Sample records for differential waveform acquisition

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wackerbarth, David

    Sandia National Laboratories has developed a computer program to review, reduce and manipulate waveform data. PlotData is designed for post-acquisition waveform data analysis. PlotData is both a post-acquisition and an advanced interactive data analysis environment. PlotData requires unidirectional waveform data with both uniform and discrete time-series measurements. PlotData operates on a National Instruments' LabVIEW™ software platform. Using PlotData, the user can capture waveform data from digitizing oscilloscopes over a GPIB, USB and Ethernet interface from Tektronix, Lecroy or Agilent scopes. PlotData can both import and export several types of binary waveform files including, but not limited to, Tektronix .wmf files,more » Lecroy.trc files and xy pair ASCIIfiles. Waveform manipulation includes numerous math functions, integration, differentiation, smoothing, truncation, and other specialized data reduction routines such as VISAR, POV, PVDF (Bauer) piezoelectric gauges, and piezoresistive gauges such as carbon manganin pressure gauges.« less

  2. Pulse transit time differential measurement by fiber Bragg grating pulse recorder.

    PubMed

    Umesh, Sharath; Padma, Srivani; Ambastha, Shikha; Kalegowda, Anand; Asokan, Sundarrajan

    2015-05-01

    The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity.

  3. Characterization of a 16-Bit Digitizer for Lidar Data Acquisition

    NASA Technical Reports Server (NTRS)

    Williamson, Cynthia K.; DeYoung, Russell J.

    2000-01-01

    A 6-MHz 16-bit waveform digitizer was evaluated for use in atmospheric differential absorption lidar (DIAL) measurements of ozone. The digitizer noise characteristics were evaluated, and actual ozone DIAL atmospheric returns were digitized. This digitizer could replace computer-automated measurement and control (CAMAC)-based commercial digitizers and improve voltage accuracy.

  4. A Waveform Archiving System for the GE Solar 8000i Bedside Monitor.

    PubMed

    Fanelli, Andrea; Jaishankar, Rohan; Filippidis, Aristotelis; Holsapple, James; Heldt, Thomas

    2018-01-01

    Our objective was to develop, deploy, and test a data-acquisition system for the reliable and robust archiving of high-resolution physiological waveform data from a variety of bedside monitoring devices, including the GE Solar 8000i patient monitor, and for the logging of ancillary clinical and demographic information. The data-acquisition system consists of a computer-based archiving unit and a GE Tram Rac 4A that connects to the GE Solar 8000i monitor. Standard physiological front-end sensors connect directly to the Tram Rac, which serves as a port replicator for the GE monitor and provides access to these waveform signals through an analog data interface. Together with the GE monitoring data streams, we simultaneously collect the cerebral blood flow velocity envelope from a transcranial Doppler ultrasound system and a non-invasive arterial blood pressure waveform along a common time axis. All waveform signals are digitized and archived through a LabView-controlled interface that also allows for the logging of relevant meta-data such as clinical and patient demographic information. The acquisition system was certified for hospital use by the clinical engineering team at Boston Medical Center, Boston, MA, USA. Over a 12-month period, we collected 57 datasets from 11 neuro-ICU patients. The system provided reliable and failure-free waveform archiving. We measured an average temporal drift between waveforms from different monitoring devices of 1 ms every 66 min of recorded data. The waveform acquisition system allows for robust real-time data acquisition, processing, and archiving of waveforms. The temporal drift between waveforms archived from different devices is entirely negligible, even for long-term recording.

  5. Chip-to-Chip Half Duplex Spiking Data Communication over Power Supply Rails

    NASA Astrophysics Data System (ADS)

    Hashida, Takushi; Nagata, Makoto

    Chip-to-chip serial data communication is superposed on power supply over common Vdd/Vss connections through chip, package, and board traces. A power line transceiver demonstrates half duplex spiking communication at more than 100Mbps. A pair of transceivers consumes 1.35mA from 3.3V, at 130Mbps. On-chip power line LC low pass filter attenuates pseudo-differential communication spikes by 30dB, purifying power supply current for internal circuits. Bi-directional spiking communication was successfully examined in a 90-nm CMOS prototype setup of on-chip waveform capturing. A micro controller forwards clock pulses to and receives data streams from a comparator based waveform capturer formed on a different chip, through a single pair of power and ground traces. The bit error rate is small enough not to degrade waveform acquisition capability, maintaining the spurious free dynamic range of higher than 50dB.

  6. A seamless acquisition digital storage oscilloscope with three-dimensional waveform display

    NASA Astrophysics Data System (ADS)

    Yang, Kuojun; Tian, Shulin; Zeng, Hao; Qiu, Lei; Guo, Lianping

    2014-04-01

    In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, which converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition.

  7. A seamless acquisition digital storage oscilloscope with three-dimensional waveform display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Kuojun, E-mail: kuojunyang@gmail.com; Guo, Lianping; School of Electrical and Electronic Engineering, Nanyang Technological University

    In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, whichmore » converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition.« less

  8. Waveform Generator Signal Processing Software

    DOT National Transportation Integrated Search

    1988-09-01

    This report describes the software that was developed to process test waveforms that were recorded by crash test data acquisition systems. The test waveforms are generated by an electronic waveform generator developed by MGA Research Corporation unde...

  9. Signal Waveform Generator Performance Test

    DOT National Transportation Integrated Search

    1992-01-01

    A signal waveform generator (SWG) was tested to determine its suitability for use in testing crash test data acquisition systems. The outputs of the SWG were recorded by a precise, high speed data acquisitions card plugged into the option card slot o...

  10. Study on data acquisition system based on reconfigurable cache technology

    NASA Astrophysics Data System (ADS)

    Zhang, Qinchuan; Li, Min; Jiang, Jun

    2018-03-01

    Waveform capture rate is one of the key features of digital acquisition systems, which represents the waveform processing capability of the system in a unit time. The higher the waveform capture rate is, the larger the chance to capture elusive events is and the more reliable the test result is. First, this paper analyzes the impact of several factors on the waveform capture rate of the system, then the novel technology based on reconfigurable cache is further proposed to optimize system architecture, and the simulation results show that the signal-to-noise ratio of signal, capacity, and structure of cache have significant effects on the waveform capture rate. Finally, the technology is demonstrated by the engineering practice, and the results show that the waveform capture rate of the system is improved substantially without significant increase of system's cost, and the technology proposed has a broad application prospect.

  11. Operator's Manual for Waveform Generator Model RPG-6236-A

    DOT National Transportation Integrated Search

    1988-02-01

    The waveform generator, described in this manual, provides a reference signal standard for use in testing the performance of crash test data acquisition systems. During the test, the waveform generator provides the signal inputs to the data acquisiti...

  12. Compression strategies for LiDAR waveform cube

    NASA Astrophysics Data System (ADS)

    Jóźków, Grzegorz; Toth, Charles; Quirk, Mihaela; Grejner-Brzezinska, Dorota

    2015-01-01

    Full-waveform LiDAR data (FWD) provide a wealth of information about the shape and materials of the surveyed areas. Unlike discrete data that retains only a few strong returns, FWD generally keeps the whole signal, at all times, regardless of the signal intensity. Hence, FWD will have an increasingly well-deserved role in mapping and beyond, in the much desired classification in the raw data format. Full-waveform systems currently perform only the recording of the waveform data at the acquisition stage; the return extraction is mostly deferred to post-processing. Although the full waveform preserves most of the details of the real data, it presents a serious practical challenge for a wide use: much larger datasets compared to those from the classical discrete return systems. Atop the need for more storage space, the acquisition speed of the FWD may also limit the pulse rate on most systems that cannot store data fast enough, and thus, reduces the perceived system performance. This work introduces a waveform cube model to compress waveforms in selected subsets of the cube, aimed at achieving decreased storage while maintaining the maximum pulse rate of FWD systems. In our experiments, the waveform cube is compressed using classical methods for 2D imagery that are further tested to assess the feasibility of the proposed solution. The spatial distribution of airborne waveform data is irregular; however, the manner of the FWD acquisition allows the organization of the waveforms in a regular 3D structure similar to familiar multi-component imagery, as those of hyper-spectral cubes or 3D volumetric tomography scans. This study presents the performance analysis of several lossy compression methods applied to the LiDAR waveform cube, including JPEG-1, JPEG-2000, and PCA-based techniques. Wide ranges of tests performed on real airborne datasets have demonstrated the benefits of the JPEG-2000 Standard where high compression rates incur fairly small data degradation. In addition, the JPEG-2000 Standard-compliant compression implementation can be fast and, thus, used in real-time systems, as compressed data sequences can be formed progressively during the waveform data collection. We conclude from our experiments that 2D image compression strategies are feasible and efficient approaches, thus they might be applied during the acquisition of the FWD sensors.

  13. An overview of the National Earthquake Information Center acquisition software system, Edge/Continuous Waveform Buffer

    USGS Publications Warehouse

    Patton, John M.; Ketchum, David C.; Guy, Michelle R.

    2015-11-02

    This document provides an overview of the capabilities, design, and use cases of the data acquisition and archiving subsystem at the U.S. Geological Survey National Earthquake Information Center. The Edge and Continuous Waveform Buffer software supports the National Earthquake Information Center’s worldwide earthquake monitoring mission in direct station data acquisition, data import, short- and long-term data archiving, data distribution, query services, and playback, among other capabilities. The software design and architecture can be configured to support acquisition and (or) archiving use cases. The software continues to be developed in order to expand the acquisition, storage, and distribution capabilities.

  14. Transducer selection and application in magnetoacoustic tomography with magnetic induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuqi; Wang, Jiawei; Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn

    2016-03-07

    As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharpmore » and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5–10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.« less

  15. Gas stream analysis using voltage-current time differential operation of electrochemical sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay

    A method for analysis of a gas stream. The method includes identifying an affected region of an affected waveform signal corresponding to at least one characteristic of the gas stream. The method also includes calculating a voltage-current time differential between the affected region of the affected waveform signal and a corresponding region of an original waveform signal. The affected region and the corresponding region of the waveform signals have a sensitivity specific to the at least one characteristic of the gas stream. The method also includes generating a value for the at least one characteristic of the gas stream basedmore » on the calculated voltage-current time differential.« less

  16. Automation software for a materials testing laboratory

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Bonacuse, Peter J.

    1990-01-01

    The software environment in use at the NASA-Lewis Research Center's High Temperature Fatigue and Structures Laboratory is reviewed. This software environment is aimed at supporting the tasks involved in performing materials behavior research. The features and capabilities of the approach to specifying a materials test include static and dynamic control mode switching, enabling multimode test control; dynamic alteration of the control waveform based upon events occurring in the response variables; precise control over the nature of both command waveform generation and data acquisition; and the nesting of waveform/data acquisition strategies so that material history dependencies may be explored. To eliminate repetitive tasks in the coventional research process, a communications network software system is established which provides file interchange and remote console capabilities.

  17. Circadian waveform bifurcation, but not phase-shifting, leaves cued fear memory intact.

    PubMed

    Harrison, E M; Carmack, S A; Block, C L; Sun, J; Anagnostaras, S G; Gorman, M R

    2017-02-01

    In mammals, memory acquisition and retrieval can be affected by time of day, as well as by manipulations of the light/dark cycle. Under bifurcation, a manipulation of circadian waveform, two subjective days and nights are experimentally induced in rodents. We examined the effect of bifurcation on Pavlovian fear conditioning, a prominent model of learning and memory. Here we demonstrate that bifurcation of the circadian waveform produces a small deficit in acquisition, but not on retrieval of fear memory. In contrast, repeated phase-shifting in a simulated jet-lag protocol impairs retrieval of memory for cued fear. The results have implications for those attempting to adjust to shift-work or other challenging schedules. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Enhancing coronary Wave Intensity Analysis robustness by high order central finite differences.

    PubMed

    Rivolo, Simone; Asrress, Kaleab N; Chiribiri, Amedeo; Sammut, Eva; Wesolowski, Roman; Bloch, Lars Ø; Grøndal, Anne K; Hønge, Jesper L; Kim, Won Y; Marber, Michael; Redwood, Simon; Nagel, Eike; Smith, Nicolas P; Lee, Jack

    2014-09-01

    Coronary Wave Intensity Analysis (cWIA) is a technique capable of separating the effects of proximal arterial haemodynamics from cardiac mechanics. Studies have identified WIA-derived indices that are closely correlated with several disease processes and predictive of functional recovery following myocardial infarction. The cWIA clinical application has, however, been limited by technical challenges including a lack of standardization across different studies and the derived indices' sensitivity to the processing parameters. Specifically, a critical step in WIA is the noise removal for evaluation of derivatives of the acquired signals, typically performed by applying a Savitzky-Golay filter, to reduce the high frequency acquisition noise. The impact of the filter parameter selection on cWIA output, and on the derived clinical metrics (integral areas and peaks of the major waves), is first analysed. The sensitivity analysis is performed either by using the filter as a differentiator to calculate the signals' time derivative or by applying the filter to smooth the ensemble-averaged waveforms. Furthermore, the power-spectrum of the ensemble-averaged waveforms contains little high-frequency components, which motivated us to propose an alternative approach to compute the time derivatives of the acquired waveforms using a central finite difference scheme. The cWIA output and consequently the derived clinical metrics are significantly affected by the filter parameters, irrespective of its use as a smoothing filter or a differentiator. The proposed approach is parameter-free and, when applied to the 10 in-vivo human datasets and the 50 in-vivo animal datasets, enhances the cWIA robustness by significantly reducing the outcome variability (by 60%).

  19. A Data Hiding Technique to Synchronously Embed Physiological Signals in H.264/AVC Encoded Video for Medicine Healthcare.

    PubMed

    Peña, Raul; Ávila, Alfonso; Muñoz, David; Lavariega, Juan

    2015-01-01

    The recognition of clinical manifestations in both video images and physiological-signal waveforms is an important aid to improve the safety and effectiveness in medical care. Physicians can rely on video-waveform (VW) observations to recognize difficult-to-spot signs and symptoms. The VW observations can also reduce the number of false positive incidents and expand the recognition coverage to abnormal health conditions. The synchronization between the video images and the physiological-signal waveforms is fundamental for the successful recognition of the clinical manifestations. The use of conventional equipment to synchronously acquire and display the video-waveform information involves complex tasks such as the video capture/compression, the acquisition/compression of each physiological signal, and the video-waveform synchronization based on timestamps. This paper introduces a data hiding technique capable of both enabling embedding channels and synchronously hiding samples of physiological signals into encoded video sequences. Our data hiding technique offers large data capacity and simplifies the complexity of the video-waveform acquisition and reproduction. The experimental results revealed successful embedding and full restoration of signal's samples. Our results also demonstrated a small distortion in the video objective quality, a small increment in bit-rate, and embedded cost savings of -2.6196% for high and medium motion video sequences.

  20. 3D frequency-domain ultrasound waveform tomography breast imaging

    NASA Astrophysics Data System (ADS)

    Sandhu, Gursharan Yash; West, Erik; Li, Cuiping; Roy, Olivier; Duric, Neb

    2017-03-01

    Frequency-domain ultrasound waveform tomography is a promising method for the visualization and characterization of breast disease. It has previously been shown to accurately reconstruct the sound speed distributions of breasts of varying densities. The reconstructed images show detailed morphological and quantitative information that can help differentiate different types of breast disease including benign and malignant lesions. The attenuation properties of an ex vivo phantom have also been assessed. However, the reconstruction algorithms assumed a 2D geometry while the actual data acquisition process was not. Although clinically useful sound speed images can be reconstructed assuming this mismatched geometry, artifacts from the reconstruction process exist within the reconstructed images. This is especially true for registration across different modalities and when the 2D assumption is violated. For example, this happens when a patient's breast is rapidly sloping. It is also true for attenuation imaging where energy lost or gained out of the plane gets transformed into artifacts within the image space. In this paper, we will briefly review ultrasound waveform tomography techniques, give motivation for pursuing the 3D method, discuss the 3D reconstruction algorithm, present the results of 3D forward modeling, show the mismatch that is induced by the violation of 3D modeling via numerical simulations, and present a 3D inversion of a numerical phantom.

  1. Multi-GHz Synchronous Waveform Acquisition With Real-Time Pattern-Matching Trigger Generation

    NASA Astrophysics Data System (ADS)

    Kleinfelder, Stuart A.; Chiang, Shiuh-hua Wood; Huang, Wei

    2013-10-01

    A transient waveform capture and digitization circuit with continuous synchronous 2-GHz sampling capability and real-time programmable windowed trigger generation has been fabricated and tested. Designed in 0.25 μm CMOS, the digitizer contains a circular array of 128 sample and hold circuits for continuous sample acquisition, and attains 2-GHz sample speeds with over 800-MHz analog bandwidth. Sample clock generation is synchronous, combining a phase-locked loop for high-speed clock generation and a high-speed fully-differential shift register for distributing clocks to all 128 sample circuits. Using two comparators per sample, the sampled voltage levels are compared against two reference levels, a high threshold and a low threshold, that are set via per-comparator digital to analog converters (DACs). The 256 per-comparator 5-bit DACs compensate for comparator offsets and allow for fine reference level adjustment. The comparator results are matched in 8-sample-wide windows against up to 72 programmable patterns in real time using an on-chip programmable logic array. Each 8-sample trigger window is equivalent to 4 ns of acquisition, overlapped sample by sample in a circular fashion through the entire 128-sample array. The 72 pattern-matching trigger criteria can be programmed to be any combination of High-above the high threshold, Low-below the low threshold, Middle-between the two thresholds, or “Don't Care”-any state is accepted. A trigger pattern of “HLHLHLHL,” for example, watches for a waveform that is oscillating at about 1 GHz given the 2-GHz sample rate. A trigger is flagged in under 20 ns if there is a match, after which sampling is stopped, and on-chip digitization can proceed via 128 parallel 10-bit converters, or off-chip conversion can proceed via an analog readout. The chip exceeds 11 bits of dynamic range, nets over 800-MHz -3-dB bandwidth in a realistic system, and jitter in the PLL-based sampling clock has been measured to be about 1 part per million, RMS.

  2. An Axial-Torsional, Thermomechanical Fatigue Testing Technique

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    1995-01-01

    A technique for conducting strain-controlled, thermomechanical, axial-torsional fatigue tests on thin-walled tubular specimens was developed. Three waveforms of loading, namely, the axial strain waveform, the engineering shear strain waveform, and the temperature waveform were required in these tests. The phasing relationships between the mechanical strain waveforms and the temperature and axial strain waveforms were used to define a set of four axial-torsional, thermomechanical fatigue (AT-TMF) tests. Real-time test control (3 channels) and data acquisition (a minimum of 7 channels) were performed with a software program written in C language and executed on a personal computer. The AT-TMF testing technique was used to investigate the axial-torsional thermomechanical fatigue behavior of a cobalt-base superalloy, Haynes 188. The maximum and minimum temperatures selected for the AT-TMF tests were 760 and 316 C, respectively. Details of the testing system, calibration of the dynamic temperature profile of the thin-walled tubular specimen, thermal strain compensation technique, and test control and data acquisition schemes, are reported. The isothermal, axial, torsional, and in- and out-of-phase axial-torsional fatigue behaviors of Haynes 188 at 316 and 760 C were characterized in previous investigations. The cyclic deformation and fatigue behaviors of Haynes 188 in AT-TMF tests are compared to the previously reported isothermal axial-torsional behavior of this superalloy at the maximum and minimum temperatures.

  3. Enhancing coronary Wave Intensity Analysis robustness by high order central finite differences

    PubMed Central

    Rivolo, Simone; Asrress, Kaleab N.; Chiribiri, Amedeo; Sammut, Eva; Wesolowski, Roman; Bloch, Lars Ø.; Grøndal, Anne K.; Hønge, Jesper L.; Kim, Won Y.; Marber, Michael; Redwood, Simon; Nagel, Eike; Smith, Nicolas P.; Lee, Jack

    2014-01-01

    Background Coronary Wave Intensity Analysis (cWIA) is a technique capable of separating the effects of proximal arterial haemodynamics from cardiac mechanics. Studies have identified WIA-derived indices that are closely correlated with several disease processes and predictive of functional recovery following myocardial infarction. The cWIA clinical application has, however, been limited by technical challenges including a lack of standardization across different studies and the derived indices' sensitivity to the processing parameters. Specifically, a critical step in WIA is the noise removal for evaluation of derivatives of the acquired signals, typically performed by applying a Savitzky–Golay filter, to reduce the high frequency acquisition noise. Methods The impact of the filter parameter selection on cWIA output, and on the derived clinical metrics (integral areas and peaks of the major waves), is first analysed. The sensitivity analysis is performed either by using the filter as a differentiator to calculate the signals' time derivative or by applying the filter to smooth the ensemble-averaged waveforms. Furthermore, the power-spectrum of the ensemble-averaged waveforms contains little high-frequency components, which motivated us to propose an alternative approach to compute the time derivatives of the acquired waveforms using a central finite difference scheme. Results and Conclusion The cWIA output and consequently the derived clinical metrics are significantly affected by the filter parameters, irrespective of its use as a smoothing filter or a differentiator. The proposed approach is parameter-free and, when applied to the 10 in-vivo human datasets and the 50 in-vivo animal datasets, enhances the cWIA robustness by significantly reducing the outcome variability (by 60%). PMID:25187852

  4. High-Voltage, Asymmetric-Waveform Generator

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise leave the fundamental timing signal unchanged. The buffered timing signal would be fed as input to the level shifter. The output of the level shifter would serve as a timing and control signal for the high-voltage switch, causing the switch to alternately be (1) opened, allowing the capacitive load to be charged from a high-voltage DC power supply; then (2) closed to discharge the capacitive load to ground. Hence, the output waveform would closely approximate a series of exponential charging and discharging curves (see Figure 2).

  5. Note: Fully integrated time-to-amplitude converter in Si-Ge technology.

    PubMed

    Crotti, M; Rech, I; Ghioni, M

    2010-10-01

    Over the past years an always growing interest has arisen about the measurement technique of time-correlated single photon counting TCSPC), since it allows the analysis of extremely fast and weak light waveforms with a picoseconds resolution. Consequently, many applications exploiting TCSPC have been developed in several fields such as medicine and chemistry. Moreover, the development of multianode PMT and of single photon avalanche diode arrays led to the realization of acquisition systems with several parallel channels to employ the TCSPC technique in even more applications. Since TCSPC basically consists of the measurement of the arrival time of a photon, the most important part of an acquisition chain is the time measurement block, which must have high resolution and low differential nonlinearity, and in order to realize multidimensional systems, it has to be integrated to reduce both cost and area. In this paper we present a fully integrated time-to-amplitude converter, built in 0.35 μm Si-Ge technology, characterized by a good time resolution (60 ps), low differential nonlinearity (better than 3% peak to peak), high counting rate (16 MHz), low and constant power dissipation (40 mW), and low area occupation (1.38×1.28 mm(2)).

  6. Electrochemical sensing using comparison of voltage-current time differential values during waveform generation and detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay

    2018-01-02

    A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms.more » The processor also outputs the determined value.« less

  7. Electrochemical sensing using voltage-current time differential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay

    2017-02-28

    A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms.more » The processor also outputs the determined value.« less

  8. Acquisition of L2 Japanese Geminates: Training with Waveform Displays

    ERIC Educational Resources Information Center

    Motohashi-Saigo, Miki; Hardison, Debra M.

    2009-01-01

    The value of waveform displays as visual feedback was explored in a training study involving perception and production of L2 Japanese by beginning-level L1 English learners. A pretest-posttest design compared auditory-visual (AV) and auditory-only (A-only) Web-based training. Stimuli were singleton and geminate /t,k,s/ followed by /a,u/ in two…

  9. Slope tomography based on eikonal solvers and the adjoint-state method

    NASA Astrophysics Data System (ADS)

    Tavakoli F., B.; Operto, S.; Ribodetti, A.; Virieux, J.

    2017-06-01

    Velocity macromodel building is a crucial step in the seismic imaging workflow as it provides the necessary background model for migration or full waveform inversion. In this study, we present a new formulation of stereotomography that can handle more efficiently long-offset acquisition, complex geological structures and large-scale data sets. Stereotomography is a slope tomographic method based upon a semi-automatic picking of local coherent events. Each local coherent event, characterized by its two-way traveltime and two slopes in common-shot and common-receiver gathers, is tied to a scatterer or a reflector segment in the subsurface. Ray tracing provides a natural forward engine to compute traveltime and slopes but can suffer from non-uniform ray sampling in presence of complex media and long-offset acquisitions. Moreover, most implementations of stereotomography explicitly build a sensitivity matrix, leading to the resolution of large systems of linear equations, which can be cumbersome when large-scale data sets are considered. Overcoming these issues comes with a new matrix-free formulation of stereotomography: a factored eikonal solver based on the fast sweeping method to compute first-arrival traveltimes and an adjoint-state formulation to compute the gradient of the misfit function. By solving eikonal equation from sources and receivers, we make the computational cost proportional to the number of sources and receivers while it is independent of picked events density in each shot and receiver gather. The model space involves the subsurface velocities and the scatterer coordinates, while the dips of the reflector segments are implicitly represented by the spatial support of the adjoint sources and are updated through the joint localization of nearby scatterers. We present an application on the complex Marmousi model for a towed-streamer acquisition and a realistic distribution of local events. We show that the estimated model, built without any prior knowledge of the velocities, provides a reliable initial model for frequency-domain FWI of long-offset data for a starting frequency of 4 Hz, although some artefacts at the reservoir level result from a deficit of illumination. This formulation of slope tomography provides a computationally efficient alternative to waveform inversion method such as reflection waveform inversion or differential-semblance optimization to build an initial model for pre-stack depth migration and conventional FWI.

  10. Computer Analysis of 400 HZ Aircraft Electrical Generator Test Data.

    DTIC Science & Technology

    1980-06-01

    Data Acquisition System. ............ 6 3 Voltage Waveform with Data Points. ....... 19 14 Zero Crossover Interpolation. ........ 20 5 Numerical...difference between successive positive-sloped zero crossovers of the waveform. However, the exact time of zero crossover is not known. This is because...data sampling and the generator output are not synchronized. This unsynchronization means that data points which correspond with an exact zero crossover

  11. Southern California Seismic Network: New Design and Implementation of Redundant and Reliable Real-time Data Acquisition Systems

    NASA Astrophysics Data System (ADS)

    Saleh, T.; Rico, H.; Solanki, K.; Hauksson, E.; Friberg, P.

    2005-12-01

    The Southern California Seismic Network (SCSN) handles more than 2500 high-data rate channels from more than 380 seismic stations distributed across southern California. These data are imported real-time from dataloggers, earthworm hubs, and partner networks. The SCSN also exports data to eight different partner networks. Both the imported and exported data are critical for emergency response and scientific research. Previous data acquisition systems were complex and difficult to operate, because they grew in an ad hoc fashion to meet the increasing needs for distributing real-time waveform data. To maximize reliability and redundancy, we apply best practices methods from computer science for implementing the software and hardware configurations for import, export, and acquisition of real-time seismic data. Our approach makes use of failover software designs, methods for dividing labor diligently amongst the network nodes, and state of the art networking redundancy technologies. To facilitate maintenance and daily operations we seek to provide some separation between major functions such as data import, export, acquisition, archiving, real-time processing, and alarming. As an example, we make waveform import and export functions independent by operating them on separate servers. Similarly, two independent servers provide waveform export, allowing data recipients to implement their own redundancy. The data import is handled differently by using one primary server and a live backup server. These data import servers, run fail-over software that allows automatic role switching in case of failure from primary to shadow. Similar to the classic earthworm design, all the acquired waveform data are broadcast onto a private network, which allows multiple machines to acquire and process the data. As we separate data import and export away from acquisition, we are also working on new approaches to separate real-time processing and rapid reliable archiving of real-time data. Further, improved network security is an integral part of the new design. Redundant firewalls will provide secure data imports, exports, and acquisition as well as DMZ zones for web servers and other publicly available servers. We will present the detailed design of this new configuration that is currently being implemented by the SCSN at Caltech. The design principals are general enough to be of use to most regional seismic networks.

  12. Data Acquisition with GPUs: The DAQ for the Muon $g$-$2$ Experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohn, W.

    Graphical Processing Units (GPUs) have recently become a valuable computing tool for the acquisition of data at high rates and for a relatively low cost. The devices work by parallelizing the code into thousands of threads, each executing a simple process, such as identifying pulses from a waveform digitizer. The CUDA programming library can be used to effectively write code to parallelize such tasks on Nvidia GPUs, providing a significant upgrade in performance over CPU based acquisition systems. The muonmore » $g$-$2$ experiment at Fermilab is heavily relying on GPUs to process its data. The data acquisition system for this experiment must have the ability to create deadtime-free records from 700 $$\\mu$$s muon spills at a raw data rate 18 GB per second. Data will be collected using 1296 channels of $$\\mu$$TCA-based 800 MSPS, 12 bit waveform digitizers and processed in a layered array of networked commodity processors with 24 GPUs working in parallel to perform a fast recording of the muon decays during the spill. The described data acquisition system is currently being constructed, and will be fully operational before the start of the experiment in 2017.« less

  13. Temperature analysis with voltage-current time differential operation of electrochemical sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay

    A method for temperature analysis of a gas stream. The method includes identifying a temperature parameter of an affected waveform signal. The method also includes calculating a change in the temperature parameter by comparing the affected waveform signal with an original waveform signal. The method also includes generating a value from the calculated change which corresponds to the temperature of the gas stream.

  14. A two-channel action-potential generator for testing neurophysiologic data acquisition/analysis systems.

    PubMed

    Lisiecki, R S; Voigt, H F

    1995-08-01

    A 2-channel action-potential generator system was designed for use in testing neurophysiologic data acquisition/analysis systems. The system consists of a personal computer controlling an external hardware unit. This system is capable of generating 2 channels of simulated action potential (AP) waveshapes. The AP waveforms are generated from the linear combination of 2 principal-component template functions. Each channel generates randomly occurring APs with a specified rate ranging from 1 to 200 events per second. The 2 trains may be independent of one another or the second channel may be made to be excited or inhibited by the events from the first channel with user-specified probabilities. A third internal channel may be made to excite or inhibit events in both of the 2 output channels with user-specified rate parameters and probabilities. The system produces voltage waveforms that may be used to test neurophysiologic data acquisition systems for recording from 2 spike trains simultaneously and for testing multispike-train analysis (e.g., cross-correlation) software.

  15. Real-time digital signal recovery for a multi-pole low-pass transfer function system.

    PubMed

    Lee, Jhinhwan

    2017-08-01

    In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.

  16. Spike detection, characterization, and discrimination using feature analysis software written in LabVIEW.

    PubMed

    Stewart, C M; Newlands, S D; Perachio, A A

    2004-12-01

    Rapid and accurate discrimination of single units from extracellular recordings is a fundamental process for the analysis and interpretation of electrophysiological recordings. We present an algorithm that performs detection, characterization, discrimination, and analysis of action potentials from extracellular recording sessions. The program was entirely written in LabVIEW (National Instruments), and requires no external hardware devices or a priori information about action potential shapes. Waveform events are detected by scanning the digital record for voltages that exceed a user-adjustable trigger. Detected events are characterized to determine nine different time and voltage levels for each event. Various algebraic combinations of these waveform features are used as axis choices for 2-D Cartesian plots of events. The user selects axis choices that generate distinct clusters. Multiple clusters may be defined as action potentials by manually generating boundaries of arbitrary shape. Events defined as action potentials are validated by visual inspection of overlain waveforms. Stimulus-response relationships may be identified by selecting any recorded channel for comparison to continuous and average cycle histograms of binned unit data. The algorithm includes novel aspects of feature analysis and acquisition, including higher acquisition rates for electrophysiological data compared to other channels. The program confirms that electrophysiological data may be discriminated with high-speed and efficiency using algebraic combinations of waveform features derived from high-speed digital records.

  17. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    DOEpatents

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  18. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition.

    PubMed

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Wyrwicz, Alice M; Li, Limin; Kao, C-M

    2015-06-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 Tesla small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2 × 8 LYSO scintillators (5.0 × 5.0 × 10.0 mm 3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner.

  19. A novel PMT test system based on waveform sampling

    NASA Astrophysics Data System (ADS)

    Yin, S.; Ma, L.; Ning, Z.; Qian, S.; Wang, Y.; Jiang, X.; Wang, Z.; Yu, B.; Gao, F.; Zhu, Y.; Wang, Z.

    2018-01-01

    Comparing with the traditional test system based on a QDC and TDC and scaler, a test system based on waveform sampling is constructed for signal sampling of the 8"R5912 and the 20"R12860 Hamamatsu PMT in different energy states from single to multiple photoelectrons. In order to achieve high throughput and to reduce the dead time in data processing, the data acquisition software based on LabVIEW is developed and runs with a parallel mechanism. The analysis algorithm is realized in LabVIEW and the spectra of charge, amplitude, signal width and rising time are analyzed offline. The results from Charge-to-Digital Converter, Time-to-Digital Converter and waveform sampling are discussed in detailed comparison.

  20. ALLTEM System User’s Manual, Munitions Management Projects, ALLTEM Multi-Axis Electromagnetic Induction System Demonstration and Validation, Version 1.0

    DTIC Science & Technology

    2012-03-05

    Alarm button. Under the GPS frame are two smaller frames. On the left is a frame with buttons labeled Tractor Guidance and Acquisition Error... GPS ) and the Attitude Heading Reference System (AHRS) data. 5.2 Using the Data Acquisition Simulator Software The simulator and a practice set... acquisition for one polarity of the TX (33ms dead band for relay switching + 33 ms of waveforms). When the GPS is being used this is usually “1”, but may be

  1. A comparison of second order derivative based models for time domain reflectometry wave form analysis

    USDA-ARS?s Scientific Manuscript database

    Adaptive waveform interpretation with Gaussian filtering (AWIGF) and second order bounded mean oscillation operator Z square 2(u,t,r) are TDR analysis methods based on second order differentiation. AWIGF was originally designed for relatively long probe (greater than 150 mm) TDR waveforms, while Z s...

  2. Single unit activity in the medial prefrontal cortex during Pavlovian heart rate conditioning: Effects of peripheral autonomic blockade.

    PubMed

    Powell, D A; Ginsberg, Jay P

    2005-11-01

    Electrical activity was recorded from single neurons in the medial prefrontal cortex of rabbits during differential Pavlovian heart rate (HR) conditioning. A heterogeneous population of cells were found, some of which showed CS-evoked increases and others CS-evoked decreases in discharge, while some cells were biphasic. A subset of cells also showed trial-related changes in discharge that were related to acquisition of the HR discrimination between the reinforced CS+ and non-reinforced CS-. Administration of the peripheral cholinergic antagonist, methylscopolamine, and the andrenergic antagonist, atenolol, either increased or decreased maintained baseline activity of many cells, but had little or no effect on the CS-evoked activity of these cells. Waveform changes also did not result from administration of these drugs. This finding suggests that CS-evoked mPFC activity is not being driven by cardiac afferent input to CNS cardiac control centers. Previous studies have shown that ibotenic acid lesions of this area greatly decreases the magnitude of decelerative heart rate conditioned responses; the latter finding, plus the results of the present study, suggest that processing of CS/US contingencies by the prefrontal cortex contributes to the acquisition of autonomic changes during Pavlovian conditioning.

  3. The Flash ADC system and PMT waveform reconstruction for the Daya Bay experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yongbo; Chang, Jinfan; Cheng, Yaping; Chen, Zhang; Hu, Jun; Ji, Xiaolu; Li, Fei; Li, Jin; Li, Qiuju; Qian, Xin; Jetter, Soeren; Wang, Wei; Wang, Zheng; Xu, Yu; Yu, Zeyuan

    2018-07-01

    To better understand the energy response of the Antineutrino Detector (AD), the Daya Bay Reactor Neutrino Experiment installed a full Flash ADC readout system on one AD that allowed for simultaneous data taking with the current readout system. This paper presents the design, data acquisition, and simulation of the Flash ADC system, and focuses on the PMT waveform reconstruction algorithms. For liquid scintillator calorimetry, the most critical requirement to waveform reconstruction is linearity. Several common reconstruction methods were tested but the linearity performance was not satisfactory. A new method based on the deconvolution technique was developed with 1% residual non-linearity, which fulfills the requirement. The performance was validated with both data and Monte Carlo (MC) simulations, and 1% consistency between them has been achieved.

  4. Fluorescence lifetime plate reader: Resolution and precision meet high-throughput

    PubMed Central

    Petersen, Karl J.; Peterson, Kurt C.; Muretta, Joseph M.; Higgins, Sutton E.; Gillispie, Gregory D.; Thomas, David D.

    2014-01-01

    We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5–10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications. PMID:25430092

  5. Characteristic systolic waveform of left ventricular longitudinal strain rate in patients with hypertrophic cardiomyopathy.

    PubMed

    Okada, Kazunori; Kaga, Sanae; Mikami, Taisei; Masauzi, Nobuo; Abe, Ayumu; Nakabachi, Masahiro; Yokoyama, Shinobu; Nishino, Hisao; Ichikawa, Ayako; Nishida, Mutsumi; Murai, Daisuke; Hayashi, Taichi; Shimizu, Chikara; Iwano, Hiroyuki; Yamada, Satoshi; Tsutsui, Hiroyuki

    2017-05-01

    We analyzed the waveform of systolic strain and strain-rate curves to find a characteristic left ventricular (LV) myocardial contraction pattern in patients with hypertrophic cardiomyopathy (HCM), and evaluated the utility of these parameters for the differentiation of HCM and LV hypertrophy secondary to hypertension (HT). From global strain and strain-rate curves in the longitudinal and circumferential directions, the time from mitral valve closure to the peak strains (T-LS and T-CS, respectively) and the peak systolic strain rates (T-LSSR and T-CSSR, respectively) were measured in 34 patients with HCM, 30 patients with HT, and 25 control subjects. The systolic strain-rate waveform was classified into 3 patterns ("V", "W", and "√" pattern). In the HCM group, T-LS was prolonged, but T-LSSR was shortened; consequently, T-LSSR/T-LS ratio was distinctly lower than in the HT and control groups. The "√" pattern of longitudinal strain-rate waveform was more frequently seen in the HCM group (74 %) than in the control (4 %) and HT (20 %) groups. Similar but less distinct results were obtained in the circumferential direction. To differentiate HCM from HT, the sensitivity and specificity of the T-LSSR/T-LS ratio <0.34 and the "√"-shaped longitudinal strain-rate waveform were 85 and 63 %, and 74 and 80 %, respectively. In conclusion, in patients with HCM, a reduced T-LSSR/T-LS ratio and a characteristic "√"-shaped waveform of LV systolic strain rate was seen, especially in the longitudinal direction. The timing and waveform analyses of systolic strain rate may be useful to distinguish between HCM and HT.

  6. Alternate Waveforms for a Low-Cost Civil Global Positioning System Receiver.

    DTIC Science & Technology

    1980-06-01

    implementation. 17 Is. D i* on. S’ *. l7Gfo ai" ositioning System Navigation Receiver DOCUMENT IS AVAILASLe TO THE PUSLIC THROUGH THE NATIONAL TECHNICALRanging...be included were ranging performance, data hand- ling capability, time-to-first fix, acquisition and re-acquisition capability, and sensitivity to...seconds). This receiver would exhibit less sensitivity to multipath and to signal dropouts because it would continuously track all satellites in view and

  7. Circuit for detecting initial systole and dicrotic notch. [for monitoring arterial pressure

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr. (Inventor)

    1974-01-01

    Circuitry is disclosed for processing an arterial pressure waveform to produce during any one cycle a pulse corresponding to the initial systole and a pulse corresponding to the dicrotic notch. In a first channel, an electrical analog of the arterial pressure waveform is filtered and then compared to the original waveform to produce an initial systole signal. In a second channel, the analog is differentiated, filtered, and fed through a gate controlled by pulses from the first channel to produce an electrical pulse corresponding to the dicrotic notch.

  8. Towards seismic waveform inversion of long-offset Ocean-Bottom Seismic data for deep crustal imaging offshore Western Australia

    NASA Astrophysics Data System (ADS)

    Monnier, S.; Lumley, D. E.; Kamei, R.; Goncharov, A.; Shragge, J. C.

    2016-12-01

    Ocean Bottom Seismic datasets have become increasingly used in recent years to develop high-resolution, wavelength-scale P-wave velocity models of the lithosphere from waveform inversion, due to their recording of long-offset transmitted phases. New OBS surveys evolve towards novel acquisition geometries involving longer offsets (several hundreds of km), broader frequency content (1-100 Hz), while receiver sampling often remains sparse (several km). Therefore, it is critical to assess the effects of such geometries on the eventual success and resolution of waveform inversion velocity models. In this study, we investigate the feasibility of waveform inversion on the Bart 2D OBS profile acquired offshore Western Australia, to investigate regional crustal and Moho structures. The dataset features 14 broadband seismometers (0.01-100 Hz) from AuScope's national OBS fleet, offsets in excess of 280 km, and a sparse receiver sampling (18 km). We perform our analysis in four stages: (1) field data analysis, (2) 2D P-wave velocity model building, synthetic data (3) modelling, and (4) waveform inversion. Data exploration shows high-quality active-source signal down to 2Hz, and usable first arrivals to offsets greater than 100 km. The background velocity model is constructed by combining crustal and Moho information in continental reference models (e.g., AuSREM, AusMoho). These low-resolution studies suggest a crustal thickness of 20-25 km along our seismic line and constitute a starting point for synthetic modelling and inversion. We perform synthetic 2D time-domain modelling to: (1) evaluate the misfit between synthetic and field data within the usable frequency band (2-10 Hz); (2) validate our velocity model; and (3) observe the effects of sparse OBS interval on data quality. Finally, we apply 2D acoustic frequency-domain waveform inversion to the synthetic data to generate velocity model updates. The inverted model is compared to the reference model to investigate the improved crustal resolution and Moho boundary delineation that could be realized using waveform inversion, and to evaluate the effects of the acquisition parameters. The inversion strategies developed through the synthetic tests will help the subsequent inversion of sparse, long-offset OBS field data.

  9. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    PubMed

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  10. Radial artery pulse waveform analysis based on curve fitting using discrete Fourier series.

    PubMed

    Jiang, Zhixing; Zhang, David; Lu, Guangming

    2018-04-19

    Radial artery pulse diagnosis has been playing an important role in traditional Chinese medicine (TCM). For its non-invasion and convenience, the pulse diagnosis has great significance in diseases analysis of modern medicine. The practitioners sense the pulse waveforms in patients' wrist to make diagnoses based on their non-objective personal experience. With the researches of pulse acquisition platforms and computerized analysis methods, the objective study on pulse diagnosis can help the TCM to keep up with the development of modern medicine. In this paper, we propose a new method to extract feature from pulse waveform based on discrete Fourier series (DFS). It regards the waveform as one kind of signal that consists of a series of sub-components represented by sine and cosine (SC) signals with different frequencies and amplitudes. After the pulse signals are collected and preprocessed, we fit the average waveform for each sample using discrete Fourier series by least squares. The feature vector is comprised by the coefficients of discrete Fourier series function. Compared with the fitting method using Gaussian mixture function, the fitting errors of proposed method are smaller, which indicate that our method can represent the original signal better. The classification performance of proposed feature is superior to the other features extracted from waveform, liking auto-regression model and Gaussian mixture model. The coefficients of optimized DFS function, who is used to fit the arterial pressure waveforms, can obtain better performance in modeling the waveforms and holds more potential information for distinguishing different psychological states. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A Software Platform for Post-Processing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Martin, Richard E.; Seebo, Jeff P.; Trinh, Long B.; Walker, James L.; Winfree, William P.

    2007-01-01

    Ultrasonic, microwave, and terahertz nondestructive evaluation imaging systems generally require the acquisition of waveforms at each scan point to form an image. For such systems, signal and image processing methods are commonly needed to extract information from the waves and improve resolution of, and highlight, defects in the image. Since some similarity exists for all waveform-based NDE methods, it would seem a common software platform containing multiple signal and image processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. This presentation describes NASA Glenn Research Center's approach in developing a common software platform for processing waveform-based NDE signals and images. This platform is currently in use at NASA Glenn and at Lockheed Martin Michoud Assembly Facility for processing of pulsed terahertz and ultrasonic data. Highlights of the software operation will be given. A case study will be shown for use with terahertz data. The authors also request scientists and engineers who are interested in sharing customized signal and image processing algorithms to contribute to this effort by letting the authors code up and include these algorithms in future releases.

  12. Fast Data Acquisition For Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.; Bechtel, R. D.

    1988-01-01

    New equipment has speed and capacity to process time-of-flight data. System relies on fast, compact waveform digitizer with 32-k memory coupled to personal computer. With digitizer, system captures all mass peaks on each 25- to 35-microseconds cycle of spectrometer.

  13. Optimum Waveforms for Differential Ion Mobility Spectrometry (FAIMS)

    PubMed Central

    Shvartsburg, Alexandre A.; Smith, Richard D.

    2009-01-01

    Differential mobility spectrometry or field asymmetric waveform ion mobility spectrometry (FAIMS) is a new tool for separation and identification of gas-phase ions, particularly in conjunction with mass-spectrometry. In FAIMS, ions are filtered by the difference between mobilities in gases (K) at high and low electric field intensity (E) using asymmetric waveforms. An infinite number of possible waveform profiles make maximizing the performance within engineering constraints a major issue for FAIMS technology refinement. Earlier optimizations assumed the non-constant component of mobility to scale as E2, producing the same result for all ions. Here we show that the optimum profiles are defined by the full series expansion of K(E) that includes terms beyond the 1st that is proportional to E2. For many ion/gas pairs, the first two terms have different signs, and the optimum profiles at sufficiently high E in FAIMS may differ substantially from those previously reported, improving the resolving power by up to 2.2 times. This situation arises for some ions in all FAIMS systems, but becomes more common in recent miniaturized devices that employ higher E. With realistic K(E) dependences, the maximum waveform amplitude is not necessarily optimum and reducing it by up to ∼20 – 30% is beneficial in some cases. The present findings are particularly relevant to targeted analyses where separation depends on the difference between K(E) functions for specific ions. PMID:18585054

  14. A new scalable modular data acquisition system for SPECT (PET)

    NASA Astrophysics Data System (ADS)

    Stenstrom, P.; Rillbert, A.; Bergquist, M.; Habte, F.; Bohm, C.; Larsson, S. A.

    1998-06-01

    Describes a modular decentralized data acquisition system that continuously samples shaped PMT pulses from a SPECT detector. The pulse waveform data are used by signal processors to accurately reconstruct amplitude and time for each scintillation event. Data acquisition for a PMT channel is triggered in two alternative ways, either when its own signal exceeds a selected digital threshold, or when it receives a trigger pulse from one of its neighboring PMTs. The triggered region is restricted to seven, thirteen or nineteen neighboring PMT channels. Each acquisition module supports three PMT channels and connects to all other modules and a reconstruction computer via Firewire to cover the 72 channels in the Stockholm University/Karolinska Hospital cylindrical SPECT camera.

  15. Simulation of Transient Response of Ir-TES for Position-Sensitive TES with Waveform Domain Multiplexing

    NASA Astrophysics Data System (ADS)

    Minamikawa, Y.; Sato, H.; Mori, F.; Damayanthi, R. M. T.; Takahashi, H.; Ohno, M.

    2008-04-01

    We are developing a new x-ray microcalorimeter based on a superconducting transition edge sensor (TES) as an imaging sensor. Our measurement shows unique waveforms which we consider as an expression of thermal nonuniformity of TES films. This arises from the different thermal responses, so that response signal shapes would vary according to the position of the incident x-ray. This position dependency deteriorate the measured energy resolution, but with appropriate waveform analysis, this would be useful for imaging device. For more inspection, we have developed a simulation code which enables a dynamic simulation to obtain a transient response of the TES by finite differential method. Temperature and electric current distributions are calculated. As a result, we successfully obtained waveform signals. The calculated signal waveforms have similar characteristics to the measured signals. This simulation visualized the transition state of the device and will help to design better detector.

  16. A Study on the Data Compression Technology-Based Intelligent Data Acquisition (IDAQ) System for Structural Health Monitoring of Civil Structures

    PubMed Central

    Jeon, Joonryong

    2017-01-01

    In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size. PMID:28704945

  17. A Study on the Data Compression Technology-Based Intelligent Data Acquisition (IDAQ) System for Structural Health Monitoring of Civil Structures.

    PubMed

    Heo, Gwanghee; Jeon, Joonryong

    2017-07-12

    In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size.

  18. Design of the biosonar simulator for dolphin's clicks waveform reproduction

    NASA Astrophysics Data System (ADS)

    Ishii, Ken; Akamatsu, Tomonari; Hatakeyama, Yoshimi

    1992-03-01

    The emitted clicks of Dall's porpoises consist of a pulse train of burst signals with an ultrasonic carrier frequency. The authors have designed a biosonar simulator to reproduce the waveforms associated with a dolphin's clicks underwater. The total reproduction system consists of a click signal acquisition block, a waveform analysis block, a memory unit, a click simulator, and a underwater, ultrasonic wave transmitter. In operation, data stored in an EPROM (Erasable Programmable Read Only Memory) are read out sequentially by a fast clock and converted to analog output signals. Then an ultrasonic power amplifier reproduces these signals through a transmitter. The click signal replaying block is referred to as the BSS (Biosonar Simulator). This is what simulates the clicks. The details of the BSS are described in this report. A unit waveform is defined. The waveform is divided into a burst period and a waiting period. Clicks are a sequence based on a unit waveform, and digital data are sequentially read out from an EPROM of waveform data. The basic parameters of the BSS are as follows: (1) reading clock, 100 ns to 25.4 microseconds; (2) number of reading clock, 34 to 1024 times; (3) counter clock in a waiting period, 100 ns to 25.4 microseconds; (4) number of counter clock, zero to 16,777,215 times; (5) number of burst/waiting repetition cycle, one to 128 times; and (6) transmission level adjustment by a programmable attenuator, zero to 86.5 dB. These basic functions enable the BSS to replay clicks of Dall's porpoise precisely.

  19. Frequency Domain Full-Waveform Inversion in Imaging Thrust Related Features

    NASA Astrophysics Data System (ADS)

    Jaiswal, P.; Zelt, C. A.

    2010-12-01

    Seismic acquisition in rough terrain such as mountain belts suffers from problems related to near-surface conditions such as statics, inconsistent energy penetration, rapid decay of signal, and imperfect receiver coupling. Moreover in the presence of weakly compacted soil, strong ground roll may obscure the reflection arrivals at near offsets further diminishing the scope of estimating a reliable near surface image though conventional processing. Traveltime and waveform inversion not only overcome the simplistic assumptions inherent in conventional processing such as hyperbolic moveout and convolution model, but also use parts of the seismic coda, such as the direct arrival and refractions, that are discarded in the latter. Traveltime and waveform inversion are model-based methods that honour the physics of wave propagation. Given the right set of preconditioned data and starting model, waveform inversion in particular has been realized as a powerful tool for velocity model building. This paper examines two case studies on waveform inversion using real data from the Naga Thrust Belt in the Northeast India. Waveform inversion in this paper is performed in the frequency domain and is multiscale in nature i.e., the inversion progressively ascends from the lower to the higher end of the frequency spectra increasing the wavenumber content of the recovered model. Since the real data are band limited, the success of waveform inversion depends on how well the starting model can account for the missing low wavenumbers. In this paper it is observed that the required starting model can be prepared using the regularized inversion of direct and reflected arrival times.

  20. Permittivity and conductivity parameter estimations using full waveform inversion

    NASA Astrophysics Data System (ADS)

    Serrano, Jheyston O.; Ramirez, Ana B.; Abreo, Sergio A.; Sadler, Brian M.

    2018-04-01

    Full waveform inversion of Ground Penetrating Radar (GPR) data is a promising strategy to estimate quantitative characteristics of the subsurface such as permittivity and conductivity. In this paper, we propose a methodology that uses Full Waveform Inversion (FWI) in time domain of 2D GPR data to obtain highly resolved images of the permittivity and conductivity parameters of the subsurface. FWI is an iterative method that requires a cost function to measure the misfit between observed and modeled data, a wave propagator to compute the modeled data and an initial velocity model that is updated at each iteration until an acceptable decrease of the cost function is reached. The use of FWI with GPR are expensive computationally because it is based on the computation of the electromagnetic full wave propagation. Also, the commercially available acquisition systems use only one transmitter and one receiver antenna at zero offset, requiring a large number of shots to scan a single line.

  1. Pure phase encode magnetic field gradient monitor.

    PubMed

    Han, Hui; MacGregor, Rodney P; Balcom, Bruce J

    2009-12-01

    Numerous methods have been developed to measure MRI gradient waveforms and k-space trajectories. The most promising new strategy appears to be magnetic field monitoring with RF microprobes. Multiple RF microprobes may record the magnetic field evolution associated with a wide variety of imaging pulse sequences. The method involves exciting one or more test samples and measuring the time evolution of magnetization through the FIDs. Two critical problems remain. The gradient waveform duration is limited by the sample T(2)*, while the k-space maxima are limited by gradient dephasing. The method presented is based on pure phase encode FIDs and solves the above two problems in addition to permitting high strength gradient measurement. A small doped water phantom (1-3 mm droplet, T(1), T(2), T(2)* < 100 micros) within a microprobe is excited by a series of closely spaced broadband RF pulses each followed by FID single point acquisition. Two trial gradient waveforms have been chosen to illustrate the technique, neither of which could be measured by the conventional RF microprobe measurement. The first is an extended duration gradient waveform while the other illustrates the new method's ability to measure gradient waveforms with large net area and/or high amplitude. The new method is a point monitor with simple implementation and low cost hardware requirements.

  2. Ultrasonic Bolt Gage

    NASA Technical Reports Server (NTRS)

    Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)

    1999-01-01

    An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.

  3. Quantitative flow and velocity measurements of pulsatile blood flow with 4D-DSA

    NASA Astrophysics Data System (ADS)

    Shaughnessy, Gabe; Hoffman, Carson; Schafer, Sebastian; Mistretta, Charles A.; Strother, Charles M.

    2017-03-01

    Time resolved 3D angiographic data from 4D DSA provides a unique environment to explore physical properties of blood flow. Utilizing the pulsatility of the contrast waveform, the Fourier components can be used to track the waveform motion through vessels. Areas of strong pulsatility are determined through the FFT power spectrum. Using this method, we find an accuracy from 4D-DSA flow measurements within 7.6% and 6.8% RMSE of ICA PCVIPR and phantom flow probe validation measurements, respectively. The availability of velocity and flow information with fast acquisition could provide a more quantitative approach to treatment planning and evaluation in interventional radiology.

  4. Optimal convolution SOR acceleration of waveform relaxation with application to semiconductor device simulation

    NASA Technical Reports Server (NTRS)

    Reichelt, Mark

    1993-01-01

    In this paper we describe a novel generalized SOR (successive overrelaxation) algorithm for accelerating the convergence of the dynamic iteration method known as waveform relaxation. A new convolution SOR algorithm is presented, along with a theorem for determining the optimal convolution SOR parameter. Both analytic and experimental results are given to demonstrate that the convergence of the convolution SOR algorithm is substantially faster than that of the more obvious frequency-independent waveform SOR algorithm. Finally, to demonstrate the general applicability of this new method, it is used to solve the differential-algebraic system generated by spatial discretization of the time-dependent semiconductor device equations.

  5. Predictive lethal proarrhythmic risk evaluation using a closed-loop-circuit cell network with human induced pluripotent stem cells derived cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Hattori, Akihiro; Terazono, Hideyuki; Kim, Hyonchol; Odaka, Masao; Sugio, Yoshihiro; Yasuda, Kenji

    2016-06-01

    For the prediction of lethal arrhythmia occurrence caused by abnormality of cell-to-cell conduction, we have developed a next-generation in vitro cell-to-cell conduction assay, i.e., a quasi in vivo assay, in which the change in spatial cell-to-cell conduction is quantitatively evaluated from the change in waveforms of the convoluted electrophysiological signals from lined-up cardiomyocytes on a single closed loop of a microelectrode of 1 mm diameter and 20 µm width in a cultivation chip. To evaluate the importance of the closed-loop arrangement of cardiomyocytes for prediction, we compared the change in waveforms of convoluted signals of the responses in the closed-loop circuit arrangement with that of the response of cardiomyocyte clusters using a typical human ether a go-go related gene (hERG) ion channel blocker, E-4031. The results showed that (1) waveform prolongation and fluctuation both in the closed loops and clusters increased depending on the E-4031 concentration increase. However, (2) only the waveform signals in closed loops showed an apparent temporal change in waveforms from ventricular tachycardia (VT) to ventricular fibrillation (VF), which is similar to the most typical cell-to-cell conductance abnormality. The results indicated the usefulness of convoluted waveform signals of a closed-loop cell network for acquiring reproducible results acquisition and more detailed temporal information on cell-to-cell conduction.

  6. Microfluidic perfusion system for automated delivery of temporal gradients to islets of Langerhans.

    PubMed

    Zhang, Xinyu; Roper, Michael G

    2009-02-01

    A microfluidic perfusion system was developed for automated delivery of stimulant waveforms to cells within the device. The 3-layer glass/polymer device contained two pneumatic pumps, a 12 cm mixing channel, and a 0.2 microL cell chamber. By altering the flow rate ratio of the pumps, a series of output concentrations could be produced while a constant 1.43 +/- 0.07 microL/min flow rate was maintained. The output concentrations could be changed in time producing step gradients and other waveforms, such as sine and triangle waves, at different amplitudes and frequencies. Waveforms were analyzed by comparing the amplitude of output waveforms to the amplitude of theoretical waveforms. Below a frequency of 0.0098 Hz, the output waveforms had less than 20% difference than input waveforms. To reduce backflow of solutions into the pumps, the operational sequence of the valving program was modified, as well as differential etching of the valve seat depths. These modifications reduced backflow to the point that it was not detected. Gradients in glucose levels were applied in this work to stimulate single islets of Langerhans. Glucose gradients between 3 and 20 mM brought clear and intense oscillations of intracellular [Ca(2+)] indicating the system will be useful in future studies of cellular physiology.

  7. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature

    NASA Astrophysics Data System (ADS)

    Dai, Guohao; Kaazempur-Mofrad, Mohammad R.; Natarajan, Sripriya; Zhang, Yuzhi; Vaughn, Saran; Blackman, Brett R.; Kamm, Roger D.; García-Cardeña, Guillermo; Gimbrone, Michael A., Jr.

    2004-10-01

    Atherosclerotic lesion localization to regions of disturbed flow within certain arterial geometries, in humans and experimental animals, suggests an important role for local hemodynamic forces in atherogenesis. To explore how endothelial cells (EC) acquire functional/dysfunctional phenotypes in response to vascular region-specific flow patterns, we have used an in vitro dynamic flow system to accurately reproduce arterial shear stress waveforms on cultured human EC and have examined the effects on EC gene expression by using a high-throughput transcriptional profiling approach. The flow patterns in the carotid artery bifurcations of several normal human subjects were characterized by using 3D flow analysis based on actual vascular geometries and blood flow profiles. Two prototypic arterial waveforms, "athero-prone" and "athero-protective," were defined as representative of the wall shear stresses in two distinct regions of the carotid artery (carotid sinus and distal internal carotid artery) that are typically "susceptible" or "resistant," respectively, to atherosclerotic lesion development. These two waveforms were applied to cultured EC, and cDNA microarrays were used to analyze the differential patterns of EC gene expression. In addition, the differential effects of athero-prone vs. athero-protective waveforms were further characterized on several parameters of EC structure and function, including actin cytoskeletal organization, expression and localization of junctional proteins, activation of the NF-B transcriptional pathway, and expression of proinflammatory cytokines and adhesion molecules. These global gene expression patterns and functional data reveal a distinct phenotypic modulation in response to the wall shear stresses present in atherosclerosis-susceptible vs. atherosclerosis-resistant human arterial geometries.

  8. An overview of DANCE: a 4II BaF[2] detector for neutron capture measurements at LANSCE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, J. L.

    2004-01-01

    The Detector for Advanced Neutron Capture experiments (DANCE) is a 162-element, 4{pi} BaF{sub 2} array designed to make neutron capture cross-section measurements on rare or radioactive targets with masses as little as 1 mg. Accurate capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. These cross sections are difficult to calculate accurately and must be measured. Up to now, except for a few long-lived nuclides there are essentially no differential capture measurements on radioactive nuclei. The DANCE array is located at the Lujan Neutron Scattering Center atmore » LANSCE, which is a continuous-spectrum neutron source with useable energies from below thermal to about 100 keV. Data acquisition is done with 320 fast waveform digitizers. The design and initial performance results, including background minimization, will be discussed.« less

  9. Improved linearity using harmonic error rejection in a full-field range imaging system

    NASA Astrophysics Data System (ADS)

    Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.

    2008-02-01

    Full field range imaging cameras are used to simultaneously measure the distance for every pixel in a given scene using an intensity modulated illumination source and a gain modulated receiver array. The light is reflected from an object in the scene, and the modulation envelope experiences a phase shift proportional to the target distance. Ideally the waveforms are sinusoidal, allowing the phase, and hence object range, to be determined from four measurements using an arctangent function. In practice these waveforms are often not perfectly sinusoidal, and in some cases square waveforms are instead used to simplify the electronic drive requirements. The waveforms therefore commonly contain odd harmonics which contribute a nonlinear error to the phase determination, and therefore an error in the range measurement. We have developed a unique sampling method to cancel the effect of these harmonics, with the results showing an order of magnitude improvement in the measurement linearity without the need for calibration or lookup tables, while the acquisition time remains unchanged. The technique can be applied to existing range imaging systems without having to change or modify the complex illumination or sensor systems, instead only requiring a change to the signal generation and timing electronics.

  10. Wavelet analysis of the impedance cardiogram waveforms

    NASA Astrophysics Data System (ADS)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  11. A wideband software reconfigurable modem

    NASA Astrophysics Data System (ADS)

    Turner, J. H., Jr.; Vickers, H.

    A wideband modem is described which provides signal processing capability for four Lx-band signals employing QPSK, MSK and PPM waveforms and employs a software reconfigurable architecture for maximum system flexibility and graceful degradation. The current processor uses a 2901 and two 8086 microprocessors per channel and performs acquisition, tracking, and data demodulation for JITDS, GPS, IFF and TACAN systems. The next generation processor will be implemented using a VHSIC chip set employing a programmable complex array vector processor module, a GP computer module, customized gate array modules, and a digital array correlator. This integrated processor has application to a wide number of diverse system waveforms, and will bring the benefits of VHSIC technology insertion into avionic antijam communications systems.

  12. The GSN Data Quality Initiative

    NASA Astrophysics Data System (ADS)

    Davis, J. P.; Anderson, K. R.; Gee, L. S.

    2010-12-01

    The Global Seismographic Network (GSN) is undertaking a renewed effort to assess and assure data quality that builds upon completion of the major installation phase of the GSN and recent funding to recapitalize most of the network’s equipment including data acquisition systems, ancillary equipment and secondary sensors. We highlight here work by the network operators, the USGS’ Albuquerque Seismological Lab and UCSD’s Project IDA, to ensure that both the quality of the waveforms collected is maximized, that the published metadata accurately reflect the instrument response of the data acquisitions systems, and that data users are informed of the status of the GSN data quality. Procedures to evaluate waveform quality blend tools made available through the IRIS DMC’s Quality Analysis Control Kit (http://www.iris.washington.edu/QUACK/), analysis results provided by the Lamont Waveform Quality Center (www.ldeo.columbia.edu/~ekstrom/Projects/WQC.html), and custom software developed by each of the operators to identify and track known hardware failure modes. Each operator’s equipment upgrade schedule is updated periodically to address sensors identified as failing or problematic and for which replacements are available. Particular attention is also paid to monitoring the GPS clock signal to guarantee that the data are timed properly. Devices based on GPS technology unavailable when the GSN began 25 years ago are being integrated into operations to verify sensor orientations. Portable, broadband seismometers whose stable response can be verified in the laboratory are now co-located with GSN sensors during field visits to verify the existing GSN sensors’ sensitivity. Additional effort is being made to analyze past calibration signals and to check the system response functions of the secondary broadband sensors at GSN sites. The new generation of data acquisition systems will enable relative calibrations to be performed more frequently than was possible in the past. Additional details of this effort can be found at the GSN Quality webpage (www.iris.edu/hq/programs/gsn/quality).

  13. A compact, multichannel, and low noise arbitrary waveform generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govorkov, S.; Ivanov, B. I.; Novosibirsk State Technical University, K.Marx-Ave. 20, Novosibirsk 630092

    2014-05-15

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analogmore » compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.« less

  14. A multi-frequency receiver function inversion approach for crustal velocity structure

    NASA Astrophysics Data System (ADS)

    Li, Xuelei; Li, Zhiwei; Hao, Tianyao; Wang, Sheng; Xing, Jian

    2017-05-01

    In order to constrain the crustal velocity structures better, we developed a new nonlinear inversion approach based on multi-frequency receiver function waveforms. With the global optimizing algorithm of Differential Evolution (DE), low-frequency receiver function waveforms can primarily constrain large-scale velocity structures, while high-frequency receiver function waveforms show the advantages in recovering small-scale velocity structures. Based on the synthetic tests with multi-frequency receiver function waveforms, the proposed approach can constrain both long- and short-wavelength characteristics of the crustal velocity structures simultaneously. Inversions with real data are also conducted for the seismic stations of KMNB in southeast China and HYB in Indian continent, where crustal structures have been well studied by former researchers. Comparisons of inverted velocity models from previous and our studies suggest good consistency, but better waveform fitness with fewer model parameters are achieved by our proposed approach. Comprehensive tests with synthetic and real data suggest that the proposed inversion approach with multi-frequency receiver function is effective and robust in inverting the crustal velocity structures.

  15. Development of a full-waveform voltage and current recording device for multichannel transient electromagnetic transmitters

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Zhang, Qisheng; Wang, Meng; Kong, Qiang; Zhang, Shengquan; He, Ruihao; Liu, Shenghui; Li, Shuhan; Yuan, Zhenzhong

    2017-11-01

    Due to the pressing demand for metallic ore exploration technology in China, several new technologies are being employed in the relevant exploration instruments. In addition to possessing the high resolution of the traditional transient electromagnetic method, high-efficiency measurements, and a short measurement time, the multichannel transient electromagnetic method (MTEM) technology can also sensitively determine the characteristics of a low-resistivity geologic body, without being affected by the terrain. Besides, the MTEM technology also solves the critical, existing interference problem in electrical exploration technology. This study develops a full-waveform voltage and current recording device for MTEM transmitters. After continuous acquisition and storage of the large, pseudo-random current signals emitted by the MTEM transmitter, these signals are then convoluted with the signals collected by the receiver to obtain the earth's impulse response. In this paper, the overall design of the full-waveform recording apparatus, including the hardware and upper-computer software designs, the software interface display, and the results of field test, is discussed in detail.

  16. Full Waveform Inversion of Diving & Reflected Waves based on Scale Separation for Velocity and Impedance Imaging

    NASA Astrophysics Data System (ADS)

    Brossier, Romain; Zhou, Wei; Operto, Stéphane; Virieux, Jean

    2015-04-01

    Full Waveform Inversion (FWI) is an appealing method for quantitative high-resolution subsurface imaging (Virieux et al., 2009). For crustal-scales exploration from surface seismic, FWI generally succeeds in recovering a broadband of wavenumbers in the shallow part of the targeted medium taking advantage of the broad scattering-angle provided by both reflected and diving waves. In contrast, deeper targets are often only illuminated by short-spread reflections, which favor the reconstruction of the short wavelengths at the expense of the longer ones, leading to a possible notch in the intermediate part of the wavenumber spectrum. To update the velocity macromodel from reflection data, image-domain strategies (e.g., Symes & Carazzone, 1991) aim to maximize a semblance criterion in the migrated domain. Alternatively, recent data-domain strategies (e.g., Xu et al., 2012, Ma & Hale, 2013, Brossier et al., 2014), called Reflection FWI (RFWI), inspired by Chavent et al. (1994), rely on a scale separation between the velocity macromodel and prior knowledge of the reflectivity to emphasize the transmission regime in the sensitivity kernel of the inversion. However, all these strategies focus on reflected waves only, discarding the low-wavenumber information carried out by diving waves. With the current development of very long-offset and wide-azimuth acquisitions, a significant part of the recorded energy is provided by diving waves and subcritical reflections, and high-resolution tomographic methods should take advantage of all types of waves. In this presentation, we will first review the issues of classical FWI when applied to reflected waves and how RFWI is able to retrieve the long wavelength of the model. We then propose a unified formulation of FWI (Zhou et al., 2014) to update the low wavenumbers of the velocity model by the joint inversion of diving and reflected arrivals, while the impedance model is updated thanks to reflected wave only. An alternate inversion of high wavenumber impedance model and low wavenumber velocity model is performed to iteratively improve subsurface models. References : Brossier, R., Operto, S. & Virieux, J., 2014. Velocity model building from seismic reflection data by full waveform inversion, Geophysical Prospecting, doi:10.1111/1365-2478.12190 Chavent, G., Clément, F. & Gomez, S., 1994.Automatic determination of velocities via migration-based traveltime waveform inversion: A synthetic data example, SEG Technical Program Expanded Abstracts 1994, pp. 1179--1182. Ma, Y. & Hale, D., 2013. Wave-equation reflection traveltime inversion with dynamic warping and full waveform inversion, Geophysics, 78(6), R223--R233. Symes, W.W. & Carazzone, J.J., 1991. Velocity inversion by differential semblance optimization, Geophysics, 56, 654--663. Virieux, J. & Operto, S., 2009. An overview of full waveform inversion in exploration geophysics, Geophysics, 74(6), WCC1--WCC26. Xu, S., Wang, D., Chen, F., Lambaré, G. & Zhang, Y., 2012. Inversion on reflected seismic wave, SEG Technical Program Expanded Abstracts 2012, pp. 1--7. Zhou, W., Brossier, R., Operto, S., & Virieux, J., 2014. Acoustic multiparameter full-waveform inversion through a hierachical scheme, in SEG Technical Program Expanded Abstracts 2014, pp. 1249--1253

  17. Current progress on GSN data quality evaluation

    NASA Astrophysics Data System (ADS)

    Davis, J. P.; Gee, L. S.; Anderson, K. R.; Ahern, T. K.

    2012-12-01

    We discuss ongoing work to assess and improve the quality of data collected from instruments deployed at the 150+ stations of the Global Seismographic Network (GSN). The USGS and the IRIS Consortium are coordinating efforts to emphasize data quality following completion of the major installation phase of the GSN and recapitalization of the network's data acquisition systems, ancillary equipment and many of the secondary seismic sensors. We highlight here procedures adopted by the network's operators, the USGS' Albuquerque Seismological Laboratory (ASL) and UCSD's Project IDA, to ensure that the quality of the waveforms collected is maximized, that published metadata accurately reflect the instrument response of the data acquisitions systems, and that the data users are informed of the status of the GSN data quality. Additional details can be found at the GSN Quality webpage (www.iris.edu/hq/programs/gsn/quality). The GSN network operation teams meet frequently to share information and techniques. While custom software developed by each network operator to identify and track known problems remains important, recent efforts are providing new resources and tools to evaluate waveform quality, including analysis provided by the Lamont Waveform Quality Center (www.ldeo.columbia.edu/~ekstrom/Projects/WQC.html) and synthetic seismograms made available through Princeton University's Near Real Time Global Seismicity Portal ( http://global.shakemovie.princeton.edu/home.jsp ) and developments such as the IRIS DMS's MUSTANG and the ASL's Data Quality Analyzer. We conclude with the concept of station certification, a comprehensive overview of a station's performance that we have developed to communicate to data users the state of data- and metadata quality. As progress is made to verify the response and performance of existing systems as well as analysis of past calibration signals and waveform data, we will update information on the GSN web portals to apprise users of the condition of each GSN station's data.

  18. Effects of Stimulus Intensity on Low-Frequency Toneburst Cochlear Microphonic Waveforms.

    PubMed

    Zhang, Ming

    2013-01-02

    This study investigates changes in amplitude and delays in low-frequency toneburst cochlear microphonic (CM) waveforms recorded at the ear canal in response to different stimulus intensities. Ten volunteers aged 20-30 were recruited. Low-frequency CM waveforms at 500 Hz in response to a 14-ms toneburst were recorded from an ear canal electrode using electrocochleography techniques. The data was statistically analyzed in order to confirm whether the differences were significant in the effects of stimulus intensity on the amplitudes and delays of the low-frequency CM waveforms. Electromagnetic interference artifacts can jeopardize CM measurements but such artifacts can be avoided. The CM waveforms can be recorded at the ear canal in response to a toneburst which is longer than that used in ABR measurements. The CM waveforms thus recorded are robust, and the amplitude of CM waveforms is intensity-dependent. In contrast, the delay of CM waveforms is intensity-independent, which is different from neural responses as their delay or latency is intensity-dependent. These findings may be useful for development of the application of CM measurement as a supplementary approach to otoacoustic emission (OAE) measurement in the clinic which is severely affected by background acoustic noise. The development of the application in the assessment of low-frequency cochlear function may become possible if a further series of studies can verify the feasibility, but it is not meant to be a substitute for audiometry or OAE measurements. The measurement of detection threshold of CM waveform responses using growth function approach may become possible in the clinic. The intensity-independent nature of CMs with regards to delay measurements may also become an impacting factor for differential diagnoses and for designing new research studies.

  19. Low-power triggered data acquisition system and method

    NASA Technical Reports Server (NTRS)

    Champaigne, Kevin (Inventor); Sumners, Jonathan (Inventor)

    2012-01-01

    A low-power triggered data acquisition system and method utilizes low-powered circuitry, comparators, and digital logic incorporated into a miniaturized device interfaced with self-generating transducer sensor inputs to detect, identify and assess impact and damage to surfaces and structures wherein, upon the occurrence of a triggering event that produces a signal greater than a set threshold changes the comparator output and causes the system to acquire and store digital data representative of the incoming waveform on at least one triggered channel. The sensors may be disposed in an array to provide triangulation and location of the impact.

  20. Workflows for Full Waveform Inversions

    NASA Astrophysics Data System (ADS)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  1. [The research in a foot pressure measuring system based on LabVIEW].

    PubMed

    Li, Wei; Qiu, Hong; Xu, Jiang; He, Jiping

    2011-01-01

    This paper presents a system of foot pressure measuring system based on LabVIEW. The designs of hardware and software system are figured out. LabVIEW is used to design the application interface for displaying plantar pressure. The system can realize the plantar pressure data acquisition, data storage, waveform display, and waveform playback. It was also shown that the testing results of the system were in line with the changing trend of normal gait, which conformed to human system engineering theory. It leads to the demonstration of system reliability. The system gives vivid and visual results, and provides a new method of how to measure foot-pressure and some references for the design of Insole System.

  2. An intelligent detection method for high-field asymmetric waveform ion mobility spectrometry.

    PubMed

    Li, Yue; Yu, Jianwen; Ruan, Zhiming; Chen, Chilai; Chen, Ran; Wang, Han; Liu, Youjiang; Wang, Xiaozhi; Li, Shan

    2018-04-01

    In conventional high-field asymmetric waveform ion mobility spectrometry signal acquisition, multi-cycle detection is time consuming and limits somewhat the technique's scope for rapid field detection. In this study, a novel intelligent detection approach has been developed in which a threshold was set on the relative error of α parameters, which can eliminate unnecessary time spent on detection. In this method, two full-spectrum scans were made in advance to obtain the estimated compensation voltage at different dispersion voltages, resulting in a narrowing down of the whole scan area to just the peak area(s) of interest. This intelligent detection method can reduce the detection time to 5-10% of that of the original full-spectrum scan in a single cycle.

  3. Handheld THz security imaging

    NASA Astrophysics Data System (ADS)

    Duling, Irl N.

    2016-05-01

    Terahertz energy, with its ability to penetrate clothing and non-conductive materials, has held much promise in the area of security scanning. Millimeter wave systems (300 GHz and below) have been widely deployed. These systems have used full two-dimensional surface imaging, and have resulted in privacy concerns. Pulsed terahertz imaging, can detect the presence of unwanted objects without the need for two-dimensional photographic imaging. With high-speed waveform acquisition it is possible to create handheld tools that can be used to locate anomalies under clothing or headgear looking exclusively at either single point waveforms or cross-sectional images which do not pose a privacy concern. Identification of the anomaly to classify it as a potential threat or a benign object is also possible.

  4. All-optical computation system for solving differential equations based on optical intensity differentiator.

    PubMed

    Tan, Sisi; Wu, Zhao; Lei, Lei; Hu, Shoujin; Dong, Jianji; Zhang, Xinliang

    2013-03-25

    We propose and experimentally demonstrate an all-optical differentiator-based computation system used for solving constant-coefficient first-order linear ordinary differential equations. It consists of an all-optical intensity differentiator and a wavelength converter, both based on a semiconductor optical amplifier (SOA) and an optical filter (OF). The equation is solved for various values of the constant-coefficient and two considered input waveforms, namely, super-Gaussian and Gaussian signals. An excellent agreement between the numerical simulation and the experimental results is obtained.

  5. Quantifying Ciliary Dynamics during Assembly Reveals Step-wise Waveform Maturation in Airway Cells.

    PubMed

    Oltean, Alina; Schaffer, Andrew J; Bayly, Philip V; Brody, Steven L

    2018-05-31

    Motile cilia are essential for clearance of particulates and pathogens from airways. For effective transport, ciliary motor proteins and axonemal structures interact to generate the rhythmic, propulsive bending, but the mechanisms that produce a dynamic waveform remain incompletely understood. Biomechanical measures of human cilia motion and their relationships to cilia assembly are needed to illuminate the biophysics of normal cilia function, and to quantify dysfunction in ciliopathies. To these ends, we analyzed cilia motion from high-speed video microscopy of ciliated cells sampled from human lung airways compared to primary-culture cells that undergo ciliogenesis in vitro. Quantitative assessment of waveform parameters showed variations in waveform shape between individual cilia; however, general trends in waveform parameters emerged, associated with progression of cilia length and stage of differentiation. When cilia emerged from cultured cells, beat frequency was initially elevated, then fell and remained stable as cilia lengthened. In contrast, the average bending amplitude and the ability to generate force gradually increased and eventually approached values observed in ex vivo samples. Dynein arm motor proteins DNAH5, DNAH9, DNAH11, and DNAH6 were localized within specific regions of the axoneme in the ex vivo cells; however distinct stages of in vitro waveform development identified by biomechanical features were associated with the progressive movement of dyneins to the appropriate proximal or distal sections of the cilium. These observations suggest that the step-wise variation in waveform development during ciliogenesis is dependent on cilia length and potentially outer dynein arm assembly.

  6. 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Zelt, Colin A.; Bally, Albert W.; Dasgupta, Rahul

    2008-05-01

    Exploration along the Naga Thrust and Fold Belt in the Assam province of Northeast India encounters geological as well as logistic challenges. Drilling for hydrocarbons, traditionally guided by surface manifestations of the Naga thrust fault, faces additional challenges in the northeast where the thrust fault gradually deepens leaving subtle surface expressions. In such an area, multichannel 2-D seismic data were collected along a line perpendicular to the trend of the thrust belt. The data have a moderate signal-to-noise ratio and suffer from ground roll and other acquisition-related noise. In addition to data quality, the complex geology of the thrust belt limits the ability of conventional seismic processing to yield a reliable velocity model which in turn leads to poor subsurface image. In this paper, we demonstrate the application of traveltime and waveform inversion as supplements to conventional seismic imaging and interpretation processes. Both traveltime and waveform inversion utilize the first arrivals that are typically discarded during conventional seismic processing. As a first step, a smooth velocity model with long wavelength characteristics of the subsurface is estimated through inversion of the first-arrival traveltimes. This velocity model is then used to obtain a Kirchhoff pre-stack depth-migrated image which in turn is used for the interpretation of the fault. Waveform inversion is applied to the central part of the seismic line to a depth of ~1 km where the quality of the migrated image is poor. Waveform inversion is performed in the frequency domain over a series of iterations, proceeding from low to high frequency (11-19 Hz) using the velocity model from traveltime inversion as the starting model. In the end, the pre-stack depth-migrated image and the waveform inversion model are jointly interpreted. This study demonstrates that a combination of traveltime and waveform inversion with Kirchhoff pre-stack depth migration is a promising approach for the interpretation of geological structures in a thrust belt.

  7. Efficient Charge Collection in Coplanar-Grid Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Kunc, J.; Praus, P.; Belas, E.; Dědič, V.; Pekárek, J.; Grill, R.

    2018-05-01

    We model laser-induced transient-current waveforms in radiation coplanar-grid detectors. Poisson's equation is solved by the finite-element method and currents induced by a photogenerated charge are obtained using the Shockley-Ramo theorem. The spectral response on a radiation flux is modeled by Monte Carlo simulations. We show a 10 × improved spectral resolution of the coplanar-grid detector using differential signal sensing. We model the current waveform dependence on the doping, depletion width, diffusion, and detector shielding, and their mutual dependence is discussed in terms of detector optimization. The numerical simulations are successfully compared to experimental data, and further model simplifications are proposed. The space charge below electrodes and a nonhomogeneous electric field on a coplanar-grid anode are found to be the dominant contributions to laser-induced transient-current waveforms.

  8. Defense Acquisitions: Assessments of Selected Weapon Programs

    DTIC Science & Technology

    2009-03-01

    a field experiment , but program officials report that it will take additional efforts to transition the waveform to an operational platform. The...successfully demonstrated during a field experiment ending in October 2008 that included a multi-subnet test by Future Combat Systems personnel. The...Individual Programs 29 Advanced Extremely High Frequency (AEHF) Satellites 31 Advanced Threat Infrared Countermeasure/Common Missile Warning System

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, G.; Capineri, L., E-mail: lorenzo.capineri@unifi.it; Granato, M.

    This paper describes the design of a system for the characterization of magnetic hysteresis behavior in soft ferrite magnetic cores. The proposed setup can test magnetic materials exciting them with controlled arbitrary magnetic field waveforms, including the capability of providing a DC bias, in a frequency bandwidth up to 500 kHz, with voltages up to 32 V peak-to-peak, and currents up to 10 A peak-to-peak. In order to have an accurate control of the magnetic field waveform, the system is based on a voltage controlled current source. The electronic design is described focusing on closed loop feedback stabilization and passivemore » components choice. The system has real-time hysteretic loop acquisition and visualization. The comparisons between measured hysteresis loops of sample magnetic materials and datasheet available ones are shown. Results showing frequency and thermal behavior of the hysteresis of a test sample prove the system capabilities. Moreover, the B-H loops obtained with a multiple waveforms excitation signal, including DC bias, are reported. The proposal is a low-cost and replicable solution for hysteresis characterization of magnetic materials used in power electronics.« less

  10. Tests of PMT signal read-out of liquid argon scintillation with a new fast waveform digitizer

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Canci, N.; Cavanna, F.; Cortopassi, A.; D'Incecco, M.; Mini, G.; Pietropaolo, F.; Romboli, A.; Segreto, E.; Szelc, A. M.

    2012-07-01

    The CAEN V1751 is a new generation of Waveform Digitizer recently introduced by CAEN SpA. It features 8 Channels per board, 10 bit, 1 GS/s using Flash ADCs Waveform Digitizers (or 4 channels at 2 GS/s in Dual Edge Sampling mode) with threshold and Auto-Trigger capabilities. This provides a good basis for data acquisition in Dark Matter searches using PMTs to detect scintillation light in liquid argon, as it matches the requirements for measuring the fast scintillation component. The board was tested by operating it in real experimental conditions and by comparing it with a state of the art digital oscilloscope. We find that the sampling at 1 or 2 GS/s is appropriate for the reconstruction of the fast component of the scintillation light in argon (characteristic time of about 6-7 ns) and the extended dynamic range, after a small customization, allows for the detection of signals in the range of energy needed. The bandwidth is found to be adequate and the intrinsic noise is very low.

  11. Virtual Seismic Observation (VSO) with Sparsity-Promotion Inversion

    NASA Astrophysics Data System (ADS)

    Tiezhao, B.; Ning, J.; Jianwei, M.

    2017-12-01

    Large station interval leads to low resolution images, sometimes prevents people from obtaining images in concerned regions. Sparsity-promotion inversion, a useful method to recover missing data in industrial field acquisition, can be lent to interpolate seismic data on none-sampled sites, forming Virtual Seismic Observation (VSO). Traditional sparsity-promotion inversion suffers when coming up with large time difference in adjacent sites, which we concern most and use shift method to improve it. The procedure of the interpolation is that we first employ low-pass filter to get long wavelength waveform data and shift the waveforms of the same wave in different seismograms to nearly same arrival time. Then we use wavelet-transform-based sparsity-promotion inversion to interpolate waveform data on none-sampled sites and filling a phase in each missing trace. Finally, we shift back the waveforms to their original arrival times. We call our method FSIS (Filtering, Shift, Interpolation, Shift) interpolation. By this way, we can insert different virtually observed seismic phases into none-sampled sites and get dense seismic observation data. For testing our method, we randomly hide the real data in a site and use the rest to interpolate the observation on that site, using direct interpolation or FSIS method. Compared with directly interpolated data, interpolated data with FSIS can keep amplitude better. Results also show that the arrival times and waveforms of those VSOs well express the real data, which convince us that our method to form VSOs are applicable. In this way, we can provide needed data for some advanced seismic technique like RTM to illuminate shallow structures.

  12. Design Consideration and Performance of Networked Narrowband Waveforms for Tactical Communications

    DTIC Science & Technology

    2010-09-01

    four proposed CPM modes, with perfect acquisition parameters, for both coherent and noncoherent detection using an iterative receiver with both inner...Figure 1: Bit error rate performance of various CPM modes with coherent and noncoherent detection. Figure 3 shows the corresponding relationship...symbols. Table 2 summarises the parameter Coherent results (cross) Noncoherent results (diamonds) Figur 1: Bit Error Rate Pe f rmance of

  13. Performance assessment of Pulse Wave Imaging using conventional ultrasound in canine aortas ex vivo and normal human arteries in vivo

    PubMed Central

    Li, Ronny X.; Qaqish, William; Konofagou, Elisa. E.

    2015-01-01

    The propagation behavior of the arterial pulse wave may provide valuable diagnostic information for cardiovascular pathology. Pulse Wave Imaging (PWI) is a noninvasive, ultrasound imaging-based technique capable of mapping multiple wall motion waveforms along a short arterial segment over a single cardiac cycle, allowing for the regional pulse wave velocity (PWV) and propagation uniformity to be evaluated. The purpose of this study was to improve the clinical utility of PWI using a conventional ultrasound system. The tradeoff between PWI spatial and temporal resolution was evaluated using an ex vivo canine aorta (n = 2) setup to assess the effects of varying image acquisition and signal processing parameters on the measurement of the PWV and the pulse wave propagation uniformity r2. PWI was also performed on the carotid arteries and abdominal aortas of 10 healthy volunteers (24.8 ± 3.3 y.o.) to determine the waveform tracking feature that would yield the most precise PWV measurements and highest r2 values in vivo. The ex vivo results indicated that the highest precision for measuring PWVs ~ 2.5 – 3.5 m/s was achieved using 24–48 scan lines within a 38 mm image plane width (i.e. 0.63 – 1.26 lines/mm). The in vivo results indicated that tracking the 50% upstroke of the waveform would consistently yield the most precise PWV measurements and minimize the error in the propagation uniformity measurement. Such findings may help establish the optimal image acquisition and signal processing parameters that may improve the reliability of PWI as a clinical measurement tool. PMID:26640603

  14. Automated Measurement of P- and S-Wave Differential Times for Imaging Spatial Distributions of Vp/Vs Ratio, with Moving-Window Cross-Correlation Technique

    NASA Astrophysics Data System (ADS)

    Taira, T.; Kato, A.

    2013-12-01

    A high-resolution Vp/Vs ratio estimate is one of the key parameters to understand spatial variations of composition and physical state within the Earth. Lin and Shearer (2007, BSSA) recently developed a methodology to obtain local Vp/Vs ratios in individual similar earthquake clusters, based on P- and S-wave differential times. A waveform cross-correlation approach is typically employed to measure those differential times for pairs of seismograms from similar earthquakes clusters, at narrow time windows around the direct P and S waves. This approach effectively collects P- and S-wave differential times and however requires the robust P- and S-wave time windows that are extracted based on either manually or automatically picked P- and S-phases. We present another technique to estimate P- and S-wave differential times by exploiting temporal properties of delayed time as a function of elapsed time on the seismograms with a moving-window cross-correlation analysis (e.g., Snieder, 2002, Phys. Rev. E; Niu et al. 2003, Nature). Our approach is based on the principle that the delayed time for the direct S wave differs from that for the direct P wave. Two seismograms aligned by the direct P waves from a pair of similar earthquakes yield that delayed times become zero around the direct P wave. In contrast, delayed times obtained from time windows including the direct S wave have non-zero value. Our approach, in principle, is capable of measuring both P- and S-wave differential times from single-component seismograms. In an ideal case, the temporal evolution of delayed time becomes a step function with its discontinuity at the onset of the direct S wave. The offset in the resulting step function would be the S-wave differential time, relative to the P-wave differential time as the two waveforms are aligned by the direct P wave. We apply our moving-window cross-correlation technique to the two different data sets collected at: 1) the Wakayama district, Japan and 2) the Geysers geothermal field, California. The both target areas are characterized by earthquake swarms that provide a number of similar events clusters. We use the following automated procedure to systematically analyze the two data sets: 1) the identification of the direct P arrivals by using an Akaike Information Criterion based phase picking algorithm introduced by Zhang and Thurber (2003, BSSA), 2) the waveform alignment by the P-wave with a waveform cross-correlation to obtain P-wave differential time, 3) the moving-time window analysis to estimate the S-differential time. Kato et al. (2010, GRL) have estimated the Vp/Vs ratios for a few similar earthquake clusters from the Wakayama data set, by a conventional approach to obtain differential times. We find that the resulting Vp/Vs ratios from our approach for the same earthquake clusters are comparable with those obtained from Kato et al. (2010, GRL). We show that the moving-window cross-correlation technique effectively measures both P- and S-wave differential times for the seismograms in which the clear P and S phases are not observed. We will show spatial distributions in Vp/Vs ratios in our two target areas.

  15. Being "slow to see" is a dynamic visual function consequence of infantile nystagmus syndrome: model predictions and patient data identify stimulus timing as its cause.

    PubMed

    Wang, Z I; Dell'Osso, L F

    2007-05-01

    The objective of this study was to investigate the dynamic properties of infantile nystagmus syndrome (INS) that affect visual function; i.e., which factors influence latency of the initial reflexive saccade (Ls) and latency to target acquisition (Lt). We used our behavioral ocular motor system (OMS) model to simulate saccadic responses (in the presence of INS) to target jumps at different times within a single INS cycle and at random times during multiple cycles. We then studied the responses of 4 INS subjects with different waveforms to test the model's predictions. Infrared reflection was used for 1 INS subject, high-speed digital video for 3. We recorded and analyzed human responses to large and small target-step stimuli. We evaluated the following factors: stimulus time within the cycle (Tc), normalized Tc (Tc%), initial orbital position (Po), saccade amplitude, initial retinal error (e(i)), and final retinal error (e(f)). The ocular motor simulations were performed in MATLAB Simulink environment and the analysis was performed in MATLAB environment using OMLAB software. Both the OMS model and OMtools software are available from http://http:www.omlab.org. Our data analysis showed that for each subject, Ls was a fixed value that is typically higher than the normal saccadic latency. Although saccadic latency appears somewhat lengthened in INS, the amount is insufficient to cause the "slow-to-see" impression. For Lt, Tc% was the most influential factor for each waveform type. The main refixation strategies employed by INS subjects made use of slow and fast phases and catch-up saccades, or combinations of them. These strategies helped the subjects to foveate effectively after target movement, sometimes at the cost of increased target acquisition time. Foveating or braking saccades intrinsic to the nystagmus waveforms seemed to disrupt the OMS' ability to accurately calculate reflexive saccades' amplitude and refoveate. Our OMS model simulations demonstrated this emergent behavior and predicted the lengthy target acquisition times found in the patient data.

  16. MO-DE-207A-12: Toward Patient-Specific 4DCT Reconstruction Using Adaptive Velocity Binning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, E.D.; Glide-Hurst, C.; Wayne State University, Detroit, MI

    2016-06-15

    Purpose: While 4DCT provides organ/tumor motion information, it often samples data over 10–20 breathing cycles. For patients presenting with compromised pulmonary function, breathing patterns can change over the acquisition time, potentially leading to tumor delineation discrepancies. This work introduces a novel adaptive velocity-modulated binning (AVB) 4DCT algorithm that modulates the reconstruction based on the respiratory waveform, yielding a patient-specific 4DCT solution. Methods: AVB was implemented in a research reconstruction configuration. After filtering the respiratory waveform, the algorithm examines neighboring data to a phase reconstruction point and the temporal gate is widened until the difference between the reconstruction point and waveformmore » exceeds a threshold value—defined as percent difference between maximum/minimum waveform amplitude. The algorithm only impacts reconstruction if the gate width exceeds a set minimum temporal width required for accurate reconstruction. A sensitivity experiment of threshold values (0.5, 1, 5, 10, and 12%) was conducted to examine the interplay between threshold, signal to noise ratio (SNR), and image sharpness for phantom and several patient 4DCT cases using ten-phase reconstructions. Individual phase reconstructions were examined. Subtraction images and regions of interest were compared to quantify changes in SNR. Results: AVB increased signal in reconstructed 4DCT slices for respiratory waveforms that met the prescribed criteria. For the end-exhale phases, where the respiratory velocity is low, patient data revealed a threshold of 0.5% demonstrated increased SNR in the AVB reconstructions. For intermediate breathing phases, threshold values were required to be >10% to notice appreciable changes in CT intensity with AVB. AVB reconstructions exhibited appreciably higher SNR and reduced noise in regions of interest that were photon deprived such as the liver. Conclusion: We demonstrated that patient-specific velocity-based 4DCT reconstruction is feasible. Image noise was reduced with AVB, suggesting potential applications for low-dose acquisitions and to improve 4DCT reconstruction for irregular breathing patients. The submitting institution holds research agreements with Philips Healthcare.« less

  17. ATM Coastal Topography-Alabama 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Alabama coastline, acquired October 3-4, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface, and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.

  18. ATM Coastal Topography-Florida 2001: Eastern Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the eastern Florida panhandle coastline, acquired October 2, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.

  19. Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement

    NASA Astrophysics Data System (ADS)

    Pfennigbauer, Martin; Ullrich, Andreas

    2010-04-01

    Newest developments in laser scanner technologies put surveyors in the position to comply with the ever increasing demand of high-speed, high-accuracy, and highly reliable data acquisition from terrestrial, mobile, and airborne platforms. Echo digitization in pulsed time-of-flight laser ranging has demonstrated its superior performance in the field of bathymetry and airborne laser scanning for more than a decade, however at the cost of somewhat time consuming off line post processing. State-of-the-art online waveform processing as implemented in RIEGL's V-Line not only saves users post-processing time to obtain true 3D point clouds, it also adds the assets of calibrated amplitude and reflectance measurement for data classification and pulse deviation determination for effective and reliable data validation. We present results from data acquisitions in different complex target situations.

  20. Physiological and harmonic components in neural and muscular coherence in Parkinsonian tremor.

    PubMed

    Wang, Shouyan; Aziz, Tipu Z; Stein, John F; Bain, Peter G; Liu, Xuguang

    2006-07-01

    To differentiate physiological from harmonic components in coherence analysis of the tremor-related neural and muscular signals by comparing power, cross-power and coherence spectra. Influences of waveform, burst-width and additional noise on generating harmonic peaks in the power, cross-power and coherence spectra were studied using simulated signals. The local field potentials (LFPs) of the subthalamic nucleus (STN) and the EMGs of the contralateral forearm muscles in PD patients with rest tremor were analysed. (1) Waveform had significant effect on generating harmonics; (2) noise significantly decreased the coherence values in a frequency-dependent fashion; and (3) cross-spectrum showed high resistance to harmonics. Among six examples of paired LFP-EMG signals, significant coherence appeared at the tremor frequency only, both the tremor and double tremor frequencies and the double-tremor frequency only. In coherence analysis of neural and muscular signals, distortion in waveform generates significant harmonic peaks in the coherence spectra and the coherence values of both physiological and harmonic components are modulated by extra noise or non-tremor related activity. The physiological or harmonic nature of a coherence peak at the double tremor frequency may be differentiated when the coherence spectra are compared with the power and in particular the cross-power spectra.

  1. A molecular beam/quadrupole mass spectrometer system with synchronized beam modulation and digital waveform analysis

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Adams, B. R.

    1983-01-01

    A performance evaluation is conducted for a molecular beam/mass spectrometer (MB/MS) system, as applied to a 1-30 torr microwave-discharge flow reactor (MWFR) used in the formation of the methylperoxy radical and a study of its subsequent destruction in the presence or absence of NO(x). The modulated MB/MS system is four-staged and differentially pumped. The results obtained by the MWFR study is illustrative of overall system performance, including digital waveform analysis; significant improvements over previous designs are noted in attainable S/N ratio, detection limit, and accuracy.

  2. Recommendations for the standardization and interpretation of the electrocardiogram. Part I: The electrocardiogram and its technology. A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society.

    PubMed

    Kligfield, Paul; Gettes, Leonard S; Bailey, James J; Childers, Rory; Deal, Barbara J; Hancock, E William; van Herpen, Gerard; Kors, Jan A; Macfarlane, Peter; Mirvis, David M; Pahlm, Olle; Rautaharju, Pentti; Wagner, Galen S

    2007-03-01

    This statement examines the relation of the resting ECG to its technology. Its purpose is to foster understanding of how the modern ECG is derived and displayed and to establish standards that will improve the accuracy and usefulness of the ECG in practice. Derivation of representative waveforms and measurements based on global intervals are described. Special emphasis is placed on digital signal acquisition and computer-based signal processing, which provide automated measurements that lead to computer-generated diagnostic statements. Lead placement, recording methods, and waveform presentation are reviewed. Throughout the statement, recommendations for ECG standards are placed in context of the clinical implications of evolving ECG technology.

  3. anisotropic microseismic focal mechanism inversion by waveform imaging matching

    NASA Astrophysics Data System (ADS)

    Wang, L.; Chang, X.; Wang, Y.; Xue, Z.

    2016-12-01

    The focal mechanism is one of the most important parameters in source inversion, for both natural earthquakes and human-induced seismic events. It has been reported to be useful for understanding stress distribution and evaluating the fracturing effect. The conventional focal mechanism inversion method picks the first arrival waveform of P wave. This method assumes the source as a Double Couple (DC) type and the media isotropic, which is usually not the case for induced seismic focal mechanism inversion. For induced seismic events, the inappropriate source and media model in inversion processing, by introducing ambiguity or strong simulation errors, will seriously reduce the inversion effectiveness. First, the focal mechanism contains significant non-DC source type. Generally, the source contains three components: DC, isotropic (ISO) and the compensated linear vector dipole (CLVD), which makes focal mechanisms more complicated. Second, the anisotropy of media will affect travel time and waveform to generate inversion bias. The common way to describe focal mechanism inversion is based on moment tensor (MT) inversion which can be decomposed into the combination of DC, ISO and CLVD components. There are two ways to achieve MT inversion. The wave-field migration method is applied to achieve moment tensor imaging. This method can construct elements imaging of MT in 3D space without picking the first arrival, but the retrieved MT value is influenced by imaging resolution. The full waveform inversion is employed to retrieve MT. In this method, the source position and MT can be reconstructed simultaneously. However, this method needs vast numerical calculation. Moreover, the source position and MT also influence each other in the inversion process. In this paper, the waveform imaging matching (WIM) method is proposed, which combines source imaging with waveform inversion for seismic focal mechanism inversion. Our method uses the 3D tilted transverse isotropic (TTI) elastic wave equation to approximate wave propagating in anisotropic media. First, a source imaging procedure is employed to obtain the source position. Second, we refine a waveform inversion algorithm to retrieve MT. We also use a microseismic data set recorded in surface acquisition to test our method.

  4. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    NASA Technical Reports Server (NTRS)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  5. Accurate calibration of waveform data measured by the Plasma Wave Experiment on board the ARASE satellite

    NASA Astrophysics Data System (ADS)

    Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.

    2017-12-01

    The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can reduce an error contaminated through the calibration to less than 0.1 % of amplitude of input waves; (1) a Turkey-type window function with a flat top region of one-third of the window length and (2) modification of the window function for each frequency by referring the estimation of the phase shift due to the first order differential coefficient from the transfer functions.

  6. Efficient waveform tomography for lithospheric imaging: implications for realistic, two-dimensional acquisition geometries and low-frequency data

    NASA Astrophysics Data System (ADS)

    Brenders, A. J.; Pratt, R. G.

    2007-01-01

    We provide a series of numerical experiments designed to test waveform tomography under (i) a reduction in the number of input data frequency components (`efficient' waveform tomography), (ii) sparse spatial subsampling of the input data and (iii) an increase in the minimum data frequency used. These results extend the waveform tomography results of a companion paper, using the same third-party, 2-D, wide-angle, synthetic viscoelastic seismic data, computed in a crustal geology model 250 km long and 40 km deep, with heterogeneous P-velocity, S-velocity, density and Q-factor structure. Accurate velocity models were obtained using efficient waveform tomography and only four carefully selected frequency components of the input data: 0.8, 1.7, 3.6 and 7.0 Hz. This strategy avoids the spectral redundancy present in `full' waveform tomography, and yields results that are comparable with those in the companion paper for an 88 per cent decrease in total computational cost. Because we use acoustic waveform tomography, the results further justify the use of the acoustic wave equation in calculating P-wave velocity models from viscoelastic data. The effect of using sparse survey geometries with efficient waveform tomography were investigated for both increased receiver spacing, and increased source spacing. Sampling theory formally requires spatial sampling at maximum interval of one half-wavelength (2.5 km at 0.8 Hz): For data with receivers every 0.9 km (conforming to this criterion), artefacts in the tomographic images were still minimal when the source spacing was as large as 7.6 km (three times the theoretical maximum). Larger source spacings led to an unacceptable degradation of the results. When increasing the starting frequency, image quality was progressively degraded. Acceptable image quality within the central portion of the model was nevertheless achieved using starting frequencies up to 3.0 Hz. At 3.0 Hz the maximum theoretical sample interval is reduced to 0.67 km due to the decreased wavelengths; the available sources were spaced every 5.0 km (more than seven times the theoretical maximum), and receivers were spaced every 0.9 km (1.3 times the theoretical maximum). Higher starting frequencies than 3.0 Hz again led to unacceptable degradation of the results.

  7. Investigation of the Effect of Temperature and Light Emission from Silicon Photomultiplier Detectors

    NASA Astrophysics Data System (ADS)

    Ruiz Castruita, Daniel; Ramos, Daniel; Hernandez, Victor; Niduaza, Rommel; Konx, Adrian; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is an extremely sensitive light detector capable of measuring very dim light and operates as a photon-number resolving detector. Its high gain comes from operating at slightly above the breakdown voltage, which is also accompanied by a high dark count rate. At this conference poster session we describe our investigation of using SiPMs, the multipixel photon counters (MPPC) from Hamamatsu, as readout detectors for development in a cosmic ray scintillating detector array. Our research includes implementation of a novel design that automatically adjusts for the bias voltage to the MPPC detectors to compensate for changes in the ambient temperature. Furthermore, we describe our investigations for the MPPC detector characteristics at different bias voltages, temperatures and light emission properties. To measure the faint light emitted from the MPPC we use a photomultiplier tube capable of detecting single photons. Our data acquisition setup consists of a 5 Giga sample/second waveform digitizer, the DRS4, triggered to capture the MPPC detector waveforms. Analysis of the digitized waveforms, using the CERN package PAW, would be discussed and presented. US Department of Education Title V Grant PO31S090007.

  8. Determination of differential arrival times by cross-correlating worldwide seismological data

    NASA Astrophysics Data System (ADS)

    Godano, M.; Nolet, G.; Zaroli, C.

    2012-12-01

    Cross-correlation delays are the preferred body wave observables in global tomography. Heterogeneity is the main factor influencing delay times found by cross-correlation. Not only the waveform, but also the arrival time itself is affected by differences in seismic velocity encountered along the way. An accurate method for estimating differential times of seismic arrivals across a regional array by cross-correlation was developed by VanDecar and Crosson [1990]. For the estimation of global travel time delays in different frequency bands, Sigloch and Nolet [2006] developed a method for the estimation of body wave delays using a matched filter, which requires the separate estimation of the source time function. Sigloch et al. [2008] found that waveforms often cluster in and opposite the direction of rupture propagation on the fault, confirming that the directivity effect is a major factor in shaping the waveform of large events. We propose a generalization of the VanDecar-Crosson method to which we add a correction for the directivity effect in the seismological data. The new method allows large events to be treated without the need to estimate the source time function for the computation of a matched synthetic waveform. The procedure consists in (1) the detection of the directivity effect in the data and the determination of a rupture model (unilateral or bilateral) explaining the differences in pulse duration among the stations, (2) the determination of an apparent fault rupture length explaining the pulse durations, (3) the removal of the delay due to the directivity effect in the pulse duration , by stretching or contracting the seismograms for directive and anti-directive stations respectively and (4) the application of a generalized VanDecar and Crosson method using only delays between pairs of stations that have an acceptable correlation coefficient. We validate our method by performing tests on synthetic data. Results show that the error between theoretical and measured differential arrival time are significantly reduced for the corrected data. We illustrate our method on data from several real earthquakes.

  9. [Wearable Automatic External Defibrillators].

    PubMed

    Luo, Huajie; Luo, Zhangyuan; Jin, Xun; Zhang, Leilei; Wang, Changjin; Zhang, Wenzan; Tu, Quan

    2015-11-01

    Defibrillation is the most effective method of treating ventricular fibrillation(VF), this paper introduces wearable automatic external defibrillators based on embedded system which includes EGG measurements, bioelectrical impedance measurement, discharge defibrillation module, which can automatic identify VF signal, biphasic exponential waveform defibrillation discharge. After verified by animal tests, the device can realize EGG acquisition and automatic identification. After identifying the ventricular fibrillation signal, it can automatic defibrillate to abort ventricular fibrillation and to realize the cardiac electrical cardioversion.

  10. An Assessment of Early Competitive Prototyping for Major Defense Acquisition Programs

    DTIC Science & Technology

    2016-04-30

    with 20/80 share ratio for EMD; CPFF for test execution. o Percent change in PAUC from development baseline. -2.3%. 3. FAB -T–FET. The Air Force’s...Family of Advanced Beyond Line-of-Sight Terminals ( FAB -T) provides for survivable terminals for communicating strategic nuclear execution orders via...jam-resistant, low probability of intercept waveforms through the Milstar and Advanced Extremely High Frequency (AEHF) satellite constellations. FAB

  11. Frequency Diverse Tracking/Guidance Millimeter Radar Adapted to Target Acquisition,

    DTIC Science & Technology

    1980-06-01

    resolution offered by electro- optical and infrared systems and the adverse environment (fog, battle- field smokes) penetrability which is characteristic of...Reflectors (&1 > 2). 63 ALEXANDER whereAis the transmitted wavelength. It shall also be assumed for this analysis that 2*a4 ’ ( optical region), and that the...and J. L. Brown, "A Preliminary Assessment of Target Classification using Noncoherent Radar Waveforms," US Army Missile Command, Technical Report T-79

  12. Chromas from chromatin: sonification of the epigenome

    PubMed Central

    Cittaro, Davide; Lazarevic, Dejan; Provero, Paolo

    2016-01-01

    The epigenetic modifications are organized in patterns determining the functional properties of the underlying genome. Such patterns, typically measured by ChIP-seq assays of histone modifications, can be combined and translated into musical scores, summarizing multiple signals into a single waveform. As music is recognized as a universal way to convey meaningful information, we wanted to investigate properties of music obtained by sonification of ChIP-seq data. We show that the music produced by such quantitative signals is perceived by human listeners as more pleasant than that produced from randomized signals. Moreover, the waveform can be analyzed to predict phenotypic properties, such as differential gene expression. PMID:27019695

  13. Digital coherent receiver based transmitter penalty characterization.

    PubMed

    Geisler, David J; Kaufmann, John E

    2016-12-26

    For optical communications links where receivers are signal-power-starved, such as through free-space, it is important to design transmitters and receivers that can operate as close as practically possible to theoretical limits. A total system penalty is typically assessed in terms of how far the end-to-end bit-error rate (BER) is from these limits. It is desirable, but usually difficult, to determine the division of this penalty between the transmitter and receiver. This paper describes a new rigorous and computationally based method that isolates which portion of the penalty can be assessed against the transmitter. There are two basic parts to this approach: (1) use of a coherent optical receiver to perform frequency down-conversion of a transmitter's optical signal waveform to the electrical domain, preserving both optical field amplitude and phase information, and (2): software-based analysis of the digitized electrical waveform. The result is a single numerical metric that quantifies how close a transmitter's signal waveform is to the ideal, based on its BER performance with a perfect software-defined matched-filter receiver demodulator. A detailed description of applying the proposed methodology to the waveform characterization of an optical burst-mode differential phase-shifted keying (DPSK) transmitter is experimentally demonstrated.

  14. Self-referenced single-shot THz detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Brandon K.; Ofori-Okai, Benjamin K.; Chen, Zhijiang

    We demonstrate a self-referencing method to reduce noise in a single-shot terahertz detection scheme. By splitting a single terahertz pulse and using a reflective echelon, both the signal and reference terahertz time-domain waveforms were measured using one laser pulse. Simultaneous acquisition of these waveforms significantly reduces noise originating from shot-to-shot fluctuations. Here, we show that correlation function based referencing, which is not limited to polarization dependent measurements, can achieve a noise floor that is comparable to state-of-the-art polarization-gated balanced detection. Lastly, we extract the DC conductivity of a 30 nm free-standing gold film using a single THz pulse. The measuredmore » value of σ 0 = 1.3 ± 0.4 × 10 7 S m -1 is in good agreement with the value measured by four-point probe, indicating the viability of this method for measuring dynamical changes and small signals.« less

  15. Self-referenced single-shot THz detection

    DOE PAGES

    Russell, Brandon K.; Ofori-Okai, Benjamin K.; Chen, Zhijiang; ...

    2017-06-29

    We demonstrate a self-referencing method to reduce noise in a single-shot terahertz detection scheme. By splitting a single terahertz pulse and using a reflective echelon, both the signal and reference terahertz time-domain waveforms were measured using one laser pulse. Simultaneous acquisition of these waveforms significantly reduces noise originating from shot-to-shot fluctuations. Here, we show that correlation function based referencing, which is not limited to polarization dependent measurements, can achieve a noise floor that is comparable to state-of-the-art polarization-gated balanced detection. Lastly, we extract the DC conductivity of a 30 nm free-standing gold film using a single THz pulse. The measuredmore » value of σ 0 = 1.3 ± 0.4 × 10 7 S m -1 is in good agreement with the value measured by four-point probe, indicating the viability of this method for measuring dynamical changes and small signals.« less

  16. Detection of underground pipeline based on Golay waveform design

    NASA Astrophysics Data System (ADS)

    Dai, Jingjing; Xu, Dazhuan

    2017-08-01

    The detection of underground pipeline is an important problem in the development of the city, but the research about it is not mature at present. In this paper, based on the principle of waveform design in wireless communication, we design an acoustic signal detection system to detect the location of underground pipelines. According to the principle of acoustic localization, we chose DSP-F28335 as the development board, and use DA and AD module as the master control chip. The DA module uses complementary Golay sequence as emission signal. The AD module acquisiting data synchronously, so that the echo signals which containing position information of the target is recovered through the signal processing. The test result shows that the method in this paper can not only calculate the sound velocity of the soil, but also can locate the location of underground pipelines accurately.

  17. Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology.

    PubMed

    Kligfield, Paul; Gettes, Leonard S; Bailey, James J; Childers, Rory; Deal, Barbara J; Hancock, E William; van Herpen, Gerard; Kors, Jan A; Macfarlane, Peter; Mirvis, David M; Pahlm, Olle; Rautaharju, Pentti; Wagner, Galen S; Josephson, Mark; Mason, Jay W; Okin, Peter; Surawicz, Borys; Wellens, Hein

    2007-03-13

    This statement examines the relation of the resting ECG to its technology. Its purpose is to foster understanding of how the modern ECG is derived and displayed and to establish standards that will improve the accuracy and usefulness of the ECG in practice. Derivation of representative waveforms and measurements based on global intervals are described. Special emphasis is placed on digital signal acquisition and computer-based signal processing, which provide automated measurements that lead to computer-generated diagnostic statements. Lead placement, recording methods, and waveform presentation are reviewed. Throughout the statement, recommendations for ECG standards are placed in context of the clinical implications of evolving ECG technology.

  18. Recommendations for the standardization and interpretation of the electrocardiogram: part I: The electrocardiogram and its technology: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: endorsed by the International Society for Computerized Electrocardiology.

    PubMed

    Kligfield, Paul; Gettes, Leonard S; Bailey, James J; Childers, Rory; Deal, Barbara J; Hancock, E William; van Herpen, Gerard; Kors, Jan A; Macfarlane, Peter; Mirvis, David M; Pahlm, Olle; Rautaharju, Pentti; Wagner, Galen S; Josephson, Mark; Mason, Jay W; Okin, Peter; Surawicz, Borys; Wellens, Hein

    2007-03-13

    This statement examines the relation of the resting ECG to its technology. Its purpose is to foster understanding of how the modern ECG is derived and displayed and to establish standards that will improve the accuracy and usefulness of the ECG in practice. Derivation of representative waveforms and measurements based on global intervals are described. Special emphasis is placed on digital signal acquisition and computer-based signal processing, which provide automated measurements that lead to computer-generated diagnostic statements. Lead placement, recording methods, and waveform presentation are reviewed. Throughout the statement, recommendations for ECG standards are placed in context of the clinical implications of evolving ECG technology.

  19. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2015-10-20

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  20. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; Dehope, William J; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M

    2016-06-21

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  1. DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST speech disc 1-1.1

    NASA Astrophysics Data System (ADS)

    Garofolo, J. S.; Lamel, L. F.; Fisher, W. M.; Fiscus, J. G.; Pallett, D. S.

    1993-02-01

    The Texas Instruments/Massachusetts Institute of Technology (TIMIT) corpus of read speech has been designed to provide speech data for the acquisition of acoustic-phonetic knowledge and for the development and evaluation of automatic speech recognition systems. TIMIT contains speech from 630 speakers representing 8 major dialect divisions of American English, each speaking 10 phonetically-rich sentences. The TIMIT corpus includes time-aligned orthographic, phonetic, and word transcriptions, as well as speech waveform data for each spoken sentence. The release of TIMIT contains several improvements over the Prototype CD-ROM released in December, 1988: (1) full 630-speaker corpus, (2) checked and corrected transcriptions, (3) word-alignment transcriptions, (4) NIST SPHERE-headered waveform files and header manipulation software, (5) phonemic dictionary, (6) new test and training subsets balanced for dialectal and phonetic coverage, and (7) more extensive documentation.

  2. Single-shot ADC imaging for fMRI.

    PubMed

    Song, Allen W; Guo, Hua; Truong, Trong-Kha

    2007-02-01

    It has been suggested that apparent diffusion coefficient (ADC) contrast can be sensitive to cerebral blood flow (CBF) changes during brain activation. However, current ADC imaging techniques have an inherently low temporal resolution due to the requirement of multiple acquisitions with different b-factors, as well as potential confounds from cross talk between the deoxyhemoglobin-induced background gradients and the externally applied diffusion-weighting gradients. In this report a new method is proposed and implemented that addresses these two limitations. Specifically, a single-shot pulse sequence that sequentially acquires one gradient-echo (GRE) and two diffusion-weighted spin-echo (SE) images was developed. In addition, the diffusion-weighting gradient waveform was numerically optimized to null the cross terms with the deoxyhemoglobin-induced background gradients to fully isolate the effect of diffusion weighting from that of oxygenation-level changes. The experimental results show that this new single-shot method can acquire ADC maps with sufficient signal-to-noise ratio (SNR), and establish its practical utility in functional MRI (fMRI) to complement the blood oxygenation level-dependent (BOLD) technique and provide differential sensitivity for different vasculatures to better localize neural activity originating from the small vessels. Copyright (c) 2007 Wiley-Liss, Inc.

  3. Time-Domain Terahertz Computed Axial Tomography NDE System

    NASA Technical Reports Server (NTRS)

    Zimdars, David

    2012-01-01

    NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D slice data with better signal-to-noise using a COTS scanner rather than the gchirped h scanner. The system also reduced to practice a prototype for commercial CT systems for insulating materials where safety concerns cannot accommodate x-ray. A software script was written to automate the COTS software to collect and process TD-THz CT data.

  4. Multirate Integration Properties of Waveform Relaxation with Applications to Circuit Simulation and Parallel Computation

    DTIC Science & Technology

    1985-11-18

    Greenberg and K. Sakallah at Digital Equipment Corporation, and C-F. Chen, L Nagel, and P. ,. Subrahmanyam at AT&T Bell Laboratories, both for providing...Circuit Theory McGraw-Hill, 1969. [37] R. Courant and D. Hilbert , Partial Differential Equations, Vol. 2 of Methods of Mathematical Physics...McGraw-Hill, N.Y., 1965. Page 161 [44) R. Courant and D. Hilbert , Partial Differential Equations, Vol. 2 of Methods of Mathematical Physics

  5. A Platform for Real-time Acquisition and Analysis of Physiological Data in Hospital Emergency Departments

    DTIC Science & Technology

    2014-08-01

    with the Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA 02114 USA (corresponding author; phone: 617 -726-2241; e-mail...programming interface ( API ). Algorithms are used to determine the reliability of waveform (e.g., electrocardiogram) and vital-sign data (e.g., heart rate...and comparing of real-time decision- support algorithms in mobile environments," Conf Proc IEEE Eng Med Biol Soc, vol. 2009 , pp. 3417-20, 2009 . [3

  6. A multi-threshold sampling method for TOF-PET signal processing

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kao, C. M.; Xie, Q.; Chen, C. T.; Zhou, L.; Tang, F.; Frisch, H.; Moses, W. W.; Choong, W. S.

    2009-04-01

    As an approach to realizing all-digital data acquisition for positron emission tomography (PET), we have previously proposed and studied a multi-threshold sampling method to generate samples of a PET event waveform with respect to a few user-defined amplitudes. In this sampling scheme, one can extract both the energy and timing information for an event. In this paper, we report our prototype implementation of this sampling method and the performance results obtained with this prototype. The prototype consists of two multi-threshold discriminator boards and a time-to-digital converter (TDC) board. Each of the multi-threshold discriminator boards takes one input and provides up to eight threshold levels, which can be defined by users, for sampling the input signal. The TDC board employs the CERN HPTDC chip that determines the digitized times of the leading and falling edges of the discriminator output pulses. We connect our prototype electronics to the outputs of two Hamamatsu R9800 photomultiplier tubes (PMTs) that are individually coupled to a 6.25×6.25×25 mm3 LSO crystal. By analyzing waveform samples generated by using four thresholds, we obtain a coincidence timing resolution of about 340 ps and an ˜18% energy resolution at 511 keV. We are also able to estimate the decay-time constant from the resulting samples and obtain a mean value of 44 ns with an ˜9 ns FWHM. In comparison, using digitized waveforms obtained at a 20 GSps sampling rate for the same LSO/PMT modules we obtain ˜300 ps coincidence timing resolution, ˜14% energy resolution at 511 keV, and ˜5 ns FWHM for the estimated decay-time constant. Details of the results on the timing and energy resolutions by using the multi-threshold method indicate that it is a promising approach for implementing digital PET data acquisition.

  7. Vibratory onset and offset times in children: A laryngeal imaging study

    PubMed Central

    Patel, Rita R.

    2016-01-01

    Objectives The aim of the study was to evaluate the differences in vibratory onset and offset times across age (adult males, adult females, and children) and waveform types (total glottal area waveform, left glottal area waveform, and right glottal area waveform) using high-speed videoendoscopy. Methods In this prospective study, vibratory onset and offset times were evaluated in a total of 86 participants. Forty-three children (23 girls, 18 boys) between 5–11 years and 43 gender matched vocally normal young adults (23 females and 18 males) in the age range (21–45 years) were recruited. Vibratory onset and offset times were calculated in milliseconds from the total, left, and right Glottal Area Waveform (GAW). A two-factor analysis of variance was used to compare the means among the subject groups (children, adult male, and adult female) and waveform type (total GAW, left GAW, right GAW) for onset and offset variables. Post hoc analyses were performed using the Fishers Least Significant Different test with Bonferroni correction for multiple comparisons. Results Children exhibited significantly shorter vibratory onset and offset times compared to adult males and females. Differences in vibratory onset and offset times were not statistically significant between adult males and females. Across all waveform types (i.e. total GAW, left GAW, and right GAW), no statistical significance was observed among the subject groups. Conclusion This is the first study reporting vibratory onset and offset times in the pediatric population. The study findings lay the foundation for the development of a large age- and gender- based database of the pediatric population to aid the study of the effects of maturation of vocal fold vibration in adulthood. The findings from this study may also provide the basis for evaluating the impact of numerous lesions on tissue pliability, and thereby has potential utility for the clinical differentiation of various lesions. PMID:27368436

  8. Anisotropy effects on 3D waveform inversion

    NASA Astrophysics Data System (ADS)

    Stekl, I.; Warner, M.; Umpleby, A.

    2010-12-01

    In the recent years 3D waveform inversion has become achievable procedure for seismic data processing. A number of datasets has been inverted and presented (Warner el al 2008, Ben Hadj at all, Sirgue et all 2010) using isotropic 3D waveform inversion. However the question arises will the results be affected by isotropic assumption. Full-wavefield inversion techniques seek to match field data, wiggle-for-wiggle, to synthetic data generated by a high-resolution model of the sub-surface. In this endeavour, correctly matching the travel times of the principal arrivals is a necessary minimal requirement. In many, perhaps most, long-offset and wide-azimuth datasets, it is necessary to introduce some form of p-wave velocity anisotropy to match the travel times successfully. If this anisotropy is not also incorporated into the wavefield inversion, then results from the inversion will necessarily be compromised. We have incorporated anisotropy into our 3D wavefield tomography codes, characterised as spatially varying transverse isotropy with a tilted axis of symmetry - TTI anisotropy. This enhancement approximately doubles both the run time and the memory requirements of the code. We show that neglect of anisotropy can lead to significant artefacts in the recovered velocity models. We will present inversion results of inverting anisotropic 3D dataset by assuming isotropic earth and compare them with anisotropic inversion result. As a test case Marmousi model extended to 3D with no velocity variation in third direction and with added spatially varying anisotropy is used. Acquisition geometry is assumed as OBC with sources and receivers everywhere at the surface. We attempted inversion using both 2D and full 3D acquisition for this dataset. Results show that if no anisotropy is taken into account although image looks plausible most features are miss positioned in depth and space, even for relatively low anisotropy, which leads to incorrect result. This may lead to misinterpretation of results. However if correct physics is used results agree with correct model. Our algorithm is relatively affordable and runs on standard pc clusters in acceptable time. Refferences: H. Ben Hadj Ali, S. Operto and J. Virieux. Velocity model building by 3D frequency-domain full-waveform inversion of wide-aperture seismic data, Geophysics (Special issue: Velocity Model Building), 73(6), P. VE101-VE117 (2008). L. Sirgue, O.I. Barkved, J. Dellinger, J. Etgen, U. Albertin, J.H. Kommedal, Full waveform inversion: the next leap forward in imaging at Valhall, First Brake April 2010 - Issue 4 - Volume 28 M. Warner, I. Stekl, A. Umpleby, Efficient and Effective 3D Wavefield Tomography, 70th EAGE Conference & Exhibition (2008)

  9. Source encoding in multi-parameter full waveform inversion

    NASA Astrophysics Data System (ADS)

    Matharu, Gian; Sacchi, Mauricio D.

    2018-04-01

    Source encoding techniques alleviate the computational burden of sequential-source full waveform inversion (FWI) by considering multiple sources simultaneously rather than independently. The reduced data volume requires fewer forward/adjoint simulations per non-linear iteration. Applications of source-encoded full waveform inversion (SEFWI) have thus far focused on monoparameter acoustic inversion. We extend SEFWI to the multi-parameter case with applications presented for elastic isotropic inversion. Estimating multiple parameters can be challenging as perturbations in different parameters can prompt similar responses in the data. We investigate the relationship between source encoding and parameter trade-off by examining the multi-parameter source-encoded Hessian. Probing of the Hessian demonstrates the convergence of the expected source-encoded Hessian, to that of conventional FWI. The convergence implies that the parameter trade-off in SEFWI is comparable to that observed in FWI. A series of synthetic inversions are conducted to establish the feasibility of source-encoded multi-parameter FWI. We demonstrate that SEFWI requires fewer overall simulations than FWI to achieve a target model error for a range of first-order optimization methods. An inversion for spatially inconsistent P - (α) and S-wave (β) velocity models, corroborates the expectation of comparable parameter trade-off in SEFWI and FWI. The final example demonstrates a shortcoming of SEFWI when confronted with time-windowing in data-driven inversion schemes. The limitation is a consequence of the implicit fixed-spread acquisition assumption in SEFWI. Alternative objective functions, namely the normalized cross-correlation and L1 waveform misfit, do not enable SEFWI to overcome this limitation.

  10. Validation of the inverse pulse wave transit time series as surrogate of systolic blood pressure in MVAR modeling.

    PubMed

    Giassi, Pedro; Okida, Sergio; Oliveira, Maurício G; Moraes, Raimes

    2013-11-01

    Short-term cardiovascular regulation mediated by the sympathetic and parasympathetic branches of the autonomic nervous system has been investigated by multivariate autoregressive (MVAR) modeling, providing insightful analysis. MVAR models employ, as inputs, heart rate (HR), systolic blood pressure (SBP) and respiratory waveforms. ECG (from which HR series is obtained) and respiratory flow waveform (RFW) can be easily sampled from the patients. Nevertheless, the available methods for acquisition of beat-to-beat SBP measurements during exams hamper the wider use of MVAR models in clinical research. Recent studies show an inverse correlation between pulse wave transit time (PWTT) series and SBP fluctuations. PWTT is the time interval between the ECG R-wave peak and photoplethysmography waveform (PPG) base point within the same cardiac cycle. This study investigates the feasibility of using inverse PWTT (IPWTT) series as an alternative input to SBP for MVAR modeling of the cardiovascular regulation. For that, HR, RFW, and IPWTT series acquired from volunteers during postural changes and autonomic blockade were used as input of MVAR models. Obtained results show that IPWTT series can be used as input of MVAR models, replacing SBP measurements in order to overcome practical difficulties related to the continuous sampling of the SBP during clinical exams.

  11. Demonstration of Detection and Ranging Using Solvable Chaos

    NASA Technical Reports Server (NTRS)

    Corron, Ned J.; Stahl, Mark T.; Blakely, Jonathan N.

    2013-01-01

    Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements are presented to demonstrate the viability of the approach.

  12. A square wave is the most efficient and reliable waveform for resonant actuation of micro switches

    NASA Astrophysics Data System (ADS)

    Ben Sassi, S.; Khater, M. E.; Najar, F.; Abdel-Rahman, E. M.

    2018-05-01

    This paper investigates efficient actuation methods of shunt MEMS switches and other parallel-plate actuators. We start by formulating a multi-physics model of the micro switch, coupling the nonlinear Euler-Bernoulli beam theory with the nonlinear Reynolds equation to describe the structural and fluidic domains, respectively. The model takes into account fringing field effects as well as mid-plane stretching and squeeze film damping nonlinearities. Static analysis is undertaken using the differential quadrature method (DQM) to obtain the pull-in voltage, which is verified by means of the finite element model and validated experimentally. We develop a reduced order model employing the Galerkin method for the structural domain and DQM for the fluidic domain. The proposed waveforms are intended to be more suitable for integrated circuit standards. The dynamic response of the micro switch to harmonic, square and triangular waveforms are evaluated and compared experimentally and analytically. Low voltage actuation is obtained using dynamic pull-in with the proposed waveforms. In addition, global stability analysis carried out for the three signals shows advantages of employing the square signal as the actuation method in enhancing the performance of the micro switch in terms of actuation voltage, switching time, and sensitivity to initial conditions.

  13. Simulation of Satellite, Airborne and Terrestrial LiDAR with DART (I):Waveform Simulation with Quasi-Monte Carlo Ray Tracing

    NASA Technical Reports Server (NTRS)

    Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing

    2016-01-01

    Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.

  14. Research and application of measuring system for disconnector for surge arresters

    NASA Astrophysics Data System (ADS)

    Chen, Ziyu; Luo, Xiaoyong

    2017-10-01

    This paper analyzes the current situation of the use of the disconnector for the arrester, and introduces the common faults and their causes. Based on the Labview programming environment, a low cost and convenient measurement system is developed to solve the problem of test trigger and waveform acquisition, which is aimed at the lack of electrical detection methods for small manufacturing enterprises in China. Finally, the system is applied to the actual production, and the performance of product are improved.

  15. Techniques for Microwave Near-Field Quantum Control of Trapped Ions

    DTIC Science & Technology

    2013-01-31

    counts. Each DDS (Analog Devices AD9858) can generate signals at frequencies to 400 MHz with a frequency resolution of 0.233 Hz and phase resolution...fast, two- channel DAC is used to generate arbitrary waveforms with a 50-MHz update rate, a voltage range from −10 V to 10 V, and a resolution of 0.305...mV. This DAC is programed via USB and triggered by the data acquisition FPGA . We use three DDS modules as sources for three frequency octupling

  16. Simultaneous Red - Blue Lidar and Airborne Impactor Measurements

    NASA Technical Reports Server (NTRS)

    McCormick, M. P.; Blifford, I. H.; Fuller, W. H.; Grams, G. W.

    1973-01-01

    Simultaneous two-color (0.6943 micrometers and 0.3472 micrometers) LIDAR measurements were made in the troposphere and lower stratosphere over Boulder, Colorado during March 1973. In addition, on the evening of March 26, airborne single-stage impactor measurements were made at four altitudes-- 10,500, 25,000, 33,000 and 43,000 feet MSL. These data were integrated at constant altitude for 15,45, 45, and 60 minutes respectively. The LIDAR data were taken with Langley's 48" LIDAR using a dichroic beamsplitter to separate the return at 0.6943 micrometers and 0.3472 micrometers. The analog waveforms for both colors were digitized simultaneously; one on an NCAR data acquisition system and the other on the 48" Langley data acquisition system. A discussion of the preliminary results from these measurements will be presented.

  17. Continued Data Acquisition Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwellenbach, David

    This task focused on improving techniques for integrating data acquisition of secondary particles correlated in time with detected cosmic-ray muons. Scintillation detectors with Pulse Shape Discrimination (PSD) capability show the most promise as a detector technology based on work in FY13. Typically PSD parameters are determined prior to an experiment and the results are based on these parameters. By saving data in list mode, including the fully digitized waveform, any experiment can effectively be replayed to adjust PSD and other parameters for the best data capture. List mode requires time synchronization of two independent data acquisitions (DAQ) systems: the muonmore » tracker and the particle detector system. Techniques to synchronize these systems were studied. Two basic techniques were identified: real time mode and sequential mode. Real time mode is the preferred system but has proven to be a significant challenge since two FPGA systems with different clocking parameters must be synchronized. Sequential processing is expected to work with virtually any DAQ but requires more post processing to extract the data.« less

  18. Seismic Investigation of Magmatic Unrest Beneath Mammoth Mountain, California Using Waveform Cross-Correlation

    NASA Astrophysics Data System (ADS)

    Lin, G.

    2012-12-01

    We investigate the seismic and magmatic activity during an 11-month-long seismic swarm between 1989 and 1990 beneath Mammoth Mountain (MM) at the southwest rim of Long Valley caldera in eastern California. This swarm is believed to be results of a shallow intrusion of magma beneath MM. It was followed by the emissions of carbon dioxide (CO2) gas, which caused tree-killings in 1990 and posed a significant human health risk around MM. In this study, we develop a new three-dimensional (3-D) P-wave velocity model using first-arrival picks by applying the simul2000 tomographic algorithm. The resulting 3-D model is correlated with the surface geological features at shallow depths and is used to constrain absolute earthquake locations for all local events in our study. We compute both P- and S-wave differential times using a time-domain waveform cross-correlation method. We then apply similar event cluster analysis and differential time location approach to further improve relative event location accuracy. A dramatic sharpening of seismicity pattern is obtained after these processes. The estimated uncertainties are a few meters in relative location and ~100 meters in absolute location. We also apply a high-resolution approach to estimate in situ near-source Vp/Vs ratios using differential times from waveform cross-correlation. This method provides highly precise results because cross-correlation can measure differential times to within a few milliseconds and can achieve a precision of 0.001 in estimated Vp/Vs ratio. Our results show a circular ring-like seismicity pattern with a diameter of 2 km between 3 and 8 km depth. These events are distributed in an anomalous body with low Vp and high Vp/Vs, which may be caused by over-pressured magmatically derived fluids. At shallower depths, we observe very low Vp/Vs anomalies beneath MM from the surface to 1 km below sea level whose locations agree with the proposed CO2 reservoir in previous studies. The systematic spatial and temporal migration of seismicity suggests fluid involvement in the seismic swarm. Our results will provide more robust constraints on the crustal structure and volcanic processes beneath Mammoth Mountain.

  19. ATM Coastal Topography - Louisiana, 2001: UTM Zone 16 (Part 2 of 2)

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, Asbury H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 16, from Grand Isle to the Chandeleur Islands, acquired September 7 and 9, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  20. ATM Coastal Topography-Louisiana, 2001: UTM Zone 15 (Part 1 of 2)

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 15, from Isles Dernieres to Grand Isle, acquired September 7 and 10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  1. ATM Coastal Topography-Texas, 2001: UTM Zone 14

    USGS Publications Warehouse

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 14, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  2. ATM Coastal Topography-Texas, 2001: UTM Zone 15

    USGS Publications Warehouse

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 15, from Matagorda Peninsula to Galveston Island, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  3. ATM Coastal Topography-Florida 2001: Western Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the western Florida panhandle coastline, acquired October 2-4 and 7-10, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.

  4. ATM Coastal Topography-Mississippi, 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Mississippi coastline, from Lakeshore to Petit Bois Island, acquired September 9-10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  5. Next-generation seismic experiments: wide-angle, multi-azimuth, three-dimensional, full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Morgan, Joanna; Warner, Michael; Bell, Rebecca; Ashley, Jack; Barnes, Danielle; Little, Rachel; Roele, Katarina; Jones, Charles

    2013-12-01

    Full-waveform inversion (FWI) is an advanced seismic imaging technique that has recently become computationally feasible in three dimensions, and that is being widely adopted and applied by the oil and gas industry. Here we explore the potential for 3-D FWI, when combined with appropriate marine seismic acquisition, to recover high-resolution high-fidelity P-wave velocity models for subsedimentary targets within the crystalline crust and uppermost mantle. We demonstrate that FWI is able to recover detailed 3-D structural information within a radially faulted dome using a field data set acquired with a standard 3-D petroleum-industry marine acquisition system. Acquiring low-frequency seismic data is important for successful FWI; we show that current acquisition techniques can routinely acquire field data from airguns at frequencies as low as 2 Hz, and that 1 Hz acquisition is likely to be achievable using ocean-bottom hydrophones in deep water. Using existing geological and geophysical models, we construct P-wave velocity models over three potential subsedimentary targets: the Soufrière Hills Volcano on Montserrat and its associated crustal magmatic system, the crust and uppermost mantle across the continent-ocean transition beneath the Campos Basin offshore Brazil, and the oceanic crust and uppermost mantle beneath the East Pacific Rise mid-ocean ridge. We use these models to generate realistic multi-azimuth 3-D synthetic seismic data, and attempt to invert these data to recover the original models. We explore resolution and accuracy, sensitivity to noise and acquisition geometry, ability to invert elastic data using acoustic inversion codes, and the trade-off between low frequencies and starting velocity model accuracy. We show that FWI applied to multi-azimuth, refracted, wide-angle, low-frequency data can resolve features in the deep crust and uppermost mantle on scales that are significantly better than can be achieved by any other geophysical technique, and that these results can be obtained using relatively small numbers (60-90) of ocean-bottom receivers combined with large numbers of airgun shots. We demonstrate that multi-azimuth 3-D FWI is robust in the presence of noise, that acoustic FWI can invert elastic data successfully, and that the typical errors to be expected in starting models derived using traveltimes will not be problematic for FWI given appropriately designed acquisition. FWI is a rapidly maturing technology; its transfer from the petroleum sector to tackle a much broader range of targets now appears to be entirely achievable.

  6. SU-F-303-10: Impact of Visual Biofeedback On Respiratory Reproducibility in 4DMRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    To, D; Price, R.G.; Henry Ford Health System, Detroit, MI

    Purpose: Precise radiation therapy (RT) for abdominal lesions is complicated by respiratory motion and suboptimal soft tissue contrast in 4DCT. 4DMRI offers improved contrast. However, long scan times and irregular breathing patterns can be limiting. To address this, we introduced visual biofeedback (VBF) into 4DMRI. Methods: Eight healthy volunteers were consented to an IRB-approved protocol. Prospective respiratory-triggered, T2-weighted coronal 4DMRIs were acquired on an open 1.0T MR- SIM. VBF was integrated using an MR-compatible interactive breath-hold control system. Subjects visually monitored their breathing patterns to stay within pre-determined tolerances. 4DMRIs were acquired with and without VBF for 2–8 phase acquisitions.more » Normalized respiratory waveforms were evaluated for scan time, duty cycle (programmed/acquisition time), breathing period, end-inhale (EI) amplitude, and breathing variability (coefficient of variation, EI-COV). B-spline-based deformable image registration propagated contours from end-exhale (EE) to EI phases. Respiration-induced liver motion was calculated via centroid analysis and compared. Results: Incorporating VBF reduced 2-phase acquisition time (4.7±0.6 and 5.6±1.4 minutes with and without VBF, respectively) while reducing the amplitude EI-COV by 53.0±8.1%. On average, incorporating VBF reduced 8-phase 4DMRI acquisition times by 1.7±1.2 minutes and EI-COVs by 46.0±15.8%. Using VBF yielded higher duty cycles than free breathing (34.7% versus 28.3%, respectively). 4DMRI acquisition time was reduced for the cohort with VBF despite breathing rate remaining similar (10.5±4.0 with vs. 10.6±3.3 BPM without). Respiratory waveforms showed higher EI amplitude with VBF (0.84±0.05 a.u.) as compared to 0.72±0.06 a.u. without. This translated to differences in liver excursions, where superior-inferior, anterior-posterior, and left-right EE-EI displacements were 14.3±3.6, 4.8±2.1, and 1.6±1.0 mm, respectively, with VBF compared to 13.0±6.2, 3.8±2.4, and 1.2±1.4 mm without. Conclusion: Incorporating VBF system into 4DMRI substantially reduced acquisition time and breathing variability. While VBF reduced liver motion variability, differences in excursion were observed, suggesting that implementation will be required throughout the RT workflow. Research supported in part by a grant from Philips HealthCare (Best, Netherlands) and an equipment evaluation agreement with MedSpira.« less

  7. Waveform synthesizer

    DOEpatents

    Franks, Larry A.; Nelson, Melvin A.

    1981-01-01

    A method of producing optical and electrical pulses of desired shape. An optical pulse of arbitrary but defined shape illuminates one end of an array of optical fiber waveguides of differing lengths to time differentiate the input pulse. The optical outputs at the other end of the array are combined to form a synthesized pulse of desired shape.

  8. Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Leiph

    Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fractionmore » of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.« less

  9. A Wearable and Highly Sensitive Graphene Strain Sensor for Precise Home-Based Pulse Wave Monitoring.

    PubMed

    Yang, Tingting; Jiang, Xin; Zhong, Yujia; Zhao, Xuanliang; Lin, Shuyuan; Li, Jing; Li, Xinming; Xu, Jianlong; Li, Zhihong; Zhu, Hongwei

    2017-07-28

    Profuse medical information about cardiovascular properties can be gathered from pulse waveforms. Therefore, it is desirable to design a smart pulse monitoring device to achieve noninvasive and real-time acquisition of cardiovascular parameters. The majority of current pulse sensors are usually bulky or insufficient in sensitivity. In this work, a graphene-based skin-like sensor is explored for pulse wave sensing with features of easy use and wearing comfort. Moreover, the adjustment of the substrate stiffness and interfacial bonding accomplish the optimal balance between sensor linearity and signal sensitivity, as well as measurement of the beat-to-beat radial arterial pulse. Compared with the existing bulky and nonportable clinical instruments, this highly sensitive and soft sensing patch not only provides primary sensor interface to human skin, but also can objectively and accurately detect the subtle pulse signal variations in a real-time fashion, such as pulse waveforms with different ages, pre- and post-exercise, thus presenting a promising solution to home-based pulse monitoring.

  10. Waveform Based Acoustic Emission Detection and Location of Matrix Cracking in Composites

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    1995-01-01

    The operation of damage mechanisms in a material or structure under load produces transient acoustic waves. These acoustic waves are known as acoustic emission (AE). In composites they can be caused by a variety of sources including matrix cracking, fiber breakage, and delamination. AE signals can be detected and analyzed to determine the location of the acoustic source by triangulation. Attempts are also made to analyze the signals to determine the type and severity of the damage mechanism. AE monitoring has been widely used for both laboratory studies of materials, and for testing the integrity of structures in the field. In this work, an advanced, waveform based AE system was used in a study of transverse matrix cracking in cross-ply graphite/epoxy laminates. This AE system featured broad band, high fidelity sensors, and high capture rate digital acquisition and storage of acoustic signals. In addition, analysis techniques based on plate wave propagation models were employed. These features provided superior source location and noise rejection capabilities.

  11. Neutron time-of-flight spectroscopy measurement using a waveform digitizer

    NASA Astrophysics Data System (ADS)

    Liu, Long-Xiang; Wang, Hong-Wei; Ma, Yu-Gang; Cao, Xi-Guang; Cai, Xiang-Zhou; Chen, Jin-Gen; Zhang, Gui-Lin; Han, Jian-Long; Zhang, Guo-Qiang; Hu, Ji-Feng; Wang, Xiao-He

    2016-05-01

    The photoneutron source (PNS, phase 1), an electron linear accelerator (linac)-based pulsed neutron facility that uses the time-of-flight (TOF) technique, was constructed for the acquisition of nuclear data from the Thorium Molten Salt Reactor (TMSR) at the Shanghai Institute of Applied Physics (SINAP). The neutron detector signal used for TOF calculation, with information on the pulse arrival time, pulse shape, and pulse height, was recorded by using a waveform digitizer (WFD). By using the pulse height and pulse-shape discrimination (PSD) analysis to identify neutrons and γ-rays, the neutron TOF spectrum was obtained by employing a simple electronic design, and a new WFD-based DAQ system was developed and tested in this commissioning experiment. The DAQ system developed is characterized by a very high efficiency with respect to millisecond neutron TOF spectroscopy. Supported by Strategic Priority Research Program of the Chinese Academy of Science(TMSR) (XDA02010100), National Natural Science Foundation of China(NSFC)(11475245,No.11305239), Shanghai Key Laboratory of Particle Physics and Cosmology (11DZ2260700)

  12. Instrumentation for electrochemical performance characterization of neural electrodes

    NASA Astrophysics Data System (ADS)

    Marsh, Michael P.; Kruchowski, James N.; Hara, Seth A.; McIntosh, Malcom B.; Forsman, Renae M.; Reed, Terry L.; Kimble, Christopher; Lee, Kendall H.; Bennet, Kevin E.; Tomshine, Jonathan R.

    2017-08-01

    In an effort to determine the chronic stability, sensitivity, and thus the potential viability of various neurochemical recording electrode designs and compositions, we have developed a custom device called the Voltammetry Instrument for Neurochemical Applications (VINA). Here, we describe the design of the VINA and initial testing of its functionality for prototype neurochemical sensing electrodes. The VINA consists of multiple electrode fixtures, a flowing electrolyte bath, associated reservoirs, peristaltic pump, voltage waveform generator, data acquisition hardware, and system software written in National Instrument's LabVIEW. The operation of VINA was demonstrated on a set of boron-doped diamond neurochemical recording electrodes, which were subjected to an applied waveform for a period of eighteen days. Each electrode's cyclic voltammograms (CVs) were recorded, and sensitivity calibration to dopamine (DA) was performed. Results showed an initial decline with subsequent stabilization in the CV current measured during the voltammetric sweep, corresponding closely with changes in electrode sensitivity to DA. The VINA has demonstrated itself as a useful tool for the characterization of electrode stability and chronic electrochemical performance.

  13. Studies Relative to the Radiosensitivity of Man: Based on Retrospective Evaluations of Therapeutic and Accidental Total-Body Irradiation

    NASA Technical Reports Server (NTRS)

    Ricks, R. C. (Compiler); Lushbaugh, C. C. (Compiler)

    1975-01-01

    The radiobiologic studies carried out with joint (AEC) ERDA and NASA support during the years 1964 to 1974 at the Medical Division of Oak Ridge Associated Universities are presented. The physiologic data generated were similar in many ways to those previously observed in other medical radiobiologic experiences. They differed, however, in the methods of data acquisition and analysis. Instead of more conventional analytical methods, pulmonary impedance was recorded and quantitated as a measure of radiation-induced gastrointestinal distress and fatiguability. While refinements in dose response related to gastrointestinal distress were accomplished, it was also found that through the use of Fourier analysis of pulmonary impedance waveform GI distress could easily be recognized and quantified even when the initial stages of nausea were below the subjects subjective level of recognition. The results demonstrate that change in pulmonary impedance waveform closely parallel well-defined stages of GI distress, i.e., initial nausea, a progressive increase in nausea, and finally vomiting episodes.

  14. Mini-batch optimized full waveform inversion with geological constrained gradient filtering

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Jia, Junxiong; Wu, Bangyu; Gao, Jinghuai

    2018-05-01

    High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk. Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological constrained mini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method on realistic synthetic model.

  15. User manual for the NTS ground motion data base retrieval program: ntsgm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    App, F.N.; Tunnell, T.W.

    1994-05-01

    The NTS (Nevada Test Site) Ground Motion Data Base is composed of strong motion data recorded during the normal execution of the US underground test program. It contains surface, subsurface, and structure motion data as digitized waveforms. Currently the data base contains information from 148 underground explosions. This represents about 4,200 measurements and nearly 12,000 individual digitized waveforms. Most of the data was acquired by Los Alamos National Laboratory (LANL) in connection with LANL sponsored underground tests. Some was acquired by Los Alamos on tests conducted by the Defense Nuclear Agency (DNA) and Lawrence Livermore National Laboratory (LLNL), and theremore » are some measurements that were acquired by the other test sponsors on their events and provided for inclusion in this data base. Data acquisition, creation of the data base, and development of the data base retrieval program (ntsgm) are the result of work in support of the Los Alamos Field Test Office and the Office of Nonproliferation and Arms Control.« less

  16. An ultrasound transient elastography system with coded excitation.

    PubMed

    Diao, Xianfen; Zhu, Jing; He, Xiaonian; Chen, Xin; Zhang, Xinyu; Chen, Siping; Liu, Weixiang

    2017-06-28

    Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it's application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. The elasticity QA phantom's results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7-chip Barker coded excitation. Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice.

  17. Data acquisition for the new muon g-2 experiment at Fermilab

    DOE PAGES

    Gohn, Wesley

    2015-12-23

    A new measurement of the anomalous magnetic moment of the muon, a μ ≡ (g - 2)/2, will be performed at the Fermi National Accelerator Laboratory. The most recent measurement, performed at Brookhaven National Laboratory and completed in 2001, shows a 3.3-3.6 standard deviation discrepancy with the Standard Model predictions for a μ. The new measurement will accumulate 21 times those statistics, measuring a μ to 140 ppb and reducing the uncertainty by a factor of 4. The data acquisition system for this experiment must have the ability to record deadtime-free records from 700 μs muon spills at a rawmore » data rate of 18 GB per second. Data will be collected using 1296 channels of μTCA-based 800 MSPS, 12 bit waveform digitizers and processed in a layered array of networked commodity processors with 24 GPUs working in parallel to perform a fast recording and processing of detector signals during the spill. The system will be controlled using the MIDAS data acquisition software package. Lastly, the described data acquisition system is currently being constructed, and will be fully operational before the start of the experiment in 2017.« less

  18. Development of small and inexpensive digital data acquisition systems using a microcontroller-based approach†

    PubMed Central

    Naivar, Mark A.; Wilder, Mark E.; Habbersett, Robert C.; Woods, Travis A.; Sebba, David S.; Nolan, John P.; Graves, Steven W.

    2014-01-01

    Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers. PMID:19852060

  19. Development of small and inexpensive digital data acquisition systems using a microcontroller-based approach.

    PubMed

    Naivar, Mark A; Wilder, Mark E; Habbersett, Robert C; Woods, Travis A; Sebba, David S; Nolan, John P; Graves, Steven W

    2009-12-01

    Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD-based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers.

  20. Data Acquisition for the New Muon g-2 Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Gohn, Wesley

    2015-12-01

    A new measurement of the anomalous magnetic moment of the muon,aμ≡ (g - 2)/2, will be performed at the Fermi National Accelerator Laboratory. The most recent measurement, performed at Brookhaven National Laboratory and completed in 2001, shows a 3.3-3.6 standard deviation discrepancy with the Standard Model predictions for aμ. The new measurement will accumulate 21 times those statistics, measuring aμ to 140 ppb and reducing the uncertainty by a factor of 4. The data acquisition system for this experiment must have the ability to record deadtime-free records from 700 μs muon spills at a raw data rate of 18 GB per second. Data will be collected using 1296 channels of μTCA-based 800 MHz, 12 bit waveform digitizers and processed in a layered array of networked commodity processors with 24 GPUs working in parallel to perform a fast recording and processing of detector signals during the spill. The system will be controlled using the MIDAS data acquisition software package. The described data acquisition system is currently being constructed, and will be fully operational before the start of the experiment in 2017.

  1. A new time calibration method for switched-capacitor-array-based waveform samplers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H.; Chen, C. -T.; Eclov, N.

    2014-08-24

    Here we have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibrationmore » is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. Ultimately, the new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.« less

  2. A new time calibration method for switched-capacitor-array-based waveform samplers

    NASA Astrophysics Data System (ADS)

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Moses, W.; Choong, W.-S.; Kao, C.-M.

    2014-12-01

    We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be 2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.

  3. A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers.

    PubMed

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Moses, W; Choong, W-S; Kao, C-M

    2014-12-11

    We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.

  4. A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers

    PubMed Central

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Moses, W.; Choong, W.-S.; Kao, C.-M.

    2014-01-01

    We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration. PMID:25506113

  5. Viterbi sparse spike detection and a compositional origin to ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Brown, Samuel Paul

    Accurate interpretation of seismic travel times and amplitudes in both the exploration and global scales is complicated by the band-limited nature of seismic data. We present a stochastic method, Viterbi sparse spike detection (VSSD), to reduce a seismic waveform into a most probable constituent spike train. Model waveforms are constructed from a set of candidate spike trains convolved with a source wavelet estimate. For each model waveform, a profile hidden Markov model (HMM) is constructed to represent the waveform as a stochastic generative model with a linear topology corresponding to a sequence of samples. The Viterbi algorithm is employed to simultaneously find the optimal nonlinear alignment between a model waveform and the seismic data, and to assign a score to each candidate spike train. The most probable travel times and amplitudes are inferred from the alignments of the highest scoring models. Our analyses show that the method can resolve closely spaced arrivals below traditional resolution limits and that travel time estimates are robust in the presence of random noise and source wavelet errors. We applied the VSSD method to constrain the elastic properties of a ultralow- velocity zone (ULVZ) at the core-mantle boundary beneath the Coral Sea. We analyzed vertical component short period ScP waveforms for 16 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array (ASAR) in central Australia. These waveforms show strong pre and postcursory seismic arrivals consistent with ULVZ layering. We used the VSSD method to measure differential travel-times and amplitudes of the post-cursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our measurements to a database of approximately 340,000 synthetic seismograms finding that these data are best fit by a ULVZ model with an S-wave velocity reduction of 24%, a P-wave velocity reduction of 23%, a thickness of 8.5 km, and a density increase of 6%. We simultaneously constrain both P- and S-wave velocity reductions as a 1:1 ratio inside this ULVZ. This 1:1 ratio is not consistent with a partial melt origin to ULVZs. Rather, we demonstrate that a compositional origin is more likely.

  6. A Compact Cosmic Ray Telescope using Silicon Photomultipliers for use in High Schools

    NASA Astrophysics Data System (ADS)

    Castro, Luis; Elizondo, Leonardo; Shelor, Mark; Cervantes, Omar; Fan, Sewan; Ritt, Stefan

    2016-03-01

    Over the years, the QuarkNet and the LBL Cosmic Ray Project have helped trained thousands of high school students and teachers to explore cosmic ray physics. To get high school students in the Salinas, CA area also excited about cosmic rays, we constructed a cosmic ray telescope as a physics outreach apparatus. Our apparatus includes a pair of plastic scintillators coupled to silicon photomultipliers (SiPM) and a coincidence circuit board. We designed and constructed custom circuit boards for mounting the SiPM detectors, the high voltage power supplies and coincidence AND circuit. The AND logic signals can be used for triggering data acquisition devices including an oscilloscope, a waveform digitizer or an Arduino microcontroller. To properly route the circuit wire traces, the circuit boards were layout in Eagle and fabricated in-house using a circuit board maker from LPKF LASER, model Protomat E33. We used a Raspberry Pi computer to control a fast waveform sampler, the DRS4 to digitize the SiPM signal waveforms. The CERN PAW software package was used to analyze the amplitude and time distributions of SiPM detector signals. At this conference, we present our SiPM experimental setup, circuit board fabrication procedures and the data analysis work flow. AIP Megger's Award, Dept. of Ed. Title V Grant PO31S090007.

  7. Time-resolved EPR spectroscopy in a Unix environment.

    PubMed

    Lacoff, N M; Franke, J E; Warden, J T

    1990-02-01

    A computer-aided time-resolved electron paramagnetic resonance (EPR) spectrometer implemented under version 2.9 BSD Unix was developed by interfacing a Varian E-9 EPR spectrometer and a Biomation 805 waveform recorder to a PDP-11/23A minicomputer having MINC A/D and D/A capabilities. Special problems with real-time data acquisition in a multiuser, multitasking Unix environment, addressing of computer main memory for the control of hardware devices, and limitation of computer main memory were resolved, and their solutions are presented. The time-resolved EPR system and the data acquisition and analysis programs, written entirely in C, are described. Furthermore, the benefits of utilizing the Unix operating system and the C language are discussed, and system performance is illustrated with time-resolved EPR spectra of the reaction center cation in photosystem 1 of green plant photosynthesis.

  8. Second-generation corneal deformation signal waveform analysis in normal, forme fruste keratoconic, and manifest keratoconic corneas after statistical correction for potentially confounding factors.

    PubMed

    Zhang, Lijun; Danesh, Jennifer; Tannan, Anjali; Phan, Vivian; Yu, Fei; Hamilton, D Rex

    2015-10-01

    To evaluate the difference in corneal biomechanical waveform parameters between manifest keratoconus, forme fruste keratoconus, and healthy eyes with a second-generation biomechanical waveform analyzer (Ocular Response Analyzer 2). Jules Stein Eye Institute, University of California, Los Angeles, California, USA. Retrospective chart review. The biomechanical waveform analyzer was used to obtain corneal hysteresis (CH), corneal resistance factor (CRF), and 37 biomechanical waveform parameters in manifest keratoconus eyes, forme fruste keratoconus eyes, and healthy eyes. Useful distinguishing parameters were found using t tests and a multivariable logistic regression model with stepwise variable selection. Potential confounders were controlled for. The study included 68 manifest keratoconus eyes, 64 forme fruste keratoconus eyes, and 249 healthy eyes. There was a statistical difference in the mean CRF between the normal group (10.2 mm Hg ± 1.7 [SD]) and keratoconus group (6.3 ± 1.9 mm Hg) (P = .003), and between the normal group and the forme fruste keratoconus group (7.8 ± 1.4 mm Hg) (P < .0001). There was no statistical difference in the mean CH between the normal group and the keratoconus group or the forme fruste keratoconus group. The CRF, height of peak 1 (P1) (P = .001), downslope of P1 (dslope1) (P = .027), upslope of peak 2 (P2) (P = .004), and downslope of P2 (P = .006) distinguished the normal group from the keratoconus groups. The CRF, downslope of P2 derived from upper 50% of applanation peak (P = .035), dslope1 (P = .014), and upslope of P1 (P = .008) distinguished the normal group from the forme fruste keratoconus group. Differences in multiple biomechanical waveform parameters can differentiate between healthy and diseased conditions and might improve early diagnosis of keratoconus and forme fruste keratoconus. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Differential effects of cannabinoid receptor agonist on social discrimination and contextual fear in amygdala and hippocampus.

    PubMed

    Segev, Amir; Akirav, Irit

    2011-04-01

    We examined whether the cannabinoid receptor agonist WIN55,212-2 (WIN; 5 µg/side) microinjected into the hippocampus or the amygdala would differentially affect memory processes in a neutral vs. an aversive task. In the aversive contextual fear task, WIN into the basolateral amygdala impaired fear acquisition/consolidation, but not retrieval. In the ventral subiculum (vSub), WIN impaired fear retrieval. In the neutral social discrimination task, WIN into the vSub impaired both acquisition/consolidation and retrieval, whereas in the medial amygdala WIN impaired acquisition. The results suggest that cannabinoid signaling differentially affects memory in a task-, region-, and memory stage-dependent manner.

  10. Feasibility of noninvasive fetal electrocardiographic monitoring in a clinical setting.

    PubMed

    Arya, Bhawna; Govindan, Rathinaswamy; Krishnan, Anita; Duplessis, Adre; Donofrio, Mary T

    2015-06-01

    Cardiac rhythm is an essential component of fetal cardiac evaluation. The Monica AN24 is a fetal heart rate monitor that may provide a quick, inexpensive modality for obtaining a noninvasive fetal electrocardiogram (fECG) in a clinical setting. The fECG device has the ability to acquire fECG signals and allow calculation of fetal cardiac time intervals between 16- and 42-week gestational age (GA). We aimed to demonstrate the feasibility of fECG acquisition in a busy fetal cardiology clinic using the Monica fetal heart rate monitor. This is a prospective observational pilot study of fECG acquired from fetuses referred for fetal echocardiography. Recordings were performed for 5-15 min. Maternal signals were attenuated and fECG averaged. fECG and fetal cardiac time intervals (PR, QRS, RR, and QT) were evaluated by two cardiologists independently and inter-observer reliability was assessed using intraclass coefficient (ICC). Sixty fECGs were collected from 50 mothers (mean GA 28.1 ± 6.1). Adequate signal-averaged waveforms were obtained in 20 studies with 259 cardiac cycles. Waveforms could not be obtained between 26 and 30 weeks. Fetal cardiac time intervals were measured and were reproducible for PR (ICC = 0.89; CI 0.77-0.94), QRS (ICC = 0.79; CI 0.51-0.91), and RR (ICC = 0.77; CI 0.53-0.88). QT ICC was poor due to suboptimal T-wave tracings. Acquisition of fECG and measurement of fetal cardiac time intervals is feasible in a clinical setting between 19- and 42-week GA, though tracings are difficult to obtain, especially between 26 and 30 weeks. There was high reliability in fetal cardiac time intervals measurements, except for QT. The device may be useful for assessing atrioventricular/intraventricular conduction in fetuses from 20 to 26 and >30 weeks. Techniques to improve signal acquisition, namely T-wave amplification, are ongoing.

  11. Using Antelope and Seiscomp in the framework of the Romanian Seismic Network

    NASA Astrophysics Data System (ADS)

    Marius Craiu, George; Craiu, Andreea; Marmureanu, Alexandru; Neagoe, Cristian

    2014-05-01

    The National Institute for Earth Physics (NIEP) operates a real-time seismic network designed to monitor the seismic activity on the Romania territory, dominated by the Vrancea intermediate-depth (60-200 km) earthquakes. The NIEP real-time network currently consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T, STS2, SH-1, S13, Mark l4c, Ranger, Gs21, Mark 22) and acceleration sensors (Episensor Kinemetrics). The primary goal of the real-time seismic network is to provide earthquake parameters from more broad-band stations with a high dynamic range, for more rapid and accurate computation of the locations and magnitudes of earthquakes. The Seedlink and AntelopeTM program packages are completely automated Antelope seismological system is run at the Data Center in Măgurele. The Antelope data acquisition and processing software is running for real-time processing and post processing. The Antelope real-time system provides automatic event detection, arrival picking, event location, and magnitude calculation. It also provides graphical displays and automatic location within near real time after a local, regional or teleseismic event has occurred SeisComP 3 is another automated system that is run at the NIEP and which provides the following features: data acquisition, data quality control, real-time data exchange and processing, network status monitoring, issuing event alerts, waveform archiving and data distribution, automatic event detection and location, easy access to relevant information about stations, waveforms, and recent earthquakes. The main goal of this paper is to compare both of these data acquisitions systems in order to improve their detection capabilities, location accuracy, magnitude and depth determination and reduce the RMS and other location errors.

  12. Design of temperature monitoring system based on CAN bus

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2017-10-01

    The remote temperature monitoring system based on the Controller Area Network (CAN) bus is designed to collect the multi-node remote temperature. By using the STM32F103 as main controller and multiple DS18B20s as temperature sensors, the system achieves a master-slave node data acquisition and transmission based on the CAN bus protocol. And making use of the serial port communication technology to communicate with the host computer, the system achieves the function of remote temperature storage, historical data show and the temperature waveform display.

  13. Joint Tactical Radio System Handheld, Manpack, and Small Form Fit Radios (JTRS HMS)

    DTIC Science & Technology

    2015-12-01

    Waveform (SRW). It is the primary squad level communication system. The Manpack Radio is for use in a classified environment and ports the following...0.0 0.0 0.0 0.0 Acq O&M 0.0 0.0 -- 0.0 0.0 0.0 0.0 Total 8242.6 8242.6 N/A 8755.6 9201.0 9201.0 10907.0 Confidence Level Confidence Level of cost...acquisition programs in which the Department has been successful. It is difficult to calculate mathematically the precise confidence levels

  14. Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, J. G.; Rajpal, R.; Mandaliya, H.

    2012-10-15

    This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.

  15. Relative Position of the Third Characteristic Peak of the Intracranial Pressure Pulse Waveform Morphology Differentiates Normal-Pressure Hydrocephalus Shunt Responders and Nonresponders.

    PubMed

    Hamilton, Robert; Fuller, Jennifer; Baldwin, Kevin; Vespa, Paul; Hu, Xiao; Bergsneider, Marvin

    2016-01-01

    The diversion of cerebrospinal fluid (CSF) remains the principal treatment option for patients with normal-pressure hydrocephalus (NPH). External lumbar drain (ELD) and overnight intracranial pressure (ICP) monitoring are popular prognostic tests for differentiating which patients will benefit from shunting. Using the morphological clustering and analysis of continuous intracranial pulse (MOCAIP) algorithm to extract morphological metrics from the overnight ICP signal, we hypothesize that changes in the third peak of the ICP pulse pressure waveform can be used to differentiate ELD responders and nonresponders. Our study involved 66 patients (72.2 ± 9.8 years) undergoing evaluation for possible NPH, which included overnight ICP monitoring and ELD. ELD outcome was based on clinical notes and divided into nonresponders and responders. MOCAIP was used to extract mean ICP, ICP wave amplitude (waveAmp), and a metric derived to study P3 elevation (P3ratio). Of the 66 patients, 7 were classified as nonresponders and 25 as significant responders. The mean ICP and waveAmp did not vary significantly (p = 0.19 and p = 0.41) between the outcome groups; however, the P3ratio did show a significant difference (p = 0.04). Initial results suggest that the P3ratio might be used as a prognostic indicator for ELD outcome.

  16. Temporal changes of the inner core from waveform doublets

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Song, X.

    2017-12-01

    Temporal changes of the Earth's inner core have been detected from earthquake waveform doublets (repeating sources with similar waveforms at the same station). Using doublets from events up to the present in the South Sandwich Island (SSI) region recorded by the station COLA (Alaska), we confirmed systematic temporal variations in the travel time of the inner-core-refracted phase (PKIKP, the DF branch). The DF phase arrives increasingly earlier than outer core phases (BC and AB) by rate of approximately 0.07 s per decade since 1970s. If we assume that the temporal change is caused by a shift of the lateral gradient from the inner core rotation as in previous studies, we estimate the rotation rate of 0.2-0.4 degree per year. We also analyzed the topography of the inner core boundary (ICB) using SSI waveform doublets recorded by seismic stations in Eurasia and North America with reflected phase (PKiKP) and refracted phases. There are clear temporal changes in the waveforms of doublets for PKiKP under Africa and Central America. In addition, for doublets recorded by three nearby stations (AAK, AML, and UCH), we observed systematic change in the relative travel time of PKiKP and PKIKP. The temporal change of the (PKiKP - PKIKP) differential time is always negative for the event pairs if both events are before 2007, while it fluctuates to positive if the later event occurs after 2007. The rapid temporal changes in space and time may indicate localized processes (e.g., freezing and melting) of the ICB in the recent decades under Africa. We are exploring 4D models consistent with the temporal changes.

  17. Pulse waveform analysis on temporal changes in ocular blood flow due to caffeine intake: a comparative study between habitual and non-habitual groups.

    PubMed

    Ismail, Aishah; Bhatti, Mehwish S; Faye, Ibrahima; Lu, Cheng Kai; Laude, Augustinus; Tang, Tong Boon

    2018-06-06

    To evaluate and compare the temporal changes in pulse waveform parameters of ocular blood flow (OBF) between non-habitual and habitual groups due to caffeine intake. This study was conducted on 19 healthy subjects (non-habitual 8; habitual 11), non-smoking and between 21 and 30 years of age. Using laser speckle flowgraphy (LSFG), three areas of optical nerve head were analyzed which are vessel, tissue, and overall, each with ten pulse waveform parameters, namely mean blur rate (MBR), fluctuation, skew, blowout score (BOS), blowout time (BOT), rising rate, falling rate, flow acceleration index (FAI), acceleration time index (ATI), and resistive index (RI). Two-way mixed ANOVA was used to determine the difference between every two groups where p < 0.05 is considered significant. There were significant differences between the two groups in several ocular pulse waveform parameters, namely MBR (overall, vessel, tissue), BOT (overall), rising rate (overall), and falling rate (vessel), all with p < 0.05. In addition, the ocular pulse waveform parameters, i.e., MBR (overall), skew (tissue), and BOT (tissue) showed significant temporal changes within the non-habitual group, but not within the habitual group. The temporal changes in parameters MBR (vessel, tissue), skew (overall, vessel), BOT (overall, vessel), rising rate (overall), falling rate (overall, vessel), and FAI (tissue) were significant for both groups (habitual and non-habitual) in response to caffeine intake. The experiment results demonstrated caffeine does modulate OBF significantly and response differently in non-habitual and habitual groups. Among all ten parameters, MBR and BOT were identified as the suitable biomarkers to differentiate between the two groups.

  18. Long-period fiber gratings as ultrafast optical differentiators.

    PubMed

    Kulishov, Mykola; Azaña, José

    2005-10-15

    It is demonstrated that a single, uniform long-period fiber grating (LPFG) working in the linear regime inherently behaves as an ultrafast optical temporal differentiator. Specifically, we show that the output temporal waveform in the core mode of a LPFG providing full energy coupling into the cladding mode is proportional to the first derivative of the optical temporal signal (e.g., optical pulse) launched at the input of the LPFG. Moreover, a LPFG providing full energy recoupling back from the cladding mode into the core mode inherently implements second-order temporal differentiation. Our numerical results have confirmed the feasibility of this simple, all-fiber approach to processing optical signals with temporal features in the picosecond and subpicosecond ranges.

  19. Calibration for the shear strain of 3-component borehole strainmeters in eastern Taiwan through Earth and ocean tidal waveform modeling

    NASA Astrophysics Data System (ADS)

    Canitano, Alexandre; Hsu, Ya-Ju; Lee, Hsin-Ming; Linde, Alan T.; Sacks, Selwyn

    2018-03-01

    We propose an approach for calibrating the horizontal tidal shear components [(differential extension (γ _1) and engineering shear (γ _2)] of two Sacks-Evertson (in Pap Meteorol Geophys 22:195-208, 1971) SES-3 borehole strainmeters installed in the Longitudinal Valley in eastern Taiwan. The method is based on the waveform reconstruction of the Earth and ocean tidal shear signals through linear regressions on strain gauge signals, with variable sensor azimuth. This method allows us to derive the orientation of the sensor without any initial constraints and to calibrate the shear strain components γ _1 and γ _2 against M_2 tidal constituent. The results illustrate the potential of tensor strainmeters for recording horizontal tidal shear strain.

  20. Reduced acoustic noise in diffusion tensor imaging on a compact MRI system.

    PubMed

    Tan, Ek T; Hardy, Christopher J; Shu, Yunhong; In, Myung-Ho; Guidon, Arnaud; Huston, John; Bernstein, Matt A; K F Foo, Thomas

    2018-06-01

    To investigate the feasibility of substantially reducing acoustic noise while performing diffusion tensor imaging (DTI) on a compact 3T (C3T) MRI scanner equipped with a 42-cm inner-diameter asymmetric gradient. A-weighted acoustic measurements were made using 10 mT/m-amplitude sinusoidal waveforms, corresponding to echo-planar imaging (EPI) echo spacing of 0.25 to 5.0 ms, on a conventional, whole-body 3T MRI and on the C3T. Acoustic measurements of DTI with trapezoidal EPI waveforms were then made at peak gradient performance on the C3T (80 mT/m amplitude, 700 T/m/s slew rate) and at derated performance (33 mT/m, 10 to 50 T/m/s) for acoustic noise reduction. DTI was acquired in two different phantoms and in seven human subjects, with and without gradient-derating corresponding to multi- and single-shot acquisitions, respectively. Sinusoidal waveforms on the C3T were quieter by 8.5 to 15.6 A-weighted decibels (dBA) on average as compared to the whole-body MRI. The derated multishot DTI acquisition noise level was only 8.7 dBA (at 13 T/m/s slew rate) above ambient, and was quieter than non-derated, single-shot DTI by 22.3 dBA; however, the scan time was almost quadrupled. Although derating resulted in negligible diffusivity differences in the phantoms, small biases in diffusivity measurements were observed in human subjects (apparent diffusion coefficient = +9.3 ± 8.8%, fractional anisotropy = +3.2 ± 11.2%, radial diffusivity = +9.4 ± 16.8%, parallel diffusivity = +10.3 ± 8.4%). The feasibility of achieving reduced acoustic noise levels with whole-brain DTI on the C3T MRI was demonstrated. Magn Reson Med 79:2902-2911, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. The electronics, trigger and data acquisition system for the liquid argon time projection chamber of the DarkSide-50 search for dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.

    The DarkSide-50 experiment at the Laboratori Nazionali del Gran Sasso is a search for dark matter using a dual phase time projection chamber with 50 kg of low radioactivity argon as target. Light signals from interactions in the argon are detected by a system of 38 photo-multiplier tubes (PMTs), 19 above and 19 below the TPC volume inside the argon cryostat. We describe the electronics which processes the signals from the photo-multipliers, the trigger system which identifies events of interest, and the data-acquisition system which records the data for further analysis. The electronics include resistive voltage dividers on the PMTs,more » custom pre-amplifiers mounted directly on the PMT voltage dividers in the liquid argon, and custom amplifier/discriminators (at room temperature). After amplification, the PMT signals are digitized in CAEN waveform digitizers, and CAEN logic modules are used to construct the trigger, the data acquisition system for the TPC is based on the Fermilab "artdaq" software. The system has been in operation since early 2014.« less

  2. The electronics, trigger and data acquisition system for the liquid argon time projection chamber of the DarkSide-50 search for dark matter

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Asner, D. M.; Ave, M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Chepurnov, A.; Cicaló, C.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Rosa, G.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Dionisi, C.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; Ianni, A.; James, I.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Luitz, S.; Ma, Y.; Machado, A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Navrer Agasson, A.; Nelson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-12-01

    The DarkSide-50 experiment at the Laboratori Nazionali del Gran Sasso is a search for dark matter using a dual phase time projection chamber with 50 kg of low radioactivity argon as target. Light signals from interactions in the argon are detected by a system of 38 photo-multiplier tubes (PMTs), 19 above and 19 below the TPC volume inside the argon cryostat. We describe the electronics which processes the signals from the photo-multipliers, the trigger system which identifies events of interest, and the data-acquisition system which records the data for further analysis. The electronics include resistive voltage dividers on the PMTs, custom pre-amplifiers mounted directly on the PMT voltage dividers in the liquid argon, and custom amplifier/discriminators (at room temperature). After amplification, the PMT signals are digitized in CAEN waveform digitizers, and CAEN logic modules are used to construct the trigger; the data acquisition system for the TPC is based on the Fermilab artdaq software. The system has been in operation since early 2014.

  3. Novel Maximum-based Timing Acquisition for Spread-Spectrum Communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibbetty, Taylor; Moradiz, Hussein; Farhang-Boroujeny, Behrouz

    This paper proposes and analyzes a new packet detection and timing acquisition method for spread spectrum systems. The proposed method provides an enhancement over the typical thresholding techniques that have been proposed for direct sequence spread spectrum (DS-SS). The effective implementation of thresholding methods typically require accurate knowledge of the received signal-to-noise ratio (SNR), which is particularly difficult to estimate in spread spectrum systems. Instead, we propose a method which utilizes a consistency metric of the location of maximum samples at the output of a filter matched to the spread spectrum waveform to achieve acquisition, and does not require knowledgemore » of the received SNR. Through theoretical study, we show that the proposed method offers a low probability of missed detection over a large range of SNR with a corresponding probability of false alarm far lower than other methods. Computer simulations that corroborate our theoretical results are also presented. Although our work here has been motivated by our previous study of a filter bank multicarrier spread-spectrum (FB-MC-SS) system, the proposed method is applicable to DS-SS systems as well.« less

  4. Sequential time interleaved random equivalent sampling for repetitive signal.

    PubMed

    Zhao, Yijiu; Liu, Jingjing

    2016-12-01

    Compressed sensing (CS) based sampling techniques exhibit many advantages over other existing approaches for sparse signal spectrum sensing; they are also incorporated into non-uniform sampling signal reconstruction to improve the efficiency, such as random equivalent sampling (RES). However, in CS based RES, only one sample of each acquisition is considered in the signal reconstruction stage, and it will result in more acquisition runs and longer sampling time. In this paper, a sampling sequence is taken in each RES acquisition run, and the corresponding block measurement matrix is constructed using a Whittaker-Shannon interpolation formula. All the block matrices are combined into an equivalent measurement matrix with respect to all sampling sequences. We implemented the proposed approach with a multi-cores analog-to-digital converter (ADC), whose ADC cores are time interleaved. A prototype realization of this proposed CS based sequential random equivalent sampling method has been developed. It is able to capture an analog waveform at an equivalent sampling rate of 40 GHz while sampled at 1 GHz physically. Experiments indicate that, for a sparse signal, the proposed CS based sequential random equivalent sampling exhibits high efficiency.

  5. The electronics, trigger and data acquisition system for the liquid argon time projection chamber of the DarkSide-50 search for dark matter

    DOE PAGES

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...

    2017-12-01

    The DarkSide-50 experiment at the Laboratori Nazionali del Gran Sasso is a search for dark matter using a dual phase time projection chamber with 50 kg of low radioactivity argon as target. Light signals from interactions in the argon are detected by a system of 38 photo-multiplier tubes (PMTs), 19 above and 19 below the TPC volume inside the argon cryostat. We describe the electronics which processes the signals from the photo-multipliers, the trigger system which identifies events of interest, and the data-acquisition system which records the data for further analysis. The electronics include resistive voltage dividers on the PMTs,more » custom pre-amplifiers mounted directly on the PMT voltage dividers in the liquid argon, and custom amplifier/discriminators (at room temperature). After amplification, the PMT signals are digitized in CAEN waveform digitizers, and CAEN logic modules are used to construct the trigger, the data acquisition system for the TPC is based on the Fermilab "artdaq" software. The system has been in operation since early 2014.« less

  6. Clock and trigger synchronization between several chassis of digital data acquisition modules

    NASA Astrophysics Data System (ADS)

    Hennig, W.; Tan, H.; Walby, M.; Grudberg, P.; Fallu-Labruyere, A.; Warburton, W. K.; Vaman, C.; Starosta, K.; Miller, D.

    2007-08-01

    In applications with segmented high purity Ge detectors or other detector arrays with tens or hundreds of channels, the high development cost and limited flexibility of application specific integrated circuits outweigh their benefits of low power and small size. The readout electronics typically consist of multi-channel data acquisition modules in a common chassis for power, clock and trigger distribution, and data readout. As arrays become larger and reach several hundred channels, the readout electronics have to be divided over several chassis, but still must maintain precise synchronization of clocks and trigger signals across all channels. This division becomes necessary not only because of limits given by the instrumentation standards on module size and chassis slot numbers, but also because data readout times increase when more modules share the same data bus and because power requirements approach the limits of readily available power supplies. In this paper, we present a method for distributing clocks and triggers between 4 PXI chassis containing DGF Pixie-16 modules with up to 226 acquisition channels per chassis. The data acquisition system is intended to instrument the over 600 channels of the SeGA detector array at the National Superconducting Cyclotron Laboratory. Our solution is designed to achieve synchronous acquisition of detector waveforms from all channels with a jitter of less than 1 ns, and can be extended to a larger number of chassis if desired.

  7. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition.

    PubMed

    Gong, Zhaoyuan; Walls, Jamie D

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T 2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T 2 -relaxing species are more suppressed relative to the sharp signals from slow T 2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition

    NASA Astrophysics Data System (ADS)

    Gong, Zhaoyuan; Walls, Jamie D.

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T2 -relaxing species are more suppressed relative to the sharp signals from slow T2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented.

  9. Method and apparatus for electrospark deposition

    DOEpatents

    Bailey, Jeffrey A.; Johnson, Roger N.; Park, Walter R.; Munley, John T.

    2004-12-28

    A method and apparatus for controlling electrospark deposition (ESD) comprises using electrical variable waveforms from the ESD process as a feedback parameter. The method comprises measuring a plurality of peak amplitudes from a series of electrical energy pulses delivered to an electrode tip. The maximum peak value from among the plurality of peak amplitudes correlates to the contact force between the electrode tip and a workpiece. The method further comprises comparing the maximum peak value to a set point to determine an offset and optimizing the contact force according to the value of the offset. The apparatus comprises an electrode tip connected to an electrical energy wave generator and an electrical signal sensor, which connects to a high-speed data acquisition card. An actuator provides relative motion between the electrode tip and a workpiece by receiving a feedback drive signal from a processor that is operably connected to the actuator and the high-speed data acquisition card.

  10. Rapid mapping of polarization switching through complete information acquisition

    NASA Astrophysics Data System (ADS)

    Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen

    2016-12-01

    Polarization switching in ferroelectric and multiferroic materials underpins a broad range of current and emergent applications, ranging from random access memories to field-effect transistors, and tunnelling devices. Switching in these materials is exquisitely sensitive to local defects and microstructure on the nanometre scale, necessitating spatially resolved high-resolution studies of these phenomena. Classical piezoresponse force microscopy and spectroscopy, although providing necessary spatial resolution, are fundamentally limited in data acquisition rates and energy resolution. This limitation stems from their two-tiered measurement protocol that combines slow (~1 s) switching and fast (~10 kHz-1 MHz) detection waveforms. Here we develop an approach for rapid probing of ferroelectric switching using direct strain detection of material response to probe bias. This approach, facilitated by high-sensitivity electronics and adaptive filtering, enables spectroscopic imaging at a rate 3,504 times faster the current state of the art, achieving high-veracity imaging of polarization dynamics in complex microstructures.

  11. Quantification of the uncertainty in coronary CTA plaque measurements using dynamic cardiac phantom and 3D-printed plaque models

    NASA Astrophysics Data System (ADS)

    Richards, Taylor; Sturgeon, Gregory M.; Ramirez-Giraldo, Juan Carlos; Rubin, Geoffrey; Segars, Paul; Samei, Ehsan

    2017-03-01

    The purpose of this study was to quantify the accuracy of coronary computed tomography angiography (CTA) stenosis measurements using newly developed physical coronary plaque models attached to a base dynamic cardiac phantom (Shelley Medical DHP-01). Coronary plaque models (5 mm diameter, 50% stenosis, and 32 mm long) were designed and 3D-printed with tissue equivalent materials (calcified plaque with iodine enhanced lumen). Realistic cardiac motion was achieved by fitting known cardiac motion vectors to left ventricle volume-time curves to create synchronized heart motion profiles executed by the base cardiac phantom. Realistic coronary CTA acquisition was accomplished by synthesizing corresponding ECG waveforms for gating and reconstruction purposes. All scans were acquired using a retrospective gating technique on a dual-source CT system (Siemens SOMATOM FLASH) with 75ms temporal resolution. Multi-planar reformatted images were reconstructed along vessel centerlines and the enhanced lumens were manually segmented by 5 independent operators. On average, the stenosis measurement accuracy was 0.9% positive bias for the motion free condition (0 bpm). The measurement accuracy monotonically decreased to 18.5% negative bias at 90 bpm. Contrast-tonoise (CNR), vessel circularity, and segmentation conformity also decreased monotonically with increasing heart rate. These results demonstrate successful implementation of the base cardiac phantom with 3D-printed coronary plaque models, adjustable motion profiles, and coordinated ECG waveforms. They further show the utility of the model to ascertain metrics of coronary CT accuracy and image quality under a variety of plaque, motion, and acquisition conditions.

  12. bpshape wk4: a computer program that implements a physiological model for analyzing the shape of blood pressure waveforms

    NASA Technical Reports Server (NTRS)

    Ocasio, W. C.; Rigney, D. R.; Clark, K. P.; Mark, R. G.; Goldberger, A. L. (Principal Investigator)

    1993-01-01

    We describe the theory and computer implementation of a newly-derived mathematical model for analyzing the shape of blood pressure waveforms. Input to the program consists of an ECG signal, plus a single continuous channel of peripheral blood pressure, which is often obtained invasively from an indwelling catheter during intensive-care monitoring or non-invasively from a tonometer. Output from the program includes a set of parameter estimates, made for every heart beat. Parameters of the model can be interpreted in terms of the capacitance of large arteries, the capacitance of peripheral arteries, the inertance of blood flow, the peripheral resistance, and arterial pressure due to basal vascular tone. Aortic flow due to contraction of the left ventricle is represented by a forcing function in the form of a descending ramp, the area under which represents the stroke volume. Differential equations describing the model are solved by the method of Laplace transforms, permitting rapid parameter estimation by the Levenberg-Marquardt algorithm. Parameter estimates and their confidence intervals are given in six examples, which are chosen to represent a variety of pressure waveforms that are observed during intensive-care monitoring. The examples demonstrate that some of the parameters may fluctuate markedly from beat to beat. Our program will find application in projects that are intended to correlate the details of the blood pressure waveform with other physiological variables, pathological conditions, and the effects of interventions.

  13. A Study of New Pulse Auscultation System

    PubMed Central

    Chen, Ying-Yun; Chang, Rong-Seng

    2015-01-01

    This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT) and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine’s pulsing techniques, where pulse signals at places called “cun”, “guan” and “chi” of the left hand were measured during lifting (100 g), searching (125 g) and pressing (150 g) actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners’ objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision. PMID:25875192

  14. A study of new pulse auscultation system.

    PubMed

    Chen, Ying-Yun; Chang, Rong-Seng

    2015-04-14

    This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT) and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine's pulsing techniques, where pulse signals at places called "cun", "guan" and "chi" of the left hand were measured during lifting (100 g), searching (125 g) and pressing (150 g) actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners' objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  15. Quantitative evaluation method for differentiation of C2C12 myoblasts by ultrasonic microscopy

    NASA Astrophysics Data System (ADS)

    Takanashi, Kyoichi; Washiya, Mamoru; Ota, Kazuki; Yoshida, Sachiko; Hozumi, Naohiro; Kobayashi, Kazuto

    2017-07-01

    Cell differentiation was evaluated by ultrasonic microscopy. However, there were some regions that showed a lower acoustic impedance than the culture liquid. It was considered that, in such regions, the cells were not perfectly in contact with the film substrate. Hence, a waveform analysis was performed, and compensated acoustic impedances in such regions were in a reasonable range of values. By the same analysis, the displacements of partially floated cells were also successfully calculated. The elapsed day transitions of the compensated acoustic impedances and displacements were successfully evaluated. In the process of differentiation, actin fibers comprising the cytoskeleton are supposed to loosen in order to induce cellular fusion. In addition, the progress in cell differentiation accompanied by a change into a three-dimensional structure can partially be assessed by the displacement between a cell and a cultured film. Hence, we believe that cell differentiation can be evaluated using an ultrasonic microscope.

  16. Effects of Stress and Sex on Acquisition and Consolidation of Human Fear Conditioning

    ERIC Educational Resources Information Center

    Kuhn, Cynthia M.; LaBar, Kevin S.; Zorawski, Michael; Blanding, Nineequa Q.

    2006-01-01

    We examined the relationship between stress hormone (cortisol) release and acquisition and consolidation of conditioned fear learning in healthy adults. Participants underwent acquisition of differential fear conditioning, and consolidation was assessed in a 24-h delayed extinction test. The acquisition phase was immediately followed by an 11-min…

  17. Bessel smoothing filter for spectral-element mesh

    NASA Astrophysics Data System (ADS)

    Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.

    2017-06-01

    Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the efficiency and flexibility of the approach proposed.

  18. Use of a Doppler pulmonary artery catheter for continuous measurement of right ventricular pump function and contractility during single lung transplantation.

    PubMed

    Heerdt, P M; Pond, C G; Kussman, M K; Triantafillou, A N

    1993-01-01

    Despite numerous technologic advances in intraoperative monitoring, the only methods routinely available for assessment of right ventricular function in lung transplant recipients are continuous measurement of right heart pressures and intermittent thermodilution determination of cardiac output and ejection fraction. Additional data may now be obtained with transesophageal echocardiography, although this technology is expensive and not widely available and requires diverting attention from a potentially unstable patient for data acquisition and analysis. Recently, a Doppler pulmonary artery catheter was introduced that measures beat-to-beat pulmonary artery blood flow-velocity, cross sectional area, and volume flow. Because of data indicating that acceleration of blood in the pulmonary artery (measured as the first derivative of either the velocity or flow waveform) is a sensitive indicator of right ventricular contractility, we have used waveforms obtained with the catheter for assessment of right ventricular pump function (stroke volume and peak pulmonary artery flow rate) and contractility in heart surgery patients. We report here our experience with this method in two patients undergoing left single lung transplantation.

  19. Differential Effects of Reading and Memorization of Paired Associates on Vocabulary Acquisition in Adult Learners of English as a Second Language.

    ERIC Educational Resources Information Center

    Hermann, Frank

    2003-01-01

    Investigates differential effects of reading and paired associate learning on vocabulary acquisition of adult English-as-a-Second-Language learners. Two groups of university students participated. One group read "Animal Farm" while the comparison group memorized a list of words preselected from the novel. Suggests that for encouraging long-term…

  20. Relationship of D'' structure with the velocity variations near the inner-core boundary

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Nian; Ni, Sidao; Helmberger, Don

    2002-06-01

    Variations in regional differential times between PKiKP (i) and PKIKP (I) have been attributed to hemispheric P-velocity variations of about 1% in the upper 100 km of the inner core (referred to as HIC). The top of the inner core appears relatively fast beneath Asia where D'' is also fast. An alternative interpretation could be the lateral variation in P velocity at the lowermost outer core (HOC) producing the same differential times. To resolve this issue, we introduce the diffracted PKP phase near the B caustic (Bdiff) in the range of 139-145° epicenter distances, and the corresponding differential times between Bdiff and PKiKP and PKIKP as observed on broadband arrays. Due to the long-wavelength nature of Bdiff, we scaled the S-wave tomography model with k values (k ≡ dlnVs/dlnVp) to obtain large-scale P-wave velocity structure in the lower mantle as proposed by earlier studies. Waveform synthetics of Bdiff constructed with small k's predict complex waveforms not commonly observed, confirming the validity of large scaling factor k. With P-velocity in lower mantle constrained at large scale, the extra travel-time constraint imposed by Bdiff helps to resolve the HOC-HIC issue. Our preliminary results suggest k > 2 for the lowermost mantle and support HIC hypothesis. An important implication is that there appears to be a relationship of D'' velocity structures with the structures near the inner core boundary via core dynamics.

  1. Core-Mantle Boundary Complexities beneath the Mid-Pacific

    NASA Astrophysics Data System (ADS)

    Sun, D.; Helmberger, D. V.; Jackson, J. M.

    2016-12-01

    The detailed core-mantle boundary (CMB) structures beneath the Mid-Pacific are important to map the boundary of Large Low Shear Velocity Province (LLSVP) and the location of ultra-low velocity zone (ULVZ) related to the LLSVP and the D" layer, which are crucial for answering the key questions regarding to the mantle dynamics. Seismic data from deep earthquakes in the Fiji-Tonga region recorded by stations of USArray provide great sampling of the CMB beneath the Mid-Pacific. Here we explore the USArray data with different seismic phases to study the CMB complexities beneath the Mid-Pacific. First, we examined the differential travel time and amplitude between ScS and S for data at western US and confirm the northeastern boundary of the mid-Pacific LLSVP. The delayed ScS-S travel times and smaller amplitude of ScS require the existence of ULVZ locally. Secondly, the Sdiff data recorded by stations at central US shows variation in multi-pathing, that is, the presence of secondary arrivals following the S phase at diffracted distances (Sdiff) which suggests that the waveform complexity is due to structures at the eastern edge of the mid-Pacific LLSVP. This study reinforces previous studies that indicate late arrivals occurring after the primary Sdiff arrivals. A tapered wedge structure with low shear velocity allows for wave energy trapping, producing the observed waveform complexity and delayed arrivals at large distances. The location of the low velocity anomaly agrees with that inferred from the ScS-S measurements. We also observed advanced SV arrivals, which can be explained by the emerging of the D" discontinuity to the east of the boundary of the LLSVP to produce a "pseudo anisotropy". Thirdly, the arrivals of the SPdKS phase support the presence of an ULVZ within a two-humped LLSVP. A sharp 10 secs jump of the differential travel time between S and SKS (TS-SKS) across distance range of 5° is observed. The associated SKS waveform distortions suggest that the differential travel time anomaly is mainly controlled by the SKS, which is explained by a possible slab subducted to the lower mantle.

  2. Automatic control of a negative ion source

    NASA Astrophysics Data System (ADS)

    Saadatmand, K.; Sredniawski, J.; Solensten, L.

    1989-04-01

    A CAMAC based control architecture is devised for a Berkeley-type H - volume ion source [1]. The architecture employs three 80386 TM PCs. One PC is dedicated to control and monitoring of source operation. The other PC functions with digitizers to provide data acquisition of waveforms. The third PC is used for off-line analysis. Initially, operation of the source was put under remote computer control (supervisory). This was followed by development of an automated startup procedure. Finally, a study of the physics of operation is now underway to establish a data base from which automatic beam optimization can be derived.

  3. 1998 Conference on Precision Electromagnetic Measurements Digest. Proceedings.

    NASA Astrophysics Data System (ADS)

    Nelson, T. L.

    The following topics were dealt with: fundamental constants; caesium standards; AC-DC transfer; impedance measurement; length measurement; units; statistics; cryogenic resonators; time transfer; QED; resistance scaling and bridges; mass measurement; atomic fountains and clocks; single electron transport; Newtonian constant of gravitation; stabilised lasers and frequency measurements; cryogenic current comparators; optical frequency standards; high voltage devices and systems; international compatibility; magnetic measurement; precision power measurement; high resolution spectroscopy; DC transport standards; waveform acquisition and analysis; ion trap standards; optical metrology; quantised Hall effect; Josephson array comparisons; signal generation and measurement; Avogadro constant; microwave networks; wideband power standards; antennas, fields and EMC; quantum-based standards.

  4. 48 CFR 31.205-35 - Relocation costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Relocation costs. 31.205-35 Section 31.205-35 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL... residences times the current balance of the old mortgage times 3 years. (ii) When mortgage differential...

  5. 48 CFR 31.205-35 - Relocation costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Relocation costs. 31.205-35 Section 31.205-35 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL... residences times the current balance of the old mortgage times 3 years. (ii) When mortgage differential...

  6. 48 CFR 31.205-35 - Relocation costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Relocation costs. 31.205-35 Section 31.205-35 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL... residences times the current balance of the old mortgage times 3 years. (ii) When mortgage differential...

  7. 48 CFR 31.205-35 - Relocation costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Relocation costs. 31.205-35 Section 31.205-35 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL... residences times the current balance of the old mortgage times 3 years. (ii) When mortgage differential...

  8. Full-waveform and discrete-return lidar in salt marsh environments: An assessment of biophysical parameters, vertical uncertatinty, and nonparametric dem correction

    NASA Astrophysics Data System (ADS)

    Rogers, Jeffrey N.

    High-resolution and high-accuracy elevation data sets of coastal salt marsh environments are necessary to support restoration and other management initiatives, such as adaptation to sea level rise. Lidar (light detection and ranging) data may serve this need by enabling efficient acquisition of detailed elevation data from an airborne platform. However, previous research has revealed that lidar data tend to have lower vertical accuracy (i.e., greater uncertainty) in salt marshes than in other environments. The increase in vertical uncertainty in lidar data of salt marshes can be attributed primarily to low, dense-growing salt marsh vegetation. Unfortunately, this increased vertical uncertainty often renders lidar-derived digital elevation models (DEM) ineffective for analysis of topographic features controlling tidal inundation frequency and ecology. This study aims to address these challenges by providing a detailed assessment of the factors influencing lidar-derived elevation uncertainty in marshes. The information gained from this assessment is then used to: 1) test the ability to predict marsh vegetation biophysical parameters from lidar-derived metrics, and 2) develop a method for improving salt marsh DEM accuracy. Discrete-return and full-waveform lidar, along with RTK GNSS (Real-time Kinematic Global Navigation Satellite System) reference data, were acquired for four salt marsh systems characterized by four major taxa (Spartina alterniflora, Spartina patens, Distichlis spicata, and Salicornia spp.) on Cape Cod, Massachusetts. These data were used to: 1) develop an innovative combination of full-waveform lidar and field methods to assess the vertical distribution of aboveground biomass as well as its light blocking properties; 2) investigate lidar elevation bias and standard deviation using varying interpolation and filtering methods; 3) evaluate the effects of seasonality (temporal differences between peak growth and senescent conditions) using lidar data flown in summer and spring; 4) create new products, called Relative Uncertainty Surfaces (RUS), from lidar waveform-derived metrics and determine their utility; and 5) develop and test five nonparametric regression model algorithms (MARS -- Multivariate Adaptive Regression, CART -- Classification and Regression Trees, TreeNet, Random Forests, and GPSM -- Generalized Path Seeker) with 13 predictor variables derived from both discrete and full waveform lidar sources in order to develop a method of improving lidar DEM quality. Results of this study indicate strong correlations for Spartina alterniflora (r > 0.9) between vertical biomass (VB), the distribution of vegetation biomass by height, and vertical obscuration (VO), the measure of the vertical distribution of the ratio of vegetation to airspace. It was determined that simple, feature-based lidar waveform metrics, such as waveform width, can provide new information to estimate salt marsh vegetation biophysical parameters such as vegetation height. The results also clearly illustrate the importance of seasonality, species, and lidar interpolation and filtering methods on elevation uncertainty in salt marshes. Relative uncertainty surfaces generated from lidar waveform features were determined useful in qualitative/visual assessment of lidar elevation uncertainty and correlate well with vegetation height and presence of Spartina alterniflora. Finally, DEMs generated using full-waveform predictor models produced corrections (compared to ground based RTK GNSS elevations) with R2 values of up to 0.98 and slopes within 4% of a perfect 1:1 correlation. The findings from this research have strong potential to advance tidal marsh mapping, research and management initiatives.

  9. A photodiode amplifier system for pulse-by-pulse intensity measurement of an x-ray free electron laser.

    PubMed

    Kudo, Togo; Tono, Kensuke; Yabashi, Makina; Togashi, Tadashi; Sato, Takahiro; Inubushi, Yuichi; Omodani, Motohiko; Kirihara, Yoichi; Matsushita, Tomohiro; Kobayashi, Kazuo; Yamaga, Mitsuhiro; Uchiyama, Sadayuki; Hatsui, Takaki

    2012-04-01

    We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser. © 2012 American Institute of Physics

  10. The electrophysiology of thyroid surgery: electrophysiologic and muscular responses with stimulation of the vagus nerve, recurrent laryngeal nerve, and external branch of the superior laryngeal nerve.

    PubMed

    Liddy, Whitney; Barber, Samuel R; Cinquepalmi, Matteo; Lin, Brian M; Patricio, Stephanie; Kyriazidis, Natalia; Bellotti, Carlo; Kamani, Dipti; Mahamad, Sadhana; Dralle, Henning; Schneider, Rick; Dionigi, Gianlorenzo; Barczynski, Marcin; Wu, Che-Wei; Chiang, Feng Yu; Randolph, Gregory

    2017-03-01

    Correlation of physiologically important electromyographic (EMG) waveforms with demonstrable muscle activation is important for the reliable interpretation of evoked waveforms during intraoperative neural monitoring (IONM) of the vagus nerve, recurrent laryngeal nerve (RLN), and external branch of the superior laryngeal nerve (EBSLN) in thyroid surgery. Retrospective chart review. Data were reviewed retrospectively for thyroid surgery patients with laryngeal nerve IONM from January to December, 2015. EMG responses to monopolar stimulation of the vagus/RLN and EBSLN were recorded in bilateral vocalis, cricothyroid (CTM), and strap muscles using endotracheal tube-based surface and intramuscular hook electrodes, respectively. Target muscles for vagal/RLN and EBSLN stimulation were the ipsilateral vocalis and CTM, respectively. All other recording channels were nontarget muscles. Fifty surgical sides were identified in 37 subjects. All target muscle mean amplitudes were significantly higher than in nontarget muscles. With vagal/RLN stimulation, target ipsilateral vocalis mean amplitude was 1,095.7 μV (mean difference range = -814.1 to -1,078 μV, P < .0001). For EBSLN stimulation, target ipsilateral CTM mean amplitude was 6,379.3 μV (mean difference range = -6,222.6 to -6,362.3 μV, P < .0001). Target muscle large-amplitude EMG responses correlated with meaningful visual or palpable muscular responses, whereas nontarget EMG responses showed no meaningful muscle activation. Target and nontarget laryngeal muscles are differentiated based on divergence of EMG response directly correlating with presence or absence of visual and palpable muscle activation. Low-amplitude EMG waveforms in nontarget muscles with neural stimulation can be explained by the concept of far-field artifactual waveforms and do not correspond to a true muscular response. The surgeon should be aware of these nonphysiologic waveforms when interpreting and applying IONM during thyroid surgery. 4 Laryngoscope, 127:764-771, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Gender and Number Agreement in the Oral Production of Arabic Heritage Speakers

    ERIC Educational Resources Information Center

    Albirini, Abdulkafi; Benmamoun, Elabbas; Chakrani, Brahim

    2013-01-01

    Heritage language acquisition has been characterized by various asymmetries, including the differential acquisition rates of various linguistic areas and the unbalanced acquisition of different categories within a single area. This paper examines Arabic heritage speakers' knowledge of subject-verb agreement versus noun-adjective agreement with the…

  12. A compositional origin to ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Brown, Samuel P.; Thorne, Michael S.; Miyagi, Lowell; Rost, Sebastian

    2015-02-01

    We analyzed vertical component short-period ScP waveforms for 26 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array in central Australia. These waveforms show strong precursory and postcursory seismic arrivals consistent with ultralow-velocity zone (ULVZ) layering beneath the Coral Sea. We used the Viterbi sparse spike detection method to measure differential travel times and amplitudes of the postcursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our measurements to a database of 340,000 synthetic seismograms finding that these data are best fit by a ULVZ model with an S wave velocity reduction of 24%, a P wave velocity reduction of 23%, a thickness of 8.5 km, and a density increase of 6%. This 1:1 VS:VP velocity decrease is commensurate with a ULVZ compositional origin and is most consistent with highly iron enriched ferropericlase.

  13. Neural Processing of Facial Identity and Emotion in Infants at High-Risk for Autism Spectrum Disorders

    PubMed Central

    Fox, Sharon E.; Wagner, Jennifer B.; Shrock, Christine L.; Tager-Flusberg, Helen; Nelson, Charles A.

    2013-01-01

    Deficits in face processing and social impairment are core characteristics of autism spectrum disorder. The present work examined 7-month-old infants at high-risk for developing autism and typically developing controls at low-risk, using a face perception task designed to differentiate between the effects of face identity and facial emotions on neural response using functional Near-Infrared Spectroscopy. In addition, we employed independent component analysis, as well as a novel method of condition-related component selection and classification to identify group differences in hemodynamic waveforms and response distributions associated with face and emotion processing. The results indicate similarities of waveforms, but differences in the magnitude, spatial distribution, and timing of responses between groups. These early differences in local cortical regions and the hemodynamic response may, in turn, contribute to differences in patterns of functional connectivity. PMID:23576966

  14. Acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction

    NASA Astrophysics Data System (ADS)

    Li, Yi-Ling; Ma, Qing-Yu; Zhang, Dong; Xia, Rong-Min

    2011-08-01

    An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is proposed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiation and acoustic waveform detection with a planar piston transducer. The collected waveforms provide information about the conductivity boundaries in various vibration intensities and phases due to the acoustic dipole radiation pattern. Combined with the simplified back projection algorithm, the conductivity configuration of the measured layer in terms of shape and size can be reconstructed with obvious border stripes. The numerical simulation is performed for a two-layer cylindrical phantom model and it is also verified by the experimental results of MAT-MI for a tissue-like sample phantom. The proposed model suggests a potential application of conductivity differentiation and provides a universal basis for the further study of conductivity reconstruction for MAT-MI.

  15. On the sensitivity of teleseismic full-waveform inversion to earth parametrization, initial model and acquisition design

    NASA Astrophysics Data System (ADS)

    Beller, S.; Monteiller, V.; Combe, L.; Operto, S.; Nolet, G.

    2018-02-01

    Full-waveform inversion (FWI) is not yet a mature imaging technology for lithospheric imaging from teleseismic data. Therefore, its promise and pitfalls need to be assessed more accurately according to the specifications of teleseismic experiments. Three important issues are related to (1) the choice of the lithospheric parametrization for optimization and visualization, (2) the initial model and (3) the acquisition design, in particular in terms of receiver spread and sampling. These three issues are investigated with a realistic synthetic example inspired by the CIFALPS experiment in the Western Alps. Isotropic elastic FWI is implemented with an adjoint-state formalism and aims to update three parameter classes by minimization of a classical least-squares difference-based misfit function. Three different subsurface parametrizations, combining density (ρ) with P and S wave speeds (Vp and Vs) , P and S impedances (Ip and Is), or elastic moduli (λ and μ) are first discussed based on their radiation patterns before their assessment by FWI. We conclude that the (ρ, λ, μ) parametrization provides the FWI models that best correlate with the true ones after recombining a posteriori the (ρ, λ, μ) optimization parameters into Ip and Is. Owing to the low frequency content of teleseismic data, 1-D reference global models as PREM provide sufficiently accurate initial models for FWI after smoothing that is necessary to remove the imprint of the layering. Two kinds of station deployments are assessed: coarse areal geometry versus dense linear one. We unambiguously conclude that a coarse areal geometry should be favoured as it dramatically increases the penetration in depth of the imaging as well as the horizontal resolution. This results because the areal geometry significantly increases local wavenumber coverage, through a broader sampling of the scattering and dip angles, compared to a linear deployment.

  16. Uncertainty Estimation in Elastic Full Waveform Inversion by Utilising the Hessian Matrix

    NASA Astrophysics Data System (ADS)

    Hagen, V. S.; Arntsen, B.; Raknes, E. B.

    2017-12-01

    Elastic Full Waveform Inversion (EFWI) is a computationally intensive iterative method for estimating elastic model parameters. A key element of EFWI is the numerical solution of the elastic wave equation which lies as a foundation to quantify the mismatch between synthetic (modelled) and true (real) measured seismic data. The misfit between the modelled and true receiver data is used to update the parameter model to yield a better fit between the modelled and true receiver signal. A common approach to the EFWI model update problem is to use a conjugate gradient search method. In this approach the resolution and cross-coupling for the estimated parameter update can be found by computing the full Hessian matrix. Resolution of the estimated model parameters depend on the chosen parametrisation, acquisition geometry, and temporal frequency range. Although some understanding has been gained, it is still not clear which elastic parameters can be reliably estimated under which conditions. With few exceptions, previous analyses have been based on arguments using radiation pattern analysis. We use the known adjoint-state technique with an expansion to compute the Hessian acting on a model perturbation to conduct our study. The Hessian is used to infer parameter resolution and cross-coupling for different selections of models, acquisition geometries, and data types, including streamer and ocean bottom seismic recordings. Information about the model uncertainty is obtained from the exact Hessian, and is essential when evaluating the quality of estimated parameters due to the strong influence of source-receiver geometry and frequency content. Investigation is done on both a homogeneous model and the Gullfaks model where we illustrate the influence of offset on parameter resolution and cross-coupling as a way of estimating uncertainty.

  17. Inner core rotation from event-pair analysis

    NASA Astrophysics Data System (ADS)

    Song, Xiaodong; Poupinet, Georges

    2007-09-01

    The last decade has witnessed an animated debate on whether the inner core rotation is a fact or an artifact. Here we examine the temporal change of inner core waves using a technique that compares differential travel times at the same station but between two events. The method does not require precise knowledge of earthquake locations and earth models. The pairing of the events creates a large data set for the application of statistical tools. Using measurements from 87 events in the South Sandwich Islands recorded at College, Alaska station, we conclude the temporal change is robust. The estimates of the temporal change range from about 0.07 to 0.10 s/decade over the past 50 yr. If we used only pairs with small inter-event distances, which reduce the influence of mantle heterogeneity, the rates range from 0.084 to 0.098 s/decade, nearly identical to the rate inferred by Zhang et al. [Zhang, J., Song, X.D., Li, Y.C., Richards, P.G., Sun, X.L., Waldhauser, F., Inner core differential motion confirmed by earthquake waveform doublets, Science 309 (5739) (2005) 1357-1360.] from waveform doublets. The rate of the DF change seems to change with time, which may be explained by lateral variation of the inner core structure or the change in rotation rate on decadal time scale.

  18. Feasibility of Higher-Order Differential Ion Mobility Separations Using New Asymmetric Waveforms

    PubMed Central

    Shvartsburg, Alexandre A.; Mashkevich, Stefan V.; Smith, Richard D.

    2011-01-01

    Technologies for separating and characterizing ions based on their transport properties in gases have been around for three decades. The early method of ion mobility spectrometry (IMS) distinguished ions by absolute mobility that depends on the collision cross section with buffer gas atoms. The more recent technique of field asymmetric waveform IMS (FAIMS) measures the difference between mobilities at high and low electric fields. Coupling IMS and FAIMS to soft ionization sources and mass spectrometry (MS) has greatly expanded their utility, enabling new applications in biomedical and nanomaterials research. Here, we show that time-dependent electric fields comprising more than two intensity levels could, in principle, effect an infinite number of distinct differential separations based on the higher-order terms of expression for ion mobility. These analyses could employ the hardware and operational procedures similar to those utilized in FAIMS. Methods up to the 4th or 5th order (where conventional IMS is 1st order and FAIMS is 2nd order) should be practical at field intensities accessible in ambient air, with still higher orders potentially achievable in insulating gases. Available experimental data suggest that higher-order separations should be largely orthogonal to each other and to FAIMS, IMS, and MS. PMID:16494377

  19. Optical solver for a system of ordinary differential equations based on an external feedback assisted microring resonator.

    PubMed

    Hou, Jie; Dong, Jianji; Zhang, Xinliang

    2017-06-15

    Systems of ordinary differential equations (SODEs) are crucial for describing the dynamic behaviors in various systems such as modern control systems which require observability and controllability. In this Letter, we propose and experimentally demonstrate an all-optical SODE solver based on the silicon-on-insulator platform. We use an add/drop microring resonator to construct two different ordinary differential equations (ODEs) and then introduce two external feedback waveguides to realize the coupling between these ODEs, thus forming the SODE solver. A temporal coupled mode theory is used to deduce the expression of the SODE. A system experiment is carried out for further demonstration. For the input 10 GHz NRZ-like pulses, the measured output waveforms of the SODE solver agree well with the calculated results.

  20. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  1. Low frequency AC waveform generator

    DOEpatents

    Bilharz, Oscar W.

    1986-01-01

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  2. Acquisition of German Pluralization Rules in Monolingual and Multilingual Children

    ERIC Educational Resources Information Center

    Zaretsky, Eugen; Lange, Benjamin P.; Euler, Harald A.; Neumann, Katrin

    2013-01-01

    Existing studies on plural acquisition in German have relied on small samples and thus hardly deliver generalizable and differentiated results. Here, overgeneralizations of certain plural allomorphs and other tendencies in the acquisition of German plural markers are described on the basis of test data from 7,394 3- to 5-year-old monolingual…

  3. A Review of Recent Studies on Differential Reinforcement during Skill Acquisition in Early Intervention

    ERIC Educational Resources Information Center

    Vladescu, Jason C.; Kodak, Tiffany

    2010-01-01

    Although the use of differential reinforcement has been recommended in previous investigations and in early intervention curriculum manuals, few studies have evaluated the best method for providing differential reinforcement to maximize independent responding. This paper reviews previous research on the effectiveness of differential reinforcement…

  4. A behavioral task with more opportunities for memory acquisition promotes the survival of new neurons in the adult dentate gyrus.

    PubMed

    Aasebø, Ida E J; Kasture, Ameya Sanjay; Passeggeri, Marzia; Tashiro, Ayumu

    2018-05-09

    It has been suggested that the dentate gyrus, particularly its new neurons generated via adult neurogenesis, is involved in memory acquisition and recall. Here, we trained rats in two types of Morris water maze tasks that are differentially associated with these two memory processes, and examined whether new neurons are differently affected by the two tasks performed during the second week of neuronal birth. Our results indicate that the task involving more opportunities to acquire new information better supports the survival of new neurons. Further, we assessed whether the two tasks differentially induce the expression of an immediate early gene, Zif268, which is known to be induced by neuronal activation. While the two tasks differentially induce Zif268 expression in the dentate gyrus, the proportions of new neurons activated were similar between the two tasks. Thus, we conclude that while the two tasks differentially activate the dentate gyrus, the task involving more opportunities for memory acquisition during the second week of the birth of new neurons better promotes the survival of the new neurons.

  5. Differential impact of the first and second wave of a stress response on subsequent fear conditioning in healthy men.

    PubMed

    Antov, Martin I; Wölk, Christoph; Stockhorst, Ursula

    2013-10-01

    Stress is a process of multiple neuroendocrine changes over time. We examined effects of the first-wave and second-wave stress response on acquisition and immediate extinction of differential fear conditioning, assessed by skin conductance responses. In Experiment 1, we placed acquisition either close to the (second-wave) salivary cortisol peak, induced by a psychosocial stressor (experimental group, EG), or after non-stressful pretreatment (control group, CG). Contrary to predictions, groups did not differ in differential responding. In the EG only, mean differential responding was negatively correlated with cortisol increases. In Experiment 2, we placed conditioning near the first-wave stress response, induced by a cold pressor test (CPT), or after a warm-water condition (CG). CPT-stress increased extinction resistance. Moreover, acquisition performance after CPT was positively correlated with first-wave blood pressure increases. Data suggest that mediators of the first-wave stress response enhance fear maintenance whereas second-wave cortisol responsivity to stress might attenuate fear learning. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Rapid mapping of polarization switching through complete information acquisition

    DOE PAGES

    Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.; ...

    2016-12-02

    Polarization switching in ferroelectric and multiferroic materials underpins a broad range of current and emergent applications, ranging from random access memories to field-effect transistors, and tunnelling devices. Switching in these materials is exquisitely sensitive to local defects and microstructure on the nanometre scale, necessitating spatially resolved high-resolution studies of these phenomena. Classical piezoresponse force microscopy and spectroscopy, although providing necessary spatial resolution, are fundamentally limited in data acquisition rates and energy resolution. This limitation stems from their two-tiered measurement protocol that combines slow (~1 s) switching and fast (~10 kHz–1 MHz) detection waveforms. Here we develop an approach for rapidmore » probing of ferroelectric switching using direct strain detection of material response to probe bias. This approach, facilitated by high-sensitivity electronics and adaptive filtering, enables spectroscopic imaging at a rate 3,504 times faster the current state of the art, achieving high-veracity imaging of polarization dynamics in complex microstructures.« less

  7. Unveiling the Biometric Potential of Finger-Based ECG Signals

    PubMed Central

    Lourenço, André; Silva, Hugo; Fred, Ana

    2011-01-01

    The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications. PMID:21837235

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.

    The DarkSide-50 experiment at the Laboratori Nazionali del Gran Sasso is a search for dark matter using a dual phase time projection chamber with 50 kg of low radioactivity argon as target. Light signals from interactions in the argon are detected by a system of 38 photo-multiplier tubes (PMTs), 19 above and 19 below the TPC volume inside the argon cryostat. We describe the electronics which processes the signals from the photo-multipliers, the trigger system which identifies events of interest, and the data-acquisition system which records the data for further analysis. The electronics include resistive voltage dividers on the PMTs,more » custom pre-amplifiers mounted directly on the PMT voltage dividers in the liquid argon, and custom amplifier/discriminators (at room temperature). After amplification, the PMT signals are digitized in CAEN waveform digitizers, and CAEN logic modules are used to construct the trigger, the data acquisition system for the TPC is based on the Fermilab "artdaq" software. The system has been in operation since early 2014.« less

  9. The electronics and data acquisition system for the DarkSide-50 veto detectors

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2016-12-01

    DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles. It utilizes a liquid argon time projection chamber for the inner main detector, surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors. The system is made of a custom built front end electronics and commercial National Instruments high speed digitizers. The front end electronics, the DAQ, and the trigger system have been used to acquire data in the form of zero-suppressed waveform samples from the 110 PMTs of the LSV and the 80 PMTs of the WCV. The veto DAQ system has proven its performance and reliability. This electronics and DAQ system can be scaled and used as it is for the veto of the next generation DarkSide-20k detector.

  10. Rapid mapping of polarization switching through complete information acquisition

    PubMed Central

    Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen

    2016-01-01

    Polarization switching in ferroelectric and multiferroic materials underpins a broad range of current and emergent applications, ranging from random access memories to field-effect transistors, and tunnelling devices. Switching in these materials is exquisitely sensitive to local defects and microstructure on the nanometre scale, necessitating spatially resolved high-resolution studies of these phenomena. Classical piezoresponse force microscopy and spectroscopy, although providing necessary spatial resolution, are fundamentally limited in data acquisition rates and energy resolution. This limitation stems from their two-tiered measurement protocol that combines slow (∼1 s) switching and fast (∼10 kHz–1 MHz) detection waveforms. Here we develop an approach for rapid probing of ferroelectric switching using direct strain detection of material response to probe bias. This approach, facilitated by high-sensitivity electronics and adaptive filtering, enables spectroscopic imaging at a rate 3,504 times faster the current state of the art, achieving high-veracity imaging of polarization dynamics in complex microstructures. PMID:27910941

  11. Unveiling the biometric potential of finger-based ECG signals.

    PubMed

    Lourenço, André; Silva, Hugo; Fred, Ana

    2011-01-01

    The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.

  12. Verbal instructions targeting valence alter negative conditional stimulus evaluations (but do not affect reinstatement rates).

    PubMed

    Luck, Camilla C; Lipp, Ottmar V

    2018-02-01

    Negative conditional stimulus (CS) valence acquired during fear conditioning may enhance fear relapse and is difficult to remove as it extinguishes slowly and does not respond to the instruction that unconditional stimulus (US) presentations will cease. We examined whether instructions targeting CS valence would be more effective. In Experiment 1, an image of one person (CS+) was paired with an aversive US, while another (CS-) was presented alone. After acquisition, participants were given positive information about the CS+ poser and negative information about the CS- poser. Instructions reversed the pattern of differential CS valence present during acquisition and eliminated differential electrodermal responding. In Experiment 2, we compared positive and negative CS revaluation by providing positive/negative information about the CS+ and neutral information about CS-. After positive revaluation, differential valence was removed and differential electrodermal responding remained intact. After negative revaluation, differential valence was strengthened and differential electrodermal responding was eliminated. Unexpectedly, the instructions did not affect the reinstatement of differential electrodermal responding.

  13. Digital Electronics for Nuclear Physics Experiments

    NASA Astrophysics Data System (ADS)

    Skulski, Wojtek; Hunter, David; Druszkiewicz, Eryk; Khaitan, Dev Ashish; Yin, Jun; Wolfs, Frank; SkuTek Instrumentation Team; Department of Physics; Astronomy, University of Rochester Team

    2015-10-01

    Future detectors in nuclear physics will use signal sampling as one of primary techniques of data acquisition. Using the digitized waveforms, the electronics can select events based on pulse shape, total energy, multiplicity, and the hit pattern. The DAQ for the LZ Dark Matter detector, now under development in Rochester, is a good example of the power of digital signal processing. This system, designed around 32-channel, FPGA-based, digital signal processors collects data from more than one thousand channels. The solutions developed for this DAQ can be applied to nuclear physics experiments. Supported by the Department of Energy Office of Science under Grant DE-SC0009543.

  14. Two Undergraduate Projects for Data Acquisition and Control

    NASA Astrophysics Data System (ADS)

    Hiersche, Kelly; Pena, Tara; Grogan, Tanner; Wright, Matthew

    We are designing two separate instruments for use in our undergraduate laboratory. In the first project, a Raspberry Pi is used to simultaneously monitor a large number of current and voltage readings and store them in a database. In our second project, we are constructing our own microcontrollers to work as a general-purpose interface based off work carried out in Review of Scientific Instruments 84, 103101 (2013). It was designed for low cost and simple construction, making it ideal for undergraduate level work. This circuit has room for two interchangeable daughter boards, giving it the capability to work as a general lab interface, lock-in detector, or waveform generator.

  15. Study to investigate and evaluate means of optimizing the Ku-band communication function for the space shuttle

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Udalov, S.; Huth, G. K.

    1976-01-01

    The forward link of the overall Ku-band communication system consists of the ground- TDRS-orbiter communication path. Because the last segment of the link is directed towards a relatively low orbiting shuttle, a PN code is used to reduce the spectral density. A method is presented for incorporating code acquisition and tracking functions into the orbiter's Ku-band receiver. Optimization of a three channel multiplexing technique is described. The importance of Costas loop parameters to provide false lock immunity for the receiver, and the advantage of using a sinusoidal subcarrier waveform, rather than square wave, are discussed.

  16. Low frequency ac waveform generator

    DOEpatents

    Bilharz, O.W.

    1983-11-22

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  17. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    NASA Astrophysics Data System (ADS)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  18. Pulsatility of Lenticulostriate Arteries Assessed by 7 Tesla Flow MRI-Measurement, Reproducibility, and Applicability to Aging Effect.

    PubMed

    Schnerr, Roald S; Jansen, Jacobus F A; Uludag, Kamil; Hofman, Paul A M; Wildberger, Joachim E; van Oostenbrugge, Robert J; Backes, Walter H

    2017-01-01

    Characterization of flow properties in cerebral arteries with 1.5 and 3 Tesla MRI is usually limited to large cerebral arteries and difficult to evaluate in the small perforating arteries due to insufficient spatial resolution. In this study, we assessed the feasibility to measure blood flow waveforms in the small lenticulostriate arteries with 7 Tesla velocity-sensitive MRI. The middle cerebral artery was included as reference. Imaging was performed in five young and five old healthy volunteers. Flow was calculated by integrating time-varying velocity values over the vascular cross-section. MRI acquisitions were performed twice in each subject to determine reproducibility. From the flow waveforms, the pulsatility index and damping factor were deduced. Reproducibility values, in terms of the intraclass correlation coefficients, were found to be good to excellent. Measured pulsatility index of the lenticulostriate arteries significantly increased and damping factor significantly decreased with age. In conclusion, we demonstrate that blood flow through the lenticostriate arteries can be precisely measured using 7 Tesla MRI and reveal effects of arterial stiffness due to aging. These findings hold promise to provide relevant insights into the pathologies involving perforating cerebral arteries.

  19. A new qualitative acoustic emission parameter based on Shannon's entropy for damage monitoring

    NASA Astrophysics Data System (ADS)

    Chai, Mengyu; Zhang, Zaoxiao; Duan, Quan

    2018-02-01

    An important objective of acoustic emission (AE) non-destructive monitoring is to accurately identify approaching critical damage and to avoid premature failure by means of the evolutions of AE parameters. One major drawback of most parameters such as count and rise time is that they are strongly dependent on the threshold and other settings employed in AE data acquisition system. This may hinder the correct reflection of original waveform generated from AE sources and consequently bring difficulty for the accurate identification of the critical damage and early failure. In this investigation, a new qualitative AE parameter based on Shannon's entropy, i.e. AE entropy is proposed for damage monitoring. Since it derives from the uncertainty of amplitude distribution of each AE waveform, it is independent of the threshold and other time-driven parameters and can characterize the original micro-structural deformations. Fatigue crack growth test on CrMoV steel and three point bending test on a ductile material are conducted to validate the feasibility and effectiveness of the proposed parameter. The results show that the new parameter, compared to AE amplitude, is more effective in discriminating the different damage stages and identifying the critical damage.

  20. Aircraft Lightning Electromagnetic Environment Measurement

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  1. Conceptual design of the CZMIL data acquisition system (DAS): integrating a new bathymetric lidar with a commercial spectrometer and metric camera for coastal mapping applications

    NASA Astrophysics Data System (ADS)

    Fuchs, Eran; Tuell, Grady

    2010-04-01

    The CZMIL system is a new generation airborne bathymetric and topographic remote sensing platform composed of an active lidar, passive hyperspectral imager, high resolution frame camera, navigation system, and storage media running on a linux-based Gigabit Ethernet network. The lidar is a hybrid scanned-flash system employing a 10 KHz green laser and novel circular scanner, with a large aperture receiver (0.20m) having multiple channels. A PMT-based segmented detector is used on one channel to support simultaneous topographic and bathymetric data collection, and multiple fields-of- view are measured to support bathymetric measurements. The measured laser returns are digitized at 1 GHz to produce the waveforms required for ranging measurements, and unique data compression and storage techniques are used to address the large data volume. Simulated results demonstrate CZMIL's capability to discriminate bottom and surface returns in very shallow water conditions without compromising performance in deep water. Simulated waveforms are compared with measured data from the SHOALS system and show promising expected results. The system's prototype is expected to be completed by end of 2010, and ready for initial calibration tests in the spring of 2010.

  2. Optimal design of waveform digitisers for both energy resolution and pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Cang, Jirong; Xue, Tao; Zeng, Ming; Zeng, Zhi; Ma, Hao; Cheng, Jianping; Liu, Yinong

    2018-04-01

    Fast digitisers and digital pulse processing have been widely used for spectral application and pulse shape discrimination (PSD) owing to their advantages in terms of compactness, higher trigger rates, offline analysis, etc. Meanwhile, the noise of readout electronics is usually trivial for organic, plastic, or liquid scintillator with PSD ability because of their poor intrinsic energy resolution. However, LaBr3(Ce) has been widely used for its excellent energy resolution and has been proven to have PSD ability for alpha/gamma particles. Therefore, designing a digital acquisition system for such scintillators as LaBr3(Ce) with both optimal energy resolution and promising PSD ability is worthwhile. Several experimental research studies about the choice of digitiser properties for liquid scintillators have already been conducted in terms of the sampling rate and vertical resolution. Quantitative analysis on the influence of waveform digitisers, that is, fast amplifier (optional), sampling rates, and vertical resolution, on both applications is still lacking. The present paper provides quantitative analysis of these factors and, hence, general rules about the optimal design of digitisers for both energy resolution and PSD application according to the noise analysis of time-variant gated charge integration.

  3. Electromechanical flight control actuator, volume 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Schematic diagrams are given for both the four-channel electromechanical actuator and the single-channel power electronics breadboard. Detailed design data is also given on the gears used in the differential gearbox and a copy of the operations manual for the system is included. Performance test results are given for the EMA motor and its current source indicator, the drive control electronics, and the overall system. The power converter waveform test results are also summarized.

  4. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  5. Utility of Brainstem Trigeminal Evoked Potentials in Patients With Primary Trigeminal Neuralgia Treated by Microvascular Decompression.

    PubMed

    Zhu, Jin; Zhang, Xin; Zhao, Hua; Tang, Yin-Da; Ying, Ting-Ting; Li, Shi-Ting

    2017-09-01

    To investigate the characteristics of brainstem trigeminal evoked potentials (BTEP) waveform in patients with and without trigeminal neuralgia (TN), and to discuss the utility of BTEP in patients with primary TN treated by microvascular decompression (MVD). A retrospective review of 43 patients who underwent BTEP between January 2016 and June 2016, including 33 patients with TN who underwent MVD and 10 patients without TN. Brainstem trigeminal evoked potentials characteristics of TN and non-TN were summarized, in particular to compare the BTEP changes between pre- and post-MVD, and to discover the relationship between BTEP changes and surgical outcome. Brainstem trigeminal evoked potentials can be recorded in patients without trigeminal neuralgia. Abnormal BTEP could be recorded when different branches were stimulated. After decompression, the original W2, W3 disappeared and then replaced by a large wave in most patients, or original wave poorly differentiated improved in some patients, showed as shorter latency and (or) amplitude increased. Brainstem trigeminal evoked potentials waveform of healthy side in patients with trigeminal neuralgia was similar to the waveform of patients without TN. In 3 patients, after decompression the W2, W3 peaks increased, and the latency, duration, IPLD did not change significantly. Until discharge, 87.9% (29/33) of the patients presented complete absence of pain without medication (BNI I) and 93.9% (31/33) had good pain control without medication (BNI I-II). Brainstem trigeminal evoked potentials can reflect the conduction function of the trigeminal nerve to evaluate the functional level of the trigeminal nerve conduction pathway. The improvement and restoration of BTEP waveforms are closely related to the postoperative curative effect.

  6. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    PubMed

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  7. Improving Depth, Energy and Timing Estimation in PET Detectors with Deconvolution and Maximum Likelihood Pulse Shape Discrimination

    PubMed Central

    Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R.

    2016-01-01

    In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator’s temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector’s single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal. PMID:27295658

  8. Improving Depth, Energy and Timing Estimation in PET Detectors with Deconvolution and Maximum Likelihood Pulse Shape Discrimination.

    PubMed

    Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R

    2016-11-01

    In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator's temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector's single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal.

  9. 3-D characterization of high-permeability zones in a gravel aquifer using 2-D crosshole GPR full-waveform inversion and waveguide detection

    NASA Astrophysics Data System (ADS)

    Klotzsche, Anja; van der Kruk, Jan; Linde, Niklas; Doetsch, Joseph; Vereecken, Harry

    2013-11-01

    Reliable high-resolution 3-D characterization of aquifers helps to improve our understanding of flow and transport processes when small-scale structures have a strong influence. Crosshole ground penetrating radar (GPR) is a powerful tool for characterizing aquifers due to the method's high-resolution and sensitivity to porosity and soil water content. Recently, a novel GPR full-waveform inversion algorithm was introduced, which is here applied and used for 3-D characterization by inverting six crosshole GPR cross-sections collected between four wells arranged in a square configuration close to the Thur River in Switzerland. The inversion results in the saturated part of this gravel aquifer reveals a significant improvement in resolution for the dielectric permittivity and electrical conductivity images compared to ray-based methods. Consistent structures where acquisition planes intersect indicate the robustness of the inversion process. A decimetre-scale layer with high dielectric permittivity was revealed at a depth of 5-6 m in all six cross-sections analysed here, and a less prominent zone with high dielectric permittivity was found at a depth of 7.5-9 m. These high-permittivity layers act as low-velocity waveguides and they are interpreted as high-porosity layers and possible zones of preferential flow. Porosity estimates from the permittivity models agree well with estimates from Neutron-Neutron logging data at the intersecting diagonal planes. Moreover, estimates of hydraulic permeability based on flowmeter logs confirm the presence of zones of preferential flow in these depth intervals. A detailed analysis of the measured data for transmitters located within the waveguides, revealed increased trace energy due to late-arrival elongated wave trains, which were observed for receiver positions straddling this zone. For the same receiver positions within the waveguide, a distinct minimum in the trace energy was visible when the transmitter was located outside the waveguide. A novel amplitude analysis was proposed to explore these maxima and minima of the trace energy. Laterally continuous low-velocity waveguides and their boundaries were identified in the measured data alone. In contrast to the full-waveform inversion, this method follows a simple workflow and needs no detailed and time consuming processing or inversion of the data. Comparison with the full-waveform inversion results confirmed the presence of the waveguides illustrating that full-waveform inversion return reliable results at the highest resolution currently possible at these scales. We envision that full-waveform inversion of GPR data will play an important role in a wide range of geological, hydrological, glacial and periglacial studies in the critical zone.

  10. Oxytocin differentially modulates pavlovian cue and context fear acquisition.

    PubMed

    Cavalli, Juliana; Ruttorf, Michaela; Pahi, Mario Rosero; Zidda, Francesca; Flor, Herta; Nees, Frauke

    2017-06-01

    Fear acquisition and extinction have been demonstrated as core mechanisms for the development and maintenance of mental disorders, with different contributions of processing cues vs contexts. The hypothalamic peptide oxytocin (OXT) may have a prominent role in this context, as it has been shown to affect fear learning. However, investigations have focused on cue conditioning, and fear extinction. Its differential role for cue and context fear acquisition is still not known. In a randomized, double-blind, placebo (PLC)-controlled design, we administered an intranasal dose of OXT or PLC before the acquisition of cue and context fear conditioning in healthy individuals (n = 52), and assessed brain responses, skin conductance responses and self-reports (valence/arousal/contingency). OXT compared with PLC significantly induced decreased responses in the nucleus accumbens during early cue and context acquisition, and decreased responses of the anterior cingulate cortex and insula during early as well as increased hippocampal response during late context, but not cue acquisition. The OXT group additionally showed significantly higher arousal in late cue and context acquisition. OXT modulates various aspects of cue and context conditioning, which is relevant from a mechanism-based perspective and might have implications for the treatment of fear and anxiety. © The Author (2017). Published by Oxford University Press.

  11. Parallel Acquisition of Awareness and Differential Delay Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Weidemann, Gabrielle; Antees, Cassandra

    2012-01-01

    There is considerable debate about whether differential delay eyeblink conditioning can be acquired without awareness of the stimulus contingencies. Previous investigations of the relationship between differential-delay eyeblink conditioning and awareness of the stimulus contingencies have assessed awareness after the conditioning session was…

  12. Differential facilitation of N- and P/Q-type calcium channels during trains of action potential-like waveforms

    PubMed Central

    Currie, Kevin P M; Fox, Aaron P

    2002-01-01

    Inhibition of presynaptic voltage-gated calcium channels by direct G-protein βγ subunit binding is a widespread mechanism that regulates neurotransmitter release. Voltage-dependent relief of this inhibition (facilitation), most likely to be due to dissociation of the G-protein from the channel, may occur during bursts of action potentials. In this paper we compare the facilitation of N- and P/Q-type Ca2+ channels during short trains of action potential-like waveforms (APWs) using both native channels in adrenal chromaffin cells and heterologously expressed channels in tsA201 cells. While both N- and P/Q-type Ca2+ channels exhibit facilitation that is dependent on the frequency of the APW train, there are important quantitative differences. Approximately 20 % of the voltage-dependent inhibition of N-type ICa was reversed during a train while greater than 40 % of the inhibition of P/Q-type ICa was relieved. Changing the duration or amplitude of the APW dramatically affected the facilitation of N-type channels but had little effect on the facilitation of P/Q-type channels. Since the ratio of N-type to P/Q-type Ca2+ channels varies widely between synapses, differential facilitation may contribute to the fine tuning of synaptic transmission, thereby increasing the computational repertoire of neurons. PMID:11882675

  13. Conversion of umbilical arterial Doppler waveforms to cardiac cycle triggering signals: a preparatory study for online motion-gated three-dimensional fetal echocardiography.

    PubMed

    Deng, J; Birkett, A G; Kalache, K D; Hanson, M A; Peebles, D M; Linney, A D; Lees, W R; Rodeck, C H

    2001-01-01

    To remove motion artefacts, a device was built to convert "noisy" umbilical arterial Doppler waveforms (UADWs) from an ultrasound (US) system into sharp ECG R-wave-like cardiac cycle triggering signals (CCTSs). These CCTSs were then used to gate a simultaneous (online) 3-D acquisition of sectional fetal echocardiograms from another US system. To test the conversion performance, a study was carried out in sheep fetal twins. Pulmonary arterial flow waveforms (PAFWs) from implanted probes were traced, in the meantime, to determine the reference cardiac cycle. Interference caused by running the two nonsynchronised US systems was controlled to three degrees (not-noticeable, moderate, and severe), together with high (> or = 40 cm/s) and low (< 40) flow velocities on UADWs. The conversion efficiency, assessed by the percentage of UADWs converted into CCTSs, was in the range of 83% to 100% for not-noticeable and moderate interference, and 0% to 71% for severe interference. The triggering accuracy, assessed by [(time lag mean between the onsets of PAFWs and corresponding CCTSs) -- (its 99% confidence level)] / the mean, was 90% to 96% for the not-noticeable interference high- and low-flow groups and for the moderate interference high-flow group; 19% to 93% for the moderate interference low-flow group; and from not obtainable up to 90% for the severe interference groups. The results show that UADWs can be used as a satisfactory online motion-gating source even in the presence of moderate interference. The major problems are from severe interference or moderate interference with low-flow velocity, which can be minimised/eliminated by the integration of the individual systems involved.

  14. A review of recent studies on differential reinforcement during skill acquisition in early intervention.

    PubMed

    Vladescu, Jason C; Kodak, Tiffany

    2010-01-01

    Although the use of differential reinforcement has been recommended in previous investigations and in early intervention curriculum manuals, few studies have evaluated the best method for providing differential reinforcement to maximize independent responding. This paper reviews previous research on the effectiveness of differential reinforcement as treatment and describes important areas of future research.

  15. EAARL coastal topography--Alligator Point, Louisiana, 2010

    USGS Publications Warehouse

    Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan; Barras, J.A.

    2012-01-01

    This project provides highly detailed and accurate datasets of a portion of Alligator Point, Louisiana, acquired on March 5 and 6, 2010. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the National Aeronautics and Space Administration (NASA) Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations.

  16. Photonic microwave waveforms generation based on pulse carving and superposition in time-domain

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Jiang, Yang; Zi, Yuejiao; He, Yutong; Tian, Jing; Zhang, Xiaoyu; Luo, Hao; Dong, Ruyang

    2018-05-01

    A novel photonic approach for various microwave waveforms generation based on time-domain synthesis is theoretically analyzed and experimentally investigated. In this scheme, two single-drive Mach-Zehnder modulators are used for pulses shaping. After shifting the phase and implementing envelopes superposition of the pulses, desired waveforms can be achieved in time-domain. The theoretic analysis and simulations are presented. In the experimental demonstrations, a triangular waveform, square waveform, and half duty cycle sawtooth (or reversed-sawtooth) waveform are generated successfully. By utilizing time multiplexing technique, a frequency-doubled sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can be obtained. In addition, a fundamental frequency sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can also be achieved by the superposition of square waveform and frequency-doubled sawtooth waveform.

  17. Retrieving rupture history using waveform inversions in time sequence

    NASA Astrophysics Data System (ADS)

    Yi, L.; Xu, C.; Zhang, X.

    2017-12-01

    The rupture history of large earthquakes is generally regenerated using the waveform inversion through utilizing seismological waveform records. In the waveform inversion, based on the superposition principle, the rupture process is linearly parameterized. After discretizing the fault plane into sub-faults, the local source time function of each sub-fault is usually parameterized using the multi-time window method, e.g., mutual overlapped triangular functions. Then the forward waveform of each sub-fault is synthesized through convoluting the source time function with its Green function. According to the superposition principle, these forward waveforms generated from the fault plane are summarized in the recorded waveforms after aligning the arrival times. Then the slip history is retrieved using the waveform inversion method after the superposing of all forward waveforms for each correspond seismological waveform records. Apart from the isolation of these forward waveforms generated from each sub-fault, we also realize that these waveforms are gradually and sequentially superimposed in the recorded waveforms. Thus we proposed a idea that the rupture model is possibly detachable in sequent rupture times. According to the constrained waveform length method emphasized in our previous work, the length of inverted waveforms used in the waveform inversion is objectively constrained by the rupture velocity and rise time. And one essential prior condition is the predetermined fault plane that limits the duration of rupture time, which means the waveform inversion is restricted in a pre-set rupture duration time. Therefore, we proposed a strategy to inverse the rupture process sequentially using the progressively shift rupture times as the rupture front expanding in the fault plane. And we have designed a simulation inversion to test the feasibility of the method. Our test result shows the prospect of this idea that requiring furthermore investigation.

  18. Bi-Fi: an embedded sensor/system architecture for REMOTE biological monitoring.

    PubMed

    Farshchi, Shahin; Pesterev, Aleksey; Nuyujukian, Paul H; Mody, Istvan; Judy, Jack W

    2007-11-01

    Wireless-enabled processor modules intended for communicating low-frequency phenomena (i.e., temperature, humidity, and ambient light) have been enabled to acquire and transmit multiple biological signals in real time, which has been achieved by using computationally efficient data acquisition, filtering, and compression algorithms, and interfacing the modules with biological interface hardware. The sensor modules can acquire and transmit raw biological signals at a rate of 32 kb/s, which is near the hardware limit of the modules. Furthermore, onboard signal processing enables one channel, sampled at a rate of 4000 samples/s at 12-bit resolution, to be compressed via adaptive differential-pulse-code modulation (ADPCM) and transmitted in real time. In addition, the sensors can be configured to filter and transmit individual time-referenced "spike" waveforms, or to transmit the spike height and width for alleviating network traffic and increasing battery life. The system is capable of acquiring eight channels of analog signals as well as data via an asynchronous serial connection. A back-end server archives the biological data received via networked gateway sensors, and hosts them to a client application that enables users to browse recorded data. The system also acquires, filters, and transmits oxygen saturation and pulse rate via a commercial-off-the-shelf interface board. The system architecture can be configured for performing real-time nonobtrusive biological monitoring of humans or rodents. This paper demonstrates that low-power, computational, and bandwidth-constrained wireless-enabled platforms can indeed be leveraged for wireless biosignal monitoring.

  19. Oxytocin Signaling in Basolateral and Central Amygdala Nuclei Differentially Regulates the Acquisition, Expression, and Extinction of Context-Conditioned Fear in Rats

    ERIC Educational Resources Information Center

    Campbell-Smith, Emma J.; Holmes, Nathan M.; Lingawi, Nura W.; Panayi, Marios C.; Westbrook, R. Frederick

    2015-01-01

    The present study investigated how oxytocin (OT) signaling in the central (CeA) and basolateral (BLA) amygdala affects acquisition, expression, and extinction of context-conditioned fear (freezing) in rats. In the first set of experiments, acquisition of fear to a shocked context was impaired by a preconditioning infusion of synthetic OT into the…

  20. Harmonic arbitrary waveform generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrarymore » waveform.« less

  1. Frequency-domain gravitational waveform models for inspiraling binary neutron stars

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kyohei; Kiuchi, Kenta; Kyutoku, Koutarou; Sekiguchi, Yuichiro; Shibata, Masaru; Taniguchi, Keisuke

    2018-02-01

    We develop a model for frequency-domain gravitational waveforms from inspiraling binary neutron stars. Our waveform model is calibrated by comparison with hybrid waveforms constructed from our latest high-precision numerical-relativity waveforms and the SEOBNRv2T waveforms in the frequency range of 10-1000 Hz. We show that the phase difference between our waveform model and the hybrid waveforms is always smaller than 0.1 rad for the binary tidal deformability Λ ˜ in the range 300 ≲Λ ˜ ≲1900 and for a mass ratio between 0.73 and 1. We show that, for 10-1000 Hz, the distinguishability for the signal-to-noise ratio ≲50 and the mismatch between our waveform model and the hybrid waveforms are always smaller than 0.25 and 1.1 ×10-5 , respectively. The systematic error of our waveform model in the measurement of Λ ˜ is always smaller than 20 with respect to the hybrid waveforms for 300 ≲Λ ˜≲1900 . The statistical error in the measurement of binary parameters is computed employing our waveform model, and we obtain results consistent with the previous studies. We show that the systematic error of our waveform model is always smaller than 20% (typically smaller than 10%) of the statistical error for events with a signal-to-noise ratio of 50.

  2. Multi-pixel high-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Dengler, Robert J. (Inventor); Siegel, Peter H. (Inventor); Chattopadhyay, Goutam (Inventor); Ward, John S. (Inventor); Juan, Nuria Llombart (Inventor); Bryllert, Tomas E. (Inventor); Mehdi, Imran (Inventor); Tarsala, Jan A. (Inventor)

    2012-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz radar using low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform, is disclosed that operates with a multiplexed beam to obtain range information simultaneously on multiple pixels of a target. A source transmit beam may be divided by a hybrid coupler into multiple transmit beams multiplexed together and directed to be reflected off a target and return as a single receive beam which is demultiplexed and processed to reveal range information of separate pixels of the target associated with each transmit beam simultaneously. The multiple transmit beams may be developed with appropriate optics to be temporally and spatially differentiated before being directed to the target. Temporal differentiation corresponds to a different intermediate frequencies separating the range information of the multiple pixels. Collinear transmit beams having differentiated polarizations may also be implemented.

  3. DBSAR's First Multimode Flight Campaign

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Vega, Manuel; Buenfil, Manuel; Geist, Alessandro; Hilliard, Lawrence; Racette, Paul

    2010-01-01

    The Digital Beamforming SAR (DBSAR) is an airborne imaging radar system that combines phased array technology, reconfigurable on-board processing and waveform generation, and advances in signal processing to enable techniques not possible with conventional SARs. The system exploits the versatility inherently in phased-array technology with a state-of-the-art data acquisition and real-time processor in order to implement multi-mode measurement techniques in a single radar system. Operational modes include scatterometry over multiple antenna beams, Synthetic Aperture Radar (SAR) over several antenna beams, or Altimetry. The radar was flight tested in October 2008 on board of the NASA P3 aircraft over the Delmarva Peninsula, MD. The results from the DBSAR system performance is presented.

  4. IDC Re-Engineering Phase 2 System Specification Document Version 1.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satpathi, Meara Allena; Burns, John F.; Harris, James M.

    This document contains the system specifications derived to satisfy the system requirements found in the IDC System Requirements Document for the IDC Re-Engineering Phase 2 project. This System Specification Document (SSD) defines waveform data processing requirements for the International Data Centre (IDC) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). The routine processing includes characterization of events with the objective of screening out events considered to be consistent with natural phenomena or non-nuclear, man-made phenomena. This document does not address requirements concerning acquisition, processing and analysis of radionuclide data but does include requirements for the dissemination of radionuclide datamore » and products.« less

  5. Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1983-01-01

    The present investigation provides a demonstration of the feasibility of the airborne detection of the laser-induced fluorescence spectral emissions from living terrestrial grasses, shrubs, and trees using existing levels of lidar technology. Airborne studies were performed to ascertain system requirements necessary to detect laser-induced fluorescence from living terrestrial plants, to assess the practical acquisition of useful single-shot laser-induced fluorescence (LIF) waveforms over vegetative canopies, and to determine the comparative suitability of laser system, airborne platform, and terrestrial environmental parameters. The field experiment was conducted on May 3, 1982, over the northern portion of Wallops Island, VA. Attention is given to airborne lidar results and the description of laboratory investigations.

  6. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors

    NASA Astrophysics Data System (ADS)

    Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.

    2015-11-01

    In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.

  7. Decomposition Techniques for Icesat/glas Full-Waveform Data

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Gao, X.; Li, G.; Chen, J.

    2018-04-01

    The geoscience laser altimeter system (GLAS) on the board Ice, Cloud, and land Elevation Satellite (ICESat), is the first long-duration space borne full-waveform LiDAR for measuring the topography of the ice shelf and temporal variation, cloud and atmospheric characteristics. In order to extract the characteristic parameters of the waveform, the key step is to process the full waveform data. In this paper, the modified waveform decomposition method is proposed to extract the echo components from full-waveform. First, the initial parameter estimation is implemented through data preprocessing and waveform detection. Next, the waveform fitting is demonstrated using the Levenberg-Marquard (LM) optimization method. The results show that the modified waveform decomposition method can effectively extract the overlapped echo components and missing echo components compared with the results from GLA14 product. The echo components can also be extracted from the complex waveforms.

  8. A REVIEW OF RECENT STUDIES ON DIFFERENTIAL REINFORCEMENT DURING SKILL ACQUISITION IN EARLY INTERVENTION

    PubMed Central

    Vladescu, Jason C; Kodak, Tiffany

    2010-01-01

    Although the use of differential reinforcement has been recommended in previous investigations and in early intervention curriculum manuals, few studies have evaluated the best method for providing differential reinforcement to maximize independent responding. This paper reviews previous research on the effectiveness of differential reinforcement as treatment and describes important areas of future research. PMID:21119913

  9. The induction of monocytopoiesis in HL-60 promyelocytic leukemia cells is inhibited by hydroquinone, a toxic metabolite of benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, N.L.

    1992-01-01

    Chronic exposure of humans to benzene has been shown to have a cytotoxic effect on hematopoietic progenitor cells in intermediate stages of differentiation which can lead to aplastic anemia and acute myelogenous leukemia. This thesis examined the effect of hydroquinone, a toxic metabolite of benzene found in the bone marrow, on the human promyelocytic leukemia cell line (HL-60) which can be induced to differentiate to both monocyte and myeloid cells, and thus has been used as a surrogate for a granulocyte/macrophage progenitor cell. Exposure of HL-60 cells to noncytotoxic concentrations of hydroquinone for three hours prior to induction with 12-O-tetradecanoylmore » phorbol-13-acetate caused a dose-dependent inhibition of the acquisition of characteristics of monocytic differentiation. These included adherence, nonspecific esterase activity and phagocytosis. Hydroquinone had no effect on cell proliferation. Hydroquinone appeared to be affecting maturation beyond the monoblast/promonocyte stages. Hydroquinone also prevented differentiation induced by 1, 25-dihydroxy vitamin D[sub 3], however, the block occurred after the acquisition of adherence. Hydroquinone at concentrations that inhibited monocytic differentiation had no effect on differentiation to granulocytes, suggesting that the block in the differentiation of these bipotential cells is at a step unique to the monocytic pathway. Hydroquinone was unable to prevent differentiation induced by the macrophage-derived cytokine interleukin-1, a differentiation factor for cells of the monocytic lineage. These data demonstrate that treatment of Hl-60 cells with hydroquinone prior to induction of differentiation prevents the acquisition of the monocytic phenotype induced by TPA or 1, 25(OH)[sub 2]D[sub 3] by a mechanism which at present is unknown, but which appears to be specific for the monocytic pathway. These results are of considerable significance for benzene hematotoxicity.« less

  10. TARPs differentially decorate AMPA receptors to specify neuropharmacology.

    PubMed

    Kato, Akihiko S; Gill, Martin B; Yu, Hong; Nisenbaum, Eric S; Bredt, David S

    2010-05-01

    Transmembrane AMPA receptor regulatory proteins (TARPs) are the first identified auxiliary subunits for a neurotransmitter-gated ion channel. Although initial studies found that stargazin, the prototypical TARP, principally chaperones AMPA receptors, subsequent research demonstrated that it also regulates AMPA receptor kinetics and synaptic waveforms. Recent studies have identified a diverse collection of TARP isoforms--types Ia, Ib II--that distinctly regulate AMPA receptor trafficking, gating and neuropharmacology. These TARP isoforms are heterogeneously expressed in specific neuronal populations and can differentially sculpt synaptic transmission and plasticity. Whole-genome analyses also link multiple TARP loci to childhood epilepsy, schizophrenia and bipolar disorder. TARPs emerge as vital components of excitatory synapses that participate both in signal transduction and in neuropsychiatric disorders. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. MicroCameras and Photometers (MCP) on board the TARANIS satellite

    NASA Astrophysics Data System (ADS)

    Farges, T.; Hébert, P.; Le Mer-Dachard, F.; Ravel, K.; Gaillac, S.

    2017-12-01

    TARANIS (Tool for the Analysis of Radiations from lightNing and Sprites) is a CNES micro satellite. Its main objective is to study impulsive transfers of energy between the Earth atmosphere and the space environment. It will be sun-synchronous at an altitude of 700 km. It will be launched in 2019 for at least 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths (from gamma-rays to radio waves including optical). TARANIS instruments are currently in calibration and qualification phase. The purpose is to present the MicroCameras and Photometers (MCP) design, to show its performances after its recent characterization and at last to discuss the scientific objectives and how we want to answer it with the MCP observations. The MicroCameras, developed by Sodern, are dedicated to the spatial description of TLEs and their parent lightning. They are able to differentiate sprite and lightning thanks to two narrow bands ([757-767 nm] and [772-782 nm]) that provide simultaneous pairs of images of an Event. Simulation results of the differentiation method will be shown. After calibration and tests, the MicroCameras are now delivered to the CNES for integration on the payload. The Photometers, developed by Bertin Technologies, will provide temporal measurements and spectral characteristics of TLEs and lightning. There are key instrument because of their capability to detect on-board TLEs and then switch all the instruments of the scientific payload in their high resolution acquisition mode. Photometers use four spectral bands in the [170-260 nm], [332-342 nm], [757-767 nm] and [600-900 nm] and have the same field of view as cameras. The on-board TLE detection algorithm remote-controlled parameters have been tuned before launch using the electronic board and simulated or real events waveforms. After calibration, the Photometers are now going through the environmental tests. They will be delivered to the CNES for integration on the payload in September 2017.

  12. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  13. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2014-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  14. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    PubMed

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  15. Study of pulse shape discrimination for a neutron phoswich detector

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica; Barzilov, Alexander

    2017-09-01

    A portable phoswich detector capable of differentiating between fast neutrons and thermal neutrons, and photons was developed. The detector design is based on the use of two solid-state scintillators with dissimilar scintillation time properties coupled with a single optical sensor: a 6Li loaded glass and EJ-299-33A plastic. The on-the-fly digital pulse shape discrimination and the wavelet treatment of measured waveforms were employed in the data analysis. The instrument enabled neutron spectrum evaluation.

  16. JTRS/SCA and Custom/SDR Waveform Comparison

    NASA Technical Reports Server (NTRS)

    Oldham, Daniel R.; Scardelletti, Maximilian C.

    2007-01-01

    This paper compares two waveform implementations generating the same RF signal using the same SDR development system. Both waveforms implement a satellite modem using QPSK modulation at 1M BPS data rates with one half rate convolutional encoding. Both waveforms are partitioned the same across the general purpose processor (GPP) and the field programmable gate array (FPGA). Both waveforms implement the same equivalent set of radio functions on the GPP and FPGA. The GPP implements the majority of the radio functions and the FPGA implements the final digital RF modulator stage. One waveform is implemented directly on the SDR development system and the second waveform is implemented using the JTRS/SCA model. This paper contrasts the amount of resources to implement both waveforms and demonstrates the importance of waveform partitioning across the SDR development system.

  17. Th9 cells: differentiation and disease

    PubMed Central

    Kaplan, Mark H.

    2014-01-01

    Summary CD4+ T-helper cells regulate immunity and inflammation through the acquisition of potential to secrete specific cytokines. The acquisition of cytokine-secreting potential, in a process termed T-helper cell differentiation, is a response to multiple environmental signals including the cytokine milieu. The most recently defined subset of T-helper cells are termed Th9 and are identified by the potent production of interleukin-9 (IL-9). Given the pleiotropic functions of IL-9, Th9 cells might be involved in pathogen immunity and immune-mediated disease. In this review, I focus on recent developments in understanding the signals that promote Th9 differentiation, the transcription factors that regulate IL-9 expression, and finally the potential roles for Th9 cells in immunity in vivo. PMID:23405898

  18. Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Yi; Ming, Min; Jiang, Yuan-Ze; Duan, Hui-Zong; Yeh, Hsien-Chi

    2018-06-01

    Laser link acquisition is a key technology for inter-satellite laser ranging and laser communication. In this paper, we present an acquisition scheme based on the differential power sensing method with dual-way scanning, which will be used in the next-generation gravity measurement mission proposed in China, called Space Advanced Gravity Measurements (SAGM). In this scheme, the laser beams emitted from two satellites are power-modulated at different frequencies to enable the signals of the two beams to be measured distinguishably, and their corresponding pointing angles are determined by using the differential power sensing method. As the master laser beam and the slave laser beam are decoupled, the dual-way scanning method, in which the laser beams of both the master and the slave satellites scan uncertainty cones simultaneously and independently, can be used, instead of the commonly used single-way scanning method, in which the laser beam of one satellite scans and that of the other one stares. Therefore, the acquisition time is reduced significantly. Numerical simulation and experiments of the acquisition process are performed using the design parameters of the SAGM mission. The results show that the average acquisition time is less than 10 s for a scanning range of 1-mrad radius with a success rate of more than 99%.

  19. Ascending-ramp biphasic waveform has a lower defibrillation threshold and releases less troponin I than a truncated exponential biphasic waveform.

    PubMed

    Huang, Jian; Walcott, Gregory P; Ruse, Richard B; Bohanan, Scott J; Killingsworth, Cheryl R; Ideker, Raymond E

    2012-09-11

    We tested the hypothesis that the shape of the shock waveform affects not only the defibrillation threshold but also the amount of cardiac damage. Defibrillation thresholds were determined for 11 waveforms-3 ascending-ramp waveforms, 3 descending-ramp waveforms, 3 rectilinear first-phase biphasic waveforms, a Gurvich waveform, and a truncated exponential biphasic waveform-in 6 pigs with electrodes in the right ventricular apex and superior vena cava. The ascending, descending, and rectilinear waveforms had 4-, 8-, and 16-millisecond first phases and a 3.5-millisecond rectilinear second phase that was half the voltage of the first phase. The exponential biphasic waveform had a 60% first-phase and a 50% second-phase tilt. In a second study, we attempted to defibrillate after 10 seconds of ventricular fibrillation with a single ≈30-J shock (6 pigs successfully defibrillated with 8-millisecond ascending, 8-millisecond rectilinear, and truncated exponential biphasic waveforms). Troponin I blood levels were determined before and 2 to 10 hours after the shock. The lowest-energy defibrillation threshold was for the 8-milliseconds ascending ramp (14.6±7.3 J [mean±SD]), which was significantly less than for the truncated exponential (19.6±6.3 J). Six hours after shock, troponin I was significantly less for the ascending-ramp waveform (0.80±0.54 ng/mL) than for the truncated exponential (1.92±0.47 ng/mL) or the rectilinear waveform (1.17±0.45 ng/mL). The ascending ramp has a significantly lower defibrillation threshold and at ≈30 J causes 58% less troponin I release than the truncated exponential biphasic shock. Therefore, the shock waveform affects both the defibrillation threshold and the amount of cardiac damage.

  20. 48 CFR 47.303-5 - F.o.b. origin, with differentials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false F.o.b. origin, with... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.303-5 F.o.b. origin, with differentials. (a) Explanation of delivery term. F.o.b. origin, with differentials means— (1) Free of expense to...

  1. Adaptive waveform optimization design for target detection in cognitive radar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Wang, Kaizhi; Liu, Xingzhao

    2017-01-01

    The problem of adaptive waveform design for target detection in cognitive radar (CR) is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended target with unknown target impulse response (TIR). In order to estimate the TIR accurately, the Kalman filter is used in target tracking. In each Kalman filtering iteration, a flexible online waveform spectrum optimization design taking both detection and range resolution into account is modeled in Fourier domain. Unlike existing CR waveform, the proposed waveform can be simultaneously updated according to the environment information fed back by receiver and radar performance demands. Moreover, the influence of waveform spectral phase to radar performance is analyzed. Simulation results demonstrate that CR with the proposed waveform performs better than a traditional radar system with a fixed waveform and offers more flexibility and suitability. In addition, waveform spectral phase will not influence tracking, detection, and range resolution performance but will greatly influence waveform forming speed and peak-to-average power ratio.

  2. On-field measurement trial of 4×128 Gbps PDM-QPSK signals by linear optical sampling

    NASA Astrophysics Data System (ADS)

    Bin Liu; Wu, Zhichao; Fu, Songnian; Feng, Yonghua; Liu, Deming

    2017-02-01

    Linear optical sampling is a promising characterization technique for advanced modulation formats, together with digital signal processing (DSP) and software-synchronized algorithm. We theoretically investigate the acquisition of optical sampling, when the high-speed signal under test is either periodic or random. Especially, when the profile of optical sampling pulse is asymmetrical, the repetition frequency of sampling pulse needs careful adjustment in order to obtain correct waveform. Then, we demonstrate on-field measurement trial of commercial four-channel 128 Gbps polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signals with truly random characteristics by self-developed equipment. A passively mode-locked fiber laser (PMFL) with a repetition frequency of 95.984 MHz is used as optical sampling source, meanwhile four balanced photo detectors (BPDs) with 400 MHz bandwidth and four-channel analog-to-digital convertor (ADC) with 1.25 GS/s sampling rate are used for data acquisition. The performance comparison with conventional optical modulation analyzer (OMA) verifies that the self-developed equipment has the advantages of low cost, easy implementation, and fast response.

  3. FPGA Flash Memory High Speed Data Acquisition

    NASA Technical Reports Server (NTRS)

    Gonzalez, April

    2013-01-01

    The purpose of this research is to design and implement a VHDL ONFI Controller module for a Modular Instrumentation System. The goal of the Modular Instrumentation System will be to have a low power device that will store data and send the data at a low speed to a processor. The benefit of such a system will give an advantage over other purchased binary IP due to the capability of allowing NASA to re-use and modify the memory controller module. To accomplish the performance criteria of a low power system, an in house auxiliary board (Flash/ADC board), FPGA development kit, debug board, and modular instrumentation board will be jointly used for the data acquisition. The Flash/ADC board contains four, 1 MSPS, input channel signals and an Open NAND Flash memory module with an analog to digital converter. The ADC, data bits, and control line signals from the board are sent to an Microsemi/Actel FPGA development kit for VHDL programming of the flash memory WRITE, READ, READ STATUS, ERASE, and RESET operation waveforms using Libero software. The debug board will be used for verification of the analog input signal and be able to communicate via serial interface with the module instrumentation. The scope of the new controller module was to find and develop an ONFI controller with the debug board layout designed and completed for manufacture. Successful flash memory operation waveform test routines were completed, simulated, and tested to work on the FPGA board. Through connection of the Flash/ADC board with the FPGA, it was found that the device specifications were not being meet with Vdd reaching half of its voltage. Further testing showed that it was the manufactured Flash/ADC board that contained a misalignment with the ONFI memory module traces. The errors proved to be too great to fix in the time limit set for the project.

  4. Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry

    PubMed Central

    Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.

    2010-01-01

    Frequency-domain flow cytometry techniques are combined with modifications to the digital signal processing capabilities of the Open Reconfigurable Cytometric Acquisition System (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency modulated detector signals, implementing Fourier analysis programming with ORCAS’ digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5–25 ns simulated lifetime), pulse widths ranging from 2 to 15 µs, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142° to 1.6°. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 µs and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a radiofrequency modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to ~98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively implement this system on a commercial flow sorter will both allow better dissemination of this technology and better exploit the traditionally underutilized parameter of fluorescence lifetime. PMID:20662090

  5. Second Language Acquisition and Applied Linguistics.

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    2000-01-01

    Discusses the second language acquisition (SLA) process and the differential success of second language learners. Examines the fundamental challenges that this characterization faces, and highlights the contributions SLA is capable of in the coming decade. Offers topics for a training and development of curriculum for future applied linguists from…

  6. Demonstration of a fully differential VGA chip with small THD for ECG acquisition system

    NASA Astrophysics Data System (ADS)

    Gongli, Xiao; Yuliang, Qin; Weilin, Xu; Baolin, Wei; Jihai, Duan; Xueming, Wei

    2015-10-01

    We present both a theoretical and experimental demonstration of a fully differential variable gain amplifier (VGA) with small total harmonic distortion (THD) for an electrocardiogram (ECG) acquisition system. Capacitive feedback technology is adopted to reduce the nonlinearity of VGA. The fully differential VGA has been fabricated in SMIC 0.18-μm CMOS process, and it only occupies 0.11 mm2. The measurements are in good agreement with simulation results. Experimental results show that the gain of VGA changes from 6.17 to 43.75 dB with a gain step of 3 dB. The high-pass corner frequency and low-pass corner frequency are around 0.22 Hz and 7.9 kHz, respectively. For each gain configuration, a maximal THD of 0.13% is obtained. The fully differential VGA has a low THD and its key performance parameters are well satisfied with the demands of ECG acquisition system application in the UWB wireless body area network. Project supported by the National Natural Science Foundation of China (Nos. 61264001, 61465004, 61161003, 61166004), the Guangxi Natural Science Foundation (Nos. 2013GXNSFAA019333, 2013GXNSFAA019338), the Science and Technology Research Key Project of Guangxi Department of Education (No. 2013ZD026), and the Innovation Project of GUET Graduate Education (No. GDYCSZ201457).

  7. Rapid updating of optical arbitrary waveforms via time-domain multiplexing.

    PubMed

    Scott, R P; Fontaine, N K; Yang, C; Geisler, D J; Okamoto, K; Heritage, J P; Yoo, S J B

    2008-05-15

    We demonstrate high-fidelity optical arbitrary waveform generation with 5 GHz waveform switching via time-domain multiplexing. Compact, integrated waveform shapers based on silica arrayed-waveguide grating pairs with 10 GHz channel spacing are used to shape (line-by-line) two different waveforms from the output of a 10-mode x 10 GHz optical frequency comb generator. Characterization of the time multiplexer's complex transfer function (amplitude and phase) by frequency-resolved optical gating permits compensation of its impact on the switched waveforms and matching of the measured and target waveforms to better than G'=5%.

  8. Time-dependent phase error correction using digital waveform synthesis

    DOEpatents

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  9. Radar altimeter waveform modeled parameter recovery. [SEASAT-1 data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Satellite-borne radar altimeters include waveform sampling gates providing point samples of the transmitted radar pulse after its scattering from the ocean's surface. Averages of the waveform sampler data can be fitted by varying parameters in a model mean return waveform. The theoretical waveform model used is described as well as a general iterative nonlinear least squares procedures used to obtain estimates of parameters characterizing the modeled waveform for SEASAT-1 data. The six waveform parameters recovered by the fitting procedure are: (1) amplitude; (2) time origin, or track point; (3) ocean surface rms roughness; (4) noise baseline; (5) ocean surface skewness; and (6) altitude or off-nadir angle. Additional practical processing considerations are addressed and FORTRAN source listing for subroutines used in the waveform fitting are included. While the description is for the Seasat-1 altimeter waveform data analysis, the work can easily be generalized and extended to other radar altimeter systems.

  10. EAARL Coastal Topography - Northern Gulf of Mexico

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Sallenger, Abby; Wright, C. Wayne; Travers, Laurinda J.; Lebonitte, James

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived coastal topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. One objective of this research is to create techniques to survey areas for the purposes of geomorphic change studies following major storm events. The USGS Coastal and Marine Geology Program's National Assessment of Coastal Change Hazards project is a multi-year undertaking to identify and quantify the vulnerability of U.S. shorelines to coastal change hazards such as effects of severe storms, sea-level rise, and shoreline erosion and retreat. Airborne Lidar surveys conducted during periods of calm weather are compared to surveys collected following extreme storms in order to quantify the resulting coastal change. Other applications of high-resolution topography include habitat mapping, ecological monitoring, volumetric change detection, and event assessment. The purpose of this project is to provide highly detailed and accurate datasets of the northern Gulf of Mexico coastal areas, acquired on September 19, 2004, immediately following Hurricane Ivan. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Airborne Advanced Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532 nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking RGB (red-green-blue) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system on September 19, 2004. The survey resulted in the acquisition of 3.2 gigabytes of data. The data were processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of 'last return' elevations.

  11. Earthquake focal parameters and lithospheric structure of the anatolian plateau from complete regional waveform modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A

    2000-12-28

    This is an informal report on preliminary efforts to investigate earthquake focal mechanisms and earth structure in the Anatolian (Turkish) Plateau. Seismic velocity structure of the crust and upper mantle and earthquake focal parameters for event in the Anatolian Plateau are estimated from complete regional waveforms. Focal mechanisms, depths and seismic moments of moderately large crustal events are inferred from long-period (40-100 seconds) waveforms and compared with focal parameters derived from global teleseismic data. Using shorter periods (10-100 seconds) we estimate the shear and compressional velocity structure of the crust and uppermost mantle. Results are broadly consistent with previous studiesmore » and imply relatively little crustal thickening beneath the central Anatolian Plateau. Crustal thickness is about 35 km in western Anatolia and greater than 40 km in eastern Anatolia, however the long regional paths require considerable averaging and limit resolution. Crustal velocities are lower than typical continental averages, and even lower than typical active orogens. The mantle P-wave velocity was fixed to 7.9 km/s, in accord with tomographic models. A high sub-Moho Poisson's Ratio of 0.29 was required to fit the Sn-Pn differential times. This is suggestive of high sub-Moho temperatures, high shear wave attenuation and possibly partial melt. The combination of relatively thin crust in a region of high topography and high mantle temperatures suggests that the mantle plays a substantial role in maintaining the elevation.« less

  12. Internal versus external features in triggering the brain waveforms for conjunction and feature faces in recognition.

    PubMed

    Nie, Aiqing; Jiang, Jingguo; Fu, Qiao

    2014-08-20

    Previous research has found that conjunction faces (whose internal features, e.g. eyes, nose, and mouth, and external features, e.g. hairstyle and ears, are from separate studied faces) and feature faces (partial features of these are studied) can produce higher false alarms than both old and new faces (i.e. those that are exactly the same as the studied faces and those that have not been previously presented) in recognition. The event-related potentials (ERPs) that relate to conjunction and feature faces at recognition, however, have not been described as yet; in addition, the contributions of different facial features toward ERPs have not been differentiated. To address these issues, the present study compared the ERPs elicited by old faces, conjunction faces (the internal and the external features were from two studied faces), old internal feature faces (whose internal features were studied), and old external feature faces (whose external features were studied) with those of new faces separately. The results showed that old faces not only elicited an early familiarity-related FN400, but a more anterior distributed late old/new effect that reflected recollection. Conjunction faces evoked similar late brain waveforms as old internal feature faces, but not to old external feature faces. These results suggest that, at recognition, old faces hold higher familiarity than compound faces in the profiles of ERPs and internal facial features are more crucial than external ones in triggering the brain waveforms that are characterized as reflecting the result of familiarity.

  13. Optical transmission testing based on asynchronous sampling techniques

    NASA Astrophysics Data System (ADS)

    Mrozek, T.; Perlicki, K.; Wilczewski, G.

    2016-09-01

    This paper presents a method of analysis of images obtained with the Asynchronous Delay Tap Sampling technique, which is used for simultaneous monitoring of a number of phenomena in the physical layer of an optical network. This method allows visualization of results in a form of an optical signal's waveform (characteristics depicting phase portraits). Depending on a specific phenomenon being observed (i.e.: chromatic dispersion, polarization mode dispersion and ASE noise), the shape of the waveform changes. Herein presented original waveforms were acquired utilizing the OptSim 4.0 simulation package. After specific simulation testing, the obtained numerical data was transformed into an image form, that was further subjected to the analysis using authors' custom algorithms. These algorithms utilize various pixel operations and creation of reports each image might be characterized with. Each individual report shows the number of black pixels being present in the specific image segment. Afterwards, generated reports are compared with each other, across the original-impaired relationship. The differential report is created which consists of a "binary key" that shows the increase in the number of pixels in each particular segment. The ultimate aim of this work is to find the correlation between the generated binary keys and the analyzed common phenomenon being observed, allowing identification of the type of interference occurring. In the further course of the work it is evitable to determine their respective values. The presented work delivers the first objective - the ability to recognize interference.

  14. Hemodynamic transition driven by stent porosity in sidewall aneurysms.

    PubMed

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes

    2015-05-01

    The healing process of intracranial aneurysms (IAs) treated with flow diverter stents (FDSs) depends on the IA flow modifications and on the epithelization process over the neck. In sidewall IA models with straight parent artery, two main hemodynamic regimes with different flow patterns and IA flow magnitude were broadly observed for unstented and high porosity stented IA on one side, and low porosity stented IA on the other side. The hemodynamic transition between these two regimes is potentially involved in thrombosis formation. In the present study, CFD simulations and multi-time lag (MTL) particle imaging velocimetry (PIV) measurements were combined to investigate the physical nature of this transition. Measurable velocity fields and non-measurable shear stress and pressure fields were assessed experimentally and numerically in the aneurysm volume in the presence of stents with various porosities. The two main regimes observed in both PIV and CFD showed typical flow features of shear and pressure driven regimes. In particular, the waveform of the averaged IA velocities was matching both the shear stress waveform at IA neck or the pressure gradient waveform in parent artery. Moreover, the transition between the two regimes was controlled by stent porosity: a decrease of stent porosity leads to an increase (decrease) of pressure differential (shear stress) through IA neck. Finally, a good PIV-CFD agreement was found except in transitional regimes and low motion eddies due to small mismatch of PIV-CFD running conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Pinpointing the North Korea Nuclear tests with body waves scattered by surface topography

    NASA Astrophysics Data System (ADS)

    Wang, N.; Shen, Y.; Bao, X.; Flinders, A. F.

    2017-12-01

    On September 3, 2017, North Korea conducted its sixth and by far the largest nuclear test at the Punggye-ri test site. In this work, we apply a novel full-wave location method that combines a non-linear grid-search algorithm with the 3D strain Green's tensor database to locate this event. We use the first arrivals (Pn waves) and their immediate codas, which are likely dominated by waves scattered by the surface topography near the source, to pinpoint the source location. We assess the solution in the search volume using a least-squares misfit between the observed and synthetic waveforms, which are obtained using the collocated-grid finite difference method on curvilinear grids. We calculate the one standard deviation level of the 'best' solution as a posterior error estimation. Our results show that the waveform based location method allows us to obtain accurate solutions with a small number of stations. The solutions are absolute locations as opposed to relative locations based on relative travel times, because topography-scattered waves depend on the geometric relations between the source and the unique topography near the source. Moreover, we use both differential waveforms and traveltimes to locate pairs of the North Korea tests in years 2016 and 2017 to further reduce the effects of inaccuracies in the reference velocity model (CRUST 1.0). Finally, we compare our solutions with those of other studies based on satellite images and relative traveltimes.

  16. IRTs of the ABCs: Children's Letter Name Acquisition

    ERIC Educational Resources Information Center

    Phillips, Beth M.; Piasta, Shayne B.; Anthony, Jason L.; Lonigan, Christopher J.; Francis, David J.

    2012-01-01

    We examined the developmental sequence of letter name knowledge acquisition by children from 2 to five years of age. Data from 2 samples representing diverse regions, ethnicity, and socioeconomic backgrounds (ns=1074 and 500) were analyzed using item response theory (IRT) and differential item functioning techniques. Results from factor analyses…

  17. Automated Analysis, Classification, and Display of Waveforms

    NASA Technical Reports Server (NTRS)

    Kwan, Chiman; Xu, Roger; Mayhew, David; Zhang, Frank; Zide, Alan; Bonggren, Jeff

    2004-01-01

    A computer program partly automates the analysis, classification, and display of waveforms represented by digital samples. In the original application for which the program was developed, the raw waveform data to be analyzed by the program are acquired from space-shuttle auxiliary power units (APUs) at a sampling rate of 100 Hz. The program could also be modified for application to other waveforms -- for example, electrocardiograms. The program begins by performing principal-component analysis (PCA) of 50 normal-mode APU waveforms. Each waveform is segmented. A covariance matrix is formed by use of the segmented waveforms. Three eigenvectors corresponding to three principal components are calculated. To generate features, each waveform is then projected onto the eigenvectors. These features are displayed on a three-dimensional diagram, facilitating the visualization of the trend of APU operations.

  18. Development and operation of a real-time data acquisition system for the NASA-LaRC differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1985-01-01

    Computer hardware and software of the NASA multipurpose differential absorption lidar (DIAL) sysatem were improved. The NASA DIAL system is undergoing development and experimental deployment for remote measurement of atmospheric trace gas concentration from ground and aircraft platforms. A viable DIAL system was developed with the capability of remotely measuring O3 and H2O concentrations from an aircraft platform. Test flights were successfully performed on board the NASA/Goddard Flight Center Electra aircraft from 1980 to 1984. Improvements on the DIAL data acquisition system (DAS) are described.

  19. Inner core boundary topography explored with reflected and diffracted P waves

    NASA Astrophysics Data System (ADS)

    deSilva, Susini; Cormier, Vernon F.; Zheng, Yingcai

    2018-03-01

    The existence of topography of the inner core boundary (ICB) can affect the amplitude, phase, and coda of body waves incident on the inner core. By applying pseudospectral and boundary element methods to synthesize compressional waves interacting with the ICB, these effects are predicted and compared with waveform observations in pre-critical, critical, post-critical, and diffraction ranges of the PKiKP wave reflected from the ICB. These data sample overlapping regions of the inner core beneath the circum-Pacific belt and the Eurasian, North American, and Australian continents, but exclude large areas beneath the Pacific and Indian Oceans and the poles. In the pre-critical range, PKiKP waveforms require an upper bound of 2 km at 1-20 km wavelength for any ICB topography. Higher topography sharply reduces PKiKP amplitude and produces time-extended coda not observed in PKiKP waveforms. The existence of topography of this scale smooths over minima and zeros in the pre-critical ICB reflection coefficient predicted from standard earth models. In the range surrounding critical incidence (108-130 °), this upper bound of topography does not strongly affect the amplitude and waveform behavior of PKIKP + PKiKP at 1.5 Hz, which is relatively insensitive to 10-20 km wavelength topography height approaching 5 km. These data, however, have a strong overlap in the regions of the ICB sampled by pre-critical PKiKP that require a 2 km upper bound to topography height. In the diffracted range (>152°), topography as high as 5 km attenuates the peak amplitudes of PKIKP and PKPCdiff by similar amounts, leaving the PKPCdiff/PKIKP amplitude ratio unchanged from that predicted by a smooth ICB. The observed decay of PKPCdiff into the inner core shadow and the PKIKP-PKPCdiff differential travel time are consistent with a flattening of the outer core P velocity gradient near the ICB and iron enrichment at the bottom of the outer core.

  20. Cough-Associated Changes in CSF Flow in Chiari I Malformation Evaluated by Real-Time MRI.

    PubMed

    Bhadelia, R A; Patz, S; Heilman, C; Khatami, D; Kasper, E; Zhao, Y; Madan, N

    2016-05-01

    Invasive pressure studies have suggested that CSF flow across the foramen magnum may transiently decrease after coughing in patients with symptomatic Chiari I malformation. The purpose of this exploratory study was to demonstrate this phenomenon noninvasively by assessing CSF flow response to coughing in symptomatic patients with Chiari I malformation by using MR pencil beam imaging and to compare the response with that in healthy participants. Eight symptomatic patients with Chiari I malformation and 6 healthy participants were studied by using MR pencil beam imaging with a temporal resolution of ∼50 ms. Patients and healthy participants were scanned for 90 seconds (without cardiac gating) to continuously record cardiac cycle-related CSF flow waveforms in real-time during resting, coughing, and postcoughing periods. CSF flow waveform amplitude, CSF stroke volume, and CSF flow rate (CSF Flow Rate = CSF Stroke Volume × Heart Rate) in the resting and immediate postcoughing periods were determined and compared between patients and healthy participants. There was no significant difference in CSF flow waveform amplitude, CSF stroke volume, and the CSF flow rate between patients with Chiari I malformation and healthy participants during rest. However, immediately after coughing, a significant decrease in CSF flow waveform amplitude (P < .001), CSF stroke volume (P = .001), and CSF flow rate (P = .001) was observed in patients with Chiari I malformation but not in the healthy participants. Real-time MR imaging noninvasively showed a transient decrease in CSF flow across the foramen magnum after coughing in symptomatic patients with Chiari I malformation, a phenomenon not seen in healthy participants. Our results provide preliminary evidence that the physiology-based imaging method used here has the potential to be an objective clinical test to differentiate symptomatic from asymptomatic patients with Chiari I malformation. © 2016 by American Journal of Neuroradiology.

  1. A design method for high performance seismic data acquisition based on oversampling delta-sigma modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shanghua; Xue, Bing

    2017-04-01

    The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10-20 dB lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter (ADC) chips with more than 24 bits in the market. So the key difficulties for higher-resolution data acquisition devices lie in achieving more than 24-bit ADC circuit. In the paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus forming a complete analog to digital converting circuit. Experimental results show that, within the 0.1-40 Hz frequency range, the circuit board's dynamic range reaches 158.2 dB, its resolution reaches 25.99 dB, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even solve the amplitude-limitation problem that broadband observation systems so commonly have to face during strong earthquakes.

  2. Restoration of clipped seismic waveforms using projection onto convex sets method

    PubMed Central

    Zhang, Jinhai; Hao, Jinlai; Zhao, Xu; Wang, Shuqin; Zhao, Lianfeng; Wang, Weimin; Yao, Zhenxing

    2016-01-01

    The seismic waveforms would be clipped when the amplitude exceeds the upper-limit dynamic range of seismometer. Clipped waveforms are typically assumed not useful and seldom used in waveform-based research. Here, we assume the clipped components of the waveform share the same frequency content with the un-clipped components. We leverage this similarity to convert clipped waveforms to true waveforms by iteratively reconstructing the frequency spectrum using the projection onto convex sets method. Using artificially clipped data we find that statistically the restoration error is ~1% and ~5% when clipped at 70% and 40% peak amplitude, respectively. We verify our method using real data recorded at co-located seismometers that have different gain controls, one set to record large amplitudes on scale and the other set to record low amplitudes on scale. Using our restoration method we recover 87 out of 93 clipped broadband records from the 2013 Mw6.6 Lushan earthquake. Estimating that we recover 20 clipped waveforms for each M5.0+ earthquake, so for the ~1,500 M5.0+ events that occur each year we could restore ~30,000 clipped waveforms each year, which would greatly enhance useable waveform data archives. These restored waveform data would also improve the azimuthal station coverage and spatial footprint. PMID:27966618

  3. Constraints on Shear Wave Velocity Heterogeneity and Anisotropy in D' from Finite-Frequency Differential Traveltime Residual Analysis

    NASA Astrophysics Data System (ADS)

    Liao, T.; Hung, S.; Andrad, E. D.; Liu, Q.

    2013-12-01

    The D'' region which lies in the lowermost ~250 km of the mantle has long been postulated as a major thermo-chemical boundary layer in the earth's dynamic evolution, where the upwelling plumes most likely originate and the downwelling cold slabs terminate. Numerous seismological investigations have found seismically distinct features, revealing the presence of both strong velocity heterogeneity and anisotropy near the core-mantle boundary. In recent years, the rapid growth of broadband seismograph array data and the advent of array processing methods and finite-frequency wave theory hold great promise for improving global coverage of seismic constraints for refinement of the details and complexity of the D' structure. In this study, we collect all recorded and available broadband waveforms from earthquakes with epicentral distances of 40-145o and magnitudes greater than 5.8 during 2002-2012. A cluster analysis (Houser at al. 2008) is then adopted to simultaneously group the seismic phases of interest with similar waveforms together as clusters and measure relative traveltime shifts between them in the same cluster by waveform cross correlation. We construct a dataset of differential traveltime residuals from composite phases, S(Sdiff), SKS, SKKS, ScS and multiply-reflected ScS phases commonly used to constrain both elastic wave speed heterogeneity and anisotropy in the lowermost mantle. While the splitting of Sdiff phases between the vertically (SV) and transversely (SH) polarized components after correcting for upper mantle anisotropy constrained by SKS/SKKS splitting has been identified as evidence for seismic anisotropy in the D' layer, distinct difference in finite-frequency sensitivity for SVdiff and SHdiff waves may lead to apparent splitting in the isotropic heterogeneous earth (Komatitsch et al. 2010). Finite-frequency sensitivity kernels for measured Sdiff traveltime anomalies, constructed with the interactions of forward and adjoint wavefields accurately calculated by a numerical spectral element method, will be utilized to investigate their contribution to the observed splitting times between the SH and SV components and characterize the inherent elastic anisotropy in D'.

  4. Analysis of Waveform Retracking Methods in Antarctic Ice Sheet Based on CRYOSAT-2 Data

    NASA Astrophysics Data System (ADS)

    Xiao, F.; Li, F.; Zhang, S.; Hao, W.; Yuan, L.; Zhu, T.; Zhang, Y.; Zhu, C.

    2017-09-01

    Satellite altimetry plays an important role in many geoscientific and environmental studies of Antarctic ice sheet. The ranging accuracy is degenerated near coasts or over nonocean surfaces, due to waveform contamination. A postprocess technique, known as waveform retracking, can be used to retrack the corrupt waveform and in turn improve the ranging accuracy. In 2010, the CryoSat-2 satellite was launched with the Synthetic aperture Interferometric Radar ALtimeter (SIRAL) onboard. Satellite altimetry waveform retracking methods are discussed in the paper. Six retracking methods including the OCOG method, the threshold method with 10 %, 25 % and 50 % threshold level, the linear and exponential 5-β parametric methods are used to retrack CryoSat-2 waveform over the transect from Zhongshan Station to Dome A. The results show that the threshold retracker performs best with the consideration of waveform retracking success rate and RMS of retracking distance corrections. The linear 5-β parametric retracker gives best waveform retracking precision, but cannot make full use of the waveform data.

  5. Improved detection sensitivity of D-mannitol crystalline phase content using differential spectral phase shift terahertz spectroscopy measurements.

    PubMed

    Allard, Jean-François; Cornet, Alain; Debacq, Christophe; Meurens, Marc; Houde, Daniel; Morris, Denis

    2011-02-28

    We report quantitative measurement of the relative proportion of δ- and β-D-mannitol crystalline phases inserted into polyethylene powder pellets, obtained by time-domain terahertz spectroscopy. Nine absorption bands have been identified from 0.2 THz to 2.2 THz. The best quantification of the δ-phase proportion is made using the 1.01 THz absorption band. Coherent detection allows using the spectral phase shift of the transmitted THz waveform to improve the detection sensitivity of the relative δ-phase proportion. We argue that differential phase shift measurements are less sensitive to samples' defects. Using a linear phase shift compensation for pellets of slightly different thicknesses, we were able to distinguish a 0.5% variation in δ-phase proportion.

  6. A study of the effect on human mesenchymal stem cells of an atmospheric pressure plasma source driven by different voltage waveforms

    NASA Astrophysics Data System (ADS)

    Laurita, R.; Alviano, F.; Marchionni, C.; Abruzzo, P. M.; Bolotta, A.; Bonsi, L.; Colombo, V.; Gherardi, M.; Liguori, A.; Ricci, F.; Rossi, M.; Stancampiano, A.; Tazzari, P. L.; Marini, M.

    2016-09-01

    The effect of an atmospheric pressure non-equilibrium plasma on human mesenchymal stem cells was investigated. A dielectric barrier discharge non-equilibrium plasma source driven by two different high-voltage pulsed generators was used and cell survival, senescence, proliferation, and differentiation were evaluated. Cells deprived of the culture medium and treated with nanosecond pulsed plasma showed a higher mortality rate, while higher survival and retention of proliferation were observed in cells treated with microsecond pulsed plasma in the presence of the culture medium. While a few treated cells showed the hallmarks of senescence, unexpected delayed apoptosis ensued in cells exposed to plasma-treated medium. The plasma treatment did not change the expression of OCT4, a marker of mesenchymal stem cell differentiation.

  7. Fuzzy logic based on-line fault detection and classification in transmission line.

    PubMed

    Adhikari, Shuma; Sinha, Nidul; Dorendrajit, Thingam

    2016-01-01

    This study presents fuzzy logic based online fault detection and classification of transmission line using Programmable Automation and Control technology based National Instrument Compact Reconfigurable i/o (CRIO) devices. The LabVIEW software combined with CRIO can perform real time data acquisition of transmission line. When fault occurs in the system current waveforms are distorted due to transients and their pattern changes according to the type of fault in the system. The three phase alternating current, zero sequence and positive sequence current data generated by LabVIEW through CRIO-9067 are processed directly for relaying. The result shows that proposed technique is capable of right tripping action and classification of type of fault at high speed therefore can be employed in practical application.

  8. IDC Re-Engineering Phase 2 System Requirements Document Version 1.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, James M.; Burns, John F.; Satpathi, Meara Allena

    This System Requirements Document (SRD) defines waveform data processing requirements for the International Data Centre (IDC) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). The IDC applies, on a routine basis, automatic processing methods and interactive analysis to raw International Monitoring System (IMS) data in order to produce, archive, and distribute standard IDC products on behalf of all States Parties. The routine processing includes characterization of events with the objective of screening out events considered to be consistent with natural phenomena or non-nuclear, man-made phenomena. This document does not address requirements concerning acquisition, processing and analysis of radionuclide data,more » but includes requirements for the dissemination of radionuclide data and products.« less

  9. Space station integrated wall design and penetration damage control. Task 4: Impact detection/location system

    NASA Technical Reports Server (NTRS)

    Nelson, J. M.; Lempriere, B. M.

    1987-01-01

    A program to develop a methodology is documented for detecting and locating meteoroid and debris impacts and penetrations of a wall configuration currently specified for use on space station. Testing consisted of penetrating and non-penetrating hypervelocity impacts on single and dual plate test configurations, including a prototype 1.22 m x 2.44 m x 3.56 mm (4 ft x 8 ft x 0.140 in) aluminum waffle grid backwall with multilayer insulation and a 0.063-in shield. Acoustic data were gathered with transducers and associated data acquisition systems and stored for later analysis with a multichannel digitizer. Preliminary analysis of test data included sensor evaluation, impact repeatability, first waveform arrival, and Fourier spectral analysis.

  10. IDC Re-Engineering Phase 2 System Requirements Document V1.3.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, James M.; Burns, John F.; Satpathi, Meara Allena

    2015-12-01

    This System Requirements Document (SRD) defines waveform data processing requirements for the International Data Centre (IDC) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). The IDC applies, on a routine basis, automatic processing methods and interactive analysis to raw International Monitoring System (IMS) data in order to produce, archive, and distribute standard IDC products on behalf of all States Parties. The routine processing includes characterization of events with the objective of screening out events considered to be consistent with natural phenomena or non-nuclear, man-made phenomena. This document does not address requirements concerning acquisition, processing and analysis of radionuclide datamore » but includes requirements for the dissemination of radionuclide data and products.« less

  11. A simple accurate chest-compression depth gauge using magnetic coils during cardiopulmonary resuscitation

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Sano, Yuko; Zhang, Yuhua; Tsuji, Toshio

    2015-12-01

    This paper describes a new method for calculating chest compression depth and a simple chest-compression gauge for validating the accuracy of the method. The chest-compression gauge has two plates incorporating two magnetic coils, a spring, and an accelerometer. The coils are located at both ends of the spring, and the accelerometer is set on the bottom plate. Waveforms obtained using the magnetic coils (hereafter, "magnetic waveforms"), which are proportional to compression-force waveforms and the acceleration waveforms were measured at the same time. The weight factor expressing the relationship between the second derivatives of the magnetic waveforms and the measured acceleration waveforms was calculated. An estimated-compression-displacement (depth) waveform was obtained by multiplying the weight factor and the magnetic waveforms. Displacements of two large springs (with similar spring constants) within a thorax and displacements of a cardiopulmonary resuscitation training manikin were measured using the gauge to validate the accuracy of the calculated waveform. A laser-displacement detection system was used to compare the real displacement waveform and the estimated waveform. Intraclass correlation coefficients (ICCs) between the real displacement using the laser system and the estimated displacement waveforms were calculated. The estimated displacement error of the compression depth was within 2 mm (<1 standard deviation). All ICCs (two springs and a manikin) were above 0.85 (0.99 in the case of one of the springs). The developed simple chest-compression gauge, based on a new calculation method, provides an accurate compression depth (estimation error < 2 mm).

  12. Sonic spectrometer and treatment system

    DOEpatents

    Slomka, B.J.

    1997-06-03

    A novel system and method is developed for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object. 1 fig.

  13. Sonic spectrometer and treatment system

    DOEpatents

    Slomka, Bogdan J.

    1997-06-03

    A novel system and method for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object.

  14. The Waveform Suite: A robust platform for accessing and manipulating seismic waveforms in MATLAB

    NASA Astrophysics Data System (ADS)

    Reyes, C. G.; West, M. E.; McNutt, S. R.

    2009-12-01

    The Waveform Suite, developed at the University of Alaska Geophysical Institute, is an open-source collection of MATLAB classes that provide a means to import, manipulate, display, and share waveform data while ensuring integrity of the data and stability for programs that incorporate them. Data may be imported from a variety of sources, such as Antelope, Winston databases, SAC files, SEISAN, .mat files, or other user-defined file formats. The waveforms being manipulated in MATLAB are isolated from their stored representations, relieving the overlying programs from the responsibility of understanding the specific format in which data is stored or retrieved. The waveform class provides an object oriented framework that simplifies manipulations to waveform data. Playing with data becomes easier because the tedious aspects of data manipulation have been automated. The user is able to change multiple waveforms simultaneously using standard mathematical operators and other syntactically familiar functions. Unlike MATLAB structs or workspace variables, the data stored within waveform class objects are protected from modification, and instead are accessed through standardized functions, such as get and set; these are already familiar to users of MATLAB’s graphical features. This prevents accidental or nonsensical modifications to the data, which in turn simplifies troubleshooting of complex programs. Upgrades to the internal structure of the waveform class are invisible to applications which use it, making maintenance easier. We demonstrate the Waveform Suite’s capabilities on seismic data from Okmok and Redoubt volcanoes. Years of data from Okmok were retrieved from Antelope and Winston databases. Using the Waveform Suite, we built a tremor-location program. Because the program was built on the Waveform Suite, modifying it to operate on real-time data from Redoubt involved only minimal code changes. The utility of the Waveform Suite as a foundation for large developments is demonstrated with the Correlation Toolbox for MATLAB. This mature package contains 50+ codes for carrying out various type of waveform correlation analyses (multiplet analysis, clustering, interferometry, …) This package is greatly strengthened by delegating numerous book-keeping and signal processing tasks to the underlying Waveform Suite. The Waveform Suite’s built-in tools for searching arbitrary directory/file structures is demonstrated with matched video and audio from the recent eruption of Redoubt Volcano. These tools were used to find subsets of photo images corresponding to specific seismic traces. Using Waveform’s audio file routines, matched video and audio were assembled to produce outreach-quality eruption products. The Waveform Suite is not designed as a ready-to-go replacement for more comprehensive packages such as SAC or AH. Rather, it is a suite of classes which provide core time series functionality in a MATLAB environment. It is designed to be a more robust alternative to the numerous ad hoc MATLAB formats that exist. Complex programs may be created upon the Waveform Suite’s framework, while existing programs may be modified to take advantage of the Waveform Suites capabilities.

  15. Waveform fitting and geometry analysis for full-waveform lidar feature extraction

    NASA Astrophysics Data System (ADS)

    Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu

    2016-10-01

    This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.

  16. Spacing Techniques in Second Language Vocabulary Acquisition: Short-Term Gains vs. Long-Term Memory

    ERIC Educational Resources Information Center

    Schuetze, Ulf

    2015-01-01

    This article reports the results of two experiments using the spacing technique (Leitner, 1972; Landauer & Bjork, 1978) in second language vocabulary acquisition. In the past, studies in this area have produced mixed results attempting to differentiate between massed, uniform and expanded intervals of spacing (Balota, Duchek, & Logan,…

  17. Effects of a Differential Observing Response on Intraverbal Performance of Preschool Children: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Kisamore, April N.; Karsten, Amanda M.; Mann, Charlotte C.; Conde, Kerry Ann

    2013-01-01

    Axe (2008) speculated that some instances of intraverbal responding might be associated with limited or delayed acquisition because they require discrimination of multiple components of verbal stimuli. Past studies suggest that acquisition of responses under control of complex, multicomponent antecedent stimuli (e.g., conditional or compound…

  18. Regulation of H3K4me3 at Transcriptional Enhancers Characterizes Acquisition of Virus-Specific CD8+ T Cell-Lineage-Specific Function.

    PubMed

    Russ, Brendan E; Olshansky, Moshe; Li, Jasmine; Nguyen, Michelle L T; Gearing, Linden J; Nguyen, Thi H O; Olson, Matthew R; McQuilton, Hayley A; Nüssing, Simone; Khoury, Georges; Purcell, Damian F J; Hertzog, Paul J; Rao, Sudha; Turner, Stephen J

    2017-12-19

    Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs), we mapped the dynamics of ∼25,000 putative CD8 + T cell transcriptional enhancers (TEs) differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3 + ) chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8 + T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8 + T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Auditory Spatial Layout

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  20. Viscoacoustic anisotropic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Qu, Yingming; Li, Zhenchun; Huang, Jianping; Li, Jinli

    2017-01-01

    A viscoacoustic vertical transverse isotropic (VTI) quasi-differential wave equation, which takes account for both the viscosity and anisotropy of media, is proposed for wavefield simulation in this study. The finite difference method is used to solve the equations, for which the attenuation terms are solved in the wavenumber domain, and all remaining terms in the time-space domain. To stabilize the adjoint wavefield, robust regularization operators are applied to the wave equation to eliminate the high-frequency component of the numerical noise produced during the backward propagation of the viscoacoustic wavefield. Based on these strategies, we derive the corresponding gradient formula and implement a viscoacoustic VTI full waveform inversion (FWI). Numerical tests verify that our proposed viscoacoustic VTI FWI can produce accurate and stable inversion results for viscoacoustic VTI data sets. In addition, we test our method's sensitivity to velocity, Q, and anisotropic parameters. Our results show that the sensitivity to velocity is much higher than that to Q and anisotropic parameters. As such, our proposed method can produce acceptable inversion results as long as the Q and anisotropic parameters are within predefined thresholds.

  1. Empirical transfer functions: Application to determination of outermost core velocity structure using SmKS phases

    NASA Astrophysics Data System (ADS)

    Alexandrakis, Catherine; Eaton, David W.

    2007-11-01

    SmKS waves provide good resolution of outer-core velocity structure, but are affected by heterogeneity in the D'' region. We have developed an Empirical Transfer Function (ETF) technique that transforms a reference pulse (here, SmKS) into a target waveform (SKKS) by: (1) time-windowing the respective pulses, (2) applying Wiener deconvolution, and (3) convolving the output with a Gaussian waveform. Common source and path effects are implicitly removed by this process. We combine ETFs from 446 broadband seismograms to produce a global stack, from which S3KS-SKKS differential time can be measured accurately. As a result of stacking, the scatter in our measurements (0.43 s) is much less than the 1.29 s scatter in previous compilations. Although our data do not uniquely constrain outermost core velocities, we show that the fit of most standard models can be improved by perturbing the outermost core velocity. Our best-fitting model is formed using IASP91 with PREM-like velocity at the top of the core.

  2. Early Pragmatic Differentiation in Japanese and German: A Case Study of a Developing Trilingual Child in Australia

    ERIC Educational Resources Information Center

    Nibun, Yukari; Wigglesworth, Gillian

    2014-01-01

    While acquisition of more than one language from birth is a relatively common phenomenon, whether children under two years of age use their languages in a differentiated manner has not yet been established. The current study investigates the pragmatic differentiation of a child who lives in Australia and was acquiring two minority languages,…

  3. Integrated Coding and Waveform Design Study.

    DTIC Science & Technology

    1980-08-01

    values of M, CDMA offers an efficiency of around 33%. Comparing these numbers to the fixed assigned system given in Section 2.2, we note that for the...is shown in Figure 3.1. The behavior of the ad- justable weight W2 is governed by a first order differential equation which Gabriel solves as W = w...the weight behavior is governed by Eq. (3.1), with the parameters in Eq. (3.1) defined by Eqs. (3.2), (3.5), (3.11), (3.15), (3.17), (3.18), (3.19), and

  4. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    PubMed

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. EAARL Coastal Topography - Northeast Barrier Islands 2007: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  6. EAARL Topography - Natchez Trace Parkway 2007: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Natchez Trace Parkway in Mississippi, acquired on September 14, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  7. EAARL Topography - Vicksburg National Military Park 2008: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Vicksburg National Military Park in Mississippi, acquired on March 6, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  8. EAARL Coastal Topography - Northeast Barrier Islands 2007: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  9. EAARL Topography-Vicksburg National Military Park 2007: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Vicksburg National Military Park in Mississippi, acquired on September 12, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  10. EAARL-B coastal topography: eastern New Jersey, Hurricane Sandy, 2012: first surface

    USGS Publications Warehouse

    Wright, C. Wayne; Fredericks, Xan; Troche, Rodolfo J.; Klipp, Emily S.; Kranenburg, Christine J.; Nagle, David B.

    2014-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida. This project provides highly detailed and accurate datasets for a portion of the New Jersey coastline beachface, acquired pre-Hurricane Sandy on October 26, and post-Hurricane Sandy on November 1 and November 5, 2012. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar system, known as the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), was used during data acquisition. The EAARL-B system is a raster-scanning, waveform-resolving, green-wavelength (532-nm) lidar designed to map nearshore bathymetry, topography, and vegetation structure simultaneously. The EAARL-B sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, down-looking red-green-blue (RGB) and infrared (IR) digital cameras, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL-B platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL-B system. The resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Lidar for Science and Resource Management Web site.

  11. EAARL Coastal Topography--Cape Canaveral, Florida, 2009: First Surface

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Plant, Nathaniel; Wright, C.W.; Nagle, D.B.; Serafin, K.S.; Klipp, E.S.

    2011-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired on May 28, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations.

  12. Direct Comparison of Respiration-Correlated Four-Dimensional Magnetic Resonance Imaging Reconstructed Using Concurrent Internal Navigator and External Bellows.

    PubMed

    Li, Guang; Wei, Jie; Olek, Devin; Kadbi, Mo; Tyagi, Neelam; Zakian, Kristen; Mechalakos, James; Deasy, Joseph O; Hunt, Margie

    2017-03-01

    To compare the image quality of amplitude-binned 4-dimensional magnetic resonance imaging (4DMRI) reconstructed using 2 concurrent respiratory (navigator and bellows) waveforms. A prospective, respiratory-correlated 4DMRI scanning program was used to acquire T2-weighted single-breath 4DMRI images with internal navigator and external bellows. After a 10-second training waveform of a surrogate signal, 2-dimensional MRI acquisition was triggered at a level (bin) and anatomic location (slice) until the bin-slice table was completed for 4DMRI reconstruction. The bellows signal was always collected, even when the navigator trigger was used, to retrospectively reconstruct a bellows-rebinned 4DMRI. Ten volunteers participated in this institutional review board-approved 4DMRI study. Four scans were acquired for each subject, including coronal and sagittal scans triggered by either navigator or bellows, and 6 4DMRI images (navigator-triggered, bellows-rebinned, and bellows-triggered) were reconstructed. The simultaneously acquired waveforms and resulting 4DMRI quality were compared using signal correlation, bin/phase shift, and binning motion artifacts. The consecutive bellows-triggered 4DMRI scan was used for indirect comparison. Correlation coefficients between the navigator and bellows signals were found to be patient-specific and inhalation-/exhalation-dependent, ranging from 0.1 to 0.9 because of breathing irregularities (>50% scans) and commonly observed bin/phase shifts (-1.1 ± 0.6 bin) in both 1-dimensional waveforms and diaphragm motion extracted from 4D images. Navigator-triggered 4DMRI contained many fewer binning motion artifacts at the diaphragm than did the bellows-rebinned and bellows-triggered 4DMRI scans. Coronal scans were faster than sagittal scans because of the fewer slices and higher achievable acceleration factors. Navigator-triggered 4DMRI contains substantially fewer binning motion artifacts than bellows-rebinned and bellows-triggered 4DMRI, primarily owing to the deviation of the external from the internal surrogate. The present study compared 2 concurrent surrogates during the same 4DMRI scan and their resulting 4DMRI quality. The navigator-triggered 4DMRI scanning protocol should be preferred to the bellows-based, especially for coronal scans, for clinical respiratory motion simulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Analysis of impulse signals with Hylaty ELF station

    NASA Astrophysics Data System (ADS)

    Kulak, A.; Mlynarczyk, J.; Ostrowski, M.; Kubisz, J.; Michalec, A.

    2012-04-01

    Lighting discharges generate electromagnetic field pulses that propagate in the Earth-ionosphere waveguide. The attenuation in the ELF range is so small that the pulses originating from strong atmospheric discharges can be observed even several thousand kilometers away from the individual discharge. The recorded waveform depends on the discharge process, the Earth-ionosphere waveguide properties on the source-receiver path, and the transfer function of the receiver. If the distance from the source is known, an inverse method can be used for reconstructing the current moment waveform and the charge moment of the discharge. In order to reconstruct the source parameters from the recorded signal a reliable model of the radio wave propagation in the Earth-ionosphere waveguide as well as practical signal processing techniques are necessary. We present two methods, both based on analytical formulas. The first method allows for fast calculation of the charge moment of relatively short atmospheric discharges. It is based on peak amplitude measurement of the recorded magnetic component of the ELF EM field and it takes into account the receiver characteristics. The second method, called "inverse channel method" allows reconstructing the complete current moment waveform of strong atmospheric discharges that exhibit the continuing current phase, such as Gigantic Jets and Sprites. The method makes it possible to fully remove from the observed waveform the distortions related to the receiver's impulse response as well as the influence of the Earth-ionosphere propagation channel. Our ELF station is equipped with two magnetic antennas for Bx and By components measurement in the 0.03 to 55 Hz frequency range. ELF Data recording is carried out since 1993, with continuous data acquisition since 2005. The station features low noise level and precise timing. It is battery powered and located in the sparsely populated area, far from major electric power lines, which results in high quality signal recordings and allows for precise calculations of the charge moments of upward discharges and strong cloud-to-ground discharges originating from distant sources. The same data is used for Schumann resonance observation. We demonstrate the use of our methods based on recent recordings from the Hylaty ELF station. We include examples of GJ (Gigantic Jet) and TGF (Terrestrial Gamma-ray Flash) related discharges.

  14. EAARL Coastal Topography - Sandy Hook 2007

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of Gateway National Recreation Area's Sandy Hook Unit in New Jersey, acquired on May 16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  15. Evaluating coastal sea surface heights based on a novel sub-waveform approach using sparse representation and conditional random fields

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Roscher, Ribana; Kusche, Jürgen

    2016-04-01

    Satellite radar altimeters allow global monitoring of mean sea level changes over the last two decades. However, coastal regions are less well observed due to influences on the returned signal energy by land located inside the altimeter footprint. The altimeter emits a radar pulse, which is reflected at the nadir-surface and measures the two-way travel time, as well as the returned energy as a function of time, resulting in a return waveform. Over the open ocean the waveform shape corresponds to a theoretical model which can be used to infer information on range corrections, significant wave height or wind speed. However, in coastal areas the shape of the waveform is significantly influenced by return signals from land, located in the altimeter footprint, leading to peaks which tend to bias the estimated parameters. Recently, several approaches dealing with this problem have been published, including utilizing only parts of the waveform (sub-waveforms), estimating the parameters in two steps or estimating additional peak parameters. We present a new approach in estimating sub-waveforms using conditional random fields (CRF) based on spatio-temporal waveform information. The CRF piece-wise approximates the measured waveforms based on a pre-derived dictionary of theoretical waveforms for various combinations of the geophysical parameters; neighboring range gates are likely to be assigned to the same underlying sub-waveform model. Depending on the choice of hyperparameters in the CRF estimation, the classification into sub-waveforms can either be more fine or coarse resulting in multiple sub-waveform hypotheses. After the sub-waveforms have been detected, existing retracking algorithms can be applied to derive water heights or other desired geophysical parameters from particular sub-waveforms. To identify the optimal heights from the multiple hypotheses, instead of utilizing a known reference height, we apply a Dijkstra-algorithm to find the "shortest path" of all possible heights. We apply our approach to Jason-2 data in different coastal areas, such as the Bangladesh coast or in the North Sea and compare our sea surface heights to various existing retrackers. Using the sub-waveform approach, we are able to derive meaningful water heights up to a few kilometers off the coast, where conventional retrackers, such as the standard ocean retracker, no longer provide useful data.

  16. STRS Compliant FPGA Waveform Development

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer; Downey, Joseph; Mortensen, Dale

    2008-01-01

    The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. The extension of STRS to the SSP hardware will promote easier waveform reconfiguration and reuse. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. A FPGA-based transmit waveform implementation of the proposed standard interfaces on a laboratory breadboard SDR will be discussed.

  17. Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction

    PubMed Central

    Lu, Hsiang-Wei; Wu, Chung-Che; Aliyazicioglu, Zekeriya; Kang, James S.

    2017-01-01

    Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C, peripheral resistance R, aortic impedance r, and the inertia of blood L, to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies. PMID:28611850

  18. Waveform Tomography Applied to Long Streamer MCS Data from the Scotian Slope

    NASA Astrophysics Data System (ADS)

    Delescluse, Matthias; Louden, Keith; Nedimovic, Mladen

    2010-05-01

    Detailed velocity models of the earth subsurface can be obtained through waveform tomography, a method that relies on using information from the full wavefield. Such models can be of significantly higher resolution than the corresponding models formed by more generic traveltime tomography methods, which are constrained only by the wave arrival times. However, to derive the detailed subsurface velocity, the waveform method is sensitive to modelling low-frequency refracted waves that have long paths through target structures. Thus field examples primarily have focused on the analysis of long-offset wide-angle datasets collected using autonomous receivers, in which refractions arrive at earlier times than reflections and there is a significant separation between the two wave arrivals. MCS datasets with shorter offsets typically lack these important features, which result in methodological problems (e.g. Hicks and Pratt, 2001), even though they benefit from a high density of raypaths and uniformity of receiver and shot properties. Modern marine seismic acquisition using long streamers now offers both the ability to record refracted waves at far offsets arriving ahead of the seafloor reflection, and the ability to do this at great density using uniform sources. In this study, we use 2D MCS data acquired with a 9-km-long streamer by ION GX-Technology over the Nova Scotia Slope in water depths of ~1600 m. We show that the refracted arrivals, although restricted to receivers between offsets of 7.5 and 9 km, provide sufficient information to successfully invert for a high-resolution velocity field. Using a frequency domain acoustic code (Pratt, 1999) over frequencies from 8 Hz to 24 Hz on two crossing profiles (45 and 20 km long), we detail how the limited refracted waves can constrain the velocity field above the depth of the turning waves (~1.5 km below seafloor). Several important features are resolved by the waveform velocity model that are not present in the initial travel-time model. In particular, a high velocity layer due to gas hydrates is imaged along the entire profile even where a characteristic BSR is not visible. The velocity increase in the gas hydrate layer is very small (< 100 m/s). In addition, a strong velocity increase of ~ 300 m/s exists below a deeper, gently dipping reflector along which discontinuous low-velocity zones, probably related to gas, are present. Velocity models are consistent at the crossing point between the two profiles. The depth limitation of the detailed MCS waveform tomography imaging could be extended by even longer streamers (e.g. 15 km) or by joint inversion with OBS data.

  19. PI3-kinase cascade has a differential role in acquisition and extinction of conditioned fear memory in juvenile and adult rats.

    PubMed

    Slouzkey, Ilana; Maroun, Mouna

    2016-12-01

    The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (PI3K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear and extinction in juvenile animals and whether these mechanisms are distinctive from those in adult animals. In the present study, we examined (1) changes in phosphorylation of Akt in the BLA and mPFC after fear conditioning and extinction in juvenile and adult rats and (2) the effect of BLA and mPFC localized inhibition of the PI3K following acquisition and extinction of contextual fear memory. Our results show that Akt phosphorylation is increased following acquisition of contextual fear learning in the BLA but not in the mPFC in adult and juvenile rats. Extinction learning was not associated with changes in Akt phosphorylation. Although there were no differences in the pattern of phosphorylation of Akt either in adult or juvenile rats, microinjection of the PI3K inhibitor, LY294002, into the BLA or mPFC elicited differential effects on fear memory acquisition and extinction, depending on the site and timing of the microinjection, as well as on the age of the animal. These results suggest that PI3K/Akt has a differential role in formation, retrieval, and extinction of contextual fear memory in juvenile and adult animals, and point to developmental differences between adult and juvenile rats in mechanisms of extinction. © 2016 Slouzkey and Maroun; Published by Cold Spring Harbor Laboratory Press.

  20. Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers

    NASA Astrophysics Data System (ADS)

    Tang, Yadong; Liu, Li; Li, Junjun; Yu, Leqian; Wang, Li; Shi, Jian; Chen, Yong

    2016-07-01

    Extensive efforts have been devoted to develop new substrates for culture and differentiation of human induced pluripotent stem cells (hiPSCs) toward cardiac cell-based assays. A more exciting prospect is the construction of cardiac tissue for robust drug screening and cardiac tissue repairing. Here, we developed a patch method by electrospinning and crosslinking of monolayer gelatin nanofibers on a honeycomb frame made of poly(ethylene glycol) diacrylate (PEGDA). The monolayer of the nanofibrous structure can support cells with minimal exogenous contact and a maximal efficiency of cell-medium exchange whereas a single hiPSC colony can be uniformly formed in each of the honeycomb compartments. By modulating the treatment time of the ROCK inhibitor Y-27632, the shape of the hiPSC colony could be controlled from a flat layer to a hemisphere. Afterwards, the induction and differentiation of hiPSCs were achieved on the same patch, leading to a uniform cardiac layer with homogeneous contraction. This cardiac layer could then be used for extracellular recording with a commercial multi-electrode array, showing representative field potential waveforms of matured cardiac tissues with appropriate drug responses.Extensive efforts have been devoted to develop new substrates for culture and differentiation of human induced pluripotent stem cells (hiPSCs) toward cardiac cell-based assays. A more exciting prospect is the construction of cardiac tissue for robust drug screening and cardiac tissue repairing. Here, we developed a patch method by electrospinning and crosslinking of monolayer gelatin nanofibers on a honeycomb frame made of poly(ethylene glycol) diacrylate (PEGDA). The monolayer of the nanofibrous structure can support cells with minimal exogenous contact and a maximal efficiency of cell-medium exchange whereas a single hiPSC colony can be uniformly formed in each of the honeycomb compartments. By modulating the treatment time of the ROCK inhibitor Y-27632, the shape of the hiPSC colony could be controlled from a flat layer to a hemisphere. Afterwards, the induction and differentiation of hiPSCs were achieved on the same patch, leading to a uniform cardiac layer with homogeneous contraction. This cardiac layer could then be used for extracellular recording with a commercial multi-electrode array, showing representative field potential waveforms of matured cardiac tissues with appropriate drug responses. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr04545f

  1. Balanced detection for self-mixing interferometry.

    PubMed

    Li, Kun; Cavedo, Federico; Pesatori, Alessandro; Zhao, Changming; Norgia, Michele

    2017-01-15

    We propose a new detection scheme for self-mixing interferometry using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The subtraction of the two outputs implements a sort of balanced detection that improves the signal quality, and allows canceling of unwanted signals due to laser modulation and disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the benefits of differential acquisition in a system for both absolute distance and displacement-vibration measurement. This Letter provides guidance for the design of self-mixing interferometers using balanced detection.

  2. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex

    PubMed Central

    Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R; Flor, Herta

    2009-01-01

    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate cortex (ACC). The amygdala, insula and inferior frontal cortex were differentially active during late acquisition. Extinction was accompanied by enhanced activation to CS+ vs. CS− in the dorsal anterior cingulate cortex (dACC). The results are in accordance with animal studies and provide evidence for the important role of the hippocampus in contextual learning in humans. Connectivity analyses revealed correlated activity between the left posterior hippocampus and dACC (BA32) during early acquisition and the dACC, left posterior hippocampus and right amygdala during extinction. These data are consistent with theoretical models that propose an inhibitory effect of the mPFC on the amygdala. The interaction of the mPFC with the hippocampus may reflect the context-specificity of extinction learning. PMID:19200075

  3. Earthworm in the 21st century

    NASA Astrophysics Data System (ADS)

    Friberg, Paul; Lisowski, Stefan; Dricker, Ilya; Hellman, Sidney

    2010-05-01

    Earthworm (Johnson et al., 1995) is a fully open-source earthquake data acquisition and processing package that is in widespread use through out the world. Earthworm includes basic seismic data acquistion for the majority of the dataloggers currently available and provides network transport mechanisms and common formats as output for data transferral. In addition, it comes with network seismology tools to compute network detections, perform automated arrival picking, and automated hypocentral and magnitude estimations. More importantly it is an open and free framework in the C-programming language that can be used to create new modules that process waveform and earthquake data in near real time. The number of Earthworm installations is growing annually as are the number of contributions to the system. Furthermore its growth into other areas of waveform data acquistion (namely Geomagnetic observatories and Infrasound arrays) show its adaptability to other waveform technologies and processing strategies. In this presentation we discuss the coming challenges to growing Earthworm and new developments in its use; namely the open source add-ons that have become interfaces to Earthworm's core. These add-ons include GlowWorm, MagWorm, Hydra, SWARM, Winston, EarlyBird, Iworm, and most importantly, AQMS (formerly known as CHEETAH). The AQMS, ANSS Quake Monitoring System, is the Earthworm system created in California which has now been installed in the majority of Regional Seismic Networks (RSNs) in the United States. AQMS allows additional real-time and post-processing of Earthworm generated data to be stored and manipulated in a database using numerous database oriented tools. The use of a relational database for persistence provides users with the ability to implement configuration control and research capabilities not available in earlier Earthworm add-ons. By centralizing on AQMS, the RSNs will be able to leverage new developments by easily sharing Earthworm and AQMS modules and avoid the duplication and one-off/custom developments of the past.

  4. Ultrasonic real-time in-die monitoring of the tablet compaction process-a proof of concept study.

    PubMed

    Stephens, James D; Kowalczyk, Brian R; Hancock, Bruno C; Kaul, Goldi; Cetinkaya, Cetin

    2013-02-14

    The mechanical properties of a drug tablet can affect its performance (e.g., dissolution profile and its physical robustness. An ultrasonic system for real-time in-die tablet mechanical property monitoring during compaction has been demonstrated. The reported set-up is a proof of concept compaction monitoring system which includes an ultrasonic transducer mounted inside the upper punch of the compaction apparatus. This upper punch is utilized to acquire ultrasonic pressure wave phase velocity waveforms and extract the time-of-flight of pressure waves travelling within the compact at a number of compaction force levels during compaction. The reflection coefficients for the waves reflecting from punch tip-powder bed interface are extracted from the acquired waveforms. The reflection coefficient decreases with an increase in compaction force, indicating solidification. The data acquisition methods give an average apparent Young's moduli in the range of 8-20 GPa extracted during the compaction and release/decompression phases in real-time. A monitoring system employing such methods is capable of determining material properties and the integrity of the tablet during compaction. As compared to the millisecond time-scale dwell time of a typical commercial compaction press, the micro-second pulse duration and ToF of an acoustic pulse are sufficiently fast for real-time monitoring. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. TFTR neutral beam control and monitoring for DT operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Connor, T.; Kamperschroer, J.; Chu, J.

    1995-12-31

    Record fusion power output has recently been obtained in TFTR with the injection of deuterium and tritium neutral beams. This significant achievement was due in part to the controls, software, and data processing capabilities added to the neutral beam system for DT operations. Chief among these improvements was the addition of SUN workstations and large dynamic data storage to the existing Central Instrumentation Control and Data Acquisition (CICADA) system. Essentially instantaneous look back over the recent shot history has been provided for most beam waveforms and analysis results. Gas regulation controls allowing remote switchover between deuterium and tritium were alsomore » added. With these tools, comparison of the waveforms and data of deuterium and tritium for four test conditioning pulses quickly produced reliable tritium setpoints. Thereafter, all beam conditioning was performed with deuterium, thus saving the tritium supply for the important DT injection shots. The lookback capability also led to modifications of the gas system to improve reliability and to control ceramic valve leakage by backbiasing. Other features added to improve the reliability and availability of DT neutral beam operations included master beamline controls and displays, a beamline thermocouple interlock system, a peak thermocouple display, automatic gas inventory and cryo panel gas loading monitoring, beam notching controls, a display of beam/plasma interlocks, and a feedback system to control beam power based on plasma conditions.« less

  6. Gradient Pre-Emphasis to Counteract First-Order Concomitant Fields on Asymmetric MRI Gradient Systems

    PubMed Central

    Tao, Shengzhen; Weavers, Paul T.; Trzasko, Joshua D.; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M.; Bernstein, Matt A.

    2016-01-01

    PURPOSE To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. METHODS After reviewing the first-order concomitant fields that are present on asymmetric gradients, a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms is developed to counteract their effects. A numerically straightforward, simple to implement approximate solution to this pre-emphasis problem is derived, which is compatible with the current hardware infrastructure used on conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver sub-system, and its real-time use was tested using a series of phantom and in vivo data acquired from 2D Cartesian phase-difference, echo-planar imaging (EPI) and spiral acquisitions. RESULTS The phantom and in vivo results demonstrate that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images exhibiting spatially dependent blurring/distortion. The resulting artifacts are effectively prevented using the proposed gradient pre-emphasis. CONCLUSION An efficient and effective gradient pre-emphasis framework is developed to counteract the effects of first-order concomitant fields of asymmetric gradient systems. PMID:27373901

  7. Wire bonding quality monitoring via refining process of electrical signal from ultrasonic generator

    NASA Astrophysics Data System (ADS)

    Feng, Wuwei; Meng, Qingfeng; Xie, Youbo; Fan, Hong

    2011-04-01

    In this paper, a technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis (PCA) method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network (ANN) is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.

  8. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms

    PubMed Central

    Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D.

    2017-01-01

    Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS devices. PMID:28848417

  9. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms.

    PubMed

    Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D

    2017-01-01

    Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS devices.

  10. Gravitational Waveforms in the Early Inspiral of Binary Black Hole Systems

    NASA Astrophysics Data System (ADS)

    Barkett, Kevin; Kumar, Prayush; Bhagwat, Swetha; Brown, Duncan; Scheel, Mark; Szilagyi, Bela; Simulating eXtreme Spacetimes Collaboration

    2015-04-01

    The inspiral, merger and ringdown of compact object binaries are important targets for gravitational wave detection by aLIGO. Detection and parameter estimation will require long, accurate waveforms for comparison. There are a number of analytical models for generating gravitational waveforms for these systems, but the only way to ensure their consistency and correctness is by comparing with numerical relativity simulations that cover many inspiral orbits. We've simulated a number of binary black hole systems with mass ratio 7 and a moderate, aligned spin on the larger black hole. We have attached these numerical waveforms to analytical waveform models to generate long hybrid gravitational waveforms that span the entire aLIGO frequency band. We analyze the robustness of these hybrid waveforms and measure the faithfulness of different hybrids with each other to obtain an estimate on how long future numerical simulations need to be in order to ensure that waveforms are accurate enough for use by aLIGO.

  11. [Study of sharing platform of web-based enhanced extracorporeal counterpulsation hemodynamic waveform data].

    PubMed

    Huang, Mingbo; Hu, Ding; Yu, Donglan; Zheng, Zhensheng; Wang, Kuijian

    2011-12-01

    Enhanced extracorporeal counterpulsation (EECP) information consists of both text and hemodynamic waveform data. At present EECP text information has been successfully managed through Web browser, while the management and sharing of hemodynamic waveform data through Internet has not been solved yet. In order to manage EECP information completely, based on the in-depth analysis of EECP hemodynamic waveform file of digital imaging and communications in medicine (DICOM) format and its disadvantages in Internet sharing, we proposed the use of the extensible markup language (XML), which is currently the Internet popular data exchange standard, as the storage specification for the sharing of EECP waveform data. Then we designed a web-based sharing system of EECP hemodynamic waveform data via ASP. NET 2.0 platform. Meanwhile, we specifically introduced the four main system function modules and their implement methods, including DICOM to XML conversion module, EECP waveform data management module, retrieval and display of EECP waveform module and the security mechanism of the system.

  12. Ultrasound tomography imaging with waveform sound speed: parenchymal changes in women undergoing tamoxifen therapy

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Sherman, Mark; Gierach, Gretchen

    2017-03-01

    Ultrasound tomography (UST) is an emerging modality that can offer quantitative measurements of breast density. Recent breakthroughs in UST image reconstruction involve the use of a waveform reconstruction as opposed to a raybased reconstruction. The sound speed (SS) images that are created using the waveform reconstruction have a much higher image quality. These waveform images offer improved resolution and contrasts between regions of dense and fatty tissues. As part of a study that was designed to assess breast density changes using UST sound speed imaging among women undergoing tamoxifen therapy, UST waveform sound speed images were then reconstructed for a subset of participants. These initial results show that changes to the parenchymal tissue can more clearly be visualized when using the waveform sound speed images. Additional quantitative testing of the waveform images was also started to test the hypothesis that waveform sound speed images are a more robust measure of breast density than ray-based reconstructions. Further analysis is still needed to better understand how tamoxifen affects breast tissue.

  13. Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits.

    PubMed

    Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J

    2017-04-17

    This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

  14. Cognitive Correlates of Language: Differential Criteria Yield Differential Results.

    ERIC Educational Resources Information Center

    Corrigan, Roberta

    1979-01-01

    Explores the hypothesis that representation, as measured by object permanence attainment, is the main prerequisite for language acquisition. Differing definitions of representation, differing assumptions about cognitive stages, and differing criteria for assessing cognitive abilities such as object permanence may account for some of the divergent…

  15. Comparing the Picture Exchange Communication System and Sign Language Training for Children with Autism

    ERIC Educational Resources Information Center

    Tincani, Matt

    2004-01-01

    This study compared the effects of Picture Exchange Communication System (PECS) and sign language training on the acquisition of mands (requests for preferred items) of students with autism. The study also examined the differential effects of each modality on students' acquisition of vocal behavior. Participants were two elementary school students…

  16. Differential Effects of Two Spelling Procedures on Acquisition, Maintenance and Adaption to Reading

    ERIC Educational Resources Information Center

    Cates, Gary L.; Dunne, Megan; Erkfritz, Karyn N.; Kivisto, Aaron; Lee, Nicole; Wierzbicki, Jennifer

    2007-01-01

    An alternating treatments design was used to assess the effects of a constant time delay (CTD) procedure and a cover-copy-compare (CCC) procedure on three students' acquisition, subsequent maintenance, and adaptation (i.e., application) of acquired spelling words to reading passages. Students were randomly presented two trials of word lists from…

  17. Signal Waveform Detection with Statistical Automaton for Internet and Web Service Streaming

    PubMed Central

    Liu, Yiming; Huang, Nai-Lun; Zeng, Fufu; Lin, Fang-Ying

    2014-01-01

    In recent years, many approaches have been suggested for Internet and web streaming detection. In this paper, we propose an approach to signal waveform detection for Internet and web streaming, with novel statistical automatons. The system records network connections over a period of time to form a signal waveform and compute suspicious characteristics of the waveform. Network streaming according to these selected waveform features by our newly designed Aho-Corasick (AC) automatons can be classified. We developed two versions, that is, basic AC and advanced AC-histogram waveform automata, and conducted comprehensive experimentation. The results confirm that our approach is feasible and suitable for deployment. PMID:25032231

  18. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  19. Insights into Fourier Synthesis and Analysis: Part 2--A Simplified Mathematics.

    ERIC Educational Resources Information Center

    Moore, Guy S. M.

    1988-01-01

    Introduced is an analysis of a waveform into its Fourier components. Topics included are simplified analysis of a square waveform, a triangular waveform, half-wave rectified alternating current (AC), and impulses. Provides the mathematical expression and simplified analysis diagram of each waveform. (YP)

  20. Investigation of Doppler Effects on the Detection of Polyphase Coded Radar Waveforms

    DTIC Science & Technology

    2003-02-01

    wave2 = amp * sin(2*pi*two+(2*pi/7)); %the second modulated waveform %wave = [wavec wave1 wave2 wavec]; %the wave form put togther wave = amp...waveform wave1 = sin(2*pi*two+(pi/2)); %the first modulated waveform wave2 = sin(2*pi*two+(2*pi/7)); %the second modulated waveform...wave = [wavec wave1 wave2 wavec]; %the wave form put togther normval = max(abs(xcorr(wave,wave))); N=length

  1. Super-resolution processing for multi-functional LPI waveforms

    NASA Astrophysics Data System (ADS)

    Li, Zhengzheng; Zhang, Yan; Wang, Shang; Cai, Jingxiao

    2014-05-01

    Super-resolution (SR) is a radar processing technique closely related to the pulse compression (or correlation receiver). There are many super-resolution algorithms developed for the improved range resolution and reduced sidelobe contaminations. Traditionally, the waveforms used for the SR have been either phase-coding (such as LKP3 code, Barker code) or the frequency modulation (chirp, or nonlinear frequency modulation). There are, however, an important class of waveforms which are either random in nature (such as random noise waveform), or randomly modulated for multiple function operations (such as the ADS-B radar signals in [1]). These waveforms have the advantages of low-probability-of-intercept (LPI). If the existing SR techniques can be applied to these waveforms, there will be much more flexibility for using these waveforms in actual sensing missions. Also, SR usually has great advantage that the final output (as estimation of ground truth) is largely independent of the waveform. Such benefits are attractive to many important primary radar applications. In this paper the general introduction of the SR algorithms are provided first, and some implementation considerations are discussed. The selected algorithms are applied to the typical LPI waveforms, and the results are discussed. It is observed that SR algorithms can be reliably used for LPI waveforms, on the other hand, practical considerations should be kept in mind in order to obtain the optimal estimation results.

  2. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOEpatents

    Dong, Qiujie; Jenkins, Michael V.; Bernadas, Salvador R.

    1997-01-01

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal.

  3. Differential Classical Conditioning Selectively Heightens Response Gain of Neural Population Activity in Human Visual Cortex

    PubMed Central

    Song, Inkyung; Keil, Andreas

    2015-01-01

    Neutral cues, after being reliably paired with noxious events, prompt defensive engagement and amplified sensory responses. To examine the neurophysiology underlying these adaptive changes, we quantified the contrast-response function of visual cortical population activity during differential aversive conditioning. Steady-state visual evoked potentials (ssVEPs) were recorded while participants discriminated the orientation of rapidly flickering grating stimuli. During each trial, luminance contrast of the gratings was slowly increased and then decreased. Right-tilted gratings (CS+) were paired with loud white noise but left-tilted gratings (CS−) were not. The contrast-following waveform envelope of ssVEPs showed selective amplification of the CS+ only during the high-contrast stage of the viewing epoch. Findings support the notion that motivational relevance, learned in a time frame of minutes, affects vision through a response gain mechanism. PMID:24981277

  4. A tailored 200 parameter VME based data acquisition system for IBA at the Lund Ion Beam Analysis Facility - Hardware and software

    NASA Astrophysics Data System (ADS)

    Elfman, Mikael; Ros, Linus; Kristiansson, Per; Nilsson, E. J. Charlotta; Pallon, Jan

    2016-03-01

    With the recent advances towards modern Ion Beam Analysis (IBA), going from one- or few-parameter detector systems to multi-parameter systems, it has been necessary to expand and replace the more than twenty years old CAMAC based system. A new VME multi-parameter (presently up to 200 channels) data acquisition and control system has been developed and implemented at the Lund Ion Beam Analysis Facility (LIBAF). The system is based on the VX-511 Single Board Computer (SBC), acting as master with arbiter functionality and consists of standard VME modules like Analog to Digital Converters (ADC's), Charge to Digital Converters (QDC's), Time to Digital Converters (TDC's), scaler's, IO-cards, high voltage and waveform units. The modules have been specially selected to support all of the present detector systems in the laboratory, with the option of future expansion. Typically, the detector systems consist of silicon strip detectors, silicon drift detectors and scintillator detectors, for detection of charged particles, X-rays and γ-rays. The data flow of the raw data buffers out from the VME bus to the final storage place on a 16 terabyte network attached storage disc (NAS-disc) is described. The acquisition process, remotely controlled over one of the SBCs ethernet channels, is also discussed. The user interface is written in the Kmax software package, and is used to control the acquisition process as well as for advanced online and offline data analysis through a user-friendly graphical user interface (GUI). In this work the system implementation, layout and performance are presented. The user interface and possibilities for advanced offline analysis are also discussed and illustrated.

  5. New data acquisition system for beam loss monitor used in J-PARC main ring

    NASA Astrophysics Data System (ADS)

    Satou, K.; Toyama, T.; Kamikubota, N.; Yoshida, S.; Matsushita, J.; Wakita, T.; Sugiyama, M.; Morino, T.

    2018-04-01

    A new data acquisition system has been developed continually as a part of the development of a new beam loss monitor (BLM) system for the J-PARC main ring. This development includes a newly designed front-end isolation amp that uses photo-couplers and a VME-based new analog-to-digital converter (ADC) system. Compared to the old amp, the new amp has a 10 times higher conversion impedance for the input current to the output voltage; this value is 1 M Ω. Moreover, the bandwidth was improved to from DC to 50 kHz, which is about two orders of magnitude greater than the previously used bandwidth. The theoretical estimations made in this study roughly agree with the frequency response obtained for the new system. The new ADC system uses an on-board field-programmable gate array chip for signal processing. By replacing the firmware of this chip, changes pertaining to future accelerator upgrade plans may be introduced into the new ADC system; in addition, the ADC system can be used in other applications. The sampling speed of the system is 1 MS/s, and it exhibits a 95 dBc spurious-free dynamic range and 16.5 effective number of bits. The obtained waveform and integrated charge data are compared with two reference levels in the ADC system. If the data exceeds the reference level, the system generates an alarm to dump the beams. By using the new data acquisition system, it was proved that the new BLM system shows a wide dynamic range of 160 dB. In this study, the details of the new data acquisition system are described.

  6. Misidentification of maternal heart rate as fetal on cardiotocography during the second stage of labor: the role of the fetal electrocardiograph.

    PubMed

    Nurani, Raisha; Chandraharan, Edwin; Lowe, Virginia; Ugwumadu, Austin; Arulkumaran, Sabaratnam

    2012-12-01

    To identify the incidence of fetal heart rate (FHR) accelerations in the second stage of labor and the role of fetal electrocardiograph (ECG) in avoiding misidentification of maternal heart rate (MHR) as FHR. Retrospective observational study. University hospital labor ward, London, UK. Cardiotocograph (CTG) tracings of 100 fetuses monitored using external transducers and internal scalp electrodes. CTG traces that fulfilled inclusion criteria were selected from an electronic FHR monitoring database. Rate of accelerations during external and internal monitoring as well as decelerations for a period of 60 minutes prior to delivery were determined. The role of fetal ECG in differentiating between MHR and FHR trace was explored. Decelerations occurred in 89% of CTG traces during the second stage of labor. Accelerations indicating possible recording of FHR or MHR were found in 28.1 and 10.9% of cases recorded by an external ultrasound transducer as well as internal scalp electrode, respectively. Accelerations coinciding with uterine contractions occurred only in 11.7 and 4% of external and internal recording of FHR, respectively. Absence of 'p-wave' of the ECG waveform was associated with MHR trace. Decelerations were the commonest CTG feature during the second stage of labor. The incidence of accelerations coinciding with uterine contractions was less than half in fetuses monitored using a fetal scalp electrode. Analysing the ECG waveform for the absence of 'p-wave' helps in differentiating MHR from FHR. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  7. Probing the Structure near the Top of the Earth's Outer Core Using SmKS Traveltimes

    NASA Astrophysics Data System (ADS)

    Tang, V. C.; Zhao, L.; Hung, S.

    2013-12-01

    The Earth's solid inner core is composed of heavy Fe and Ni with a fraction of light elements such as O, S, Si. These light elements were expelled from the inner core during its formation and rise up through the outer core as the result of buoyancy, but their existence is still a mystery. Some authors have presented seismological evidence for lowered wave speed beneath the core-mantle boundary (CMB) relative to PREM, suggesting light elements there, but counter argument also exists. In this study, we use traveltime measurements from recorded and modeled SmKS waves to investigate the effect of the velocity under the CMB on the differential traveltimes between SKKS and S3KS waves (TS3KS-TSKKS). Due to the long propagation distance and interference with neighboring phases, the arrival times of SKKS and S3KS waves are difficult to define accurately in the records. Therefore in our analysis we measure both the observed and model-predicted differential traveltime TS3KS-TSKKS by cross-correlating the waveform of Hilbert-transformed S3KS with that of SKKS. We use synthetic seismograms calculated by the Direct-Solution Method (DSM) in a suite of 1D models with different structural profiles under the CMB to examine the existence of a zone of lowered velocity at the top of the outer core. We are conducting a systematic investigation using waveforms available at IRIS from globally distributed large deep earthquakes. Results from events we have processed so far indicate that the velocity under the CMB is slightly slower than that in PREM.

  8. Geographic boundary of the “Pacific Anomaly” near the Earth’s core-mantle boundary

    NASA Astrophysics Data System (ADS)

    He, Y.; Wen, L.

    2009-12-01

    Seismic tomography have revealed a broad, seismically low velocity anomaly in the Earth’s lower mantle beneath the Pacific (we term it the “Pacific Anomaly”), surrounded by the circum-Pacific high velocity zone. Here, we determine geographical boundary and average shear velocity structure of the Pacific Anomaly near the core-mantle boundary based on travel time analysis of ScSH-SH and ScS2-SS phases. We further constrain the detailed structure of the transition from the base of the Pacific Anomaly to the northern high velocity zone along two perpendicular cross sections on the basis of forward waveform modeling of the seismic data. Two cross-sections include one great arc across the Anomaly from New Zealand to Alaska and another from Solomon Islands to North America. Our seismic data are collected from those recorded in the China National Digital Seismographic Network, and many permanent and temporal arrays from the Incorporated Research Institutions for Seismology. The observed ScS-SH and ScS2-SS differential travel time residuals allow the entire geographic boundary of the anomaly to be clearly defined. The seismic data suggest that the average shear velocity reduction inside the anomaly reaches -5% in the lowermost 300 km of the mantle. Waveform analysis of the seismic data sampling the edge of the anomaly further validates the model of the boundary previously deduced by differential-travel-time-residual data, and suggests that the northern boundary is characterized by a shear velocity model with the low-velocity region accompanied by a high velocity structure.

  9. Lightning-channel morphology by return-stroke radiation field waveforms

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; Le Vine, D. M.; Idone, V. P.

    1995-01-01

    Simultaneous video and wideband electric field recordings of 32 cloud-to-ground lightning flashes in Florida were analyzed to show the formation of new channels to ground can be detected by examination of the return-stroke radiation fields alone. The return-stroke E and dE/dt waveforms were subjectively classified according to their fine structure. Then the video images were examined field by field to identify each waveform with a visible channel to ground. Fifty-five correlated waveforms and channel images were obtained. Of these, all 34 first-stroke waveforms (multiple jagged E peaks, noisy dE/dt), 8 of which were not radiated by the chronologically first stroke in the flash, came from new channels to ground (not previously seen on video). All 18 subsequent-stroke waveforms (smoothly rounded E and quiet dE/dt after initial peak) were radiated by old channels (illuminated by a previous stroke). Two double-ground waveforms (two distinct first-return-stroke pulses separated by tens of microseconds or less) coincided with video fields showing two new channels. One `anomalous-stroke' waveform (beginning like a first stroke and ending like a subsequent) was produced by a new channel segment to ground branching off an old channel. This waveform classification depends on the presence or absence of high-frequency fine structure. Fourier analysis shows that first-stroke waveforms contain about 18 dB more spectral power in the frequency interval from 500 kHz to at least 7 MHz than subsequent-stroke waveforms for at least 13 microseconds after the main peak.

  10. Earthquake Fingerprints: Representing Earthquake Waveforms for Similarity-Based Detection

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Beroza, G. C.

    2016-12-01

    New earthquake detection methods, such as Fingerprint and Similarity Thresholding (FAST), use fast approximate similarity search to identify similar waveforms in long-duration data without templates (Yoon et al. 2015). These methods have two key components: fingerprint extraction and an efficient search algorithm. Fingerprint extraction converts waveforms into fingerprints, compact signatures that represent short-duration waveforms for identification and search. Earthquakes are detected using an efficient indexing and search scheme, such as locality-sensitive hashing, that identifies similar waveforms in a fingerprint database. The quality of the search results, and thus the earthquake detection results, is strongly dependent on the fingerprinting scheme. Fingerprint extraction should map similar earthquake waveforms to similar waveform fingerprints to ensure a high detection rate, even under additive noise and small distortions. Additionally, fingerprints corresponding to noise intervals should have mutually dissimilar fingerprints to minimize false detections. In this work, we compare the performance of multiple fingerprint extraction approaches for the earthquake waveform similarity search problem. We apply existing audio fingerprinting (used in content-based audio identification systems) and time series indexing techniques and present modified versions that are specifically adapted for seismic data. We also explore data-driven fingerprinting approaches that can take advantage of labeled or unlabeled waveform data. For each fingerprinting approach we measure its ability to identify similar waveforms in a low signal-to-noise setting, and quantify the trade-off between true and false detection rates in the presence of persistent noise sources. We compare the performance using known event waveforms from eight independent stations in the Northern California Seismic Network.

  11. Flexible real-time magnetic resonance imaging framework.

    PubMed

    Santos, Juan M; Wright, Graham A; Pauly, John M

    2004-01-01

    The extension of MR imaging to new applications has demonstrated the limitations of the architecture of current real-time systems. Traditional real-time implementations provide continuous acquisition of data and modification of basic sequence parameters on the fly. We have extended the concept of real-time MRI by designing a system that drives the examinations from a real-time localizer and then gets reconfigured for different imaging modes. Upon operator request or automatic feedback the system can immediately generate a new pulse sequence or change fundamental aspects of the acquisition such as gradient waveforms excitation pulses and scan planes. This framework has been implemented by connecting a data processing and control workstation to a conventional clinical scanner. Key components on the design of this framework are the data communication and control mechanisms, reconstruction algorithms optimized for real-time and adaptability, flexible user interface and extensible user interaction. In this paper we describe the various components that comprise this system. Some of the applications implemented in this framework include real-time catheter tracking embedded in high frame rate real-time imaging and immediate switching between real-time localizer and high-resolution volume imaging for coronary angiography applications.

  12. Summary of 2011 Direct and Nearby Lightning Strikes to Launch Complex 39B, Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Mata, C.T.; Mata, A.G.

    2012-01-01

    A Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida in 2009. This LPS was instrumented with comprehensive meteorological and lightning data acquisition systems that were deployed from late 2010 until mid 2011. The first direct strikes to the LPS were recorded in March of 2011, when a limited number of sensors had been activated. The lightning instrumentation system detected a total of 70 nearby strokes and 19 direct strokes to the LPS, 2 of the 19 direct strokes to the LPS had two simultaneous ground attachment points (in both instances one channel terminated on the LPS and the other on the nearby ground). Additionally, there are more unaccounted nearby strokes seen on video records for which limited data was acquired either due to the distance of the stroke or the settings of the data acquisition system. Instrumentation deployment chronological milestones, a summary of lightning strikes (direct and nearby), high speed video frames, downconductor currents, and dH/dt and dE/dt typical waveforms for direct and nearby strokes are presented.

  13. Evaluation of the Geotech SMART24BH 20Vpp/5Vpp data acquisition system with active fortezza crypto card data signing and authentication.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rembold, Randy Kai; Hart, Darren M.

    Sandia National Laboratories has tested and evaluated Geotech SMART24BH borehole data acquisition system with active Fortezza crypto card data signing and authentication. The test results included in this report were in response to static and tonal-dynamic input signals. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters; others were designed by Sandia specifically for infrasound application evaluation and for supplementary criteria not addressed in the IEEE standards. The objective of this work was to evaluate the overall technical performance of two Geotech SMART24BH digitizers with a Fortezza PCMCIAmore » crypto card actively implementing the signing of data packets. The results of this evaluation were compared to relevant specifications provided within manufacturer's documentation notes. The tests performed were chosen to demonstrate different performance aspects of the digitizer under test. The performance aspects tested include determining noise floor, least significant bit (LSB), dynamic range, cross-talk, relative channel-to-channel timing, time-tag accuracy/statistics/drift, analog bandwidth.« less

  14. Wireless acquisition of multi-channel seismic data using the Seismobile system

    NASA Astrophysics Data System (ADS)

    Isakow, Zbigniew

    2017-11-01

    This paper describes the wireless acquisition of multi-channel seismic data using a specialized mobile system, Seismobile, designed for subsoil diagnostics for transportation routes. The paper presents examples of multi-channel seismic records obtained during system tests in a configuration with 96 channels (4 landstreamers of 24-channel) and various seismic sources. Seismic waves were generated at the same point using different sources: a 5-kg hammer, a Gisco's source with a 90-kg pile-driver, and two other the pile-drivers of 45 and 70 kg. Particular attention is paid to the synchronization of source timing, the measurement of geometry by autonomous GPS systems, and the repeatability of triggering measurements constrained by an accelerometer identifying the seismic waveform. The tests were designed to the registration, reliability, and range of the wireless transmission of survey signals. The effectiveness of the automatic numbering of measuring modules was tested as the system components were arranged and fixed to the streamers. After measurements were completed, the accuracy and speed of data downloading from the internal memory (SDHC 32GB WiFi) was determined. Additionally, the functionality of automatic battery recharging, the maximum survey duration, and the reliability of battery discharge signalling were assessed.

  15. New Modular Ultrasonic Signal Processing Building Blocks for Real-Time Data Acquisition and Post Processing

    NASA Astrophysics Data System (ADS)

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion

    2003-03-01

    A suite of basic signal processors has been developed. These basic building blocks can be cascaded together to form more complex processors without the need for programming. The data structures between each of the processors are handled automatically. This allows a processor built for one purpose to be applied to any type of data such as images, waveform arrays and single values. The processors are part of Winspect Data Acquisition software. The new processors are fast enough to work on A-scan signals live while scanning. Their primary use is to extract features, reduce noise or to calculate material properties. The cascaded processors work equally well on live A-scan displays, live gated data or as a post-processing engine on saved data. Researchers are able to call their own MATLAB or C-code from anywhere within the processor structure. A built-in formula node processor that uses a simple algebraic editor may make external user programs unnecessary. This paper also discusses the problems associated with ad hoc software development and how graphical programming languages can tie up researchers writing software rather than designing experiments.

  16. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    PubMed

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P < 0.003). No significant difference was observed in relation to other features (P = 0.11). An average of 21% decrease in scan time was achieved using the proposed method. Wave-encoded variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Acoustic dipole radiation based electrical impedance contrast imaging approach of magnetoacoustic tomography with magnetic induction.

    PubMed

    Sun, Xiaodong; Fang, Dawei; Zhang, Dong; Ma, Qingyu

    2013-05-01

    Different from the theory of acoustic monopole spherical radiation, the acoustic dipole radiation based theory introduces the radiation pattern of Lorentz force induced dipole sources to describe the principle of magnetoacoustic tomography with magnetic induction (MAT-MI). Although two-dimensional (2D) simulations have been studied for cylindrical phantom models, layer effects of the dipole sources within the entire object along the z direction still need to be investigated to evaluate the performance of MAT-MI for different geometric specifications. The purpose of this work is further verifying the validity and generality of acoustic dipole radiation based theory for MAT-MI with two new models in different shapes, dimensions, and conductivities. Based on the theory of acoustic dipole radiation, the principles of MAT-MI were analyzed with derived analytic formulae. 2D and 3D numerical studies for two new models of aluminum foil and cooked egg were conducted to simulate acoustic pressures and corresponding waveforms, and 2D images of the scanned layers were reconstructed with the simplified back projection algorithm for the waveforms collected around the models. The spatial resolution for conductivity boundary differentiation was also analyzed with different foil thickness. For comparison, two experimental measurements were conducted for a cylindrical aluminum foil phantom and a shell-peeled cooked egg. The collected waveforms and the reconstructed images of the scanned layers were achieved to verify the validation of the acoustic dipole radiation based theory for MAT-MI. Despite the difference between the 2D and 3D simulated pressures, good consistence of the collected waveforms proves that wave clusters are generated by the abrupt pressure changes with bipolar vibration phases, representing the opposite polarities of the conductivity changes along the measurement direction. The configuration of the scanned layer can be reconstructed in terms of shape and size, and the conductivity boundaries are displayed in stripes with different contrast and bipolar intensities. Layer effects are demonstrated to have little influence on the collected waveforms and the reconstructed images of the scanned layers for the two new models. The experimental results have good agreements with numerical simulations, and the reconstructed 2D images provide conductivity configurations in the scanned layers of the aluminum foil and the egg models. It can be concluded that the acoustic pressure of MAT-MI is produced by the divergence of the induced Lorentz force, and the collected waveforms comprise wave clusters with bipolar vibration phases and different amplitudes, providing the information of conductivity boundaries in the scanned layer. With the simplified back projection algorithm for diffraction sources, collected waveforms can be used to reconstruct 2D conductivity contrast image and the conductivity configuration in the scanned layer can be obtained in terms of shape and size in stripes with the spatial resolution of the acoustic wavelength. The favorable results further verify the validity and generality of the acoustic dipole radiation based theory and suggest the feasibility of MAT-MI as an effective electrical impedance contrast imaging approach for medical imaging.

  18. SAMPLING OSCILLOSCOPE

    DOEpatents

    Sugarman, R.M.

    1960-08-30

    An oscilloscope is designed for displaying transient signal waveforms having random time and amplitude distributions. The oscilloscopc is a sampling device that selects for display a portion of only those waveforms having a particular range of amplitudes. For this purpose a pulse-height analyzer is provided to screen the pulses. A variable voltage-level shifter and a time-scale rampvoltage generator take the pulse height relative to the start of the waveform. The variable voltage shifter produces a voltage level raised one step for each sequential signal waveform to be sampled and this results in an unsmeared record of input signal waveforms. Appropriate delay devices permit each sample waveform to pass its peak amplitude before the circuit selects it for display.

  19. Next-generation seismic experiments: wide-angle, multi-azimuth, three-dimensional, full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Bell, Rebecca; Morgan, Joanna; Warner, Michael

    2016-04-01

    There are many outstanding plate-tectonic scale questions that require us to know information about sub-surface physical properties, for example ascertaining the geometry and location of magma chambers and estimating the effective stress along plate boundary faults. These important scientific targets are often too deep, impractical and expensive for extensive academic drilling. Full-waveform inversion (FWI) is an advanced seismic imaging technique that has recently become feasible in three dimensions, and has been widely adopted by the oil and gas industry to image reservoir-scale targets at shallow-to-moderate depths. In this presentation we explore the potential for 3-D FWI, when combined with appropriate marine seismic acquisition, to recover high-resolution high-fidelity P-wave velocity models for sub-sedimentary targets within the crystalline crust and uppermost mantle. Using existing geological and geophysical models, we construct P-wave velocity models over three potential sub-sedimentary targets: the Soufrière Hills Volcano on Montserrat and its associated crustal magmatic system, the downgoing oceanic plate beneath the Nankai subduction margin, and the oceanic crust-uppermost mantle beneath the East Pacific Rise mid-ocean ridge. We use these models to generate realistic multi-azimuth 3-D synthetic seismic data, and attempt to invert these data to recover the original models. We explore the resolution and accuracy, sensitivity to noise and acquisition geometry, ability to invert elastic data using acoustic inversion codes, and the trade-off between low frequencies and starting velocity model accuracy. We will show that FWI applied to multi-azimuth, refracted, wide-angle, low-frequency data can resolve features in the deep crust and uppermost mantle on scales that are significantly better than can be achieved by any other geophysical technique, and that these results can be obtained using relatively small numbers (60-90) of ocean-bottom receivers combined with large numbers of air-gun shots. We demonstrate that multi-azimuth 3-D FWI is robust in the presence of noise, that acoustic FWI can invert elastic data successfully, and that the typical errors to be expected in starting models derived using travel times will not be problematic for FWI given appropriately designed acquisition. In this presentation we will also discuss a recent field-example of the use of FWI to image the Endeavour spreading centre in the northeastern Pacific. FWI is a rapidly maturing technology; its transfer from the petroleum sector to tackle a broader range of targets now appears entirely achievable.

  20. Sclerenchymatous ring as a barrier to phloem feeding by Asian citrus psyllid: Evidence from electrical penetration graph and visualization of stylet pathways

    PubMed Central

    George, Justin; Ammar, El-Desouky; Hall, David G.

    2017-01-01

    Asian citrus psyllid (Diaphorina citri) feeding behaviors play a significant role in the transmission of the phloem-limited Candidatus Liberibacter asiaticus (CLas) bacterium that causes the economically devastating citrus greening disease. Sustained phloem ingestion by D. citri on CLas infected plants is required for pathogen acquisition and transmission. Recent studies have shown a fibrous ring of thick-walled sclerenchyma around the phloem in mature, fully expanded citrus leaves that is more prominent on the abaxial compared with the adaxial side. The composition and thickness of this fibrous ring may have an important role in selection of feeding sites by D. citri based on leaf age and leaf surface, which in turn can affect pathogen acquisition and transmission. We measured feeding behavior using electrical penetration graph (EPG) recordings of individual D. citri adults placed on abaxial or adaxial surfaces of young or mature Valencia orange leaves to study the role of the sclerenchymatous ring in modifying D. citri feeding behavior. Feeding sites on the same leaf tissues were then sectioned and examined by epifluorescence microscopy. The duration of phloem ingestion (E2 waveform) by psyllids was significantly reduced on mature compared with young leaves, and on abaxial compared with adaxial leaf surfaces. The longest duration of phloem ingestion was observed from psyllids placed on the adaxial side of young leaves that had the least developed sclerenchyma. Bouts of phloem salivation (E1 waveform), however, were significantly longer on mature leaves compared with young leaves. D. citri adults made consecutive phloem feeding attempts (bouts) on the abaxial side of mature leaves and those bouts resulted in unsuccessful or shorter periods of phloem ingestion. Adults also made more frequent and longer bouts of xylem ingestion on mature leaves compared with adult psyllids placed on young leaves. Epifluorescence microscopy showed that the fibrous ring in young leaves was thinner and autofluoresced in red whereas the ring in mature leaves was thicker and autofluoresced in blue, indicating changes in structure and composition (e.g., lignification) of sclerenchyma correlated with leaf age. Our results support the hypothesis that the presence of a thick, well-developed fibrous ring around phloem tissues of mature leaves acts as a barrier to frequent or prolonged phloem ingestion by D. citri from citrus leaves. This may have an important role in limiting or preventing CLas acquisition and/or transmission by D. citri, and could be used for identification and development of resistant citrus cultivars. PMID:28278248

  1. Sclerenchymatous ring as a barrier to phloem feeding by Asian citrus psyllid: Evidence from electrical penetration graph and visualization of stylet pathways.

    PubMed

    George, Justin; Ammar, El-Desouky; Hall, David G; Lapointe, Stephen L

    2017-01-01

    Asian citrus psyllid (Diaphorina citri) feeding behaviors play a significant role in the transmission of the phloem-limited Candidatus Liberibacter asiaticus (CLas) bacterium that causes the economically devastating citrus greening disease. Sustained phloem ingestion by D. citri on CLas infected plants is required for pathogen acquisition and transmission. Recent studies have shown a fibrous ring of thick-walled sclerenchyma around the phloem in mature, fully expanded citrus leaves that is more prominent on the abaxial compared with the adaxial side. The composition and thickness of this fibrous ring may have an important role in selection of feeding sites by D. citri based on leaf age and leaf surface, which in turn can affect pathogen acquisition and transmission. We measured feeding behavior using electrical penetration graph (EPG) recordings of individual D. citri adults placed on abaxial or adaxial surfaces of young or mature Valencia orange leaves to study the role of the sclerenchymatous ring in modifying D. citri feeding behavior. Feeding sites on the same leaf tissues were then sectioned and examined by epifluorescence microscopy. The duration of phloem ingestion (E2 waveform) by psyllids was significantly reduced on mature compared with young leaves, and on abaxial compared with adaxial leaf surfaces. The longest duration of phloem ingestion was observed from psyllids placed on the adaxial side of young leaves that had the least developed sclerenchyma. Bouts of phloem salivation (E1 waveform), however, were significantly longer on mature leaves compared with young leaves. D. citri adults made consecutive phloem feeding attempts (bouts) on the abaxial side of mature leaves and those bouts resulted in unsuccessful or shorter periods of phloem ingestion. Adults also made more frequent and longer bouts of xylem ingestion on mature leaves compared with adult psyllids placed on young leaves. Epifluorescence microscopy showed that the fibrous ring in young leaves was thinner and autofluoresced in red whereas the ring in mature leaves was thicker and autofluoresced in blue, indicating changes in structure and composition (e.g., lignification) of sclerenchyma correlated with leaf age. Our results support the hypothesis that the presence of a thick, well-developed fibrous ring around phloem tissues of mature leaves acts as a barrier to frequent or prolonged phloem ingestion by D. citri from citrus leaves. This may have an important role in limiting or preventing CLas acquisition and/or transmission by D. citri, and could be used for identification and development of resistant citrus cultivars.

  2. Design of pulse waveform for waveform division multiple access UWB wireless communication system.

    PubMed

    Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu

    2014-01-01

    A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.

  3. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOEpatents

    Dong, Q.; Jenkins, M.V.; Bernadas, S.R.

    1997-09-09

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal. 17 figs.

  4. Motion Tolerant Unfocused Imaging of Physiological Waveforms for Blood Pressure Waveform Estimation Using Ultrasound.

    PubMed

    Seo, Joohyun; Pietrangelo, Sabino J; Sodini, Charles G; Lee, Hae-Seung

    2018-05-01

    This paper details unfocused imaging using single-element ultrasound transducers for motion tolerant arterial blood pressure (ABP) waveform estimation. The ABP waveform is estimated based on pulse wave velocity and arterial pulsation through Doppler and M-mode ultrasound. This paper discusses approaches to mitigate the effect of increased clutter due to unfocused imaging on blood flow and diameter waveform estimation. An intensity reduction model (IRM) estimator is described to track the change of diameter, which outperforms a complex cross-correlation model (C3M) estimator in low contrast environments. An adaptive clutter filtering approach is also presented, which reduces the increased Doppler angle estimation error due to unfocused imaging. Experimental results in a flow phantom demonstrate that flow velocity and diameter waveforms can be reliably measured with wide lateral offsets of the transducer position. The distension waveform estimated from human carotid M-mode imaging using the IRM estimator shows physiological baseline fluctuations and 0.6-mm pulsatile diameter change on average, which is within the expected physiological range. These results show the feasibility of this low cost and portable ABP waveform estimation device.

  5. Asymmetric Waveforms Decrease Lethal Thresholds in High Frequency Irreversible Electroporation Therapies

    PubMed Central

    Sano, Michael B.; Fan, Richard E.; Xing, Lei

    2017-01-01

    Irreversible electroporation (IRE) is a promising non-thermal treatment for inoperable tumors which uses short (50–100 μs) high voltage monopolar pulses to disrupt the membranes of cells within a well-defined volume. Challenges with IRE include complex treatment planning and the induction of intense muscle contractions. High frequency IRE (H-FIRE) uses bursts of ultrashort (0.25–5 μs) alternating polarity pulses to produce more predictable ablations and alleviate muscle contractions associated with IRE. However, H-FIRE generally ablates smaller volumes of tissue than IRE. This study shows that asymmetric H-FIRE waveforms can be used to create ablation volumes equivalent to standard IRE treatments. Lethal thresholds (LT) of 505 V/cm and 1316 V/cm were found for brain cancer cells when 100 μs IRE and 2 μs symmetric H-FIRE waveforms were used. In contrast, LT as low as 536 V/cm were found for 2 μs asymmetric H-FIRE waveforms. Reversible electroporation thresholds were 54% lower than LTs for symmetric waveforms and 33% lower for asymmetric waveforms indicating that waveform symmetry can be used to tune the relative sizes of reversible and irreversible ablation zones. Numerical simulations predicted that asymmetric H-FIRE waveforms are capable of producing ablation volumes which were 5.8–6.3x larger than symmetric H-FIRE waveforms indicating that in vivo investigation of asymmetric waveforms is warranted. PMID:28106146

  6. Asymmetric Waveforms Decrease Lethal Thresholds in High Frequency Irreversible Electroporation Therapies

    NASA Astrophysics Data System (ADS)

    Sano, Michael B.; Fan, Richard E.; Xing, Lei

    2017-01-01

    Irreversible electroporation (IRE) is a promising non-thermal treatment for inoperable tumors which uses short (50-100 μs) high voltage monopolar pulses to disrupt the membranes of cells within a well-defined volume. Challenges with IRE include complex treatment planning and the induction of intense muscle contractions. High frequency IRE (H-FIRE) uses bursts of ultrashort (0.25-5 μs) alternating polarity pulses to produce more predictable ablations and alleviate muscle contractions associated with IRE. However, H-FIRE generally ablates smaller volumes of tissue than IRE. This study shows that asymmetric H-FIRE waveforms can be used to create ablation volumes equivalent to standard IRE treatments. Lethal thresholds (LT) of 505 V/cm and 1316 V/cm were found for brain cancer cells when 100 μs IRE and 2 μs symmetric H-FIRE waveforms were used. In contrast, LT as low as 536 V/cm were found for 2 μs asymmetric H-FIRE waveforms. Reversible electroporation thresholds were 54% lower than LTs for symmetric waveforms and 33% lower for asymmetric waveforms indicating that waveform symmetry can be used to tune the relative sizes of reversible and irreversible ablation zones. Numerical simulations predicted that asymmetric H-FIRE waveforms are capable of producing ablation volumes which were 5.8-6.3x larger than symmetric H-FIRE waveforms indicating that in vivo investigation of asymmetric waveforms is warranted.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smallwood, D.O.

    It is recognized that some dynamic and noise environments are characterized by time histories which are not Gaussian. An example is high intensity acoustic noise. Another example is some transportation vibration. A better simulation of these environments can be generated if a zero mean non-Gaussian time history can be reproduced with a specified auto (or power) spectral density (ASD or PSD) and a specified probability density function (pdf). After the required time history is synthesized, the waveform can be used for simulation purposes. For example, modem waveform reproduction techniques can be used to reproduce the waveform on electrodynamic or electrohydraulicmore » shakers. Or the waveforms can be used in digital simulations. A method is presented for the generation of realizations of zero mean non-Gaussian random time histories with a specified ASD, and pdf. First a Gaussian time history with the specified auto (or power) spectral density (ASD) is generated. A monotonic nonlinear function relating the Gaussian waveform to the desired realization is then established based on the Cumulative Distribution Function (CDF) of the desired waveform and the known CDF of a Gaussian waveform. The established function is used to transform the Gaussian waveform to a realization of the desired waveform. Since the transformation preserves the zero-crossings and peaks of the original Gaussian waveform, and does not introduce any substantial discontinuities, the ASD is not substantially changed. Several methods are available to generate a realization of a Gaussian distributed waveform with a known ASD. The method of Smallwood and Paez (1993) is an example. However, the generation of random noise with a specified ASD but with a non-Gaussian distribution is less well known.« less

  8. Coastal retracking using along-track echograms and its dependency on coastal topography

    NASA Astrophysics Data System (ADS)

    Ichikawa, K.; Wang, X.

    2017-12-01

    Although the Brown mathematical model is the standard model for waveform retracking over open oceans, coastal waveforms usually deviate from open ocean waveform shapes due to inhomogeneous surface reflections within altimeter footprints, and thus cannot be directly interpreted by the Brown model. Generally, the two primary sources of heterogeneous surface reflections are land surfaces and bright targets such as calm surface water. The former reduces echo power, while the latter often produces particularly strong echoes. In previous studies, sub-waveform retrackers, which use waveform samples collected from around leading edges in order to avoid trailing edge noise, have been recommended for coastal waveform retracking. In the present study, the peaky-type noise caused by fixed-point bright targets is explicitly detected and masked using the parabolic signature in the sequential along-track waveforms (or, azimuth-range echograms). Moreover, the power deficit of waveform trailing edges caused by weak land reflections is compensated for by estimating the ratio of sea surface area within each annular footprint in order to produce pseudo-homogeneous reflected waveforms suitable for the Brown model. Using this method, Jason-2 altimeter waveforms are retracked in several coastal areas. Our results show that both the correlation coefficient and root mean square difference between the derived sea surface height anomalies and tide gauge records retain similar values at the open ocean (0.9 and 20 cm) level, even in areas approaching 3 km from coastlines, which is considerably improved from the 10 km correlation coefficient limit of the conventional MLE4 retracker and the 7 km sub-waveform ALES retracker limit. These values, however, depend on the coastal topography of the study areas because the approach distance limit increases (decreases) in areas with complicated (straight) coastlines

  9. Snapshots of Children's Changing Biases during Language Development: Differential Weighting of Perceptual and Linguistic Factors Predicts Noun Age of Acquisition

    ERIC Educational Resources Information Center

    Ramey, Christopher H.; Chrysikou, Evangelia G.; Reilly, Jamie

    2013-01-01

    Word learning is a lifelong activity constrained by cognitive biases that people possess at particular points in development. Age of acquisition (AoA) is a psycholinguistic variable that may prove useful toward gauging the relative weighting of different phonological, semantic, and morphological factors at different phases of language acquisition…

  10. The Effectiveness of Written Recasts in the Second Language Acquisition of Aspectual Distinctions in French: A Follow-Up Study

    ERIC Educational Resources Information Center

    Ayoun, Dalila

    2004-01-01

    This follow-up study on the acquisition of the aspectual distinction between the pass compos (PC) and the imparfait (IMP) investigates the differential outcomes of the results presented in an earlier study, Ayoun (2001), by pursuing two lines of research: the effectiveness of written recasts versus models and traditional grammar instruction, and…

  11. Improvement of tsunami detection in timeseries data of GPS buoys with the Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Chida, Y.; Takagawa, T.

    2017-12-01

    The observation data of GPS buoys which are installed in the offshore of Japan are used for monitoring not only waves but also tsunamis in Japan. The real-time data was successfully used to upgrade the tsunami warnings just after the 2011 Tohoku earthquake. Huge tsunamis can be easily detected because the signal-noise ratio is high enough, but moderate tsunami is not. GPS data sometimes include the error waveforms like tsunamis because of changing accuracy by the number and the position of GPS satellites. To distinguish the true tsunami waveforms from pseudo-tsunami ones is important for tsunami detection. In this research, a method to reduce misdetections of tsunami in the observation data of GPS buoys and to increase the efficiency of tsunami detection was developed.Firstly, the error waveforms were extracted by using the indexes of position dilution of precision, reliability of GPS satellite positioning and satellite number for calculation. Then, the output from this procedure was used for the Continuous Wavelet Transform (CWT) to analyze the time-frequency characteristics of error waveforms and real tsunami waveforms.We found that the error waveforms tended to appear when the accuracy of GPS buoys positioning was low. By extracting these waveforms, it was possible to decrease about 43% error waveforms without the reduction of the tsunami detection rate. Moreover, we found that the amplitudes of power spectra obtained from the error waveforms and real tsunamis were similar in the component of long period (4-65 minutes), on the other hand, the amplitude in the component of short period (< 1 minute) obtained from the error waveforms was significantly larger than that of the real tsunami waveforms. By thresholding of the short-period component, further extraction of error waveforms became possible without a significant reduction of tsunami detection rate.

  12. Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models

    NASA Astrophysics Data System (ADS)

    Field, Scott E.; Galley, Chad R.; Hesthaven, Jan S.; Kaye, Jason; Tiglio, Manuel

    2014-07-01

    We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform's value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mcfit) online operations, where cfit denotes the fitting function operation count and, typically, m ≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 105M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in generating new waveforms with a surrogate. As waveform generation is one of the dominant costs in parameter estimation algorithms and parameter space exploration, surrogate models offer a new and practical way to dramatically accelerate such studies without impacting accuracy. Surrogates built in this paper, as well as others, are available from GWSurrogate, a publicly available python package.

  13. Differential Laser Doppler based Non-Contact Sensor for Dimensional Inspection with Error Propagation Evaluation

    PubMed Central

    Mekid, Samir; Vacharanukul, Ketsaya

    2006-01-01

    To achieve dynamic error compensation in CNC machine tools, a non-contact laser probe capable of dimensional measurement of a workpiece while it is being machined has been developed and presented in this paper. The measurements are automatically fed back to the machine controller for intelligent error compensations. Based on a well resolved laser Doppler technique and real time data acquisition, the probe delivers a very promising dimensional accuracy at few microns over a range of 100 mm. The developed optical measuring apparatus employs a differential laser Doppler arrangement allowing acquisition of information from the workpiece surface. In addition, the measurements are traceable to standards of frequency allowing higher precision.

  14. Mitigation of tropospheric InSAR phase artifacts through differential multisquint processing

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.

    2004-01-01

    We propose a technique for mitigating tropospheric phase errors in repeat-pass interferometric synthetic aperture radar (InSAR). The mitigation technique is based upon the acquisition of multisquint InSAR data. On each satellite pass over a target area, the radar instrument will acquire images from multiple squint (azimuth) angles, from which multiple interferograms can be formed. The diversity of viewing angles associated with the multisquint acquisition can be used to solve for two components of the 3-D surface displacement vector as well as for the differential tropospheric phase. We describe a model for the performance of the multisquint technique, and we present an assessment of the performance expected.

  15. Agile waveforms for joint SAR-GMTI processing

    NASA Astrophysics Data System (ADS)

    Jaroszewski, Steven; Corbeil, Allan; McMurray, Stephen; Majumder, Uttam; Bell, Mark R.; Corbeil, Jeffrey; Minardi, Michael

    2016-05-01

    Wideband radar waveforms that employ spread-spectrum techniques were investigated and experimentally tested. The waveforms combine bi-phase coding with a traditional LFM chirp and are applicable to joint SAR-GMTI processing. After de-spreading, the received signals can be processed to support simultaneous GMTI and high resolution SAR imaging missions by airborne radars. The spread spectrum coding techniques can provide nearly orthogonal waveforms and offer enhanced operations in some environments by distributing the transmitted energy over a large instantaneous bandwidth. The LFM component offers the desired Doppler tolerance. In this paper, the waveforms are formulated and a shift-register approach for de-spreading the received signals is described. Hardware loop-back testing has shown the feasibility of using these waveforms in experimental radar test bed.

  16. Anomalous waveforms observed in laboratory-formed gas hydrate-bearing and ice-bearing sediments

    PubMed Central

    Lee, Myung W.; Waite, William F.

    2011-01-01

    Acoustic transmission measurements of compressional, P, and shear, S, wave velocities rely on correctly identifying the P- and S-body wave arrivals in the measured waveform. In cylindrical samples for which the sample is much longer than the acoustic wavelength, these body waves can be obscured by high-amplitude waveform features arriving just after the relatively small-amplitude P-body wave. In this study, a normal mode approach is used to analyze this type of waveform, observed in sediment containing gas hydrate or ice. This analysis extends an existing normal-mode waveform propagation theory by including the effects of the confining medium surrounding the sample, and provides guidelines for estimating S-wave velocities from waveforms containing multiple large-amplitude arrivals. PMID:21476628

  17. Differentiability of simulated MEG hippocampal, medial temporal and neocortical temporal epileptic spike activity.

    PubMed

    Stephen, Julia M; Ranken, Doug M; Aine, Cheryl J; Weisend, Michael P; Shih, Jerry J

    2005-12-01

    Previous studies have shown that magnetoencephalography (MEG) can measure hippocampal activity, despite the cylindrical shape and deep location in the brain. The current study extended this work by examining the ability to differentiate the hippocampal subfields, parahippocampal cortex, and neocortical temporal sources using simulated interictal epileptic activity. A model of the hippocampus was generated on the MRIs of five subjects. CA1, CA3, and dentate gyrus of the hippocampus were activated as well as entorhinal cortex, presubiculum, and neocortical temporal cortex. In addition, pairs of sources were activated sequentially to emulate various hypotheses of mesial temporal lobe seizure generation. The simulated MEG activity was added to real background brain activity from the five subjects and modeled using a multidipole spatiotemporal modeling technique. The waveforms and source locations/orientations for hippocampal and parahippocampal sources were differentiable from neocortical temporal sources. In addition, hippocampal and parahippocampal sources were differentiated to varying degrees depending on source. The sequential activation of hippocampal and parahippocampal sources was adequately modeled by a single source; however, these sources were not resolvable when they overlapped in time. These results suggest that MEG has the sensitivity to distinguish parahippocampal and hippocampal spike generators in mesial temporal lobe epilepsy.

  18. Artifactual ECG changes induced by electrocautery in a patient with coronary artery disease.

    PubMed

    Naik, B Naveen; Luthra, Ankur; Dwivedi, Ashish; Jafra, Anudeep

    Continuous monitoring of 5-lead electrocardiogram is a basic standard of care (included under standard ASA monitor) in the operating room and electrocautery interference is a common phenomenon. Clinical signs, along with monitored waveforms from other simultaneously monitored parameters may provide us clues to differentiate artifacts from true changes on the electrocardiogram. An improved understanding of the artifacts generated by electrocautery and their identifying characteristics is important to avoid misinterpretation, misdiagnosis, and hence mismanagement. This case report highlights the artifacts in electrocardiogram induced by electrocautery. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of pharmacological agents on subcortical resistance shifts

    NASA Technical Reports Server (NTRS)

    Klivington, K. A.

    1975-01-01

    Microliter quantities of tetrodotoxin, tetraethylammonium chloride, and picrotoxin injected into the inferior colliculus and superior olive of unanesthetized cats differentially affect the amplitude and waveform of click-evoked potentials and evoked resistance shifts. Tetrodotoxin simultaneously reduces the negative phase of the evoked potential and eliminates the evoked resistance shift. Tetraethylammonium enhances the negative evoked potential component, presumably of postsynaptic origin, without significantly altering evoked resistance shift amplitude. Picrotoxin also enhances the negative evoked potential wave but increases evoked resistance shift amplitude. These findings implicate events associated with postsynaptic membrane depolarization in the production of the evoked resistance shift.

  20. The Acquisition of Differential Object Marking in L2 Spanish Learners

    ERIC Educational Resources Information Center

    Martoccio, Alyssa Marie

    2012-01-01

    This dissertation tests a grammatical structure, differential object marking (DOM), which is particularly difficult for L2 learners to acquire. DOM is a phenomenon in which some direct objects are morphologically marked to distinguish them from subjects (Comrie, 1979). In Spanish, animate and specific direct objects are marked with the preposition…

  1. The underlying process of early ecological and genetic differentiation in a facultative mutualistic Sinorhizobium meliloti population.

    PubMed

    Toro, Nicolás; Villadas, Pablo J; Molina-Sánchez, María Dolores; Navarro-Gómez, Pilar; Vinardell, José M; Cuesta-Berrio, Lidia; Rodríguez-Carvajal, Miguel A

    2017-04-06

    The question of how genotypic and ecological units arise and spread in natural microbial populations remains controversial in the field of evolutionary biology. Here, we investigated the early stages of ecological and genetic differentiation in a highly clonal sympatric Sinorhizobium meliloti population. Whole-genome sequencing revealed that a large DNA region of the symbiotic plasmid pSymB was replaced in some isolates with a similar synteny block carrying densely clustered SNPs and displaying gene acquisition and loss. Two different versions of this genomic island of differentiation (GID) generated by multiple genetic exchanges over time appear to have arisen recently, through recombination in a particular clade within this population. In addition, these isolates display resistance to phages from the same geographic region, probably due to the modification of surface components by the acquired genes. Our results suggest that an underlying process of early ecological and genetic differentiation in S. meliloti is primarily triggered by acquisition of genes that confer resistance to soil phages within particular large genomic DNA regions prone to recombination.

  2. Doppler waveform study as indicator of change of portal pressure after administration of octreotide

    PubMed Central

    Haider, Shahbaz; Hussain, Qurban; Tabassum, Sumera; Hussain, Bilal; Durrani, Muhammad Rasheed; Ahmed, Fayyaz

    2016-01-01

    Objective: To estimate the effect of portal pressure lowering drug ‘octreotide’, by observing the Doppler waveform before and after the administration of intravenous bolus of octreotide and thus to assess indirectly its efficacy to lower the portal pressure. Methods: This quassi experimental study was carried out in Medical Department in collaboration with Radiology Department of Jinnah Postgraduate Medical Center Karachi Pakistan from September 10, 2015 to February 5, 2016. Cases were selected from patients admitted in Medical Wards and those attending Medical OPD. Diagnosis of cirrhosis was confirmed by Clinical Examination and Lab & Imaging investigation in Medical Department. Doppler waveform study was done by experienced radiologist in Radiology Department before and after administration of octreotide. Doppler signals were obtained from the right hepatic vein. Waveform tracings were recorded for five seconds and categorized as ‘monophasic’, ‘biphasic’ and ‘triphasic’. Waveform changes from one waveform to other were noted and analyzed. Results: Significant change i.e. from ‘monophasic’ to ‘biphasic’ or ‘biphasic’ to ‘triphasic’ was seen in 56% cases while ‘monophasic’ to ‘triphasic’ was seen in 20% cases. No change was seen in 24% cases. Improvement in waveform reflects lowering of portal vein pressure. Conclusion: Non invasive Hepatic vein Doppler waveform study showed improvement in Doppler waveform after administration of octreotide in 76% cases. Doppler waveform study has the potential of becoming non invasive ‘follow up tool’ of choice for assessing portal pressure in patients having variceal bleed due to portal hypertension. PMID:27648043

  3. Cross-Sectional Elasticity Imaging of Arterial Wall by Comparing Measured Change in Thickness with Model Waveform

    NASA Astrophysics Data System (ADS)

    Tang, Jiang; Hasegawa, Hideyuki; Kanai, Hiroshi

    2005-06-01

    For the assessment of the elasticity of the arterial wall, we have developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness due to heartbeats and the elasticity of the arterial wall with transcutaneous ultrasound. For various reasons, for example, an extremely small deformation of the wall, the minute change in wall thickness during one heartbeat is largely influenced by noise in these cases and the reliability of the elasticity distribution obtained from the maximum change in thickness deteriorates because the maximum value estimation is largely influenced by noise. To obtain a more reliable cross-sectional image of the elasticity of the arterial wall, in this paper, a matching method is proposed to evaluate the waveform of the measured change in wall thickness by comparing the measured waveform with a template waveform. The maximum deformation, which is used in the calculation of elasticity, was determined from the amplitude of the matched model waveform to reduce the influence of noise. The matched model waveform was obtained by minimizing the difference between the measured and template waveforms. Furthermore, a random error, which was obtained from the reproducibility among the heartbeats of the measured waveform, was considered useful for the evaluation of the reliability of the measured waveform.

  4. NEW APPLICATIONS IN THE INVERSION OF ACOUSTIC FULL WAVEFORM LOGS - RELATING MODE EXCITATION TO LITHOLOGY.

    USGS Publications Warehouse

    Paillet, Frederick L.; Cheng, C.H.; Meredith, J.A.

    1987-01-01

    Existing techniques for the quantitative interpretation of waveform data have been based on one of two fundamental approaches: (1) simultaneous identification of compressional and shear velocities; and (2) least-squares minimization of the difference between experimental waveforms and synthetic seismograms. Techniques based on the first approach do not always work, and those based on the second seem too numerically cumbersome for routine application during data processing. An alternative approach is tested here, in which synthetic waveforms are used to predict relative mode excitation in the composite waveform. Synthetic waveforms are generated for a series of lithologies ranging from hard, crystalline rocks (Vp equals 6. 0 km/sec. and Poisson's ratio equals 0. 20) to soft, argillaceous sediments (Vp equals 1. 8 km/sec. and Poisson's ratio equals 0. 40). The series of waveforms illustrates a continuous change within this range of rock properties. Mode energy within characteristic velocity windows is computed for each of the modes in the set of synthetic waveforms. The results indicate that there is a consistent variation in mode excitation in lithology space that can be used to construct a unique relationship between relative mode excitation and lithology.

  5. Length requirements for numerical-relativity waveforms

    NASA Astrophysics Data System (ADS)

    Hannam, Mark; Husa, Sascha; Ohme, Frank; Ajith, P.

    2010-12-01

    One way to produce complete inspiral-merger-ringdown gravitational waveforms from black-hole-binary systems is to connect post-Newtonian (PN) and numerical-relativity (NR) results to create “hybrid” waveforms. Hybrid waveforms are central to the construction of some phenomenological models for gravitational-wave (GW) search templates, and for tests of GW search pipelines. The dominant error source in hybrid waveforms arises from the PN contribution, and can be reduced by increasing the number of NR GW cycles that are included in the hybrid. Hybrid waveforms are considered sufficiently accurate for GW detection if their mismatch error is below 3% (i.e., a fitting factor above 0.97). We address the question of the length requirements of NR waveforms such that the final hybrid waveforms meet this requirement, considering nonspinning binaries with q=M2/M1∈[1,4] and equal-mass binaries with χ=Si/Mi2∈[-0.5,0.5]. We conclude that, for the cases we study, simulations must contain between three (in the equal-mass nonspinning case) and ten (the χ=0.5 case) orbits before merger, but there is also evidence that these are the regions of parameter space for which the least number of cycles will be needed.

  6. Surface Fitting Filtering of LIDAR Point Cloud with Waveform Information

    NASA Astrophysics Data System (ADS)

    Xing, S.; Li, P.; Xu, Q.; Wang, D.; Li, P.

    2017-09-01

    Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from "WATER (Watershed Allied Telemetry Experimental Research)" are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.

  7. Improved Seismic Acquisition System and Data Processing for the Italian National Seismic Network

    NASA Astrophysics Data System (ADS)

    Badiali, L.; Marcocci, C.; Mele, F.; Piscini, A.

    2001-12-01

    A new system for acquiring and processing digital signals has been developed in the last few years at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system makes extensive use of the internet communication protocol standards such as TCP and UDP which are used as the transport highway inside the Italian network, and possibly in a near future outside, to share or redirect data among processes. The Italian National Seismic Network has been working for about 18 years equipped with vertical short period seismometers and transmitting through analog lines, to the computer center in Rome. We are now concentrating our efforts on speeding the migration towards a fully digital network based on about 150 stations equipped with either broad band or 5 seconds sensors connected to the data center partly through wired digital communication and partly through satellite digital communication. The overall process is layered through intranet and/or internet. Every layer gathers data in a simple format and provides data in a processed format, ready to be distributed towards the next layer. The lowest level acquires seismic data (raw waveforms) coming from the remote stations. It handshakes, checks and sends data in LAN or WAN according to a distribution list where other machines with their programs are waiting for. At the next level there are the picking procedures, or "pickers", on a per instrument basis, looking for phases. A picker spreads phases, again through the LAN or WAN and according to a distribution list, to one or more waiting locating machines tuned to generate a seismic event. The event locating procedure itself, the higher level in this stack, can exchange information with other similar procedures. Such a layered and distributed structure with nearby targets allows other seismic networks to join the processing and data collection of the same ongoing event, creating a virtual network larger than the original one. At present we plan to cooperate with other Italian regional and local networks, and with the VBB Mediterranean Network (MedNet) to share waveforms and events detected in real time. The seismic acquisition system at INGV uses a relational database built on standard SQL, for every activity involving the seismic network.

  8. STRS Compliant FPGA Waveform Development

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer; Downey, Joseph

    2008-01-01

    The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. Current standards were researched and new standard interfaces were proposed. The implementation of the proposed standard interfaces on a laboratory breadboard SDR will be presented.

  9. Modeling measured glottal volume velocity waveforms.

    PubMed

    Verneuil, Andrew; Berry, David A; Kreiman, Jody; Gerratt, Bruce R; Ye, Ming; Berke, Gerald S

    2003-02-01

    The source-filter theory of speech production describes a glottal energy source (volume velocity waveform) that is filtered by the vocal tract and radiates from the mouth as phonation. The characteristics of the volume velocity waveform, the source that drives phonation, have been estimated, but never directly measured at the glottis. To accomplish this measurement, constant temperature anemometer probes were used in an in vivo canine constant pressure model of phonation. A 3-probe array was positioned supraglottically, and an endoscopic camera was positioned subglottically. Simultaneous recordings of airflow velocity (using anemometry) and glottal area (using stroboscopy) were made in 3 animals. Glottal airflow velocities and areas were combined to produce direct measurements of glottal volume velocity waveforms. The anterior and middle parts of the glottis contributed significantly to the volume velocity waveform, with less contribution from the posterior part of the glottis. The measured volume velocity waveforms were successfully fitted to a well-known laryngeal airflow model. A noninvasive measured volume velocity waveform holds promise for future clinical use.

  10. An improved driving waveform reference grayscale of electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yi, Zichuan; Peng, Bao; Zhou, Guofu

    2015-10-01

    Driving waveform is an important component for gray scale display on the electrophoretic display (EPD). In the traditional driving waveform, a white reference gray scale is formed before writing a new image. However, the reflectance value can not reach agreement in each gray scale transformation. In this paper, a new driving waveform, which has a short waiting time after the formation of reference gray scale, is proposed to improve the consistency of reference gray scale. Firstly, the property of the particles in the microcapsule is analyzed and the change of the EPD reflectance after the white reference gray scale formation is studied. Secondly, the reflectance change curve is fitted by using polynomial and the duration of the waiting time is determined. Thirdly, a set of the new driving waveform is designed by using the rule of DC balance and some real E-ink commercial EPDs are used to test the performance. Experimental results show that the effect of the new driving waveform has a better performance than traditional waveforms.

  11. Adaptive phase k-means algorithm for waveform classification

    NASA Astrophysics Data System (ADS)

    Song, Chengyun; Liu, Zhining; Wang, Yaojun; Xu, Feng; Li, Xingming; Hu, Guangmin

    2018-01-01

    Waveform classification is a powerful technique for seismic facies analysis that describes the heterogeneity and compartments within a reservoir. Horizon interpretation is a critical step in waveform classification. However, the horizon often produces inconsistent waveform phase, and thus results in an unsatisfied classification. To alleviate this problem, an adaptive phase waveform classification method called the adaptive phase k-means is introduced in this paper. Our method improves the traditional k-means algorithm using an adaptive phase distance for waveform similarity measure. The proposed distance is a measure with variable phases as it moves from sample to sample along the traces. Model traces are also updated with the best phase interference in the iterative process. Therefore, our method is robust to phase variations caused by the interpretation horizon. We tested the effectiveness of our algorithm by applying it to synthetic and real data. The satisfactory results reveal that the proposed method tolerates certain waveform phase variation and is a good tool for seismic facies analysis.

  12. Seismic waveform classification using deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Allen, R. M.

    2017-12-01

    MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It has an Artificial Neural Network (ANN) algorithm running on the phone to distinguish earthquake motion from human activities recorded by the accelerometer on board. Once the ANN detects earthquake-like motion, it sends a 5-min chunk of acceleration data back to the server for further analysis. The time-series data collected contains both earthquake data and human activity data that the ANN confused. In this presentation, we will show the Convolutional Neural Network (CNN) we built under the umbrella of supervised learning to find out the earthquake waveform. The waveforms of the recorded motion could treat easily as images, and by taking the advantage of the power of CNN processing the images, we achieved very high successful rate to select the earthquake waveforms out. Since there are many non-earthquake waveforms than the earthquake waveforms, we also built an anomaly detection algorithm using the CNN. Both these two methods can be easily extended to other waveform classification problems.

  13. Accurate inspiral-merger-ringdown gravitational waveforms for nonspinning black-hole binaries including the effect of subdominant modes

    NASA Astrophysics Data System (ADS)

    Mehta, Ajit Kumar; Mishra, Chandra Kant; Varma, Vijay; Ajith, Parameswaran

    2017-12-01

    We present an analytical waveform family describing gravitational waves (GWs) from the inspiral, merger, and ringdown of nonspinning black-hole binaries including the effect of several nonquadrupole modes [(ℓ=2 ,m =±1 ),(ℓ=3 ,m =±3 ),(ℓ=4 ,m =±4 ) apart from (ℓ=2 ,m =±2 )]. We first construct spin-weighted spherical harmonics modes of hybrid waveforms by matching numerical-relativity simulations (with mass ratio 1-10) describing the late inspiral, merger, and ringdown of the binary with post-Newtonian/effective-one-body waveforms describing the early inspiral. An analytical waveform family is constructed in frequency domain by modeling the Fourier transform of the hybrid waveforms making use of analytical functions inspired by perturbative calculations. The resulting highly accurate, ready-to-use waveforms are highly faithful (unfaithfulness ≃10-4- 10-2 ) for observation of GWs from nonspinning black-hole binaries and are extremely inexpensive to generate.

  14. Energy-optimal electrical excitation of nerve fibers.

    PubMed

    Jezernik, Saso; Morari, Manfred

    2005-04-01

    We derive, based on an analytical nerve membrane model and optimal control theory of dynamical systems, an energy-optimal stimulation current waveform for electrical excitation of nerve fibers. Optimal stimulation waveforms for nonleaky and leaky membranes are calculated. The case with a leaky membrane is a realistic case. Finally, we compare the waveforms and energies necessary for excitation of a leaky membrane in the case where the stimulation waveform is a square-wave current pulse, and in the case of energy-optimal stimulation. The optimal stimulation waveform is an exponentially rising waveform and necessitates considerably less energy to excite the nerve than a square-wave pulse (especially true for larger pulse durations). The described theoretical results can lead to drastically increased battery lifetime and/or decreased energy transmission requirements for implanted biomedical systems.

  15. Anomalous waveforms observed in laboratory-formed gas hydrate-bearing and ice-bearing sediments

    USGS Publications Warehouse

    Lee, M.W.; Waite, W.F.

    2011-01-01

    Acoustic transmission measurements of compressional, P, and shear, S, wave velocities rely on correctly identifying the P- and S-body wave arrivals in the measured waveform. In cylindrical samples for which the sample is much longer than the acoustic wavelength, these body waves can be obscured by high-amplitude waveform features arriving just after the relatively small-amplitude P-body wave. In this study, a normal mode approach is used to analyze this type of waveform, observed in sediment containing gas hydrate or ice. This analysis extends an existing normal-mode waveform propagation theory by including the effects of the confining medium surrounding the sample, and provides guidelines for estimating S-wave velocities from waveforms containing multiple large-amplitude arrivals. ?? 2011 Acoustical Society of America.

  16. Broad Separation of Isomeric Lipids by High-Resolution Differential Ion Mobility Spectrometry with Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bowman, Andrew P.; Abzalimov, Rinat R.; Shvartsburg, Alexandre A.

    2017-08-01

    Maturation of metabolomics has brought a deeper appreciation for the importance of isomeric identity of lipids to their biological role, mirroring that for proteoforms in proteomics. However, full characterization of the lipid isomerism has been thwarted by paucity of rapid and effective analytical tools. A novel approach is ion mobility spectrometry (IMS) and particularly differential or field asymmetric waveform IMS (FAIMS) at high electric fields, which is more orthogonal to mass spectrometry. Here we broadly explore the power of FAIMS to separate lipid isomers, and find a 75% success rate across the four major types of glycero- and phospho- lipids ( sn, chain length, double bond position, and cis/ trans). The resolved isomers were identified using standards, and (for the first two types) tandem mass spectrometry. These results demonstrate the general merit of incorporating high-resolution FAIMS into lipidomic analyses.

  17. Experimenting Galileo on Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Fantinato, Samuele; Pozzobon, Oscar; Gamba, Giovanni; Chiara, Andrea Dalla; Montagner, Stefano; Giordano, Pietro; Crisci, Massimo; Enderle, Werner; Chelmins, David T.; Sands, Obed S.; hide

    2016-01-01

    The SCaN Testbed is an advanced integrated communications system and laboratory facility installed on the International Space Station (ISS) in 2012. The testbed incorporates a set of new generation of Software Defined Radio (SDR) technologies intended to allow researchers to develop, test, and demonstrate new communications, networking, and navigation capabilities in the actual environment of space. Qascom, in cooperation with ESA and NASA, is designing a Software Defined Radio GalileoGPS Receiver capable to provide accurate positioning and timing to be installed on the ISS SCaN Testbed. The GalileoGPS waveform will be operated in the JPL SDR that is constituted by several hardware components that can be used for experimentations in L-Band and S-Band. The JPL SDR includes an L-Band Dorne Margolin antenna mounted onto a choke ring. The antenna is connected to a radio front end capable to provide one bit samples for the three GNSS frequencies (L1, L2 and L5) at 38 MHz, exploiting the subharmonic sampling. The baseband processing is then performed by an ATMEL AT697 processor (100 MIPS) and two Virtex 2 FPGAs. The JPL SDR supports the STRS (Space Telecommunications Radio System) that provides common waveform software interfaces, methods of instantiation, operation, and testing among different compliant hardware and software products. The standard foresees the development of applications that are modular, portable, reconfigurable, and reusable. The developed waveform uses the STRS infrastructure-provided application program interfaces (APIs) and services to load, verify, execute, change parameters, terminate, or unload an application. The project is divided in three main phases. 1)Design and Development of the GalileoGPS waveform for the SCaN Testbed starting from Qascom existing GNSS SDR receiver. The baseline design is limited to the implementation of the single frequency Galileo and GPS L1E1 receiver even if as part of the activity it will be to assess the feasibility of a dual frequency implementation (L1E1+L5E5a) in the same SDR platform.2)Qualification and test the GalileoGPS waveform using ground systems available at the NASA Glenn Research Center. Experimenters can have access to two SCaN Testbed ground based systems for development and verification: the Experimenter Development System (EDS) that is intended to provide initial opportunity for software testing and basic functional validation and the Ground Integration Unit (GIU) that is a high fidelity version of the SCaN Testbed flight system and is therefore used for more controlled final development testing and verification testing.3)Perform in-orbit validation and experimentation: The experimentation phase will consists on the collection of raw measurements (pseudorange, Carrier phase, CN0) in space, assessment on the quality of the measurements and the receiver performances in terms of signal acquisition, tracking, etc. Finally computation of positioning in space (Position, Velocity and time) and assessment of its performance.(Complete abstract in attached document).

  18. ECCM Waveform Investigation

    DTIC Science & Technology

    1977-08-01

    period, duration/ peak power, and side lobe levels. A recommended waveform library is presented. One of the program results is that an optimum waveform...Areas a. Coding b. Pulse Repetition Period c. Peak Power/Pulse Duration d. Sidelobes 3. Performance Dependence Upon Bandwidth/Bandspan a... peak power and pulse duration, and range and Doppler sldelobe levels. The constraints upon waveforms due to the In- ability of the radar components

  19. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    DTIC Science & Technology

    2014-11-01

    networks were trained to predict an individual’s electrocardiogram (ECG) and arterial blood pressure ( ABP ) waveform data, which can potentially help...various ESN architectures for prediction tasks, and establishes the benefits of using ESN architecture designs for predicting ECG and ABP waveforms...arterial blood pressure ( ABP ) waveforms immediately prior to the machine generated alarms. When tested, the algorithm suppressed approximately 59.7

  20. Full Waveform Inversion for Seismic Velocity And Anelastic Losses in Heterogeneous Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askan, A.; /Carnegie Mellon U.; Akcelik, V.

    2009-04-30

    We present a least-squares optimization method for solving the nonlinear full waveform inverse problem of determining the crustal velocity and intrinsic attenuation properties of sedimentary valleys in earthquake-prone regions. Given a known earthquake source and a set of seismograms generated by the source, the inverse problem is to reconstruct the anelastic properties of a heterogeneous medium with possibly discontinuous wave velocities. The inverse problem is formulated as a constrained optimization problem, where the constraints are the partial and ordinary differential equations governing the anelastic wave propagation from the source to the receivers in the time domain. This leads to amore » variational formulation in terms of the material model plus the state variables and their adjoints. We employ a wave propagation model in which the intrinsic energy-dissipating nature of the soil medium is modeled by a set of standard linear solids. The least-squares optimization approach to inverse wave propagation presents the well-known difficulties of ill posedness and multiple minima. To overcome ill posedness, we include a total variation regularization functional in the objective function, which annihilates highly oscillatory material property components while preserving discontinuities in the medium. To treat multiple minima, we use a multilevel algorithm that solves a sequence of subproblems on increasingly finer grids with increasingly higher frequency source components to remain within the basin of attraction of the global minimum. We illustrate the methodology with high-resolution inversions for two-dimensional sedimentary models of the San Fernando Valley, under SH-wave excitation. We perform inversions for both the seismic velocity and the intrinsic attenuation using synthetic waveforms at the observer locations as pseudoobserved data.« less

  1. Computing the Sensitivity Kernels for 2.5-D Seismic Waveform Inversion in Heterogeneous, Anisotropic Media

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, S. A.

    2011-10-01

    2.5-D modeling and inversion techniques are much closer to reality than the simple and traditional 2-D seismic wave modeling and inversion. The sensitivity kernels required in full waveform seismic tomographic inversion are the Fréchet derivatives of the displacement vector with respect to the independent anisotropic model parameters of the subsurface. They give the sensitivity of the seismograms to changes in the model parameters. This paper applies two methods, called `the perturbation method' and `the matrix method', to derive the sensitivity kernels for 2.5-D seismic waveform inversion. We show that the two methods yield the same explicit expressions for the Fréchet derivatives using a constant-block model parameterization, and are available for both the line-source (2-D) and the point-source (2.5-D) cases. The method involves two Green's function vectors and their gradients, as well as the derivatives of the elastic modulus tensor with respect to the independent model parameters. The two Green's function vectors are the responses of the displacement vector to the two directed unit vectors located at the source and geophone positions, respectively; they can be generally obtained by numerical methods. The gradients of the Green's function vectors may be approximated in the same manner as the differential computations in the forward modeling. The derivatives of the elastic modulus tensor with respect to the independent model parameters can be obtained analytically, dependent on the class of medium anisotropy. Explicit expressions are given for two special cases—isotropic and tilted transversely isotropic (TTI) media. Numerical examples are given for the latter case, which involves five independent elastic moduli (or Thomsen parameters) plus one angle defining the symmetry axis.

  2. Effects of acute dietary nitrate supplementation on aortic blood pressure and aortic augmentation index in young and older adults.

    PubMed

    Hughes, William E; Ueda, Kenichi; Treichler, David P; Casey, Darren P

    2016-09-30

    Aging is associated with elevated blood pressure (peripheral and aortic; BP) and aortic augmentation index (AIx) which may contribute to aortic BP. Although inorganic nitrate consumption reduces peripheral BP in both young and older adults, the effects of nitrate consumption on aortic BP and wave reflection in young and older adults is unknown. Therefore, we sought to characterize the effects of nitrate consumption on aortic BP and AIx in young and older adults. Noninvasive aortic pressure waveforms were synthesized from high-fidelity radial pressure waveforms via applanation tonometry before and following (60, 90, 120, 150, and 180 min) consumption of a nitrate-rich beetroot juice in 26 healthy adults (young: 25 ± 4 years, n = 14; older: 64 ± 5 years, n = 12). Aortic BP and indices of aortic wave reflection (AIx and AIx normalized for heart rate; AIx@75bpm) were calculated from the generated aortic pressure waveform. Nitrate consumption increased plasma nitrite in both groups 60-180 min following beetroot consumption (P < 0.001). Nitrate consumption reduced peripheral and aortic BP in both young and older adults (P < 0.05), with the change being similar between age groups. Conversely, indices of aortic wave reflection were reduced only in young adults following nitrate consumption (range of change from baseline over time: AIx@75bpm, -4.3 to -8.8%, P < 0.05), whereas aortic AIx remained unchanged in the older adults. Taken together, our results suggest that acute dietary nitrate supplementation reduces peripheral and aortic BP similarly in young and older adults despite differential effects on aortic AIx between age groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Average current is better than peak current as therapeutic dosage for biphasic waveforms in a ventricular fibrillation pig model of cardiac arrest.

    PubMed

    Chen, Bihua; Yu, Tao; Ristagno, Giuseppe; Quan, Weilun; Li, Yongqin

    2014-10-01

    Defibrillation current has been shown to be a clinically more relevant dosing unit than energy. However, the effects of average and peak current in determining shock outcome are still undetermined. The aim of this study was to investigate the relationship between average current, peak current and defibrillation success when different biphasic waveforms were employed. Ventricular fibrillation (VF) was electrically induced in 22 domestic male pigs. Animals were then randomized to receive defibrillation using one of two different biphasic waveforms. A grouped up-and-down defibrillation threshold-testing protocol was used to maintain the average success rate of 50% in the neighborhood. In 14 animals (Study A), defibrillations were accomplished with either biphasic truncated exponential (BTE) or rectilinear biphasic waveforms. In eight animals (Study B), shocks were delivered using two BTE waveforms that had identical peak current but different waveform durations. Both average and peak currents were associated with defibrillation success when BTE and rectilinear waveforms were investigated. However, when pathway impedance was less than 90Ω for the BTE waveform, bivariate correlation coefficient was 0.36 (p=0.001) for the average current, but only 0.21 (p=0.06) for the peak current in Study A. In Study B, a high defibrillation success (67.9% vs. 38.8%, p<0.001) was observed when the waveform delivered more average current (14.9±2.1A vs. 13.5±1.7A, p<0.001) while keeping the peak current unchanged. In this porcine model of VF, average current was better than peak current to be an adequate parameter to describe the therapeutic dosage when biphasic defibrillation waveforms were used. The institutional protocol number: P0805. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    NASA Astrophysics Data System (ADS)

    Hinder, Ian; Buonanno, Alessandra; Boyle, Michael; Etienne, Zachariah B.; Healy, James; Johnson-McDaniel, Nathan K.; Nagar, Alessandro; Nakano, Hiroyuki; Pan, Yi; Pfeiffer, Harald P.; Pürrer, Michael; Reisswig, Christian; Scheel, Mark A.; Schnetter, Erik; Sperhake, Ulrich; Szilágyi, Bela; Tichy, Wolfgang; Wardell, Barry; Zenginoğlu, Anıl; Alic, Daniela; Bernuzzi, Sebastiano; Bode, Tanja; Brügmann, Bernd; Buchman, Luisa T.; Campanelli, Manuela; Chu, Tony; Damour, Thibault; Grigsby, Jason D.; Hannam, Mark; Haas, Roland; Hemberger, Daniel A.; Husa, Sascha; Kidder, Lawrence E.; Laguna, Pablo; London, Lionel; Lovelace, Geoffrey; Lousto, Carlos O.; Marronetti, Pedro; Matzner, Richard A.; Mösta, Philipp; Mroué, Abdul; Müller, Doreen; Mundim, Bruno C.; Nerozzi, Andrea; Paschalidis, Vasileios; Pollney, Denis; Reifenberger, George; Rezzolla, Luciano; Shapiro, Stuart L.; Shoemaker, Deirdre; Taracchini, Andrea; Taylor, Nicholas W.; Teukolsky, Saul A.; Thierfelder, Marcus; Witek, Helvi; Zlochower, Yosef

    2013-01-01

    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ˜100-200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ⩽4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.

  5. Waveform Fingerprinting for Efficient Seismic Signal Detection

    NASA Astrophysics Data System (ADS)

    Yoon, C. E.; OReilly, O. J.; Beroza, G. C.

    2013-12-01

    Cross-correlating an earthquake waveform template with continuous waveform data has proven a powerful approach for detecting events missing from earthquake catalogs. If templates do not exist, it is possible to divide the waveform data into short overlapping time windows, then identify window pairs with similar waveforms. Applying these approaches to earthquake monitoring in seismic networks has tremendous potential to improve the completeness of earthquake catalogs, but because effort scales quadratically with time, it rapidly becomes computationally infeasible. We develop a fingerprinting technique to identify similar waveforms, using only a few compact features of the original data. The concept is similar to human fingerprints, which utilize key diagnostic features to identify people uniquely. Analogous audio-fingerprinting approaches have accurately and efficiently found similar audio clips within large databases; example applications include identifying songs and finding copyrighted content within YouTube videos. In order to fingerprint waveforms, we compute a spectrogram of the time series, and segment it into multiple overlapping windows (spectral images). For each spectral image, we apply a wavelet transform, and retain only the sign of the maximum magnitude wavelet coefficients. This procedure retains just the large-scale structure of the data, providing both robustness to noise and significant dimensionality reduction. Each fingerprint is a high-dimensional, sparse, binary data object that can be stored in a database without significant storage costs. Similar fingerprints within the database are efficiently searched using locality-sensitive hashing. We test this technique on waveform data from the Northern California Seismic Network that contains events not detected in the catalog. We show that this algorithm successfully identifies similar waveforms and detects uncataloged low magnitude events in addition to cataloged events, while running to completion faster than a comparison waveform autocorrelation code.

  6. Comparison of pulmonary artery and central venous pressure waveform measurements via digital and graphic measurement methods.

    PubMed

    Ahrens, T S; Schallom, L

    2001-01-01

    Techniques to measure pulmonary artery (PA) pressure waveforms include digital measurement, graphic measurement, and freeze-cursor measurement. Previous studies reported the inaccuracy of digital and freeze-cursor measurements. However, many of the previous studies were small and did not thoroughly examine the circumstances of when digital measurements might be inaccurate. To compare digital measurements and graphic measurements of PA and central venous pressure (CVP) waveforms in patients with a variety of respiratory patterns, and to compare digital measurements and graphic measurements of CVPs in patients with abnormal or right ventricular waveforms. A total of 928 patients were enrolled in this study. Waveforms from the PA and CVP were collected from each patient. The monitor pressure value (digital measurement) printed on the recorded waveform was compared with the pressure value obtained by a graphic strip recording and measured by one of the primary investigators (graphic measurement). Digital measurements were found to be inaccurate in measuring waveforms in all respiratory categories and in measuring right ventricular waveforms. PA diastolic values and CVP values were the most inaccurately measured waveforms. Digital errors of more than 4 mm Hg were common. There were instances in which the monitor's digital measurement was substantially different from the graphically measured value. This difference has the potential to mislead interpretation of clinical situations. The monitor's ability to occasionally give digital measurement values similar to the graphic measurements may lead to a false sense of security in clinicians. Because the accuracy of the monitor is inconsistent, the bedside clinician should interpret waveforms through use of a graphic recording rather than rely on the digital measurement on the monitor.

  7. Spectrum interrogation of fiber acoustic sensor based on self-fitting and differential method.

    PubMed

    Fu, Xin; Lu, Ping; Ni, Wenjun; Liao, Hao; Wang, Shun; Liu, Deming; Zhang, Jiangshan

    2017-02-20

    In this article, we propose an interrogation method of fiber acoustic sensor to recover the time-domain signal from the sensor spectrum. The optical spectrum of the sensor will show a ripple waveform when responding to acoustic signal due to the scanning process in a certain wavelength range. The reason behind this phenomenon is the dynamic variation of the sensor spectrum while the intensity of different wavelength is acquired at different time in a scanning period. The frequency components can be extracted from the ripple spectrum assisted by the wavelength scanning speed. The signal is able to be recovered by differential between the ripple spectrum and its self-fitted curve. The differential process can eliminate the interference caused by environmental perturbations such as temperature or refractive index (RI), etc. The proposed method is appropriate for fiber acoustic sensors based on gratings or interferometers. A long period grating (LPG) is adopted as an acoustic sensor head to prove the feasibility of the interrogation method in experiment. The ability to compensate the environmental fluctuations is also demonstrated.

  8. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2006-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  9. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2004-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  10. Design of a 9-loop quasi-exponential waveform generator

    NASA Astrophysics Data System (ADS)

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  11. Design of a 9-loop quasi-exponential waveform generator.

    PubMed

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  12. Pulsatile pipe flow transition: Flow waveform effects

    NASA Astrophysics Data System (ADS)

    Brindise, Melissa C.; Vlachos, Pavlos P.

    2018-01-01

    Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.

  13. EAARL Topography - George Washington Birthplace National Monument 2008

    USGS Publications Warehouse

    Brock, John C.; Nayegandhi, Amar; Wright, C. Wayne; Stevens, Sara; Yates, Xan

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) and first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the George Washington Birthplace National Monument in Virginia, acquired on March 26, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  14. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: First Surface

    USGS Publications Warehouse

    Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) elevation data were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. The project provides highly detailed and accurate datasets of select barrier islands and peninsular regions of Louisiana, Mississippi, Alabama, and Florida, acquired June 27-30, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  15. EAARL Coastal Topography-Pearl River Delta 2008: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  16. EAARL Coastal Topography-Pearl River Delta 2008: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Michael, D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  17. EAARL Topography - Jean Lafitte National Historical Park and Preserve 2006

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) and bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Jean Lafitte National Historical Park and Preserve in Louisiana, acquired on September 22, 2006. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  18. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: Bare Earth

    USGS Publications Warehouse

    Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. The purpose of this project is to provide highly detailed and accurate datasets of select barrier islands and peninsular regions of Louisiana, Mississippi, Alabama, and Florida, acquired on June 27-30, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  19. EAARL Submerged Topography - U.S. Virgin Islands 2003

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived submerged topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), South Florida-Caribbean Network, Miami, FL; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate bathymetric datasets of a portion of the U.S. Virgin Islands, acquired on April 21, 23, and 30, May 2, and June 14 and 17, 2003. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  20. EAARL-B submerged topography: Barnegat Bay, New Jersey, post-Hurricane Sandy, 2012-2013

    USGS Publications Warehouse

    Wright, C. Wayne; Troche, Rodolfo J.; Kranenburg, Christine J.; Klipp, Emily S.; Fredericks, Xan; Nagle, David B.

    2014-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived submerged topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida. This project provides highly detailed and accurate datasets for part of Barnegat Bay, New Jersey, acquired post-Hurricane Sandy on November 1, 5, 16, 20, and 30, 2012; December 5, 6, and 21, 2012; and January 10, 2013. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar system, known as the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), was used during data acquisition. The EAARL-B system is a raster-scanning, waveform-resolving, green-wavelength (532-nm) lidar designed to map nearshore bathymetry, topography, and vegetation structure simultaneously. The EAARL-B sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, down-looking red-green-blue (RGB) and infrared (IR) digital cameras, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL-B platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL-B system. The resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed originally in a NASA-USGS collaboration. The exploration and processing of lidar data in an interactive or batch mode is supported using ALPS. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. The Airborne Lidar Processing System (ALPS) is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Lidar for Science and Resource Management Web site.

  1. EAARL Coastal Topography-Cape Hatteras National Seashore, North Carolina, Post-Nor'Ida, 2009: Bare Earth

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Stevens, Sara

    2011-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the National Park Service Southeast Coast Network's Cape Hatteras National Seashore in North Carolina, acquired post-Nor'Ida (November 2009 nor'easter) on November 27 and 29 and December 1, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  2. EAARL coastal topography and imagery–Western Louisiana, post-Hurricane Rita, 2005: First surface

    USGS Publications Warehouse

    Bonisteel-Cormier, Jamie M.; Wright, Wayne C.; Fredericks, Alexandra M.; Klipp, Emily S.; Nagle, Doug B.; Sallenger, Asbury H.; Brock, John C.

    2013-01-01

    These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, Virginia. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beachface, acquired post-Hurricane Rita on September 27-28 and October 2, 2005. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the National Aeronautics and Space Administration (NASA) Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Lidar for Science and Resource Management Website.

  3. EAARL Coastal Topography-Maryland and Delaware, Post-Nor'Ida, 2009

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Vivekanandan, Saisudha; Nayegandhi, Amar; Sallenger, A.H.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Klipp, E.S.

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Maryland and Delaware coastline beachface, acquired post-Nor'Ida (November 2009 nor'easter) on November 28 and 30, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  4. EAARL Coastal Topography-Eastern Louisiana Barrier Islands, Post-Hurricane Gustav, 2008: First Surface

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the eastern Louisiana barrier islands, acquired post-Hurricane Gustav (September 2008 hurricane) on September 6 and 7, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  5. EAARL coastal topography-Cape Hatteras National Seashore, North Carolina, post-Nor'Ida, 2009: first surface

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Fredericks, Xan; Stevens, Sara

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the National Park Service Southeast Coast Network's Cape Hatteras National Seashore in North Carolina, acquired post-Nor'Ida (November 2009 nor'easter) on November 27 and 29 and December 1, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  6. EAARL Coastal Topography-Mississippi and Alabama Barrier Islands, Post-Hurricane Gustav, 2008

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Klipp, E.S.; Vivekanandan, Saisudha; Fredericks, Xan; Segura, Martha

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Mississippi and Alabama barrier islands, acquired post-Hurricane Gustav (September 2008 hurricane) on September 8, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  7. EAARL Coastal Topography and Imagery-Assateague Island National Seashore, Maryland and Virginia, Post-Nor'Ida, 2009

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Klipp, E.S.; Vivekanandan, Saisudha; Fredericks, Xan; Stevens, Sara

    2010-01-01

    These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the Assateague Island National Seashore in Maryland and Virginia, acquired post-Nor'Ida (November 2009 nor'easter) on November 28 and 30, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar(EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  8. EAARL Coastal Topography-Fire Island National Seashore, New York, Post-Nor'Ida, 2009

    USGS Publications Warehouse

    Nayegandhi, Amar; Vivekanandan, Saisudha; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Bonisteel-Cormier, J.M.; Fredericks, Xan; Stevens, Sara

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the Fire Island National Seashore in New York, acquired post-Nor'Ida (November 2009 nor'easter) on December 4, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  9. EAARL coastal topography and imagery-Fire Island National Seashore, New York, 2009

    USGS Publications Warehouse

    Vivekanandan, Saisudha; Klipp, E.S.; Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Fredericks, Xan; Stevens, Sara

    2010-01-01

    These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the Fire Island National Seashore in New York, acquired on July 9 and August 3, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral CIR camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  10. EAARL Coastal Topography-Chandeleur Islands, Louisiana, 2010: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Bonisteel-Cormier, Jamie M.; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Nagle, David B.; Vivekanandan, Saisudha; Yates, Xan; Klipp, Emily S.

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and submerged topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Chandeleur Islands, acquired March 3, 2010. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  11. EAARL Coastal Topography-Eastern Florida, Post-Hurricane Jeanne, 2004: First Surface

    USGS Publications Warehouse

    Fredericks, Xan; Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Klipp, E.S.; Nagle, D.B.

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired post-Hurricane Jeanne (September 2004 hurricane) on October 1, 2004. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  12. EAARL Coastal Topography-Sandy Hook Unit, Gateway National Recreation Area, New Jersey, Post-Nor'Ida, 2009

    USGS Publications Warehouse

    Nayegandhi, Amar; Vivekanandan, Saisudha; Brock, J.C.; Wright, C.W.; Bonisteel-Cormier, J.M.; Nagle, D.B.; Klipp, E.S.; Stevens, Sara

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the Sandy Hook Unit of Gateway National Recreation Area in New Jersey, acquired post-Nor'Ida (November 2009 nor'easter) on December 4, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  13. EAARL Coastal Topography and Imagery-Naval Live Oaks Area, Gulf Islands National Seashore, Florida, 2007

    USGS Publications Warehouse

    Nagle, David B.; Nayegandhi, Amar; Yates, Xan; Brock, John C.; Wright, C. Wayne; Bonisteel, Jamie M.; Klipp, Emily S.; Segura, Martha

    2010-01-01

    These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived bare-earth (BE) topography, first-surface (FS) topography, and canopy-height (CH) datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Science Center, St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Naval Live Oaks Area in Florida's Gulf Islands National Seashore, acquired June 30, 2007. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral CIR camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  14. EAARL Coastal Topography - Fire Island National Seashore 2007

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) and bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of Fire Island National Seashore in New York, acquired on April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  15. EAARL Coastal Topography-Assateague Island National Seashore, 2008: Bare Earth

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Klipp, Emily S.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Assateague Island National Seashore in Maryland and Virginia, acquired March 24-25, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for pre-survey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  16. EAARL Coastal Topography-Assateague Island National Seashore, 2008: First Surface

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Klipp, Emily S.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Assateague Island National Seashore in Maryland and Virginia, acquired March 24-25, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for pre-survey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  17. A comparison of differential reinforcement procedures with children with autism.

    PubMed

    Boudreau, Brittany A; Vladescu, Jason C; Kodak, Tiffany M; Argott, Paul J; Kisamore, April N

    2015-12-01

    The current evaluation compared the effects of 2 differential reinforcement arrangements and a nondifferential reinforcement arrangement on the acquisition of tacts for 3 children with autism. Participants learned in all reinforcement-based conditions, and we discuss areas for future research in light of these findings and potential limitations. © Society for the Experimental Analysis of Behavior.

  18. Back to Basics: Incomplete Knowledge of Differential Object Marking in Spanish Heritage Speakers

    ERIC Educational Resources Information Center

    Montrul, Silvina; Bowles, Melissa

    2009-01-01

    The obligatory use of the preposition a with animate, specific direct objects in Spanish ("Juan conoce a Maria" "Juan knows Maria") is a well-known instance of Differential Object Marking (DOM; Torrego, 1998; Leonetti, 2004). Recent studies have documented the loss and/or incomplete acquisition of several grammatical features in Spanish heritage…

  19. MOZART - A seismological investigation of Central Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, Ana; Chamussa, Jose; Helffrich, George; Fishwick, Stewart; Ferreira, Ana; Custodio, Susana; Silveira, Graca; Manhica, Vladimiro; Fonseca, Joao

    2013-04-01

    Project MOZART (MOZAmbique Rift Tomography) aims to investigate the geological structure and current tectonic activity of the Mozambique sector of the East African Rift System (EARS). Space geodesy has indicated in recent years that the border between Nubia and the Somalian plate at these latitudes (16°S to 24°S) encompasses the Rovuma microplate, but little is known about its geometry or seismotectonics. The M7 Machaze earthquake of 2006 highlighted the relevance of the associated deformation, and motivated the MOZART deployment. Besides the regional seismotectonics, other targets of the project are the illumination of the Mesoproterozoic structures of the Mozambique Belt, and the study of its role in the current incipient rifting. The seismic network is composed of 30 VBB seismographic stations on loan from NERC's SEIS-UK Pool (Guralp CMG-3T 120s sensors) covering Central Mozambique (Manica, Sofala, Gaza and Inhambane provinces) with average inter-station spaces of the order of 100 km. Four stations are across the border in South Africa (Kruger Park). Data acquisition started in March 2011, and decommissioning is foreseen for August 2013. Data processing is underway, and includes local seismicity analysis, receiver function estimation and the study of surface wave dispersion (both ambient noise and teleseismic). Once a preliminary velocity model is developed with these techniques, further refinements will be attempted through waveform tomography. For this purpose, SPECFEM waveform modelling with a 3D velocity model is currently being implemented. Preliminary results of the ongoing data processing and analysis will be presented.

  20. Acquiring research-grade ERPs on a shoestring budget: A comparison of a modified Emotiv and commercial SynAmps EEG system.

    PubMed

    Barham, Michael P; Clark, Gillian M; Hayden, Melissa J; Enticott, Peter G; Conduit, Russell; Lum, Jarrad A G

    2017-09-01

    This study compared the performance of a low-cost wireless EEG system to a research-grade EEG system on an auditory oddball task designed to elicit N200 and P300 ERP components. Participants were 15 healthy adults (6 female) aged between 19 and 40 (M = 28.56; SD = 6.38). An auditory oddball task was presented comprising 1,200 presentations of a standard tone interspersed by 300 trials comprising a deviant tone. EEG was simultaneously recorded from a modified Emotiv EPOC and a NeuroScan SynAmps RT EEG system. The modifications made to the Emotiv system included attaching research grade electrodes to the Bluetooth transmitter. Additional modifications enabled the Emotiv system to connect to a portable impedance meter. The cost of these modifications and portable impedance meter approached the purchase value of the Emotiv system. Preliminary analyses revealed significantly more trials were rejected from data acquired by the modified Emotiv compared to the SynAmps system. However, the ERP waveforms captured by the Emotiv system were found to be highly similar to the corresponding waveform from the SynAmps system. The latency and peak amplitude of N200 and P300 components were also found to be similar between systems. Overall, the results indicate that, in the context of an oddball task, the ERP acquired by a low-cost wireless EEG system can be of comparable quality to research-grade EEG acquisition equipment. © 2017 Society for Psychophysiological Research.

  1. Gradient pre-emphasis to counteract first-order concomitant fields on asymmetric MRI gradient systems.

    PubMed

    Tao, Shengzhen; Weavers, Paul T; Trzasko, Joshua D; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M; Bernstein, Matt A

    2017-06-01

    To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. After reviewing the first-order concomitant fields that are present on asymmetric gradients, we developed a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms to counteract their effects. A numerically straightforward, easily implemented approximate solution to this pre-emphasis problem was derived that was compatible with the current hardware infrastructure of conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver subsystem, and its real-time use was tested using a series of phantom and in vivo data acquired from two-dimensional Cartesian phase-difference, echo-planar imaging, and spiral acquisitions. The phantom and in vivo results demonstrated that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images with spatially dependent blurring/distortion. The resulting artifacts were effectively prevented using the proposed gradient pre-emphasis. We have developed an efficient and effective gradient pre-emphasis framework to counteract the effects of first-order concomitant fields of asymmetric gradient systems. Magn Reson Med 77:2250-2262, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Multiparameter elastic full waveform inversion with facies-based constraints

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-dong; Alkhalifah, Tariq; Naeini, Ehsan Zabihi; Sun, Bingbing

    2018-06-01

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize FWI beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a priori information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.

  3. Detection of significant variation in acoustic output of an electromagnetic lithotriptor.

    PubMed

    Pishchalnikov, Yuri A; McAteer, James A; Vonderhaar, R Jason; Pishchalnikova, Irina V; Williams, James C; Evan, Andrew P

    2006-11-01

    We describe the observation of significant instability in the output of an electromagnetic lithotriptor. This instability had a form that was not detected by routine assessment, but rather was observed only by collecting many consecutive shock waves in nonstop regimen. A Dornier DoLi-50 lithotriptor used exclusively for basic research was tested and approved by the regional technician. This assessment included hydrophone measures at select power levels with the collection of about 25 shock waves per setting. Subsequent laboratory characterization used a fiberoptic hydrophone and storage oscilloscope for data acquisition. Waveforms were collected nonstop for hundreds of pulses. Output was typically stable for greater than 1,000 shock waves but substantial fluctuations in acoustic pressures were also observed. For example, output at power level 3 (mean peak positive acoustic pressure +/- SD normally 44 +/- 2 MPa) increased dramatically to greater than 50 MPa or decreased significantly to approximately 30 MPa for hundreds of shock waves. The cause of instability was eventually traced to a faulty lithotriptor power supply. Instability in lithotriptor acoustic output can occur and it may not be detected by routine assessment. Collecting waveforms in a nonstop regimen dramatically increases sampling size, improving the detection of instability. Had the instability that we observed occurred during patient treatment, the energy delivered may well have exceeded the planned dose. Since the potential for adverse effects in lithotripsy increases as the dose is increased, it would be valuable to develop ways to better monitor the acoustic output of lithotriptors.

  4. Enhanced Combined Tomography and Biomechanics Data for Distinguishing Forme Fruste Keratoconus.

    PubMed

    Luz, Allan; Lopes, Bernardo; Hallahan, Katie M; Valbon, Bruno; Ramos, Isaac; Faria-Correia, Fernando; Schor, Paulo; Dupps, William J; Ambrósio, Renato

    2016-07-01

    To evaluate the performance of the Ocular Response Analyzer (ORA) (Reichert Ophthalmic Instruments, Depew, NY) variables and Pentacam HR (Oculus Optikgeräte GmbH, Wetzlar, Germany) tomographic parameters in differentiating forme fruste keratoconus (FFKC) from normal corneas, and to assess a combined biomechanical and tomographic parameter to improve outcomes. Seventy-six eyes of 76 normal patients and 21 eyes of 21 patients with FFKC were included in the study. Fifteen variables were derived from exported ORA signals to characterize putative indicators of biomechanical behavior and 37 ORA waveform parameters were tested. Sixteen tomographic parameters from Pentacam HR were tested. Logistic regression was used to produce a combined biomechanical and tomography linear model. Differences between groups were assessed by the Mann-Whitney U test. The area under the receiver operating characteristics curve (AUROC) was used to compare diagnostic performance. No statistically significant differences were found in age, thinnest point, central corneal thickness, and maximum keratometry between groups. Twenty-one parameters showed significant differences between the FFKC and control groups. Among the ORA waveform measurements, the best parameters were those related to the area under the first peak, p1area1 (AUROC, 0.717 ± 0.065). Among the investigator ORA variables, a measure incorporating the pressure-deformation relationship of the entire response cycle was the best predictor (hysteresis loop area, AUROC, 0.688 ± 0.068). Among tomographic parameters, Belin/Ambrósio display showed the highest predictive value (AUROC, 0.91 ± 0.057). A combination of parameters showed the best result (AUROC, 0.953 ± 0.024) outperforming individual parameters. Tomographic and biomechanical parameters demonstrated the ability to differentiate FFKC from normal eyes. A combination of both types of information further improved predictive value. [J Refract Surg. 2016;32(7):479-485.]. Copyright 2016, SLACK Incorporated.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  6. A waveform detector that targets template–decorrelated signals and achieves its predicted performance, Part I: Demonstration with IMS data

    DOE PAGES

    Carmichael, Joshua Daniel

    2016-01-01

    Here, waveform correlation detectors used in seismic monitoring scan multichannel data to test two competing hypotheses: that data contain (1) a noisy, amplitude-scaled version of a template waveform, or, (2) only noise. In reality, seismic wavefields include signals triggered by non-target sources (background seismicity) and targets signals that are only partially correlated with the waveform template.

  7. Multifunction waveform generator for EM receiver testing

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Jin, Sheng; Deng, Ming

    2018-01-01

    In many electromagnetic (EM) methods - such as magnetotelluric, spectral-induced polarization (SIP), time-domain-induced polarization (TDIP), and controlled-source audio magnetotelluric (CSAMT) methods - it is important to evaluate and test the EM receivers during their development stage. To assess the performance of the developed EM receivers, controlled synthetic data that simulate the observed signals in different modes are required. In CSAMT and SIP mode testing, the waveform generator should use the GPS time as the reference for repeating schedule. Based on our testing, the frequency range, frequency precision, and time synchronization of the currently available function waveform generators on the market are deficient. This paper presents a multifunction waveform generator with three waveforms: (1) a wideband, low-noise electromagnetic field signal to be used for magnetotelluric, audio-magnetotelluric, and long-period magnetotelluric studies; (2) a repeating frequency sweep square waveform for CSAMT and SIP studies; and (3) a positive-zero-negative-zero signal that contains primary and secondary fields for TDIP studies. In this paper, we provide the principles of the above three waveforms along with a hardware design for the generator. Furthermore, testing of the EM receiver was conducted with the waveform generator, and the results of the experiment were compared with those calculated from the simulation and theory in the frequency band of interest.

  8. Waveform LiDAR across forest biomass gradients

    NASA Astrophysics Data System (ADS)

    Montesano, P. M.; Nelson, R. F.; Dubayah, R.; Sun, G.; Ranson, J.

    2011-12-01

    Detailed information on the quantity and distribution of aboveground biomass (AGB) is needed to understand how it varies across space and changes over time. Waveform LiDAR data is routinely used to derive the heights of scattering elements in each illuminated footprint, and the vertical structure of vegetation is related to AGB. Changes in LiDAR waveforms across vegetation structure gradients can demonstrate instrument sensitivity to land cover transitions. A close examination of LiDAR waveforms in footprints across a forest gradient can provide new insight into the relationship of vegetation structure and forest AGB. In this study we use field measurements of individual trees within Laser Vegetation Imaging Sensor (LVIS) footprints along transects crossing forest to non-forest gradients to examine changes in LVIS waveform characteristics at sites with low (< 50Mg/ha) AGB. We relate field AGB measurements to original and adjusted LVIS waveforms to detect the forest AGB interval along a forest - non-forest transition in which the LVIS waveform lose the ability to discern differences in AGB. Our results help identify the lower end the forest biomass range that a ~20m footprint waveform LiDAR can detect, which can help infer accumulation of biomass after disturbances and during forest expansion, and which can guide the use of LiDAR within a multi-sensor fusion biomass mapping approach.

  9. Learning to Detect Triggers of Airway Symptoms: The Role of Illness Beliefs, Conceptual Categories and Actual Experience with Allergic Symptoms

    PubMed Central

    Janssens, Thomas; Caris, Eva; Van Diest, Ilse; Van den Bergh, Omer

    2017-01-01

    Background: In asthma and allergic rhinitis, beliefs about what triggers allergic reactions often do not match objective allergy tests. This may be due to insensitivity for expectancy violations as a result of holding trigger beliefs based on conceptual relationships among triggers. In this laboratory experiment, we aimed to investigate how pre-existing beliefs and conceptual relationships among triggers interact with actual experience when learning differential symptom expectations. Methods: Healthy participants (N = 48) received information that allergic reactions were a result of specific sensitivities versus general allergic vulnerability. Next, they performed a trigger learning task using a differential conditioning paradigm: brief inhalation of CO2 enriched air was used to induce symptoms, while participants were led to believe that the symptoms came about as a result of inhaled allergens (conditioned stimuli, CS’s; CS+ followed by symptoms, CS- not followed by symptoms). CS+ and CS- stimuli either shared (e.g., birds-mammals) or did not share (e.g. birds-fungi) category membership. During Acquisition, participants reported symptom expectancy and symptom intensity for all triggers. During a Test 1 day later, participants rated symptom expectancies for old CS+/CS- triggers, for novel triggers within categories, and for exemplars of novel trigger categories. Data were analyzed using multilevel models. Findings: Only a subgroup of participants (n = 22) showed differences between CO2 and room air symptoms. In this group of responders, analysis of symptom expectancies during acquisition did not result in significant differential symptom CS+/CS- acquisition. A retention test 1 day later showed differential CS+/CS- symptom expectancies: When CS categories did not share category membership, specific sensitivity beliefs improved retention of CS+/CS- differentiation. However, when CS categories shared category membership, general vulnerability beliefs improved retention of CS+/CS- differentiation. Furthermore, participants showed some selectivity in generalization of symptom expectancies to novel categories, as symptom expectancies did not generalize to novel categories that were unrelated to CS+ or CS- categories. Generalization to novel categories was not affected by information about general vulnerability or specific sensitivities. Discussion: Pre-existing vulnerability beliefs and conceptual relationships between trigger categories influence differential symptom expectancies to allergic triggers. PMID:28638358

  10. Effect of vibration on retention characteristics of screen acquisition systems. [for surface tension propellant acquisition

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Aydelott, J. C.

    1978-01-01

    The design of surface tension propellant acquisition systems using fine-mesh screen must take into account all factors that influence the liquid pressure differentials within the system. One of those factors is spacecraft vibration. Analytical models to predict the effects of vibration have been developed. A test program to verify the analytical models and to allow a comparative evaluation of the parameters influencing the response to vibration was performed. Screen specimens were tested under conditions simulating the operation of an acquisition system, considering the effects of such parameters as screen orientation and configuration, screen support method, screen mesh, liquid flow and liquid properties. An analytical model, based on empirical coefficients, was most successful in predicting the effects of vibration.

  11. Characterization of Piezoelectric Stacks for Space Applications

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  12. Toward a Smartphone Application for Estimation of Pulse Transit Time

    PubMed Central

    Liu, He; Ivanov, Kamen; Wang, Yadong; Wang, Lei

    2015-01-01

    Pulse transit time (PTT) is an important physiological parameter that directly correlates with the elasticity and compliance of vascular walls and variations in blood pressure. This paper presents a PTT estimation method based on photoplethysmographic imaging (PPGi). The method utilizes two opposing cameras for simultaneous acquisition of PPGi waveform signals from the index fingertip and the forehead temple. An algorithm for the detection of maxima and minima in PPGi signals was developed, which includes technology for interpolation of the real positions of these points. We compared our PTT measurements with those obtained from the current methodological standards. Statistical results indicate that the PTT measured by our proposed method exhibits a good correlation with the established method. The proposed method is especially suitable for implementation in dual-camera-smartphones, which could facilitate PTT measurement among populations affected by cardiac complications. PMID:26516861

  13. REVIEW OF SIGNAL DISTORTION THROUGH METAL MICROELECTRODE RECORDING CIRCUITS AND FILTERS

    PubMed Central

    NELSON, Matthew J.; POUGET, Pierre; NILSEN, Erik A.; PATTEN, Craig D.; SCHALL, Jeffrey D.

    2008-01-01

    Interest in local field potentials (LFPs) and action potential shape has increased markedly. The present work describes distortions of these signals that occur for two reasons. First, the microelectrode recording circuit operates as a voltage divider producing frequency-dependent attenuation and phase-shifts when electrode impedance is not negligible relative to amplifier input impedance. Because of the much higher electrode impedance at low frequencies, this occurred over frequency ranges of LFPs measured by neurophysiologists for one head-stage tested. Second, frequency-dependent phase shifts are induced by subsequent filters. Thus, we report these effects and the resulting amplitude envelope delays and distortion of waveforms recorded through a commercial data acquisition system and a range of tungsten microelectrodes. These distortions can be corrected, but must be accounted for when interpreting field potential and spike shape data. PMID:18242715

  14. A Wearable Cardiac Monitor for Long-Term Data Acquisition and Analysis

    PubMed Central

    Winokur, Eric S.; Delano, Maggie K.; Sodini, Charles G.

    2015-01-01

    A low-power wearable ECG monitoring system has been developed entirely from discrete electronic components and a custom PCB. This device removes all loose wires from the system and minimizes the footprint on the user. The monitor consists of five electrodes, which allow a cardiologist to choose from a variety of possible projections. Clinical tests to compare our wearable monitor with a commercial clinical ECG recorder are conducted on ten healthy adults under different ambulatory conditions, with nine of the datasets used for analysis. Data from both monitors were synchronized and annotated with PhysioNet's waveform viewer WAVE (physionet.org) [1]. All gold standard annotations are compared to the results of the WQRS detection algorithm [2] provided by PhysioNet. QRS sensitivity and QRS positive predictability are extracted from both monitors to validate the wearable monitor. PMID:22968205

  15. Recording electrocardiograms using 3-limb lead cables instead of the standard 4: a modification to minimize incorrect electrode placements.

    PubMed

    Soliman, Elsayed Z

    2008-01-01

    The similarity between and the number of limb lead cables play an important role in the frequency of incorrect connection of limb electrodes. Hence, a modified electrocardiogram (ECG) acquisition procedure is proposed in this brief communication, whereby the left-leg (LL) and right-leg (RL) electrode cables are combined into 1 cable, referred to as combined LL/RL cable. The electrode wires in the combined LL/RL cable are connected to 2 electrodes placed on both sides of the LL. The combined LL/RL cable is unique enough (being thicker) not to be mistaken with the upper limb electrode cables. The proposed modification will not in any way influence the ECG waveforms or amplitudes, and it can be expected to substantially reduce incorrect limb electrode placements.

  16. Review of signal distortion through metal microelectrode recording circuits and filters.

    PubMed

    Nelson, Matthew J; Pouget, Pierre; Nilsen, Erik A; Patten, Craig D; Schall, Jeffrey D

    2008-03-30

    Interest in local field potentials (LFPs) and action potential shape has increased markedly. The present work describes distortions of these signals that occur for two reasons. First, the microelectrode recording circuit operates as a voltage divider producing frequency-dependent attenuation and phase shifts when electrode impedance is not negligible relative to amplifier input impedance. Because of the much higher electrode impedance at low frequencies, this occurred over frequency ranges of LFPs measured by neurophysiologists for one head-stage tested. Second, frequency-dependent phase shifts are induced by subsequent filters. Thus, we report these effects and the resulting amplitude envelope delays and distortion of waveforms recorded through a commercial data acquisition system and a range of tungsten microelectrodes. These distortions can be corrected, but must be accounted for when interpreting field potential and spike shape data.

  17. Experimental characterization and analysis of the BITalino platforms against a reference device.

    PubMed

    Batista, Diana; Silva, Hugo; Fred, Ana

    2017-07-01

    Low-cost hardware platforms for biomedical engineering are becoming increasingly available, which empower the research community in the development of new projects in a wide range of areas related with physiological data acquisition. Building upon previous work by our group, this work compares the quality of the data acquired by means of two different versions of the multimodal physiological computing platform BITalino, with a device that can be considered a reference. We acquired data from 5 sensors, namely Accelerometry (ACC), Electrocardiography (ECG), Electroencephalography (EEG), Electrodermal Activity (EDA) and Electromyography (EMG). Experimental evaluation shows that ACC, ECG and EDA data are highly correlated with the reference in what concerns the raw waveforms. When compared by means of their commonly used features, EEG and EMG data are also quite similar across the different devices.

  18. Towards a microchannel-based X-ray detector with two-dimensional spatial and time resolution and high dynamic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bernhard W.; Mane, Anil U.; Elam, Jeffrey W.

    X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greatermore » than 10 7events per cm 2. Time-gating can be used for improved dynamic range.« less

  19. Toward a Smartphone Application for Estimation of Pulse Transit Time.

    PubMed

    Liu, He; Ivanov, Kamen; Wang, Yadong; Wang, Lei

    2015-10-27

    Pulse transit time (PTT) is an important physiological parameter that directly correlates with the elasticity and compliance of vascular walls and variations in blood pressure. This paper presents a PTT estimation method based on photoplethysmographic imaging (PPGi). The method utilizes two opposing cameras for simultaneous acquisition of PPGi waveform signals from the index fingertip and the forehead temple. An algorithm for the detection of maxima and minima in PPGi signals was developed, which includes technology for interpolation of the real positions of these points. We compared our PTT measurements with those obtained from the current methodological standards. Statistical results indicate that the PTT measured by our proposed method exhibits a good correlation with the established method. The proposed method is especially suitable for implementation in dual-camera-smartphones, which could facilitate PTT measurement among populations affected by cardiac complications.

  20. An ERP study on initial second language vocabulary learning.

    PubMed

    Yum, Yen Na; Midgley, Katherine J; Holcomb, Phillip J; Grainger, Jonathan

    2014-04-01

    This study examined the very initial phases of orthographic and semantic acquisition in monolingual native English speakers learning Chinese words under controlled laboratory conditions. Participants engaged in 10 sessions of vocabulary learning, four of which were used to obtain ERPs. Performance in behavioral tests improved over sessions, and these data were used to define fast and slow learners. Most important is that ERPs in the two groups of learners revealed qualitatively distinct learning patterns. Only fast learners showed a left-lateralized increase in N170 amplitude with training. Furthermore, only fast learners showed an increased N400 amplitude with training, with a distinct anterior distribution. Slow learners, on the other hand, showed a posterior positive effect, with increasingly positive-going waveforms in occipital sites as training progressed. Possible mechanisms underlying these qualitative differences are discussed. Copyright © 2014 Society for Psychophysiological Research.

  1. Design and Testing of Space Telemetry SCA Waveform

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Handler, Louis M.; Quinn, Todd M.

    2006-01-01

    A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The waveform design is described from both the bottom-up signal processing and top-down software component perspectives. Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform development is part of an effort by NASA to define an open architecture for space based reconfigurable transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However, since space requirements put a premium on size, mass, and power, the SCA may be impractical for today s space ready technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.

  2. Georgia tech catalog of gravitational waveforms

    NASA Astrophysics Data System (ADS)

    Jani, Karan; Healy, James; Clark, James A.; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre

    2016-10-01

    This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios q = m 1/m 2 ≤ 15, and those with precessing, spinning black holes have q ≤ 8. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 event and future massive binary black-hole search in LIGO is discussed. The Georgia Tech catalog is publicly available at einstein.gatech.edu/catalog.

  3. SWATH label-free proteomics analyses revealed the roles of oxidative stress and antioxidant defensing system in sclerotia formation of Polyporus umbellatus

    NASA Astrophysics Data System (ADS)

    Li, Bing; Tian, Xiaofang; Wang, Chunlan; Zeng, Xu; Xing, Yongmei; Ling, Hong; Yin, Wanqiang; Tian, Lixia; Meng, Zhixia; Zhang, Jihui; Guo, Shunxing

    2017-01-01

    Understanding the initiation and maturing mechanisms is important for rational manipulating sclerotia differentiation and growth from hypha of Polyporus umbellatus. Proteomes in P. umbellatus sclerotia and hyphae at initial, developmental and mature phases were studied. 1391 proteins were identified by nano-liquid chromatograph-mass spectrometry (LC-MS) in Data Dependant Acquisition mode, and 1234 proteins were quantified successfully by Sequential Window Acquisition of all THeoretical fragment ion spectra-MS (SWATH-MS) technology. There were 347 differentially expressed proteins (DEPs) in sclerotia at initial phase compared with those in hypha, and the DEP profiles were dynamically changing with sclerotia growth. Oxidative stress (OS) in sclerotia at initial phase was indicated by the repressed proteins of respiratory chain, tricarboxylic acid cycle and the activation of glycolysis/gluconeogenesis pathways were determined based on DEPs. The impact of glycolysis/gluconeogenesis on sclerotium induction was further verified by glycerol addition assays, in which 5% glycerol significantly increased sclerotial differentiation rate and biomass. It can be speculated that OS played essential roles in triggering sclerotia differentiation from hypha of P. umbellatus, whereas antioxidant activity associated with glycolysis is critical for sclerotia growth. These findings reveal a mechanism for sclerotial differentiation in P. umbellatus, which may also be applicable for other fungi.

  4. PI[subscript 3]-Kinase Cascade Has a Differential Role in Acquisition and Extinction of Conditioned Fear Memory in Juvenile and Adult Rats

    ERIC Educational Resources Information Center

    Slouzkey, Ilana; Maroun, Mouna

    2016-01-01

    The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (P[subscript 3]K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear…

  5. Target Acquisition for Projectile Vision-Based Navigation

    DTIC Science & Technology

    2014-03-01

    Future Work 20 8. References 21 Appendix A. Simulation Results 23 Appendix B. Derivation of Ground Resolution for a Diffraction-Limited Pinhole Camera...results for visual acquisition (left) and target recognition (right). ..........19 Figure B-1. Differential object and image areas for pinhole camera...projectile and target (measured in terms of the angle ) will depend on target heading. In particular, because we have aligned the x axis along the

  6. Kinetic Analysis of Benign and Malignant Breast Lesions With Ultrafast Dynamic Contrast-Enhanced MRI: Comparison With Standard Kinetic Assessment.

    PubMed

    Abe, Hiroyuki; Mori, Naoko; Tsuchiya, Keiko; Schacht, David V; Pineda, Federico D; Jiang, Yulei; Karczmar, Gregory S

    2016-11-01

    The purposes of this study were to evaluate diagnostic parameters measured with ultrafast MRI acquisition and with standard acquisition and to compare diagnostic utility for differentiating benign from malignant lesions. Ultrafast acquisition is a high-temporal-resolution (7 seconds) imaging technique for obtaining 3D whole-breast images. The dynamic contrast-enhanced 3-T MRI protocol consists of an unenhanced standard and an ultrafast acquisition that includes eight contrast-enhanced ultrafast images and four standard images. Retrospective assessment was performed for 60 patients with 33 malignant and 29 benign lesions. A computer-aided detection system was used to obtain initial enhancement rate and signal enhancement ratio (SER) by means of identification of a voxel showing the highest signal intensity in the first phase of standard imaging. From the same voxel, the enhancement rate at each time point of the ultrafast acquisition and the AUC of the kinetic curve from zero to each time point of ultrafast imaging were obtained. There was a statistically significant difference between benign and malignant lesions in enhancement rate and kinetic AUC for ultrafast imaging and also in initial enhancement rate and SER for standard imaging. ROC analysis showed no significant differences between enhancement rate in ultrafast imaging and SER or initial enhancement rate in standard imaging. Ultrafast imaging is useful for discriminating benign from malignant lesions. The differential utility of ultrafast imaging is comparable to that of standard kinetic assessment in a shorter study time.

  7. Time-Reversal Based Range Extension Technique for Ultra-wideband (UWB) Sensors and Applications in Tactical Communications and Networking

    DTIC Science & Technology

    2009-04-16

    the transmitted waveform, then spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response represented...400 Frequence (MHz) Figure 5.4: Spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response...600 Frequence (MHz) Figure 5.7: Spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response

  8. Effects of Forest Disturbances on Forest Structural Parameters Retrieval from Lidar Waveform Data

    NASA Technical Reports Server (NTRS)

    Ranson, K, Lon; Sun, G.

    2011-01-01

    The effect of forest disturbance on the lidar waveform and the forest biomass estimation was demonstrated by model simulation. The results show that the correlation between stand biomass and the lidar waveform indices changes when the stand spatial structure changes due to disturbances rather than the natural succession. This has to be considered in developing algorithms for regional or global mapping of biomass from lidar waveform data.

  9. Angular velocity of gravitational radiation from precessing binaries and the corotating frame

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2013-05-01

    This paper defines an angular velocity for time-dependent functions on the sphere and applies it to gravitational waveforms from compact binaries. Because it is geometrically meaningful and has a clear physical motivation, the angular velocity is uniquely useful in helping to solve an important—and largely ignored—problem in models of compact binaries: the inverse problem of deducing the physical parameters of a system from the gravitational waves alone. It is also used to define the corotating frame of the waveform. When decomposed in this frame, the waveform has no rotational dynamics and is therefore as slowly evolving as possible. The resulting simplifications lead to straightforward methods for accurately comparing waveforms and constructing hybrids. As formulated in this paper, the methods can be applied robustly to both precessing and nonprecessing waveforms, providing a clear, comprehensive, and consistent framework for waveform analysis. Explicit implementations of all these methods are provided in accompanying computer code.

  10. Electrical neurostimulation with imbalanced waveform mitigates dissolution of platinum electrodes

    PubMed Central

    Kumsa, Doe; Hudak, Eric M; Montague, Fred W; Kelley, Shawn C; Untereker, Darrel F; Hahn, Benjamin P; Condit, Chris; Cholette, Martin; Lee, Hyowon; Bardot, Dawn; Takmakov, Pavel

    2017-01-01

    Objective Electrical neurostimulation has traditionally been limited to the use of charge-balanced waveforms. Charge-imbalanced and monophasic waveforms are not used to deliver clinical therapy, because it is believed that these stimulation paradigms may generate noxious electrochemical species that cause tissue damage. Approach In this study, we investigated the dissolution of platinum as one of such irreversible reactions over a range of charge densities up to 160 µC cm−2 with current-controlled first phase, capacitive discharge second phase waveforms of both cathodic-first and anodic-first polarity. We monitored the concentration of platinum in solution under different stimulation delivery conditions including charge-balanced, charge-imbalanced, and monophasic pulses. Main results We observed that platinum dissolution decreased during charge-imbalanced and monophasic stimulation when compared to charge-balanced waveforms. Significance This observation provides an opportunity to re-evaluate the charge-balanced waveform as the primary option for sustainable neural stimulation. PMID:27650936

  11. Predicting electrocardiogram and arterial blood pressure waveforms with different Echo State Network architectures.

    PubMed

    Fong, Allan; Mittu, Ranjeev; Ratwani, Raj; Reggia, James

    2014-01-01

    Alarm fatigue caused by false alarms and alerts is an extremely important issue for the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the staff and hospital systems better classify a patient's waveforms and subsequent alarms. This paper explores the use of Echo State Networks, a specific type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network architectures are designed and evaluated. The results show the utility of these echo state networks, particularly ones with larger integrated reservoirs, for predicting electrocardiogram waveforms and the adaptability of such models across individuals. The work presented here offers a unique approach for understanding and predicting a patient's waveforms in order to potentially improve alarm generation. We conclude with a brief discussion of future extensions of this research.

  12. Refined Simulation of Satellite Laser Altimeter Full Echo Waveform

    NASA Astrophysics Data System (ADS)

    Men, H.; Xing, Y.; Li, G.; Gao, X.; Zhao, Y.; Gao, X.

    2018-04-01

    The return waveform of satellite laser altimeter plays vital role in the satellite parameters designation, data processing and application. In this paper, a method of refined full waveform simulation is proposed based on the reflectivity of the ground target, the true emission waveform and the Laser Profile Array (LPA). The ICESat/GLAS data is used as the validation data. Finally, we evaluated the simulation accuracy with the correlation coefficient. It was found that the accuracy of echo simulation could be significantly improved by considering the reflectivity of the ground target and the emission waveform. However, the laser intensity distribution recorded by the LPA has little effect on the echo simulation accuracy when compared with the distribution of the simulated laser energy. At last, we proposed a refinement idea by analyzing the experimental results, in the hope of providing references for the waveform data simulation and processing of GF-7 satellite in the future.

  13. STATs Shape the Active Enhancer Landscape of T Cell Populations

    PubMed Central

    Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-wei; Sartorelli, Vittorio; Kanno, Yuka; O’Shea, John J.

    2012-01-01

    SUMMARY Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. While enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4+ T cells as a model of differentiation, mapping the acquisition of cell-type-specific enhancer elements in T-helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the acquisition of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. PMID:23178119

  14. Beyond HRV: attractor reconstruction using the entire cardiovascular waveform data for novel feature extraction.

    PubMed

    Aston, Philip J; Christie, Mark I; Huang, Ying H; Nandi, Manasi

    2018-03-01

    Advances in monitoring technology allow blood pressure waveforms to be collected at sampling frequencies of 250-1000 Hz for long time periods. However, much of the raw data are under-analysed. Heart rate variability (HRV) methods, in which beat-to-beat interval lengths are extracted and analysed, have been extensively studied. However, this approach discards the majority of the raw data. Our aim is to detect changes in the shape of the waveform in long streams of blood pressure data. Our approach involves extracting key features from large complex data sets by generating a reconstructed attractor in a three-dimensional phase space using delay coordinates from a window of the entire raw waveform data. The naturally occurring baseline variation is removed by projecting the attractor onto a plane from which new quantitative measures are obtained. The time window is moved through the data to give a collection of signals which relate to various aspects of the waveform shape. This approach enables visualisation and quantification of changes in the waveform shape and has been applied to blood pressure data collected from conscious unrestrained mice and to human blood pressure data. The interpretation of the attractor measures is aided by the analysis of simple artificial waveforms. We have developed and analysed a new method for analysing blood pressure data that uses all of the waveform data and hence can detect changes in the waveform shape that HRV methods cannot, which is confirmed with an example, and hence our method goes 'beyond HRV'.

  15. Beyond HRV: attractor reconstruction using the entire cardiovascular waveform data for novel feature extraction

    PubMed Central

    Aston, Philip J; Christie, Mark I; Huang, Ying H; Nandi, Manasi

    2018-01-01

    Abstract Advances in monitoring technology allow blood pressure waveforms to be collected at sampling frequencies of 250–1000 Hz for long time periods. However, much of the raw data are under-analysed. Heart rate variability (HRV) methods, in which beat-to-beat interval lengths are extracted and analysed, have been extensively studied. However, this approach discards the majority of the raw data. Objective: Our aim is to detect changes in the shape of the waveform in long streams of blood pressure data. Approach: Our approach involves extracting key features from large complex data sets by generating a reconstructed attractor in a three-dimensional phase space using delay coordinates from a window of the entire raw waveform data. The naturally occurring baseline variation is removed by projecting the attractor onto a plane from which new quantitative measures are obtained. The time window is moved through the data to give a collection of signals which relate to various aspects of the waveform shape. Main results: This approach enables visualisation and quantification of changes in the waveform shape and has been applied to blood pressure data collected from conscious unrestrained mice and to human blood pressure data. The interpretation of the attractor measures is aided by the analysis of simple artificial waveforms. Significance: We have developed and analysed a new method for analysing blood pressure data that uses all of the waveform data and hence can detect changes in the waveform shape that HRV methods cannot, which is confirmed with an example, and hence our method goes ‘beyond HRV’. PMID:29350622

  16. A Robust Gold Deconvolution Approach for LiDAR Waveform Data Processing to Characterize Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.; Sheridan, R.; Ku, N. W.

    2014-12-01

    Increasing attention has been paid in the remote sensing community to the next generation Light Detection and Ranging (lidar) waveform data systems for extracting information on topography and the vertical structure of vegetation. However, processing waveform lidar data raises some challenges compared to analyzing discrete return data. The overall goal of this study was to present a robust de-convolution algorithm- Gold algorithm used to de-convolve waveforms in a lidar dataset acquired within a 60 x 60m study area located in the Harvard Forest in Massachusetts. The waveform lidar data was collected by the National Ecological Observatory Network (NEON). Specific objectives were to: (1) explore advantages and limitations of various waveform processing techniques to derive topography and canopy height information; (2) develop and implement a novel de-convolution algorithm, the Gold algorithm, to extract elevation and canopy metrics; and (3) compare results and assess accuracy. We modeled lidar waveforms with a mixture of Gaussian functions using the Non-least squares (NLS) algorithm implemented in R and derived a Digital Terrain Model (DTM) and canopy height. We compared our waveform-derived topography and canopy height measurements using the Gold de-convolution algorithm to results using the Richardson-Lucy algorithm. Our findings show that the Gold algorithm performed better than the Richardson-Lucy algorithm in terms of recovering the hidden echoes and detecting false echoes for generating a DTM, which indicates that the Gold algorithm could potentially be applied to processing of waveform lidar data to derive information on terrain elevation and canopy characteristics.

  17. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    USGS Publications Warehouse

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  18. Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brendel, Bernhard, E-mail: bernhard.brendel@philips.com; Teuffenbach, Maximilian von; Noël, Peter B.

    2016-01-15

    Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penaltymore » comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.« less

  19. Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Thadd

    1994-01-04

    This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled datamore » acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.« less

  20. Pulse shaping system

    DOEpatents

    Skeldon, Mark D.; Letzring, Samuel A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.

Top