targets of ROS can control E-cadherin protein levels, and over-expression of E-cadherin can ameliorate the prohemocyte response to oxidative stress. Collectively, these data strongly suggest that ROS promote differentiation by reducing E-cadherin levels. In mammalian systems, ROS promote embryonic stem cell differentiation, whereas E-cadherin blocks differentiation. However, it is not known if elevated ROS reduce E-cadherin to promote embryonic stem cell differentiation. Thus, our findings may have identified an important mechanism by which ROS promote stem/progenitor cell differentiation. PMID:25226030

  2. Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis.

    PubMed

    Mandell, Jacob C; Khurana, Bharti; Smith, Stacy E

    2017-09-01

    Stress fractures of the foot and ankle are a commonly encountered problem among athletes and individuals participating in a wide range of activities. This illustrated review, the second of two parts, discusses site-specific etiological factors, imaging appearances, treatment options, and differential considerations of stress fractures of the foot and ankle. The imaging and clinical management of stress fractures of the foot and ankle are highly dependent on the specific location of the fracture, mechanical forces acting upon the injured site, vascular supply of the injured bone, and the proportion of trabecular to cortical bone at the site of injury. The most common stress fractures of the foot and ankle are low risk and include the posteromedial tibia, the calcaneus, and the second and third metatarsals. The distal fibula is a less common location, and stress fractures of the cuboid and cuneiforms are very rare, but are also considered low risk. In contrast, high-risk stress fractures are more prone to delayed union or nonunion and include the anterior tibial cortex, medial malleolus, navicular, base of the second metatarsal, proximal fifth metatarsal, hallux sesamoids, and the talus. Of these high-risk types, stress fractures of the anterior tibial cortex, the navicular, and the proximal tibial cortex may be predisposed to poor healing because of the watershed blood supply in these locations. The radiographic differential diagnosis of stress fracture includes osteoid osteoma, malignancy, and chronic osteomyelitis.

  3. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata.

    PubMed

    DeSalvo, M K; Voolstra, C R; Sunagawa, S; Schwarz, J A; Stillman, J H; Coffroth, M A; Szmant, A M; Medina, M

    2008-09-01

    The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographical scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a complementary DNA microarray containing 1310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. In a second experiment, we identified differentially expressed genes during a time course experiment with four time points across 9 days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca(2+) homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first medium-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca(2+) homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis.

  4. Determination of Multiple Near-Surface Residual Stress Components in Laser Peened Aluminum Alloy via the Contour Method

    NASA Astrophysics Data System (ADS)

    Toparli, M. Burak; Fitzpatrick, Michael E.; Gungor, Salih

    2015-09-01

    In this study, residual stress fields, including the near-surface residual stresses, were determined for an Al7050-T7451 sample after laser peening. The contour method was applied to measure one component of the residual stress, and the relaxed stresses on the cut surfaces were then measured by X-ray diffraction. This allowed calculation of the three orthogonal stress components using the superposition principle. The near-surface results were validated with results from incremental hole drilling and conventional X-ray diffraction. The results demonstrate that multiple residual stress components can be determined using a combination of the contour method and another technique. If the measured stress components are congruent with the principal stress axes in the sample, then this allows for determination of the complete stress tensor.

  5. Epithelial Xbp1 Is Required for Cellular Proliferation and Differentiation during Mammary Gland Development

    PubMed Central

    Hasegawa, Daisuke; Calvo, Veronica; Avivar-Valderas, Alvaro; Lade, Abigale; Chou, Hsin-I; Lee, Youngmin A.; Farias, Eduardo F.; Aguirre-Ghiso, Julio A.

    2015-01-01

    Xbp1, a key mediator of the unfolded protein response (UPR), is activated by IRE1α-mediated splicing, which results in a frameshift to encode a protein with transcriptional activity. However, the direct function of Xbp1 in epithelial cells during mammary gland development is unknown. Here we report that the loss of Xbp1 in the mammary epithelium through targeted deletion leads to poor branching morphogenesis, impaired terminal end bud formation, and spontaneous stromal fibrosis during the adult virgin period. Additionally, epithelial Xbp1 deletion induces endoplasmic reticulum (ER) stress in the epithelium and dramatically inhibits epithelial proliferation and differentiation during lactation. The synthesis of milk and its major components, α/β-casein and whey acidic protein (WAP), is significantly reduced due to decreased prolactin receptor (Prlr) and ErbB4 expression in Xbp1-deficient mammary epithelium. Reduction of Prlr and ErbB4 expression and their diminished availability at the cell surface lead to reduced phosphorylated Stat5, an essential regulator of cell proliferation and differentiation during lactation. As a result, lactating mammary glands in these mice produce less milk protein, leading to poor pup growth and postnatal death. These findings suggest that the loss of Xbp1 induces a terminal UPR which blocks proliferation and differentiation during mammary gland development. PMID:25713103

  6. Abiotic Stresses Modulate Landscape of Poplar Transcriptome via Alternative Splicing, Differential Intron Retention, and Isoform Ratio Switching

    PubMed Central

    Filichkin, Sergei A.; Hamilton, Michael; Dharmawardhana, Palitha D.; Singh, Sunil K.; Sullivan, Christopher; Ben-Hur, Asa; Reddy, Anireddy S. N.; Jaiswal, Pankaj

    2018-01-01

    Abiotic stresses affect plant physiology, development, growth, and alter pre-mRNA splicing. Western poplar is a model woody tree and a potential bioenergy feedstock. To investigate the extent of stress-regulated alternative splicing (AS), we conducted an in-depth survey of leaf, root, and stem xylem transcriptomes under drought, salt, or temperature stress. Analysis of approximately one billion of genome-aligned RNA-Seq reads from tissue- or stress-specific libraries revealed over fifteen millions of novel splice junctions. Transcript models supported by both RNA-Seq and single molecule isoform sequencing (Iso-Seq) data revealed a broad array of novel stress- and/or tissue-specific isoforms. Analysis of Iso-Seq data also resulted in the discovery of 15,087 novel transcribed regions of which 164 show AS. Our findings demonstrate that abiotic stresses profoundly perturb transcript isoform profiles and trigger widespread intron retention (IR) events. Stress treatments often increased or decreased retention of specific introns – a phenomenon described here as differential intron retention (DIR). Many differentially retained introns were regulated in a stress- and/or tissue-specific manner. A subset of transcripts harboring super stress-responsive DIR events showed persisting fluctuations in the degree of IR across all treatments and tissue types. To investigate coordinated dynamics of intron-containing transcripts in the study we quantified absolute copy number of isoforms of two conserved transcription factors (TFs) using Droplet Digital PCR. This case study suggests that stress treatments can be associated with coordinated switches in relative ratios between fully spliced and intron-retaining isoforms and may play a role in adjusting transcriptome to abiotic stresses. PMID:29483921

  7. Development and Optimization of a Fluorescent Differential Display PCR System for Analyzing the Stress Response in Lactobacillus sakei Strains

    PubMed Central

    Bonomo, Maria Grazia; Sico, Maria Anna; Grieco, Simona; Salzano, Giovanni

    2009-01-01

    Lactobacillus sakei is widely used as starter in the production process of Italian fermented sausages and its growth and survival are affected by various factors. We studied the differential expression of genome in response to different stresses by the fluorescent differential display (FDD) technique. This study resulted in the development and optimization of an innovative technique, with a high level of reproducibility and quality, which allows the identification of gene expression changes associated with different microbial behaviours under different growth conditions. PMID:22253979

  8. Differentially expressed genes in Populus simonii x P. nigra in respnse to NaCl stress using cDNA-AFLP

    USDA-ARS?s Scientific Manuscript database

    Salinity is an important environmental factor limiting growth and productivity of plants, and affects almost every aspect of the plant physiology and biochemistry. The objective of this study was to apply cDNA-AFLP and to identify differentially expressed genes in response to NaCl stress vs. no-stre...

  9. Effects of divorce on Dutch boys' and girls' externalizing behavior in Gene × Environment perspective: diathesis stress or differential susceptibility in the Dutch Tracking Adolescents' Individual Lives Survey study?

    PubMed

    Nederhof, Esther; Belsky, Jay; Ormel, Johan; Oldehinkel, Albertine J

    2012-08-01

    The effects of divorce on children's behavioral development have proven to be quite varied across studies, and most developmental and family scholars today appreciate the great heterogeneity in divorce effects. Thus, this inquiry sought to determine whether select dopaminergic genes previously associated with externalizing behavior and/or found to moderate diverse environmental effects (dopamine receptors D2 and D4, catechol-O-methyltransferase) might moderate divorce effects on adolescent self-reported externalizing problems; and, if so, whether evidence of gene-environment (G × E) interaction would prove consistent with diathesis-stress or differential-susceptibility models of environmental action. Data from the first and third wave of the Dutch Tracking Adolescents' Individual Lives Survey (n = 1,134) revealed some evidence of G × E interaction reflecting diathesis-stress but not differential susceptibility. It is intriguing that some evidence pointed to "vantage sensitivity," which are benefits accruing to those with a specific genotype when their parents remained together, the exact opposite of diathesis-stress. The limits of this work are considered, especially with regard to the conditions for testing differential susceptibility, and future directions are outlined.

  10. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells.

    PubMed

    Chandran, Parwathy; Riviere, Jim E; Monteiro-Riviere, Nancy A

    2017-05-01

    This study investigated the role of nanoparticle size and surface chemistry on biocorona composition and its effect on uptake, toxicity and cellular responses in human umbilical vein endothelial cells (HUVEC), employing 40 and 80 nm gold nanoparticles (AuNP) with branched polyethyleneimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings. Proteomic analysis identified 59 hard corona proteins among the various AuNP, revealing largely surface chemistry-dependent signature adsorbomes exhibiting human serum albumin (HSA) abundance. Size distribution analysis revealed the relative instability and aggregation inducing potential of bare and corona-bound BPEI-AuNP, over LA- and PEG-AuNP. Circular dichroism analysis showed surface chemistry-dependent conformational changes of proteins binding to AuNP. Time-dependent uptake of bare, plasma corona (PC) and HSA corona-bound AuNP (HSA-AuNP) showed significant reduction in uptake with PC formation. Cell viability studies demonstrated dose-dependent toxicity of BPEI-AuNP. Transcriptional profiling studies revealed 126 genes, from 13 biological pathways, to be differentially regulated by 40 nm bare and PC-bound BPEI-AuNP (PC-BPEI-AuNP). Furthermore, PC formation relieved the toxicity of cationic BPEI-AuNP by modulating expression of genes involved in DNA damage and repair, heat shock response, mitochondrial energy metabolism, oxidative stress and antioxidant response, and ER stress and unfolded protein response cascades, which were aberrantly expressed in bare BPEI-AuNP-treated cells. NP surface chemistry is shown to play the dominant role over size in determining the biocorona composition, which in turn modulates cell uptake, and biological responses, consequently defining the potential safety and efficacy of nanoformulations.

  11. Thermally induced stresses in boulders on airless body surfaces: Implications for breakdown

    NASA Astrophysics Data System (ADS)

    Molaro, Jamie; Byrne, Shane

    2016-10-01

    We investigate the role of thermally induced rock breakdown in the evolution of airless body surfaces. This process is driven by the propagation of microcracks due to stress caused by changes in temperature. Here we model the thermomechanical response of spherical lunar boulders of varying size to diurnal thermal forcing. Exploring the magnitude and distribution of induced stresses reveals a bimodal response. During sunrise, high stresses occur in the boulders' interiors that are associated with large-scale temperature gradients (developed due to overnight cooling). During sunset, high stresses occur at the boulders' exteriors due to the cooling and contraction of the surface. Both kinds of stresses are on the order of 10 MPa in 1 m boulders and decrease for smaller radii, suggesting that larger boulders break down more quickly. Boulders ≤30 cm exhibit a weak response to thermal forcing, suggesting a boulder-size threshold below which crack propagation may not occur. Boulders of any size buried by regolith are shielded from thermal breakdown.As boulders increase in size (>1 m), stresses increase to several 10s of MPa as the behavior of their surfaces approaches that of an infinite halfspace. The rate of stress-increase is rapid until the boulder reaches ~5 times the skin depth (~4 m) in size. Above this size, stresses only slowly increase as the surface loses thermal contact with the boulder center. Boulders between 3 m and 7 m have less volume of material to erode than larger boulders (> 10 m) but only moderately lower stresses, suggesting they may be preferentially broken down by this process.Stress orientations can yield insight into how breakdown may occur. Interior stresses act on a plane perpendicular to the path of the sun, driving the propagation of surface-parallel cracks and contributing to exfoliation of planar fragments. Exterior stresses act parallel to the boulder surface driving the propagation of surface-perpendicular cracks and contributing to granular disintegration. These two mechanisms likely work together to hasten disaggregation of the near-surface.We will present results for boulder stresses on the Moon and other airless bodies, and discuss implications for breakdown on these surfaces.

  12. CD47: A Master Regulator of Stemness | Center for Cancer Research

    Cancer.gov

    Identifying the pathways cells use to regulate proliferation, differentiation, and survival are essential for designing new treatments to stimulate organ and tissue repair following injury and for diseases as diverse as cancer and diabetes. The thrombospondin-1 receptor CD47 seems to limit cell survival and regeneration after stress. At the same time, CD47 levels are increased on the surface of cancer cells, which show enhanced proliferation and survival. To understand this apparent paradox, David Roberts, Ph.D., in CCR’s Laboratory of Pathology and his colleagues decided to investigate CD47’s mechanism of action using CD47- and thrombospondin-1-null mice.

  13. Effects of Maternally-Transferred Methylmercury on Stress Physiology in Northern Water Snake (Nerodia sipedon) Neonates.

    PubMed

    Cusaac, J Patrick W; Kremer, Victoria; Wright, Raymond; Henry, Cassandra; Otter, Ryan R; Bailey, Frank C

    2016-06-01

    Biomagnification of methylmercury in aquatic systems can cause elevated tissue mercury (Hg) and physiological stress in top predators. Mercury is known to affect stress hormone levels in mammals, birds and fish. In this study, the effects of maternally-transferred methylmercury on the stress physiology of Northern Water Snake (Nerodia sipedon) neonates were tested. Gravid females were dosed via force-fed capsules during late gestation with 0, 0.01, or 10 µg methylmercury per gram of body mass. Plasma corticosterone levels and leukocyte differentials were analyzed in baseline and confinement-stressed neonates from all dose levels. Neither Hg nor confinement stress had a significant effect on leukocyte differentials nor was Hg related to corticosterone levels. However, stress group neonates showed lower heterophil/lymphocyte ratios and this study was the first to show that neonate N. sipedon can upregulate CORT in response to stress. These results indicate that N. sipedon may be somewhat tolerant to Hg contamination.

  14. Cellular stress responses to chronic heat shock and shell damage in temperate Mya truncata.

    PubMed

    Sleight, Victoria A; Peck, Lloyd S; Dyrynda, Elisabeth A; Smith, Valerie J; Clark, Melody S

    2018-05-12

    Acclimation, via phenotypic flexibility, is a potential means for a fast response to climate change. Understanding the molecular mechanisms underpinning phenotypic flexibility can provide a fine-scale cellular understanding of how organisms acclimate. In the last 30 years, Mya truncata populations around the UK have faced an average increase in sea surface temperature of 0.7 °C and further warming of between 1.5 and 4 °C, in all marine regions adjacent to the UK, is predicted by the end of the century. Hence, data are required on the ability of M. truncata to acclimate to physiological stresses, and most notably, chronic increases in temperature. Animals in the present study were exposed to chronic heat-stress for 2 months prior to shell damage and subsequently, only 3, out of 20 damaged individuals, were able to repair their shells within 2 weeks. Differentially expressed genes (between control and damaged animals) were functionally enriched with processes relating to cellular stress, the immune response and biomineralisation. Comparative transcriptomics highlighted genes, and more broadly molecular mechanisms, that are likely to be pivotal in this lack of acclimation. This study demonstrates that discovery-led transcriptomic profiling of animals during stress-response experiments can shed light on the complexity of biological processes and changes within organisms that can be more difficult to detect at higher levels of biological organisation.

  15. Development of a MEMS shear stress sensor for use in wind tunnel applications

    NASA Astrophysics Data System (ADS)

    Barnard, Casey; Meloy, Jessica; Sheplak, Mark; Interdisciplinary Microsystems Group Team

    2013-11-01

    The measurement of mean and fluctuating wall shear-stress in laminar, transitional, and turbulent boundary layers and channel flows has applications both in industry and the scientific community. Currently there is no method for time resolved, direct measurement of wall shear stress at the spatial and temporal scales of turbulent flow structures inside model testing facilities. To address this need, a silicon micromachined differential capacitance shear stress sensor system has been developed. Mean measurements are enabled by custom synchronous modulation/demodulation circuitry, which allows for measurement of both magnitude and phase of incident wall shear stress. Sizes of the largest device features are on the order of relevant viscous length scales, to minimize flow disturbance and provide a hydraulically smooth sensing surface. Static calibration is performed in a flow cell setup, and an acoustic plane wave tube is used for dynamic response data. Normalized sensitivity of 1.34 mV/V/Pa has been observed over a bandwidth of 4.8 kHz, with a minimum detectable signal of 6.5 mPa. Initial results show qualitative agreement with contemporary measurement techniques. The design, fabrication, support electronics, characterization, and preliminary experimental performance of this sensor will be presented. The support of NASA SFW-NRA NNX11AI30A, AFOSR grant #FA 9550-12-1-0469, and Sandia Campus Executive Fellowship are gratefully acknowledged.

  16. Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079

    NASA Astrophysics Data System (ADS)

    Zhong, L. Q.; Liang, Y. L.; Hu, H.

    2017-09-01

    In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.

  17. Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity

    PubMed Central

    Zeng, Fanrong; Shabala, Lana; Zhou, Meixue; Zhang, Guoping; Shabala, Sergey

    2013-01-01

    Salinity and waterlogging are two major factors affecting crop production around the world and often occur together (e.g., salt brought to the surface by rising water tables). While the physiological and molecular mechanisms of plant responses to each of these environmental constraints are studied in detail, the mechanisms underlying plant tolerance to their combined stress are much less understood. In this study, whole-plant physiological responses to individual/combined salinity and waterlogging stresses were studied using two barley varieties grown in either vermiculite (semi-hydroponics) or sandy loam. Two weeks of combined salinity and waterlogging treatment significantly decreased plant biomass, chlorophyll content, maximal quantum efficiency of PSII and water content (WC) in both varieties, while the percentage of chlorotic and necrotic leaves and leaf sap osmolality increased. The adverse effects of the combined stresses were much stronger in the waterlogging-sensitive variety Naso Nijo. Compared with salinity stress alone, the combined stress resulted in a 2-fold increase in leaf Na+, but a 40% decrease in leaf K+ content. Importantly, the effects of the combined stress were more pronounced in sandy loam compared with vermiculite and correlated with changes in the soil redox potential and accumulation of Mn and Fe in the waterlogged soils. It is concluded that hypoxia alone is not a major factor determining differential plant growth under adverse stress conditions, and that elemental toxicities resulting from changes in soil redox potential have a major impact on genotypic differences in plant physiological and agronomical responses. These results are further discussed in the context of plant breeding for waterlogging stress tolerance. PMID:23967003

  18. Differential Gene Expression of Longan Under Simulated Acid Rain Stress.

    PubMed

    Zheng, Shan; Pan, Tengfei; Ma, Cuilan; Qiu, Dongliang

    2017-05-01

    Differential gene expression profile was studied in Dimocarpus longan Lour. in response to treatments of simulated acid rain with pH 2.5, 3.5, and a control (pH 5.6) using differential display reverse transcription polymerase chain reaction (DDRT-PCR). Results showed that mRNA differential display conditions were optimized to find an expressed sequence tag (EST) related with acid rain stress. The potential encoding products had 80% similarity with a transcription initiation factor IIF of Gossypium raimondii and 81% similarity with a protein product of Theobroma cacao. This fragment is the transcription factor activated by second messenger substances in longan leaves after signal perception of acid rain.

  19. Differentiating the World History Course.

    ERIC Educational Resources Information Center

    Lasher, Mary E.

    1986-01-01

    An honors world history course for gifted tenth graders compacted traditional content while offering differential reading materials and content as well as differentiated skill development. Unusual activities, such as international feast and historical persons party, stressed divergent thinking. (CL)

  20. ZERODUR strength modeling with Weibull statistical distributions

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter

    2016-07-01

    The decisive influence on breakage strength of brittle materials such as the low expansion glass ceramic ZERODUR is the surface condition. For polished or etched surfaces it is essential if micro cracks are present and how deep they are. Ground surfaces have many micro cracks caused by the generation process. Here only the depths of the micro cracks are relevant. In any case presence and depths of micro cracks are statistical by nature. The Weibull distribution is the model used traditionally for the representation of such data sets. It is based on the weakest link ansatz. The use of the two or three parameter Weibull distribution for data representation and reliability prediction depends on the underlying crack generation mechanisms. Before choosing the model for a specific evaluation, some checks should be done. Is there only one mechanism present or is it to be expected that an additional mechanism might contribute deviating results? For ground surfaces the main mechanism is the diamond grains' action on the surface. However, grains breaking from their bonding might be moved by the tool across the surface introducing a slightly deeper crack. It is not to be expected that these scratches follow the same statistical distribution as the grinding process. Hence, their description with the same distribution parameters is not adequate. Before including them a dedicated discussion should be performed. If there is additional information available influencing the selection of the model, for example the existence of a maximum crack depth, this should be taken into account also. Micro cracks introduced by small diamond grains on tools working with limited forces cannot be arbitrarily deep. For data obtained with such surfaces the existence of a threshold breakage stress should be part of the hypothesis. This leads to the use of the three parameter Weibull distribution. A differentiation based on the data set alone without preexisting information is possible but requires a large data set. With only 20 specimens per sample such differentiation is not possible. This requires 100 specimens per set, the more the better. The validity of the statistical evaluation methods is discussed with several examples. These considerations are of special importance because of their consequences on the prognosis methods and results. Especially the use of the two parameter Weibull distribution for high strength surfaces has led to non-realistic results. Extrapolation down to low acceptable probability of failure covers a wide range without data points existing and is mainly influenced by the slope determined by the high strength specimens. In the past this misconception has prevented the use of brittle materials for stress loads, which they could have endured easily.

  1. The differential equation of an arbitrary reflecting surface

    NASA Astrophysics Data System (ADS)

    Melka, Richard F.; Berrettini, Vincent D.; Yousif, Hashim A.

    2018-05-01

    A differential equation describing the reflection of a light ray incident upon an arbitrary reflecting surface is obtained using the law of reflection. The derived equation is written in terms of a parameter and the value of this parameter determines the nature of the reflecting surface. Under various parametric constraints, the solution of the differential equation leads to the various conic surfaces but is not generally solvable. In addition, the dynamics of the light reflections from the conic surfaces are executed in the Mathematica software. Our derivation is the converse of the traditional approach and our analysis assumes a relation between the object distance and the image distance. This leads to the differential equation of the reflecting surface.

  2. Cancer Risk-Assessment of Radiation Damage in Ataxia Telangiectasia Heterozygous Human Breast Epithelial Cell Cultures

    NASA Technical Reports Server (NTRS)

    Applewhite, Lisa C.

    2002-01-01

    This paper describes the study of the markers of cellular changes that are found during the onset of carcinogenesis. Several of the biological factors are markers of stress response, oncoprotein expression, and differentiation factors. Oxidative stress response agents such as heat shock proteins (HSPs) protect cells from oxidative stresses such as ionizing radiation. The onocoprotein HER-2/neu, a specific breast cancer marker, indicates early onset of cancer. Additional structural and morphogenetic markers of differentiation were considered in order to determine initial cellular changes at the initial onset of cancer. As an additional consideration, all-trans retinoic acid (RA), a differentiation agent, was considered because of its known role in regulating normal differentiation and inhibiting tumor proliferation via specific nuclear receptors. This paper discusses study and results of the preliminary analyses of gamma irradiation of AT heterozygous human breast epithelial cells (WH). Comparisons are also made of the effects various RA concentrations post-irradiation.

  3. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films.

    PubMed

    Tang, Bolin; Zhang, Bo; Zhuang, Junjun; Wang, Qi; Dong, Lingqing; Cheng, Kui; Weng, Wenjian

    2018-07-01

    Surface potential of biomaterials can dramatically influence cellular osteogenic differentiation. In this work, a wide range of surface potential on ferroelectric polyvinylidene fluoride trifluoroethylene (P(VDF-TrFE)) films was designed to get insight into the interfacial interaction of cell-charged surface. The P(VDF-TrFE) films poled by contact electric poling at various electric fields obtained well stabilized surface potential, with wide range from -3 to 915 mV. The osteogenic differentiation level of cells cultured on the films was strongly dependent on surface potential and reached the optimum at 391 mV in this system. Binding specificity assay indicated that surface potential could effectively govern the binding state of the adsorbed fibronectin (FN) with integrin. Molecular dynamic (MD) simulation further revealed that surface potential brought a significant difference in the relative distance between RGD and synergy PHSRN sites of adsorbed FN, resulting in a distinct integrin-FN binding state. These results suggest that the full binding of integrin α5β1 with both RGD and PHSRN sites of FN possesses a strong ability to activate osteogenic signaling pathway. This work sheds light on the underlying mechanism of osteogenic differentiation behavior on charged material surfaces, and also provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. The ferroelectric P(VDF-TrFE) films with steady and a wide range of surface potential were designed to understand underlying mechanism of cell-charged surface interaction. The results showed that the charged surface well favored upregulation of osteogenic differentiation of MC3T3-E1 cells, and more importantly, a highest level occurred on the film with a moderate surface potential. Experiments and molecular dynamics simulation demonstrated that the surface potential could govern fibronectin conformation and then the integrin-fibronectin binding. We propose that a full binding state of integrin α5β1 with fibronectin induces effective activation of integrin-mediated FAK/ERK signaling pathway to upregulate cellular osteogenic differentiation. This work provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Spatial and Temporal Variation of in-situ Stress in and around Active Fault zones in Central Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, R.; Omura, K.; Matsuda, T.; Iio, Y.

    2002-12-01

    In the "Active Fault Zone Drilling Project in Japan," we have compared the relationship between the stress concentration state and the heterogeneous strength of an earthquake fault zone in different conditions. The Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2) and the Neodani fault which appeared by the 1891 Nobi earthquake (M=8.0), have been drilled through their fault fracture zones. A similar experiment conducted on and research of the Atera fault, of which some parts have seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9). We can use a deep borehole as a reliable tool to understand overall fault structure and composed materials directly. Additionally, the stress states in and around the fault fractured zones were obtained from in-situ stress measurements by the hydraulic fracturing method. Important phenomena such as rapid stress drop in the fault fracture zones were observed in the Neodani well (1300 m deep) and the Nojima well (1800 m) of the fault zone drillings, as well as in the Ashio well (2,000 m) in the focal area. In the Atera fault project, we have conducted integrated investigations by surface geophysical survey and drilling around the Atera fault. Four boreholes (400 m to 600 m deep) were located on a line crossing the fracture zone of the Atera fault. We noted that the stress magnitude decreases in the area closer to the center of the fracture zone. Furthermore the orientation of the maximum horizontal compressive stress was almost reverse of the fault moving direction. These results support the idea that the differential stress is extremely small at narrow zones adjoining fracture zones. We also noted that the frictional strength of the crust adjacent to the faults is high and the level of shear stress in the crust adjacent to the faults is principally controlled by the frictional strength of rock. We argue that the stress state observed in these sites exists only if the faults are quite "weak." As a temporal variation of stresses, crustal stress was recorded from 1978 to before the Kobe earthquake in and around the area where the earthquake occurred. By examining this data, the change in tectonic stress gradually increased prior to the earthquake. After the earthquake, the same boreholes were once again used to obtain new data. From these measurements, we were able to determine that there was a definite drop in the crustal stress in the area and that there was a change in the direction of the principal stresses. The continual measuring is essential to estimate the absolute stress magnitude that initiate earthquakes and control their propagation.

  5. Time Evolution of Modeled Reynolds Stresses in Planar Homogeneous Flows

    NASA Technical Reports Server (NTRS)

    Jongen, T.; Gatski, T. B.

    1997-01-01

    The analytic expression of the time evolution of the Reynolds stress anisotropy tensor in all planar homogeneous flows is obtained by exact integration of the modeled differential Reynolds stress equations. The procedure is based on results of tensor representation theory, is applicable for general pressure-strain correlation tensors, and can account for any additional turbulence anisotropy effects included in the closure. An explicit solution of the resulting system of scalar ordinary differential equations is obtained for the case of a linear pressure-strain correlation tensor. The properties of this solution are discussed, and the dynamic behavior of the Reynolds stresses is studied, including limit cycles and sensitivity to initial anisotropies.

  6. Differential impact of environmental stresses on the pea mitochondrial proteome.

    PubMed

    Taylor, Nicolas L; Heazlewood, Joshua L; Day, David A; Millar, A Harvey

    2005-08-01

    Exposure to adverse environmental conditions causes oxidative stress in many organisms, leading either to disease and debilitation or to response and tolerance. Mitochondria are a key site of oxidative stress and of cellular response and play important roles in cell survival. We analyzed the response of mitochondria in pea (Pisum sativum) plants to the common stresses associated with drought, cold, and herbicides. These treatments all altered photosynthetic and respiratory rates of pea leaves to various extents, but only herbicides significantly increased lipid peroxidation product accumulation. Mitochondria isolated from the stressed pea plants maintained their electron transport chain activity, but changes were evident in the abundance of uncoupling proteins, non-phosphorylating respiratory pathways, and oxidative modification of lipoic acid moieties on mitochondrial proteins. These data suggest that herbicide treatment placed a severe oxidative stress on mitochondria, whereas chilling and particularly drought were milder stresses. Detailed analysis of the soluble proteome of mitochondria by gel electrophoresis and mass spectrometry revealed differential degradation of key matrix enzymes during treatments with chilling being significantly more damaging than drought. Differential induction of heat shock proteins and specific losses of other proteins illustrated the diversity of response to these stresses at the protein level. Cross-species matching was required for mass spectrometry identification of nine proteins because only a limited number of pea cDNAs have been sequenced, and the full pea genome is not available. Blue-native separation of intact respiratory chain complexes revealed little if any change in response to environmental stresses. Together these data suggest that although many of the molecular events identified by chemical stresses of mitochondria from a range of model eukaryotes are also apparent during environmental stress of plants, their extent and significance can vary substantially.

  7. On the State of Stress and Failure Prediction Near Planetary Surface Loads

    NASA Astrophysics Data System (ADS)

    Schultz, R. A.

    1996-03-01

    The state of stress surrounding planetary surface loads has been used extensively to predict failure of surface rocks and to invert this information for effective elastic thickness. As demonstrated previously, however, several factors can be important including an explicit comparison between model stresses and rock strength as well as the magnitude of calculated stress. As re-emphasized below, failure to take stress magnitudes into account can lead to erroneous predictions of near-surface faulting. This abstract results from discussions on graben formation at Fall 1995 AGU.

  8. Digital gene expression analysis in hemocytes of the white shrimp Litopenaeus vannamei in response to low salinity stress.

    PubMed

    Zhao, Qun; Pan, Luqing; Ren, Qin; Hu, Dongxu

    2015-02-01

    The white shrimp Litopenaeus vannamei has been greatly impacted by low salinity stress. To gain knowledge on the immune response in L. vannamei under such stress, we investigated digital gene expression (DEG) in L. vannamei hemocytes using the deep-sequencing platform Illumina HiSeq 2000. In total, 38,155 high quality unigenes with average length 770 bp were generated; 145 and 79 genes were identified up- or down-regulated, respectively. Functional categorization and pathways of the differentially expressed genes revealed that immune signaling pathways, cellular immunity, humoral immunity, apoptosis, cellular protein synthesis, lipid transport and energy metabolism were the differentially regulated processes occurring during low salinity stress. These results will provide a resource for subsequent gene expression studies regarding environmental stress and a valuable gene information for a better understanding of immune mechanisms of L. vannamei under low salinity stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Differentiating Stress Fracture From Periostitis.

    PubMed

    Martire, J R

    1994-10-01

    In brief Even in the age of high-technology MRI and CT, the triple-phase bone scan (TPBS) remains an exceptionally useful and accurate tool in evaluating athletic injuries. This is perhaps best seen in active people with overuse injuries of the tibia, femur, or humerus when plain films are negative but bone pain persists. Differentiating periostitis from stress fracture requires analyzing distinctive TPBS appearances and patterns.

  10. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3more » in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated inhibition of PPARγ expression may contribute to inhibition of adipocyte differentiation during cellular stress including ER stress.« less

  11. Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea.

    PubMed

    Ahmed, Nasar Uddin; Jung, Hee-Jeong; Park, Jong-In; Cho, Yong-Gu; Hur, Yoonkang; Nou, Ill-Sup

    2015-01-10

    Cold and freezing stress is a major environmental constraint to the production of Brassica crops. Enhancement of tolerance by exploiting cold and freezing tolerance related genes offers the most efficient approach to address this problem. Cold-induced transcriptional profiling is a promising approach to the identification of potential genes related to cold and freezing stress tolerance. In this study, 99 highly expressed genes were identified from a whole genome microarray dataset of Brassica rapa. Blast search analysis of the Brassica oleracea database revealed the corresponding homologous genes. To validate their expression, pre-selected cold tolerant and susceptible cabbage lines were analyzed. Out of 99 BoCRGs, 43 were differentially expressed in response to varying degrees of cold and freezing stress in the contrasting cabbage lines. Among the differentially expressed genes, 18 were highly up-regulated in the tolerant lines, which is consistent with their microarray expression. Additionally, 12 BoCRGs were expressed differentially after cold stress treatment in two contrasting cabbage lines, and BoCRG54, 56, 59, 62, 70, 72 and 99 were predicted to be involved in cold regulatory pathways. Taken together, the cold-responsive genes identified in this study provide additional direction for elucidating the regulatory network of low temperature stress tolerance and developing cold and freezing stress resistant Brassica crops. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Machine Learning–Based Differential Network Analysis: A Study of Stress-Responsive Transcriptomes in Arabidopsis[W

    PubMed Central

    Ma, Chuang; Xin, Mingming; Feldmann, Kenneth A.; Wang, Xiangfeng

    2014-01-01

    Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning–based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive “noninformative” genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes. The retained “informative” genes were subsequently analyzed by ML-based network comparison to predict candidate stress-related genes showing expression and network differences between control and stress networks, based on 33 network topological characteristics. Comparative evaluation of the network-centric and gene-centric analytic methods showed that mlDNA substantially outperformed traditional statistical testing–based differential expression analysis at identifying stress-related genes, with markedly improved prediction accuracy. To experimentally validate the mlDNA predictions, we selected 89 candidates out of the 1784 predicted salt stress–related genes with available SALK T-DNA mutagenesis lines for phenotypic screening and identified two previously unreported genes, mutants of which showed salt-sensitive phenotypes. PMID:24520154

  13. Dual lead-crowning for helical gears with anti-twist tooth flanks on the internal gear honing machine

    NASA Astrophysics Data System (ADS)

    Tran, Van-Quyet; Wu, Yu-Ren

    2017-12-01

    For some specific purposes, a helical gear with wide face-width is applied for meshing with two other gears simultaneously, such as the idle pinions in the vehicle differential. However, due to the fact of gear deformation, the tooth edge contact and stress concentration might occur. Single lead-crowning is no more suitable for such a case to get the appropriate position of contact pattern and improve the load distribution on tooth surfaces. Therefore, a novel *Email: method is proposed in this paper to achieve the wide-face-width helical gears with the dual lead-crowned and the anti-twisted tooth surfaces by controlling the swivel angle and the rotation angle of the honing wheel respectively on an internal gear honing machine. Numerical examples are practiced to illustrate and verified the merits of the proposed method.

  14. Traction patterns of tumor cells.

    PubMed

    Ambrosi, D; Duperray, A; Peschetola, V; Verdier, C

    2009-01-01

    The traction exerted by a cell on a planar deformable substrate can be indirectly obtained on the basis of the displacement field of the underlying layer. The usual methodology used to address this inverse problem is based on the exploitation of the Green tensor of the linear elasticity problem in a half space (Boussinesq problem), coupled with a minimization algorithm under force penalization. A possible alternative strategy is to exploit an adjoint equation, obtained on the basis of a suitable minimization requirement. The resulting system of coupled elliptic partial differential equations is applied here to determine the force field per unit surface generated by T24 tumor cells on a polyacrylamide substrate. The shear stress obtained by numerical integration provides quantitative insight of the traction field and is a promising tool to investigate the spatial pattern of force per unit surface generated in cell motion, particularly in the case of such cancer cells.

  15. Two-dimensiosnal electron beam charging model for polymer films. M.S. Thesis; [spacecraft charging, geosynchronous satellites

    NASA Technical Reports Server (NTRS)

    Reeves, R. D.; Balmain, K. G.

    1981-01-01

    A two dimensional model was developed to describe the charging of thin polymer films exposed to a uniform mon-energetic electron beam. The study was motivated by observed anomalous behavior of geosynchronous satellites which was attributed to electrical discharges associated with the differential charging of satellite surfaces of magnetospheric electrons. Electric fields both internal and external to the irradiated specimen were calculated at steady state in order to identify regions of high electrical stress. Particular emphasis was placed on evaluating the charging characteristics near the material's edge. The model was used to identify and quantify the effects of some of the experimental parameters notably: beam energy; beam angle of incidence; beam current density; material thickness; and material width. Simulations of the following situations were also conducted: positive or negative precharging over part of the surface; a central gap in the material; and a discontinuity in the material's thickness.

  16. Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors

    NASA Astrophysics Data System (ADS)

    Yi, X.; Duan, H. L.

    2009-08-01

    Surface stress is widely used to characterize the adsorption effect on the mechanical response of nanomaterials and nanodevices. However, quantitative relations between continuum-level descriptions of surface stress and molecular-level descriptions of adsorbate interactions are not well established. In this paper, we first obtain the relations between the adsorption-induced surface stress and the van der Waals and Coulomb interactions in terms of the physical and chemical interactions between adsorbates and solid surfaces. Then, we present a theoretical framework to predict the deflection and resonance frequencies of microcantilevers with the simultaneous effects of the eigenstrain, surface stress and adsorption mass. Finally, the adsorption-induced deflection and resonance frequency shift of microcantilevers are numerically analyzed for the van der Waals and Coulomb interactions. The present theoretical framework quantifies the mechanisms of the adsorption-induced surface stress, and thus provides guidelines to the analysis of the sensitivities, and the identification of the detected substance in the design and application of micro- and nanocantilever sensors.

  17. 76 FR 67594 - Airworthiness Directives; General Electric Company Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... mounting flanges due to stress- corrosion. This AD also requires the installation of a collar kit over the... prompted by reports of 47 fuel filter differential pressure switches found with stress-corrosion cracking... bending stress to the aluminum mounting flanges of the switch. This bending stress, coupled with...

  18. Stress Modulates the Use of Spatial versus Stimulus-Response Learning Strategies in Humans

    ERIC Educational Resources Information Center

    Philippsen, Christine; Richter, Steffen; Bohringer, Andreas; Wippich, Werner; Schachinger, Hartmut; Schwabe, Lars; Oitzl, Melly S.

    2007-01-01

    Animal studies provided evidence that stress modulates multiple memory systems, favoring caudate nucleus-based "habit" memory over hippocampus-based "cognitive" memory. However, effects of stress on learning strategy and memory consolidation were not differentiated. We specifically address the effects of psychosocial stress on the applied learning…

  19. Geophysical imaging reveals topographic stress control of bedrock weathering

    NASA Astrophysics Data System (ADS)

    St. Clair, J.; Moon, S.; Holbrook, W. S.; Perron, J. T.; Riebe, C. S.; Martel, S. J.; Carr, B.; Harman, C.; Singha, K.; Richter, D. deB.

    2015-10-01

    Bedrock fracture systems facilitate weathering, allowing fresh mineral surfaces to interact with corrosive waters and biota from Earth’s surface, while simultaneously promoting drainage of chemically equilibrated fluids. We show that topographic perturbations to regional stress fields explain bedrock fracture distributions, as revealed by seismic velocity and electrical resistivity surveys from three landscapes. The base of the fracture-rich zone mirrors surface topography where the ratio of horizontal compressive tectonic stresses to near-surface gravitational stresses is relatively large, and it parallels the surface topography where the ratio is relatively small. Three-dimensional stress calculations predict these results, suggesting that tectonic stresses interact with topography to influence bedrock disaggregation, groundwater flow, chemical weathering, and the depth of the “critical zone” in which many biogeochemical processes occur.

  20. Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle.

    PubMed

    Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing

    2014-04-01

    Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p=0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.

  1. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    PubMed

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  2. Time dependent effects of stress prior to encoding on event-related potentials and 24 h delayed retrieval.

    PubMed

    Quaedflieg, Conny W E M; Schwabe, Lars; Meyer, Thomas; Smeets, Tom

    2013-12-01

    Stress can exert profound effects on memory encoding. Here, we investigated whether (sub)cortical information processing during encoding and memory retrieval at a 24 h delayed test are affected by the temporal proximity between stress and memory encoding. Sixty-four participants engaged in the Maastricht Acute Stress Test (MAST) or a no-stress control condition either immediately before (i.e., proximate condition) or 30 min before (i.e., distant condition) a picture encoding task. In general, stress decreased the number of freely recalled and recognized pictures and increased the number of false alarms. However, timing of stress exposure did not differentially affect picture recall, recognition or selective attention processes (i.e., LPP). Nevertheless, stress-induced cortisol responses and correctly recognized neutral pictures were positively associated within the proximate stress condition but negatively associated within the distant stress condition. These findings suggest that the time at which a stressor is applied might differentially impact the association between stress-induced cortisol elevations and memory formation and indicate the need for a finer delineation of the time window during which glucocorticoids affect memory formation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Differentially delayed root proteome responses to salt stress in sugar cane varieties.

    PubMed

    Pacheco, Cinthya Mirella; Pestana-Calsa, Maria Clara; Gozzo, Fabio Cesar; Mansur Custodio Nogueira, Rejane Jurema; Menossi, Marcelo; Calsa, Tercilio

    2013-12-06

    Soil salinity is a limiting factor to sugar cane crop development, although in general plants present variable mechanisms of tolerance to salinity stress. The molecular basis underlying these mechanisms can be inferred by using proteomic analysis. Thus, the objective of this work was to identify differentially expressed proteins in sugar cane plants submitted to salinity stress. For that, a greenhouse experiment was established with four sugar cane varieties and two salt conditions, 0 mM (control) and 200 mM NaCl. Physiological and proteomics analyses were performed after 2 and 72 h of stress induction by salt. Distinct physiological responses to salinity stress were observed in the varieties and linked to tolerance mechanisms. In proteomic analysis, the roots soluble protein fraction was extracted, quantified, and analyzed through bidimensional electrophoresis. Gel images analyses were done computationally, where in each contrast only one variable was considered (salinity condition or variety). Differential spots were excised, digested by trypsin, and identified via mass spectrometry. The tolerant variety RB867515 showed the highest accumulation of proteins involved in growth, development, carbohydrate and energy metabolism, reactive oxygen species metabolization, protein protection, and membrane stabilization after 2 h of stress. On the other hand, the presence of these proteins in the sensitive variety was verified only in stress treatment after 72 h. These data indicate that these stress responses pathways play a role in the tolerance to salinity in sugar cane, and their effectiveness for phenotypical tolerance depends on early stress detection and activation of the coding genes expression.

  4. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We foundmore » that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity.« less

  5. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress.

    PubMed

    Karimi, Marzieh; Ghazanfari, Farahnaz; Fadaei, Adeleh; Ahmadi, Laleh; Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.

  6. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress

    PubMed Central

    Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants. PMID:27253370

  7. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    PubMed

    Bellantuono, Anthony J; Granados-Cifuentes, Camila; Miller, David J; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2012-01-01

    The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios.

  8. Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress

    PubMed Central

    Bellantuono, Anthony J.; Granados-Cifuentes, Camila; Miller, David J.; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2012-01-01

    The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios. PMID:23226355

  9. Characterization of Differentiated SH-SY5Y as Neuronal Screening Model Reveals Increased Oxidative Vulnerability

    PubMed Central

    Forster, J. I.; Köglsberger, S.; Trefois, C.; Boyd, O.; Baumuratov, A. S.; Buck, L.; Balling, R.; Antony, P. M. A.

    2016-01-01

    The immortalized and proliferative cell line SH-SY5Y is one of the most commonly used cell lines in neuroscience and neuroblastoma research. However, undifferentiated SH-SY5Y cells share few properties with mature neurons. In this study, we present an optimized neuronal differentiation protocol for SH-SY5Y that requires only two work steps and 6 days. After differentiation, the cells present increased levels of ATP and plasma membrane activity but reduced expression of energetic stress response genes. Differentiation results in reduced mitochondrial membrane potential and decreased robustness toward perturbations with 6-hydroxydopamine. We are convinced that the presented differentiation method will leverage genetic and chemical high-throughput screening projects targeting pathways that are involved in the selective vulnerability of neurons with high energetic stress levels. PMID:26738520

  10. Stress, cortisol and well-being of caregivers and children in home-based child care: a case for differential susceptibility.

    PubMed

    Groeneveld, M G; Vermeer, H J; van IJzendoorn, M H; Linting, M

    2012-03-01

    We examined whether children cared for by stressed caregivers show lower socio-emotional well-being and more stress, compared with children cared for by less stressed caregivers. Perceived stress and cortisol levels of professional caregivers (n = 44), and associations with children's (n = 44) well-being and cortisol levels in home-based child care were examined. Caregiver perceived stress and cortisol levels were related to children's well-being but not to children's cortisol levels. Children's social fearfulness acted as a moderator between caregivers' mean ratio of diurnal change in cortisol and children's well-being. When caregiver cortisol levels decreased, more fearful children were reported higher on well-being than less fearful peers. In contrast, when caregiver cortisol levels increased, more fearful children were reported lower on well-being. The findings point to differential susceptibility. Child care organizations and parents need to notice that a non-stressful child care environment is in particular important for children with a difficult temperament. © 2010 Blackwell Publishing Ltd.

  11. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flötotto, D., E-mail: d.floetotto@is.mpg.de; Wang, Z. M.; Jeurgens, L. P. H.

    2014-03-03

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.

  12. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651

    PubMed Central

    Jomaa, Walid; Songmene, Victor; Bocher, Philippe

    2014-01-01

    The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining. PMID:28788534

  13. Predictors of Soviet Jewish refugees' acculturation: differentiation of self and acculturative stress.

    PubMed

    Roytburd, Luba; Friedlander, Myrna L

    2008-01-01

    The authors investigated the acculturation of 108 Jewish young adults who had immigrated to the United States between the ages of 9 and 21 from the former Soviet Union as a function of differentiation of self (M. Bowen, 1978) and acculturative stress. One aspect of differentiation, the ability to take an "I-position" with others, uniquely predicted greater American acculturation and less Russian acculturation, indicating that participants who reported an ability to act on their own needs in the context of social pressure tended to be more assimilated. Russian acculturation was also uniquely associated with more frequent perceived discrimination (one aspect of acculturative stress) during adolescence. Participants who had spent a greater proportion of their lifetime in the United States were more American acculturated and less Russian acculturated, reflecting assimilation rather than biculturalism.

  14. Side-Specific Endothelial-Dependent Regulation of Aortic Valve Calcification

    PubMed Central

    Richards, Jennifer; El-Hamamsy, Ismail; Chen, Si; Sarang, Zubair; Sarathchandra, Padmini; Yacoub, Magdi H.; Chester, Adrian H.; Butcher, Jonathan T.

    2014-01-01

    Arterial endothelial cells maintain vascular homeostasis and vessel tone in part through the secretion of nitric oxide (NO). In this study, we determined how aortic valve endothelial cells (VEC) regulate aortic valve interstitial cell (VIC) phenotype and matrix calcification through NO. Using an anchored in vitro collagen hydrogel culture system, we demonstrate that three-dimensionally cultured porcine VIC do not calcify in osteogenic medium unless under mechanical stress. Co-culture with porcine VEC, however, significantly attenuated VIC calcification through inhibition of myofibroblastic activation, osteogenic differentiation, and calcium deposition. Incubation with the NO donor DETA-NO inhibited VIC osteogenic differentiation and matrix calcification, whereas incubation with the NO blocker l-NAME augmented calcification even in 3D VIC–VEC co-culture. Aortic VEC, but not VIC, expressed endothelial NO synthase (eNOS) in both porcine and human valves, which was reduced in osteogenic medium. eNOS expression was reduced in calcified human aortic valves in a side-specific manner. Porcine leaflets exposed to the soluble guanylyl cyclase inhibitor ODQ increased osteocalcin and α-smooth muscle actin expression. Finally, side-specific shear stress applied to porcine aortic valve leaflet endothelial surfaces increased cGMP production in VEC. Valve endothelial-derived NO is a natural inhibitor of the early phases of valve calcification and therefore may be an important regulator of valve homeostasis and pathology. PMID:23499458

  15. Finite Element Simulation of Shot Peening: Prediction of Residual Stresses and Surface Roughness

    NASA Astrophysics Data System (ADS)

    Gariépy, Alexandre; Perron, Claude; Bocher, Philippe; Lévesque, Martin

    Shot peening is a surface treatment that consists of bombarding a ductile surface with numerous small and hard particles. Each impact creates localized plastic strains that permanently stretch the surface. Since the underlying material constrains this stretching, compressive residual stresses are generated near the surface. This process is commonly used in the automotive and aerospace industries to improve fatigue life. Finite element analyses can be used to predict residual stress profiles and surface roughness created by shot peening. This study investigates further the parameters and capabilities of a random impact model by evaluating the representative volume element and the calculated stress distribution. Using an isotropic-kinematic hardening constitutive law to describe the behaviour of AA2024-T351 aluminium alloy, promising results were achieved in terms of residual stresses.

  16. Bioactive glass-chitosan composite coatings on PEEK: Effects of surface wettability and roughness on the interfacial fracture resistance and in vitro cell response

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Guo, Fangwei; Chen, Jianwei; Wang, Xin; Zhao, Xiaofeng; Xiao, Ping

    2018-05-01

    To improve the osteointegration of polyetheretherketone (PEEK) spinal fusions, the 45S5 bioactive glass® (BG)-chitosan (CH) composite was used to coat the PEEK by a dip-coating method at room temperature. A robust bonding between the BG-CH composite coating and the PEEK was achieved by a combined surface treatment of sand blasting and acid etching. The effects of surface wettability and surface roughness on the adhesion of the BG-CH composite coating were characterized by fracture resistance (Gc), respectively, measured by four-point bending tests. Compared with the surface polar energy (wettability), the surface roughness (>3 μm) played a more important role for the increase in Gc values by means of crack shielding effect under the mixed mode stress. The maximum adhesion strength (σ) of the coatings on the modified PEEK measured by the tensile pull-off test was about 5.73 MPa. The in vitro biocompatibilities of PEEK, including cell adhesion, cell proliferation, differentiation, and bioactivity in the stimulated body fluid (SBF), were enhanced by the presence of BG-CH composite coatings, which also suggested that this composite coating method could provide an effective solution for the weak PEEK-bone integration.

  17. Non-destructive measurement and role of surface residual stress monitoring in residual life assessment of a steam turbine blading material

    NASA Astrophysics Data System (ADS)

    Prabhu-Gaunkar, Gajanana; Rawat, M. S.; Prasad, C. R.

    2014-02-01

    Steam turbine blades in power generation equipment are made from martensitic stainless steels having high strength, good toughness and corrosion resistance. However, these steels are susceptible to pitting which can promote early failures of blades in the turbines, particularly in the low pressure dry/wet areas by stress corrosion and corrosion fatigue. Presence of tensile residual stresses is known to accelerate failures whereas compressive stresses can help in delaying failures. Shot peening has been employed as an effective tool to induce compressive residual stresses which offset a part of local surface tensile stresses in the surface layers of components. Maintaining local stresses at stress raisers, such as pits formed during service, below a threshold level can help in preventing the initiation microcracks and failures. The thickness of the layer in compression will, however, depend of the shot peening parameters and should extend below the bottom of corrosion pits. The magnitude of surface compressive drops progressively during service exposure and over time the effectiveness of shot peening is lost making the material susceptible to micro-crack initiation once again. Measurement and monitoring of surface residual stress therefore becomes important for assessing residual life of components in service. This paper shows the applicability of surface stress monitoring to life assessment of steam turbine blade material based on data generated in laboratory on residual surface stress measurements in relation to fatigue exposure. An empirical model is proposed to calculate the remaining life of shot peened steam turbine blades in service.

  18. Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation.

    PubMed

    Xue, Peng; Li, Bei; An, Ying; Sun, Jin; He, Xiaoning; Hou, Rui; Dong, Guangying; Fei, Dongdong; Jin, Fang; Wang, Qintao; Jin, Yan

    2016-11-01

    The association between inflammation and endoplasmic reticulum (ER) stress has been described in many diseases. However, if and how chronic inflammation governs the unfolded protein response (UPR) and promotes ER homeostasis of chronic inflammatory disease remains elusive. In this study, chronic inflammation resulted in ER stress in mesenchymal stem cells in the setting of periodontitis. Long-term proinflammatory cytokines induced prolonged ER stress and decreased the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Interestingly, we showed that chronic inflammation decreases the expression of lysine acetyltransferase 6B (KAT6B, also called MORF), a histone acetyltransferase, and causes the upregulation of a key UPR sensor, PERK, which lead to the persistent activation of the UPR in PDLSCs. Furthermore, we found that the activation of UPR mediated by MORF in chronic inflammation contributes to the PERK-related deterioration of the osteogenic differentiation of PDLSCs both in vivo and in vitro. Taken together, our results suggest that chronic inflammation compromises UPR function through MORF-mediated-PERK transcription, which is a previously unrecognized mechanism that contributes to impaired ER function, prolonged ER stress and defective osteogenic differentiation of PDLSCs in periodontitis.

  19. Sexually Dimorphic Responses to Early Adversity: Implications for Affective Problems and Autism Spectrum Disorder

    PubMed Central

    Davis, Elysia Poggi; Pfaff, Donald

    2014-01-01

    During gestation, development proceeds at a pace that is unmatched by any other stage of the lifecycle. For these reason the human fetus is particularly susceptible not only to organizing influences, but also to pathogenic disorganizing influences. Growing evidence suggests that exposure to prenatal adversity leads to neurological changes that underlie lifetime risks for mental illness. Beginning early in gestation, males and females show differential developmental trajectories and responses to stress. It is likely that sex-dependent organization of neural circuits during the fetal period influences differential vulnerability to mental health problems. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two developmental disorders: affective problems (greater female prevalence) and autism spectrum disorder (greater male prevalence). Recent prospective studies illustrating the neurodevelopmental consequences of fetal exposure to stress and stress hormones for males and females are considered here. Plausible biological mechanisms including the role of the sexually differentiated placenta are discussed. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two sets of developmental disorders: affective problems (greater female prevalence) and autism spectrum disorders (greater male prevalence). PMID:25038479

  20. Stability analysis of nanoscale surface patterns in stressed solids

    NASA Astrophysics Data System (ADS)

    Kostyrko, Sergey A.; Shuvalov, Gleb M.

    2018-05-01

    Here, we use the theory of surface elasticity to extend the morphological instability analysis of stressed solids developed in the works of Asaro, Tiller, Grinfeld, Srolovitz and many others. Within the framework of Gurtin-Murdoch model, the surface phase is assumed to be a negligibly thin layer with the elastic properties which differ from those of the bulk material. We consider the mass transport mechanism driven by the variation of surface and bulk energy along undulated surface of stressed solid. The linearized surface evolution equation is derived in the case of plane strain conditions and describes the amplitude change of surface perturbations with time. A parametric analysis of this equation leads to the definition of critical conditions which depend on undulation wavelength, residual surface stress, applied loading, surface and bulk elastic constants and predict the surface morphological stability.

  1. Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains.

    PubMed

    Rychli, Kathrin; Grunert, Tom; Ciolacu, Luminita; Zaiser, Andreas; Razzazi-Fazeli, Ebrahim; Schmitz-Esser, Stephan; Ehling-Schulz, Monika; Wagner, Martin

    2016-02-02

    The foodborne pathogen Listeria monocytogenes, responsible for listeriosis a rare but severe infection disease, can survive in the food processing environment for month or even years. So-called persistent L. monocytogenes strains greatly increase the risk of (re)contamination of food products, and are therefore a great challenge for food safety. However, our understanding of the mechanism underlying persistence is still fragmented. In this study we compared the exoproteome of three persistent strains with the reference strain EGDe under mild stress conditions using 2D differential gel electrophoresis. Principal component analysis including all differentially abundant protein spots showed that the exoproteome of strain EGDe (sequence type (ST) 35) is distinct from that of the persistent strain R479a (ST8) and the two closely related ST121 strains 4423 and 6179. Phylogenetic analyses based on multilocus ST genes showed similar grouping of the strains. Comparing the exoproteome of strain EGDe and the three persistent strains resulted in identification of 22 differentially expressed protein spots corresponding to 16 proteins. Six proteins were significantly increased in the persistent L. monocytogenes exoproteomes, among them proteins involved in alkaline stress response (e.g. the membrane anchored lipoprotein Lmo2637 and the NADPH dehydrogenase NamA). In parallel the persistent strains showed increased survival under alkaline stress, which is often provided during cleaning and disinfection in the food processing environments. In addition, gene expression of the proteins linked to stress response (Lmo2637, NamA, Fhs and QoxA) was higher in the persistent strain not only at 37 °C but also at 10 °C. Invasion efficiency of EGDe was higher in intestinal epithelial Caco2 and macrophage-like THP1 cells compared to the persistent strains. Concurrently we found higher expression of proteins involved in virulence in EGDe e.g. the actin-assembly-inducing protein ActA and the surface virulence associated protein SvpA. Furthermore proteins involved in cell wall modification, such as the lipoteichonic acid primase LtaP and the N-acetylmuramoyl-l-alanine amidase (Lmo2591) are more abundant in EGDe than in the persistent strains and could indirectly contribute to virulence. In conclusion this study provides information about a set of proteins that could potentially support survival of L. monocytogenes in abiotic niches in food processing environments. Based on these data, a more detailed analysis of the role of the identified proteins under stresses mimicking conditions in food producing environment is essential for further elucidate the mechanism of the phenomenon of persistence of L. monocytogenes. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Oxidative stress detection by MEMS cantilever sensor array based electronic nose

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag; Singh, T. Sonamani; Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    This paper is concerned with analyzing the role of polymer swelling induced surface stress in MEMS chemical sensors. The objective is to determine the impact of surface stress on the chemical discrimination ability of MEMS resonator sensors. We considered a case study of hypoxia detection by MEMS sensor array and performed several types of simulation experiments for detection of oxidative stress volatile organic markers in human breath. Both types of sensor response models that account for the surface stress effect and that did not were considered for the analyses in comparison. It is found that the surface stress (hence the polymer swelling) provides better chemical discrimination ability to polymer coated MEMS sensors.

  3. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.

    PubMed

    Park, Minsung; Lee, Dajung; Shin, Sungchul; Hyun, Jinho

    2015-06-01

    Nanofibrous 2,2,6,6-tetramethylpiperidine-1-oxyl(TEMPO)-oxidized bacterial cellulose (TOBC) was used as a dispersant of hydroxyapatite (HA) nanoparticles in aqueous solution. The surfaces of TOBC nanofibers were negatively charged after the reaction with the TEMPO/NaBr/NaClO system at pH 10 and room temperature. HA nanoparticles were simply adsorbed on the TOBC nanofibers (HA-TOBC) and dispersed well in DI water. The well-dispersed HA-TOBC colloidal solution formed a hydrogel after the addition of gelatin, followed by crosslinking with glutaraldehyde (HA-TOBC-Gel). The chemical modification of the fiber surfaces and the colloidal stability of the dispersion solution confirmed TOBC as a promising HA dispersant. Both the Young's modulus and maximum tensile stress increased as the amount of gelatin increased due to the increased crosslinking of gelatin. In addition, the well-dispersed HA produced a denser scaffold structure resulting in the increase of the Young's modulus and maximum tensile stress. The well-developed porous structures of the HA-TOBC-Gel composites were incubated with Calvarial osteoblasts. The HA-TOBC-Gel significantly improved cell proliferation as well as cell differentiation confirming the material as a potential candidate for use in bone tissue engineering scaffolds. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Analytical and numerical analyses for a penny-shaped crack embedded in an infinite transversely isotropic multi-ferroic composite medium: semi-permeable electro-magnetic boundary condition

    NASA Astrophysics Data System (ADS)

    Zheng, R.-F.; Wu, T.-H.; Li, X.-Y.; Chen, W.-Q.

    2018-06-01

    The problem of a penny-shaped crack embedded in an infinite space of transversely isotropic multi-ferroic composite medium is investigated. The crack is assumed to be subjected to uniformly distributed mechanical, electric and magnetic loads applied symmetrically on the upper and lower crack surfaces. The semi-permeable (limited-permeable) electro-magnetic boundary condition is adopted. By virtue of the generalized method of potential theory and the general solutions, the boundary integro-differential equations governing the mode I crack problem, which are of nonlinear nature, are established and solved analytically. Exact and complete coupling magneto-electro-elastic field is obtained in terms of elementary functions. Important parameters in fracture mechanics on the crack plane, e.g., the generalized crack surface displacements, the distributions of generalized stresses at the crack tip, the generalized stress intensity factors and the energy release rate, are explicitly presented. To validate the present solutions, a numerical code by virtue of finite element method is established for 3D crack problems in the framework of magneto-electro-elasticity. To evaluate conveniently the effect of the medium inside the crack, several empirical formulae are developed, based on the numerical results.

  5. Global transcriptome analysis of grapevine (Vitis vinifera L.) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. Thompson Seedless.

    PubMed

    Upadhyay, Anuradha; Gaonkar, Tulsi; Upadhyay, Ajay Kumar; Jogaiah, Satisha; Shinde, Manisha P; Kadoo, Narendra Y; Gupta, Vidya S

    2018-05-31

    Among the different abiotic stresses, salt stress has a significant effect on the growth and yield of grapevine (Vitis vinifera L.). In this study, we employed RNA sequence based transcriptome analysis to study salinity stress response in grape variety Thompson Seedless. Salt stress adversely affected the growth related and physiological parameters and the effect on physiological parameters was significant within 10 days of stress imposition. A total of 343 genes were differentially expressed in response to salt stress. Among the differentially expressed genes (DEGs) only 42 genes were common at early and late stages of stress. The gene enrichment analysis revealed that GO terms related to transcription factors were over-represented. Among the DEGs, 52 were transcription factors belonging to WRKY, EREB, MYB, NAC and bHLH families. Salt stress significantly affected several pathways like metabolic pathways, biosynthesis of secondary metabolites, membrane transport development related pathways etc. 343 DEGs were distributed on all the 19 chromosomes, however clustered regions of DEGs were present on chromosomes 2, 5, 6 and 12 suggesting probable QTLs for imparting tolerance to salt and other abiotic stresses. Real-time PCR of selected genes in control and treated samples of grafted and own root vines demonstrated that rootstock influenced expression of salt stress responsive genes. Microsatellite regions were identified in ten selected salt responsive genes and highly polymorphic markers were identified using fifteen grape genotypes. This information will be useful for the identification of key genes involved in salt stress tolerance in grape. The identified DEGs could also be useful for genome wide analysis for the identification of polymorphic markers for their subsequent use in molecular breeding for developing salt tolerant grape genotypes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen species and malondialdehyde and a decreased content of chlorophyll, indicating that anti-oxidation and detoxification play an important role in response to saline-alkaline stress. Overall, the transcriptome analysis provided novel insights into the saline-alkaline stress tolerance response mechanisms in alfalfa.

  7. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen species and malondialdehyde and a decreased content of chlorophyll, indicating that anti-oxidation and detoxification play an important role in response to saline-alkaline stress. Overall, the transcriptome analysis provided novel insights into the saline-alkaline stress tolerance response mechanisms in alfalfa. PMID:27458463

  8. Soft matrix supports osteogenic differentiation of human dental follicle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viale-Bouroncle, Sandra; Voellner, Florian; Moehl, Christoph

    Highlights: {yields} Rigid stiffness supports osteogenic differentiation in mesenchymal stem cells (MSCs). {yields} Our study examined stiffness and differentiation of dental follicle cells (DFCs). {yields} Soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs. {yields} DFCs and MSCs react contrarily to soft and rigid surface stiffness. -- Abstract: The differentiation of stem cells can be directed by the grade of stiffness of the developed tissue cells. For example a rigid extracellular matrix supports the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs). However, less is known about the relation of extracellular matrix stiffness andmore » cell differentiation of ectomesenchymal dental precursor cells. Our study examined for the first time the influence of the surface stiffness on the proliferation and osteogenic differentiation of human dental follicle cells (DFCs). Cell proliferation of DFCs was only slightly decreased on cell culture surfaces with a bone-like stiffness. The osteogenic differentiation in DFCs could only be initiated with a dexamethasone based differentiation medium after using varying stiffness. Here, the softest surface improved the induction of osteogenic differentiation in comparison to that with the highest stiffness. In conclusion, different to bone marrow derived MSCs, soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs.« less

  9. The method of lines in analyzing solids containing cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.

    1990-01-01

    A semi-numerical method is reviewed for solving a set of coupled partial differential equations subject to mixed and possibly coupled boundary conditions. The line method of analysis is applied to the Navier-Cauchy equations of elastic and elastoplastic equilibrium to calculate the displacement distributions in various, simple geometry bodies containing cracks. The application of this method to the appropriate field equations leads to coupled sets of simultaneous ordinary differential equations whose solutions are obtained along sets of lines in a discretized region. When decoupling of the equations and their boundary conditions is not possible, the use of a successive approximation procedure permits the analytical solution of the resulting ordinary differential equations. The use of this method is illustrated by reviewing and presenting selected solutions of mixed boundary value problems in three dimensional fracture mechanics. These solutions are of great importance in fracture toughness testing, where accurate stress and displacement distributions are required for the calculation of certain fracture parameters. Computations obtained for typical flawed specimens include that for elastic as well as elastoplastic response. Problems in both Cartesian and cylindrical coordinate systems are included. Results are summarized for a finite geometry rectangular bar with a central through-the-thickness or rectangular surface crack under remote uniaxial tension. In addition, stress and displacement distributions are reviewed for finite circular bars with embedded penny-shaped cracks, and rods with external annular or ring cracks under opening mode tension. The results obtained show that the method of lines presents a systematic approach to the solution of some three-dimensional mechanics problems with arbitrary boundary conditions. The advantage of this method over other numerical solutions is that good results are obtained even from the use of a relatively coarse grid.

  10. Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening

    NASA Astrophysics Data System (ADS)

    Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.

    2018-02-01

    45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.

  11. Triaxial Measurement Method for Analysis of Residual Stress after High Feed Milling by X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Čuma, Matúš; Török, Jozef; Telišková, Monika

    2016-12-01

    Surface integrity is a broad term which includes various quality factors affecting the functional properties of parts. Residual stress is one of these factors. Machining generates residual stresses in the surface and subsurface layers of the structural elements. X-ray diffractometry is a non-destructive method applicable for the measurement of residual stresses in surface and subsurface layers of components. The article is focused on the non-destructive progressive method of triaxial measurement of residual stress after machining the surface of sample by high feed milling technology. Significance of triaxial measuring is the capability of measuring in different angles so it is possible to acquire stress tensor containing normal and shear stress components acting in the spot of measuring, using a Cartesian coordinate system.

  12. An Investigation of Differential Deposition for Figure Corrections in Full-Shell Grazing-Incidents X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Kilaru, Kirenmayee; Ramsey, Brian D.

    2009-01-01

    We are investigating differential deposition as a way of correcting small figure errors inside full-shell grazing-incidence x-ray optics. The optics in our study are fabricated using the electroformed-nickel-replication technique, and the figure errors arise from fabrication errors in the mandrel, from which the shells are replicated, as well as errors induced during the electroforming process. Combined, these give sub-micron-scale figure deviations which limit the angular resolution of the optics to approx. 10 arcsec. Sub-micron figure errors can be corrected by selectively depositing (physical vapor deposition) material inside the shell. The requirements for this filler material are that it must not degrade the ultra-smooth surface finish necessary for efficient x-ray reflection (approx. 5 A rms), and must not be highly stressed. In addition, a technique must be found to produce well controlled and defined beams within highly constrained geometries, as some of our mirror shells are less than 3 cm in diameter.

  13. Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan

    PubMed Central

    Arlia-Ciommo, Anthony; Piano, Amanda; Leonov, Anna; Svistkova, Veronika; Titorenko, Vladimir I

    2014-01-01

    Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a ʺprogram of agingʺ - i.e., a program for progressing through consecutive steps of the aging process. PMID:25485579

  14. On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Sardar, Humara; Gulzar, M. Mudassar; Alshomrani, Ali Saleh

    2018-03-01

    This paper presents the multiple solutions of a non-Newtonian Carreau fluid flow over a nonlinear inclined shrinking surface in presence of infinite shear rate viscosity. The governing boundary layer equations are derived for the Carreau fluid with infinite shear rate viscosity. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The consequential non-linear ODEs are solved numerically by an active numerical approach namely Runge-Kutta Fehlberg fourth-fifth order method accompanied by shooting technique. Multiple solutions are presented graphically and results are shown for various physical parameters. It is important to state that the velocity and momentum boundary layer thickness reduce with increasing viscosity ratio parameter in shear thickening fluid while opposite trend is observed for shear thinning fluid. Another important observation is that the wall shear stress is significantly decreased by the viscosity ratio parameter β∗ for the first solution and opposite trend is observed for the second solution.

  15. Enhanced magneto-optical imaging of internal stresses in the removed surface layer

    NASA Astrophysics Data System (ADS)

    Agalidi, Yuriy; Kozhukhar, Pavlo; Levyi, Sergii; Turbin, Dmitriy

    2015-10-01

    The paper describes a software method of reconstructing the state of the removed surface layer by visualising internal stresses in the underlying layers of the sample. Such a problem typically needs to be solved as part of forensic investigation that aims to reveal original marking of a sample with removed surface layer. For example, one may be interested in serial numbers of weapons or vehicles that had the surface layer of metal removed from the number plate. Experimental results of studying gradient internal stress fields in ferromagnetic sample using the NDI method of magneto-optical imaging (MOI) are presented. Numerical modelling results of internal stresses enclosed in the surface marking region are analysed and compared to the experimental results of magneto-optical imaging (MOI). MOI correction algorithm intended for reconstructing internal stress fields in the removed surface layer by extracting stresses retained by the underlying layers is described. Limiting ratios between parameters of a marking font are defined for the considered correction algorithm. Enhanced recognition properties for hidden stresses left by marking symbols are experimentally verified and confirmed.

  16. Dislocation mechanisms in stressed crystals with surface effects

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chin; Crone, Joshua; Munday, Lynn; Discrete Dislocation Dynamics Team

    2014-03-01

    Understanding dislocation properties in stressed crystals is the key for important processes in materials science, including the strengthening of metals and the stress relaxation during the growth of hetero-epitaxial structures. Despite existing experimental approaches and theories, many dislocation mechanisms with surface effects still remain elusive in experiments. Even though discrete dislocation dynamics (DDD) simulations are commonly employed to study dislocations, few demonstrate sufficient computational capabilities for massive dislocations with the combined effects of surfaces and stresses. Utilizing the Army's newly developed FED3 code, a DDD computation code coupled with finite elements, this work presents several dislocation mechanisms near different types of surfaces in finite domains. Our simulation models include dislocations in a bended metallic cantilever beam, near voids in stressed metals, as well as threading and misfit dislocations in as-grown semiconductor epitaxial layers and their quantitative inter-correlations to stress relaxation and surface instability. Our studies provide not only detailed physics of individual dislocation mechanisms, but also important collective dislocation properties such as dislocation densities and strain-stress profiles and their interactions with surfaces.

  17. Marangoni Effects of a Drop in an Extensional Flow: The Role of Surfactant Physical Chemistry

    NASA Technical Reports Server (NTRS)

    Stebe, Kathleen J.; Balasubramaniam, R. (Technical Monitor)

    2002-01-01

    While the changes in stresses caused by surfactant adsorption on non-deforming interfaces have been fairly well established, prior to this work, there were few studies addressing how surfactants alter stresses on strongly deforming interfaces. We chose the model problem of a drop in a uniaxial extensional flow to study these stress conditions To model surfactant effects at fluid interfaces, a proper description of the dependence of the surface tension on surface concentration, the surface equation of state, is required. We have adopted a surface equation of state that accounts for the maximum coverage limit; that is, because surfactants have a finite cross sectional area, there is an upper bound to the amount of surfactant that can adsorb in a monolayer. The surface tension reduces strongly only when this maximum coverage is approached. Since the Marangoni stresses go as the derivative of the surface equation of state times the surface concentration gradient, the non-linear equation of state determines both the effect of surfactants in the normal stress jump, (which is balanced by the product of the mean curvature of the interface times the surface tension), and the tangential stress jump, which is balanced by Marangoni stresses. First, the effects of surface coverage and intermolecular interactions among surfactants which drive aggregation of surfactants in the interface were studied. (see Pawar and Stebe, Physics of Fluids).

  18. Characteristic Changes in Cell Surface Glycosylation Accompany Intestinal Epithelial Cell (IEC) Differentiation: High Mannose Structures Dominate the Cell Surface Glycome of Undifferentiated Enterocytes*

    PubMed Central

    Park, Dayoung; Brune, Kristin A.; Mitra, Anupam; Marusina, Alina I.; Maverakis, Emanual; Lebrilla, Carlito B.

    2015-01-01

    Changes in cell surface glycosylation occur during the development and differentiation of cells and have been widely correlated with the progression of several diseases. Because of their structural diversity and sensitivity to intra- and extracellular conditions, glycans are an indispensable tool for analyzing cellular transformations. Glycans present on the surface of intestinal epithelial cells (IEC) mediate interactions with billions of native microorganisms, which continuously populate the mammalian gut. A distinct feature of IECs is that they differentiate as they migrate upwards from the crypt base to the villus tip. In this study, nano-LC/ESI QTOF MS profiling was used to characterize the changes in glycosylation that correspond to Caco-2 cell differentiation. As Caco-2 cells differentiate to form a brush border membrane, a decrease in high mannose type glycans and a concurrent increase in fucosylated and sialylated complex/hybrid type glycans were observed. At day 21, when cells appear to be completely differentiated, remodeling of the cell surface glycome ceases. Differential expression of glycans during IEC maturation appears to play a key functional role in regulating the membrane-associated hydrolases and contributes to the mucosal surface innate defense mechanisms. Developing methodologies to rapidly identify changes in IEC surface glycans may lead to a rapid screening approach for a variety of disease states affecting the GI tract. PMID:26355101

  19. Coastal land loss and gain as potential earthquake trigger mechanism in SCRs

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2007-12-01

    In stable continental regions (SCRs), historic data show earthquakes can be triggered by natural tectonic sources in the interior of the crust and also by sources stemming from the Earth's sub/surface. Building off of this framework, the following abstract will discuss both as potential sources that might have triggered the 2007 ML4.2 Folkestone earthquake in Kent, England. Folkestone, located along the Southeast coast of Kent in England, is a mature aseismic region. However, a shallow earthquake with a local magnitude of ML = 4.2 occurred on April 28 2007 at 07:18 UTC about 1 km East of Folkestone (51.008° N, 1.206° E) between Dover and New Romney. The epicentral error is about ±5 km. While coastal land loss has major effects towards the Southwest and the Northeast of Folkestone, research observations suggest that erosion and landsliding do not exist in the immediate Folkestone city area (<1km). Furthermore, erosion removes rock material from the surface. This mass reduction decreases the gravitational stress component and would bring a fault away from failure, given a tectonic normal and strike-slip fault regime. In contrast, land gain by geoengineering (e.g., shingle accumulation) in the harbor of Folkestone dates back to 1806. The accumulated mass of sand and gravel accounted for a 2.8·109 kg (2.8 Mt) in 2007. This concentrated mass change less than 1 km away from the epicenter of the mainshock was able to change the tectonic stress in the strike-slip/normal stress regime. Since 1806, shear and normal stresses increased at most on oblique faults dipping 60±10°. The stresses reached values ranging between 1.0 KPa and 30.0 KPa in up to 2 km depth, which are critical for triggering earthquakes. Furthermore, the ratio between holding and driving forces continuously decreased for 200 years. In conclusion, coastal engineering at the surface most likely dominates as potential trigger mechanism for the 2007 ML4.2 Folkestone earthquake. It can be anticipated that the mainshock nucleated at shallower depth (<500 m) near the Paleozoic surface a) where differential stresses are generally maximum and b) because earthquakes in aseismic regions are generally overestimated by 88% due to sparse instrumental coverage. The latter was suggested by recent research on shallow seismicitiy (<10 km) in SCRs in northeastern USA and eastern Canada. Data of the focal mechanism provided by the British Geological Survey (BGS) confirm fault zone orientations of 326°/74° (strike-slip fault component) and 71°/48° (normal fault component).

  20. Survival and differentiation defects contribute to neutropenia in glucose-6-phosphatase-β (G6PC3) deficiency in a model of mouse neutrophil granulocyte differentiation.

    PubMed

    Gautam, S; Kirschnek, S; Gentle, I E; Kopiniok, C; Henneke, P; Häcker, H; Malleret, L; Belaaouaj, A; Häcker, G

    2013-08-01

    Differentiation of neutrophil granulocytes (neutrophils) occurs through several steps in the bone marrow and requires a coordinate regulation of factors determining survival and lineage-specific development. A number of genes are known whose deficiency disrupts neutrophil generation in humans and in mice. One of the proteins encoded by these genes, glucose-6-phosphatase-β (G6PC3), is involved in glucose metabolism. G6PC3 deficiency causes neutropenia in humans and in mice, linked to enhanced apoptosis and ER stress. We used a model of conditional Hoxb8 expression to test molecular and functional differentiation as well as survival defects in neutrophils from G6PC3(-/-) mice. Progenitor lines were established and differentiated into neutrophils when Hoxb8 was turned off. G6PC3(-/-) progenitor cells underwent substantial apoptosis when differentiation was started. Transgenic expression of Bcl-XL rescued survival; however, Bcl-XL-protected differentiated cells showed reduced proliferation, immaturity and functional deficiency such as altered MAP kinase signaling and reduced cytokine secretion. Impaired glucose utilization was found and was associated with ER stress and apoptosis, associated with the upregulation of Bim and Bax; downregulation of Bim protected against apoptosis during differentiation. ER-stress further caused a profound loss of expression and secretion of the main neutrophil product neutrophil elastase during differentiation. Transplantation of wild-type Hoxb8-progenitor cells into irradiated mice allowed differentiation into neutrophils in the bone marrow in vivo. Transplantation of G6PC3(-/-) cells yielded few mature neutrophils in bone marrow and peripheral blood. Transgenic Bcl-XL permitted differentiation of G6PC3(-/-) cells in vivo. However, functional deficiencies and differentiation abnormalities remained. Differentiation of macrophages from Hoxb8-dependent progenitors was only slightly disturbed. A combination of defects in differentiation and survival thus underlies neutropenia in G6PC3(-/-) deficiency, both originating from a reduced ability to utilize glucose. Hoxb8-dependent cells are a model to study differentiation and survival of the neutrophil lineage.

  1. A generalized law for brittle deformation of Westerly granite

    USGS Publications Warehouse

    Lockner, D.A.

    1998-01-01

    A semiempirical constitutive law is presented for the brittle deformation of intact Westerly granite. The law can be extended to larger displacements, dominated by localized deformation, by including a displacement-weakening break-down region terminating in a frictional sliding regime often described by a rate- and state-dependent constitutive law. The intact deformation law, based on an Arrhenius type rate equation, relates inelastic strain rate to confining pressure Pc, differential stress ????, inelastic strain ??i, and temperature T. The basic form of the law for deformation prior to fault nucleation is In ????i = c - (E*/RT) + (????/a??o)sin-??(???? i/2??o) where ??o and ??o are normalization constants (dependent on confining pressure), a is rate sensitivity of stress, and ?? is a shape parameter. At room temperature, eight experimentally determined coefficients are needed to fully describe the stress-strain-strain rate response for Westerly granite from initial loading to failure. Temperature dependence requires apparent activation energy (E* ??? 90 kJ/mol) and one additional experimentally determined coefficient. The similarity between the prefailure constitutive law for intact rock and the rate- and state-dependent friction laws for frictional sliding on fracture surfaces suggests a close connection between these brittle phenomena.

  2. Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots.

    PubMed

    Chen, Ziyan; Zhu, Dong; Wu, Jisu; Cheng, Zhiwei; Yan, Xing; Deng, Xiong; Yan, Yueming

    2018-05-17

    In this study, we aimed to identify differentially accumulated proteins (DAPs) involved in PEG mock osmotic stress, cadmium (Cd 2+ ) stress, and their combined stress responses in Brachypodium distachyon seedling roots. The results showed that combined PEG and Cd 2+ stresses had more significant effects on Brachypodium seedling root growth, physiological traits, and ultrastructures when compared with each individual stress. Totally, 106 DAPs were identified that are responsive to individual and combined stresses in roots. These DAPs were mainly involved in energy metabolism, detoxification and stress defense and protein metabolism. Principal component analysis revealed that DAPs from Cd 2+ and combined stress treatments were grouped closer than those from osmotic stress treatment, indicating that Cd 2+ and combined stresses had more severe influences on the root proteome than osmotic stress alone. Protein-protein interaction analyses highlighted a 14-3-3 centered sub-network that synergistically responded to osmotic and Cd 2+ stresses and their combined stresses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14 key DAP genes revealed that most genes showed consistency between transcriptional and translational expression patterns. A putative pathway of proteome metabolic changes in Brachypodium seedling roots under different stresses was proposed, which revealed a complicated synergetic responsive network of plant roots to adverse environments.

  3. The HumanIndexMod and New Calculations Demonstrating Heat Stress Effects All Aspects of Human Life Through Industry, Agriculture, and Daily Life.

    NASA Astrophysics Data System (ADS)

    Buzan, J. R.; Huber, M.

    2014-12-01

    We show the new climatic tool, HumanIndexMod (HIM), for quantitatively assessing key climatic variables that are critical for decision making. The HIM calculates 9 different heat stress and 4 moist thermodynamic quantities using meteorological inputs of T, P, and Q. These heat stress metrics are commonly used throughout the world. We show new methods for integrating and standardizing practices for applying these metrics with the latest Earth system models. We implemented the HIM into CLM4.5, a component of CESM, maintained by NCAR. These heat stress metrics cover philosophical approaches of comfort, physiology, and empirically based algorithms. The metrics are directly connected to the Urban, Canopy, Bare Ground, and Lake modules, to differentiate distinct regimes within each grid cell. The module calculates the instantaneous moisture-temperature covariance at every model time step and in every land surface type, capturing all aspects of non-linearity. The HIM uses the most accurate and computationally efficient moist thermodynamic algorithms available. Additionally, we show ways that the HIM may be effectively integrated into climate modeling and observations. The module is flexible. The user may decide which metrics to call, and there is an offline version of the HIM that is available to be used with weather and climate datasets. Examples include using high temporal resolution CMIP5 archive data, local weather station data, and weather and forecasting models. To provide comprehensive standards for applying the HIM to climate data, we executed a CLM4.5 simulation using the RCP8.5 boundary conditions. Preliminary results show moist thermodynamic and heat stress quantities have smaller variability in the extremes as compared to extremes in T (both at the 95th percentile). Additionally, the magnitude of the moist thermodynamic changes over land is similar to sea surface temperature changes. The metric changes from the early part of the 21st century as compared to the end of the 21st century show that many portions of the world switch from moderate levels of heat stress for the top 2 weeks of a year to severe heat stress for the top 2 weeks of a year. These changes are reflected in livestock (THI); evaporative cooling (SWMP80) and air-conditioning; and industrial, military, and athletic heat stress (sWBGT, DI, HI, etc.).

  4. Influence of an ocean on the propagation of magmas within an oceanic basaltic shield volcano

    NASA Astrophysics Data System (ADS)

    Le Corvec, N.; McGovern, P. J., Jr.

    2014-12-01

    Basaltic shield volcanoes are a common feature on Earth and mostly occur within oceans, forming volcanic islands (e.g. Hawaii (USA), Galapagos (Ecuador), and recently Niijima (Japan)). As the volcano grows it will reach and emerge from the water surface and continue to grow above it. The deformation affecting the volcanic edifice may be influenced by the presence of the water level. We investigate how the presence of an ocean affects the state of stress within a volcanic edifice and thus magma propagation and fault formation. Using COMSOL Multiphysics, axisymmetric elastic models of a volcanic edifice overlying an elastic lithosphere were created. The volcanic edifice (height of ~6000 m and radius of ~ 60 km) was built either instantaneously or iteratively by adding new layers of equivalent volume on top of each other. In the later process, the resulting stress and geometry from the one step is transferred to the next as initial conditions. Thus each new layer overlies a deformed and stressed model. The water load was modeled with a boundary condition at the surface of the model. In the case of an instantaneous volcano different water level were studied, for an iteratively growing volcano the water level was set up to 4000 m. We compared the deformation of the volcanic edifice and lithosphere and the stress orientation and magnitude in half-space and flexural models with the presence or not of an ocean. The preliminary results show 1- major differences in the resulting state of stress between an instantaneous and an iteratively built volcanic edifice, similar to the results of [Galgana et al., 2011] and [McGovern and Solomon, 1993], respectively; 2- the presence of an ocean decreases the amount of flexural response, which decreases the magnitude of differential stress within the models; and 3- stress orientation within the volcano and lithosphere in also influence of an ocean. Those results provide new insights on the state of stress and deformation of oceanic basaltic volcanic edifices. Galgana, G. A., P. J. McGovern, and E. B. Grosfils (2011), J. Geophys. Res., 116(E3), E03009. McGovern, P. J., and S. C. Solomon (1993), Journal of Geophysical Research: Planets, 98(E12), 23553-23579.

  5. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    DOE PAGES

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; ...

    2017-03-13

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging frommore » the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.« less

  6. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    PubMed Central

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D; Strong, Elizabeth; Aizenberg, Joanna

    2017-01-01

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques. PMID:28287116

  7. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging frommore » the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.« less

  8. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phung, Thu-Ha; Jung, Sunyo, E-mail: sjung@knu.ac.kr

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redoxmore » state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.« less

  9. Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress.

    PubMed

    Ning, Shanglong; Chen, Zhongqiang; Fan, Dongwei; Sun, Chuiguo; Zhang, Chi; Zeng, Yan; Li, Weishi; Hou, Xiaofei; Qu, Xiaochen; Ma, Yunlong; Yu, Huilei

    2017-01-01

    Mechanical stress and genetic factors play important roles in the occurrence of thoracic ossification of ligament flavum (TOLF), which can occur at one, two, or multiple levels of the spine. It is unclear whether single- and multiple-level TOLF differ in terms of osteogenic differentiation potency and osteogenesis-related gene expression under cyclic mechanical stress. This was addressed in the present study using patients with non‑TOLF and single‑ and multiple‑level TOLF (n=8 per group). Primary ligament cells were cultured and osteogenesis was induced by application of cyclic mechanical stress. Osteogenic differentiation was assessed by evaluating alkaline phosphatase (ALP) activity and the mRNA and protein expression of osteogenesis‑related genes, including ALP, bone morphogenetic protein 2 (BMP2), Runt‑related transcription factor‑2 (Runx‑2), osterix, osteopontin (OPN) and osteocalcin. The application of cyclic mechanical stress resulted in higher ALP activity in the multiple‑level than in the single‑level TOLF group, whereas no changes were observed in the non‑TOLF group. The ALP, BMP2, OPN and osterix mRNA levels were higher in the multiple‑level as compared to the single‑level TOLF group, and the levels of all osteogenesis-related genes, apart from Runx2, were higher in the multiple‑level as compared to the non‑TOLF group. The osterix and ALP protein levels were higher in the multiple‑level TOLF group than in the other 2 groups, and were increased with the longer duration of stress. These results highlight the differences in osteogenic differentiation potency between single‑ and multiple‑level TOLF that may be related to the different pathogenesis and genetic background.

  10. Drought and Heat Differentially Affect XTH Expression and XET Activity and Action in 3-Day-Old Seedlings of Durum Wheat Cultivars with Different Stress Susceptibility

    PubMed Central

    Iurlaro, Andrea; De Caroli, Monica; Sabella, Erika; De Pascali, Mariarosaria; Rampino, Patrizia; De Bellis, Luigi; Perrotta, Carla; Dalessandro, Giuseppe; Piro, Gabriella; Fry, Stephen C.; Lenucci, Marcello S.

    2016-01-01

    Heat and drought stress have emerged as major constraints for durum wheat production. In the Mediterranean area, their negative effect on crop productivity is expected to be exacerbated by the occurring climate change. Xyloglucan endotransglucosylase/hydrolases (XTHs) are chief enzymes in cell wall remodeling, whose relevance in cell expansion and morphogenesis suggests a central role in stress responses. In this work the potential role of XTHs in abiotic stress tolerance was investigated in durum wheat. The separate effects of dehydration and heat exposure on XTH expression and its endotransglucosylase (XET) in vitro activity and in vivo action have been monitored, up to 24 h, in the apical and sub-apical root regions and shoots excised from 3-day-old seedlings of durum wheat cultivars differing in stress susceptibility/tolerance. Dehydration and heat stress differentially influence the XTH expression profiles and the activity and action of XET in the wheat seedlings, depending on the degree of susceptibility/tolerance of the cultivars, the organ, the topological region of the root and, within the root, on the gradient of cell differentiation. The root apical region was the zone mainly affected by both treatments in all assayed cultivars, while no change in XET activity was observed at shoot level, irrespective of susceptibility/tolerance, confirming the pivotal role of the root in stress perception, signaling, and response. Conflicting effects were observed depending on stress type: dehydration evoked an overall increase, at least in the apical region of the root, of XET activity and action, while a significant inhibition was caused by heat treatment in most cultivars. The data suggest that differential changes in XET action in defined portions of the root of young durum wheat seedlings may have a role as a response to drought and heat stress, thus contributing to seedling survival and crop establishment. A thorough understanding of the mechanisms underlying these variations could represent the theoretical basis for implementing breeding strategies to develop new highly productive hybrids adapted to future climate scenarios. PMID:27891140

  11. Experimental Techniques Verified for Determining Yield and Flow Surfaces

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Ellis, Rod; Lissenden, Cliff J.

    1998-01-01

    Structural components in aircraft engines are subjected to multiaxial loads when in service. For such components, life prediction methodologies are dependent on the accuracy of the constitutive models that determine the elastic and inelastic portions of a loading cycle. A threshold surface (such as a yield surface) is customarily used to differentiate between reversible and irreversible flow. For elastoplastic materials, a yield surface can be used to delimit the elastic region in a given stress space. The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory, but at elevated temperatures, material response can be highly time dependent. Thus, viscoplastic theories have been developed to account for this time dependency. Since the key to many of these theories is experimental validation, the objective of this work (refs. 1 and 2) at the NASA Lewis Research Center was to verify that current laboratory techniques and equipment are sufficient to determine flow surfaces at elevated temperatures. By probing many times in the axial-torsional stress space, we could define the yield and flow surfaces. A small offset definition of yield (10 me) was used to delineate the boundary between reversible and irreversible behavior so that the material state remained essentially unchanged and multiple probes could be done on the same specimen. The strain was measured with an off-the-shelf multiaxial extensometer that could measure the axial and torsional strains over a wide range of temperatures. The accuracy and resolution of this extensometer was verified by comparing its data with strain gauge data at room temperature. The extensometer was found to have sufficient resolution for these experiments. In addition, the amount of crosstalk (i.e., the accumulation of apparent strain in one direction when strain in the other direction is applied) was found to be negligible. Tubular specimens were induction heated to determine the flow surfaces at elevated temperatures. The heating system induced a large amount of noise in the data. By reducing thermal fluctuations and using appropriate data averaging schemes, we could render the noise inconsequential. Thus, accurate and reproducible flow surfaces (see the figure) could be obtained.

  12. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida

    PubMed Central

    Bojanovič, Klara; D'Arrigo, Isotta

    2017-01-01

    ABSTRACT Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings. IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one condition, suggesting their involvement in adaptation to stress conditions and identifying interesting candidates for further functional characterization. PMID:28130298

  13. Undifferentiated Neuroblastoma Cells Are More Sensitive to Photogenerated Oxidative Stress Than Differentiated Cells.

    PubMed

    Lee, Chu-I; Perng, Jing-Huei; Chen, Huang-Yo; Hong, Yi-Ren; Wang, Jyh-Jye

    2015-09-01

    Neuroblastoma is one of the most aggressive cancers and has a complex form of differentiation. We hypothesized that advanced cellular differentiation may alter the susceptibility of neuroblastoma to photodynamic treatment (PDT) and confer selective survival advantage. We demonstrated that hematoporphyrin uptake by undifferentiated SH-SY5Y cells was lower than that of differentiated counterparts, yet the former were more susceptible to PDT-induced oxidative stress killing. Photogenerated reactive oxygen species (ROS) in undifferentiated cells efficiently stimulated cell cycle arrest at G2/M phase, mitochondrial apoptotic pathway activation, the sustained phosphorylation of Akt/GSK-3β and ERK. Differentiated cells with more resistance to PDT exhibited a ROS-independent and a prolonged activation of ERK. Both SH-SY5Y cells exposed to PDT exhibited ROS-independent p38 and JNK activation. These results may have important implications for neuroblastoma patients undergoing photodynamic therapy. © 2015 Wiley Periodicals, Inc.

  14. ProP Is Required for the Survival of Desiccated Salmonella enterica Serovar Typhimurium Cells on a Stainless Steel Surface

    PubMed Central

    Finn, Sarah; Händler, Kristian; Condell, Orla; Colgan, Aoife; Cooney, Shane; McClure, Peter; Amézquita, Aléjandro; Hinton, Jay C. D.

    2013-01-01

    Consumers trust commercial food production to be safe, and it is important to strive to improve food safety at every level. Several outbreaks of food-borne disease have been caused by Salmonella strains associated with dried food. Currently we do not know the mechanisms used by Salmonella enterica serovar Typhimurium to survive in desiccated environments. The aim of this study was to discover the responses of S. Typhimurium ST4/74 at the transcriptional level to desiccation on a stainless steel surface and to subsequent rehydration. Bacterial cells were dried onto the same steel surfaces used during the production of dry foods, and RNA was recovered for transcriptomic analysis. Subsequently, dried cells were rehydrated and were again used for transcriptomic analysis. A total of 266 genes were differentially expressed under desiccation stress compared with a static broth culture. The osmoprotectant transporters proP, proU, and osmU (STM1491 to STM1494) were highly upregulated by drying. Deletion of any one of these transport systems resulted in a reduction in the long-term viability of S. Typhimurium on a stainless steel food contact surface. The proP gene was critical for survival; proP deletion mutants could not survive desiccation for long periods and were undetectable after 4 weeks. Following rehydration, 138 genes were differentially expressed, with upregulation observed for genes such as proP, proU, and the phosphate transport genes (pstACS). In time, this knowledge should prove valuable for understanding the underlying mechanisms involved in pathogen survival and should lead to improved methods for control to ensure the safety of intermediate- and low-moisture foods. PMID:23666329

  15. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    NASA Astrophysics Data System (ADS)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  16. Long-term programing of psychopathology-like behaviors in male rats by peripubertal stress depends on individual's glucocorticoid responsiveness to stress.

    PubMed

    Walker, Sophie E; Sandi, Carmen

    2018-02-07

    Experience of adversity early in life and dysregulation of hypothalamus-pituitary-adrenocortical (HPA) axis activity are risk factors often independently associated with the development of psychopathological disorders, including depression, PTSD and pathological aggression. Additional evidence suggests that in combination these factors may interact to shape the development and expression of psychopathology differentially, though little is known about underlying mechanisms. Here, we studied the long-term consequences of early life stress exposure on individuals with differential constitutive glucocorticoid responsiveness to repeated stressor exposure, assessing both socio-affective behaviors and brain activity in regions sensitive to pathological alterations following stress. Two rat lines, genetically selected for either low or high glucocorticoid responsiveness to repeated stress were exposed to a series of unpredictable, fear-inducing stressors on intermittent days during the peripuberty period. Results obtained at adulthood indicated that having high glucocorticoid responses to repeated stress and having experience of peripuberty stress independently enhanced levels of psychopathology-like behaviors, as well as increasing basal activity in several prefrontal and limbic brain regions in a manner associated with enhanced behavioral inhibition. Interestingly, peripuberty stress had a differential impact on aggression in the two rat lines, enhancing aggression in the low-responsive line but not in the already high-aggressive, high-responsive rats. Taken together, these findings indicate that aberrant HPA axis activity around puberty, a key period in the development of social repertoire in both rats and humans, may alter behavior such that it becomes anti-social in nature.

  17. Despite higher glucocorticoid levels and stress responses in female rats, both sexes exhibit similar stress-induced changes in hippocampal neurogenesis.

    PubMed

    Hulshof, Henriëtte J; Novati, Arianna; Luiten, Paul G M; den Boer, Johan A; Meerlo, Peter

    2012-10-01

    Sex differences in stress reactivity may be one of the factors underlying the increased sensitivity for the development of psychopathologies in women. Particularly, an increased hypothalamic-pituitary-adrenal (HPA) axis reactivity in females may exacerbate stress-induced changes in neuronal plasticity and neurogenesis, which in turn may contribute to an increased sensitivity to psychopathology. The main aim of the present study was to examine male-female differences in stress-induced changes in different aspects of hippocampal neurogenesis, i.e. cell proliferation, differentiation and survival. Both sexes were exposed to a wide variety of stressors, where after differences in HPA-axis reactivity and neurogenesis were assessed. To study the role of oestradiol in potential sex differences, ovariectomized females received low or high physiological oestradiol level replacement pellets. The results show that females in general have a higher basal and stress-induced HPA-axis activity than males, with minimal differences between the two female groups. Cell proliferation in the dorsal hippocampus was significantly higher in high oestradiol females compared to low oestradiol females and males, while doublecortin (DCX) expression as a marker of cell differentiation was significantly higher in males compared to females, independent of oestradiol level. Stress exposure did not significantly influence cell proliferation or survival of new cells, but did reduce DCX expression. In conclusion, despite the male-female differences in HPA-axis activity, the effect of repeated stress exposure on hippocampal cell differentiation was not significantly different between sexes. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Proteomic and genetics insights on the response of the bacteriocinogenic Lactobacillus sakei CRL1862 during biofilm formation on stainless steel surface at 10°C.

    PubMed

    Pérez-Ibarreche, Mariana; Mendoza, Lucía M; Vignolo, Graciela; Fadda, Silvina

    2017-10-03

    Some lactic acid bacteria have the ability to form biofilms on food-industry surfaces and this property could be used to control food pathogens colonization. Lactobacillus sakei CR1862 was selected considering its bacteriocinogenic nature and ability to adhere to abiotic surfaces at low temperatures. In this study, the proteome of L. sakei CRL1862 grown either under biofilm on stainless steel surface and planktonic modes of growth at 10°C, was investigated. Using two-dimensional gel electrophoresis, 29 out of 43 statistically significant spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Ten proteins resulted up-regulated whereas 16 were down-regulated during biofilm formation. Differentially expressed proteins were found to belong to carbohydrate, nucleotide, aminoacid and lipid metabolisms as well as translation, peptide hydrolysis, cell envelope/cell wall biosynthesis, adaption to atypical conditions and protein secretion. Some proteins related to carbohydrate and nucleotide metabolisms, translation and peptide degradation were overexpressed whereas those associated to stress conditions were synthesized in lower amounts. It seems that conditions for biofilm development would not imply a stressful environment for L. sakei CRL1862 cells, directing its growth strategy towards glycolytic flux regulation and reinforcing protein synthesis. In addition, L. sakei CRL1862 showed to harbor nine out of ten assayed genes involved in biofilm formation and protein anchoring. By applying qRT-PCR analysis, four of these genes showed to be up regulated, srtA2 being the most remarkable. The results of this study contribute to the knowledge of the physiology of L. sakei CRL1862 growing in biofilm on a characteristic food contact surface. The use of this strain as green biocide preventing L. monocytogenes post-processing contamination on industrial surfaces may be considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718.

    PubMed

    Hua, Yang; Liu, Zhanqiang

    2018-05-24

    Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.

  20. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).

    PubMed

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.

  1. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.)

    PubMed Central

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice. PMID:26752408

  2. Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing

    NASA Astrophysics Data System (ADS)

    Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean

    2014-11-01

    We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.

  3. Local scattering stress distribution on surface of a spherical cell in optical stretcher

    NASA Astrophysics Data System (ADS)

    Bareil, Paul B.; Sheng, Yunlong; Chiou, Arthur

    2006-12-01

    We calculate stress distribution on the surface of a spherical cell trapped by two counter propagating beams in the optical stretcher in the ray optics regime. We demonstrate that the local scattering stress is perpendicular to the spherical refractive surface regardless of incident angle, polarization and the reflectance and transmittance at the surface. We explain the apparition of peaks in the stress distribution, which were not revealed in the existing theory. We consider the divergence of the incident beams from the fibers, and express the stress distribution as a function of fiber-to-cell distance. The new theory can predict the cell’s deformation more precisely.

  4. Zymosan-induced immune challenge modifies the stress response of hypoxic air-breathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol and thyroid hormone interaction, differential ion transporter functions and non-specific immune response.

    PubMed

    Simi, S; Peter, Valsa S; Peter, M C Subhash

    2017-09-15

    Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg -1 ) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T 3 and T 4 after zymosan-treatment and the rise in plasma T 4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na + /K + -ATPase, H + /K + -ATPase and Na + /NH 4 + -ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential pattern of mRNA expression of Na + /K + -ATPase α-subunit isoforms; nkaα1a, nkaα1b and nkaα1c and the shift in nkaα1a and nkaα1b isoforms expression after hypoxia stress in immune-challenged fish, presents transcriptomic evidence for a modified Na + /K + ion transporter system in these fish. Collectively, our data thus provide evidence for an interactive immune-stress response in an air-breathing fish, where the patterns of cortisol-thyroid hormone interaction, the ion transporter functions and the non-specific immune responses are reversed by hypoxia stress in immune-challenged fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway

    PubMed Central

    Blum, Barak; Roose, Adam N; Barrandon, Ornella; Maehr, René; Arvanites, Anthony C; Davidow, Lance S; Davis, Jeffrey C; Peterson, Quinn P; Rubin, Lee L; Melton, Douglas A

    2014-01-01

    Dysfunction or death of pancreatic β cells underlies both types of diabetes. This functional decline begins with β cell stress and de-differentiation. Current drugs for type 2 diabetes (T2D) lower blood glucose levels but they do not directly alleviate β cell stress nor prevent, let alone reverse, β cell de-differentiation. We show here that Urocortin 3 (Ucn3), a marker for mature β cells, is down-regulated in the early stages of T2D in mice and when β cells are stressed in vitro. Using an insulin expression-coupled lineage tracer, with Ucn3 as a reporter for the mature β cell state, we screen for factors that reverse β cell de-differentiation. We find that a small molecule inhibitor of TGFβ receptor I (Alk5) protects cells from the loss of key β cell transcription factors and restores a mature β cell identity even after exposure to prolonged and severe diabetes. DOI: http://dx.doi.org/10.7554/eLife.02809.001 PMID:25233132

  6. Phosphoinositide 3-kinase/Akt signalling is responsible for the differential susceptibility of myoblasts and myotubes to menadione-induced oxidative stress.

    PubMed

    Lim, Jeong A; Woo, Joo Hong; Kim, Hye Sun

    2008-09-01

    In this study, it was found that undifferentiated myoblasts were more vulnerable to menadione-induced oxidative stress than differentiated myotubes. Cell death occurred with a relatively low concentration of menadione in myoblasts compared to myotubes. With the same concentration of menadione, the Bcl-2/Bax ratio decreased and nuclei containing condensed chromatin were observed in myoblasts to a greater extent than in myotubes. However, myotubes became increasingly susceptible to menadione when phosphoinositide 3-kinase (PI3-K) was blocked by pre-incubation with LY294002, a PI3-K inhibitor. Actually, PI3-K activity was reduced by menadione in myoblasts but not in myotubes. In addition, the phosphorylation of Akt, a downstream effector of PI3-K, was inhibited in myoblasts by menadione but increased in myotubes. Both LY294002 and API-2, an Akt inhibitor, decreased the Bcl-2/Bax ratio in menadione-exposed myotubes. These results suggest that the differential activity of PI3-K/Akt signalling is responsible for the differential susceptibility of myoblasts and myotubes to menadione-induced oxidative stress.

  7. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus

    PubMed Central

    2013-01-01

    Background Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. Results It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. Conclusion The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low-shear force in a drip-flow apparatus and analyses indicated that the formation of a biofilm under low-shear force requires a different sub-set of genes than a biofilm grown under static conditions. The drip-flow apparatus may represent the better in vitro model to investigate biofilm formation of A. pleuropneumoniae. PMID:23725589

  8. Effect of Turning and Ball Burnishing on the Microstructure and Residual Stress Distribution in Stainless Steel Cold Spray Deposits

    NASA Astrophysics Data System (ADS)

    Sova, A.; Courbon, C.; Valiorgue, F.; Rech, J.; Bertrand, Ph.

    2017-12-01

    In this paper, an experimental study of influence of machining by turning and ball burnishing on the surface morphology, structure and residual stress distribution of cold spray 17-4 PH stainless steel deposits is provided. It is shown that cold spray deposits could be machined by turning under parameters closed to turning of bulk 17-4 PH stainless steel. Ball burnishing process permits to decrease surface roughness. Cross-sectional observation revealed that the turning and ball burnishing process allowed microstructure changes in the coating near-surface zone. In particular, significant particle deformation and particle boundary fragmentation is observed. Measurements of residual stresses showed that residual stresses in the as-spray deposit are compressive. After machining by turning, tensile residual stresses in the near-surface zone were induced. Further surface finishing of turned coating by ball burnishing allowed the establishment of the compressive residual stresses in the coating.

  9. Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2014-07-01

    Heat stress causes a decrease of fertility in roosters. Yet, the way acute heat stress affects protein expression remains poorly understood. This study investigated differential protein expression in testes of the L2 strain of Taiwan country chickens following acute heat stress. Twelve 45-week-old roosters were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2 hours of recovery, and with 6 hours of recovery. Testis samples were collected for morphologic assay and protein analysis. Some of the differentially expressed proteins were validated by Western blot and immunohistochemistry. Abnormal and apoptotic spermatogenic cells were observed at 2 hours of recovery after acute heat stress, especially among the spermatocytes. Two-dimensional difference gel electrophoresis revealed that 119 protein spots were differentially expressed in chicken testes following heat stress, and peptide mass fingerprinting revealed that these spots contained 92 distinct proteins. In the heat-stressed samples, the heat shock proteins, chaperonin containing t-complex, and proteasome subunits were downregulated, and glutathione S-transferase, transgelin, and DJ-1 were upregulated. Our results demonstrate that acute heat stress impairs the processes of translation, protein folding, and protein degradation, and thus results in apoptosis and interferes with spermatogenesis. On the other hand, the increased expression of antioxidant enzymes, including glutathione S-transferase and DJ-1, may attenuate heat-induced damage. These findings may have implications for breeding chickens that can tolerate more extreme conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Laser Machining of Melt Infiltrated Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Jarmon, D. C.; Ojard, G.; Brewer, D.

    2012-01-01

    As interest grows in considering the use of ceramic matrix composites for critical components, the effects of different machining techniques, and the resulting machined surfaces, on strength need to be understood. This work presents the characterization of a Melt Infiltrated SiC/SiC composite material system machined by different methods. While a range of machining approaches were initially considered, only diamond grinding and laser machining were investigated on a series of tensile coupons. The coupons were tested for residual tensile strength, after a stressed steam exposure cycle. The data clearly differentiated the laser machined coupons as having better capability for the samples tested. These results, along with micro-structural characterization, will be presented.

  11. Shallow moonquakes - Depth, distribution and implications as to the present state of the lunar interior

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Latham, G. V.; Dorman, H. J.; Ibrahim, A.-B. K.; Koyama, J.; Horvath, P.

    1979-01-01

    The observed seismic amplitudes of HFT (high-frequency teleseismic) events do not vary with distance as expected for surface sources, but are consistent with sources in the upper mantle of the moon. Thus, the upper mantle of the moon is the only zone where tectonic stresses deriving from differential thermal contraction and expansion of the lunar interior are presently high enough to cause moonquakes. The distribution of shallow moonquake epicenters suggests a possible correlation with impact basins, implying a lasting tectonic influence of impact basins long after their formation. The finite depths now assigned to these shallow moonquakes necessitate further revision to the seismic structural model of the lunar interior.

  12. Role of physiological levels of 4-hydroxynonenal on adipocyte biology: implications for obesity and metabolic syndrome.

    PubMed

    Dasuri, Kalavathi; Ebenezer, Philip; Fernandez-Kim, Sun Ok; Zhang, Le; Gao, Zhanguo; Bruce-Keller, Annadora J; Freeman, Linnea R; Keller, Jeffrey N

    2013-01-01

    Lipid peroxidation products such as 4-hydroxynonenal (HNE) are known to be increased in response to oxidative stress, and are known to cause dysfunction and pathology in a variety of tissues during periods of oxidative stress. The aim of the current study was to determine the chronic (repeated HNE exposure) and acute effects of physiological concentrations of HNE toward multiple aspects of adipocyte biology using differentiated 3T3-L1 adipocytes. Our studies demonstrate that acute and repeated exposure of adipocytes to physiological concentrations of HNE is sufficient to promote subsequent oxidative stress, impaired adipogenesis, alter the expression of adipokines, and increase lipolytic gene expression and subsequent increase in free fatty acid (FFA) release. These results provide an insight in to the role of HNE-induced oxidative stress in regulation of adipocyte differentiation and adipose dysfunction. Taken together, these data indicate a potential role for HNE promoting diverse effects toward adipocyte homeostasis and adipocyte differentiation, which may be important to the pathogenesis observed in obesity and metabolic syndrome.

  13. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    NASA Technical Reports Server (NTRS)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  14. Massive Analysis of Rice Small RNAs: Mechanistic Implications of Regulated MicroRNAs and Variants for Differential Target RNA Cleavage[W][OA

    PubMed Central

    Jeong, Dong-Hoon; Park, Sunhee; Zhai, Jixian; Gurazada, Sai Guna Ranjan; De Paoli, Emanuele; Meyers, Blake C.; Green, Pamela J.

    2011-01-01

    Small RNAs have a variety of important roles in plant development, stress responses, and other processes. They exert their influence by guiding mRNA cleavage, translational repression, and chromatin modification. To identify previously unknown rice (Oryza sativa) microRNAs (miRNAs) and those regulated by environmental stress, 62 small RNA libraries were constructed from rice plants and used for deep sequencing with Illumina technology. The libraries represent several tissues from control plants and plants subjected to different environmental stress treatments. More than 94 million genome-matched reads were obtained, resulting in more than 16 million distinct small RNA sequences. This allowed an evaluation of ~400 annotated miRNAs with current criteria and the finding that among these, ~150 had small interfering RNA–like characteristics. Seventy-six new miRNAs were found, and miRNAs regulated in response to water stress, nutrient stress, or temperature stress were identified. Among the new examples of miRNA regulation were members of the same miRNA family that were differentially regulated in different organs and had distinct sequences Some of these distinct family members result in differential target cleavage and provide new insight about how an agriculturally important rice phenotype could be regulated in the panicle. This high-resolution analysis of rice miRNAs should be relevant to plant miRNAs in general, particularly in the Poaceae. PMID:22158467

  15. Strength Analysis and Reliability Evaluation for Speed Reducers

    NASA Astrophysics Data System (ADS)

    Tsai, Yuo-Tern; Hsu, Yung-Yuan

    2017-09-01

    This paper studies the structural stresses of differential drive (DD) and harmonic drive (HD) for design improvement of reducers. The designed principles of the two reducers are reported for function comparison. The critical components of the reducers are constructed for performing motion simulation and stress analysis. DD is designed based on differential displacement of the decelerated gear ring as well as HD on a flexible spline. Finite element method (FEM) is used to analyze the structural stresses including the dynamic properties of the reducers. The stresses including kinematic properties of the two reducers are compared to observe the properties of the designs. The analyzed results are applied to identify the allowable loads of the reducers in use. The reliabilities of the reducers in different loads are further calculated according to the variation of stress. The studied results are useful on engineering analysis and reliability evaluation for designing a speed reducer with high ratios.

  16. Modulation of stress-induced neurobehavioral changes and brain oxidative injury by nitric oxide (NO) mimetics in rats.

    PubMed

    Gulati, Kavita; Chakraborti, Ayanabha; Ray, Arunabha

    2007-11-02

    The present study evaluated the effects of NO mimetics on stress-induced neurobehavioral changes and the possible involvement of ROS-RNS interactions in rats. Restraint stress (RS) suppressed both percent open arm entries and time spent in the open arms in the elevated plus maze (EPM) test. These RS-induced changes in EPM activity were attenuated by the NO mimetics, l-arginine, isosorbide dinitrate and molsidomine, in a differential manner. RS-exposed rats showed (a) increased lipid peroxidation (MDA) and (b) lowered reduced glutathione (GSH) and NO metabolites (NOx), in brain homogenates of these animals. Pretreatment with the NO mimetics also differentially influenced RS-induced changes in brain oxidative stress markers. The results suggest that NO may protect against stress-induced anxiogenic behavior and oxidative injury in the brain and highlight the significance of ROS-RNS interactions.

  17. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels

    NASA Astrophysics Data System (ADS)

    Das, Rajat K.; Gocheva, Veronika; Hammink, Roel; Zouani, Omar F.; Rowan, Alan E.

    2016-03-01

    Bulk matrix stiffness has emerged as a key mechanical cue in stem cell differentiation. Here, we show that the commitment and differentiation of human mesenchymal stem cells encapsulated in physiologically soft (~0.2-0.4 kPa), fully synthetic polyisocyanopeptide-based three-dimensional (3D) matrices that mimic the stiffness of adult stem cell niches and show biopolymer-like stress stiffening, can be readily switched from adipogenesis to osteogenesis by changing only the onset of stress stiffening. This mechanical behaviour can be tuned by simply altering the material’s polymer length whilst maintaining stiffness and ligand density. Our findings introduce stress stiffening as an important parameter that governs stem cell fate in a 3D microenvironment, and reveal a correlation between the onset of stiffening and the expression of the microtubule-associated protein DCAMKL1, thus implicating DCAMKL1 in a stress-stiffening-mediated, mechanotransduction pathway that involves microtubule dynamics in stem cell osteogenesis.

  18. Optimal matrix rigidity for stress fiber polarization in stem cells

    PubMed Central

    Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.

    2010-01-01

    The shape and differentiation of human mesenchymal stem cells is especially sensitive to the rigidity of their environment; the physical mechanisms involved are unknown. A theoretical model and experiments demonstrate here that the polarization/alignment of stress-fibers within stem cells is a non-monotonic function of matrix rigidity. We treat the cell as an active elastic inclusion in a surrounding matrix whose polarizability, unlike dead matter, depends on the feedback of cellular forces that develop in response to matrix stresses. The theory correctly predicts the monotonic increase of the cellular forces with the matrix rigidity and the alignment of stress-fibers parallel to the long axis of cells. We show that the anisotropy of this alignment depends non-monotonically on matrix rigidity and demonstrate it experimentally by quantifying the orientational distribution of stress-fibers in stem cells. These findings offer a first physical insight for the dependence of stem cell differentiation on tissue elasticity. PMID:20563235

  19. Proteomics Analysis of Alfalfa Response to Heat Stress

    PubMed Central

    Li, Weimin; Wei, Zhenwu; Qiao, Zhihong; Wu, Zinian; Cheng, Lixiang; Wang, Yuyang

    2013-01-01

    The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25°C (control) and 40°C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa. PMID:24324825

  20. STRESS RISK FACTORS AND STRESS-RELATED PATHOLOGY: NEUROPLASTICITY, EPIGENETICS AND ENDOPHENOTYPES

    PubMed Central

    Radley, Jason J.; Kabbaj, Mohamed; Jacobson, Lauren; Heydendael, Willem; Yehuda, Rachel; Herman, James P.

    2013-01-01

    This review highlights a symposium on stress risk factors and stress susceptibility, presented at the Neurobiology of Stress workshop in Boulder, Colorado, June 2010. This symposium addressed factors linking stress plasticity and reactivity to stress pathology in animal models and in humans. Dr. Jason Radley discussed studies demonstrating prefrontal cortical neuroplasticity and prefrontal control of hypothalamo-pituitary-adrenocortical axis function in rat, highlighting emerging evidence for a critical role of this region in normal and pathological stress integration. Dr. Mohamed Kabbaj summarized his studies of possible epigenetic mechanisms underlying behavioral differences in rat populations bred for differential stress reactivity. Dr. Lauren Jacobson described studies using a mouse model to explore the diverse actions of antidepressant action in brain, suggesting mechanisms whereby antidepressants may be differentially effective in treating specific depression endophenotypes. Dr. Rachel Yehuda discussed the role of glucocorticoids in post-traumatic stress disorder (PTSD), indicating that low cortisol may be a trait that predisposes the individual to development of the disorder. Furthermore, she presented evidence indicating that traumatic events can have transgenerational impact on cortisol reactivity and development of PTSD symptoms. Together, the symposium highlighted emerging themes regarding the role of brain reorganization, individual differences and epigenetics in determining stress plasticity and pathology. PMID:21848436

  1. Examining Difference in Immigration Stress, Acculturation Stress and Mental Health Outcomes in Six Hispanic/Latino Nativity and Regional Groups.

    PubMed

    Cervantes, Richard C; Gattamorta, Karina A; Berger-Cardoso, Jodi

    2018-02-27

    Little is known about the specific behavioral health impact of acculturation stressors that affect Hispanic/Latino immigrant sub-groups. These immigration-related stressors and traumatic events may have differential impact on depression depending on country/region of origin. Using a measure of immigration and acculturation stress, the current study sought to determine differences in the impact of stress on six sub-groups of Hispanic immigrants. Data on stress and depression were examined using a large, representative adult immigrant sample (N = 641). Controlling for age, gender and years in the US, factorial analysis of covariance revealed significant differences on total Hispanic Stress Inventory 2 (HSI2) stress appraisal scores based on country/region of origin. Pair wise comparisons between country/region of origin groups revealed that Mexicans had higher levels of stress compared to Cuban or Dominican immigrants. Several patterns of differential stress were also found within sub-domains of the HSI2. Using regression models, HSI2 stress appraisals and their interaction with country of origin proved to not be significant predictors of depression (PHQ9), while gender and age were significant. Differences in HSI2 stress that are based on nativity may be moderated by cultural resilience that ultimately serves a protective role to prevent the onset of depression.

  2. Localized tidal deformations and dissipation in Enceladus

    NASA Astrophysics Data System (ADS)

    Beuthe, M.

    2017-12-01

    The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should include lateral variations of shell structure. I solve this problem with a new theory of non-uniform viscoelastic thin shells, allowing for large lateral variations of crustal thickness as well as large 3D variations of crustal rheology. The coupling to tidal forcing takes into account self-gravity, density stratification below the shell, core viscoelasticity, and crustal compressibility. The resulting tidal thin shell equations are two partial differential equations defined on the spherical surface, which can be solved numerically much faster than 3D Finite Element Methods. The error on tidal displacements is less than 5% if the thickness is less than 10% of the radius while the error on the deviatoric stress varies between 0 and 10%. If Enceladus's shell is conductive with isostatic thickness variations, crustal thinning increases surface stresses by 60% at the north pole and by a factor of more than 3 at the south pole. Similarly, the surface flux resulting from crustal dissipation increases by a factor of 3 at the south pole. If dissipation is an order of magnitude higher than predicted by the Maxwell model (as suggested by recent experimental data), the power dissipated in the crust could reach 50% of the total power required to maintain the crust in thermal equilibrium, and most of the surface flux variation could be explained by latitudinal variations of crustal dissipation. In all cases, a large part of the heat budget must be generated below the crust.

  3. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells.

    PubMed

    Ma, Jie; Sheng, Huachun; Li, Xiuli; Wang, Lijun

    2016-07-01

    Silicon (Si) can alleviate cadmium (Cd) stress in rice (Oryza sativa) plants, however, the understanding of the molecular mechanisms at the single-cell level remains limited. To address these questions, we investigated suspension cells of rice cultured in the dark environment in the absence and presence of Si with either short- (12 h) or long-term (5 d) Cd treatments using a combination of isobaric tags for relative and absolute quantitation (iTRAQ), fluorescent staining, and inductively coupled plasma mass spectroscopy (ICP-MS). We identified 100 proteins differentially regulated by Si under the short- or long-term Cd stress. 70% of these proteins were down-regulated, suggesting that Si may improve protein use efficiency by maintaining cells in the normal physiological status. Furthermore, we showed two different mechanisms for Si-mediated Cd tolerance. Under the short-term Cd stress, the Si-modified cell walls inhibited the uptake of Cd ions into cells and consequently reduced the expressions of glycosidase, cell surface non-specific lipid-transfer proteins (nsLTPs), and several stress-related proteins. Under the long-term Cd stress, the amount of Cd in the cytoplasm in Si-accumulating (+Si) cells was decreased by compartmentation of Cd into vacuoles, thus leading to a lower expression of glutathione S-transferases (GST). These results provide protein-level insights into the Si-mediated Cd detoxification in rice single cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Plume-Surface Interaction Modeling for a Human-Scale Mars Lander

    NASA Technical Reports Server (NTRS)

    Hart, Kenneth

    2017-01-01

    Landing vehicles impart thermal and strain energy onto the landing site from the retrorocket exhaust. Depending on the design of the vehicle, the energy may be great enough to cause spallation at the landing site. This damage may be minor and repairable in the case of landing on a terrestrial landing pad. For missions to other planetary bodies, the spallation may cause the landing site to become uneven and unstable, as well as damage. Simulating this phenomenon in a laboratory or computationally would require a significant amount of time and other resources. These resources typically are not available during the design phase of a mission. This paper presents a computationally-efficient model for the temperature and stress distributions that arise during landing. These quantities can be used along with existing failure criteria, such as the Hoek-Brown criterion for geological materials, to quickly determine whether spallation will occur. The stress and temperature distributions at the landing site are inherently 3D; however, there is a plane of symmetry and in that plane the distributions are 2D. Both quantities are modeled using series solutions to their governing partial differential equations (PDEs). The stress is modeled using the Airy stress potential function and its governing PDE is the biharmonic equation. The temperature is governed by Fourier's law. The models assume that stress due to gravity can be neglected, the points in the plane do not accelerate, and that the material properties are constant.

  5. Mechanical Characterization of Mancos Shale

    NASA Astrophysics Data System (ADS)

    Broome, S.; Ingraham, M. D.; Dewers, T. A.

    2015-12-01

    A series of tests on Mancos shale have been undertaken to determine the failure surface and to characterize anisotropy. This work supports additional studies which are being performed on the same block of shale; fracture toughness, permeability, and chemical analysis. Mechanical tests are being conducted after specimens were conditioned for at least two weeks at 70% constant relative humidity conditions. Specimens are tested under drained conditions, with the constant relative humidity condition maintained on the downstream side of the specimen. The upstream is sealed. Anisotropy is determined through testing specimens that have been cored parallel and perpendicular to the bedding plane. Preliminary results show that when loaded parallel to bedding the shale is roughly 50% weaker. Test are run under constant mean stress conditions when possible (excepting indirect tension, unconfined compression, and hydrostatic). Tests are run in hydrostatic compaction to the desired mean stress, then differential stress is applied axially in displacement control to failure. The constant mean stress condition is maintained by decreasing the confining pressure by half of the increase in the axial stress. Results will be compared to typical failure criteria to investigate the effectiveness of capturing the behavior of the shale with traditional failure theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6107 A.

  6. Surface energy and surface stress on vicinals by revisiting the Shuttleworth relation

    NASA Astrophysics Data System (ADS)

    Hecquet, Pascal

    2018-04-01

    In 1998 [Surf. Sci. 412/413, 639 (1998)], we showed that the step stress on vicinals varies as 1/L, L being the distance between steps, while the inter-step interaction energy primarily follows the law as 1/L2 from the well-known Marchenko-Parshin model. In this paper, we give a better understanding of the interaction term of the step stress. The step stress is calculated with respect to the nominal surface stress. Consequently, we calculate the diagonal surface stresses in both the vicinal system (x, y, z) where z is normal to the vicinal and the projected system (x, b, c) where b is normal to the nominal terrace. Moreover, we calculate the surface stresses by using two methods: the first called the 'Zero' method, from the surface pressure forces and the second called the 'One' method, by homogeneously deforming the vicinal in the parallel direction, x or y, and by calculating the surface energy excess proportional to the deformation. By using the 'One' method on the vicinal Cu(0 1 M), we find that the step deformations, due to the applied deformation, vary as 1/L by the same factor for the tensor directions bb and cb, and by twice the same factor for the parallel direction yy. Due to the vanishing of the surface stress normal to the vicinal, the variation of the step stress in the direction yy is better described by using only the step deformation in the same direction. We revisit the Shuttleworth formula, for while the variation of the step stress in the direction xx is the same between the two methods, the variation in the direction yy is higher by 76% for the 'Zero' method with respect to the 'One' method. In addition to the step energy, we confirm that the variation of the step stress must be taken into account for the understanding of the equilibrium of vicinals when they are not deformed.

  7. Eye surface temperature detects stress response in budgerigars (Melopsittacus undulatus).

    PubMed

    Ikkatai, Yuko; Watanabe, Shigeru

    2015-08-05

    Previous studies have suggested that stressors not only increase body core temperature but also body surface temperature in many animals. However, it remains unclear whether surface temperature could be used as an alternative to directly measure body core temperature, particularly in birds. We investigated whether surface temperature is perceived as a stress response in budgerigars. Budgerigars have been used as popular animal models to investigate various neural mechanisms such as visual perception, vocal learning, and imitation. Developing a new technique to understand the basic physiological mechanism would help neuroscience researchers. First, we found that cloacal temperature correlated with eye surface temperature. Second, eye surface temperature increased after handling stress. Our findings suggest that eye surface temperature is closely related to cloacal temperature and that the stress response can be measured by eye surface temperature in budgerigars.

  8. Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line.

    PubMed

    Le, Bach Q; Vasilevich, Aliaksei; Vermeulen, Steven; Hulshof, Frits; Stamatialis, Dimitrios F; van Blitterswijk, Clemens A; de Boer, Jan

    2017-05-01

    Chemical and mechanical cues are well-established influencers of in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process, a study not been explored before. Previously, using a library of surface micro-topographies we found some distinct patterns that induced alkaline phosphatase (ALP) production in human mesenchymal stromal cells. ALP is also a marker for hypertrophy, the end stage of chondrogenic differentiation preceding bone formation. Thus, we hypothesized that these patterns could influence end-stage chondrogenic differentiation of ATDC5 cells. In this study, we randomly selected seven topographies among the ALP influencing hits. Cells grown on these surfaces displayed varying nuclear shape and actin filament structure. When stimulated with insulin-transferrin-selenium (ITS) medium, nodule formation occurred and in some cases showed alignment to the topographical patterns. Gene expression analysis of cells growing on topographical surfaces in the presence of ITS medium revealed a downregulation of early markers and upregulation of late markers of chondrogenic differentiation compared to cells grown on a flat surface. In conclusion, we demonstrated that surface topography in addition to other cues can promote hypertrophic differentiation suitable for bone tissue engineering.

  9. Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase

    PubMed Central

    Pandey, Saurabh; Fartyal, Dhirendra; Agarwal, Aakrati; Shukla, Tushita; James, Donald; Kaul, Tanushri; Negi, Yogesh K.; Arora, Sandeep; Reddy, Malireddy K.

    2017-01-01

    One of the most significant manifestations of environmental stress in plants is the increased production of Reactive Oxygen Species (ROS). These ROS, if allowed to accumulate unchecked, can lead to cellular toxicity. A battery of antioxidant molecules is present in plants for keeping ROS levels under check and to maintain the cellular homeostasis under stress. Ascorbate peroxidase (APX) is a key antioxidant enzyme of such scavenging systems. It catalyses the conversion of H2O2 into H2O, employing ascorbate as an electron donor. The expression of APX is differentially regulated in response to environmental stresses and during normal plant growth and development as well. Different isoforms of APX show differential response to environmental stresses, depending upon their sub-cellular localization, and the presence of specific regulatory elements in the upstream regions of the respective genes. The present review delineates role of APX isoforms with respect to different types of abiotic stresses and its importance as a key antioxidant enzyme in maintaining cellular homeostasis. PMID:28473838

  10. Profiling of differential gene expression in the hypothalamus of broiler-type Taiwan country chickens in response to acute heat stress.

    PubMed

    Tu, Wei-Lin; Cheng, Chuen-Yu; Wang, Shih-Han; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Chen, Shuen-Ei; Huang, San-Yuan

    2016-02-01

    Acute heat stress severely impacts poultry production. The hypothalamus acts as a crucial center to regulate body temperature, detect temperature changes, and modulate the autonomic nervous system and endocrine loop for heat retention and dissipation. The purpose of this study was to investigate global gene expression in the hypothalamus of broiler-type B strain Taiwan country chickens after acute heat stress. Twelve 30-week-old hens were allocated to four groups. Three heat-stressed groups were subjected to acute heat stress at 38 °C for 2 hours without recovery (H2R0), with 2 hours of recovery (H2R2), and with 6 hours of recovery (H2R6). The control hens were maintained at 25 °C. At the end, hypothalamus samples were collected for gene expression analysis. The results showed that 24, 11, and 25 genes were upregulated and 41, 15, and 42 genes were downregulated in H2R0, H2R2, and H2R6 treatments, respectively. The expressions of gonadotropin-releasing hormone 1 (GNRH1), heat shock 27-kDa protein 1 (HSPB1), neuropeptide Y (NPY), and heat shock protein 25 (HSP25) were upregulated at all recovery times after heat exposure. Conversely, the expression of TPH2 was downregulated at all recovery times. A gene ontology analysis showed that most of the differentially expressed genes were involved in biological processes including cellular processes, metabolic processes, localization, multicellular organismal processes, developmental processes, and biological regulation. A functional annotation analysis showed that the differentially expressed genes were related to the gene networks of responses to stress and reproductive functions. These differentially expressed genes might be essential and unique key factors in the heat stress response of the hypothalamus in chickens. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Response of microRNAs to cold treatment in the young spikes of common wheat.

    PubMed

    Song, Guoqi; Zhang, Rongzhi; Zhang, Shujuan; Li, Yulian; Gao, Jie; Han, Xiaodong; Chen, Mingli; Wang, Jiao; Li, Wei; Li, Genying

    2017-02-28

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat.

  12. Numerical Simulation for the Unsteady MHD Flow and Heat Transfer of Couple Stress Fluid over a Rotating Disk

    PubMed Central

    2014-01-01

    The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274

  13. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    NASA Astrophysics Data System (ADS)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-03-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  14. From coherent to incoherent mismatched interfaces: A generalized continuum formulation of surface stresses

    NASA Astrophysics Data System (ADS)

    Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane

    2014-12-01

    The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. The coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent and incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.

  15. From coherent to incoherent mismatched interfaces. A generalized continuum formulation of surface stresses

    DOE PAGES

    Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane

    2014-08-19

    The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. Additionally, the coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent andmore » incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu 2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.« less

  16. PEG attachment to osteoblasts enhances mechanosensitivity.

    PubMed

    Hamamura, Kazunori; Weng, Yiming; Zhao, Jun; Yokota, Hiroki; Xie, Dong

    2008-06-01

    Fluid flow induces proliferation and differentiation of osteoblasts, and fibrous structure like a primary cilium on a cell surface contributes to flow sensing and flow-driven gene regulation. We address a question: Does attachment of synthetic polymers on a cell surface enhance mechanosensitivity of osteoblasts? Using MC3T3 osteoblast cells (C4 clone) and a PEG polymer, one of whose termini was covalently linked to a succinimidyl succinate group (functionalized PEG-PEGSS), we examined attachment of PEGSS to osteoblasts and evaluated its effects on the mRNA expression of stress-responsive genes. AFM images exhibited globular PEGSS conformation of approximately 100 nm in size, and SEM images confirmed the attachment of a cluster of pancake-like PEGSS molecules on the osteoblast surface. Compared to control cells incubated with unfunctionalized PEG, real-time PCR revealed that RNA upregulation of c-fos, egr1, ATF3 and Cox2 genes was magnified in the cells incubated with PEGSS. These results support a PEG-induced increase in mechanosensitivity of osteoblasts and indicate that the described approach would be useful to accelerate growth and development of osteoblasts for bone repair and tissue engineering.

  17. Microcolonial fungi: survival potential of terrestrial vegetative structures.

    PubMed

    Gorbushina, Anna

    2003-01-01

    So far mainly spores or other "differentiated-for-survival" structures were considered to be resistant against extreme environmental constraints (including extraterrestrial challenges). Microcolonial fungi (MCF) are unique growth structures formed by eukaryotic microorganisms inhabiting rock varnish surfaces in terrestrial deserts. They are here proposed as a new object for exobiological study. Sun-exposed desert rocks provide surface habitats with intense solar radiation, a scarce water supply, drastic changes in temperature, and episodic to sporadic availability of nutrients. These challenging conditions reduce the diversity of life to MCF, whose resistance to desiccation and tolerance for ultraviolet (UV) radiation make them survival specialists. Based upon our studies of MCF, we propose that the following mechanisms are universally employed for survival on rock surfaces: (1) compact tissue-like colony organization formed by thermodynamically optimal round cells embedded in extracellular polymeric substances, (2) the presence of several types of UV-absorbing compounds (melanins and mycosporines) and antioxidants (carotenoids, melanins, and mycosporines) that convey multiple stress resistance to desiccation, temperature, and irradiation changes, and (3) intracellular developmental mechanisms typical for these structures.

  18. Role Stress in Working Women: Differential Effect on Selected Organizational Outcomes.

    ERIC Educational Resources Information Center

    Chassie, Marilyn B.; Bhagat, Rabi S.

    1980-01-01

    Role stress was significantly and negatively related to organizational commitment; overall job satisfaction; satisfaction with pay, work, coworkers, and supervision; and personal-life satisfaction. (Author)

  19. Off-axis mirror fabrication from spherical surfaces under mechanical stress

    NASA Astrophysics Data System (ADS)

    Izazaga-Pérez, R.; Aguirre-Aguirre, D.; Percino-Zacarías, M. E.; Granados-Agustín, Fermin-Salomon

    2013-09-01

    The preliminary results in the fabrication of off-axis optical surfaces are presented. The propose using the conventional polishing method and with the surface under mechanical stress at its edges. It starts fabricating a spherical surface using ZERODUR® optical glass with the conventional polishing method, the surface is deformed by applying tension and/or compression at the surface edges using a specially designed mechanical mount. To know the necessary deformation, the interferogram of the deformed surface is analyzed in real time with a ZYGO® Mark II Fizeau type interferometer, the mechanical stress is applied until obtain the inverse interferogram associated to the off-axis surface that we need to fabricate. Polishing process is carried out again until obtain a spherical surface, then mechanical stress in the edges are removed and compares the actual interferogram with the theoretical associated to the off-axis surface. To analyze the resulting interferograms of the surface we used the phase shifting analysis method by using a piezoelectric phase-shifter and Durango® interferometry software from Diffraction International™.

  20. On Heat Transfer - Stress Analysis of Modified Brick (Reed Filler) Upon Its Production Stage

    NASA Astrophysics Data System (ADS)

    Ornam, Kurniati; Kimsan, Masykur; Teguh Prakasa, Cadas; Ode Ngkoimani, La; Santi

    2017-05-01

    This paper aimed to scrutinize how burning process in modified brick’s production impinge on crack as a result of stress differentiation between two consecutive layers of the brick’s element. Diffusion engages in burning process of bricks, hence it generates thermal stress on element for different temperature between layers. This research focused on burning process in traditional production ward. Analytical of nonlinear equation and numerical solution, finite difference, were involved to obtain temperature value in each layer, followed by stress calculation. Based on the results, it can be concluded that crack occurs particularly on boundary area, since difussion tends to yield relatively more different value on it. Therefore, certain strategies, that may decrease this differentiation, are required to minimize number of cracks during brick’s production.

  1. An Experimental Investigation into Failure and Localization Phenomena in the Extension to Shear Fracture Transition in Rock

    NASA Astrophysics Data System (ADS)

    Choens, R. C., II; Chester, F. M.; Bauer, S. J.; Flint, G. M.

    2014-12-01

    Fluid-pressure assisted fracturing can produce mesh and other large, interconnected and complex networks consisting of both extension and shear fractures in various metamorphic, magmatic and tectonic systems. Presently, rock failure criteria for tensile and low-mean compressive stress conditions is poorly defined, although there is accumulating evidence that the transition from extension to shear fracture with increasing mean stress is continuous. We report on the results of experiments designed to document failure criteria, fracture mode, and localization phenomena for several rock types (sandstone, limestone, chalk and marble). Experiments were conducted in triaxial extension using a necked (dogbone) geometry to achieve mixed tension and compression stress states with local component-strain measurements in the failure region. The failure envelope for all rock types is similar, but are poorly described using Griffith or modified Griffith (Coulomb or other) failure criteria. Notably, the mode of fracture changes systematically from pure extension to shear with increase in compressive mean stress and display a continuous change in fracture orientation with respect to principal stress axes. Differential stress and inelastic strain show a systematic increase with increasing mean stress, whereas the axial stress decreases before increasing with increasing mean stress. The stress and strain data are used to analyze elastic and plastic strains leading to failure and compare the experimental results to predictions for localization using constitutive models incorporating on bifurcation theory. Although models are able to describe the stability behavior and onset of localization qualitatively, the models are unable to predict fracture type or orientation. Constitutive models using single or multiple yield surfaces are unable to predict the experimental results, reflecting the difficulty in capturing the changing micromechanisms from extension to shear failure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deopartment of Energy's National Security Administration under contract DE-AC04-94AL85000. SAND2014-16578A

  2. Characteristic Changes in Cell Surface Glycosylation Accompany Intestinal Epithelial Cell (IEC) Differentiation: High Mannose Structures Dominate the Cell Surface Glycome of Undifferentiated Enterocytes.

    PubMed

    Park, Dayoung; Brune, Kristin A; Mitra, Anupam; Marusina, Alina I; Maverakis, Emanual; Lebrilla, Carlito B

    2015-11-01

    Changes in cell surface glycosylation occur during the development and differentiation of cells and have been widely correlated with the progression of several diseases. Because of their structural diversity and sensitivity to intra- and extracellular conditions, glycans are an indispensable tool for analyzing cellular transformations. Glycans present on the surface of intestinal epithelial cells (IEC) mediate interactions with billions of native microorganisms, which continuously populate the mammalian gut. A distinct feature of IECs is that they differentiate as they migrate upwards from the crypt base to the villus tip. In this study, nano-LC/ESI QTOF MS profiling was used to characterize the changes in glycosylation that correspond to Caco-2 cell differentiation. As Caco-2 cells differentiate to form a brush border membrane, a decrease in high mannose type glycans and a concurrent increase in fucosylated and sialylated complex/hybrid type glycans were observed. At day 21, when cells appear to be completely differentiated, remodeling of the cell surface glycome ceases. Differential expression of glycans during IEC maturation appears to play a key functional role in regulating the membrane-associated hydrolases and contributes to the mucosal surface innate defense mechanisms. Developing methodologies to rapidly identify changes in IEC surface glycans may lead to a rapid screening approach for a variety of disease states affecting the GI tract. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Proteomic Profiling of the Interactions of Cd/Zn in the Roots of Dwarf Polish Wheat (Triticum polonicum L.)

    PubMed Central

    Wang, Yi; Wang, Xiaolu; Wang, Chao; Wang, Ruijiao; Peng, Fan; Xiao, Xue; Zeng, Jian; Fan, Xing; Kang, Houyang; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    Cd and Zn have been shown to interact antagonistically or synergistically in various plants. In the present study of dwarf polish wheat (DPW)roots, Cd uptake was inhibited by Zn, and Zn uptake was inhibited by Cd, suggesting that Cd and Zn interact antagonistically in this plant. A study of proteomic changes showed that Cd, Zn, and Cd+Zn stresses altered the expression of 206, 303, and 190 proteins respectively. Among these, 53 proteins were altered significantly in response to all these stresses (Cd, Zn, and Cd+Zn), whereas 58, 131, and 47 proteins were altered in response to individual stresses (Cd, Zn, and Cd+Zn, respectively). Sixty-one differentially expressed proteins (DEPs) were induced in response to both Cd and Zn stresses; 33 proteins were induced in response to both Cd and Cd+Zn stresses; and 57 proteins were induced in response to both Zn and Cd+Zn stresses. These results indicate that Cd and Zn induce differential molecular responses, which result in differing interactions of Cd/Zn. A number of proteins that mainly participate in oxidation-reduction and GSH, SAM, and sucrose metabolisms were induced in response to Cd stress, but not Cd+Zn stress. This result indicates that these proteins participate in Zn inhibition of Cd uptake and ultimately cause Zn detoxification of Cd. Meanwhile, a number of proteins that mainly participate in sucrose and organic acid metabolisms and oxidation-reduction were induced in response to Zn stress but not Cd+Zn stress. This result indicates that these proteins participate in Cd inhibition of Zn uptake and ultimately cause the Cd detoxification of Zn. Other proteins induced in response to Cd, Zn, or Cd+Zn stress, participate in ribosome biogenesis, DNA metabolism, and protein folding/modification and may also participate in the differential defense mechanisms. PMID:27683584

  4. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling.

    PubMed

    Yadav, Amita; Khan, Yusuf; Prasad, Manoj

    2016-03-01

    A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post-transcriptional regulation governed by miRNAs and their targets in a naturally stress-tolerant model crop.

  5. Evaluation of near-surface stress distributions in dissimilar welded joint by scanning acoustic microscopy.

    PubMed

    Kwak, Dong Ryul; Yoshida, Sanichiro; Sasaki, Tomohiro; Todd, Judith A; Park, Ik Keun

    2016-04-01

    This paper presents the results from a set of experiments designed to ultrasonically measure the near surface stresses distributed within a dissimilar metal welded plate. A scanning acoustic microscope (SAM), with a tone-burst ultrasonic wave frequency of 200 MHz, was used for the measurement of near surface stresses in the dissimilar welded plate between 304 stainless steel and low carbon steel. For quantitative data acquisition such as leaky surface acoustic wave (leaky SAW) velocity measurement, a point focus acoustic lens of frequency 200 MHz was used and the leaky SAW velocities within the specimen were precisely measured. The distributions of the surface acoustic wave velocities change according to the near-surface stresses within the joint. A three dimensional (3D) finite element simulation was carried out to predict numerically the stress distributions and compare with the experimental results. The experiment and FE simulation results for the dissimilar welded plate showed good agreement. This research demonstrates that a combination of FE simulation and ultrasonic stress measurements using SAW velocity distributions appear promising for determining welding residual stresses in dissimilar material joints. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts.

    PubMed

    Zhang, Yu; Yang, Jian-Hong

    2013-11-01

    Diabetes mellitus is associated with increased risk of osteopenia and bone fracture that may be related to hyperglycemia. However, the mechanisms accounting for diabetic bone disorder are unclear. Here, we showed that high glucose significantly promoted the production of reactive oxygen species (ROS) in rat primary osteoblasts. Most importantly, we reported for the first time that ROS induced by high glucose increased alkaline phosphatase activity, inhibited type I collagen (collagen I) protein level and cell mineralization, as well as gene expression of osteogenic markers including runt-related transcription factor 2 (Runx2), collagen I, and osteocalcin, but promoted lipid droplet formation and gene expression of adipogenic markers including peroxisome proliferator-activated receptor gamma, adipocyte fatty acid binding protein (aP2), and adipsin, which were restored by pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, high glucose-induced oxidative stress activated PI3K/Akt pathway to inhibited osteogenic differentiation but stimulated adipogenic differentiation. In contrast, NAC and a PI3K inhibitor, LY-294002, reversed the down-regulation of osteogenic markers and the up-regulation of adipogenic markers as well as the activation of Akt under high glucose. These results indicated that oxidative stress played a key role in high glucose-induced increase of adipogenic differentiation, which contributed to the inhibition of osteogenic differentiation. This process was mediated by PI3K/Akt pathway in rat primary osteoblasts. Hence, suppression of oxidative stress could be a potential therapeutic approach for diabetic osteopenia. © 2013 Wiley Periodicals, Inc.

  7. When sticky fluids don't stick: yield-stress fluid drops on heated surfaces

    NASA Astrophysics Data System (ADS)

    Blackwell, Brendan; Wu, Alex; Ewoldt, Randy

    2016-11-01

    Yield-stress fluids, including gels and pastes, are effectively fluid at high stress and solid at low stress. In liquid-solid impacts, these fluids can stick and accumulate where they impact; this sticky behavior motivates several applications of these rheologically-complex materials. Here we describe experiments with aqueous yield stress fluids that are more 'sticky' than water at room temperature (e.g. supporting larger coating thicknesses), but are less 'sticky' at higher temperatures. Specifically, we study the conditions for aqueous yield stress fluids to bounce and slide on heated surfaces when water sticks. Here we present high-speed imaging and color interferometry to observe the thickness of the vapor layer between the drop and the surface during both stick and non-stick events. We use these data to gain insight into the physics behind the phenomenon of the yield-stress fluids bouncing and sliding, rather than sticking, on hot surfaces.

  8. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    PubMed

    Priest, Henry D; Fox, Samuel E; Rowley, Erik R; Murray, Jessica R; Michael, Todd P; Mockler, Todd C

    2014-01-01

    Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  9. Thermophysical property and pore structure evolution in stressed and non-stressed neutron irradiated IG-110 nuclear graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Lance; Contescu, Christian I.; Byun, Thak Sang

    2016-08-01

    The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 *C up to 9.3E25 n/m2 (E > 0.1 MeV). Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free conditions. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3e40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less

  10. Thermophysical property and pore structure evolution in stressed and non-stressed neutron irradiated IG-110 nuclear graphite

    DOE PAGES

    Snead, Lance L.; Contescu, C. I.; Byun, T. S.; ...

    2016-04-23

    The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 C up to 9.3x10 25 n/m 2 (E>0.1 MeV.) Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free condition. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3-40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less

  11. Prenatal programming of emotion regulation: neonatal reactivity as a differential susceptibility factor moderating the outcome of prenatal cortisol levels.

    PubMed

    Bolten, Margarete; Nast, Irina; Skrundz, Marta; Stadler, Christina; Hellhammer, Dirk H; Meinlschmidt, Gunther

    2013-10-01

    Hypothalamic-pituitary-adrenal (HPA) activation during pregnancy is linked to dysfunctional behavioral outcomes in the offspring. According to Belsky's differential susceptibility hypothesis, individuals vary regarding their developmental plasticity. Translating the differential susceptibility hypothesis to the field of fetal programming, we hypothesize that infants' temperament, as the constitutionally based reactivity to stimulation, moderates prenatal environmental effects on postnatal emotion regulation. Maternal HPA axis activity and stress-reactivity during pregnancy was estimated, by measuring cortisol concentrations in saliva, collected at 0, 30, 45 and 60 min after awakening and in blood, collected during a laboratory stress test (Trier Social Stress Test), respectively. Newborns reactivity to stimulation was evaluated between postnatal day 10 and 14 using the Neonatal Intensive Care Unit Network Neurobehavioral Scale. Infant's self-quieting-activities, as an indicator of emotion regulation, were evaluated at the age of six months during the still face paradigm. Maternal cortisol reactivity to stress during pregnancy was associated with infant's emotion regulation at the age of six months. Whereas cortisol levels after awakening in mid and late pregnancy were not associated with emotion regulation. Furthermore, regression analyses revealed that in interaction with neonatal reactivity, both, prenatal maternal HPA activity as well as prenatal maternal HPA reactivity to stress predicted emotion regulation. The findings indicate that newborns' reactivity to stimulation is moderating the association between prenatal exposure to maternal glucocorticoids and emotion regulation in infancy. Data suggests that temperamental characteristics of the newborn are a relevant differential susceptibility factor with regard to prenatal effects on emotion regulation. © 2013.

  12. Shear stress influences the pluripotency of murine embryonic stem cells in stirred suspension bioreactors.

    PubMed

    Gareau, Tia; Lara, Giovanna G; Shepherd, Robert D; Krawetz, Roman; Rancourt, Derrick E; Rinker, Kristina D; Kallos, Michael S

    2014-04-01

    Pluripotent embryonic stem cells (ESCs) have been used increasingly in research as primary material for various tissue-engineering applications. Pluripotency, or the ability to give rise to all cells of the body, is an important characteristic of ESCs. Traditional methods use leukaemia inhibitory factor (LIF) to maintain murine embryonic stem cell (mESC) pluripotency in static and bioreactor cultures. When LIF is removed from mESCs in static cultures, pluripotency genes are downregulated and the cultures will spontaneously differentiate. Recently we have shown the maintenance of pluripotency gene expression of mESCs in stirred suspension bioreactors during differentiation experiments in the absence of LIF. This is undesired in a differentiation experiment, where the goal is downregulation of pluripotency gene expression and upregulation of gene expression characteristic to the differentiation. Thus, the objective of this study was to examine how effectively different levels of shear stress [100 rpm (6 dyne/cm(2) ), 60 rpm (3 dyne/cm(2) )] maintained and influenced pluripotency in suspension bioreactors. The pluripotency markers Oct-4, Nanog, Sox-2 and Rex-1 were assessed using gene expression profiles and flow-cytometry analysis and showed that shear stress does maintain and influence the gene expression of certain pluripotency markers. Some significant differences between the two levels of shear stress were seen and the combination of shear stress and LIF was observed to synergistically increase the expression of certain pluripotency markers. Overall, this study provides a better understanding of the environmental conditions within suspension bioreactors and how these conditions affect the pluripotency of mESCs. Copyright © 2012 John Wiley & Sons, Ltd.

  13. ESTIMATION OF EFFECTIVE SHEAR STRESS WORKING ON FLAT SHEET MEMBRANE USING FLUIDIZED MEDIA IN MBRs

    NASA Astrophysics Data System (ADS)

    Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi; Mishima, Iori

    This study was aimed at estimating effective shear stress working on flat sheet membrane by the addition of fluidized media in MBRs. In both of laboratory-scale aeration tanks with and without fluidized media, shear stress variations on membrane surface and water phase velocity variations were measured and MBR operation was conducted. For the evaluation of the effective shear stress working on membrane surface to mitigate membrane surface, simulation of trans-membrane pressure increase was conducted. It was shown that the time-averaged absolute value of shear stress was smaller in the reactor with fluidized media than without fluidized media. However, due to strong turbulence in the reactor with fluidized media caused by interaction between water-phase and media and also due to the direct interaction between membrane surface and fluidized media, standard deviation of shear stress on membrane surface was larger in the reactor with fluidized media than without media. Histograms of shear stress variation data were fitted well to normal distribution curves and mean plus three times of standard deviation was defined to be a maximum shear stress value. By applying the defined maximum shear stress to a membrane fouling model, trans-membrane pressure curve in the MBR experiment was simulated well by the fouling model indicting that the maximum shear stress, not time-averaged shear stress, can be regarded as an effective shear stress to prevent membrane fouling in submerged flat-sheet MBRs.

  14. Blood differential test

    MedlinePlus

    ... 3% What Abnormal Results Mean Any infection or acute stress increases your number of white blood cells. ... increased percentage of neutrophils may be due to: Acute infection Acute stress Eclampsia (seizures or coma in ...

  15. Differential Stress Levels in Primary Versus Secondary Classrooms.

    ERIC Educational Resources Information Center

    Jones, J. Reid

    A study investigated sources of stress among 61 elementary and secondary school teachers who had attended an inservice stress clinic. Teachers completed test or survey instruments which collected data on problem situations for classroom teachers, including personal information on their teaching situations, job satisfaction, consideration of…

  16. Differential Susceptibility to the Environment: Are Developmental Models Compatible with the Evidence from Twin Studies?

    ERIC Educational Resources Information Center

    Del Giudice, Marco

    2016-01-01

    According to models of differential susceptibility, the same neurobiological and temperamental traits that determine increased sensitivity to stress and adversity also confer enhanced responsivity to the positive aspects of the environment. Differential susceptibility models have expanded to include complex developmental processes in which genetic…

  17. On the role of constant-stress surfaces in the problem of minimizing elastic stress concentration

    NASA Technical Reports Server (NTRS)

    Wheeler, L.

    1976-01-01

    Cases involving antiplane shear deformation, axisymmetric torsion, and plane strain theory, with surfaces of constant stress magnitude optimal in terms of minimizing stress, are investigated. Results for the plane theory refer to exterior doubly connected domains. Stresses generated by torsion of an elastic solid lying within a radially convex region of revolution with plane ends, body force absent, and lateral surface traction-free, are examined. The unknown portion of the boundary of such domains may involve a hole, fillet, or notch.

  18. Differential adaptation of two varieties of common bean to abiotic stress: II. Acclimation of photosynthesis.

    PubMed

    Wentworth, Mark; Murchie, Erik H; Gray, Julie E; Villegas, Daniel; Pastenes, Claudio; Pinto, Manuel; Horton, Peter

    2006-01-01

    The photosynthetic characteristics of two contrasting varieties of common bean (Phaseolus vulgaris) have been determined. These varieties, Arroz and Orfeo, differ in their productivity under stress conditions, resistance to drought stress, and have distinctly different stomatal behaviour. When grown under conditions of high irradiance and high temperature, both varieties displayed evidence of photosynthetic acclimation at the chloroplast level-there was an increase in chlorophyll a/b ratio, a decreased content of Lhcb proteins, and an increased xanthophyll cycle pool size. Both varieties also showed reduced chlorophyll content on a leaf area basis and a decrease in leaf area. Both varieties showed an increase in leaf thickness but only Arroz showed the characteristic elongated palisade cells in the high light-grown plants; Orfeo instead had a larger number of smaller, rounded cells. Differences were found in stomatal development: whereas Arroz showed very little change in stomatal density, Orfeo exhibited a large increase, particularly on the upper leaf surface. It is suggested that these differences in leaf cell structure and stomatal density give rise to altered rates of photosynthesis and stomatal conductance. Whereas, Arroz had the same photosynthetic rate in plants grown at both low and high irradiance, Orfeo showed a higher photosynthetic capacity at high irradiance. It is suggested that the higher yield of Orfeo compared with Arroz under stress conditions can be explained, in part, by these cellular differences.

  19. A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem

    PubMed Central

    Burian, Agata; Uyttewaal, Magalie

    2013-01-01

    Cortical microtubules (CMTs) are often aligned in a particular direction in individual cells or even in groups of cells and play a central role in the definition of growth anisotropy. How the CMTs themselves are aligned is not well known, but two hypotheses have been proposed. According to the first hypothesis, CMTs align perpendicular to the maximal growth direction, and, according to the second, CMTs align parallel to the maximal stress direction. Since both hypotheses were formulated on the basis of mainly qualitative assessments, the link between CMT organization, organ geometry, and cell growth is revisited using a quantitative approach. For this purpose, CMT orientation, local curvature, and growth parameters for each cell were measured in the growing shoot apical meristem (SAM) of Arabidopsis thaliana. Using this approach, it has been shown that stable CMTs tend to be perpendicular to the direction of maximal growth in cells at the SAM periphery, but parallel in the cells at the boundary domain. When examining the local curvature of the SAM surface, no strict correlation between curvature and CMT arrangement was found, which implies that SAM geometry, and presumed geometry-derived stress distribution, is not sufficient to prescribe the CMT orientation. However, a better match between stress and CMTs was found when mechanical stress derived from differential growth was also considered. PMID:24153420

  20. A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem.

    PubMed

    Burian, Agata; Ludynia, Michal; Uyttewaal, Magalie; Traas, Jan; Boudaoud, Arezki; Hamant, Olivier; Kwiatkowska, Dorota

    2013-12-01

    Cortical microtubules (CMTs) are often aligned in a particular direction in individual cells or even in groups of cells and play a central role in the definition of growth anisotropy. How the CMTs themselves are aligned is not well known, but two hypotheses have been proposed. According to the first hypothesis, CMTs align perpendicular to the maximal growth direction, and, according to the second, CMTs align parallel to the maximal stress direction. Since both hypotheses were formulated on the basis of mainly qualitative assessments, the link between CMT organization, organ geometry, and cell growth is revisited using a quantitative approach. For this purpose, CMT orientation, local curvature, and growth parameters for each cell were measured in the growing shoot apical meristem (SAM) of Arabidopsis thaliana. Using this approach, it has been shown that stable CMTs tend to be perpendicular to the direction of maximal growth in cells at the SAM periphery, but parallel in the cells at the boundary domain. When examining the local curvature of the SAM surface, no strict correlation between curvature and CMT arrangement was found, which implies that SAM geometry, and presumed geometry-derived stress distribution, is not sufficient to prescribe the CMT orientation. However, a better match between stress and CMTs was found when mechanical stress derived from differential growth was also considered.

  1. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.)

    PubMed Central

    von Korff, M.

    2013-01-01

    The objective of this study was to identify barley leaf proteins differentially regulated in response to drought and heat and the combined stresses in context of the morphological and physiological changes that also occur. The Syrian landrace Arta and the Australian cultivar Keel were subjected to drought, high temperature, or a combination of both treatments starting at heading. Changes in the leaf proteome were identified using differential gel electrophoresis and mass spectrometry. The drought treatment caused strong reductions of biomass and yield, while photosynthetic performance and the proteome were not significantly changed. In contrast, the heat treatment and the combination of heat and drought reduced photosynthetic performance and caused changes of the leaf proteome. The proteomic analysis identified 99 protein spots differentially regulated in response to heat treatment, 14 of which were regulated in a genotype-specific manner. Differentially regulated proteins predominantly had functions in photosynthesis, but also in detoxification, energy metabolism, and protein biosynthesis. The analysis indicated that de novo protein biosynthesis, protein quality control mediated by chaperones and proteases, and the use of alternative energy resources, i.e. glycolysis, play important roles in adaptation to heat stress. In addition, genetic variation identified in the proteome, in plant growth and photosynthetic performance in response to drought and heat represent stress adaption mechanisms to be exploited in future crop breeding efforts. PMID:23918963

  2. The Nature of Residual Stress and Its Measurement.

    DTIC Science & Technology

    1981-07-16

    that stress can relax due to microplasticity in the near- surface region (see the chapter by James). As the surface is ini- tially in compression, the...material by boring or electro- polishing and to determine the stress from measurements of strain on the surface opposite to the one where material is...Naval Research, particularly Dr. B. A. MacDcnald. APPENDIX We consider the determination by diffraction of the three-di- mensional stress tensor for a

  3. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces.

    PubMed

    Gittens, Rolando A; Olivares-Navarrete, Rene; McLachlan, Taylor; Cai, Ye; Hyzy, Sharon L; Schneider, Jennifer M; Schwartz, Zvi; Sandhage, Kenneth H; Boyan, Barbara D

    2012-12-01

    Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MSCs) or immature osteoblasts as possible initial colonizers. Here we show that in the absence of any exogenous soluble factors, osteoblastic maturation of primary human osteoblasts (HOBs) but not osteoblastic differentiation of MSCs is strongly influenced by nanostructures superimposed onto a microrough Ti6Al4V (TiAlV) alloy. The sensitivity of osteoblasts to both surface microroughness and nanostructures led to a synergistic effect on maturation and local factor production. Osteoblastic differentiation of MSCs was sensitive to TiAlV surface microroughness with respect to production of differentiation markers, but no further enhancement was found when cultured on micro/nanostructured surfaces. Superposition of nanostructures to microroughened surfaces affected final MSC numbers and enhanced production of vascular endothelial growth factor (VEGF) but the magnitude of the response was lower than for HOB cultures. Our results suggest that the differentiation state of osteoblast-lineage cells determines the recognition of surface nanostructures and subsequent cell response, which has implications for clinical evaluation of new implant surface nanomodifications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Differential Responses of Osteoblast Lineage Cells to Nanotopographically-Modified, Microroughened Titanium-Aluminum-Vanadium Alloy Surfaces

    PubMed Central

    Gittens, Rolando A.; Olivares-Navarrete, Rene; McLachlan, Taylor; Cai, Ye; Hyzy, Sharon L.; Schneider, Jennifer M.; Schwartz, Zvi; Sandhage, Kenneth H.; Boyan, Barbara D.

    2013-01-01

    Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MSCs) or immature osteoblasts as possible initial colonizers. Here we show that in the absence of any exogenous soluble factors, osteoblastic maturation of primary human osteoblasts (HOBs) but not osteoblastic differentiation of MSCs is strongly influenced by nanostructures superimposed onto a microrough Ti6Al4V (TiAlV) alloy. The sensitivity of osteoblasts to both surface microroughness and nanostructures led to a synergistic effect on maturation and local factor production. Osteoblastic differentiation of MSCs was sensitive to TiAlV surface microroughness with respect to production of differentiation markers, but no further enhancement was found when cultured on micro/nanostructured surfaces. Superposition of nanostructures to microroughened surfaces affected final MSC numbers and enhanced production of vascular endothelial growth factor (VEGF) but the magnitude of the response was lower than for HOB cultures. Our results suggest that the differentiation state of osteoblast-lineage cells determines the recognition of surface nanostructures and subsequent cell response, which has implications for clinical evaluation of new implant surface nanomodifications. PMID:22989383

  5. Situation criticality and basketball officials' stress levels.

    PubMed

    Ritchie, Jason; Basevitch, Itay; Rodenberg, Ryan; Tenenbaum, Gershon

    2017-11-01

    Officials are expected to perform impeccably despite the wide range of stressors they experience. A stressor that officials frequently report is situation criticality. Situation criticality is comprised of score differential (i.e., more pressure in close games) and time remaining in a game (i.e., more pressure as time expires), which affects athletes' stress levels. The present study explored the effect of situation criticality on officials' stress levels. High school basketball officials (n = 108) with an average of 18.1 (SD = 11.2) years of officiating experience were given a survey packet containing game situations that varied in criticality. For each game situation (n = 9) officials completed the overall stress and appraisal portions of the Stress Appraisal Measure (SAM). Results revealed that situation criticality has an effect on officials' perceived stress levels. Both threat and challenge appraisals were positively correlated with perceived stress. Overall, these findings indicate that officials' stress levels fluctuate within games depending on score differential and time of game. The findings encourage officials to recognise and manage their stress, possibly through their appraisals. Additionally, the findings can affect the training of officials in the management of stress, as well as prompt the consideration of potential rule changes that reflect the increased situational demands on officials in critical situations (e.g., expanded instant replay).

  6. Antioxidant defense and apoptotic effectors in ascorbic acid and β-glycerophosphate-induced osteoblastic differentiation.

    PubMed

    Chaves Neto, Antonio Hernandes; Machado, Daisy; Yano, Cláudia Lumy; Ferreira, Carmen Veríssima

    2011-01-01

    MC3T3-E1 cells grown in the presence of ascorbic acid and β-glycerophosphate (AA/β-GP) express alkaline phosphatase and produce an extensive collagenous extracellular matrix. Differentiated MC3T3-E1 cells are more sensitive to hydrogen peroxide-induced oxidative stress than undifferentiated cells. In this study, we compared the profile of antioxidant enzymes and molecular markers of apoptosis in undifferentiated and differentiated MC3T3-E1 cells (cell differentiation was induced by treatment with AA/β-GP). Differentiated osteoblasts showed lower expression and activity of catalase, glutathione S-transferase and glutathione peroxidase. The total superoxide dismutase activity and the expression of Cu/Zn superoxide dismutase were also lower, while the expression of Mn superoxide dismutase was higher in differentiated osteoblasts. The level of malondialdehyde, a widely used marker for oxidative stress, was lower in the AA/β-GP group compared with control cells, but this difference was not significant. Western blotting showed that treatment with AA/β-GP increased the Bax/Bcl-2 ratio used as an index of cellular vulnerability to apoptosis. In addition, the activities of caspases 3, 8 and 9 and cleaved poly (ADP) ribose polymerase were significantly higher in differentiated cells. These findings provide new insights into how changes in the activities of major antioxidant enzymes and in the signaling pathways associated with apoptosis may influence the susceptibility of bone cells to oxidative stress. © 2011 The Authors. Journal compilation © 2011 Japanese Society of Developmental Biologists.

  7. SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects

    PubMed Central

    Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel

    2017-01-01

    The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental. PMID:28772582

  8. SCC of 2304 Duplex Stainless Steel-Microstructure, Residual Stress and Surface Grinding Effects.

    PubMed

    Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel

    2017-02-23

    The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.

  9. Redox-induced surface stress of polypyrrole-based actuators.

    PubMed

    Tabard-Cossa, Vincent; Godin, Michel; Grütter, Peter; Burgess, Ian; Lennox, R B

    2005-09-22

    We measure the surface stress induced by electrochemical transformations of a thin conducting polymer film. One side of a micromechanical cantilever-based sensor is covered with an electropolymerized dodecyl benzenesulfonate-doped polypyrrole (PPyDBS) film. The microcantilever serves as both the working electrode (in a conventional three-electrode cell configuration) and as the mechanical transducer for simultaneous, in situ, and real-time measurements of the current and interfacial stress changes. A compressive change in surface stress of about -2 N/m is observed when the conducting polymer is electrochemically switched between its oxidized (PPy+) and neutral (PPy0) state by cyclic voltammetry. The surface stress sensor's response during the anomalous first reductive scan is examined. The effect of long-term cycling on the mechanical transformation ability of PPy(DBS) films in both surfactant and halide-based electrolytes is also discussed. We have identified two main competing origins of surface stress acting on the PPy(DBS)/ gold-coated microcantilever: one purely mechanical due to the volume change of the conducting polymer, and a second charge-induced, owing to the interaction of anions of the supporting electrolyte with the gold surface.

  10. A methodology for modeling surface effects on stiff and soft solids

    NASA Astrophysics Data System (ADS)

    He, Jin; Park, Harold S.

    2017-09-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  11. A methodology for modeling surface effects on stiff and soft solids

    NASA Astrophysics Data System (ADS)

    He, Jin; Park, Harold S.

    2018-06-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  12. Evaluation of Surface Residual Stresses in Friction Stir Welds Due to Laser and Shot Peening

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Rivero, Iris V.; Lyons, Jed

    2007-01-01

    The effects of laser, and shot peening on the residual stresses in Friction Stir Welds (FSW) has been investigated. The surface residual stresses were measured at five different locations across the weld in order to produce an adequate residual stress profile. The residual stresses before and after sectioning the coupon from the welded plate were also measured, and the effect of coupon size on the residual stress relaxation was determined and characterized. Measurements indicate that residual stresses were not uniform along the welded plate, and large variation in stress magnitude could be exhibited at various locations along the FSW plate. Sectioning resulted in significant residual stress relaxation in the longitudinal direction attributed to the large change in dimensions in this direction. Overall, Laser and shot peening resulted in a significant reduction in tensile residual stresses at the surface of the specimens.

  13. Advanced Oxidation Protein Products-Modified Albumin Induces Differentiation of RAW264.7 Macrophages into Dendritic-Like Cells Which Is Modulated by Cell Surface Thiols.

    PubMed

    Garibaldi, Silvano; Barisione, Chiara; Marengo, Barbara; Ameri, Pietro; Brunelli, Claudio; Balbi, Manrico; Ghigliotti, Giorgio

    2017-01-10

    Local accumulation of Advanced Oxidation Protein Products (AOPP) induces pro-inflammatory and pro-fibrotic processes in kidneys and is an independent predictor of renal fibrosis and of rapid decline of eGFR in patients with chronic kidney disease (CKD). In addition to kidney damage, circulating AOPP may be regarded as mediators of systemic oxidative stress and, in this capacity, they might play a role in the progression of atherosclerotic damage of arterial walls. Atherosclerosis is a chronic inflammatory disease that involves activation of innate and adaptive immunity. Dendritic cells (DCs) are key cells in this process, due to their role in antigen presentation, inflammation resolution and T cell activation. AOPP consist in oxidative modifications of proteins (such as albumin and fibrinogen) that mainly occur through myeloperoxidase (MPO)-derived hypochlorite (HOCl). HOCl modified proteins have been found in atherosclerotic lesions. The oxidizing environment and the shifts in cellular redox equilibrium trigger inflammation, activate immune cells and induce immune responses. Thus, surface thiol groups contribute to the regulation of immune functions. The aims of this work are: (1) to evaluate whether AOPP-proteins induce activation and differentiation of mature macrophages into dendritic cells in vitro; and (2) to define the role of cell surface thiol groups and of free radicals in this process. AOPP-proteins were prepared by in vitro incubation of human serum albumin (HSA) with HOCl. Mouse macrophage-like RAW264.7 were treated with various concentrations of AOPP-HSA with or without the antioxidant N -acetyl cysteine (NAC). Following 48 h of HSA-AOPP treatment, RAW264.7 morphological changes were evaluated by microscopic observation, while markers of dendritic lineage and activation (CD40, CD86, and MHC class II) and allogeneic T cell proliferation were evaluated by flow cytometry. Cell surface thiols were measured by AlexaFluor-maleimide binding, and ROS production was assessed as DCF fluorescence by flow cytometry. HSA-AOPP induced the differentiation of RAW264.7 cells into a dendritic-like phenotype, as shown by morphological changes, by increased CD40, CD86 and MHC class II surface expression and by induction of T cell proliferation. The cell surface thiols dose dependently decreased following HSA-AOPP treatment, while ROS production increased. NAC pre-treatment enhanced the amount of cell surface thiols and prevented their reduction due to treatment with AOPP. Both ROS production and RAW264.7 differentiation into DC-like cells induced by HSA-AOPP were reduced by NAC. Our results highlight that oxidized plasma proteins modulate specific immune responses of macrophages through a process involving changes in the thiol redox equilibrium. We suggest that this mechanism may play a role in determining the rapid progression of the atherosclerotic process observed in CKD patients.

  14. Inverse modeling of InSAR and ground leveling data for 3D volumetric strain distribution

    NASA Astrophysics Data System (ADS)

    Gallardo, L. A.; Glowacka, E.; Sarychikhina, O.

    2015-12-01

    Wide availability of modern Interferometric Synthetic aperture Radar (InSAR) data have made possible the extensive observation of differential surface displacements and are becoming an efficient tool for the detailed monitoring of terrain subsidence associated to reservoir dynamics, volcanic deformation and active tectonism. Unfortunately, this increasing popularity has not been matched by the availability of automated codes to estimate underground deformation, since many of them still rely on trial-error subsurface model building strategies. We posit that an efficient algorithm for the volumetric modeling of differential surface displacements should match the availability of current leveling and InSAR data and have developed an algorithm for the joint inversion of ground leveling and dInSAR data in 3D. We assume the ground displacements are originated by a stress free-volume strain distribution in a homogeneous elastic media and determined the displacement field associated to an ensemble of rectangular prisms. This formulation is then used to develop a 3D conjugate gradient inversion code that searches for the three-dimensional distribution of the volumetric strains that predict InSAR and leveling surface displacements simultaneously. The algorithm is regularized applying discontinuos first and zero order Thikonov constraints. For efficiency, the resulting computational code takes advantage of the resulting convolution integral associated to the deformation field and some basic tools for multithreading parallelization. We extensively test our algorithm on leveling and InSAR test and field data of the Northwest of Mexico and compare to some feasible geological scenarios of underground deformation.

  15. Creep Deformation, Rupture Analysis, Heat Treatment and Residual Stress Measurement of Monolithic and Welded Grade 91 Steel for Power Plant Components

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna

    Modified 9Cr-1 Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR), and in fossil-fuel fired power plants at higher temperatures and stresses. The tensile creep behavior of Grade 91 steel was studied in the temperature range of 600°C to 750°C and stresses between 35 MPa and 350 MPa. Heat treatment of Grade 91 steel was studied by normalizing and tempering the steel at various temperatures and times. Moreover, Thermo-Ca1c(TM) calculation was used to predict the precipitate stability and their evolution, and construct carbon isopleths of Grade 91 steel. Residual stress distribution across gas tungsten arc welds (GTAW) in Grade 91 steel was measured by the time-of-flight neutron diffraction using the Spectrometer for Materials Research at Temperature and Stress (SMARTS) diffractometer at Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM, USA. Analysis of creep results yielded stress exponents of ˜9-11 in the higher stress regime and ˜1 in the lower stress regime. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate-controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep. Creep rupture data were analyzed in terms of Monkman-Grant relation and Larson-Miller parameter. Creep damage tolerance factor and stress exponent were used to identify the cause of creep damage. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy to elucidate the failure mechanisms. Fracture mechanism map for Grade 91 steel was developed based on the available material parameters and experimental observations. The microstructural evolution of heat treated steel was correlated with the differential scanning calorimetric study. The combination of microstructural studies with optical microscopy, scanning and transmission electron microscopy, microhardness profiles, and calorimetric plots helped in the understanding of the evolution of microstructure and precipitates in Grade 91 steel. The residual stresses were determined at the mid-thickness of the plate, 4.35 mm and 2.35 mm below the surface of the as-welded and post-weld heat treated plate. The residual stresses of the as-welded plate were compared with the post-weld heat treated plate. The post-weld heat treatment significantly reduced the residual stress in the base metal, heat affected zone, and the weld zone. Vickers microhardness profiles of the as-welded, and post-weld heat treated specimens were also determined and correlated with the observed residual stress profile and microstructure.

  16. ATLAS 60’ Fording Study

    DTIC Science & Technology

    1992-03-03

    crack. Carbon steel stress cracks in the presence of sodium hydroxide (" caustic embrittlement"), whereas austenitic stainless steels stress crack in...transmission life. - Outboard planetary axle design reduces stresses on differential, drive shafts and axle shaft U-joints. . Enclosed oil disc brakes on... Stress Corrosion Crevice Pitting Erosion Corrosion Uniform Corrosion Intergranular Selective Leaching Page 19 Caterpflar Inc. ATLAS Fording Study Q The

  17. Acute psychophysiological stress impairs human associative learning.

    PubMed

    Ehlers, M R; Todd, R M

    2017-11-01

    Addiction is increasingly discussed asa disorder of associative learning processes, with both operant and classical conditioning contributing to the development of maladaptive habits. Stress has long been known to promote drug taking and relapse and has further been shown to shift behavior from goal-directed actions towards more habitual ones. However, it remains to be investigated how acute stress may influence simple associative learning processes that occur before a habit can be established. In the present study, healthy young adults were exposed to either acute stress or a control condition half an hour before performing simple classical and operant conditioning tasks. Psychophysiological measures confirmed successful stress induction. Results of the operant conditioning task revealed reduced instrumental responding under delayed acute stress that resembled behavioral responses to lower levels of reward. The classical conditioning experiment revealed successful conditioning in both experimental groups; however, explicit knowledge of conditioning as indicated by stimulus ratings differentiated the stress and control groups. These findings suggest that operant and classical conditioning are differentially influenced by the delayed effects of acute stress with important implications for the understanding of how new habitual behaviors are initially established. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava.

    PubMed

    Ren, Meng Yun; Feng, Ren Jun; Shi, Hou Rui; Lu, Li Fang; Yun, Tian Yan; Peng, Ming; Guan, Xiao; Zhang, Heng; Wang, Jing Yi; Zhang, Xi Yan; Li, Cheng Liang; Chen, Yan Jun; He, Peng; Zhang, Yin Dong; Xie, Jiang Hui

    2017-01-01

    Drought is the one of the most important environment stresses that restricts crop yield worldwide. Cassava (Manihot esculenta Crantz) is an important food and energy crop that has many desirable traits such as drought, heat and low nutrients tolerance. However, the mechanisms underlying drought tolerance in cassava are unclear. Ethylene signaling pathway, from the upstream receptors to the downstream transcription factors, plays important roles in environmental stress responses during plant growth and development. In this study, we used bioinformatics approaches to identify and characterize candidate Manihot esculenta ethylene receptor genes and transcription factor genes. Using computational methods, we localized these genes on cassava chromosomes, constructed phylogenetic trees and identified stress-responsive cis-elements within their 5' upstream regions. Additionally, we measured the trehalose and proline contents in cassava fresh leaves after drought, osmotic, and salt stress treatments, and then it was found that the regulation patterns of contents of proline and trehalose in response to various dehydration stresses were differential, or even the opposite, which shows that plant may take different coping strategies to deal with different stresses, when stresses come. Furthermore, expression profiles of these genes in different organs and tissues under non-stress and abiotic stress were investigated through quantitative real-time PCR (qRT-PCR) analyses in cassava. Expression profiles exhibited clear differences among different tissues under non-stress and various dehydration stress conditions. We found that the leaf and tuberous root tissues had the greatest and least responses, respectively, to drought stress through the ethylene signaling pathway in cassava. Moreover, tuber and root tissues had the greatest and least reponses to osmotic and salt stresses through ethylene signaling in cassava, respectively. These results show that these plant tissues had differential expression levels of genes involved in ethylene signaling in response to the stresses tested. Moreover, after several gene duplication events, the spatiotemporally differential expression pattern of homologous genes in response to abiotic and biotic stresses may imply their functional diversity as a mechanism for adapting to the environment. Our data provide a framework for further research on the molecular mechanisms of cassava resistance to drought stress and provide a foundation for breeding drought-resistant new cultivars.

  19. Expression patterns of members of the ethylene signaling–related gene families in response to dehydration stresses in cassava

    PubMed Central

    Shi, Hou Rui; Lu, Li Fang; Yun, Tian Yan; Peng, Ming; Guan, Xiao; Zhang, Heng; Wang, Jing Yi; Zhang, Xi Yan; Li, Cheng Liang; Chen, Yan Jun; He, Peng; Zhang, Yin Dong; Xie, Jiang Hui

    2017-01-01

    Drought is the one of the most important environment stresses that restricts crop yield worldwide. Cassava (Manihot esculenta Crantz) is an important food and energy crop that has many desirable traits such as drought, heat and low nutrients tolerance. However, the mechanisms underlying drought tolerance in cassava are unclear. Ethylene signaling pathway, from the upstream receptors to the downstream transcription factors, plays important roles in environmental stress responses during plant growth and development. In this study, we used bioinformatics approaches to identify and characterize candidate Manihot esculenta ethylene receptor genes and transcription factor genes. Using computational methods, we localized these genes on cassava chromosomes, constructed phylogenetic trees and identified stress-responsive cis-elements within their 5’ upstream regions. Additionally, we measured the trehalose and proline contents in cassava fresh leaves after drought, osmotic, and salt stress treatments, and then it was found that the regulation patterns of contents of proline and trehalose in response to various dehydration stresses were differential, or even the opposite, which shows that plant may take different coping strategies to deal with different stresses, when stresses come. Furthermore, expression profiles of these genes in different organs and tissues under non-stress and abiotic stress were investigated through quantitative real-time PCR (qRT-PCR) analyses in cassava. Expression profiles exhibited clear differences among different tissues under non-stress and various dehydration stress conditions. We found that the leaf and tuberous root tissues had the greatest and least responses, respectively, to drought stress through the ethylene signaling pathway in cassava. Moreover, tuber and root tissues had the greatest and least reponses to osmotic and salt stresses through ethylene signaling in cassava, respectively. These results show that these plant tissues had differential expression levels of genes involved in ethylene signaling in response to the stresses tested. Moreover, after several gene duplication events, the spatiotemporally differential expression pattern of homologous genes in response to abiotic and biotic stresses may imply their functional diversity as a mechanism for adapting to the environment. Our data provide a framework for further research on the molecular mechanisms of cassava resistance to drought stress and provide a foundation for breeding drought-resistant new cultivars. PMID:28542282

  20. Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses.

    PubMed

    Sun, Peipei; Mao, Yunxiang; Li, Guiyang; Cao, Min; Kong, Fanna; Wang, Li; Bi, Guiqi

    2015-06-17

    Pyropia yezoensis is a model organism often used to investigate the mechanisms underlying stress tolerance in intertidal zones. The digital gene expression (DGE) approach was used to characterize a genome-wide comparative analysis of differentially expressed genes (DEGs) that influence the physiological, developmental or biochemical processes in samples subjected to 4 treatments: high-temperature stress (HT), chilling stress (CS), freezing stress (FS) and normal temperature (NT). Equal amounts of total RNAs collected from 8 samples (two biological replicates per treatment) were sequenced using the Illumina/Solexa platform. Compared with NT, a total of 2202, 1334 and 592 differentially expressed unigenes were detected in HT, CS and FS respectively. Clustering analysis suggested P. yezoensis acclimates to low and high-temperature stress condition using different mechanisms: In heat stress, the unigenes related to replication and repair of DNA and protein processing in endoplasmic reticulum were active; however at low temperature stresses, unigenes related to carbohydrate metabolism and energy metabolism were active. Analysis of gene differential expression showed that four categories of DEGs functioning as temperature sensors were found, including heat shock proteins, H2A, histone deacetylase complex and transcription factors. Heat stress caused chloroplast genes down-regulated and unigenes encoding metacaspases up-regulated, which is an important regulator of PCD. Cold stress caused an increase in the expression of FAD to improve the proportion of polyunsaturated fatty acids. An up-regulated unigene encoding farnesyl pyrophosphate synthase was found in cold stress, indicating that the plant hormone ABA also played an important role in responding to temperature stress in P. yezoensis. The variation of amount of unigenes and different gene expression pattern under different temperature stresses indicated the complicated and diverse regulation mechanism in response to temperature stress in P. yezoensis. Several common metabolism pathways were found both in P. yezoensis and in higher plants, such as FAD in low-temperature stress and HSP in heat stress. Meanwhile, many chloroplast genes and unigene related to the synthesis of abscisic acid were detected, revealing its unique temperature-regulation mechanism in this intertidal species. This sequencing dataset and analysis may serve as a valuable resource to study the mechanisms involved in abiotic stress tolerance in intertidal seaweeds.

  1. Transcriptional profiling of sugarcane leaves and roots under progressive osmotic stress reveals a regulated coordination of gene expression in a spatiotemporal manner

    PubMed Central

    Zamora-Briseño, Jesus A.; Ayala-Sumuano, Jorge T.; Gonzalez-Mendoza, Victor M.; Espadas-Gil, Francisco; Alcaraz, Luis D.; Castaño, Enrique; Keb-Llanes, Miguel A.; Sanchez-Teyer, Felipe

    2017-01-01

    Sugarcane is one of the most important crops worldwide and is a key plant for the global production of sucrose. Sugarcane cultivation is severely affected by drought stress and it is considered as the major limiting factor for their productivity. In recent years, this plant has been subjected to intensive research focused on improving its resilience against water scarcity; particularly the molecular mechanisms in response to drought stress have become an underlying issue for its improvement. To better understand water stress and the molecular mechanisms we performed a de novo transcriptomic assembly of sugarcane (var. Mex 69–290). A total of 16 libraries were sequenced in a 2x100 bp configuration on a HiSeq-Illumina platform. A total of 536 and 750 genes were differentially up-regulated along with the stress treatments for leave and root tissues respectively, while 1093 and 531 genes were differentially down-regulated in leaves and roots respectively. Gene Ontology functional analysis showed that genes related to response of water deprivation, heat, abscisic acid, and flavonoid biosynthesis were enriched during stress treatment in our study. The reliability of the observed expression patterns was confirmed by RT-qPCR. Additionally, several physiological parameters of sugarcane were significantly affected due to stress imposition. The results of this study may help identify useful target genes and provide tissue-specific data set of genes that are differentially expressed in response to osmotic stress, as well as a complete analysis of the main groups is significantly enriched under this condition. This study provides a useful benchmark for improving drought tolerance in sugarcane and other economically important grass species. PMID:29228055

  2. Engineering of global regulators and cell surface properties toward enhancing stress tolerance in Saccharomyces cerevisiae.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2017-12-01

    Microbial cell factories are subject to various stresses, leading to the reductions of metabolic activity and bioproduction efficiency. Therefore, the development of stress-tolerant microorganisms is important for improving bio-production efficiency. Recently, modifications of cell surface properties and master regulators have been shown to be effective approaches for enhancing stress tolerance. The cell surface is an attractive target owing to its interactions with the environment and its role in transmitting environmental information. Cell surface engineering in yeast has enabled the convenient modification of cell surface properties. Displaying random peptide libraries and subsequent screening can successfully improve stress tolerance. Furthermore, master regulators including transcription factors are also promising target to be engineered because stress tolerance is determined by many cooperative factors and modification of master regulators can simultaneously affect the expression of multiple downstream genes. The key single amino acid mutations in transcription factors have been identified by analyzing tolerant yeasts that were isolated by adaptive evolution under stress conditions. This enabled the reconstruction of stress-tolerant yeast without burdening cells by introducing the identified mutations. Therefore, for the construction of stress-tolerant yeast from any strains, these two approaches are promising alternatives to conventional overexpression and deletion of stress-related genes. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Thermoelastic Stress Analysis: An NDE Tool for the Residual Stress Assessment of Metallic Alloys

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2000-01-01

    During manufacturing, certain propulsion components that will be used in a cyclic fatigue environment are fabricated to contain compressive residual stresses on their surfaces because these stresses inhibit the nucleation of cracks. Overloads and elevated temperature excursions cause the induced residual stresses to dissipate while the component is still in service, lowering its resistance to crack initiation. Research at the NASA Glenn Research Center at Lewis Field has focused on employing the Thermoelastic Stress Analysis technique (TSA, also recognized as SPATE: Stress Pattern Analysis by Thermal Emission) as a tool for monitoring the residual stress state of propulsion components. TSA is based on the fact that materials experience small temperature changes when they are compressed or expanded. When a structure is cyclically loaded (i.e., cyclically compressed and expanded), the resulting surface-temperature profile correlates to the stress state of the structure s surface. The surface-temperature variations resulting from a cyclic load are measured with an infrared camera. Traditionally, the temperature amplitude of a TSA signal has been theoretically defined to be linearly dependent on the cyclic stress amplitude. As a result, the temperature amplitude resulting from an applied cyclic stress was assumed to be independent of the cyclic mean stress.

  4. Analysis of differential gene expression in response to handling and confinement stress in rainbow trout using whole transcriptome RNA-seq

    USDA-ARS?s Scientific Manuscript database

    Fish under intensive rearing conditions experience various stress conditions, which have negative impacts on survival, growth and fillet quality. Understanding the molecular mechanisms underlying stress responses will facilitate improvement of animal welfare and production efficiency. Our objective ...

  5. Affluence, Feelings of Stress, and Well-Being

    ERIC Educational Resources Information Center

    Ng, Weiting; Diener, Ed; Aurora, Raksha; Harter, James

    2009-01-01

    Data from the Gallup World Poll highlighted the differential relations between perceived stress, well-being, and wealth at the individual- versus nation-level. At the nation level, stress was a distinct concept from negative affect (NA). It correlated positively with well-being (positive affect, life satisfaction, and domain satisfaction) and…

  6. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.

    PubMed

    Yang, Wanlei; Han, Weiqi; He, Wei; Li, Jianlei; Wang, Jirong; Feng, Haotian; Qian, Yu

    2016-03-01

    Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Evaluation of finite-element models and stress-intensity factors for surface cracks emanating from stress concentrations

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    A re-evaluation of the 3-D finite-element models and methods used to analyze surface crack at stress concentrations is presented. Previous finite-element models used by Raju and Newman for surface and corner cracks at holes were shown to have ill-shaped elements at the intersection of the hole and crack boundaries. Improved models, without these ill-shaped elements, were developed for a surface crack at a circular hole and at a semi-circular edge notch. Stress-intensity factors were calculated by both the nodal-force and virtual-crack-closure methods. Comparisons made between the previously developed stress-intensity factor equations and the results from the improved models agreed well except for configurations with large notch-radii-to-plate-thickness ratios. Stress-intensity factors for a semi-elliptical surface crack located at the center of a semi-circular edge notch in a plate subjected to remote tensile loadings were calculated using the improved models.

  8. Analytical close-form solutions to the elastic fields of solids with dislocations and surface stress

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Paliwal, Bhasker; Ougazzaden, Abdallah; Cherkaoui, Mohammed

    2013-07-01

    The concept of eigenstrain is adopted to derive a general analytical framework to solve the elastic field for 3D anisotropic solids with general defects by considering the surface stress. The formulation shows the elastic constants and geometrical features of the surface play an important role in determining the elastic fields of the solid. As an application, the analytical close-form solutions to the stress fields of an infinite isotropic circular nanowire are obtained. The stress fields are compared with the classical solutions and those of complex variable method. The stress fields from this work demonstrate the impact from the surface stress when the size of the nanowire shrinks but becomes negligible in macroscopic scale. Compared with the power series solutions of complex variable method, the analytical solutions in this work provide a better platform and they are more flexible in various applications. More importantly, the proposed analytical framework profoundly improves the studies of general 3D anisotropic materials with surface effects.

  9. Influence of an ocean on the propagation of magmas within an oceanic basaltic shield volcano

    NASA Astrophysics Data System (ADS)

    Le Corvec, Nicolas; McGovern, Patrick

    2015-04-01

    Basaltic shield volcanoes are a common feature on Earth and mostly occur within oceans, forming volcanic islands (e.g. Hawaii (USA), Galapagos (Ecuador), and recently Niijima (Japan)). As the volcano grows it will reach and emerge from the water surface and continue to grow above it. The deformation affecting the volcanic edifice may be influenced by the presence of the water level. We investigate how the presence of an ocean affects the state of stress within a volcanic edifice and thus magma propagation and fault formation. Using COMSOL Multiphysics, axisymmetric elastic models of a volcanic edifice overlying an elastic lithosphere were created. The volcanic edifice (height of ~6000 m and radius of ~ 60 km) was built either instantaneously or iteratively by adding new layers of equivalent volume on top of each other. In the later process, the resulting stress and geometry from the one step is transferred to the next as initial conditions. Thus each new layer overlies a deformed and stressed model. The water load was modeled with a boundary condition at the surface of the model. In the case of an instantaneous volcano different water level were studied, for an iteratively growing volcano the water level was set up to 4000 m. We compared the deformation of the volcanic edifice and lithosphere and the stress orientation and magnitude in half-space and flexural models with the presence or not of an ocean. The preliminary results show 1- major differences in the resulting state of stress between an instantaneous and an iteratively built volcanic edifice, similar to the results of Galgana et al. (2011) and McGovern and Solomon (1993), respectively; 2- the presence of an ocean decreases the amount of flexural response, which decreases the magnitude of differential stress within the models; and 3- stress orientation within the volcano and lithosphere in also influence of an ocean. Those results provide new insights on the state of stress and deformation of oceanic basaltic volcanic edifices. Galgana, G. A., P. J. McGovern, and E. B. Grosfils (2011), Evolution of large Venusian volcanoes: Insights from coupled models of lithospheric flexure and magma reservoir pressurization, J. Geophys. Res., 116(E3), E03009. McGovern, P. J., and S. C. Solomon (1993), State of stress, faulting, and eruption characteristics of large volcanoes on Mars, Journal of Geophysical Research: Planets, 98(E12), 23553-23579.

  10. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress.

    PubMed

    Jamsheer K, Muhammed; Laxmi, Ashverya

    2015-01-01

    Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response.

  11. Transcriptome analysis and identification of significantly differentially expressed genes in Holstein calves subjected to severe thermal stress

    NASA Astrophysics Data System (ADS)

    Srikanth, Krishnamoorthy; Lee, Eunjin; Kwan, Anam; Lim, Youngjo; Lee, Junyep; Jang, Gulwon; Chung, Hoyoung

    2017-11-01

    RNA-Seq analysis was used to characterize transcriptome response of Holstein calves to thermal stress. A total of eight animals aged between 2 and 3 months were randomly selected and subjected to thermal stress corresponding to a temperature humidity index of 95 in an environmentally controlled house for 12 h consecutively for 3 days. A set of 15,787 unigenes were found to be expressed and after a threshold of threefold change, and a Q value <0.05; 502, 394, and 376 genes were found to be differentially expressed on days 1, 2, and 3 out of which 343, 261 and 256 genes were upregulated and 159, 133, and 120 genes were downregulated. Only 356 genes out of these were expressed on all 3 days, and only they were considered as significantly differentially expressed. KEGG pathway analysis revealed that ten pathways were significantly enriched; the top two among them were protein processing in endoplasmic reticulum and MAPK signaling pathways. These results suggest that thermal stress triggered a complex response in Holstein calves and the animals adjusted their physiological and metabolic processes to survive. Many of the genes identified in this study have not been previously reported to be involved in thermal stress response. The results of this study extend our understanding of the animal's response to thermal stress and some of the identified genes may prove useful in the efforts to breed Holstein cattle with superior thermotolerance, which might help in minimizing production loss due to thermal stress.

  12. DeepSAGE Based Differential Gene Expression Analysis under Cold and Freeze Stress in Seabuckthorn (Hippophae rhamnoides L.)

    PubMed Central

    Chaudhary, Saurabh; Sharma, Prakash C.

    2015-01-01

    Seabuckthorn (Hippophae rhamnoides L.), an important plant species of Indian Himalayas, is well known for its immense medicinal and nutritional value. The plant has the ability to sustain growth in harsh environments of extreme temperatures, drought and salinity. We employed DeepSAGE, a tag based approach, to identify differentially expressed genes under cold and freeze stress in seabuckthorn. In total 36.2 million raw tags including 13.9 million distinct tags were generated using Illumina sequencing platform for three leaf tissue libraries including control (CON), cold stress (CS) and freeze stress (FS). After discarding low quality tags, 35.5 million clean tags including 7 million distinct clean tags were obtained. In all, 11922 differentially expressed genes (DEGs) including 6539 up regulated and 5383 down regulated genes were identified in three comparative setups i.e. CON vs CS, CON vs FS and CS vs FS. Gene ontology and KEGG pathway analysis were performed to assign gene ontology term to DEGs and ascertain their biological functions. DEGs were mapped back to our existing seabuckthorn transcriptome assembly comprising of 88,297 putative unigenes leading to the identification of 428 cold and freeze stress responsive genes. Expression of randomly selected 22 DEGs was validated using qRT-PCR that further supported our DeepSAGE results. The present study provided a comprehensive view of global gene expression profile of seabuckthorn under cold and freeze stresses. The DeepSAGE data could also serve as a valuable resource for further functional genomics studies aiming selection of candidate genes for development of abiotic stress tolerant transgenic plants. PMID:25803684

  13. DeepSAGE based differential gene expression analysis under cold and freeze stress in seabuckthorn (Hippophae rhamnoides L.).

    PubMed

    Chaudhary, Saurabh; Sharma, Prakash C

    2015-01-01

    Seabuckthorn (Hippophae rhamnoides L.), an important plant species of Indian Himalayas, is well known for its immense medicinal and nutritional value. The plant has the ability to sustain growth in harsh environments of extreme temperatures, drought and salinity. We employed DeepSAGE, a tag based approach, to identify differentially expressed genes under cold and freeze stress in seabuckthorn. In total 36.2 million raw tags including 13.9 million distinct tags were generated using Illumina sequencing platform for three leaf tissue libraries including control (CON), cold stress (CS) and freeze stress (FS). After discarding low quality tags, 35.5 million clean tags including 7 million distinct clean tags were obtained. In all, 11922 differentially expressed genes (DEGs) including 6539 up regulated and 5383 down regulated genes were identified in three comparative setups i.e. CON vs CS, CON vs FS and CS vs FS. Gene ontology and KEGG pathway analysis were performed to assign gene ontology term to DEGs and ascertain their biological functions. DEGs were mapped back to our existing seabuckthorn transcriptome assembly comprising of 88,297 putative unigenes leading to the identification of 428 cold and freeze stress responsive genes. Expression of randomly selected 22 DEGs was validated using qRT-PCR that further supported our DeepSAGE results. The present study provided a comprehensive view of global gene expression profile of seabuckthorn under cold and freeze stresses. The DeepSAGE data could also serve as a valuable resource for further functional genomics studies aiming selection of candidate genes for development of abiotic stress tolerant transgenic plants.

  14. Differential Gene Expression Reveals Candidate Genes for Drought Stress Response in Abies alba (Pinaceae)

    PubMed Central

    Ziegenhagen, Birgit; Liepelt, Sascha

    2015-01-01

    Increasing drought periods as a result of global climate change pose a threat to many tree species by possibly outpacing their adaptive capabilities. Revealing the genetic basis of drought stress response is therefore implemental for future conservation strategies and risk assessment. Access to informative genomic regions is however challenging, especially for conifers, partially due to their large genomes, which puts constraints on the feasibility of whole genome scans. Candidate genes offer a valuable tool to reduce the complexity of the analysis and the amount of sequencing work and costs. For this study we combined an improved drought stress phenotyping of needles via a novel terahertz water monitoring technique with Massive Analysis of cDNA Ends to identify candidate genes for drought stress response in European silver fir (Abies alba Mill.). A pooled cDNA library was constructed from the cotyledons of six drought stressed and six well-watered silver fir seedlings, respectively. Differential expression analyses of these libraries revealed 296 candidate genes for drought stress response in silver fir (247 up- and 49 down-regulated) of which a subset was validated by RT-qPCR of the twelve individual cotyledons. A majority of these genes code for currently uncharacterized proteins and hint on new genomic resources to be explored in conifers. Furthermore, we could show that some traditional reference genes from model plant species (GAPDH and eIF4A2) are not suitable for differential analysis and we propose a new reference gene, TPC1, for drought stress expression profiling in needles of conifer seedlings. PMID:25924061

  15. Differential gene expression in Staphylococcus aureus exposed to Orange II and Sudan III azo dyes

    PubMed Central

    Pan, Hongmiao; Xu, Joshua; Kweon, Oh-Gew; Zou, Wen; Feng, Jinhui; He, Gui-Xin; Cerniglia, Carl E.

    2018-01-01

    We previously demonstrated the effects of azo dyes and their reduction metabolites on bacterial cell growth and cell viability. In this report, the effects of Orange II and Sudan III on gene expression profiling in Staphylococcus aureus ATCC BAA 1556 were analyzed using microarray and quantitative RT-PCR technology. Upon exposure to 6 μg/ml Orange II for 18 h, 21 genes were found to be differently expressed. Among them, 8 and 13 genes were up- and down-regulated, respectively. Most proteins encoded by these differentially expressed genes involve stress response caused by drug metabolism, oxidation, and alkaline shock indicating that S. aureus could adapt to Orange II exposure through a balance between up and down regulated gene expression. Whereas, after exposure to 6 μg/ml Sudan III for 18 h, 57 genes were differentially expressed. In which, 51 genes were up-regulated and 6 were down-regulated. Most proteins encoded by these differentially expressed genes involve in cell wall/membrane biogenesis and biosynthesis, nutrient uptake, transport and metabolite, and stress response, suggesting that Sudan III damages the bacterial cell wall or/and membrane due to binding of the dye. Further analysis indicated that all differentially expressed genes encoded membrane proteins were up-regulated and most of them serve as transporters. The result suggested that these genes might contribute to survival, persistence and growth in the presence of Sudan III. Only one gene msrA, which plays an important role in oxidative stress resistance, was found to be down-regulated after exposure to both Orange II and Sudan III. The present results suggested that both these two azo dyes can cause stress in S. aureus and the response of the bacterium to the stress is mainly related to characteristics of the azo dyes. PMID:25720844

  16. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells.

    PubMed

    Son, Hyo-Eun; Kim, Eun-Jung; Jang, Won-Gu

    2018-01-15

    Curcumin (diferuloylmethane or [1E,6E]-1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6heptadiene-3,5-dione) is a phenolic natural product derived from the rhizomes of the turmeric plant, Curcuma longa. It is reported to have various biological actions such as anti-oxidative, anti-inflammatory, and anti-cancer effects. However, the molecular mechanism of osteoblast differentiation by curcumin has not yet been reported. The cytotoxicity of curcumin was identified using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of osteogenic markers and endoplasmic reticulum (ER) stress markers in C3H1-T1/2 cells were measured using reverse-transcriptase polymerase chain reaction (RT-PCR) and Western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity in C3H10T1/2 cells. Transcriptional activity was detected using a luciferase reporter assay. Curcumin increased the expression of genes such as distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), ALP, and osteocalcin (OC), which subsequently induced osteoblast differentiation in C3H10T1/2 cells. In addition, ALP activity and mineralization was found to be increased by curcumin treatment. Curcumin also induced mild ER stress similar to bone morphogenetic protein 2 (BMP2) function in osteoblast cells. Next, we confirmed that curcumin increased mild ER stress and osteoblast differentiation similar to BMP2 in C3H10T1/2 mesenchymal stem cells. Transient transfection studies also showed that curcumin increased ATF6-Luc activity, while decreasing the activities of CREBH-Luc and SMILE-Luc. In addition, similar to BMP2, curcumin induced the phosphorylation of Smad 1/5/9. Overall, these results demonstrate that curcumin-induced mild ER stress increases osteoblast differentiation via ATF6 expression in C3H10T1/2 cells. Copyright © 2017. Published by Elsevier Inc.

  17. The Role of Ammonia in the Evolution of Enceladus

    NASA Astrophysics Data System (ADS)

    Freeman, J.; Stegman, D.; May, D.

    2007-12-01

    A large internal density anomaly, most likely an ice diapir, is inferred to play a central role in a sequence of globally significant events 1) true polar wander induced by the ice diapir so that the region of anomalous activity has become situated at the south pole (Nimmo et al., 2006), 2) formation of large fractures due to the tectonic stresses generated as a consequence of the elastic lithosphere's reorientation (Melosh, 1980), 3) subsequent motion along the fractures producing frictional heating and water vapor which is deposited on the surface of the surrounding region where it recondenses (Nimmo et al., 2007). Recent models of shear heating along the tiger stripes (Nimmo et al., 2007) not only appear to account for nearly all of observed surface heat flow 5.8±1.9 GW (Spencer et al., 2006) but provide a good match to the surface distribution of temperature. Models of purely thermal convection that require between 3-5 GW of internal heating in order to successfully develop degree-one features (Grott et al., 2007) are problematic for two reasons: 1) nearly all of the observed 6 GW coming out of the south pole is produced near the surface (Nimmo et al., 2007) and 2) several independent analyses estimate the maximum tidal dissipation available for internal heating in the range between 0.1-0.5 GW. There are at least three notable features of Enceladus which remain unexplained: 1) origin of the ice diapir within the interior, 2) origin of a subsurface ocean beneath the south polar region which, by inference, must exist to allow sufficient shear velocities along the fractures to produce the observed amount of surface heat flow, and 3) the origin of the asymmetry in Enceladus' surface deformation (that is, IF the tectonic fractures were indeed generated by the reorientation of the satellite, which changes the stress pattern globally, why did these fractures only form in one place?) We propose that a compositional diapir of pure water ice generated by the differentiation of an ammonia-water ice mantle can reconcile these aspects into a self-consistent geodynamic evolution of Enceladus. Ammonia has been observed on numerous other icy bodies in the outer solar system, including Jovian satellites (Spohn and Schubert, 2003; Nagel et al., 2004), Charon (Cook et al., 2007), and even Kuiper Belt objects such as Quaoar (Jewitt and Luu, 2005), so it's quite conceiveable ammonia is present in Enceladus as well. We demonstrate that the relatively small amount of available tidal dissipation is adequete for a differentiated layer to form at the core-mantle boundary and present 2-D and 3-D numerical models and scaling analysis for different scenarios of how the diapir might rise to the surface. We show that the creation of a regional subsurface ocean is a natural consequence of a pure water ice diapir reaching the surface. The subsequent assymetry of large tectonic fractures on the surface will be more likely as stresses concentrate over the subsurface ocean where the elastic layer is decoupled from the underlying viscous ice shell. Several lines of evidence are addressed such as how processing of the vapor plume by magnetospheric ion irradiation may reconcile the apparent lack of observed ammonia components in the plumes vapour content or on the surface (Loeffler et al., 2006). These chemical species (NH3, N2 and N+) have been observed (Smith et al., 2005) in small quantites, but there is some indication ammonia is an impurity present in larger amounts increasing with depth as inferred from radar albedo measurements (Ostro et al., 2007).

  18. Baker-Akhiezer Spinor Kernel and Tau-functions on Moduli Spaces of Meromorphic Differentials

    NASA Astrophysics Data System (ADS)

    Kalla, C.; Korotkin, D.

    2014-11-01

    In this paper we study the Baker-Akhiezer spinor kernel on moduli spaces of meromorphic differentials on Riemann surfaces. We introduce the Baker-Akhiezer tau-function which is related to both the Bergman tau-function (which was studied before in the context of Hurwitz spaces and spaces of holomorphic Abelian and quadratic differentials) and the KP tau-function on such spaces. In particular, we derive variational formulas of Rauch-Ahlfors type on moduli spaces of meromorphic differentials with prescribed singularities: we use the system of homological coordinates, consisting of absolute and relative periods of the meromorphic differential, and show how to vary the fundamental objects associated to a Riemann surface (the matrix of b-periods, normalized Abelian differentials, the Bergman bidifferential, the Szegö kernel and the Baker-Akhiezer spinor kernel) with respect to these coordinates. The variational formulas encode dependence both on the moduli of the Riemann surface and on the choice of meromorphic differential (variation of the meromorphic differential while keeping the Riemann surface fixed corresponds to flows of KP type). Analyzing the global properties of the Bergman and Baker-Akhiezer tau-functions, we establish relationships between various divisor classes on the moduli spaces.

  19. Mean-field theory of differential rotation in density stratified turbulent convection

    NASA Astrophysics Data System (ADS)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  20. A proposal for unification of fatigue crack growth law

    NASA Astrophysics Data System (ADS)

    Kobelev, V.

    2017-05-01

    In the present paper, the new fractional-differential dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach are proposed. The anticipated unified propagation function describes the infinitesimal crack length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification fractional-differential functions with different number of fitting parameters are proposed. An alternative, threshold formulations for the fractional-differential propagation functions are suggested. The mean stress dependence is the immediate consequence from the considered laws. The corresponding formulas for crack length over the number of cycles are derived in closed form.

  1. Students' performance in accounting: differential effect of field dependence-independence as a learning style.

    PubMed

    Bernardi, Richard A

    2003-08-01

    This study examined the differential moderating effects associated with field dependence-independence and perceptions of stress on students' performance after controlling for SAT Mathematics and Verbal scores as well as students' actual effort on homework. The average performance of 178 third-year accounting majors over three examinations was used to evaluate their understanding of financial accounting. The students also took the Group Embedded Figures Test. While the data indicate that the most significant variables were students' effort, SAT Verbal scores, and their perceptions of stress, these variables were differentially associated with students' performance depending upon whether the student was classified as a field-independent or field-dependent learner.

  2. Novel antioxidant capability of titanium induced by UV light treatment.

    PubMed

    Ueno, Takeshi; Ikeda, Takayuki; Tsukimura, Naoki; Ishijima, Manabu; Minamikawa, Hajime; Sugita, Yoshihiko; Yamada, Masahiro; Wakabayashi, Noriyuki; Ogawa, Takahiro

    2016-11-01

    The intracellular production of reactive oxygen species (ROS) is a representative form of cellular oxidative stress and plays an important role in triggering adverse cellular events, such as the inflammatory reaction and delayed or compromised differentiation. Osteoblastic reaction to titanium with particular focus on ROS production remains unknown. Ultraviolet (UV) light treatment improves the physicochemical properties of titanium, specifically the induction of super hydrophilicity and removal of hydrocarbon, and eventually enhances its osteoconductivity. We hypothesized that there is a favorable regulatory change of ROS production within osteoblasts in contact with UV-treated titanium. Osteoblasts were cultured on titanium disks with or without UV-pretreatment. The intracellular production of ROS was higher on acid-etch-created rough titanium surfaces than on machine-prepared smooth ones. The ROS production was reduced by 40-50% by UV pretreatment of titanium regardless of the surface roughness. Oxidative DNA damage, as detected by 8-OHdG expression, was alleviated by 50% on UV-treated titanium surfaces. The expression of inflammatory cytokines was consistently lower in osteoblasts cultured on UV-treated titanium. ROS scavenger, glutathione, remained more without being depleted in osteoblasts on UV-treated titanium. Bio-burden test further showed that culturing osteoblasts on UV-treated titanium can significantly reduce the ROS production even with the presence of hydrogen peroxide, an oxidative stress inducer. These data suggest that the intracellular production of ROS and relevant inflammatory reaction, which unavoidably occurs in osteoblasts in contact with titanium, can be significantly reduced by UV pretreatment of titanium, implying a novel antioxidant capability of the particular titanium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Size effects in PbTiO3 nanocrystals: Effect of particle size on spontaneous polarization and strains

    NASA Astrophysics Data System (ADS)

    Akdogan, E. K.; Rawn, C. J.; Porter, W. D.; Payzant, E. A.; Safari, A.

    2005-04-01

    The spontaneous polarization (Ps) and spontaneous strains (xi) in mechanically unclamped and surface charge compensated PbTiO3 nanocrystals were determined as a function of particle size in the range <150nm by differential scanning calorimetry and x-ray powder diffraction, respectively. Significant deviations from bulk order parameters (P,xi) have been observed as the particle size decreased below ˜100nm. The critical size (rc) below which the ferroelectric tetragonal phase transforms to the paraelectric cubic phase was determined as ˜15nm. The depression in transition temperature with particle size is 14 °C at 28 nm. No change in the order of m3m →4mm ferrodistortive phase transition is observed. A simple analysis showed that ΔHtr/(kBT )˜103 at 25 °C for r =16nm, indicating that the stabilization of the cubic phase at rc cannot be linked to an instability in dipolar ordering due to thermal agitations. Comparison of the spontaneous volumetric strains with the strain induced by surface stress indicated that the effect of surface stress on ferroelectric phase stability was negligible. Anomalies in electrostrictive properties were determined for r →rc. The observed size dependence of PS is attributed to the reduced extent of long-range dipole-dipole interactions that arise due to the changes in bonding characteristics of ions with decreasing particle size in the perovskite lattice, in conformity with a recent study by Tsunekawa et al. [Phys. Rev. Lett. 85 (16), 4340 (2000)].

  4. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    NASA Astrophysics Data System (ADS)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  5. Mechanical Effects of Normal Faulting Along the Eastern Escarpment of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Martel, S. J.; Logan, J. M.; Stock, G. M.

    2013-12-01

    Here we test whether the regional near-surface stress field in the Sierra Nevada, California, and the near-surface fracturing that heavily influences the Sierran landscape are a mechanical response to normal faulting along its eastern escarpment. A compilation of existing near-surface stress measurements for the central Sierra Nevada, together with three new measurements, shows the most compressive horizontal stresses are 3-21 MPa, consistent with the widespread distribution of sheeting joints (near-surface fractures subparallel to the ground surface). In contrast, a new stress measurement at Aeolian Buttes in the Mono Basin, east of the range front fault system, reveals a horizontal principal tension of 0.014 MPa, consistent with the abundant vertical joints there. To evaluate mechanical effects of normal faulting, we modeled both normal faults and grabens in three ways: (1) dislocations of specified slip in an elastic half-space, (2) frictionless sliding surfaces in an elastic half-space; and (3) faults in thin elastic beams resting on an inviscid fluid. The different mechanical models predict concave upward flexure and widespread near-surface compressive stresses in the Sierra Nevada that surpass the measurements even for as little as 1 km of normal slip along the eastern escarpment, which exhibits 1-3 km of structural and topographic relief. The models also predict concave downward flexure of the bedrock floors and horizontal near-surface tensile stresses east of the escarpment. The thin-beam models account best for the topographic relief of the eastern escarpment and the measured stresses given current best estimates for the rheology of the Sierran lithosphere. Our findings collectively indicate that the regional near-surface stress field and the widespread near-surface fracturing directly reflect the mechanical response to normal faulting along the eastern escarpment. These results have broad scientific and engineering implications for slope stability, hydrology, and geomorphology in and near fault-bounded mountain ranges in general.

  6. Smoothing and roughening of slip surfaces in direct shear experiments

    NASA Astrophysics Data System (ADS)

    Sagy, Amir; Badt, Nir; Hatzor, Yossef H.

    2015-04-01

    Faults in the upper crust contain discrete slip surfaces which have absorbed a significant part of the shear displacement along them. Field measurements demonstrate that these surfaces are rough at all measurable scales and indicate that surfaces of relatively large-slip faults are statistically smoother than those of small-slip faults. However, post faulting and surface erosion process that might affect the geometry of outcrops cannot be discounted in such measurements. Here we present experimental results for the evolution of shear surface topography as function of slip distance and normal stress in direct shear experiments. A single prismatic fine grain limestone block is first fractured in tension mode using the four-point bending test methodology and then the fracture surface topography is scanned using a laser profilometer. We then shear the obtained tensile fracture surfaces in direct shear, ensuring the original fracture surfaces are in a perfectly matching configuration at the beginning of the shear test. First, shearing is conducted to distances varying from 5 to 15 mm under constant normal stress of 2MPa and a constant displacement rate of 0.05 mm/s using two closed-loop servo controlled hydraulic pistons, supplying normal and shear forces (Davidesko et al., 2014). In the tested configuration peak shear stress is typically attained after a shear displacement of about 2-3 mm, beyond which lower shear stress is required to continue shearing at the preset displacement rate of 0.05 mm/s as is typical for initially rough joints. Following some initial compression the interface begins to dilate and continues to do so until the end of the test. The sheared tensile fracture surface is then scanned again and the geometrical evolution, in term of RMS roughness and power spectral density (PSD) is analyzed. We show that shearing smooth the surface along all our measurements scales. The roughness ratio, measured by initial PSD / final PSD for each wavelength, increases as a function of slip amount. The roughness measured after slip can be fitted by a power-law similar to that of the initial tensile surface. In the next series of experiments a similar procedure is applied when the roughness evolution is measured as a function of increasing normal stress for a fixed displacement amount of 10 mm. While samples sheared under a constant normal stress of 5 MPa generated surface smoothing, shearing under normal stress of 7.5 MPa to 15 MPa exhibited surface roughening at the measured range of scales. We find that roughening is correlated with the attained peak shear stress values, stress drop (peak shear stress minus residual shear stress) and with wear accumulation, a novel measurement procedure of which is developed here. Analysis of the sheared samples shows that roughening is generated by sets of dense fractures that significantly damaged the sample in the immediate proximity to large asperities. This roughening is related to penetrative damage during transient wear in rough surfaces.

  7. Buffering boys and boosting girls: The protective and promotive effects of Early Head Start for children’s expressive language in the context of parenting stress

    PubMed Central

    Vallotton, C. D.; Harewood, T.; Ayoub, C. A.; Pan, B.; Mastergeorge, A. M.; Brophy-Herb, H.

    2011-01-01

    Children’s characteristics, including gender, influence their development by eliciting differential responses from their environments, and by influencing differential responses to their environments. Parenting-related stress, associated with poverty environments, negatively influences children’s language, likely through its impact on parent-child interactions, but may impact boys’ and girls’ development differently. Early intervention represents one tool for supporting development in at-risk toddlers, but gender-differences in effects of intervention are rarely described. The current studies assessed the effects of Early Head Start (EHS) on children’s productive vocabulary in the context of parenting stress and examined gender differences in program effects on vocbulary. Data were from the national EHS Research and Evaluation (EHSRE) study (Study 1, N = 3,001), and from a dataset associated with one EHSRE site (Study 2, N = 146) where additional data on productive vocabulary were collected. Study 1 found that at 24 months of age, the EHS program protected girls’ productive vocabulary from the negative effects of parenting stress, but had little impact on boys’ vocabulary. In Study 2, the local EHS site promoted girls’ vocabulary development over time from 14 to 36 months despite the negative effects of parenting stress, and protected boys’ vocabulary from the negative parenting stress effects. These results suggest differential ways in which at-risk toddlers are affected by early intervention. PMID:23166405

  8. Acculturation and psychosocial stress show differential relationships to insulin resistance (HOMA) and body fat distribution in two groups of blacks living in the US Virgin Islands.

    PubMed Central

    Tull, Eugene S.; Thurland, Anne; LaPorte, Ronald E.; Chambers, Earle C.

    2003-01-01

    The objective of this study was to determine whether acculturation and psychosocial stress exert differential effects on body fat distribution and insulin resistance among native-born African Americans and African-Caribbean immigrants living in the US Virgin Islands (USVI). Data collected from a non-diabetic sample of 183 USVI-born African Americans and 296 African-Caribbean immigrants age > 20 on the island of St. Croix, USVI were studied. Information on demographic characteristics, acculturation and psychosocial stress was collected by questionnaire. Anthropometric measurements were taken, and serum glucose and insulin were measured from fasting blood samples. Insulin resistance was estimated by the homeostasis model assessment (HOMA) method. The results showed that in multivariate regression analyses, controlling for age, education, gender, BMI, waist circumference, family history of diabetes, smoking and alcohol consumption, acculturation was independently related to logarithm of HOMA (InHOMA) scores among USVI-born African Americans, but not among African-Caribbean immigrants. In contrast, among USVI-born African Americans psychosocial stress was not significantly related to InHOMA, while among African-Caribbean immigrants psychosocial stress was independently related to InHOMA in models that included BMI, but not in those which included waist circumference. This study suggests that acculturation and psychosocial stress may have a differential effect on body fat distribution and insulin resistance among native-born and immigrant blacks living in the US Virgin Islands. PMID:12911254

  9. Transcriptomic Profiling of the Maize (Zea mays L.) Leaf Response to Abiotic Stresses at the Seedling Stage.

    PubMed

    Li, Pengcheng; Cao, Wei; Fang, Huimin; Xu, Shuhui; Yin, Shuangyi; Zhang, Yingying; Lin, Dezhou; Wang, Jianan; Chen, Yufei; Xu, Chenwu; Yang, Zefeng

    2017-01-01

    Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize ( Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.

  10. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    PubMed

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  11. Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries.

    PubMed

    Vasco, Enrique; Polop, Celia

    2017-12-22

    The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.

  12. Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Vasco, Enrique; Polop, Celia

    2017-12-01

    The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.

  13. Comments on the article entitled “Incompatibility of the Shuttleworth equation with Hermann’s mathematical structure of thermodynamics” by D.J. Bottomley, Lasse Makkonen and Kari Kolari [Surf. Sci. 603 (2009) 97

    NASA Astrophysics Data System (ADS)

    Hecquet, Pascal

    2010-02-01

    In the Shuttleworth's equation gij=γδij+dγ/dɛij, γ is the surface energy and gij is the surface stress with respect to the corresponding bulk quantity. At equilibrium and T=0 K, the bulk energy is the cohesive energy and the bulk stress is zero ( p=0). For i=j ( ɛii is hydrostatic) and for a flat surface, we show that the equilibrium surface stress gii corresponds to a surface pressure located mainly at the first monolayer and that the presence of the surface energy γ in the Shuttleworth's equation results from the matter conservation rule. Indeed, γ is an energy calculated per constant unit area while the atomic surface varies with the deformation as ( 1+ɛii). The equilibrium surface stress gii present at the surface is parallel to the surface. When gii is positive, this signifies that the surface atoms tend to contract together in the direction i even if the bulk pressure p is zero.

  14. Surface thermodynamics, surface stress, equations at surfaces and triple lines for deformable bodies.

    PubMed

    Olives, Juan

    2010-03-03

    The thermodynamics and mechanics of the surface of a deformable body are studied here, following and refining the general approach of Gibbs. It is first shown that the 'local' thermodynamic variables of the state of the surface are only the temperature, the chemical potentials and the surface strain tensor (true thermodynamic variables, for a viscoelastic solid or a viscous fluid). A new definition of the surface stress is given and the corresponding surface thermodynamics equations are presented. The mechanical equilibrium equation at the surface is then obtained. It involves the surface stress and is similar to the Cauchy equation for the volume. Its normal component is a generalization of the Laplace equation. At a (body-fluid-fluid) triple contact line, two equations are obtained, which represent: (i) the equilibrium of the forces (surface stresses) for a triple line fixed on the body; (ii) the equilibrium relative to the motion of the line with respect to the body. This last equation leads to a strong modification of Young's classical capillary equation.

  15. Differential Expression and Immunolocalization of Antioxidant Enzymes in Entamoeba histolytica Isolates during Metronidazole Stress

    PubMed Central

    Iyer, Lakshmi Rani; Singh, Nishant; Verma, Anil Kumar; Paul, Jaishree

    2014-01-01

    Entamoeba histolytica infections are endemic in the Indian subcontinent. Five to eight percent of urban population residing under poor sanitary conditions suffers from Entamoeba infections. Metronidazole is the most widely prescribed drug used for amoebiasis. In order to understand the impact of metronidazole stress on the parasite, we evaluated the expression of two antioxidant enzymes, peroxiredoxin and FeSOD, in Entamoeba histolytica isolates during metronidazole stress. The results reveal that, under metronidazole stress, the mRNA expression levels of these enzymes did not undergo any significant change. Interestingly, immunolocalization studies with antibodies targeting peroxiredoxin indicate differential localization of the protein in the cell during metronidazole stress. In normal conditions, all the Entamoeba isolates exhibit presence of peroxiredoxin in the nucleus as well as in the membrane; however with metronidazole stress the protein localized mostly to the membrane. The change in the localization pattern was more pronounced when the cells were subjected to short term metronidazole stress compared to cells adapted to metronidazole. The protein localization to the cell membrane could be the stress response mechanism in these isolates. Colocalization pattern of peroxiredoxin with CaBp1, a cytosolic protein, revealed that the membrane and nuclear localization was specific to peroxiredoxin during metronidazole stress. PMID:25013795

  16. Brief, pre-retrieval stress differentially influences long-term memory depending on sex and corticosteroid response.

    PubMed

    Zoladz, Phillip R; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Burke, Hanna M; Woelke, Sarah A; Pisansky, Julia M; Talbot, Jeffery N

    2014-03-01

    Previous work has indicated that stress generally impairs memory retrieval. However, little research has addressed discrepancies that exist in this line of work and the factors that could explain why stress can exert differential effects on retrieval processes. Therefore, we examined the influence of brief, pre-retrieval stress that was administered immediately before testing on long-term memory in males and females. Participants learned a list of 42 words varying in emotional valence and arousal. Following the learning phase, participants were given an immediate free recall test. Twenty-four hours later, participants submerged their non-dominant hand in a bath of ice cold (Stress) or warm (No Stress) water for 3 min. Immediately following this manipulation, participants' memory for the word list was assessed via free recall and recognition tests. We observed no group differences on short-term memory. However, male participants who showed a robust cortisol response to the stress exhibited enhanced long-term recognition memory, while male participants who demonstrated a blunted cortisol response to the stress exhibited impaired long-term recall and recognition memory. These findings suggest that the effects of brief, pre-retrieval stress on long-term memory are sex-specific and mediated by corticosteroid mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Prominent alterations of wild barley leaf transcriptome in response to individual and combined drought acclimation and heat shock conditions.

    PubMed

    Ashoub, Ahmed; Müller, Niels; Jiménez-Gómez, José M; Brüggemann, Wolfgang

    2018-05-01

    Under field conditions, drought and heat stress typically happen simultaneously and their negative impact on the agricultural production is expected to increase worldwide under the climate change scenario. In this study, we performed RNA-sequencing analysis on leaves of wild barley (Hordeum spontaneum) originated from the northern coastal region of Egypt following individual drought acclimation (DA) and heat shock (HS) treatments and their combination (CS, combined stresses) to distinguish the unique and shared differentially expressed genes (DEG). Results indicated that the number of unique genes that were differentially expressed following HS treatment exceeded the number of those expressed following DA. In addition, the number of genes that were uniquely differentially expressed in response to CS treatment exceeded the number of those of shared responses to individual DA and HS treatments. These results indicate a better adaptation of the Mediterranean wild barley to drought conditions when compared with heat stress. It also manifests that the wild barley response to CS tends to be unique rather than common. Annotation of DEG showed that metabolic processes were the most influenced biological function in response to the applied stresses. © 2017 Scandinavian Plant Physiology Society.

  18. MOF maintains transcriptional programs regulating cellular stress response

    PubMed Central

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-01-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537

  19. Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells

    PubMed Central

    Caballano-Infantes, Estefania; Terron-Bautista, José; Beltrán-Povea, Amparo; Cahuana, Gladys M; Soria, Bernat; Nabil, Hajji; Bedoya, Francisco J; Tejedo, Juan R

    2017-01-01

    Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies. PMID:28289506

  20. Syndecan-1 Is Required to Maintain Intradermal Fat and Prevent Cold Stress

    PubMed Central

    Wollny, Damian; Clark, Rod J.; Roopra, Avtar; Colman, Ricki J.; MacDougald, Ormond A.; Shedd, Timothy A.; Nelson, David W.; Yen, Mei-I; Yen, Chi-Liang Eric; Alexander, Caroline M.

    2014-01-01

    Homeostatic temperature regulation is fundamental to mammalian physiology and is controlled by acute and chronic responses of local, endocrine and nervous regulators. Here, we report that loss of the heparan sulfate proteoglycan, syndecan-1, causes a profoundly depleted intradermal fat layer, which provides crucial thermogenic insulation for mammals. Mice without syndecan-1 enter torpor upon fasting and show multiple indicators of cold stress, including activation of the stress checkpoint p38α in brown adipose tissue, liver and lung. The metabolic phenotype in mutant mice, including reduced liver glycogen, is rescued by housing at thermoneutrality, suggesting that reduced insulation in cool temperatures underlies the observed phenotypes. We find that syndecan-1, which functions as a facultative lipoprotein uptake receptor, is required for adipocyte differentiation in vitro. Intradermal fat shows highly dynamic differentiation, continuously expanding and involuting in response to hair cycle and ambient temperature. This physiology probably confers a unique role for Sdc1 in this adipocyte sub-type. The PPARγ agonist rosiglitazone rescues Sdc1−/− intradermal adipose tissue, placing PPARγ downstream of Sdc1 in triggering adipocyte differentiation. Our study indicates that disruption of intradermal adipose tissue development results in cold stress and complex metabolic pathology. PMID:25101993

  1. Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells.

    PubMed

    Caballano-Infantes, Estefania; Terron-Bautista, José; Beltrán-Povea, Amparo; Cahuana, Gladys M; Soria, Bernat; Nabil, Hajji; Bedoya, Francisco J; Tejedo, Juan R

    2017-02-26

    Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca 2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies.

  2. MOF maintains transcriptional programs regulating cellular stress response.

    PubMed

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-05-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.

  3. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    PubMed

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  4. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    DOEpatents

    Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  5. Components in Plasma-Derived Factor VIII, But Not in Recombinant Factor VIII Downregulate Anti-Inflammatory Surface Marker CD163 in Human Macrophages through Release of CXCL4 (Platelet Factor 4).

    PubMed

    Bertling, Anne; Brodde, Martin F; Visser, Mayken; Treffon, Janina; Fennen, Michelle; Fender, Anke C; Kelsch, Reinhard; Kehrel, Beate E

    2017-09-01

    Hemarthrosis, or bleeding into the joints, is a hallmark of hemophilia. Heme triggers oxidative stress, inflammation, and destruction of cartilage and bone. The haptoglobin-CD163-heme oxygenase-1 (HO-1) pathway circumvents heme toxicity through enzymatic degradation of heme and transcription of antioxidant genes. Plasma-derived factor concentrates contain many proteins that might impact on cellular pathways in joints, blood, and vessels. Activation of platelets from healthy volunteers was assessed by flow cytometry analysis of fibrinogen binding and CD62P expression. Platelet CXCL4 release was measured by ELISA. Human peripheral blood mononuclear cells were exposed to CXCL4 or platelet supernatants (untreated or pre-stimulated with factor VIII (FVIII) products) during their differentiation to macrophages and analyzed for CD163 expression. Some macrophage cultures were additionally incubated with autologous hemoglobin for 18 h for analysis of HO-1 expression. Platelet CXCL4 release was increased by all 8 tested plasma-derived FVIII products but not the 3 recombinant products. Macrophages exposed to supernatant from platelets treated with some plasma-derived FVIII products downregulated CD163 surface expression and failed to upregulate the athero- and joint protective enzyme HO-1 in response to hemoglobin. Plasma-derived FVIII products might promote bleeding-induced joint injury via generation of macrophages that are unable to counteract redox stress.

  6. Biogeochemical cycling in the ocean. Part 1: Introduction to the effects of upwelling along the west coast of North America

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1986-01-01

    Coastal upwelling is examined as it relates to the cycling of chemical species in coastal waters along the west coast of North America. The temporal and spatial features of upwelling phenomena in the Eastern boundary regions of the North Pacific Ocean are presented and discussed in terms of upwelling episodes. Climate conditions affecting upwelling include: thermal effects, wind-induced shear stress which moves surface layers, and the curl of the wind stress vector which is thought to affect the extent and nature of upwelling and the formation of offshore convergent downwelling fronts. These effects and the interaction of sunlight and upwelled nutrients which result in a biological bloom in surface waters is modeled analytically. The roles of biological and chemical species, including the effects of predation, are discussed in that context, and relevant remote sensing and in situ observations are presented. Climatological, oceanographic, biological, physical, chemical events, and processes that pertain to biogeochemical cycling are presented and described by a set of partial differential equations. Simple preliminary results are obtained and are compared with data. Thus a fairly general framework has been laid where the many facets of biogeochemical cycling in coastal upwelled waters can be examined in their relationship to one another, and to the whole, to whatever level of detail or approximation is warranted or desired.

  7. Internal stress induced natural self-chemisorption of ZnO nanostructured films

    PubMed Central

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-01-01

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from −1.62 GPa to −0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption. PMID:28233827

  8. Internal stress induced natural self-chemisorption of ZnO nanostructured films

    NASA Astrophysics Data System (ADS)

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-02-01

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

  9. Internal stress induced natural self-chemisorption of ZnO nanostructured films.

    PubMed

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-02-24

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

  10. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida.

    PubMed

    Bojanovič, Klara; D'Arrigo, Isotta; Long, Katherine S

    2017-04-01

    Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings. IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one condition, suggesting their involvement in adaptation to stress conditions and identifying interesting candidates for further functional characterization. Copyright © 2017 American Society for Microbiology.

  11. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).

    PubMed

    Deng, Qian-Wen; Luo, Xiang-Dong; Chen, Ya-Ling; Zhou, Yi; Zhang, Fan-Tao; Hu, Biao-Lin; Xie, Jian-Kun

    2018-03-15

    Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice.

  12. Naringin protects human adipose-derived mesenchymal stem cells against hydrogen peroxide-induced inhibition of osteogenic differentiation.

    PubMed

    Wang, Lei; Zhang, Yu-Ge; Wang, Xiu-Mei; Ma, Long-Fei; Zhang, Yuan-Min

    2015-12-05

    Extensive evidence indicates that oxidative stress plays a pivotal role in the development of osteoporosis. We show that naringin, a natural antioxidant and anti-inflammatory compound, effectively protects human adipose-derived mesenchymal stem cells (hADMSCs) against hydrogen peroxide (H2O2)-induced inhibition of osteogenic differentiation. Naringin increased viability of hAMDSCs and attenuated H2O2-induced cytotoxicity. Naringin also reversed H2O2-induced oxidative stress. Oxidative stress induced by H2O2 inhibits osteogenic differentiation by decreasing alkaline phosphatase (ALP) activity, calcium content and mRNA expression levels of osteogenesis marker genes RUNX2 and OSX in hADMSCs. However, addition of naringin leads to a significant recovery, suggesting the protective effects of naringin against H2O2-induced inhibition of osteogenic differentiation. Furthermore, the H2O2-induced decrease of protein expressions of β-catenin and clyclin D1, two important transcriptional regulators of Wnt-signaling, was successfully rescued by naringin treatment. Also, in the presence of Wnt inhibitor DKK-1, naringin is no longer effective in stimulating ALP activity, increasing calcium content and mRNA expression levels of RUNX2 and OSX in H2O2-exposed hADMSCs. These data clearly demonstrates that naringin protects hADMSCs against oxidative stress-induced inhibition of osteogenic differentiation, which may involve Wnt signaling pathway. Our work suggests that naringin may be a useful addition to the treatment armamentarium for osteoporosis and activation of Wnt signaling may represent attractive therapeutic strategy for the treatment of degenerative disease of bone tissue. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Coating thickness affects surface stress measurement of brush electro-plating nickel coating using Rayleigh wave approach.

    PubMed

    Liu, Bin; Dong, Shiyun; Xu, Binshi; He, Peng

    2012-09-01

    A surface ultrasonic wave approach was presented for measuring surface stress of brush electro-plating nickel coating specimen, and the influence of coating thickness on surface stress measurement was discussed. In this research, two Rayleigh wave transducers with 5MHz frequency were employed to collect Rayleigh wave signals of coating specimen with different static tensile stresses and different coating thickness. The difference in time of flight between two Rayleigh wave signals was determined based on normalized cross correlation function. The influence of stress on propagation velocity of Rayleigh wave and the relationship between the difference in time of flight and tensile stress that corresponded to different coating thickness were discussed. Results indicate that inhomogeneous deformation of coating affects the relationship between the difference in time of flight and tensile stress, velocity of Rayleigh wave propagating in coating specimen increases with coating thickness increasing, and the variation rate reduces of difference in time of flight with tensile stress increasing as coating thickness increases. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2018-05-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  15. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2017-12-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  16. Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity.

    PubMed

    Yaish, Mahmoud W; Patankar, Himanshu V; Assaha, Dekoum V M; Zheng, Yun; Al-Yahyai, Rashid; Sunkar, Ramanjulu

    2017-03-22

    Date palm, as one of the most important fruit crops in North African and West Asian countries including Oman, is facing serious growth problems due to salinity, arising from persistent use of saline water for irrigation. Although date palm is a relatively salt-tolerant plant species, its adaptive mechanisms to salt stress are largely unknown. In order to get an insight into molecular mechanisms of salt tolerance, RNA was profiled in leaves and roots of date palm seedlings subjected to NaCl for 10 days. Under salt stress, photosynthetic parameters were differentially affected; all gas exchange parameters were decreased but the quantum yield of PSII was unaffected while non-photochemical quenching was increased. Analyses of gene expression profiles revealed 2630 and 4687 genes were differentially expressed in leaves and roots, respectively, under salt stress. Of these, 194 genes were identified as commonly responding in both the tissue sources. Gene ontology (GO) analysis in leaves revealed enrichment of transcripts involved in metabolic pathways including photosynthesis, sucrose and starch metabolism, and oxidative phosphorylation, while in roots genes involved in membrane transport, phenylpropanoid biosynthesis, purine, thiamine, and tryptophan metabolism, and casparian strip development were enriched. Differentially expressed genes (DEGs) common to both tissues included the auxin responsive gene, GH3, a putative potassium transporter 8 and vacuolar membrane proton pump. Leaf and root tissues respond differentially to salinity stress and this study has revealed genes and pathways that are associated with responses to elevated NaCl levels and thus may play important roles in salt tolerance providing a foundation for functional characterization of salt stress-responsive genes in the date palm.

  17. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA. © 2015 International Society for Neurochemistry.

  18. New true-triaxial rock strength criteria considering intrinsic material characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Cheng; Quan, Xiaowei; Wang, Yanning; Yu, Liyuan; Jiang, Binsong

    2018-02-01

    A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect, and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e. Mohr-Coulomb (MC), Hoek-Brown (HB), and Exponent (EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure I_c corresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength. Meanwhile, three Lode angle dependence functions of L_{{MN}}, L_{{WW}}, and L_{{YMH}}, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria, especially the Exponent Willam-Warnke criterion (EPWW) criterion, give much lower misfits, which illustrates that the EP criterion and L_{{WW}} have more reasonable meridian and deviatoric function form, respectively. The proposed new true-triaxial strength criteria can provide theoretical foundation for stability analysis and optimization of support design of rock engineering.

  19. Identification of differentially expressed proteins in Ostrinia furnacalis adults after exposure to ultraviolet A.

    PubMed

    Zhang, Changyu; Meng, Jianyu

    2018-06-23

    Ultraviolet A (UVA), the major component of solar UV irradiation, is an important environmental factor inducing damage to insects including cell death, photoreceptor damage, and oxidative stress. In order to improve understanding of the adaptation mechanisms of insect after UVA exposure, a comparative proteomic analysis was carried out to reveal differential protein expression in Ostrinia furnacalis. Three-day-old adults were treated with UVA for 1 h. Total proteins of control and UVA-treated insects were examined using two-dimensional electrophoresis (2-DE). 2-DE analysis demonstrated that 19 proteins were increased and 18 proteins were decreased significantly in O. furnacalis after UVA exposure, respectively. Thirty differentially expressed proteins were successfully identified by mass spectrometry. The identified proteins were involved in diverse biological processes, such as signal transduction, transport processing, cellular stress, metabolisms, and cytoskeleton organization. Our results reveal that the response patterns of O. furnacalis to UVA irradiation are complex and provide novel insights into the adaptation response to UVA irradiation stress.

  20. Single lump breast surface stress assessment study

    NASA Astrophysics Data System (ADS)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Paitong, P.; Alcain, J. B.; Lai, S. L.; Retnasamy, V.

    2017-09-01

    Breast cancer is one of the commonest cancers diagnosed among women around the world. Simulation approach has been utilized to study, characterize and improvise detection methods for breast cancer. However, minimal simulation work has been done to evaluate the surface stress of the breast with lumps. Thus, in this work, simulation analysis was utilized to evaluate and assess the breast surface stress due to the presence of a lump within the internal structure of the breast. The simulation was conducted using the Elmer software. Simulation results have confirmed that the presence of a lump within the breast causes stress on the skin surface of the breast.

  1. High Compressive Stresses Near the Surface of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Martel, S. J.; Logan, J. M.; Stock, G. M.

    2012-12-01

    Observations and stress measurements in granitic rocks of the Sierra Nevada, California reveal strong compressive stresses parallel to the surface of the range at shallow depths. New overcoring measurements show high compressive stresses at three locations along an east-west transect through Yosemite National Park. At the westernmost site (west end of Tenaya Lake), the mean compressive stress is 1.9. At the middle site (north shore of Tenaya Lake) the mean compressive stress is 6.8 MPa. At the easternmost site (south side of Lembert Dome) the mean compressive stress is 3.0 MPa. The trend of the most compressive stress at these sites is within ~30° of the strike of the local topographic surface. Previously published hydraulic fracturing measurements by others elsewhere in the Sierra Nevada indicate surface-parallel compressive stresses of several MPa within several tens of meters of the surface, with the stress magnitudes generally diminishing to the west. Both the new and the previously published compressive stress magnitudes are consistent with the presence of sheeting joints (i.e., "exfoliation joints") in the Sierra Nevada, which require lateral compressive stresses of several MPa to form. These fractures are widespread: they are distributed in granitic rocks from the north end of the range to its southern tip and across the width of the range. Uplift along the normal faults of the eastern escarpment, recently measured by others at ~1-2 mm/yr, probably contributes to these stresses substantially. Geodetic surveys reveal that normal faulting flexes a range concave upwards in response to fault slip, and this flexure is predicted by elastic dislocation models. The topographic relief of the eastern escarpment of the Sierra Nevada is 2-4 km, and since alluvial fill generally buries the bedrock east of the faults, the offset of granitic rocks is at least that much. Compressive stresses of several MPa are predicted by elastic dislocation models of the range front faults of the eastern Sierra Nevada for as little as 100m of slip. The compression is consistent with a concave up flexure of the surface of the range. Conversely, elastic models also predict that markedly lower compressive stresses or even a tension would exist on exposed bedrock on the down-dropped hanging wall east of the range front faults. To test this prediction, we measured stresses at a fourth site, in the granitic rock of the Aeolian Buttes, which is east of the range front faults. The mean compressive stress there is 0.26 MPa, more than an order of magnitude less than the average at the three Yosemite sites. The measured stress magnitudes near the topographic surface of the Sierra, the distribution of sheeting joints west of the range front faults, and elastic model predictions are broadly consistent and indicate that the high compressive stresses at the surface of the Sierra Nevada are largely associated with uplift of the range, although other contributions cannot be excluded.

  2. The rigidity and mobility of screw dislocations in a thin film

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    2018-07-01

    An equation of screw dislocations in a thin film is derived for arbitrary boundary conditions. The boundary conditions can be the free surface, the fixed surface or the gradient loading imposed on the surface. The new equation makes it possible to study changes in the dislocation structure under various gradient stress applied to the surface. The rigidity and mobility of screw dislocations in a thin film are explored by using the equation. It is found that the screw dislocation core in a thin film is like a Hookean body with a specific shear stress applied to the surface. Free-surface effects on the Peierls stress are investigated and compared with previous studies. An abnormal behavior of the Peierls stress of screw dislocations in a soft-inclusion film between two rigid films is predicted theoretically.

  3. Why do modelled and observed surface wind stress climatologies differ in the trade wind regions?

    NASA Astrophysics Data System (ADS)

    Simpson, I.; Bacmeister, J. T.; Sandu, I.; Rodwell, M. J.

    2017-12-01

    Global climate models (GCMs) exhibit stronger easterly zonal surface wind stress and near surface winds in the Northern Hemisphere (NH) trade winds than observationally constrained reanalyses or other observational products. A comparison, between models and reanalyses, of the processes that contribute to the zonal mean, vertically integrated balance of momentum, reveals that this wind stress discrepancy cannot be explained by either the resolved dynamics or parameterized tendencies that are common to each. Rather, a substantial residual exists in the momentum balance of the reanalyses, pointing toward a role for the analysis increments. Indeed, they are found to systematically weaken the NH near surface easterlies in winter, thereby reducing the surface wind stress. Similar effects are found in the Southern Hemisphere and further analysis of the spatial structure and seasonality of these increments, demonstrates that they act to weaken the near surface flow over much of the low latitude oceans in both summer and winter. This suggests an erroneous /missing process in GCMs that constitutes a missing drag on the low level zonal flow over oceans. Either this indicates a mis-representation of the drag between the surface and the atmosphere, or a missing internal atmospheric process that amounts to an additional drag on the low level zonal flow. If the former is true, then observation based surface stress products, which rely on similar drag formulations to GCMs, may be underestimating the strength of the easterly surface wind stress.

  4. Direct Observations of In Situ Stress State in a 3 Kilometer Deep Borehole in the Upper Plate, Nankai Trough Subduction Zone: IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Saffer, D. M.; Castillo, D. A.; Hirose, T.

    2016-12-01

    During IODP Expedition 348, borehole C0002F/N/P was advanced to a depth of 3058 m below the seafloor (mbsf) into the inner forearc accretionary wedge of the Nankai subduction zone (SW Japan), now the deepest scientific drilling ever into the ocean floor. The goals were to investigate the physical properties, structure, and state of stress deep within the hanging wall of a seismogenic subduction plate boundary. Mud pressure and gas monitoring, injection tests, leak-off tests (LOT), logging-while-drilling (LWD) measurements, and observations of mud losses and hole conditions provide both direct and indirect information about in situ pore pressure and stress state. The LOTs show that the minimum principal stress is consistently less than the vertical stress defined by the overburden, ruling out a thrust faulting stress state throughout the drilled section, and define a nearly linear gradient in Shmin from the seafloor to the base of the hole. Observations of mud loss and the lack of observed gas shows indicate that formation pore fluid pressure is not significantly (< 10 MPa) greater than hydrostatic. The maximum horizontal stress, estimated from borehole breakout width and pressure spikes during pack-off events, is close in magnitude to the vertical stress. Therefore the accretionary prism lies in either a normal or strike-slip faulting regime, or is transitional between the two, from 1 to 3 km depth. At 3002 mbsf we estimate that the effective stresses are: Sv' = 33 MPa; SHmax' = 25-36 MPa; and Shmin' = 18.5-21 MPa. Differential stresses are therefore low, on the order of 10-12 MPa, in the hanging wall of the subduction thrust. We conclude that (1) the inner wedge is not critically stressed in horizontal compression; (2) basal traction along the megathrust must be low in order to permit concurrent locking of the fault and low differential stresses deep within the upper plate; and (3) although low differential stresses may persist down to the plate boundary at 5000 mbsf, the maximum horizontal stress SHmax must transition to become greater than the vertical stress, either spatially below the base of the borehole, or temporally leading up to megathrust fault rupture, in order to drive slip on the megathrust.

  5. True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval.

    PubMed

    Smeets, Tom; Otgaar, Henry; Candel, Ingrid; Wolf, Oliver T

    2008-11-01

    Adrenal stress hormones released in response to acute stress may yield memory-enhancing effects when released post-learning and impairing effects at memory retrieval, especially for emotional memory material. However, so far these differential effects of stress hormones on the various memory phases for neutral and emotional memory material have not been demonstrated within one experiment. This study investigated whether, in line with their effects on true memory, stress and stress-induced adrenal stress hormones affect the encoding, consolidation, and retrieval of emotional and neutral false memories. Participants (N=90) were exposed to a stressor before encoding, during consolidation, before retrieval, or were not stressed and then were subjected to neutral and emotional versions of the Deese-Roediger-McDermott word list learning paradigm. Twenty-four hours later, recall of presented words (true recall) and non-presented critical lure words (false recall) was assessed. Results show that stress exposure resulted in superior true memory performance in the consolidation stress group and reduced true memory performance in the retrieval stress group compared to the other groups, predominantly for emotional words. These memory-enhancing and memory-impairing effects were strongly related to stress-induced cortisol and sympathetic activity measured via salivary alpha-amylase levels. Neutral and emotional false recall, on the other hand, was neither affected by stress exposure, nor related to cortisol and sympathetic activity following stress. These results demonstrate the importance of stress-induced hormone-related activity in enhancing memory consolidation and in impairing memory retrieval, in particular for emotional memory material.

  6. Characterizing the stress/defense transcriptome of Arabidopsis

    PubMed Central

    Mahalingam, Ramamurthy; Gomez-Buitrago, AnaMaria; Eckardt, Nancy; Shah, Nigam; Guevara-Garcia, Angel; Day, Philip; Raina, Ramesh; Fedoroff, Nina V

    2003-01-01

    Background To understand the gene networks that underlie plant stress and defense responses, it is necessary to identify and characterize the genes that respond both initially and as the physiological response to the stress or pathogen develops. We used PCR-based suppression subtractive hybridization to identify Arabidopsis genes that are differentially expressed in response to ozone, bacterial and oomycete pathogens and the signaling molecules salicylic acid (SA) and jasmonic acid. Results We identified a total of 1,058 differentially expressed genes from eight stress cDNA libraries. Digital northern analysis revealed that 55% of the stress-inducible genes are rarely transcribed in unstressed plants and 17% of them were not previously represented in Arabidopsis expressed sequence tag databases. More than two-thirds of the genes in the stress cDNA collection have not been identified in previous studies as stress/defense response genes. Several stress-responsive cis-elements showed a statistically significant over-representation in the promoters of the genes in the stress cDNA collection. These include W- and G-boxes, the SA-inducible element, the abscisic acid response element and the TGA motif. Conclusions The stress cDNA collection comprises a broad repertoire of stress-responsive genes encoding proteins that are involved in both the initial and subsequent stages of the physiological response to abiotic stress and pathogens. This set of stress-, pathogen- and hormone-modulated genes is an important resource for understanding the genetic interactions underlying stress signaling and responses and may contribute to the characterization of the stress transcriptome through the construction of standardized specialized arrays. PMID:12620105

  7. Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced raman spectroscopy an chemometric analysis

    USDA-ARS?s Scientific Manuscript database

    The intrinsic surface-enhanced Raman scattering (SERS) was used for differentiating and classifying bacterial species with chemometric data analysis. Such differentiation has often been conducted with an insufficient sample population and strong interference from the food matrices. To address these ...

  8. Experimental residual stress evaluation of hydraulic expansion transitions in Alloy 690 steam generator tubing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGregor, R.; Doherty, P.; Hornbach, D.

    1995-12-31

    Nuclear Steam Generator (SG) service reliability and longevity have been seriously affected worldwide by corrosion at the tube-to-tubesheet joint expansion. Current SG designs for new facilities and replacement projects enhance corrosion resistance through the use of advanced tubing materials and improved joint design and fabrication techniques. Here, transition zones of hydraulic expansions have undergone detailed experimental evaluation to define residual stress and cold-work distribution on and below the secondary-side surface. Using X-ray diffraction techniques, with supporting finite element analysis, variations are compared in tubing metallurgical condition, tube/pitch geometry, expansion pressure, and tube-to-hole clearance. Initial measurements to characterize the unexpanded tubemore » reveal compressive stresses associated with a thin work-hardened layer on the outer surface of the tube. The gradient of cold-work was measured as 3% to 0% within .001 inch of the surface. The levels and character of residual stresses following hydraulic expansion are primarily dependent on this work-hardened surface layer and initial stress state that is unique to each tube fabrication process. Tensile stresses following expansion are less than 25% of the local yield stress and are found on the transition in a narrow circumferential band at the immediate tube surface (< .0002 inch/0.005 mm depth). The measurements otherwise indicate a predominance of compressive stresses on and below the secondary-side surface of the transition zone. Excellent resistance to SWSCC initiation is offered by the low levels of tensile stress and cold-work. Propagation of any possible cracking would be deterred by the compressive stress field that surrounds this small volume of tensile material.« less

  9. Identification of differentially expressed genes in Fiskeby III under ozone stress conditions

    USDA-ARS?s Scientific Manuscript database

    As the global climate changes, plants will be challenged by environmental stresses that are more extreme and more frequent leading to increased yield loss. Specifically, ozone stress is an increasing problem in both urban and rural areas. Soybeans are one of the plant species that are quite ozone se...

  10. Impaired Memory Retrieval Correlates with Individual Differences in Cortisol Response but Not Autonomic Response

    ERIC Educational Resources Information Center

    Tranel, Daniel; Adolphs, Ralph; Buchanan, Tony W.

    2006-01-01

    Stress can enhance or impair memory performance. Both cortisol release and sympathetic nervous system responses have been implicated in these differential effects. Here we investigated how memory retrieval might be affected by stress-induced cortisol release, independently of sympathetic nervous system stress responses. Thirty-two healthy…

  11. Psychological Needs as the Predictor of Teachers' Perceived Stress Levels

    ERIC Educational Resources Information Center

    Avci, Ahmet; Bozgeyikli, Hasan; Kesici, Sahin

    2017-01-01

    The purpose of this study is to examine the relationship between teachers' psychological needs and perceived stress levels. First of all, the differentiation status of teachers' psychological needs and perceived stress levels in terms of gender, type of institution and type of the school variables was examined. Then, the psychological need's level…

  12. Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress.

    PubMed

    Tamarkin-Ben-Harush, Ana; Vasseur, Jean-Jacques; Debart, Françoise; Ulitsky, Igor; Dikstein, Rivka

    2017-02-08

    Transcription start-site (TSS) selection and alternative promoter (AP) usage contribute to gene expression complexity but little is known about their impact on translation. Here we performed TSS mapping of the translatome following energy stress. Assessing the contribution of cap-proximal TSS nucleotides, we found dramatic effect on translation only upon stress. As eIF4E levels were reduced, we determined its binding to capped-RNAs with different initiating nucleotides and found the lowest affinity to 5'cytidine in correlation with the translational stress-response. In addition, the number of differentially translated APs was elevated following stress. These include novel glucose starvation-induced downstream transcripts for the translation regulators eIF4A and Pabp, which are also translationally-induced despite general translational inhibition. The resultant eIF4A protein is N-terminally truncated and acts as eIF4A inhibitor. The induced Pabp isoform has shorter 5'UTR removing an auto-inhibitory element. Our findings uncovered several levels of coordination of transcription and translation responses to energy stress.

  13. The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.

    PubMed

    de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A

    2017-08-01

    The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

  14. Spherical, axisymmetric convection: Applications to Mercury

    NASA Astrophysics Data System (ADS)

    Redmond, H. L.; King, S. D.

    2004-05-01

    Mercury is the densest of the four inner planets and contains a large, iron core that may be up to 75% the size of the planet (Siegfried and Solomon, 1974). The outer shell of the planet is most likely a silicate crust 100-300 km thick and it is believed that Mercury currently has no tectonic activity. Three major observations support this hypothesis: (1) there are no surface expressions supporting the existence of mantle plumes or plate tectonics, implying that the heavily cratered surface of Mercury has changed very little since the period of heavy bombardment; (2) large impact basins, in particular Caloris, have not been greatly altered and lack concentric graben outside their main ring (Strom et al., 1975) suggesting that subsidence of the basins has not taken place, consistent with an early planetary compressive stress field suppressing the development of tensional surface features (Cordell and Strom, 1977); (3) the global absence of extensional features except for a small amount of localized regions within the Caloris basin and the inter-crater plains (Trask and Guest, 1975). The lack of surface tectonic features make it difficult to determine the thermal evolution of Mercury. Normally, when core differentiation occurs in a homogeneous planet, there is a large increase in planetary volume (Solomon, 1976) and extensional features resulting from differentiation are often observed at the surface. However, this is not the case for Mercury. It is more likely that Mercury cooled very rapidly and had completely differentiated prior to the end of the period of extensive bombardment (Trask and Guest, 1975). However, in order to preserve the dynamo explanation for Mercury's magnetic field (Ness et al., 1975), deep mantle heat sources are needed to keep the core largely molten, protecting it against heat loss via mantle convection (Cassen et al., 1976). We present a series of axisymmetric convection calculations with an olivine rheology and thermal history calculations to address the thermal state of Mercury. In particular, we seek to address the rapid early cooling needed to achieve the compressive stress state and the need for high core temperatures today to maintain a dynamo. Preliminary results suggest that convection in the thin mantle of Mercury develops a long-wavelength convection pattern that may aid in the explanation of the more common broad, compressional features and, less common, extensional features observed at the surface. Our calculations thus far, which are purely isoviscous, produce β = 0.26 in the Ra ~ Nuβ relationship, providing us insight on the strength and thickness of the Mercurian lithosphere as well as present day mantle temperatures. By adding thermal history modeling to our calculations and incorporating a non-Newtonian, temperature-dependent rheology we hope to achieve more realistic results while resolving the inconsistencies in the thermal history of Mercury. References: Cassen, P. et al., Icarus, 28, 501-508, 1976. Cordell, B.M. and R.G. Strom, Phys. Earth Planet. Int., 15, 146-155, 1977. Ness, N.F. et al., J. Geophys. Res., 80, 2708-2716, 1975. Siegfried, R.W. and S.C. Solomon, Icarus, 23, 192-205, 1974. Solomon, S.C., Icarus, 28, 509-522, 1976. Strom, R.G. et al., J. Geophys. Res., 80, 2478-2507, 1975. Trask, N.J. and J.E. Guest, J. Geophys. Res., 80, 2461-2477, 1975.

  15. Evolution of residual stress, free volume, and hardness in the laser shock peened Ti-based metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang; Wang, Lu; Nie, Zhihua

    Laser shock peening (LSP) with different cycles was performed on the Ti-based bulk metallic glasses (BMGs). The sub-surface residual stress of the LSPed specimens was measured by high-energy X-ray diffraction (HEXRD) and the near-surface residual stress was measured by scanning electron microscope/focused ion beam (SEM/FIB) instrument. The sub-surface residual stress in the LSP impact direction (about-170MPa) is much lower than that perpendicular to the impact direction (about -350 MPa), exhibiting anisotropy. The depth of the compressive stress zone increases from 400 mu m to 500 mu m with increasing LSP cycles. The highest near-surface residual stress is about -750 MPa.more » LSP caused the free volume to increase and the maximum increase appeared after the first LSP process. Compared with the hardness (567 +/- 7 HV) of the as-cast BMG, the hardness (590 +/- 9 HV) on the shocked surface shows a hardening effect due to the hardening mechanism of compressive residual stress; and the hardness (420 +/- 9 HV) on the longitudinal section shows a softening effect due to the softening mechanism of free volume.« less

  16. Preliminary analysis of cold stress responsive proteins in Mesocestoides corti larvae.

    PubMed

    Canclini, Lucía; Esteves, Adriana

    2007-07-01

    Many parasites undergo sudden changes in environmental conditions at some stage during their life cycle. The molecular response to this variation is characterised by a rapid transcriptional activation of a specific set of genes coding for proteins generically known as stress proteins. They appear to be also involved in various biological processes including cell proliferation and differentiation. The platyhelminth parasite, Mesocestoides corti (Cestoda) presents important properties as a model organism. Under stress conditions, key molecules involved in metabolic pathways as well as in the growth and differentiation of the parasite can be identified. 2D protein expression profile of tetrathyridia of M. corti, submitted to nutritional starvation and cold stress is described, as well as the recovery pattern. A set of specifically expressed proteins was observed in each experimental condition. Quantitative and qualitative differences and stress recovery pattern are also reported. This work makes evident the high plasticity and resistance to extreme environmental conditions of these parasites at the molecular level.

  17. Protein half-life determines expression of proteostatic networks in podocyte differentiation.

    PubMed

    Schroeter, Christina B; Koehler, Sybille; Kann, Martin; Schermer, Bernhard; Benzing, Thomas; Brinkkoetter, Paul T; Rinschen, Markus M

    2018-04-25

    Podocytes are highly specialized, epithelial, postmitotic cells, which maintain the renal filtration barrier. When adapting to considerable metabolic and mechanical stress, podocytes need to accurately maintain their proteome. Immortalized podocyte cell lines are a widely used model for studying podocyte biology in health and disease in vitro. In this study, we performed a comprehensive proteomic analysis of the cultured human podocyte proteome in both proliferative and differentiated conditions at a depth of >7000 proteins. Similar to mouse podocytes, human podocyte differentiation involved a shift in proteostasis: undifferentiated podocytes have high expression of proteasomal proteins, whereas differentiated podocytes have high expression of lysosomal proteins. Additional analyses with pulsed stable-isotope labeling by amino acids in cell culture and protein degradation assays determined protein dynamics and half-lives. These studies unraveled a globally increased stability of proteins in differentiated podocytes. Mitochondrial, cytoskeletal, and membrane proteins were stabilized, particularly in differentiated podocytes. Importantly, protein half-lives strongly contributed to protein abundance in each state. These data suggest that regulation of protein turnover of particular cellular functions determines podocyte differentiation, a paradigm involving mitophagy and, potentially, of importance in conditions of increased podocyte stress and damage.-Schroeter, C. B., Koehler, S., Kann, M., Schermer, B., Benzing, T., Brinkkoetter, P. T., Rinschen, M. M. Protein half-life determines expression of proteostatic networks in podocyte differentiation.

  18. Residual stress in glass: indentation crack and fractography approaches.

    PubMed

    Anunmana, Chuchai; Anusavice, Kenneth J; Mecholsky, John J

    2009-11-01

    To test the hypothesis that the indentation crack technique can determine surface residual stresses that are not statistically significantly different from those determined from the analytical procedure using surface cracks, the four-point flexure test, and fracture surface analysis. Soda-lime-silica glass bar specimens (4 mm x 2.3 mm x 28 mm) were prepared and annealed at 650 degrees C for 30 min before testing. The fracture toughness values of the glass bars were determined from 12 specimens based on induced surface cracks, four-point flexure, and fractographic analysis. To determine the residual stress from the indentation technique, 18 specimens were indented under 19.6N load using a Vickers microhardness indenter. Crack lengths were measured within 1 min and 24h after indentation, and the measured crack lengths were compared with the mean crack lengths of annealed specimens. Residual stress was calculated from an equation developed for the indentation technique. All specimens were fractured in a four-point flexure fixture and the residual stress was calculated from the strength and measured crack sizes on the fracture surfaces. The results show that there was no significant difference between the residual stresses calculated from the two techniques. However, the differences in mean residual stresses calculated within 1 min compared with those calculated after 24h were statistically significant (p=0.003). This study compared the indentation technique with the fractographic analysis method for determining the residual stress in the surface of soda-lime-silica glass. The indentation method may be useful for estimating residual stress in glass.

  19. Residual stress in glass: indentation crack and fractography approaches

    PubMed Central

    Anunmana, Chuchai; Anusavice, Kenneth J.; Mecholsky, John J.

    2009-01-01

    Objective To test the hypothesis that the indentation crack technique can determine surface residual stresses that are not statistically significantly different from those determined from the analytical procedure using surface cracks, the four-point flexure test, and fracture surface analysis. Methods Soda-lime-silica glass bar specimens (4 mm × 2.3 mm × 28 mm) were prepared and annealed at 650 °C for 30 min before testing. The fracture toughness values of the glass bars were determined from 12 specimens based on induced surface cracks, four-point flexure, and fractographic analysis. To determine the residual stress from the indentation technique, 18 specimens were indented under 19.6 N load using a Vickers microhardness indenter. Crack lengths were measured within 1 min and 24 h after indentation, and the measured crack lengths were compared with the mean crack lengths of annealed specimens. Residual stress was calculated from an equation developed for the indentation technique. All specimens were fractured in a four-point flexure fixture and the residual stress was calculated from the strength and measured crack sizes on the fracture surfaces. Results The results show that there was no significant difference between the residual stresses calculated from the two techniques. However, the differences in mean residual stresses calculated within 1 min compared with those calculated after 24 h were statistically significant (p=0.003). Significance This study compared the indentation technique with the fractographic analysis method for determining the residual stress in the surface of soda-lime silica glass. The indentation method may be useful for estimating residual stress in glass. PMID:19671475

  20. Receptor-mediated cell mechanosensing

    PubMed Central

    Chen, Yunfeng; Ju, Lining; Rushdi, Muaz; Ge, Chenghao; Zhu, Cheng

    2017-01-01

    Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. PMID:28954860

Top