Sample records for differential-phase-shift quantum key

  1. 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors

    NASA Astrophysics Data System (ADS)

    Diamanti, Eleni; Takesue, Hiroki; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa

    2006-12-01

    We present a quantum key distribution experiment in which keys that were secure against all individual eavesdropping attacks allowed by quantum mechanics were distributed over 100 km of optical fiber. We implemented the differential phase shift quantum key distribution protocol and used low timing jitter 1.55 µm single-photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides and silicon avalanche photodiodes. Based on the security analysis of the protocol against general individual attacks, we generated secure keys at a practical rate of 166 bit/s over 100 km of fiber. The use of the low jitter detectors also increased the sifted key generation rate to 2 Mbit/s over 10 km of fiber.

  2. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution.

    PubMed

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-08-19

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security.

  3. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution

    PubMed Central

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security. PMID:27539654

  4. Field trial of differential-phase-shift quantum key distribution using polarization independent frequency up-conversion detectors.

    PubMed

    Honjo, T; Yamamoto, S; Yamamoto, T; Kamada, H; Nishida, Y; Tadanaga, O; Asobe, M; Inoue, K

    2007-11-26

    We report a field trial of differential phase shift quantum key distribution (QKD) using polarization independent frequency up-conversion detectors. A frequency up-conversion detector is a promising device for achieving a high key generation rate when combined with a high clock rate QKD system. However, its polarization dependence prevents it from being applied to practical QKD systems. In this paper, we employ a modified polarization diversity configuration to eliminate the polarization dependence. Applying this method, we performed a long-term stability test using a 17.6-km installed fiber. We successfully demonstrated stable operation for 6 hours and achieved a sifted key generation rate of 120 kbps and an average quantum bit error rate of 3.14 %. The sifted key generation rate was not the estimated value but the effective value, which means that the sifted key was continuously generated at a rate of 120 kbps for 6 hours.

  5. Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors.

    PubMed

    Shibata, Hiroyuki; Honjo, Toshimori; Shimizu, Kaoru

    2014-09-01

    We report the first quantum key distribution (QKD) experiment over a 72 dB channel loss using superconducting nanowire single-photon detectors (SSPD, SNSPD) with the dark count rate (DCR) of 0.01 cps. The DCR of the SSPD, which is dominated by the blackbody radiation at room temperature, is blocked by introducing cold optical bandpass filter. We employ the differential phase shift QKD (DPS-QKD) scheme with a 1 GHz system clock rate. The quantum bit error rate (QBER) below 3% is achieved when the length of the dispersion shifted fiber (DSF) is 336 km (72 dB loss), which is low enough to generate secure keys.

  6. A security proof of the round-robin differential phase shift quantum key distribution protocol based on the signal disturbance

    NASA Astrophysics Data System (ADS)

    Sasaki, Toshihiko; Koashi, Masato

    2017-06-01

    The round-robin differential phase shift (RRDPS) quantum key distribution (QKD) protocol is a unique QKD protocol whose security has not been understood through an information-disturbance trade-off relation, and a sufficient amount of privacy amplification was given independently of signal disturbance. Here, we discuss the security of the RRDPS protocol in the asymptotic regime when a good estimate of the bit error rate is available as a measure of signal disturbance. The uniqueness of the RRDPS protocol shows up as a peculiar form of information-disturbance trade-off curve. When the length of a block of pulses used for encoding and the signal disturbance are both small, it provides a significantly better key rate than that from the original security proof. On the other hand, when the block length is large, the use of the signal disturbance makes little improvement in the key rate. Our analysis will bridge a gap between the RRDPS protocol and the conventional QKD protocols.

  7. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method

    PubMed Central

    Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan

    2017-01-01

    Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen. PMID:28198808

  8. Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources

    NASA Astrophysics Data System (ADS)

    Wang, Le; Zhao, Shengmei

    2017-04-01

    Round-robin differential-phase-shift (RRDPS) quantum key distribution (QKD) scheme provides an effective way to overcome the signal disturbance from the transmission process. However, most RRDPS-QKD schemes use weak coherent pulses (WCPs) as the replacement of the perfect single-photon source. Considering the heralded pair-coherent source (HPCS) can efficiently remove the shortcomings of WCPs, we propose a RRDPS-QKD scheme with HPCS in this paper. Both infinite-intensity decoy-state method and practical three-intensity decoy-state method are adopted to discuss the tight bound of the key rate of the proposed scheme. The results show that HPCS is a better candidate for the replacement of the perfect single-photon source, and both the key rate and the transmission distance are greatly increased in comparison with those results with WCPs when the length of the pulse trains is small. Simultaneously, the performance of the proposed scheme using three-intensity decoy states is close to that result using infinite-intensity decoy states when the length of pulse trains is small.

  9. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber.

    PubMed

    Wang, Shuang; Chen, Wei; Guo, Jun-Fu; Yin, Zhen-Qiang; Li, Hong-Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2012-03-15

    We report a demonstration of quantum key distribution (QKD) over a standard telecom fiber exceeding 50 dB in loss and 250 km in length. The differential phase shift QKD protocol was chosen and implemented with a 2 GHz system clock rate. By careful optimization of the 1 bit delayed Faraday-Michelson interferometer and the use of the superconducting single photon detector (SSPD), we achieved a quantum bit error rate below 2% when the fiber length was no more than 205 km, and of 3.45% for a 260 km fiber with 52.9 dB loss. We also improved the quantum efficiency of SSPD to obtain a high key rate for 50 km length.

  10. Quantum displacement receiver for M-ary phase-shift-keyed coherent states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, Shuro; Takeoka, Masahiro; Fujiwara, Mikio

    2014-12-04

    We propose quantum receivers for 3- and 4-ary phase-shift-keyed (PSK) coherent state signals to overcome the standard quantum limit (SQL). Our receiver, consisting of a displacement operation and on-off detectors with or without feedforward, provides an error probability performance beyond the SQL. We show feedforward operations can tolerate the requirement for the detector specifications.

  11. Establishing security of quantum key distribution without monitoring disturbance

    NASA Astrophysics Data System (ADS)

    Koashi, Masato

    2015-10-01

    In conventional quantum key distribution (QKD) protocols, the information leak to an eavesdropper is estimated through the basic principle of quantum mechanics dictated in the original version of Heisenberg's uncertainty principle. The amount of leaked information on a shared sifted key is bounded from above essentially by using information-disturbance trade-off relations, based on the amount of signal disturbance measured via randomly sampled or inserted probe signals. Here we discuss an entirely different avenue toward the private communication, which does not rely on the information disturbance trade-off relations and hence does not require a monitoring of signal disturbance. The independence of the amount of privacy amplification from that of disturbance tends to give it a high tolerance on the channel noises. The lifting of the burden of precise statistical estimation of disturbance leads to a favorable finite-key-size effect. A protocol based on the novel principle can be implemented by only using photon detectors and classical optics tools: a laser, a phase modulator, and an interferometer. The protocol resembles the differential-phase-shift QKD protocol in that both share a simple binary phase shift keying on a coherent train of weak pulses from a laser. The difference lies in the use of a variable-delay interferometer in the new protocol, which randomly changes the combination of pulse pairs to be superposed. This extra randomness has turned out to be enough to upper-bound the information extracted by the eavesdropper, regardless of how they have disturbed the quantum signal.

  12. Faked state attacks on realistic round robin DPS quantum key distribution systems and countermeasure

    NASA Astrophysics Data System (ADS)

    Iwakoshi, T.

    2015-05-01

    In May 2014, a new quantum key distribution protocol named "Round Robin Differential-Phase-Shift Quantum Key Distribution (RR DPS QKD)" was proposed. It has a special feature that the key consumption via privacy amplification is a small constant because RR DPS QKD guarantees its security by information causality, not by information-disturbance trade-off. Therefore, the authors claimed that RR DPS QKD systems does not need to monitor the disturbance by an attacker in the quantum channel. However, this study shows that a modified Faked-State Attack (or so-called bright illumination attack) can hack a RR DPS QKD system almost perfectly if it is implemented with realistic detectors even information-causality guarantees the security of RR DPS QKD protocol. Therefore, this study also proposes a possible Measurement-Device-Independent RR DPS QKD system to avoid the modified Faked-State Attack.

  13. Bit-rate transparent DPSK demodulation scheme based on injection locking FP-LD

    NASA Astrophysics Data System (ADS)

    Feng, Hanlin; Xiao, Shilin; Yi, Lilin; Zhou, Zhao; Yang, Pei; Shi, Jie

    2013-05-01

    We propose and demonstrate a bit-rate transparent differential phase shift-keying (DPSK) demodulation scheme based on injection locking multiple-quantum-well (MQW) strained InGaAsP FP-LD. By utilizing frequency deviation generated by phase modulation and unstable injection locking state with Fabry-Perot laser diode (FP-LD), DPSK to polarization shift-keying (PolSK) and PolSK to intensity modulation (IM) format conversions are realized. We analyze bit error rate (BER) performance of this demodulation scheme. Experimental results show that different longitude modes, bit rates and seeding power have influences on demodulation performance. We achieve error free DPSK signal demodulation under various bit rates of 10 Gbit/s, 5 Gbit/s, 2.5 Gbit/s and 1.25 Gbit/s with the same demodulation setting.

  14. Generation and detection of 80-Gbit/s return-to-zero differential phase-shift keying signals

    NASA Astrophysics Data System (ADS)

    Möller, Lothar; Su, Yikai; Xie, Chongjin; Liu, Xiang; Leuthold, Juerg; Gill, Douglas; Wei, Xing

    2003-12-01

    Nonlinear polarization rotation between a pump and a probe signal in a highly nonlinear fiber is used as a modulation process to generate 80-Gbit/s return-to-zero differential phase-shift keying signals. Its performance is analyzed and compared with a conventional on-off keying modulated signal.

  15. A 100-Gb/s noncoherent silicon receiver for PDM-DBPSK/DQPSK signals.

    PubMed

    Klamkin, Jonathan; Gambini, Fabrizio; Faralli, Stefano; Malacarne, Antonio; Meloni, Gianluca; Berrettini, Gianluca; Contestabile, Giampiero; Potì, Luca

    2014-01-27

    An integrated noncoherent silicon receiver for demodulation of 100-Gb/s polarization-division multiplexed differential quadrature phase-shift keying and polarization-division multiplexed differential binary phase-shift keying signals is demonstrated. The receiver consists of a 2D surface grating coupler, four Mach-Zehnder delay interferometers and four germanium balanced photodetectors.

  16. Finite-key analysis for quantum key distribution with weak coherent pulses based on Bernoulli sampling

    NASA Astrophysics Data System (ADS)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2017-07-01

    An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.

  17. 1.5- μm single photon counting using polarization-independent up-conversion detector

    NASA Astrophysics Data System (ADS)

    Takesue, Hiroki; Diamanti, Eleni; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa

    2006-12-01

    We report a 1.5- μm band polarization independent single photon detector based on frequency up-conversion in periodically poled lithium niobate (PPLN) waveguides. To overcome the polarization dependence of the PPLN waveguides, we employed a polarization diversity configuration composed of two up-conversion detectors connected with a polarization beam splitter. We experimentally confirmed polarization independent single photon counting using our detector. We undertook a proof-of-principle differential phase shift quantum key distribution experiment using the detector, and confirmed that the sifted key rate and error rate remained stable when the polarization state was changed during single photon transmission.

  18. Demonstration of differential phase-shift keying demodulation at 10 Gbit/s optimal fiber Bragg grating filters.

    PubMed

    Gatti, Davide; Galzerano, Gianluca; Laporta, Paolo; Longhi, Stefano; Janner, Davide; Guglierame, Andrea; Belmonte, Michele

    2008-07-01

    Optimal demodulation of differential phase-shift keying signals at 10 Gbit/s is experimentally demonstrated using a specially designed structured fiber Bragg grating composed by Fabry-Perot coupled cavities. Bit-error-rate measurements show that, as compared with a conventional Gaussian-shaped filter, our demodulator gives approximately 2.8 dB performance improvement.

  19. Chip-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.

    2017-02-01

    Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip--monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols--BB84, Coherent One Way and Differential Phase Shift--with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks.

  20. Differentially coherent quadrature-quadrature phase shift keying (Q2PSK)

    NASA Astrophysics Data System (ADS)

    Saha, Debabrata; El-Ghandour, Osama

    The quadrature-quadrature phase-shift-keying (Q2PSK) signaling scheme uses the vertices of a hypercube of dimension four. A generalized Q2PSK signaling format for differentially coherent detection at the receiver is considered. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. The symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/Nb. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK.

  1. Relative phase shifts for metaplectic isotopies acting on mixed Gaussian states

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.; Nicacio, Fernando

    2018-05-01

    We address in this paper the notion of relative phase shift for mixed quantum systems. We study the Pancharatnam-Sjöqvist phase shift φ (t ) =ArgTr(U^ tρ ^ ) for metaplectic isotopies acting on Gaussian mixed states. We complete and generalize the previous results obtained by one of us, while giving rigorous proofs. The key actor in this study is the theory of the Conley-Zehnder index which is an intersection index related to the Maslov index.

  2. Quantum Shielding Effects on the Eikonal Collision Cross Section in Strongly Coupled Two-temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-05-01

    The influence of nonisothermal and quantum shielding on the electron-ion collision process is investigated in strongly coupled two-temperature plasmas. The eikonal method is employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the impact parameter, collision energy, electron temperature, ion temperature, Debye length, and de Broglie wavelength. The results show that the quantum effect suppresses the eikonal scattering phase shift for the electron-ion collision in two-temperature dense plasmas. It is also found that the differential eikonal cross section decreases for small impact parameters. However, it increases for large impact parameters with increasing de Broglie wavelength. It is also found that the maximum position of the differential eikonal cross section is receded from the collision center with an increase in the nonisothermal character of the plasma. In addition, it is found that the total eikonal cross sections in isothermal plasmas are always greater than those in two-temperature plasmas. The variations of the eikonal cross section due to the two-temperature and quantum shielding effects are also discussed.

  3. Wireless Intrusion Detection

    DTIC Science & Technology

    2007-03-01

    32 4.4 Algorithm Pseudo - Code ...................................................................................34 4.5 WIND Interface With a...difference estimates of xc temporal derivatives, or by using a polynomial fit to the previous values of xc. 34 4.4 ALGORITHM PSEUDO - CODE Pseudo ...Phase Shift Keying DQPSK Differential Quadrature Phase Shift Keying EVM Error Vector Magnitude FFT Fast Fourier Transform FPGA Field Programmable

  4. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less

  5. Higher-order differential phase shift keyed modulation

    NASA Astrophysics Data System (ADS)

    Vanalphen, Deborah K.; Lindsey, William C.

    1994-02-01

    Advanced modulation/demodulation techniques which are robust in the presence of phase and frequency uncertainties continue to be of interest to communication engineers. We are particularly interested in techniques which accommodate slow channel phase and frequency variations with minimal performance degradation and which alleviate the need for phase and frequency tracking loops in the receiver. We investigate the performance sensitivity to frequency offsets of a modulation technique known as binary Double Differential Phase Shift Keying (DDPSK) and compare it to that of classical binary Differential Phase Shift Keying (DPSK). We also generalize our analytical results to include n(sup -th) order, M-ary DPSK. The DDPSK (n = 2) technique was first introduced in the Russian literature circa 1972 and was studied more thoroughly in the late 1970's by Pent and Okunev. Here, we present an expression for the symbol error probability that is easy to derive and to evaluate numerically. We also present graphical results that establish when, as a function of signal energy-to-noise ratio and normalized frequency offset, binary DDPSK is preferable to binary DPSK with respect to performance in additive white Gaussian noise. Finally, we provide insight into the optimum receiver from a detection theory viewpoint.

  6. A Hierarchical Modulation Coherent Communication Scheme for Simultaneous Four-State Continuous-Variable Quantum Key Distribution and Classical Communication

    NASA Astrophysics Data System (ADS)

    Yang, Can; Ma, Cheng; Hu, Linxi; He, Guangqiang

    2018-06-01

    We present a hierarchical modulation coherent communication protocol, which simultaneously achieves classical optical communication and continuous-variable quantum key distribution. Our hierarchical modulation scheme consists of a quadrature phase-shifting keying modulation for classical communication and a four-state discrete modulation for continuous-variable quantum key distribution. The simulation results based on practical parameters show that it is feasible to transmit both quantum information and classical information on a single carrier. We obtained a secure key rate of 10^{-3} bits/pulse to 10^{-1} bits/pulse within 40 kilometers, and in the meantime the maximum bit error rate for classical information is about 10^{-7}. Because continuous-variable quantum key distribution protocol is compatible with standard telecommunication technology, we think our hierarchical modulation scheme can be used to upgrade the digital communication systems to extend system function in the future.

  7. Modulation and coding for fast fading mobile satellite communication channels

    NASA Technical Reports Server (NTRS)

    Mclane, P. J.; Wittke, P. H.; Smith, W. S.; Lee, A.; Ho, P. K. M.; Loo, C.

    1988-01-01

    The performance of Gaussian baseband filtered minimum shift keying (GMSK) using differential detection in fast Rician fading, with a novel treatment of the inherent intersymbol interference (ISI) leading to an exact solution is discussed. Trellis-coded differentially coded phase shift keying (DPSK) with a convolutional interleaver is considered. The channel is the Rician Channel with the line-of-sight component subject to a lognormal transformation.

  8. High performance frame synchronization for continuous variable quantum key distribution systems.

    PubMed

    Lin, Dakai; Huang, Peng; Huang, Duan; Wang, Chao; Peng, Jinye; Zeng, Guihua

    2015-08-24

    Considering a practical continuous variable quantum key distribution(CVQKD) system, synchronization is of significant importance as it is hardly possible to extract secret keys from unsynchronized strings. In this paper, we proposed a high performance frame synchronization method for CVQKD systems which is capable to operate under low signal-to-noise(SNR) ratios and is compatible with random phase shift induced by quantum channel. A practical implementation of this method with low complexity is presented and its performance is analysed. By adjusting the length of synchronization frame, this method can work well with large range of SNR values which paves the way for longer distance CVQKD.

  9. Quantum correlations of lights in macroscopic environments

    NASA Astrophysics Data System (ADS)

    Sua, Yong Meng

    This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear fiber (HNLF) at 77 K, we observed coincidence to accidental-coincidence ratio of 130+/-5 for correlated photon-pair and Two-Photon Interference visibility >98% entangled photon-pair. We also verified the non-local behavior of polarization-entangled photon pair by violating Clauser-Horne-Shimony-Holt Bell's inequality by more than 12 standard deviations. With the HNLF at 300 K (77 K), photon-pair production rate about factor 3(2) higher than a 300 m dispersion-shifted fiber is observed. Then, we studied quantum correlation and interference of photon-pairs; with one photon of the photon-pair experiencing multiple scattering in a random medium. We observed that depolarization noise photon in multiple scattering degrading the purity of photon-pair, and the existence of Raman noise photon in a photon-pair source will contribute to the depolarization affect. We found that quantum correlation of polarization-entangled photon-pair is better preserved than polarization-correlated photon-pair as one photon of the photon-pair scattered through a random medium. Our findings showed that high purity polarization-entangled photon-pair is better candidate for long distance quantum key distribution.

  10. Doppler-corrected differential detection system

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)

    1991-01-01

    Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.

  11. Active polarisation control of a quantum cascade laser using tuneable birefringence in waveguides.

    PubMed

    Dhirhe, D; Slight, T J; Holmes, B M; Ironside, C N

    2013-10-07

    We discuss the design, modelling, fabrication and characterisation of an integrated tuneable birefringent waveguide for quantum cascade lasers. We have fabricated quantum cascade lasers operating at wavelengths around 4450 nm that include polarisation mode converters and a differential phase shift section. We employed below laser threshold electroluminescence to investigate the single pass operation of the integrated device. We use a theory based on the electro-optic properties of birefringence in quantum cascade laser waveguides combined with a Jones matrix based description to gain an understanding of the electroluminescence results. With the quantum cascade lasers operating above threshold we demonstrated polarisation control of the output.

  12. Quantum limited performance of optical receivers

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas C.

    2018-05-01

    While the fundamental performance limit for traditional radio frequency (RF) communications is often set by background noise on the channel, the fundamental limit for optical communications is set by the quantum nature of light. Both types of systems are based on electro-magnetic waves, differing only in carrier frequency. It is, in fact, the frequency that determines which of these limits dominates. We explore this in the first part of this paper. This leads to a difference in methods of analysis of the two different types of systems. While equations predicting the probability of bit error for RF systems are usually based on the signal to background noise ratio, similar equations for optical systems are often based on the physics of the quantum limit and are simply a function of the detected signal energy received per bit. These equations are derived in the second part of this paper for several frequently used modulation schemes: On-off keying (OOK), pulse position modulation (PPM), and binary differential phase shift keying (DPSK). While these equations ignore the effects of background noise and non-quantum internal noise sources in the detector and receiver electronics, they provide a useful bound for obtainable performance of optical communication systems. For example, these equations may be used in initial link budgets to assess the feasibility of system architectures, even before specific receiver designs are considered.

  13. 2 Tbit/s free-space data transmission on two orthogonal orbital-angular-momentum beams each carrying 25 WDM channels.

    PubMed

    Fazal, Irfan M; Ahmed, Nisar; Wang, Jian; Yang, Jeng-Yuan; Yan, Yan; Shamee, Bishara; Huang, Hao; Yue, Yang; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2012-11-15

    We demonstrate a 2 Tbit/s free-space data link using two orthogonal orbital angular momentum beams each carrying 25 different wavelength-division-multiplexing channels. We measure the performance for different modulation formats, including directly detected 40 Gbit/s nonreturn-to-zero (NRZ) differential phase-shift keying, 40 Gbit/s NRZ on-off keying, and coherently-detected 10 Gbaud NRZ quadrature phase-shift keying, and achieve low bit error rates with penalties less than 5 dB.

  14. Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution.

    PubMed

    Collins, Robert J; Amiri, Ryan; Fujiwara, Mikio; Honjo, Toshimori; Shimizu, Kaoru; Tamaki, Kiyoshi; Takeoka, Masahiro; Sasaki, Masahide; Andersson, Erika; Buller, Gerald S

    2017-06-12

    Ensuring the integrity and transferability of digital messages is an important challenge in modern communications. Although purely mathematical approaches exist, they usually rely on the computational complexity of certain functions, in which case there is no guarantee of long-term security. Alternatively, quantum digital signatures offer security guaranteed by the physical laws of quantum mechanics. Prior experimental demonstrations of quantum digital signatures in optical fiber have typically been limited to operation over short distances and/or operated in a laboratory environment. Here we report the experimental transmission of quantum digital signatures over channel losses of up to 42.8 ± 1.2 dB in a link comprised of 90 km of installed fiber with additional optical attenuation introduced to simulate longer distances. The channel loss of 42.8 ± 1.2 dB corresponds to an equivalent distance of 134.2 ± 3.8 km and this represents the longest effective distance and highest channel loss that quantum digital signatures have been shown to operate over to date. Our theoretical model indicates that this represents close to the maximum possible channel attenuation for this quantum digital signature protocol, defined as the loss for which the signal rate is comparable to the dark count rate of the detectors.

  15. Differential carrier phase recovery for QPSK optical coherent systems with integrated tunable lasers.

    PubMed

    Fatadin, Irshaad; Ives, David; Savory, Seb J

    2013-04-22

    The performance of a differential carrier phase recovery algorithm is investigated for the quadrature phase shift keying (QPSK) modulation format with an integrated tunable laser. The phase noise of the widely-tunable laser measured using a digital coherent receiver is shown to exhibit significant drift compared to a standard distributed feedback (DFB) laser due to enhanced low frequency noise component. The simulated performance of the differential algorithm is compared to the Viterbi-Viterbi phase estimation at different baud rates using the measured phase noise for the integrated tunable laser.

  16. Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

    NASA Astrophysics Data System (ADS)

    Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan

    2014-10-01

    In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

  17. Differential detection in quadrature-quadrature phase shift keying (Q2PSK) systems

    NASA Astrophysics Data System (ADS)

    El-Ghandour, Osama M.; Saha, Debabrata

    1991-05-01

    A generalized quadrature-quadrature phase shift keying (Q2PSK) signaling format is considered for differential encoding and differential detection. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. Symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/N0. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK. When the error is due to AWGN, the ratio of double error rate to single error rate can be very high, and the ratio may approach zero at high SNR. To improve error rate, differential detection through maximum-likelihood decoding based on multiple or N symbol observations is considered. If N and SNR are large this decoding gives a 3-dB advantage in error rate over conventional N = 2 differential detection, fully recovering the energy loss (as compared to coherent detection) if the observation is extended to a large number of symbol durations.

  18. Nonadiabatic conditional geometric phase shift with NMR.

    PubMed

    Xiang-Bin, W; Keiji, M

    2001-08-27

    A conditional geometric phase shift gate, which is fault tolerant to certain types of errors due to its geometric nature, was realized recently via nuclear magnetic resonance (NMR) under adiabatic conditions. However, in quantum computation, everything must be completed within the decoherence time. The adiabatic condition makes any fast conditional Berry phase (cyclic adiabatic geometric phase) shift gate impossible. Here we show that by using a newly designed sequence of simple operations with an additional vertical magnetic field, the conditional geometric phase shift gate can be run nonadiabatically. Therefore geometric quantum computation can be done at the same rate as usual quantum computation.

  19. Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier.

    PubMed

    Qin, Jun; Lu, Guo-Wei; Sakamoto, Takahide; Akahane, Kouichi; Yamamoto, Naokatsu; Wang, Danshi; Wang, Cheng; Wang, Hongxiang; Zhang, Min; Kawanishi, Tetsuya; Ji, Yuefeng

    2014-12-01

    In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR-LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10(-9). Degenerate and non-degenerate FWM components are fully used in the experiment for data and logic multicasting.

  20. Experimental study on discretely modulated continuous-variable quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yong; Zou Hongxin; Chen Pingxing

    2010-08-15

    We present a discretely modulated continuous-variable quantum key distribution system in free space by using strong coherent states. The amplitude noise in the laser source is suppressed to the shot-noise limit by using a mode cleaner combined with a frequency shift technique. Also, it is proven that the phase noise in the source has no impact on the final secret key rate. In order to increase the encoding rate, we use broadband homodyne detectors and the no-switching protocol. In a realistic model, we establish a secret key rate of 46.8 kbits/s against collective attacks at an encoding rate of 10more » MHz for a 90% channel loss when the modulation variance is optimal.« less

  1. Offset quadrature communications with decision-feedback carrier synchronization

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Smith, J. G.

    1974-01-01

    In order to accommodate a quadrature amplitude-shift-keyed (QASK) signal, Simon and Smith (1974) have modified the decision-feedback loop which tracks a quadrature phase-shift-keyed (QPSK). In the investigation reported approaches are considered to modify the loops in such a way that offset QASK signals can be tracked, giving attention to the special case of an offset QPSK. The development of the stochastic integro-differential equation of operation for a decision-feedback offset QASK loop is discussed along with the probability density function of the phase error process.

  2. Simultaneous wavelength conversion of ASK and DPSK signals based on four-wave-mixing in dispersion engineered silicon waveguides.

    PubMed

    Xu, Lin; Ophir, Noam; Menard, Michael; Lau, Ryan Kin Wah; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren

    2011-06-20

    We experimentally demonstrate four-wave-mixing (FWM)-based continuous wavelength conversion of optical differential-phase-shift-keyed (DPSK) signals with large wavelength conversion ranges as well as simultaneous wavelength conversion of dual-wavelength channels with mixed modulation formats in 1.1-cm-long dispersion-engineered silicon waveguides. We first validate up to 100-nm wavelength conversion range for 10-Gb/s DPSK signals, showcasing the capability to perform phase-preserving operations at high bit rates in chip-scale devices over wide conversion ranges. We further validate the wavelength conversion of dual-wavelength channels modulated with 10-Gb/s packetized phase-shift-keyed (PSK) and amplitude-shift-keyed (ASK) signals; demonstrate simultaneous operation on multiple channels with mixed formats in chip-scale devices. For both configurations, we measure the spectral and temporal responses and evaluate the performances using bit-error-rate (BER) measurements.

  3. Multi-rate DPSK optical transceivers for free-space applications

    NASA Astrophysics Data System (ADS)

    Caplan, D. O.; Carney, J. J.; Fitzgerald, J. J.; Gaschits, I.; Kaminsky, R.; Lund, G.; Hamilton, S. A.; Magliocco, R. J.; Murphy, R. J.; Rao, H. G.; Spellmeyer, N. W.; Wang, J. P.

    2014-03-01

    We describe a flexible high-sensitivity laser communication transceiver design that can significantly benefit performance and cost of NASA's satellite-based Laser Communications Relay Demonstration. Optical communications using differential phase shift keying, widely deployed for use in long-haul fiber-optic networks, is well known for its superior sensitivity and link performance over on-off keying, while maintaining a relatively straightforward design. However, unlike fiber-optic links, free-space applications often require operation over a wide dynamic range of power due to variations in link distance and channel conditions, which can include rapid kHz-class fading when operating through the turbulent atmosphere. Here we discuss the implementation of a robust, near-quantum-limited multi-rate DPSK transceiver, co-located transmitter and receiver subsystems that can operate efficiently over the highly-variable free-space channel. Key performance features will be presented on the master oscillator power amplifier (MOPA) based TX, including a wavelength-stabilized master laser, high-extinction-ratio burst-mode modulator, and 0.5 W single polarization power amplifier, as well as low-noise optically preamplified DSPK receiver and built-in test capabilities.

  4. Quantum memory receiver for superadditive communication using binary coherent states

    NASA Astrophysics Data System (ADS)

    Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2016-11-01

    We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.

  5. Quantum memory receiver for superadditive communication using binary coherent states.

    PubMed

    Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2016-11-12

    We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011 , 106 , 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.

  6. All-optical XOR logic gate using intersubband transition in III-V quantum well materials.

    PubMed

    Feng, Jijun; Akimoto, Ryoichi; Gozu, Shin-ichiro; Mozume, Teruo

    2014-06-02

    A monolithically integrated all-optical exclusive-OR (XOR) logic gate is experimentally demonstrated based on a Michelson interferometer (MI) gating device in InGaAs/AlAsSb coupled double quantum wells (CDQWs). The MI arms can convert the pump data with return-to-zero ON-OFF keying (RZ OOK) to binary phase-shift keying (BPSK) format, then two BPSK signals can interfere with each other for realizing a desired logical operation. All-optical format conversion from the RZ OOK to BPSK is based on the cross-phase modulation to the transverse electric (TE) probe wave, which is caused by the intersubband transition excited by the transverse magnetic (TM) pump light. Bit error rate measurements show that error free operation for both BPSK format conversion and XOR logical operation can be achieved.

  7. Quantum phase gate based on electromagnetically induced transparency in optical cavities

    NASA Astrophysics Data System (ADS)

    Borges, Halyne S.; Villas-Bôas, Celso J.

    2016-11-01

    We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.

  8. Differential phase-shift keying and channel equalization in free space optical communication system

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu

    2018-01-01

    We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.

  9. Experimental investigation of polarization insensitivity and cascadability with semiconductor optical amplifier-based differential phase-shift keyed wavelength converter

    NASA Astrophysics Data System (ADS)

    Mao, Yaya; Wu, Chongqing; Liu, Bo; Ullah, Rahat; Tian, Feng

    2017-12-01

    We experimentally investigate the polarization insensitivity and cascadability of an all-optical wavelength converter for differential phase-shift keyed (DPSK) signals for the first time. The proposed wavelength converter is composed of a one-bit delay interferometer demodulation stage followed by a single semiconductor optical amplifier. The impact of input DPSK signal polarization fluctuation on receiver sensitivity for the converted signal is carried out. It is found that this scheme is almost insensitive to the state of polarization of the input DPSK signal. Furthermore, the cascadability of the converter is demonstrated in a two-path recirculating loop. Error-free transmission is achieved with 20 stage cascaded wavelength conversions over 2800 km, where the power penalty is <3.4 dB at bit error rate of 10-9.

  10. Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states

    NASA Astrophysics Data System (ADS)

    Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.

    2018-04-01

    We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.

  11. Trellis coded multilevel DPSK system with doppler correction for mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Simon, Marvin K. (Inventor)

    1991-01-01

    A trellis coded multilevel differential phase shift keyed mobile communication system. The system of the present invention includes a trellis encoder for translating input signals into trellis codes; a differential encoder for differentially encoding the trellis coded signals; a transmitter for transmitting the differentially encoded trellis coded signals; a receiver for receiving the transmitted signals; a differential demodulator for demodulating the received differentially encoded trellis coded signals; and a trellis decoder for decoding the differentially demodulated signals.

  12. Examination of China’s performance and thematic evolution in quantum cryptography research using quantitative and computational techniques

    PubMed Central

    2018-01-01

    This study performed two phases of analysis to shed light on the performance and thematic evolution of China’s quantum cryptography (QC) research. First, large-scale research publication metadata derived from QC research published from 2001–2017 was used to examine the research performance of China relative to that of global peers using established quantitative and qualitative measures. Second, this study identified the thematic evolution of China’s QC research using co-word cluster network analysis, a computational science mapping technique. The results from the first phase indicate that over the past 17 years, China’s performance has evolved dramatically, placing it in a leading position. Among the most significant findings is the exponential rate at which all of China’s performance indicators (i.e., Publication Frequency, citation score, H-index) are growing. China’s H-index (a normalized indicator) has surpassed all other countries’ over the last several years. The second phase of analysis shows how China’s main research focus has shifted among several QC themes, including quantum-key-distribution, photon-optical communication, network protocols, and quantum entanglement with an emphasis on applied research. Several themes were observed across time periods (e.g., photons, quantum-key-distribution, secret-messages, quantum-optics, quantum-signatures); some themes disappeared over time (e.g., computer-networks, attack-strategies, bell-state, polarization-state), while others emerged more recently (e.g., quantum-entanglement, decoy-state, unitary-operation). Findings from the first phase of analysis provide empirical evidence that China has emerged as the global driving force in QC. Considering China is the premier driving force in global QC research, findings from the second phase of analysis provide an understanding of China’s QC research themes, which can provide clarity into how QC technologies might take shape. QC and science and technology policy researchers can also use these findings to trace previous research directions and plan future lines of research. PMID:29385151

  13. Examination of China's performance and thematic evolution in quantum cryptography research using quantitative and computational techniques.

    PubMed

    Olijnyk, Nicholas V

    2018-01-01

    This study performed two phases of analysis to shed light on the performance and thematic evolution of China's quantum cryptography (QC) research. First, large-scale research publication metadata derived from QC research published from 2001-2017 was used to examine the research performance of China relative to that of global peers using established quantitative and qualitative measures. Second, this study identified the thematic evolution of China's QC research using co-word cluster network analysis, a computational science mapping technique. The results from the first phase indicate that over the past 17 years, China's performance has evolved dramatically, placing it in a leading position. Among the most significant findings is the exponential rate at which all of China's performance indicators (i.e., Publication Frequency, citation score, H-index) are growing. China's H-index (a normalized indicator) has surpassed all other countries' over the last several years. The second phase of analysis shows how China's main research focus has shifted among several QC themes, including quantum-key-distribution, photon-optical communication, network protocols, and quantum entanglement with an emphasis on applied research. Several themes were observed across time periods (e.g., photons, quantum-key-distribution, secret-messages, quantum-optics, quantum-signatures); some themes disappeared over time (e.g., computer-networks, attack-strategies, bell-state, polarization-state), while others emerged more recently (e.g., quantum-entanglement, decoy-state, unitary-operation). Findings from the first phase of analysis provide empirical evidence that China has emerged as the global driving force in QC. Considering China is the premier driving force in global QC research, findings from the second phase of analysis provide an understanding of China's QC research themes, which can provide clarity into how QC technologies might take shape. QC and science and technology policy researchers can also use these findings to trace previous research directions and plan future lines of research.

  14. Multifunctional switching unit for add/drop, wavelength conversion, format conversion, and WDM multicast based on bidirectional LCoS and SOA-loop architecture.

    PubMed

    Wang, Danshi; Zhang, Min; Qin, Jun; Lu, Guo-Wei; Wang, Hongxiang; Huang, Shanguo

    2014-09-08

    We propose a multifunctional optical switching unit based on the bidirectional liquid crystal on silicon (LCoS) and semiconductor optical amplifier (SOA) architecture. Add/drop, wavelength conversion, format conversion, and WDM multicast are experimentally demonstrated. Due to the bidirectional characteristic, the LCoS device cannot only multiplex the input signals, but also de-multiplex the converted signals. Dual-channel wavelength conversion and format conversion from 2 × 25Gbps differential quadrature phase-shift-keying (DQPSK) to 2 × 12.5Gbps differential phase-shift-keying (DPSK) based on four-wave mixing (FWM) in SOA is obtained with only one pump. One-to-six WDM multicast of 25Gbps DQPSK signals with two pumps is also achieved. All of the multicast channels are with a power penalty less than 1.1 dB at FEC threshold of 3.8 × 10⁻³.

  15. Large conditional single-photon cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Beck, Kristin; Hosseini, Mahdi; Duan, Yiheng; Vuletic, Vladan

    2016-05-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to π / 3 between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of p at low loss, enabling deterministic and universal photonic quantum logic. Preprint: arXiv:1512.02166 [quant-ph

  16. Numerical investigation of differential phase noise and its power penalty for optical amplification using semiconductor optical amplifiers in DPSK applications

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi

    2007-11-01

    A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.

  17. Noise tolerance in wavelength-selective switching of optical differential quadrature-phase-shift-keying pulse train by collinear acousto-optic devices.

    PubMed

    Goto, Nobuo; Miyazaki, Yasumitsu

    2014-06-01

    Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100  Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.

  18. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    PubMed

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  19. Large conditional single-photon cross-phase modulation

    PubMed Central

    Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-01-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of π/6 (and up to π/3 by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

  20. Optical π phase shift created with a single-photon pulse.

    PubMed

    Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan

    2016-04-01

    A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.

  1. Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation.

    PubMed

    Zheng, Shi-Biao

    2005-08-19

    We propose a new approach to quantum phase gates via the adiabatic evolution. The conditional phase shift is neither of dynamical nor geometric origin. It arises from the adiabatic evolution of the dark state itself. Taking advantage of the adiabatic passage, this kind of quantum logic gates is robust against moderate fluctuations of experimental parameters. In comparison with the geometric phase gates, it is unnecessary to drive the system to undergo a desired cyclic evolution to obtain a desired solid angle. Thus, the procedure is simplified, and the fidelity may be further improved since the errors in obtaining the required solid angle are avoided. We illustrate such a kind of quantum logic gates in the ion trap system. The idea can also be realized in other systems, opening a new perspective for quantum information processing.

  2. Bit error rate performance of pi/4-DQPSK in a frequency-selective fast Rayleigh fading channel

    NASA Technical Reports Server (NTRS)

    Liu, Chia-Liang; Feher, Kamilo

    1991-01-01

    The bit error rate (BER) performance of pi/4-differential quadrature phase shift keying (DQPSK) modems in cellular mobile communication systems is derived and analyzed. The system is modeled as a frequency-selective fast Rayleigh fading channel corrupted by additive white Gaussian noise (AWGN) and co-channel interference (CCI). The probability density function of the phase difference between two consecutive symbols of M-ary differential phase shift keying (DPSK) signals is first derived. In M-ary DPSK systems, the information is completely contained in this phase difference. For pi/4-DQPSK, the BER is derived in a closed form and calculated directly. Numerical results show that for the 24 kBd (48 kb/s) pi/4-DQPSK operated at a carrier frequency of 850 MHz and C/I less than 20 dB, the BER will be dominated by CCI if the vehicular speed is below 100 mi/h. In this derivation, frequency-selective fading is modeled by two independent Rayleigh signal paths. Only one co-channel is assumed in this derivation. The results obtained are also shown to be valid for discriminator detection of M-ary DPSK signals.

  3. Equivalence principle for quantum systems: dephasing and phase shift of free-falling particles

    NASA Astrophysics Data System (ADS)

    Anastopoulos, C.; Hu, B. L.

    2018-02-01

    We ask the question of how the (weak) equivalence principle established in classical gravitational physics should be reformulated and interpreted for massive quantum objects that may also have internal degrees of freedom (dof). This inquiry is necessary because even elementary concepts like a classical trajectory are not well defined in quantum physics—trajectories originating from quantum histories become viable entities only under stringent decoherence conditions. From this investigation we posit two logically and operationally distinct statements of the equivalence principle for quantum systems. Version A: the probability distribution of position for a free-falling particle is the same as the probability distribution of a free particle, modulo a mass-independent shift of its mean. Version B: any two particles with the same velocity wave-function behave identically in free fall, irrespective of their masses. Both statements apply to all quantum states, including those without a classical correspondence, and also for composite particles with quantum internal dof. We also investigate the consequences of the interaction between internal and external dof induced by free fall. For a class of initial states, we find dephasing occurs for the translational dof, namely, the suppression of the off-diagonal terms of the density matrix, in the position basis. We also find a gravitational phase shift in the reduced density matrix of the internal dof that does not depend on the particle’s mass. For classical states, the phase shift has a natural classical interpretation in terms of gravitational red-shift and special relativistic time-dilation.

  4. 160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide.

    PubMed

    Lu, Guo-Wei; Shinada, Satoshi; Furukawa, Hideaki; Wada, Naoya; Miyazaki, Tetsuya; Ito, Hiromasa

    2010-03-15

    We experimentally demonstrated ultra-fast phase-transparent wavelength conversion using cascaded sum- and difference-frequency generation (cSFG-DFG) in linear-chirped periodically poled lithium niobate (PPLN). Error-free wavelength conversion of a 160-Gb/s return-to-zero differential phase-shift keying (RZ-DPSK) signal was successfully achieved. Thanks to the enhanced conversion bandwidth in the PPLN with linear-chirped periods, no optical equalizer was required to compensate the spectrum distortion after conversion, unlike a previous demonstration of 160-Gb/s RZ on-off keying (OOK) using fixed-period PPLN.

  5. From quantum physics to digital communication: Single sideband continuous phase modulation

    NASA Astrophysics Data System (ADS)

    Farès, Haïfa; Christian Glattli, D.; Louët, Yves; Palicot, Jacques; Moy, Christophe; Roulleau, Preden

    2018-01-01

    In the present paper, we propose a new frequency-shift keying continuous phase modulation (FSK-CPM) scheme having, by essence, the interesting feature of single-sideband (SSB) spectrum providing a very compact frequency occupation. First, the original principle, inspired from quantum physics (levitons), is presented. Besides, we address the problem of low-complexity coherent detection of this new waveform, based on orthonormal wave functions used to perform matched filtering for efficient demodulation. Consequently, this shows that the proposed modulation can operate using existing digital communication technology, since only well-known operations are performed (e.g., filtering, integration). This SSB property can be exploited to allow large bit rates transmissions at low carrier frequency without caring about image frequency degradation effects typical of ordinary double-sideband signals. xml:lang="fr"

  6. Simulation and analysis of OOK-to-BPSK format conversion based on gain-transparent SOA used as optical phase-modulator.

    PubMed

    Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi

    2007-12-24

    All-optical on-off keying (OOK) to binary phase-shift keying (BPSK) modulation format conversion based on gain-transparent semiconductor optical amplifier (GT-SOA) is simulated and analyzed, where GT-SOA is used as an all-optical phase-modulator (PM). Numerical simulation of the phase modulation effect of GT-SOA is performed using a wideband dynamic model of GT-SOA and the quality of the BPSK signal is evaluated using the differential-phase-Q factor. Performance improvement by holding light injection is analyzed and non-return-to-zero (NRZ) and return-to-zero (RZ) modulation formats of the OOK signal are considered.

  7. Optical signal monitoring in phase modulated optical fiber transmission systems

    NASA Astrophysics Data System (ADS)

    Zhao, Jian

    Optical performance monitoring (OPM) is one of the essential functions for future high speed optical networks. Among the parameters to be monitored, chromatic dispersion (CD) is especially important since it has a significant impact on overall system performance. In this thesis effective CD monitoring approaches for phase-shift keying (PSK) based optical transmission systems are investigated. A number of monitoring schemes based on radio frequency (RF) spectrum analysis and delay-tap sampling are proposed and their performance evaluated. A method for dispersion monitoring of differential phase-shift keying (DPSK) signals based on RF power detection is studied. The RF power spectrum is found to increase with the increase of CD and decrease with polarization mode dispersion (PMD). The spectral power density dependence on CD is studied theoretically and then verified through simulations and experiments. The monitoring sensitivity for nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) and return-to-zero differential phase-shift keying (RZ-DPSK) based systems can reach 80ps/nm/dB and 34ps/nm/dB respectively. The scheme enables the monitoring of differential group delay (DGD) and CD simultaneously. The monitoring sensitivity of CD and DGD can reach 56.7ps/nm/dB and 3.1ps/dB using a bandpass filter. The effects of optical signal-to-noise ratio (OSNR), DGD, fiber nonlinearity and chirp on the monitoring results are investigated. Two RF pilot tones are employed for CD monitoring of DPSK signals. Specially selected pilot tone frequencies enable good monitoring sensitivity with minimum influence on the received signals. The dynamic range exceeding 35dB and monitoring sensitivity up to 9.5ps/nm/dB are achieved. Asynchronous sampling technique is employed for CD monitoring. A signed CD monitoring method for 10Gb/s NRZ-DPSK and RZ-DPSK systems using asynchronous delay-tap sampling technique is studied. The demodulated signals suffer asymmetric waveform distortion if there is a phase error (Deltaphi) in the delay interferometer (DI) and in the presence of residual CD. Using delay-tap sampling the scatter plots can reflect this signal distortion through their asymmetric characteristics. A distance ratio (DR) is defined to represent the change of the scatter plots which is directly related to the accumulated CD. The monitoring range can be up to +/-400ps/nm and to +/-720ps/nm for 10Gb/s NRZ-DPSK and RZ-DPSK signals with 450 phase error in DI. The monitoring sensitivity reaches +/-8ps/nm and CD polarity discrimination is realized. It is found that the signal degradation is related to the increment of the absolute value of CD or phase mismatch. The effect of different polarities of phase error on CD monitoring is also analyzed. The shoulders location depends on the sign of the product DLDeltaphi. If DLDeltaphi > 0, the shoulder will appear on trailing edge else the shoulder will appear on leading edge when DLDeltaphi < 0. The analysis shows that the phase error is identical to the frequency offset of optical source so a signed frequency offset monitoring is also demonstrated. The monitoring results show that the monitoring range can reach +/-2.2GHz and the monitoring sensitivity is around 27MHz. The effect of nonlinearity, OSNR and bandwidth of the lowpass filter on the proposed monitoring method has also been studied. The signed CD monitoring for 100Gb/s carrier suppressed return-to-zero differential quadrature phase-shift keying (CSRZ-DQPSK) system based on the delay-tap sampling technology is demonstrated. The monitoring range and monitoring resolution can goes up to +/-32ps/nm and +/-8ps/nm, respectively. A signed CD and optical carrier wavelength monitoring scheme using cross-correlation method for on-off keying (00K) wavelength division multiplexing (WDM) system is proposed and demonstrated. CD monitoring sensitivity is high and can be less than 10% of the bit period. Wavelength monitoring is implemented using the proposed approach. The monitoring results show that the sensitivity can reach up to 1.37ps/GHz.

  8. The NIST 27 Al+ quantum-logic clock

    NASA Astrophysics Data System (ADS)

    Leibrandt, David; Brewer, Samuel; Chen, Jwo-Sy; Hume, David; Hankin, Aaron; Huang, Yao; Chou, Chin-Wen; Rosenband, Till; Wineland, David

    2016-05-01

    Optical atomic clocks based on quantum-logic spectroscopy of the 1 S0 <--> 3 P0 transition in 27 Al+ have reached a systematic fractional frequency uncertainty of 8 . 0 ×10-18 , enabling table-top tests of fundamental physics as well as measurements of gravitational potential differences. Currently, the largest limitations to the accuracy are second order time dilation shifts due to the driven motion (i.e., micromotion) and thermal motion of the trapped ions. In order to suppress these shifts, we have designed and built new ion traps based on gold-plated, laser-machined diamond wafers with differential RF drive, and we have operated one of our clocks with the ions laser cooled to near the six mode motional ground state. We present a characterization of the time dilation shifts in the new traps with uncertainties near 1 ×10-18 . Furthermore, we describe a new protocol for clock comparison measurements based on synchronous probing of the two clocks using phase-locked local oscillators, which allows for probe times longer than the laser coherence time and avoids the Dick effect. This work is supported by ARO, DARPA, and ONR.

  9. Eliminating ambiguity in digital signals

    NASA Technical Reports Server (NTRS)

    Weber, W. J., III

    1979-01-01

    Multiamplitude minimum shift keying (mamsk) transmission system, method of differential encoding overcomes problem of ambiguity associated with advanced digital-transmission techniques with little or no penalty in transmission rate, error rate, or system complexity. Principle of method states, if signal points are properly encoded and decoded, bits are detected correctly, regardless of phase ambiguities.

  10. Simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifiers in DPSK applications

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi

    2008-01-01

    A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase-shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise at the SOA output are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. It is also shown that Gaussian distribution can be useful as a good approximation of the total differential phase noise statistics in the whole operation range. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.

  11. Small sensitivity to temperature variations of Si-photonic Mach-Zehnder interferometer using Si and SiN waveguides

    NASA Astrophysics Data System (ADS)

    Hiraki, Tatsurou; Fukuda, Hiroshi; Yamada, Koji; Yamamoto, Tsuyoshi

    2015-03-01

    We demonstrated a small sensitivity to temperature variations of delay-line Mach-Zehnder interferometer (DL MZI) on a Si photonics platform. The key technique is to balance a thermo-optic effect in the two arms by using waveguide made of different materials. With silicon and silicon nitride waveguides, the fabricated DL MZI with a free-spectrum range of ~40 GHz showed a wavelength shift of -2.8 pm/K with temperature variations, which is 24 times smaller than that of the conventional Si-waveguide DL MZI. We also demonstrated the decoding of the 40-Gbit/s differential phase-shift keying signals to on-off keying signals with various temperatures. The tolerable temperature variation for the acceptable power penalty was significantly improved due to the small wavelength shifts.

  12. Performance Evaluation and Nonlinear Mitigation through DQPSK Modulation in 32 × 40 Gbps Long-Haul DWDM Systems

    NASA Astrophysics Data System (ADS)

    Sharan, Lucky; Agrawal, Vaibhav M.; Chaubey, V. K.

    2017-08-01

    Higher spectral efficiency and greater data rate per channel are the most cost-effective strategies to meet the exponential demand of data traffic in the optical core network. Multilevel modulation formats being spectrally efficient enhance the transmission capacity by coding information in the amplitude, phase, polarization or a combination of all. This paper presents the design architecture of a 32-channel dense wavelength division multiplexed (DWDM) system, where each channel operates with multi-level phase modulation formats at 40 Gbps. The proposed design has been simulated for 50 GHz channel spacing to numerically compute the performance of both differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK) modulation formats in such high-speed DWDM system. The transmission link is analyzed with perfect dispersion compensation and also with under-compensation scheme. The link performance in terms of quality factor (Q) for varying input powers with different dispersion compensation schemes has been evaluated. The simulation study shows significant nonlinear mitigation for both DPSK- and DQPSK-based DWDM systems up to 1,000 km and beyond. It is concluded that at higher power levels DQPSK format having a narrower spectrum shows better tolerance to dispersion and nonlinearities than DPSK format.

  13. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin.

    PubMed

    Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W; Balasubramanian, Gopalakrishnan

    2014-09-12

    At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions.

  14. Predicting the performance of linear optical detectors in free space laser communication links

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas C.

    2018-05-01

    While the fundamental performance limit for optical communications is set by the quantum nature of light, in practical systems background light, dark current, and thermal noise of the electronics also degrade performance. In this paper, we derive a set of equations predicting the performance of PIN diodes and linear mode avalanche photo diodes (APDs) in the presence of such noise sources. Electrons generated by signal, background, and dark current shot noise are well modeled in PIN diodes as Poissonian statistical processes. In APDs, on the other hand, the amplifying effects of the device result in statistics that are distinctly non-Poissonian. Thermal noise is well modeled as Gaussian. In this paper, we appeal to the central limit theorem and treat both the variability of the signal and the sum of noise sources as Gaussian. Comparison against Monte-Carlo simulation of PIN diode performance (where we do model shot noise with draws from a Poissonian distribution) validates the legitimacy of this approximation. On-off keying, M-ary pulse position, and binary differential phase shift keying modulation are modeled. We conclude with examples showing how the equations may be used in a link budget to estimate the performance of optical links using linear receivers.

  15. Reaching quantum limits for phase-shift detection with semiclassical states

    NASA Astrophysics Data System (ADS)

    Luis, Alfredo

    2004-01-01

    We present two measuring strategies reaching the Heisenberg limit for phase-shift measurements using semiclassical coherent states exclusively. We examine their performance by assuming practical experimental conditions such as losses and nonideal detectors.

  16. Locality of Area Coverage on Digital Acoustic Communication in Air using Differential Phase Shift Keying

    NASA Astrophysics Data System (ADS)

    Mizutani, Keiichi; Ebihara, Tadashi; Wakatsuki, Naoto; Mizutani, Koichi

    2009-07-01

    We experimentally evaluate the locality of digital acoustic communication in air. Digital acoustic communication in air is suitable for a small cell system, because acoustic waves have a short propagation distance in air. In this study, optimal cell size is experimentally evaluated. Each base station (BS) transmits different commands. In our experiment, differential phase shift keying (DPSK), especially binary DPSK (DBPSK), is adopted as a modulation and demodulation scheme. The evaluated system consists of a personal computer (PC), a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), a loud speaker (SP), a microphone (MIC), and transceiver software. All experiments are performed in an anechoic room. The cell size of the transmitter can be limited under low signal-to-noise ratio (SNR) condition. If another transmitter works, cell size is limited by the effect of the interference from that transmitter. The cell size-to-distance ratio of transmitter A to transmitter B is 37.5%, if cell edge bit-error-rate (BER) is taken as 10-3.

  17. Quantum-classical boundary for precision optical phase estimation

    NASA Astrophysics Data System (ADS)

    Birchall, Patrick M.; O'Brien, Jeremy L.; Matthews, Jonathan C. F.; Cable, Hugo

    2017-12-01

    Understanding the fundamental limits on the precision to which an optical phase can be estimated is of key interest for many investigative techniques utilized across science and technology. We study the estimation of a fixed optical phase shift due to a sample which has an associated optical loss, and compare phase estimation strategies using classical and nonclassical probe states. These comparisons are based on the attainable (quantum) Fisher information calculated per number of photons absorbed or scattered by the sample throughout the sensing process. We find that for a given number of incident photons upon the unknown phase, nonclassical techniques in principle provide less than a 20 % reduction in root-mean-square error (RMSE) in comparison with ideal classical techniques in multipass optical setups. Using classical techniques in a different optical setup that we analyze, which incorporates additional stages of interference during the sensing process, the achievable reduction in RMSE afforded by nonclassical techniques falls to only ≃4 % . We explain how these conclusions change when nonclassical techniques are compared to classical probe states in nonideal multipass optical setups, with additional photon losses due to the measurement apparatus.

  18. Tunneling probe of fluctuating superconductivity in disordered thin films

    NASA Astrophysics Data System (ADS)

    Dentelski, David; Frydman, Aviad; Shimshoni, Efrat; Dalla Torre, Emanuele G.

    2018-03-01

    Disordered thin films close to the superconductor-insulator phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be revealed, for example, by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks, on both sides of the transition. Here we describe the insulating side in terms of a fluctuating superconducting field with finite-range correlations. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks.

  19. Control of the spin geometric phase in semiconductor quantum rings.

    PubMed

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  20. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  1. Deterministic quantum controlled-PHASE gates based on non-Markovian environments

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Tian; Wang, Xiang-Bin

    2017-12-01

    We study the realization of the quantum controlled-PHASE gate in an atom-cavity system beyond the Markovian approximation. The general description of the dynamics for the atom-cavity system without any approximation is presented. When the spectral density of the reservoir has the Lorentz form, by making use of the memory backflow from the reservoir, we can always construct the deterministic quantum controlled-PHASE gate between a photon and an atom, no matter the atom-cavity coupling strength is weak or strong. While, the phase shift in the output pulse hinders the implementation of quantum controlled-PHASE gates in the sub-Ohmic, Ohmic or super-Ohmic reservoirs.

  2. Application of Kalman filter in frequency offset estimation for coherent optical quadrature phase-shift keying communication system

    NASA Astrophysics Data System (ADS)

    Jiang, Wen; Yang, Yanfu; Zhang, Qun; Sun, Yunxu; Zhong, Kangping; Zhou, Xian; Yao, Yong

    2016-09-01

    The frequency offset estimation (FOE) schemes based on Kalman filter are proposed and investigated in detail via numerical simulation and experiment. The schemes consist of a modulation phase removing stage and Kalman filter estimation stage. In the second stage, the Kalman filters are employed for tracking either differential angles or differential data between two successive symbols. Several implementations of the proposed FOE scheme are compared by employing different modulation removing methods and two Kalman algorithms. The optimal FOE implementation is suggested for different operating conditions including optical signal-to-noise ratio and the number of the available data symbols.

  3. Phase-encoded measurement device independent quantum key distribution without a shared reference frame

    NASA Astrophysics Data System (ADS)

    Zhuo-Dan, Zhu; Shang-Hong, Zhao; Chen, Dong; Ying, Sun

    2018-07-01

    In this paper, a phase-encoded measurement device independent quantum key distribution (MDI-QKD) protocol without a shared reference frame is presented, which can generate secure keys between two parties while the quantum channel or interferometer introduces an unknown and slowly time-varying phase. The corresponding secret key rate and single photons bit error rate is analysed, respectively, with single photons source (SPS) and weak coherent source (WCS), taking finite-key analysis into account. The numerical simulations show that the modified phase-encoded MDI-QKD protocol has apparent superiority both in maximal secure transmission distance and key generation rate while possessing the improved robustness and practical security in the high-speed case. Moreover, the rejection of the frame-calibrating part will intrinsically reduce the consumption of resources as well as the potential security flaws of practical MDI-QKD systems.

  4. Hacking on decoy-state quantum key distribution system with partial phase randomization

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  5. Hacking on decoy-state quantum key distribution system with partial phase randomization.

    PubMed

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-23

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  6. A bandwidth compressive modulation system using multi-amplitude minimum shift keying /MAMSK/. [for spacecraft communication

    NASA Technical Reports Server (NTRS)

    Weber, W. J., III; Stanton, P. H.; Sumida, J. T.

    1978-01-01

    A bandwidth compressive modem making use of multi-amplitude minimum shift keying (MAMSK) has been designed and implemented in a laboratory environment at microwave frequencies. This system achieves a substantial bandwidth reduction over binary PSK and operates within 0.5 dB of theoretical performance. A number of easily implemented microwave transmitters have been designed to generate the required set of 16 signals. The receiver has been designed to work at 1 Mbit/s and contains the necessary phase tracking, AGC, and symbol synchronization loops as well as a lock detector, SNR estimator and provisions for differential decoding. This paper describes this entire system and presents the experimental results.

  7. Security of Distributed-Phase-Reference Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Moroder, Tobias; Curty, Marcos; Lim, Charles Ci Wen; Thinh, Le Phuc; Zbinden, Hugo; Gisin, Nicolas

    2012-12-01

    Distributed-phase-reference quantum key distribution stands out for its easy implementation with present day technology. For many years, a full security proof of these schemes in a realistic setting has been elusive. We solve this long-standing problem and present a generic method to prove the security of such protocols against general attacks. To illustrate our result, we provide lower bounds on the key generation rate of a variant of the coherent-one-way quantum key distribution protocol. In contrast to standard predictions, it appears to scale quadratically with the system transmittance.

  8. Demodulation Algorithms for the Ofdm Signals in the Time- and Frequency-Scattering Channels

    NASA Astrophysics Data System (ADS)

    Bochkov, G. N.; Gorokhov, K. V.; Kolobkov, A. V.

    2016-06-01

    We consider a method based on the generalized maximum-likelihood rule for solving the problem of reception of the signals with orthogonal frequency division multiplexing of their harmonic components (OFDM signals) in the time- and frequency-scattering channels. The coherent and incoherent demodulators effectively using the time scattering due to the fast fading of the signal are developed. Using computer simulation, we performed comparative analysis of the proposed algorithms and well-known signal-reception algorithms with equalizers. The proposed symbolby-symbol detector with decision feedback and restriction of the number of searched variants is shown to have the best bit-error-rate performance. It is shown that under conditions of the limited accuracy of estimating the communication-channel parameters, the incoherent OFDMsignal detectors with differential phase-shift keying can ensure a better bit-error-rate performance compared with the coherent OFDM-signal detectors with absolute phase-shift keying.

  9. A photon-photon quantum gate based on a single atom in an optical resonator.

    PubMed

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-11

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations. The demonstrated feasibility of deterministic protocols for the optical processing of quantum information could lead to new applications in which photons are essential, especially long-distance quantum communication and scalable quantum computing.

  10. Resonant Pump-dump Quantum Control of Solvated Dye Molecules with Phase Jumps

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Lozovoy, Vadim; Dantus, Marcos

    2014-03-01

    Quantum coherent control of two photon and multiphoton excitation processes in atomic and condensed phase systems employing phase jumps has been well studied and understood. Here we demonstrate coherent quantum control of a two photon resonant pump-dump process in a complex solvated dye molecule. Phase jump in the frequency domain via a pulse shaper is employed to coherently enhance the stimulated emission by an order of magnitude when compared to transform limited pulses. Red shifted stimulated emission from successive low energy Stokes shifted excited states leading to narrowband emission are observed upon scanning the pi step across the excitation spectrum. A binary search space routine was also employed to investigate the effects of other types of phase jumps on stimulated emission and to determine the optimum phase that maximizes the emission. Understanding the underlying mechanism of this kind of enhancement will guide us in designing pulse shapes for enhancing stimulated emission, which can be further applied in the field of imaging.

  11. Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Mylonas, Dionysios; Schupp, Peter; Szabo, Richard J.

    2014-12-01

    We analyse the symmetries underlying nonassociative deformations of geometry in non-geometric R-flux compactifications which arise via T-duality from closed strings with constant geometric fluxes. Starting from the non-abelian Lie algebra of translations and Bopp shifts in phase space, together with a suitable cochain twist, we construct the quasi-Hopf algebra of symmetries that deforms the algebra of functions and the exterior differential calculus in the phase space description of nonassociative R-space. In this setting, nonassociativity is characterised by the associator 3-cocycle which controls non-coassociativity of the quasi-Hopf algebra. We use abelian 2-cocycle twists to construct maps between the dynamical nonassociative star product and a family of associative star products parametrized by constant momentum surfaces in phase space. We define a suitable integration on these nonassociative spaces and find that the usual cyclicity of associative noncommutative deformations is replaced by weaker notions of 2-cyclicity and 3-cyclicity. Using this star product quantization on phase space together with 3-cyclicity, we formulate a consistent version of nonassociative quantum mechanics, in which we calculate the expectation values of area and volume operators, and find coarse-graining of the string background due to the R-flux.

  12. Multi-level trellis coded modulation and multi-stage decoding

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Wu, Jiantian; Lin, Shu

    1990-01-01

    Several constructions for multi-level trellis codes are presented and many codes with better performance than previously known codes are found. These codes provide a flexible trade-off between coding gain, decoding complexity, and decoding delay. New multi-level trellis coded modulation schemes using generalized set partitioning methods are developed for Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK) signal sets. New rotationally invariant multi-level trellis codes which can be combined with differential encoding to resolve phase ambiguity are presented.

  13. Advanced Receiver For Phase-Shift-Keyed Signals

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.

    1992-01-01

    ARX II is second "breadboard" version of advanced receiver, a hybrid digital/analog receiving subsystem, extracting symbols and Doppler shifts from weak phase-shift-keyed signals. Useful in terrestrial digital communication systems.

  14. Concatenated Coding Using Trellis-Coded Modulation

    NASA Technical Reports Server (NTRS)

    Thompson, Michael W.

    1997-01-01

    In the late seventies and early eighties a technique known as Trellis Coded Modulation (TCM) was developed for providing spectrally efficient error correction coding. Instead of adding redundant information in the form of parity bits, redundancy is added at the modulation stage thereby increasing bandwidth efficiency. A digital communications system can be designed to use bandwidth-efficient multilevel/phase modulation such as Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK) or Quadrature Amplitude Modulation (QAM). Performance gain can be achieved by increasing the number of signals over the corresponding uncoded system to compensate for the redundancy introduced by the code. A considerable amount of research and development has been devoted toward developing good TCM codes for severely bandlimited applications. More recently, the use of TCM for satellite and deep space communications applications has received increased attention. This report describes the general approach of using a concatenated coding scheme that features TCM and RS coding. Results have indicated that substantial (6-10 dB) performance gains can be achieved with this approach with comparatively little bandwidth expansion. Since all of the bandwidth expansion is due to the RS code we see that TCM based concatenated coding results in roughly 10-50% bandwidth expansion compared to 70-150% expansion for similar concatenated scheme which use convolution code. We stress that combined coding and modulation optimization is important for achieving performance gains while maintaining spectral efficiency.

  15. Optimally cloned binary coherent states

    NASA Astrophysics Data System (ADS)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  16. Performance investigation of optical multicast overlay system using orthogonal modulation format

    NASA Astrophysics Data System (ADS)

    Singh, Simranjit; Singh, Sukhbir; Kaur, Ramandeep; Kaler, R. S.

    2015-03-01

    We proposed a bandwidth efficient wavelength division multiplexed-passive optical network (WDM-PON) to simultaneously transmit 60 Gb/s unicast and 10 Gb/s multicast services with 10 Gb/s upstream. The differential phase shift keying (DPSK) multicast signal is superimposed onto multiplexed non-return to zero/polarization shift keying (NRZ/PolSK) orthogonal modulated data signals. Upstream amplitude shift keying (ASK) signals formed without use of any additional light source and superimposed onto received unicast NRZ/PolSK signal before being transmitted back to optical line terminal (OLT). We also investigated the proposed WDM-PON system for variable optical input power, transmission distance of single mode fiber in multicast enable and disable mode. The measured Quality factor for all unicast and multicast signal is in acceptable range (>6). The original contribution of this paper is to propose a bandwidth efficient WDM-PON system that could be projected even in high speed scenario at reduced channel spacing and expected to be more technical viable due to use of optical orthogonal modulation formats.

  17. Frequency-noise cancellation in semiconductor lasers by nonlinear heterodyne detection.

    PubMed

    Bondurant, R S; Welford, D; Alexander, S B; Chan, V W

    1986-12-01

    The bit-error-rate (BER) performance of conventional noncoherent, heterodyne frequency-shift-keyed (FSK) optical communications systems can be surpassed by the use of a differential FSK modulation format and nonlinear postdetection processing at the receiver. A BER floor exists for conventional frequency-shift keying because of the frequency noise of the transmitter and local oscillator. The use of differential frequency-shift keying with nonlinear postdetection processing suppresses this BER floor for the semiconductor laser system considered here.

  18. Magnetosonic waves interactions in a spin-1/2 degenerate quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sheng-Chang, E-mail: lsc1128lsc@126.com; Han, Jiu-Ning

    2014-03-15

    We investigate the magnetosonic waves and their interactions in a spin-1/2 degenerate quantum plasma. With the help of the extended Poincaré-Lighthill-Kuo perturbation method, we derive two Korteweg-de Vries-Burgers equations to describe the magnetosonic waves. The parameter region where exists magnetosonic waves and the phase diagram of the compressive and rarefactive solitary waves with different plasma parameters are shown. We further explore the effects of quantum diffraction, quantum statistics, and electron spin magnetization on the head-on collisions of magnetosonic solitary waves. We obtain the collision-induced phase shifts (trajectory changes) analytically. Both for the compressive and rarefactive solitary waves, it is foundmore » that the collisions only lead to negative phase shifts. Our present study should be useful to understand the collective phenomena related to the magnetosonic wave collisions in degenerate plasmas like those in the outer shell of massive white dwarfs as well as to the potential applications of plasmas.« less

  19. Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors.

    PubMed

    Fortier, T M; Roos, P A; Jones, D J; Cundiff, S T; Bhat, R D R; Sipe, J E

    2004-04-09

    We demonstrate quantum interference control of injected photocurrents in a semiconductor using the phase stabilized pulse train from a mode-locked Ti:sapphire laser. Measurement of the comb offset frequency via this technique results in a signal-to-noise ratio of 40 dB (10 Hz resolution bandwidth), enabling solid-state detection of carrier-envelope phase shifts of a Ti:sapphire oscillator.

  20. Chip-based quantum key distribution

    PubMed Central

    Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.

    2017-01-01

    Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip—monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols—BB84, Coherent One Way and Differential Phase Shift—with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks. PMID:28181489

  1. Impact of Disorder on the Superconducting Phase Diagram in BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Mizukami, Yuta; Konczykowski, Marcin; Matsuura, Kohei; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2017-08-01

    In many classes of unconventional superconductors, the question of whether the superconductivity is enhanced by the quantum-critical fluctuations on the verge of an ordered phase remains elusive. One of the most direct ways of addressing this issue is to investigate how the superconducting dome traces a shift of the ordered phase. Here, we study how the phase diagram of the iron-based superconductor BaFe2(As1-xPx)2 changes with disorder via electron irradiation, which keeps the carrier concentrations intact. With increasing disorder, we find that the magneto-structural transition is suppressed, indicating that the critical concentration is shifted to the lower side. Although the superconducting transition temperature Tc is depressed at high concentrations (x ≳ 0.28), it shows an initial increase at lower x. This implies that the superconducting dome tracks the shift of the antiferromagnetic phase, supporting the view of the crucial role played by quantum-critical fluctuations in enhancing superconductivity in this iron-based high-Tc family.

  2. Improved detection sensitivity of D-mannitol crystalline phase content using differential spectral phase shift terahertz spectroscopy measurements.

    PubMed

    Allard, Jean-François; Cornet, Alain; Debacq, Christophe; Meurens, Marc; Houde, Daniel; Morris, Denis

    2011-02-28

    We report quantitative measurement of the relative proportion of δ- and β-D-mannitol crystalline phases inserted into polyethylene powder pellets, obtained by time-domain terahertz spectroscopy. Nine absorption bands have been identified from 0.2 THz to 2.2 THz. The best quantification of the δ-phase proportion is made using the 1.01 THz absorption band. Coherent detection allows using the spectral phase shift of the transmitted THz waveform to improve the detection sensitivity of the relative δ-phase proportion. We argue that differential phase shift measurements are less sensitive to samples' defects. Using a linear phase shift compensation for pellets of slightly different thicknesses, we were able to distinguish a 0.5% variation in δ-phase proportion.

  3. Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Song, Xiao-Tian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2015-10-01

    Measurement-device-independent quantum key distribution (MDI QKD) is a substantial step toward practical information-theoretic security for key sharing between remote legitimate users (Alice and Bob). As with other standard device-dependent quantum key distribution protocols, such as BB84, MDI QKD assumes that the reference frames have been shared between Alice and Bob. In practice, a nontrivial alignment procedure is often necessary, which requires system resources and may significantly reduce the secure key generation rate. Here, we propose a phase-coding reference-frame-independent MDI QKD scheme that requires no phase alignment between the interferometers of two distant legitimate parties. As a demonstration, a proof-of-principle experiment using Faraday-Michelson interferometers is presented. The experimental system worked at 1 MHz, and an average secure key rate of 8.309 bps was obtained at a fiber length of 20 km between Alice and Bob. The system can maintain a positive key generation rate without phase compensation under normal conditions. The results exhibit the feasibility of our system for use in mature MDI QKD devices and its value for network scenarios.

  4. Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Qin, Hao; Tang, Bao; Sanders, Barry C.

    2014-05-01

    We realize the quasi-periodic dynamics of a quantum walker over 2.5 quasi-periods by realizing the walker as a single photon passing through a quantum-walk optical-interferometer network. We introduce fully controllable polarization-independent phase shifters in each optical path to realize arbitrary site-dependent phase shifts, and employ large clear-aperture beam displacers, while maintaining high-visibility interference, to enable 10 quantum-walk steps to be reached. By varying the half-wave-plate setting, we control the quantum-coin bias thereby observing a transition from quasi-periodic dynamics to ballistic diffusion.

  5. Flexible digital modulation and coding synthesis for satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John

    1991-01-01

    An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.

  6. Quantum-enhanced spectroscopy with entangled multiphoton states

    NASA Astrophysics Data System (ADS)

    Dinani, Hossein T.; Gupta, Manish K.; Dowling, Jonathan P.; Berry, Dominic W.

    2016-06-01

    Traditionally, spectroscopy is performed by examining the position of absorption lines. However, at frequencies near the transition frequency, additional information can be obtained from the phase shift. In this work we consider the information about the transition frequency obtained from both the absorption and the phase shift, as quantified by the Fisher information in an interferometric measurement. We examine the use of multiple single-photon states, NOON states, and numerically optimized states that are entangled and have multiple photons. We find the optimized states that improve over the standard quantum limit set by independent single photons for some atom number densities.

  7. Theoretical Investigation of Tunable Goos-Hänchen Shifts in a Four-Level Quantum System

    NASA Astrophysics Data System (ADS)

    Jafarzadeh, Hossein; Payravi, Mohammad

    2018-05-01

    Goos-Hänchen (GH) shifts in the reflected and transmitted light have been discussed in a cavity with four-level quantum system. It is realized that the refraction index of intracavity medium can be negative by manipulating the external coherent laser fields. For the negative refraction index of intracavity medium, the GH shifts of reflected and transmitted light beams have been analyzed in a parametric condition. It is found that due to modulation of laser signals and relative phase between applied fields, large and tunable GH shifts in reflected and transmitted light beams can be obtained.

  8. Joint estimation of phase and phase diffusion for quantum metrology.

    PubMed

    Vidrighin, Mihai D; Donati, Gaia; Genoni, Marco G; Jin, Xian-Min; Kolthammer, W Steven; Kim, M S; Datta, Animesh; Barbieri, Marco; Walmsley, Ian A

    2014-04-14

    Phase estimation, at the heart of many quantum metrology and communication schemes, can be strongly affected by noise, whose amplitude may not be known, or might be subject to drift. Here we investigate the joint estimation of a phase shift and the amplitude of phase diffusion at the quantum limit. For several relevant instances, this multiparameter estimation problem can be effectively reshaped as a two-dimensional Hilbert space model, encompassing the description of an interferometer phase probed with relevant quantum states--split single-photons, coherent states or N00N states. For these cases, we obtain a trade-off bound on the statistical variances for the joint estimation of phase and phase diffusion, as well as optimum measurement schemes. We use this bound to quantify the effectiveness of an actual experimental set-up for joint parameter estimation for polarimetry. We conclude by discussing the form of the trade-off relations for more general states and measurements.

  9. Interfacial properties at the organic-metal interface probed using quantum well states

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Wang, Chin-Yung; Hsu, Jer-Chia; Pan, Chih-Hao; Machida, Shin-ichi; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.

    2012-10-01

    Using angle-resolved photoemission spectroscopy, we investigated the interfacial properties between the long-chain normal-alkane molecule n-CH3(CH2)42CH3 [tetratetracontane (TTC)] and uniform Ag films using the Ag quantum well states. The entire quantum well state energy band dispersions were observed to shift toward the Fermi level with increasing adsorption coverage of TTC up to 1 monolayer (ML). However, the energy shifts upon deposition of 1 ML of TTC are approximately inversely dependent on the Ag film thickness, indicating a quantum-size effect. In the framework of the pushback and image-force models, we applied the Bohr-Sommerfeld quantization rule with the modified Coulomb image potential for the phase shift at the TTC/Ag interface to extract the dielectric constant for 1 ML of TTC.

  10. Probing the limits of the rigid-intensity-shift model in differential-phase-contrast scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Clark, L.; Brown, H. G.; Paganin, D. M.; Morgan, M. J.; Matsumoto, T.; Shibata, N.; Petersen, T. C.; Findlay, S. D.

    2018-04-01

    The rigid-intensity-shift model of differential-phase-contrast imaging assumes that the phase gradient imposed on the transmitted probe by the sample causes the diffraction pattern intensity to shift rigidly by an amount proportional to that phase gradient. This behavior is seldom realized exactly in practice. Through a combination of experimental results, analytical modeling and numerical calculations, using as case studies electron microscope imaging of the built-in electric field in a p-n junction and nanoscale domains in a magnetic alloy, we explore the breakdown of rigid-intensity-shift behavior and how this depends on the magnitude of the phase gradient and the relative scale of features in the phase profile and the probe size. We present guidelines as to when the rigid-intensity-shift model can be applied for quantitative phase reconstruction using segmented detectors, and propose probe-shaping strategies to further improve the accuracy.

  11. Experimental study of entanglement evolution in the presence of bit-flip and phase-shift noises

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Cao, Lian-Zhen; Zhao, Jia-Qiang; Yang, Yang; Lu, Huai-Xin

    2017-10-01

    Because of its important role both in fundamental theory and applications in quantum information, evolution of entanglement in a quantum system under decoherence has attracted wide attention in recent years. In this paper, we experimentally generate a high-fidelity maximum entangled two-qubit state and present an experimental study of the decoherence properties of entangled pair of qubits at collective (non-collective) bit-flip and phase-shift noises. The results shown that entanglement decreasing depends on the type of the noises (collective or non-collective and bit-flip or phase-shift) and the number of qubits which are subject to the noise. When two qubits are depolarized passing through non-collective noisy channel, the decay rate is larger than that depicted for the collective noise. When two qubits passing through depolarized noisy channel, the decay rate is larger than that depicted for one qubit.

  12. ac Stark-mediated quantum control with femtosecond two-color laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrat, Carles

    2005-11-15

    A critical dependence of the quantum interference on the optical Stark spectral shift produced when two-color laser pulses interact with a two-level medium is observed. The four-wave mixing of two ultrashort phase-locked {omega}-3{omega} laser pulses propagating coherently in a two-level system depends on the pulses' relative phase. The phase dominating the efficiency of the coupling to the anti-Stokes Raman component is found to be determined by the sign of the total ac Stark shift induced in the system, in such a way that the phase sensitivity disappears precisely where the ac Stark effect due to both pulses is compensated. Amore » coherent control scheme based on this phenomenon can be contemplated as the basis for nonlinear optical spectroscopy techniques.« less

  13. Simulating of the measurement-device independent quantum key distribution with phase randomized general sources

    PubMed Central

    Wang, Qin; Wang, Xiang-Bin

    2014-01-01

    We present a model on the simulation of the measurement-device independent quantum key distribution (MDI-QKD) with phase randomized general sources. It can be used to predict experimental observations of a MDI-QKD with linear channel loss, simulating corresponding values for the gains, the error rates in different basis, and also the final key rates. Our model can be applicable to the MDI-QKDs with arbitrary probabilistic mixture of different photon states or using any coding schemes. Therefore, it is useful in characterizing and evaluating the performance of the MDI-QKD protocol, making it a valuable tool in studying the quantum key distributions. PMID:24728000

  14. Room-Temperature Quantum Cloning Machine with Full Coherent Phase Control in Nanodiamond

    PubMed Central

    Chang, Yan-Chun; Liu, Gang-Qin; Liu, Dong-Qi; Fan, Heng; Pan, Xin-Yu

    2013-01-01

    In contrast to the classical world, an unknown quantum state cannot be cloned ideally, as stated by the no-cloning theorem. However, it is expected that approximate or probabilistic quantum cloning will be necessary for different applications, and thus various quantum cloning machines have been designed. Phase quantum cloning is of particular interest because it can be used to attack the Bennett-Brassard 1984 (BB84) states used in quantum key distribution for secure communications. Here, we report the first room-temperature implementation of quantum phase cloning with a controllable phase in a solid-state system: the nitrogen-vacancy centre of a nanodiamond. The phase cloner works well for all qubits located on the equator of the Bloch sphere. The phase is controlled and can be measured with high accuracy, and the experimental results are consistent with theoretical expectations. This experiment provides a basis for phase-controllable quantum information devices. PMID:23511233

  15. Joint CPT and N resonance in compact atomic time standards

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Hohensee, Michael; Xiao, Yanhong; Phillips, David; Walsworth, Ron

    2008-05-01

    Currently development efforts towards small, low power atomic time standards use current-modulated VCSELs to generate phase-coherent optical sidebands that interrogate the hyperfine structure of alkali atoms such as rubidium. We describe and use a modified four-level quantum optics model to study the optimal operating regime of the joint CPT- and N-resonance clock. Resonant and non-resonant light shifts as well as modulation comb detuning effects play a key role in determining the optimal operating point of such clocks. We further show that our model is in good agreement with experimental tests performed using Rb-87 vapor cells.

  16. Research on Quantum Algorithms at the Institute for Quantum Information and Matter

    DTIC Science & Technology

    2016-05-29

    local quantum computation with applications to position-based cryptography , New Journal of Physics, (09 2011): 0. doi: 10.1088/1367-2630/13/9/093036... cryptography , such as the ability to turn private-key encryption into public-key encryption. While ad hoc obfuscators exist, theoretical progress has mainly...to device-independent quantum cryptography , to quantifying entanglement, and to the classification of quantum phases of matter. Exact synthesis

  17. Spacecraft-to-Earth Communications for Juno and Mars Science Laboratory Critical Events

    NASA Technical Reports Server (NTRS)

    Soriano, Melissa; Finley, Susan; Jongeling, Andre; Fort, David; Goodhart, Charles; Rogstad, David; Navarro, Robert

    2012-01-01

    Deep Space communications typically utilize closed loop receivers and Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK). Critical spacecraft events include orbit insertion and entry, descent, and landing.---Low gain antennas--> low signal -to-noise-ratio.---High dynamics such as parachute deployment or spin --> Doppler shift. During critical events, open loop receivers and Multiple Frequency Shift Keying (MFSK) used. Entry, Descent, Landing (EDL) Data Analysis (EDA) system detects tones in real-time.

  18. The quantum phase-transitions of water

    NASA Astrophysics Data System (ADS)

    Fillaux, François

    2017-08-01

    It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.

  19. Momentum Distribution as a Fingerprint of Quantum Delocalization in Enzymatic Reactions: Open-Chain Path-Integral Simulations of Model Systems and the Hydride Transfer in Dihydrofolate Reductase.

    PubMed

    Engel, Hamutal; Doron, Dvir; Kohen, Amnon; Major, Dan Thomas

    2012-04-10

    The inclusion of nuclear quantum effects such as zero-point energy and tunneling is of great importance in studying condensed phase chemical reactions involving the transfer of protons, hydrogen atoms, and hydride ions. In the current work, we derive an efficient quantum simulation approach for the computation of the momentum distribution in condensed phase chemical reactions. The method is based on a quantum-classical approach wherein quantum and classical simulations are performed separately. The classical simulations use standard sampling techniques, whereas the quantum simulations employ an open polymer chain path integral formulation which is computed using an efficient Monte Carlo staging algorithm. The approach is validated by applying it to a one-dimensional harmonic oscillator and symmetric double-well potential. Subsequently, the method is applied to the dihydrofolate reductase (DHFR) catalyzed reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to yield S-5,6,7,8-tetrahydrofolate and NADP(+). The key chemical step in the catalytic cycle of DHFR involves a stereospecific hydride transfer. In order to estimate the amount of quantum delocalization, we compute the position and momentum distributions for the transferring hydride ion in the reactant state (RS) and transition state (TS) using a recently developed hybrid semiempirical quantum mechanics-molecular mechanics potential energy surface. Additionally, we examine the effect of compression of the donor-acceptor distance (DAD) in the TS on the momentum distribution. The present results suggest differential quantum delocalization in the RS and TS, as well as reduced tunneling upon DAD compression.

  20. Quantum dressing orbits on compact groups

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Šťovíček, Pavel

    1993-02-01

    The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decompositon in the general case. Quantum dressing orbits are described explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient “coherent states” are introduced and a correspondence between classical and quantum observables is given.

  1. Polar codes for achieving the classical capacity of a quantum channel

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Wilde, Mark

    2012-02-01

    We construct the first near-explicit, linear, polar codes that achieve the capacity for classical communication over quantum channels. The codes exploit the channel polarization phenomenon observed by Arikan for classical channels. Channel polarization is an effect in which one can synthesize a set of channels, by ``channel combining'' and ``channel splitting,'' in which a fraction of the synthesized channels is perfect for data transmission while the other fraction is completely useless for data transmission, with the good fraction equal to the capacity of the channel. Our main technical contributions are threefold. First, we demonstrate that the channel polarization effect occurs for channels with classical inputs and quantum outputs. We then construct linear polar codes based on this effect, and the encoding complexity is O(N log N), where N is the blocklength of the code. We also demonstrate that a quantum successive cancellation decoder works well, i.e., the word error rate decays exponentially with the blocklength of the code. For a quantum channel with binary pure-state outputs, such as a binary-phase-shift-keyed coherent-state optical communication alphabet, the symmetric Holevo information rate is in fact the ultimate channel capacity, which is achieved by our polar code.

  2. Measuring the complex admittance and tunneling rate of a germanium hut wire hole quantum dot

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, Shu-Xiao; Gao, Fei; Li, Hai-Ou; Xu, Gang; Wang, Ke; Liu, He; Cao, Gang; Xiao, Ming; Wang, Ting; Zhang, Jian-Jun; Guo, Guo-Ping

    2018-05-01

    We investigate the microwave reflectometry of an on-chip reflection line cavity coupled to a Ge hut wire hole quantum dot. The amplitude and phase responses of the cavity can be used to measure the complex admittance and evaluate the tunneling rate of the quantum dot, even in the region where transport signal through the quantum dot is too small to be measured by conventional direct transport means. The experimental observations are found to be in good agreement with a theoretical model of the hybrid system based on cavity frequency shift and linewidth shift. Our experimental results take the first step towards fast and sensitive readout of charge and spin states in Ge hut wire hole quantum dot.

  3. Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals.

    PubMed

    Vallaitis, T; Bonk, R; Guetlein, J; Hillerkuss, D; Li, J; Brenot, R; Lelarge, F; Duan, G H; Freude, W; Leuthold, J

    2010-03-15

    Experimentally we find a 10 dB input power dynamic range advantage for amplification of phase encoded signals with quantum dot SOA as compared to low-confinement bulk SOA. An analysis of amplitude and phase effects shows that this improvement can be attributed to the lower alpha-factor found in QD SOA.

  4. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-12-01

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

  5. Two-dimensional distributed-phase-reference protocol for quantum key distribution.

    PubMed

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-12-22

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

  6. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    PubMed Central

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-01-01

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable. PMID:28004821

  7. Enhanced zero-bias Majorana peak in the differential tunneling conductance of disordered multisubband quantum-wire/superconductor junctions.

    PubMed

    Pientka, Falko; Kells, Graham; Romito, Alessandro; Brouwer, Piet W; von Oppen, Felix

    2012-11-30

    A recent experiment Mourik et al. [Science 336, 1003 (2012)] on InSb quantum wires provides possible evidence for the realization of a topological superconducting phase and the formation of Majorana bound states. Motivated by this experiment, we consider the signature of Majorana bound states in the differential tunneling conductance of multisubband wires. We show that the weight of the Majorana-induced zero-bias peak is strongly enhanced by mixing of subbands, when disorder is added to the end of the quantum wire. We also consider how the topological phase transition is reflected in the gap structure of the current-voltage characteristic.

  8. Securing quantum key distribution systems using fewer states

    NASA Astrophysics Data System (ADS)

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.

    2018-04-01

    Quantum key distribution (QKD) allows two remote users to establish a secret key in the presence of an eavesdropper. The users share quantum states prepared in two mutually unbiased bases: one to generate the key while the other monitors the presence of the eavesdropper. Here, we show that a general d -dimension QKD system can be secured by transmitting only a subset of the monitoring states. In particular, we find that there is no loss in the secure key rate when dropping one of the monitoring states. Furthermore, it is possible to use only a single monitoring state if the quantum bit error rates are low enough. We apply our formalism to an experimental d =4 time-phase QKD system, where only one monitoring state is transmitted, and obtain a secret key rate of 17.4 ±2.8 Mbits/s at a 4 dB channel loss and with a quantum bit error rate of 0.045 ±0.001 and 0.037 ±0.001 in time and phase bases, respectively, which is 58.4% of the secret key rate that can be achieved with the full setup. This ratio can be increased, potentially up to 100%, if the error rates in time and phase basis are reduced. Our results demonstrate that it is possible to substantially simplify the design of high-dimensional QKD systems, including those that use the spatial or temporal degrees of freedom of the photon, and still outperform qubit-based (d =2 ) protocols.

  9. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters.

    PubMed

    Lucamarini, M; Yuan, Z L; Dynes, J F; Shields, A J

    2018-05-01

    Quantum key distribution (QKD) 1,2 allows two distant parties to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via optical means, achieving key rates of 1.26 megabits per second over 50 kilometres of standard optical fibre 3 and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent configuration 4 . Increasing the bit rate and range of QKD is a formidable, but important, challenge. A related target, which is currently considered to be unfeasible without quantum repeaters 5-7 , is overcoming the fundamental rate-distance limit of QKD 8 . This limit defines the maximum possible secret key rate that two parties can distil at a given distance using QKD and is quantified by the secret-key capacity of the quantum channel 9 that connects the parties. Here we introduce an alternative scheme for QKD whereby pairs of phase-randomized optical fields are first generated at two distant locations and then combined at a central measuring station. Fields imparted with the same random phase are 'twins' and can be used to distil a quantum key. The key rate of this twin-field QKD exhibits the same dependence on distance as does a quantum repeater, scaling with the square-root of the channel transmittance, irrespective of who (malicious or otherwise) is in control of the measuring station. However, unlike schemes that involve quantum repeaters, ours is feasible with current technology and presents manageable levels of noise even on 550 kilometres of standard optical fibre. This scheme is a promising step towards overcoming the rate-distance limit of QKD and greatly extending the range of secure quantum communications.

  10. Homodyning and heterodyning the quantum phase

    NASA Technical Reports Server (NTRS)

    Dariano, Giacomo M.; Macchiavello, C.; Paris, M. G. A.

    1994-01-01

    The double-homodyne and the heterodyne detection schemes for phase shifts between two synchronous modes of the electromagnetic field are analyzed in the framework of quantum estimation theory. The probability operator-valued measures (POM's) of the detectors are evaluated and compared with the ideal one in the limit of strong local reference oscillator. The present operational approach leads to a reasonable definition of phase measurement, whose sensitivity is actually related to the output r.m.s. noise of the photodetector. We emphasize that the simple-homodyne scheme does not correspond to a proper phase-shift measurements as it is just a zero-point detector. The sensitivity of all detection schemes are optimized at fixed energy with respect to the input state of radiation. It is shown that the optimal sensitivity can be actually achieved using suited squeezed states.

  11. Carrier recovery techniques on satellite mobile channels

    NASA Technical Reports Server (NTRS)

    Vucetic, B.; Du, J.

    1990-01-01

    An analytical method and a stored channel model were used to evaluate error performance of uncoded quadrature phase shift keying (QPSK) and M-ary phase shift keying (MPSK) trellis coded modulation (TCM) over shadowed satellite mobile channels in the presence of phase jitter for various carrier recovery techniques.

  12. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Liang, Lin-Mei

    2012-08-01

    Phase randomization is a very important assumption in the BB84 quantum key distribution (QKD) system with weak coherent source; otherwise, eavesdropper may spy the final key. In this Letter, a stable and monitored active phase randomization scheme for the one-way and two-way QKD system is proposed and demonstrated in experiments. Furthermore, our scheme gives an easy way for Alice to monitor the degree of randomization in experiments. Therefore, we expect our scheme to become a standard part in future QKD systems due to its secure significance and feasibility.

  13. Phase-noise limitations in continuous-variable quantum key distribution with homodyne detection

    NASA Astrophysics Data System (ADS)

    Corvaja, Roberto

    2017-02-01

    In continuous-variables quantum key distribution with coherent states, the advantage of performing the detection by using standard telecoms components is counterbalanced by the lack of a stable phase reference in homodyne detection due to the complexity of optical phase-locking circuits and to the unavoidable phase noise of lasers, which introduces a degradation on the achievable secure key rate. Pilot-assisted phase-noise estimation and postdetection compensation techniques are used to implement a protocol with coherent states where a local laser is employed and it is not locked to the received signal, but a postdetection phase correction is applied. Here the reduction of the secure key rate determined by the laser phase noise, for both individual and collective attacks, is analytically evaluated and a scheme of pilot-assisted phase estimation proposed, outlining the tradeoff in the system design between phase noise and spectral efficiency. The optimal modulation variance as a function of the phase-noise amount is derived.

  14. Gravity sensing using Very Long Baseline Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Schlippert, D.; Wodey, E.; Meiners, C.; Tell, D.; Schubert, C.; Ertmer, W.; Rasel, E. M.

    2017-12-01

    Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Thanks to the quadratic scaling of the phase shift with increasing free evolution time, extending the baseline of atomic gravimeters from tens of centimeters to meters puts resolutions of 10-13g and beyond in reach.We present the design and progress of key elements of the VLBAI-test stand: a dual-species source of Rb and Yb, a high-performance two-layer magnetic shield, and an active vibration isolation system allowing for unprecedented stability of the mirror acting as an inertial reference. We envisage a vibration-limited short-term sensitivity to gravitational acceleration of 1x10-8 m/s-2Hz-1/2 and up to a factor of 25 improvement when including additional correlation with a broadband seismometer. Here, the supreme long-term stability of atomic gravity sensors opens the route towards competition with superconducting gravimeters. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level of <10-13, potentially surpassing the best experiments to date.

  15. Gravity sensing using Very Long Baseline Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Schlippert, Dennis; Wodey, Étienne; Meiners, Christian; Tell, Dorothee; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst M.

    2017-04-01

    Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Thanks to the quadratic scaling of the phase shift with increasing free evolution time, extending the baseline of atomic gravimeters from tens of centimeters to meters puts resolutions of 10-13 g and beyond in reach. We present the design and progress of key elements of the VLBAI-test stand: a dual-species source of Rb and Yb, a high-performance two-layer magnetic shield, and an active vibration isolation system allowing for unprecedented stability of the mirror acting as an inertial reference. We envisage a vibration-limited short-term sensitivity to gravitational acceleration of 1 .10-8 m/s2 / Hz1/2 and up to a factor of 25 improvement when including additional correlation with a broadband seismometer. Here, the supreme long-term stability of atomic gravity sensors opens the route towards competition with superconducting gravimeters. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level of <=10-13 , potentially surpassing the best experiments to date.

  16. Close-form expression of one-tap normalized LMS carrier phase recovery in optical communication systems

    NASA Astrophysics Data System (ADS)

    Xu, Tianhua; Jacobsen, Gunnar; Popov, Sergei; Li, Jie; Liu, Tiegen; Zhang, Yimo

    2016-10-01

    The performance of long-haul high speed coherent optical fiber communication systems is significantly degraded by the laser phase noise and the equalization enhanced phase noise (EEPN). In this paper, the analysis of the one-tap normalized least-mean-square (LMS) carrier phase recovery (CPR) is carried out and the close-form expression is investigated for quadrature phase shift keying (QPSK) coherent optical fiber communication systems, in compensating both laser phase noise and equalization enhanced phase noise. Numerical simulations have also been implemented to verify the theoretical analysis. It is found that the one-tap normalized least-mean-square algorithm gives the same analytical expression for predicting CPR bit-error-rate (BER) floors as the traditional differential carrier phase recovery, when both the laser phase noise and the equalization enhanced phase noise are taken into account.

  17. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.

    PubMed

    Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R

    2015-08-10

    Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.

  18. Experimental quantum cryptography with qutrits

    NASA Astrophysics Data System (ADS)

    Gröblacher, Simon; Jennewein, Thomas; Vaziri, Alipasha; Weihs, Gregor; Zeilinger, Anton

    2006-05-01

    We produce two identical keys using, for the first time, entangled trinary quantum systems (qutrits) for quantum key distribution. The advantage of qutrits over the normally used binary quantum systems is an increased coding density and a higher security margin. The qutrits are encoded into the orbital angular momentum of photons, namely Laguerre Gaussian modes with azimuthal index l + 1, 0 and -1, respectively. The orbital angular momentum is controlled with phase holograms. In an Ekert-type protocol the violation of a three-dimensional Bell inequality verifies the security of the generated keys. A key is obtained with a qutrit error rate of approximately 10%.

  19. Robust quantum data locking from phase modulation

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Wilde, Mark M.; Lloyd, Seth

    2014-08-01

    Quantum data locking is a uniquely quantum phenomenon that allows a relatively short key of constant size to (un)lock an arbitrarily long message encoded in a quantum state, in such a way that an eavesdropper who measures the state but does not know the key has essentially no information about the message. The application of quantum data locking in cryptography would allow one to overcome the limitations of the one-time pad encryption, which requires the key to have the same length as the message. However, it is known that the strength of quantum data locking is also its Achilles heel, as the leakage of a few bits of the key or the message may in principle allow the eavesdropper to unlock a disproportionate amount of information. In this paper we show that there exist quantum data locking schemes that can be made robust against information leakage by increasing the length of the key by a proportionate amount. This implies that a constant size key can still lock an arbitrarily long message as long as a fraction of it remains secret to the eavesdropper. Moreover, we greatly simplify the structure of the protocol by proving that phase modulation suffices to generate strong locking schemes, paving the way to optical experimental realizations. Also, we show that successful data locking protocols can be constructed using random code words, which very well could be helpful in discovering random codes for data locking over noisy quantum channels.

  20. Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR)

    NASA Astrophysics Data System (ADS)

    Guo, X.; Mandelis, A.; Zinman, B.

    2012-11-01

    Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.

  1. Unconditional violation of the shot-noise limit in photonic quantum metrology

    NASA Astrophysics Data System (ADS)

    Slussarenko, Sergei; Weston, Morgan M.; Chrzanowski, Helen M.; Shalm, Lynden K.; Verma, Varun B.; Nam, Sae Woo; Pryde, Geoff J.

    2017-11-01

    Interferometric phase measurement is widely used to precisely determine quantities such as length, speed and material properties1-3. Without quantum correlations, the best phase sensitivity Δ ϕ achievable using n photons is the shot-noise limit, Δ ϕ =1 /√{n }. Quantum-enhanced metrology promises better sensitivity, but, despite theoretical proposals stretching back decades3,4, no measurement using photonic (that is, definite photon number) quantum states has truly surpassed the shot-noise limit. Instead, all such demonstrations, by discounting photon loss, detector inefficiency or other imperfections, have considered only a subset of the photons used. Here, we use an ultrahigh-efficiency photon source and detectors to perform unconditional entanglement-enhanced photonic interferometry. Sampling a birefringent phase shift, we demonstrate precision beyond the shot-noise limit without artificially correcting our results for loss and imperfections. Our results enable quantum-enhanced phase measurements at low photon flux and open the door to the next generation of optical quantum metrology advances.

  2. Performance Analysis of Direct-Sequence Code-Division Multiple-Access Communications with Asymmetric Quadrature Phase-Shift-Keying Modulation

    NASA Technical Reports Server (NTRS)

    Wang, C.-W.; Stark, W.

    2005-01-01

    This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.

  3. Coulomb coupling effects in the gigahertz complex admittance of a quantum R–L circuit

    NASA Astrophysics Data System (ADS)

    Song, L.; Yin, J. Z.; Chen, S. W.

    2018-05-01

    We report on the gigahertz admittance measurements of a quantum conductor, i.e. a quantum R–L circuit, to probe the intrinsic dynamic of the conductor. The magnetic field dependence of the admittance phase provides us with an effective way to study the role of Coulomb interaction between counterpropagating edge channels. In addition, there is a small jump in the admittance phase when the transmitted modes are changed. This is because the gate voltage leads to a static potential shift of the quantum channel, then a quantum capacitance related to the density of states of the edge channels are influenced. Our study has made new discoveries of the dynamic transport in a quantum conductor, finding evidence for the deviations from quantum chiral transport associated with Coulomb interactions.

  4. Application of ANFIS to Phase Estimation for Multiple Phase Shift Keying

    NASA Technical Reports Server (NTRS)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    2000-01-01

    The paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for estimating phase in Multiple Phase Shift Keying (M-PSK) modulation. A brief overview of communications phase estimation is provided. The modeling of both general open-loop, and closed-loop phase estimation schemes for M-PSK symbols with unknown structure are discussed. Preliminary performance results from simulation of the above schemes are presented.

  5. Optically induced excitonic electroabsorption in a periodically delta-doped InGaAs/GaAs multiple quantum well structure

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Maserjian, J.

    1991-01-01

    Large optically induced Stark shifts have been observed in a periodically delta-doped InGaAs/GaAs multiple quantum well structure. With an excitation intensity of 10 mW/sq cm, an absolute quantum well absorption change of 7000/cm was measured with a corresponding differential absorption change as high as 80 percent. The associated maximum change in the quantum well refractive index is 0.04. This material is promising for device development for all-optical computing and signal processing.

  6. Entropy uncertainty relations and stability of phase-temporal quantum cryptography with finite-length transmitted strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N., E-mail: sergei.molotkov@gmail.com

    2012-12-15

    Any key-generation session contains a finite number of quantum-state messages, and it is there-fore important to understand the fundamental restrictions imposed on the minimal length of a string required to obtain a secret key with a specified length. The entropy uncertainty relations for smooth min and max entropies considerably simplify and shorten the proof of security. A proof of security of quantum key distribution with phase-temporal encryption is presented. This protocol provides the maximum critical error compared to other protocols up to which secure key distribution is guaranteed. In addition, unlike other basic protocols (of the BB84 type), which aremore » vulnerable with respect to an attack by 'blinding' of avalanche photodetectors, this protocol is stable with respect to such an attack and guarantees key security.« less

  7. Tunable-φ Josephson junction with a quantum anomalous Hall insulator

    NASA Astrophysics Data System (ADS)

    Sakurai, Keimei; Ikegaya, Satoshi; Asano, Yasuhiro

    2017-12-01

    We theoretically study the Josephson current in a superconductor/quantum anomalous Hall insulator/superconductor junction by using the lattice Green function technique. When an in-plane external Zeeman field is applied to the quantum anomalous Hall insulator, the Josephson current J flows without a phase difference across the junction θ . The phase shift φ appearing in the current-phase relationship J ∝sin(θ -φ ) is proportional to the amplitude of Zeeman fields and depends on the direction of Zeeman fields. A phenomenological analysis of the Andreev reflection processes explains the physical origin of φ . In a quantum anomalous Hall insulator, time-reversal symmetry and mirror-reflection symmetry are broken simultaneously. However, magnetic mirror-reflection symmetry is preserved. Such characteristic symmetry properties enable us to have a tunable φ junction with a quantum Hall insulator.

  8. Redshifted and blueshifted photoluminescence emission of InAs/InP quantum dots upon amorphization of phase change material.

    PubMed

    Humam, Nurrul Syafawati Binti; Sato, Yu; Takahashi, Motoki; Kanazawa, Shohei; Tsumori, Nobuhiro; Regreny, Philippe; Gendry, Michel; Saiki, Toshiharu

    2014-06-16

    We present the mechanisms underlying the redshifted and blueshifted photoluminescence (PL) of quantum dots (QDs) upon amorphization of phase change material (PCM). We calculated the stress and energy shift distribution induced by volume expansion using finite element method. Simulation result reveals that redshift is obtained beneath the flat part of amorphous mark, while blueshift is obtained beneath the edge region of amorphous mark. Simulation result is accompanied by two experimental studies; two-dimensional PL intensity mapping of InAs/InP QD sample deposited by a layer of PCM, and an analysis on the relationship between PL intensity ratio and energy shift were performed.

  9. Strongly interacting photons in asymmetric quantum well via resonant tunneling.

    PubMed

    Sun, H; Fan, S L; Feng, X L; Wu, C F; Gong, S Q; Huang, G X; Oh, C H

    2012-04-09

    We propose an asymmetric quantum well structure to realize strong interaction between two slow optical pulses. The essential idea is the combination of the advantages of inverted-Y type scheme and resonant tunneling. We analytically demonstrate that giant cross-Kerr nonlinearity can be achieved with vanishing absorptions. Owing to resonant tunneling, the contributions of the probe and signal cross-Kerr nonlinearities to total nonlinear phase shift vary from destructive to constrictive, leading to nonlinear phase shift on order of π at low light level. In this structure, the scheme is inherent symmetric for the probe and signal pulses. Consequently, the condition of group velocity matching can be fulfilled with appropriate initial electron distribution.

  10. Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Zeng, Guihua

    2018-01-01

    We propose a pilot-multiplexed continuous-variable quantum key distribution (CVQKD) scheme based on a local local oscillator (LLO). Our scheme utilizes time-multiplexing and polarization-multiplexing techniques to dramatically isolate the quantum signal from the pilot, employs two heterodyne detectors to separately detect the signal and the pilot, and adopts a phase compensation method to almost eliminate the multifrequency phase jitter. In order to analyze the performance of our scheme, a general LLO noise model is constructed. Besides the phase noise and the modulation noise, the photon-leakage noise from the reference path and the quantization noise due to the analog-to-digital converter (ADC) are also considered, which are first analyzed in the LLO regime. Under such general noise model, our scheme has a higher key rate and longer secure distance compared with the preexisting LLO schemes. Moreover, we also conduct an experiment to verify our pilot-multiplexed scheme. Results show that it maintains a low level of the phase noise and is expected to obtain a 554-Kbps secure key rate within a 15-km distance under the finite-size effect.

  11. Blind ICA detection based on second-order cone programming for MC-CDMA systems

    NASA Astrophysics Data System (ADS)

    Jen, Chih-Wei; Jou, Shyh-Jye

    2014-12-01

    The multicarrier code division multiple access (MC-CDMA) technique has received considerable interest for its potential application to future wireless communication systems due to its high data rate. A common problem regarding the blind multiuser detectors used in MC-CDMA systems is that they are extremely sensitive to the complex channel environment. Besides, the perturbation of colored noise may negatively affect the performance of the system. In this paper, a new coherent detection method will be proposed, which utilizes the modified fast independent component analysis (FastICA) algorithm, based on approximate negentropy maximization that is subject to the second-order cone programming (SOCP) constraint. The aim of the proposed coherent detection is to provide robustness against small-to-medium channel estimation mismatch (CEM) that may arise from channel frequency response estimation error in the MC-CDMA system, which is modulated by downlink binary phase-shift keying (BPSK) under colored noise. Noncoherent demodulation schemes are preferable to coherent demodulation schemes, as the latter are difficult to implement over time-varying fading channels. Differential phase-shift keying (DPSK) is therefore the natural choice for an alternative modulation scheme. Furthermore, the new blind differential SOCP-based ICA (SOCP-ICA) detection without channel estimation and compensation will be proposed to combat Doppler spread caused by time-varying fading channels in the DPSK-modulated MC-CDMA system under colored noise. In this paper, numerical simulations are used to illustrate the robustness of the proposed blind coherent SOCP-ICA detector against small-to-medium CEM and to emphasize the advantage of the blind differential SOCP-ICA detector in overcoming Doppler spread.

  12. 40  Gb/s DWDM Structure with Optical Phase Configuration for Long-Haul Transmission System

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Sheng; Lai, Po-Chou

    2017-06-01

    We propose the experimental transport of 48 channels with 40 Gbit/s dense wavelength-division multiplexing (DWDM) system that uses single-mode fiber (SMF) in combination with dispersion compensation fiber (DCF) which is a dispersion compensation device, in C and L band wavelength range to solve the dispersion program. The DWDM system scheme employing single Mach-Zehnder modulation (MZM) return-to-zero differential phase-shift keying (RZ-DPSK) modulation format with hybrid Raman/EDFA (Erbium-doped fiber amplifier) configuration to improve transmission signal, and employing an optical phase conjugation (OPC) configuration in the middle line. That can compensate for dispersion impairment and improve nonlinear effects to investigate transmission distance performances.

  13. Optical implementation of spin squeezing

    NASA Astrophysics Data System (ADS)

    Ono, Takafumi; Sabines-Chesterking, Javier; Cable, Hugo; O'Brien, Jeremy L.; Matthews, Jonathan C. F.

    2017-05-01

    Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum noise for its complementary partner. Because shot-noise limits the phase sensitivity of all classical states, reduced noise in the average value for the observable being measured allows for improved phase sensitivity. However, additional phase sensitivity can be achieved using phase estimation strategies that account for the full distribution of measurement outcomes. Here we experimentally investigate a model of optical spin-squeezing, which uses post-selection and photon subtraction from the state generated using a parametric downconversion photon source, and we investigate the phase sensitivity of this model. The Fisher information for all photon-number outcomes shows it is possible to obtain a quantum advantage of 1.58 compared to the shot-noise value for five-photon events, even though due to experimental imperfection, the average noise for the relevant spin-observable does not achieve sub-shot-noise precision. Our demonstration implies improved performance of spin squeezing for applications to quantum metrology.

  14. Homodyne Phase-Shift-Keying Systems: Past Challenges and Future Opportunities

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.; Kalogerakis, Georgios; Shaw, Wei-Tao

    2006-12-01

    Homodyne phase-shift-keying systems can achieve the best receiver sensitivity and the longest transmission distance among all optical communication systems. This paper reviews recent research efforts in the field and examines future possibilities that might lead toward potential practical use of these systems. Additionally, phase estimation techniques based on feed-forward phase recovery and digital delay-lock loop approaches are examined, simulated, and compared.

  15. Running key mapping in a quantum stream cipher by the Yuen 2000 protocol

    NASA Astrophysics Data System (ADS)

    Shimizu, Tetsuya; Hirota, Osamu; Nagasako, Yuki

    2008-03-01

    A quantum stream cipher by Yuen 2000 protocol (so-called Y00 protocol or αη scheme) consisting of linear feedback shift register of short key is very attractive in implementing secure 40 Gbits/s optical data transmission, which is expected as a next-generation network. However, a basic model of the Y00 protocol with a very short key needs a careful design against fast correlation attacks as pointed out by Donnet This Brief Report clarifies an effectiveness of irregular mapping between running key and physical signals in the driver for selection of M -ary basis in the transmitter, and gives a design method. Consequently, quantum stream cipher by the Y00 protocol with our mapping has immunity against the proposed fast correlation attacks on a basic model of the Y00 protocol even if the key is very short.

  16. Implementation of a quantum metamaterial using superconducting qubits.

    PubMed

    Macha, Pascal; Oelsner, Gregor; Reiner, Jan-Michael; Marthaler, Michael; André, Stephan; Schön, Gerd; Hübner, Uwe; Meyer, Hans-Georg; Il'ichev, Evgeni; Ustinov, Alexey V

    2014-10-14

    The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field.

  17. A new approach to entangling neutral atoms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongmin; Martin, Michael J.; Jau, Yuan-Yu

    2016-11-01

    Our team has developed a new approach to entangling neutral atoms with a Rydberg-dressed interaction. Entangling neutral atoms is an essential key of quantum technologies such as quantum computation, many-body quantum simulation, and high-precision atomic sensors . The demonstrated Rydberg-dressed protocol involves adiabatically imposing a light shift on the ground state by coupling an excited Rydberg state with a tuned laser field. Using this technique, we have demonstrated a strong and tunable dipole - dipole interaction between two individually trapped atoms with energy shifts of order 1 MHz, which has been challenging to achieve in other protocols . During thismore » program, we experimentally demonstrated Bell-state entanglement and the isomorphism to the Jaynes - Cumming model of a Rydberg-dressed two-atom system. Our theoretical calculations of a CPHASE quantum logic gate and arbitrary Dicke state quantum control in this system encourage further work.« less

  18. Relative phase noise induced impairment in M-ary phase-shift-keying coherent optical communication system using distributed fiber Raman amplifier.

    PubMed

    Cheng, Jingchi; Tang, Ming; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2013-04-01

    We show for the first time, to the best of our knowledge, that, in a coherent communication system that employs a phase-shift-keying signal and Raman amplification, besides the pump relative intensity noise (RIN) transfer to the amplitude, the signal's phase will also be affected by pump RIN through the pump-signal cross-phase modulation. Although the average pump power induced linear phase change can be compensated for by the phase-correction algorithm, a relative phase noise (RPN) parameter has been found to characterize pump RIN induced stochastic phase noise. This extra phase noise brings non-negligible system impairments in terms of the Q-factor penalty. The calculation shows that copumping leads to much more stringent requirements to pump RIN, and relatively larger fiber dispersion helps to suppress the RPN induced impairment. A higher-order phase-shift keying (PSK) signal is less tolerant to noise than a lower-order PSK.

  19. Dynamic Stabilization of a Quantum Many-Body Spin System

    NASA Astrophysics Data System (ADS)

    Hoang, T. M.; Gerving, C. S.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.

    2013-08-01

    We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis.

  20. How big are educational and racial fertility differentials in the U.S.?

    PubMed

    Yang, Yang; Morgan, S Philip

    2003-01-01

    Using pooled data from the 1980, 1985, 1990 and 1995 CPS and 1988 and 1995 NSFG surveys, we show that shifts in fertility timing have occurred disproportionately for the more educated and for whites (compared to the less educated and to African Americans). Such timing shifts imply that the underlying period quantum of fertility is considerably higher for college-educated women and for whites than suggested by the standard total fertility rate. Applying the Bongaarts-Feeney model (1998), we decompose observed racial and educational differences in age-order-specific fertility rates and TFR into tempo and quantum components. We find that a modest part of educational differences and a substantial part of racial difference in period fertility can be attributed to differential changes in tempo. Analysis by race and education shows a clear interaction: higher fertility among African Americans is confined to the less educated.

  1. Calculation of key reduction for B92 QKD protocol

    NASA Astrophysics Data System (ADS)

    Mehic, Miralem; Partila, Pavol; Tovarek, Jaromir; Voznak, Miroslav

    2015-05-01

    It is well known that Quantum Key Distribution (QKD) can be used with the highest level of security for distribution of the secret key, which is further used for symmetrical encryption. B92 is one of the oldest QKD protocols. It uses only two non-orthogonal states, each one coding for one bit-value. It is much faster and simpler when compared to its predecessors, but with the idealized maximum efficiencies of 25% over the quantum channel. B92 consists of several phases in which initial key is significantly reduced: secret key exchange, extraction of the raw key (sifting), error rate estimation, key reconciliation and privacy amplification. QKD communication is performed over two channels: the quantum channel and the classical public channel. In order to prevent a man-in-the-middle attack and modification of messages on the public channel, authentication of exchanged values must be performed. We used Wegman-Carter authentication because it describes an upper bound for needed symmetric authentication key. We explained the reduction of the initial key in each of QKD phases.

  2. Interface induced spin-orbit interaction in silicon quantum dots and prospects of scalability

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Wai, Kok; Veldhorst, Menno; Hwang, Jason; Yang, Henry; Klimeck, Gerhard; Dzurak, Andrew; Rahman, Rajib

    A scalable quantum computing architecture requires reproducibility over key qubit properties, like resonance frequency, coherence time etc. Randomness in these properties would necessitate individual knowledge of each qubit in a quantum computer. Spin qubits hosted in Silicon (Si) quantum dots (QD) is promising as a potential building block for a large-scale quantum computer, because of their longer coherence times. The Stark shift of the electron g-factor in these QDs has been used to selectively address multiple qubits. From atomistic tight-binding studies we investigated the effect of interface non-ideality on the Stark shift of the g-factor in a Si QD. We find that based on the location of a monoatomic step at the interface with respect to the dot center both the sign and magnitude of the Stark shift change. Thus the presence of interface steps in these devices will cause variability in electron g-factor and its Stark shift based on the location of the qubit. This behavior will also cause varying sensitivity to charge noise from one qubit to another, which will randomize the dephasing times T2*. This predicted device-to-device variability is experimentally observed recently in three qubits fabricated at a Si/Si02 interface, which validates the issues discussed.

  3. Analytical estimation of laser phase noise induced BER floor in coherent receiver with digital signal processing.

    PubMed

    Vanin, Evgeny; Jacobsen, Gunnar

    2010-03-01

    The Bit-Error-Ratio (BER) floor caused by the laser phase noise in the optical fiber communication system with differential quadrature phase shift keying (DQPSK) and coherent detection followed by digital signal processing (DSP) is analytically evaluated. An in-phase and quadrature (I&Q) receiver with a carrier phase recovery using DSP is considered. The carrier phase recovery is based on a phase estimation of a finite sum (block) of the signal samples raised to the power of four and the phase unwrapping at transitions between blocks. It is demonstrated that errors generated at block transitions cause the dominating contribution to the system BER floor when the impact of the additive noise is negligibly small in comparison with the effect of the laser phase noise. Even the BER floor in the case when the phase unwrapping is omitted is analytically derived and applied to emphasize the crucial importance of this signal processing operation. The analytical results are verified by full Monte Carlo simulations. The BER for another type of DQPSK receiver operation, which is based on differential phase detection, is also obtained in the analytical form using the principle of conditional probability. The principle of conditional probability is justified in the case of differential phase detection due to statistical independency of the laser phase noise induced signal phase error and the additive noise contributions. Based on the achieved analytical results the laser linewidth tolerance is calculated for different system cases.

  4. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction.

    PubMed

    Müller, Knut; Krause, Florian F; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-12-15

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

  5. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

    NASA Astrophysics Data System (ADS)

    Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-12-01

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

  6. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

    PubMed Central

    Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-01-01

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms. PMID:25501385

  7. Quantum phase transitions in the noncommutative Dirac oscillator

    NASA Astrophysics Data System (ADS)

    Panella, O.; Roy, P.

    2014-10-01

    We study the (2 + 1)-dimensional Dirac oscillator in a homogeneous magnetic field in the noncommutative plane. It is shown that the effect of noncommutativity is twofold: (i) momentum noncommuting coordinates simply shift the critical value (Bcr) of the magnetic field at which the well known left-right chiral quantum phase transition takes place (in the commuting phase); (ii) noncommutativity in the space coordinates induces a new critical value of the magnetic field, Bcr*, where there is a second quantum phase transition (right-left): this critical point disappears in the commutative limit. The change in chirality associated with the magnitude of the magnetic field is examined in detail for both critical points. The phase transitions are described in terms of the magnetization of the system. Possible applications to the physics of silicene and graphene are briefly discussed.

  8. Classical and quantum analysis of repulsive singularities in four-dimensional extended supergravity

    NASA Astrophysics Data System (ADS)

    Gaida, I.; Hollmann, H. R.; Stewart, J. M.

    1999-07-01

    Non-minimal repulsive singularities (`repulsons') in extended supergravity theories are investigated. The short-distance antigravity properties of the repulsons are tested at the classical and the quantum level by a scalar test-particle. Using a partial wave expansion it is shown that the particle is totally reflected at the origin. A high-frequency incoming particle undergoes a phase shift of icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/>/2. However, the phase shift for a low-frequency particle depends upon the physical data of the repulson. The curvature singularity at a finite distance rh turns out to be transparent for the scalar test-particle and the coordinate singularity at the origin serves as the repulsive barrier to bounce back the particles.

  9. Security of quantum key distribution with iterative sifting

    NASA Astrophysics Data System (ADS)

    Tamaki, Kiyoshi; Lo, Hoi-Kwong; Mizutani, Akihiro; Kato, Go; Lim, Charles Ci Wen; Azuma, Koji; Curty, Marcos

    2018-01-01

    Several quantum key distribution (QKD) protocols employ iterative sifting. After each quantum transmission round, Alice and Bob disclose part of their setting information (including their basis choices) for the detected signals. This quantum phase then ends when the basis dependent termination conditions are met, i.e., the numbers of detected signals per basis exceed certain pre-agreed threshold values. Recently, however, Pfister et al (2016 New J. Phys. 18 053001) showed that the basis dependent termination condition makes QKD insecure, especially in the finite key regime, and they suggested to disclose all the setting information after finishing the quantum phase. However, this protocol has two main drawbacks: it requires that Alice possesses a large memory, and she also needs to have some a priori knowledge about the transmission rate of the quantum channel. Here we solve these two problems by introducing a basis-independent termination condition to the iterative sifting in the finite key regime. The use of this condition, in combination with Azuma’s inequality, provides a precise estimation on the amount of privacy amplification that needs to be applied, thus leading to the security of QKD protocols, including the loss-tolerant protocol (Tamaki et al 2014 Phys. Rev. A 90 052314), with iterative sifting. Our analysis indicates that to announce the basis information after each quantum transmission round does not compromise the key generation rate of the loss-tolerant protocol. Our result allows the implementation of wider classes of classical post-processing techniques in QKD with quantified security.

  10. Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding

    PubMed Central

    Liang, Wen-Ye; Wang, Shuang; Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Yao, Yao; Huang, Jing-Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-01

    We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state method for RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator mirrors, our system is rendered immune to the slow phase changes of the interferometer and the polarization disturbances of the channel, making the procedure very robust. PMID:24402550

  11. Tensor network states in time-bin quantum optics

    NASA Astrophysics Data System (ADS)

    Lubasch, Michael; Valido, Antonio A.; Renema, Jelmer J.; Kolthammer, W. Steven; Jaksch, Dieter; Kim, M. S.; Walmsley, Ian; García-Patrón, Raúl

    2018-06-01

    The current shift in the quantum optics community towards experiments with many modes and photons necessitates new classical simulation techniques that efficiently encode many-body quantum correlations and go beyond the usual phase-space formulation. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. We extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments.

  12. Data Transmission Signal Design and Analysis

    NASA Technical Reports Server (NTRS)

    Moore, J. D.

    1972-01-01

    The error performances of several digital signaling methods are determined as a function of a specified signal-to-noise ratio. Results are obtained for Gaussian noise and impulse noise. Performance of a receiver for differentially encoded biphase signaling is obtained by extending the results of differential phase shift keying. The analysis presented obtains a closed-form answer through the use of some simplifying assumptions. The results give an insight into the analysis problem, however, the actual error performance may show a degradation because of the assumptions made in the analysis. Bipolar signaling decision-threshold selection is investigated. The optimum threshold depends on the signal-to-noise ratio and requires the use of an adaptive receiver.

  13. Possible daily and seasonal variations in quantum interference induced by Chern-Simons gravity.

    PubMed

    Okawara, Hiroki; Yamada, Kei; Asada, Hideki

    2012-12-07

    Possible effects of Chern-Simons (CS) gravity on a quantum interferometer turn out to be dependent on the latitude and direction of the interferometer on Earth in orbital motion around the Sun. Daily and seasonal variations in phase shifts are predicted with an estimate of the size of the effects, wherefore neutron interferometry with ~5 m arm length and ~10(-4) phase measurement accuracy would place a bound on a CS parameter comparable to the Gravity Probe B satellite.

  14. High-speed continuous-variable quantum key distribution without sending a local oscillator.

    PubMed

    Huang, Duan; Huang, Peng; Lin, Dakai; Wang, Chao; Zeng, Guihua

    2015-08-15

    We report a 100-MHz continuous-variable quantum key distribution (CV-QKD) experiment over a 25-km fiber channel without sending a local oscillator (LO). We use a "locally" generated LO and implement with a 1-GHz shot-noise-limited homodyne detector to achieve high-speed quantum measurement, and we propose a secure phase compensation scheme to maintain a low level of excess noise. These make high-bit-rate CV-QKD significantly simpler for larger transmission distances compared with previous schemes in which both LO and quantum signals are transmitted through the insecure quantum channel.

  15. Quantum propagation in single mode fiber

    NASA Technical Reports Server (NTRS)

    Joneckis, Lance G.; Shapiro, Jeffrey H.

    1994-01-01

    This paper presents a theory for quantum light propagation in a single-mode fiber which includes the effects of the Kerr nonlinearity, group-velocity dispersion, and linear loss. The theory reproduces the results of classical self-phase modulation, quantum four-wave mixing, and classical solution physics, within their respective regions of validity. It demonstrates the crucial role played by the Kerr-effect material time constant, in limiting the quantum phase shifts caused by the broadband zero-point fluctuations that accompany any quantized input field. Operator moment equations - approximated, numerically, via a terminated cumulant expansion - are used to obtain results for homodyne-measurement noise spectra when dispersion is negligible. More complicated forms of these equations can be used to incorporate dispersion into the noise calculations.

  16. Quantum gyroscope based on Berry phase of spins in diamond

    NASA Astrophysics Data System (ADS)

    Song, Xuerui; Wang, Liujun; Diao, Wenting; Duan, Chongdi

    2018-02-01

    Gyroscope is the crucial sensor of the inertial navigation system, there is always high demand to improve the sensitivity and reduce the size of the gyroscopes. Using the NV center electronic spin and nuclear spin qubits in diamond, we introduce the research of new types of quantum gyroscopes based on the Berry phase shifts of the spin states during the rotation of the sensor systems. Compared with the performance of the traditional MEMS gyroscope, the sensitivity of the new types of quantum gyroscopes was highly improved and the spatial resolution was reduced to nano-scale. With the help of micro-manufacturing technology in the semiconductor industry, the quantum gyroscopes introduced here can be further integrated into chip-scale sensors.

  17. Imaginary geometric phases of quantum trajectories in high-order terahertz sideband generation

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Liu, Ren-Bao

    2014-03-01

    Quantum evolution of particles under strong fields can be described by a small number of quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integral. The quantum trajectories are the key concept to understand the high-order terahertz siedeband generation (HSG) in semiconductors. Due to the nontrivial ``vacuum'' states of band materials, the quantum trajectories of optically excited electron-hole pairs in semiconductors can accumulate geometric phases under the driving of an elliptically polarized THz field. We find that the geometric phase of the stationary trajectory is generally complex with both real and imaginary parts. In monolayer MoS2, the imaginary parts of the geometric phase leads to a changing of the polarization ellipticity of the sideband. We further show that the imaginary part originates from the quantum interference of many trajectories with different phases. Thus the observation of the polarization ellipticity of the sideband shall be a good indication of the quantum nature of the stationary trajectory. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.

  18. Phase shift in atom interferometry due to spacetime curvature

    NASA Astrophysics Data System (ADS)

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Brown, Daniel; Hogan, Jason; Kasevich, Mark

    2017-04-01

    In previous matter wave interferometers, the interferometer arm separation was small enough that gravitational tidal forces across the arms can be neglected. Gravitationally-induced phase shifts in such experiments arise from the acceleration of the interfering particles with respect to the interferometer beam splitters and mirrors. By increasing the interferometer arm separation, we enter a new regime in which the arms experience resolvably different gravitational forces. Using a single-source gravity gradiometer, we measure a phase shift associated with the tidal forces induced by a nearby test mass. This is the first observation of spacetime curvature across the spatial extent of a single quantum system. CO acknowledges funding from the Stanford Graduate Fellowship.

  19. Wilson-Racah quantum system

    NASA Astrophysics Data System (ADS)

    Alhaidari, A. D.; Taiwo, T. J.

    2017-02-01

    Using a recent formulation of quantum mechanics without a potential function, we present a four-parameter system associated with the Wilson and Racah polynomials. The continuum scattering states are written in terms of the Wilson polynomials whose asymptotics give the scattering amplitude and phase shift. On the other hand, the finite number of discrete bound states are associated with the Racah polynomials.

  20. Micrometer-Scale Ballistic Transport of Electron Pairs in LaAlO_{3}/SrTiO_{3} Nanowires.

    PubMed

    Tomczyk, Michelle; Cheng, Guanglei; Lee, Hyungwoo; Lu, Shicheng; Annadi, Anil; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy

    2016-08-26

    High-mobility complex-oxide heterostructures and nanostructures offer new opportunities for extending the paradigm of quantum transport beyond the realm of traditional III-V or carbon-based materials. Recent quantum transport investigations with LaAlO_{3}/SrTiO_{3}-based quantum dots reveal the existence of a strongly correlated phase in which electrons form spin-singlet pairs without becoming superconducting. Here, we report evidence for the micrometer-scale ballistic transport of electron pairs in quasi-1D LaAlO_{3}/SrTiO_{3} nanowire cavities. In the paired phase, Fabry-Perot-like quantum interference is observed, in sync with conductance oscillations observed in the superconducting regime (at a zero magnetic field). Above a critical magnetic field B_{p}, the electron pairs unbind and the conductance oscillations shift with the magnetic field. These experimental observations extend the regime of ballistic electronic transport to strongly correlated phases.

  1. Dynamical control of a quantum Kapitza pendulum in a spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael

    2013-05-01

    We demonstrate dynamic stabilization of an unstable strongly interacting quantum many-body system by periodic manipulation of the phase of the collective states. The experiment employs a spin-1 atomic Bose condensate that has spin dynamics analogous to a non-rigid pendulum in the mean-field limit. The condensate spin is initialized to an unstable (hyperbolic) fixed point of the phase space, where subsequent free evolution gives rise to spin-nematic squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that manipulate the spin-nematic fluctuations and limit their growth. The range of pulse periods and phase shifts with which the condensate can be stabilized is measured and compares well with a linear stability analysis of the problem. C.D. Hamley, et al., ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).

  2. Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leverrier, Anthony; Grangier, Philippe; Laboratoire Charles Fabry, Institut d'Optique, CNRS, University Paris-Sud, Campus Polytechnique, RD 128, F-91127 Palaiseau Cedex

    2010-06-15

    In this article, we give a simple proof of the fact that the optimal collective attacks against continuous-variable quantum key distribution with a Gaussian modulation are Gaussian attacks. Our proof, which makes use of symmetry properties of the protocol in phase space, is particularly relevant for the finite-key analysis of the protocol and therefore for practical applications.

  3. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    PubMed

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  4. Mobile quantum gravity sensor with unprecedented stability

    NASA Astrophysics Data System (ADS)

    Leykauf, Bastian; Freier, Christian; Schkolnik, Vladimir; Krutzik, Markus; Peters, Achim

    2017-04-01

    The gravimetric atom interferometer GAIN is based on interfering ensembles of laser-cooled 87Rb atoms in a fountain setup, using stimulated Raman transitions. GAIN's rugged design allows for transports to sites of geodetic and geophysical interest while maintaining a high accuracy compatible with the best classical instruments. We compared our instrument's performance with falling corner-cube and superconducting gravimeters in two measurement campaigns at geodetic observatories in Wettzell, Germany and Onsala, Sweden. Our instrument's long-term stability of 0.5 nm/s2 is the best value for absolute gravimeters reported to date [1]. Our measured gravity value agrees with other state-of-the-art gravimeters on the 10-9 level in g, demonstrating effective control over systematics including wavefront distortions of the Raman beams [2]. By using the juggling technique [3], we are able to perform gravity measurements on two atomic clouds simultaneously. Advantages include the suppression of common mode phase noise, enabling differential phase shift extraction without the need for vibration isolation. We will present the results of our first gravity gradient measurements. [1] Freier, Hauth, Schkolnik, Leykauf, Schilling, Wziontek, Scherneck, Müller and Peters (2016). Mobile quantum gravity sensor with unprecedented stability. Journal of Physics: Conference Series, 8th Symposium on Frequency Standards and Metrology 2015, 723, 12050. [2] Schkolnik, Leykauf, Hauth, Freier and Peters (2015). The effect of wavefront aberrations in atom interferometry. Applied Physics B, 120(2), 311 - 316. [3] Legere and Gibble (1998). Quantum Scattering in a Juggling Atomic Fountain. Physical Review Letters, 81(1), 5780 - 5783.

  5. Dielectric multilayer beam splitter with differential phase shift on transmission and reflection for division-of-amplitude photopolarimeter.

    PubMed

    Yuan, Wenjia; Shen, Weidong; Zhang, Yueguang; Liu, Xu

    2014-05-05

    Dielectric multilayer beam splitter with differential phase shift on transmission and reflection for division-of-amplitude photopolarimeter (DOAP) was presented for the first time to our knowledge. The optimal parameters for the beam splitter are Tp = 78.9%, Ts = 21.1% and Δr - Δt = π/2 at 532nm at an angle of incidence of 45°. Multilayer anti-reflection coating with low phase shift was applied to reduce the backside reflection. Different design strategies that can achieve all optimal targets at the wavelength were tested. Two design methods were presented to optimize the differential phase shift. The samples were prepared by ion beam sputtering (IBS). The experimental results show good agreement with those of the design. The ellipsometric parameters of samples were measured in reflection (ψr, Δr) = (26.5°, 135.1°) and (28.2°, 133.5°), as well as in transmission (ψt, Δt) = (62.5°, 46.1°) and (63.5°, 46°) at 532.6nm. The normalized determinant of instrument matrix to evaluate the performance of samples is respectively 0.998 and 0.991 at 532.6nm.

  6. An attack aimed at active phase compensation in one-way phase-encoded QKD systems

    NASA Astrophysics Data System (ADS)

    Dong, Zhao-Yue; Yu, Ning-Na; Wei, Zheng-Jun; Wang, Jin-Dong; Zhang, Zhi-Ming

    2014-08-01

    Phase drift is an inherent problem in one-way phase-encoded quantum key distribution (QKD) systems. Although combining passive with active phase compensation (APC) processes can effectively compensate for the phase drift, the security problems brought about by these processes are rarely considered. In this paper, we point out a security hole in the APC process and put forward a corresponding attack scheme. Under our proposed attack, the quantum bit error rate (QBER) of the QKD can be close to zero for some conditions. However, under the same conditions the ratio r of the key "0" and the key "1" which Bob (the legal communicators Alice and Bob) gets is no longer 1:1 but 2:1, which may expose Eve (the eavesdropper). In order to solve this problem, we modify the resend strategy of the attack scheme, which can force r to reach 1 and the QBER to be lower than the tolerable QBER.

  7. Enhanced Electro-Optic Phase Shifts in Suspended Waveguides

    DTIC Science & Technology

    2010-01-18

    section,” J. Lightwave. Technol. (16), 1851–1853 (1998). 9. T . Ikegami , “Reflectivity of mode at facet and oscillation mode in double-heterostructure...Enhanced Electro-Optic Phase Shifts in Suspended Waveguides T . H. Stievater,1 D. Park,1 W. S. Rabinovich,1 M. W. Pruessner,1, S. Kanakaraju,2 C. J. K... T . H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, “A Surface-Normal Coupled- Quantum-Well Modulator at 1.55 Microns,” IEEE

  8. Simulated Assessment of Interference Effects in Direct Sequence Spread Spectrum (DSSS) QPSK Receiver

    DTIC Science & Technology

    2014-03-27

    bit error rate BPSK binary phase shift keying CDMA code division multiple access CSI comb spectrum interference CW continuous wave DPSK differential... CDMA ) and GPS systems which is a Gold code. This code is generated by a modulo-2 operation between two different preferred m-sequences. The preferred m...10 SNR Sim (dB) S N R O ut ( dB ) SNR RF SNR DS Figure 3.26: Comparison of input S NRS im and S NROut of the band-pass RF filter (S NRRF) and

  9. Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm

    NASA Astrophysics Data System (ADS)

    Meng, X. F.; Peng, X.; Cai, L. Z.; Li, A. M.; Gao, Z.; Wang, Y. R.

    2009-08-01

    A hybrid cryptosystem is proposed, in which one image is encrypted to two interferograms with the aid of double random-phase encoding (DRPE) and two-step phase-shifting interferometry (2-PSI), then three pairs of public-private keys are utilized to encode and decode the session keys (geometrical parameters, the second random-phase mask) and interferograms. In the stage of decryption, the ciphered image can be decrypted by wavefront reconstruction, inverse Fresnel diffraction, and real amplitude normalization. This approach can successfully solve the problem of key management and dispatch, resulting in increased security strength. The feasibility of the proposed cryptosystem and its robustness against some types of attack are verified and analyzed by computer simulations.

  10. Transceivers and receivers for quantum key distribution and methods pertaining thereto

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRose, Christopher; Sarovar, Mohan; Soh, Daniel B.S.

    Various technologies for performing continuous-variable (CV) and discrete-variable (DV) quantum key distribution (QKD) with integrated electro-optical circuits are described herein. An integrated DV-QKD system uses Mach-Zehnder modulators to modulate a polarization of photons at a transmitter and select a photon polarization measurement basis at a receiver. An integrated CV-QKD system uses wavelength division multiplexing to send and receive amplitude-modulated and phase-modulated optical signals with a local oscillator signal while maintaining phase coherence between the modulated signals and the local oscillator signal.

  11. Prospects and applications near ferroelectric quantum phase transitions: a key issues review.

    PubMed

    Chandra, P; Lonzarich, G G; Rowley, S E; Scott, J F

    2017-11-01

    The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this key issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Empirically the sensitivity of the ferroelectric T c 's to external and to chemical pressure gives practical access to a broad range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.

  12. Prospects and applications near ferroelectric quantum phase transitions: a key issues review

    NASA Astrophysics Data System (ADS)

    Chandra, P.; Lonzarich, G. G.; Rowley, S. E.; Scott, J. F.

    2017-11-01

    The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this key issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Empirically the sensitivity of the ferroelectric T c’s to external and to chemical pressure gives practical access to a broad range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.

  13. An atom interferometer inside a hollow-core photonic crystal fiber

    PubMed Central

    Xin, Mingjie; Leong, Wui Seng; Chen, Zilong; Lan, Shau-Yu

    2018-01-01

    Coherent interactions between electromagnetic and matter waves lie at the heart of quantum science and technology. However, the diffraction nature of light has limited the scalability of many atom-light–based quantum systems. We use the optical fields in a hollow-core photonic crystal fiber to spatially split, reflect, and recombine a coherent superposition state of free-falling 85Rb atoms to realize an inertia-sensitive atom interferometer. The interferometer operates over a diffraction-free distance, and the contrasts and phase shifts at different distances agree within one standard error. The integration of phase coherent photonic and quantum systems here shows great promise to advance the capability of atom interferometers in the field of precision measurement and quantum sensing with miniature design of apparatus and high efficiency of laser power consumption. PMID:29372180

  14. Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wang, Xuyang; Liu, Wenyuan; Wang, Pu; Li, Yongmin

    2017-06-01

    We experimentally demonstrated an all-fiber-based unidimensional continuous-variable quantum key distribution (CV QKD) protocol and analyzed its security under collective attack in realistic conditions. A pulsed balanced homodyne detector, which could not be accessed by eavesdroppers, with phase-insensitive efficiency and electronic noise, was considered. Furthermore, a modulation method and an improved relative phase-locking technique with one amplitude modulator and one phase modulator were designed. The relative phase could be locked precisely with a standard deviation of 0.5° and a mean of almost zero. Secret key bit rates of 5.4 kbps and 700 bps were achieved for transmission fiber lengths of 30 and 50 km, respectively. The protocol, which simplified the CV QKD system and reduced the cost, displayed a performance comparable to that of a symmetrical counterpart under realistic conditions. It is expected that the developed protocol can facilitate the practical application of the CV QKD.

  15. A Novel Multiple-Access Correlation-Delay-Shift-Keying

    NASA Astrophysics Data System (ADS)

    Duan, J. Y.; Jiang, G. P.; Yang, H.

    In Correlation-Delay-Shift-Keying (CDSK), the reference signal and the information-bearing signal are added together during a certain time delay. Because the reference signal is not strictly orthogonal to the information-bearing signal, the cross-correlation between the adjacent chaotic signal (Intra-signal Interference, ISI) will be introduced into the demodulation at the receiver. Therefore, the Bit-Error Ratio (BER) of CDSK is higher than that of Differential-Chaos-Shift-Keying (DCSK). To avoid the ISI component and enhance the BER performance of CDSK in multiuser scenario, Multiple-Access CDSK with No Intra-signal Interference (MA-CDSK-NII) is proposed. By constructing the repeated chaotic generator and applying the Walsh code sequence to modulate the reference signal, in MA-CDSK-NII, the ISI component will be eliminated during the demodulation. Gaussian approximation method is adopted here to obtain the exact performance analysis of MA-CDSK-NII over additive white Gaussian noise (AWGN) channel and Rayleigh multipath fading channels. Results show that, due to no ISI component and lower transmitting power, the BER performance of MA-CDSK-NII can be better than that of multiple-access CDSK and Code-Shifted Differential-Chaos-Shift-Keying (CS-DCSK).

  16. Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals

    NASA Astrophysics Data System (ADS)

    Li, Cequn; Wang, C. M.; Wan, Bo; Wan, Xiangang; Lu, Hai-Zhou; Xie, X. C.

    2018-04-01

    Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W =Zr /Hf , H =Si /Ge , M =S /Se /Te ). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu3 PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.

  17. Evidence of phase transition in Nd3+ doped phosphate glass determined by thermal lens spectrometry.

    PubMed

    Andrade, Acácio A; Lourenço, Sidney A; Pilla, Viviane; Silva, Anielle C Almeida; Dantas, Noelio O

    2014-01-28

    Thermal lens spectroscopy (TLS), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) techniques were applied to the thermo-optical property analysis of a new phosphate glass matrix PANK with nominal composition 40P2O5·20Al2O3·35Na2O·5K2O (mol%), doped with different Nd(3+) compositions. This glass system, synthesized by the fusion protocol, presents high transparency from UV to the near infrared, excellent thermo-optical properties at room temperature and high fluorescence quantum efficiency. Thermal lens phase shift parameters, thermal diffusivity and the DSC signal present pronounced changes at about 61 °C for the PANK glass system. This anomalous behavior was associated with a phase transition in the nanostructured glass materials. The FTIR signal confirms the presence of isolated PO4 tetrahedron groups connected to different cations in PANK glass. As a main result, our experimental data suggest that these tetrahedron groups present a structural phase transition, paraelectric-ferroelectric phase transition, similar to that in potassium dihydrogen phosphate, KH2PO4, nanocrystals and which TLS technique can be used as a sensitive method to investigate changes in the structural level of nanostructured materials.

  18. Interferometric sensitivity and entanglement by scanning through quantum phase transitions in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Feldmann, P.; Gessner, M.; Gabbrielli, M.; Klempt, C.; Santos, L.; Pezzè, L.; Smerzi, A.

    2018-03-01

    Recent experiments demonstrated the generation of entanglement by quasiadiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift. We analyze, in terms of the Fisher information, the interferometric value of the entanglement accessible by this approach. In addition to the Twin-Fock phase studied experimentally, we unveil a second regime, in the broken axisymmetry phase, which provides Heisenberg scaling of the quantum Fisher information and can be reached on shorter time scales. We identify optimal unitary transformations and an experimentally feasible optimal measurement prescription that maximize the interferometric sensitivity. We further ascertain that the Fisher information is robust with respect to nonadiabaticity and measurement noise. Finally, we show that the quasiadiabatic entanglement preparation schemes admit higher sensitivities than dynamical methods based on fast quenches.

  19. Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases

    NASA Astrophysics Data System (ADS)

    Pezzè, Luca; Ciampini, Mario A.; Spagnolo, Nicolò; Humphreys, Peter C.; Datta, Animesh; Walmsley, Ian A.; Barbieri, Marco; Sciarrino, Fabio; Smerzi, Augusto

    2017-09-01

    A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.

  20. Resource quality of a symmetry-protected topologically ordered phase for quantum computation.

    PubMed

    Miller, Jacob; Miyake, Akimasa

    2015-03-27

    We investigate entanglement naturally present in the 1D topologically ordered phase protected with the on-site symmetry group of an octahedron as a potential resource for teleportation-based quantum computation. We show that, as long as certain characteristic lengths are finite, all its ground states have the capability to implement any unit-fidelity one-qubit gate operation asymptotically as a key computational building block. This feature is intrinsic to the entire phase, in that perfect gate fidelity coincides with perfect string order parameters under a state-insensitive renormalization procedure. Our approach may pave the way toward a novel program to classify quantum many-body systems based on their operational use for quantum information processing.

  1. Resource Quality of a Symmetry-Protected Topologically Ordered Phase for Quantum Computation

    NASA Astrophysics Data System (ADS)

    Miller, Jacob; Miyake, Akimasa

    2015-03-01

    We investigate entanglement naturally present in the 1D topologically ordered phase protected with the on-site symmetry group of an octahedron as a potential resource for teleportation-based quantum computation. We show that, as long as certain characteristic lengths are finite, all its ground states have the capability to implement any unit-fidelity one-qubit gate operation asymptotically as a key computational building block. This feature is intrinsic to the entire phase, in that perfect gate fidelity coincides with perfect string order parameters under a state-insensitive renormalization procedure. Our approach may pave the way toward a novel program to classify quantum many-body systems based on their operational use for quantum information processing.

  2. A quantum-classical theory with nonlinear and stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Burić, N.; Popović, D. B.; Radonjić, M.; Prvanović, S.

    2014-12-01

    The method of constrained dynamical systems on the quantum-classical phase space is utilized to develop a theory of quantum-classical hybrid systems. Effects of the classical degrees of freedom on the quantum part are modeled using an appropriate constraint, and the interaction also includes the effects of neglected degrees of freedom. Dynamical law of the theory is given in terms of nonlinear stochastic differential equations with Hamiltonian and gradient terms. The theory provides a successful dynamical description of the collapse during quantum measurement.

  3. Experimental evaluation of a new form of M-ary (M = 8) phase shift keying including design of the transmitter and receiver

    NASA Astrophysics Data System (ADS)

    Thompson, G. E.

    1984-12-01

    For transmitting digital information over bandpass channels, M-ary Phase Shift Keying 8(PSK) schemes are used to conserve bandwidth at the expense of signal power. A block of k bits is used to change the phase of the carrier. These k bits represent M possible phase shifts since M = 2. Common forms of M-ary PSK use equally spaced phase angles. For example, if M = 8 and k=3, 8-ary PSK uses eight phase angles spaced 45 degrees apart. This thesis considers a hybrid form of PSK when M = 8 and k = 3. Each of eight blocks of data with three bits per block are represented by different phase shifts of the carrier. The phase angles are chosen to give an equal distance between states (symbols) when projected onto the sine axis and the cosine axis of a phasor diagram. Thus, when the three bits are recovered, using two coherent phase detectors, the separation of the decision regions (voltage levels) are equal.

  4. Quantum spatial propagation of squeezed light in a degenerate parametric amplifier

    NASA Technical Reports Server (NTRS)

    Deutsch, Ivan H.; Garrison, John C.

    1992-01-01

    Differential equations which describe the steady state spatial evolution of nonclassical light are established using standard quantum field theoretic techniques. A Schroedinger equation for the state vector of the optical field is derived using the quantum analog of the slowly varying envelope approximation (SVEA). The steady state solutions are those that satisfy the time independent Schroedinger equation. The resulting eigenvalue problem then leads to the spatial propagation equations. For the degenerate parametric amplifier this method shows that the squeezing parameter obey nonlinear differential equations coupled by the amplifier gain and phase mismatch. The solution to these differential equations is equivalent to one obtained from the classical three wave mixing steady state solution to the parametric amplifier with a nondepleted pump.

  5. Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corndorf, Eric; Liang Chuang; Kanter, Gregory S.

    2005-06-15

    We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650 Mbit/s data encryption through a 10 Gbit/s data-bearing, in-line amplified 200-km-long line. In our protocol, legitimate users (who share a short secret key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performancemore » criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered.« less

  6. The Pursuit of Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Dewitt-Morette, Cecile

    2012-03-01

    Why is it so difficult to make a Quantum Theory of Gravitation? What is the key idea of quantum physics? What is the key idea of Einstein theory of gravitation? I have selected three (simple) problems that can be solved and are relevant to these issues: 1. The nonanalyticity of semi classical approximations (or the sex life of the male moth) 2. The Pin Group (or the implication of the quantum phase in particle physics) 3. Spacetime is Space x Time (or the deflection of light by the Sun) Conclusion: La joie de l'ame est dans l'action Lyautey (or astronomical observations)

  7. Self-referenced continuous-variable quantum key distribution protocol

    DOE PAGES

    Soh, Daniel Beom Soo; Sarovar, Mohan; Brif, Constantin; ...

    2015-10-21

    We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of themore » protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. Furthermore, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.« less

  8. Self-referenced continuous-variable quantum key distribution protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Daniel Beom Soo; Sarovar, Mohan; Brif, Constantin

    We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of themore » protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. Furthermore, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.« less

  9. Self-Referenced Continuous-Variable Quantum Key Distribution Protocol

    NASA Astrophysics Data System (ADS)

    Soh, Daniel B. S.; Brif, Constantin; Coles, Patrick J.; Lütkenhaus, Norbert; Camacho, Ryan M.; Urayama, Junji; Sarovar, Mohan

    2015-10-01

    We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice's and Bob's measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of the protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.

  10. Quadrature demultiplexing using a degenerate vector parametric amplifier.

    PubMed

    Lorences-Riesgo, Abel; Liu, Lan; Olsson, Samuel L I; Malik, Rohit; Kumpera, Aleš; Lundström, Carl; Radic, Stojan; Karlsson, Magnus; Andrekson, Peter A

    2014-12-01

    We report on quadrature demultiplexing of a quadrature phase-shift keying (QPSK) signal into two cross-polarized binary phase-shift keying (BPSK) signals with negligible penalty at bit-error rate (BER) equal to 10(-9). The all-optical quadrature demultiplexing is achieved using a degenerate vector parametric amplifier operating in phase-insensitive mode. We also propose and demonstrate the use of a novel and simple phase-locked loop (PLL) scheme based on detecting the envelope of one of the signals after demultiplexing in order to achieve stable quadrature decomposition.

  11. Crystalline Gaq3Nanostructures: Preparation, Thermal Property and Spectroscopy Characterization

    PubMed Central

    2009-01-01

    Crystalline Gaq31-D nanostructures and nanospheres could be fabricated by thermal evaporation under cold trap. The influences of the key process parameters on formation of the nanostructures were also investigated. It has been demonstrated that the morphology and dimension of the nanostructures were mainly controlled by working temperature and working pressure. One-dimensional nanostructures were fabricated at a lower working temperature, whereas nanospheres were formed at a higher working temperature. Larger nanospheres could be obtained when a higher working pressure was applied. The XRD, FTIR, and NMR analyses evidenced that the nanostructures mainly consisted of δ-phase Gaq3. Their DSC trace revealed two small exothermic peaks in addition to the melting endotherm. The one in lower temperature region was ascribed to a transition from δ to β phase, while another in higher temperature region could be identified as a transition from β to δ phase. All the crystalline nanostructures show similar PL spectra due to absence of quantum confinement effect. They also exhibited a spectral blue shift because of a looser interligand spacing and reduced orbital overlap in their δ-phase molecular structures. PMID:20596439

  12. High key rate continuous-variable quantum key distribution with a real local oscillator.

    PubMed

    Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Ma, Hongxin; Wang, Shiyu; Zeng, Guihua

    2018-02-05

    Continuous-variable quantum key distribution (CVQKD) with a real local oscillator (LO) has been extensively studied recently due to its security and simplicity. In this paper, we propose a novel implementation of a high-key-rate CVQKD with a real LO. Particularly, with the help of the simultaneously generated reference pulse, the phase drift of the signal is tracked in real time and then compensated. By utilizing the time and polarization multiplexing techniques to isolate the reference pulse and controlling the intensity of it, not only the contamination from it is suppressed, but also a high accuracy of the phase compensation can be guaranteed. Besides, we employ homodyne detection on the signal to ensure the high quantum efficiency and heterodyne detection on the reference pulse to acquire the complete phase information of it. In order to suppress the excess noise, a theoretical noise model for our scheme is established. According to this model, the impact of the modulation variance and the intensity of the reference pulse are both analysed theoretically and then optimized according to the experimental data. By measuring the excess noise in the 25km optical fiber transmission system, a 3.14Mbps key rate in the asymptotic regime proves to be achievable. This work verifies the feasibility of the high-key-rate CVQKD with a real LO within the metropolitan area.

  13. Analysis of digital communication signals and extraction of parameters

    NASA Astrophysics Data System (ADS)

    Al-Jowder, Anwar

    1994-12-01

    The signal classification performance of four types of electronics support measure (ESM) communications detection systems is compared from the standpoint of the unintended receiver (interceptor). Typical digital communication signals considered include binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), frequency shift keying (FSK), and on-off keying (OOK). The analysis emphasizes the use of available signal processing software. Detection methods compared include broadband energy detection, FFT-based narrowband energy detection, and two correlation methods which employ the fast Fourier transform (FFT). The correlation methods utilize modified time-frequency distributions, where one of these is based on the Wigner-Ville distribution (WVD). Gaussian white noise is added to the signal to simulate various signal-to-noise ratios (SNR's).

  14. Faraday-Michelson system for quantum cryptography.

    PubMed

    Mo, Xiao-Fan; Zhu, Bing; Han, Zheng-Fu; Gui, You-Zhen; Guo, Guang-Can

    2005-10-01

    Quantum key distribution provides unconditional security for communication. Unfortunately, current experimental schemes are not suitable for long-distance fiber transmission because of phase drift or Rayleigh backscattering. In this Letter we present a unidirectional intrinsically stable scheme that is based on Michelson-Faraday interferometers, in which ordinary mirrors are replaced with 90 degree Faraday mirrors. With the scheme, a demonstration setup was built and excellent stability of interference fringe visibility was achieved over a fiber length of 175 km. Through a 125 km long commercial communication fiber cable between Beijing and Tianjin, the key exchange was performed with a quantum bit-error rate of less than 6%, which is to our knowledge the longest reported quantum key distribution experiment under field conditions.

  15. Multi-Excitonic Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.

  16. Many-Body Localization and Thermalization in Quantum Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Nandkishore, Rahul; Huse, David A.

    2015-03-01

    We review some recent developments in the statistical mechanics of isolated quantum systems. We provide a brief introduction to quantum thermalization, paying particular attention to the eigenstate thermalization hypothesis (ETH) and the resulting single-eigenstate statistical mechanics. We then focus on a class of systems that fail to quantum thermalize and whose eigenstates violate the ETH: These are the many-body Anderson-localized systems; their long-time properties are not captured by the conventional ensembles of quantum statistical mechanics. These systems can forever locally remember information about their local initial conditions and are thus of interest for possibilities of storing quantum information. We discuss key features of many-body localization (MBL) and review a phenomenology of the MBL phase. Single-eigenstate statistical mechanics within the MBL phase reveal dynamically stable ordered phases, and phase transitions among them, that are invisible to equilibrium statistical mechanics and can occur at high energy and low spatial dimensionality, where equilibrium ordering is forbidden.

  17. Analytical evaluation of the combined influence of polarization mode dispersion and group velocity dispersion on the bit error rate performance of optical homodyne quadrature phase-shift keying systems

    NASA Astrophysics Data System (ADS)

    Taher, Kazi Abu; Majumder, Satya Prasad

    2017-12-01

    A theoretical approach is presented to evaluate the bit error rate (BER) performance of an optical fiber transmission system with quadrature phase-shift keying (QPSK) modulation under the combined influence of polarization mode dispersion (PMD) and group velocity dispersion (GVD) in a single-mode fiber (SMF). The analysis is carried out without and with polarization division multiplexed (PDM) transmission considering a coherent homodyne receiver. The probability density function (pdf) of the random phase fluctuations due to PMD and GVD at the output of the receiver is determined analytically, considering the pdf of differential group delay (DGD) to be Maxwellian distribution and that of GVD to be Gaussian approximation. The exact pdf of the phase fluctuation due to PMD and GVD is also evaluated from its moments using a Monte Carlo simulation technique. Average BER is evaluated by averaging the conditional BER over the pdf of the random phase fluctuation. The BER performance results are evaluated for different system parameters. It is found that PDM-QPSK coherent homodyne system suffers more power penalty than the homodyne QPSK system without PDM. A PDM-QPSK system suffers a penalty of 4.3 dB whereas power penalty of QPSK system is 3.0 dB at a BER of 10-9 for DGD of 0.8 Tb and GVD of 1700 ps/nm. Analytical results are compared with the experimental results reported earlier and found to have good conformity.

  18. Practical scheme for optimal measurement in quantum interferometric devices

    NASA Astrophysics Data System (ADS)

    Takeoka, Masahiro; Ban, Masashi; Sasaki, Masahide

    2003-06-01

    We apply a Kennedy-type detection scheme, which was originally proposed for a binary communications system, to interferometric sensing devices. We show that the minimum detectable perturbation of the proposed system reaches the ultimate precision bound which is predicted by quantum Neyman-Pearson hypothesis testing. To provide concrete examples, we apply our interferometric scheme to phase shift detection by using coherent and squeezed probe fields.

  19. Fisher information as a generalized measure of coherence in classical and quantum optics.

    PubMed

    Luis, Alfredo

    2012-10-22

    We show that metrological resolution in the detection of small phase shifts provides a suitable generalization of the degrees of coherence and polarization. Resolution is estimated via Fisher information. Besides the standard two-beam Gaussian case, this approach provides also good results for multiple field components and nonGaussian statistics. This works equally well in quantum and classical optics.

  20. Non-Gaussian precision metrology via driving through quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Huang, Jiahao; Zhuang, Min; Lee, Chaohong

    2018-03-01

    We propose a scheme to realize high-precision quantum interferometry with entangled non-Gaussian states by driving the system through quantum phase transitions. The beam splitting, in which an initial nondegenerate ground state evolves into a highly entangled state, is achieved by adiabatically driving the system from a nondegenerate regime to a degenerate one. Inversely, the beam recombination, in which the output state after interrogation becomes gradually disentangled, is accomplished by adiabatically driving the system from the degenerate regime to the nondegenerate one. The phase shift, which is accumulated in the interrogation process, can then be easily inferred via population measurement. We apply our scheme to Bose condensed atoms and trapped ions and find that Heisenberg-limited precision scalings can be approached. Our proposed scheme does not require single-particle resolved detection and is within the reach of current experiment techniques.

  1. Polarization momentum transfer collision: Faxen-Holtzmark theory and quantum dynamic shielding.

    PubMed

    Ki, Dae-Han; Jung, Young-Dae

    2013-04-21

    The influence of the quantum dynamic shielding on the polarization momentum transport collision is investigated by using the Faxen-Holtzmark theory in strongly coupled Coulomb systems. The electron-atom polarization momentum transport cross section is derived as a function of the collision energy, de Broglie wavelength, Debye length, thermal energy, and atomic quantum states. It is found that the dynamic shielding enhances the scattering phase shift as well as the polarization momentum transport cross section. The variation of quantum effect on the momentum transport collision due to the change of thermal energy and de Broglie wavelength is also discussed.

  2. Re-modulated technology of WDM-PON employing different DQPSK downstream signals

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Xin, Xiang-jun; Yu, Chong-xiu

    2012-11-01

    This paper proposes a kind of modulation architecture for wavelength-division-multiplexing passive optical network (WDMPON) employing optical differential quadrature phase shift keying (DQPSK) downstream signals and two different modulation formats of re-modulated upstream signals. At the optical line terminal (OLT), 10 Gbit/s signal is modulated with DQPSK. At the optical network unit (ONU), part of the downstream signal is re-modulated with on-off keying (OOK) or inverse-return-to-zero (IRZ). Simulation results show the impact on the system employing NRZ, RZ and carrier-suppressed return-to-zero (CSRZ). The analyses also reflect that the architecture can restrain chromatic dispersion and channel crosstalk, which makes it the best architecture of access network in the future.

  3. Cryptographic robustness of a quantum cryptography system using phase-time coding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2008-01-15

    A cryptographic analysis is presented of a new quantum key distribution protocol using phase-time coding. An upper bound is obtained for the error rate that guarantees secure key distribution. It is shown that the maximum tolerable error rate for this protocol depends on the counting rate in the control time slot. When no counts are detected in the control time slot, the protocol guarantees secure key distribution if the bit error rate in the sifted key does not exceed 50%. This protocol partially discriminates between errors due to system defects (e.g., imbalance of a fiber-optic interferometer) and eavesdropping. In themore » absence of eavesdropping, the counts detected in the control time slot are not caused by interferometer imbalance, which reduces the requirements for interferometer stability.« less

  4. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies.

    PubMed

    Constantino, Nicolas G N; Anwar, Muhammad Shahbaz; Kennedy, Oscar W; Dang, Manyu; Warburton, Paul A; Fenton, Jonathan C

    2018-06-16

    Superconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of, superconducting nanowires that undergo coherent quantum phase-slips. We present three fabrication technologies, based on using electron-beam lithography or neon focussed ion-beam lithography, for defining narrow superconducting nanowires, and have used these to create nanowires in niobium nitride with widths in the range of 20⁻250 nm. We present characterisation of the nanowires using DC electrical transport at temperatures down to 300 mK. We demonstrate that a range of different behaviours may be obtained in different nanowires, including bulk-like superconducting properties with critical-current features, the observation of phase-slip centres and the observation of zero conductance below a critical voltage, characteristic of coherent quantum phase-slips. We observe critical voltages up to 5 mV, an order of magnitude larger than other reports to date. The different prominence of quantum phase-slip effects in the various nanowires may be understood as arising from the differing importance of quantum fluctuations. Control of the nanowire properties will pave the way for routine fabrication of coherent quantum phase-slip nanowire devices for technology applications.

  5. Decoy state method for quantum cryptography based on phase coding into faint laser pulses

    NASA Astrophysics Data System (ADS)

    Kulik, S. P.; Molotkov, S. N.

    2017-12-01

    We discuss the photon number splitting attack (PNS) in systems of quantum cryptography with phase coding. It is shown that this attack, as well as the structural equations for the PNS attack for phase encoding, differs physically from the analogous attack applied to the polarization coding. As far as we know, in practice, in all works to date processing of experimental data has been done for phase coding, but using formulas for polarization coding. This can lead to inadequate results for the length of the secret key. These calculations are important for the correct interpretation of the results, especially if it concerns the criterion of secrecy in quantum cryptography.

  6. Quantum mechanics without potential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhaidari, A. D., E-mail: haidari@sctp.org.sa; Ismail, M. E. H.

    2015-07-15

    In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which ismore » written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.« less

  7. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  8. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.; Sinha, Chandana

    2009-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very low incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it The scattering wave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts, the exchange approximation has only been considered. We calculate the laser-assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  9. Supersensitive ancilla-based adaptive quantum phase estimation

    NASA Astrophysics Data System (ADS)

    Larson, Walker; Saleh, Bahaa E. A.

    2017-10-01

    The supersensitivity attained in quantum phase estimation is known to be compromised in the presence of decoherence. This is particularly patent at blind spots—phase values at which sensitivity is totally lost. One remedy is to use a precisely known reference phase to shift the operation point to a less vulnerable phase value. Since this is not always feasible, we present here an alternative approach based on combining the probe with an ancillary degree of freedom containing adjustable parameters to create an entangled quantum state of higher dimension. We validate this concept by simulating a configuration of a Mach-Zehnder interferometer with a two-photon probe and a polarization ancilla of adjustable parameters, entangled at a polarizing beam splitter. At the interferometer output, the photons are measured after an adjustable unitary transformation in the polarization subspace. Through calculation of the Fisher information and simulation of an estimation procedure, we show that optimizing the adjustable polarization parameters using an adaptive measurement process provides globally supersensitive unbiased phase estimates for a range of decoherence levels, without prior information or a reference phase.

  10. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Matthias, E-mail: m.paul@ihfg.uni-stuttgart.de; Kettler, Jan; Zeuner, Katharina

    By metal-organic vapor-phase epitaxy, we have fabricated InGaAs quantum dots on GaAs substrate with an ultra-low lateral density (<10{sup 7} cm{sup −2}). The photoluminescence emission from the quantum dots is shifted to the telecom O-band at 1.31 μm by an InGaAs strain reducing layer. In time-resolved measurements, we find fast decay times for exciton (∼600 ps) and biexciton (∼300 ps). We demonstrate triggered single-photon emission (g{sup (2)}(0)=0.08) as well as cascaded emission from the biexciton decay. Our results suggest that these quantum dots can compete with their counterparts grown by state-of-the-art molecular beam epitaxy.

  11. Self-referenced continuous-variable quantum key distribution

    DOEpatents

    Soh, Daniel B. S.; Sarovar, Mohan; Camacho, Ryan

    2017-01-24

    Various technologies for continuous-variable quantum key distribution without transmitting a transmitter's local oscillator are described herein. A receiver on an optical transmission channel uses an oscillator signal generated by a light source at the receiver's location to perform interferometric detection on received signals. An optical reference pulse is sent by the transmitter on the transmission channel and the receiver computes a phase offset of the transmission based on quadrature measurements of the reference pulse. The receiver can then compensate for the phase offset between the transmitter's reference and the receiver's reference when measuring quadratures of received data pulses.

  12. Fault-tolerant composite Householder reflection

    NASA Astrophysics Data System (ADS)

    Torosov, Boyan T.; Kyoseva, Elica; Vitanov, Nikolay V.

    2015-07-01

    We propose a fault-tolerant implementation of the quantum Householder reflection, which is a key operation in various quantum algorithms, quantum-state engineering, generation of arbitrary unitaries, and entanglement characterization. We construct this operation using the modular approach of composite pulses and a relation between the Householder reflection and the quantum phase gate. The proposed implementation is highly insensitive to variations in the experimental parameters, which makes it suitable for high-fidelity quantum information processing.

  13. Asymmetric nanowire SQUID: Linear current-phase relation, stochastic switching, and symmetries

    NASA Astrophysics Data System (ADS)

    Murphy, A.; Bezryadin, A.

    2017-09-01

    We study nanostructures based on two ultrathin superconducting nanowires connected in parallel to form a superconducting quantum interference device (SQUID). The measured function of the critical current versus magnetic field, IC(B ) , is multivalued, asymmetric, and its maxima and minima are shifted from the usual integer and half integer flux quantum points. We also propose a low-temperature-limit model which generates accurate fits to the IC(B ) functions and provides verifiable predictions. The key assumption of our model is that each wire is characterized by a sample-specific critical phase ϕC defined as the phase difference at which the supercurrent in the wire is the maximum. For our nanowires ϕC is much greater than the usual π /2 , which makes a qualitative difference in the behavior of the SQUID. The nanowire current-phase relation is assumed linear, since the wires are much longer than the coherence length. The model explains single-valuedness regions where only one vorticity value nv is stable. Also, it predicts regions where multiple vorticity values are stable because the Little-Parks (LP) diamonds, which describe the region of stability for each winding number nv in the current-field diagram, can overlap. We also observe and explain regions in which the standard deviation of the switching current is independent of the magnetic field. We develop a technique that allows a reliable detection of hidden phase slips and use it to determine the boundaries of the LP diamonds even at low currents where IC(B ) is not directly measurable.

  14. A high accuracy ultrasonic distance measurement system using binary frequency shift-keyed signal and phase detection

    NASA Astrophysics Data System (ADS)

    Huang, S. S.; Huang, C. F.; Huang, K. N.; Young, M. S.

    2002-10-01

    A highly accurate binary frequency shift-keyed (BFSK) ultrasonic distance measurement system (UDMS) for use in isothermal air is described. This article presents an efficient algorithm which combines both the time-of-flight (TOF) method and the phase-shift method. The proposed method can obtain larger range measurement than the phase-shift method and also get higher accuracy compared with the TOF method. A single-chip microcomputer-based BFSK signal generator and phase detector was designed to record and compute the TOF, two phase shifts, and the resulting distance, which were then sent to either an LCD to display or a PC to calibrate. Experiments were done in air using BFSK with the frequencies of 40 and 41 kHz. Distance resolution of 0.05% of the wavelength corresponding to the frequency of 40 kHz was obtained. The range accuracy was found to be within ±0.05 mm at a range of over 6000 mm. The main advantages of this UDMS system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  15. Coherence Preservation of a Single Neutral Atom Qubit Transferred between Magic-Intensity Optical Traps.

    PubMed

    Yang, Jiaheng; He, Xiaodong; Guo, Ruijun; Xu, Peng; Wang, Kunpeng; Sheng, Cheng; Liu, Min; Wang, Jin; Derevianko, Andrei; Zhan, Mingsheng

    2016-09-16

    We demonstrate that the coherence of a single mobile atomic qubit can be well preserved during a transfer process among different optical dipole traps (ODTs). This is a prerequisite step in realizing a large-scale neutral atom quantum information processing platform. A qubit encoded in the hyperfine manifold of an ^{87}Rb atom is dynamically extracted from the static quantum register by an auxiliary moving ODT and reinserted into the static ODT. Previous experiments were limited by decoherences induced by the differential light shifts of qubit states. Here, we apply a magic-intensity trapping technique which mitigates the detrimental effects of light shifts and substantially enhances the coherence time to 225±21  ms. The experimentally demonstrated magic trapping technique relies on the previously neglected hyperpolarizability contribution to the light shifts, which makes the light shift dependence on the trapping laser intensity parabolic. Because of the parabolic dependence, at a certain "magic" intensity, the first order sensitivity to trapping light-intensity variations over ODT volume is eliminated. We experimentally demonstrate the utility of this approach and measure hyperpolarizability for the first time. Our results pave the way for constructing scalable quantum-computing architectures with single atoms trapped in an array of magic ODTs.

  16. Acoustic radiation force expansions in terms of partial wave phase shifts for scattering: Applications

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Likun

    2016-11-01

    When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.

  17. Interference Confocal Microscope Integrated with Spatial Phase Shifter.

    PubMed

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-08-24

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.

  18. Superconductivity. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt₃.

    PubMed

    Schemm, E R; Gannon, W J; Wishne, C M; Halperin, W P; Kapitulnik, A

    2014-07-11

    Models of superconductivity in unconventional materials can be experimentally differentiated by the predictions they make for the symmetries of the superconducting order parameter. In the case of the heavy-fermion superconductor UPt3, a key question is whether its multiple superconducting phases preserve or break time-reversal symmetry (TRS). We tested for asymmetry in the phase shift between left and right circularly polarized light reflected from a single crystal of UPt3 at normal incidence and found that this so-called polar Kerr effect appears only below the lower of the two zero-field superconducting transition temperatures. Our results provide evidence for broken TRS in the low-temperature superconducting phase of UPt3, implying a complex two-component order parameter for superconductivity in this system. Copyright © 2014, American Association for the Advancement of Science.

  19. Retrieving plasmonic near-field information: A quantum-mechanical model for streaking photoelectron spectroscopy of gold nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2016-11-01

    Streaked photoemission from nanostructures is characterized by size- and material-dependent nanometer-scale variations of the induced nanoplasmonic response to the electronic field of the streaking pulse and thus holds promise of allowing photoelectron imaging with both subfemtosecond temporal and nanometer spatial resolution. In order to scrutinize the driven collective electronic dynamics in 10-200-nm-diameter gold nanospheres, we calculated the plasmonic field induced by streaking pulses in the infrared and visible spectral range and developed a quantum-mechanical model for streaked photoemission by extreme ultraviolet pulses. Our simulated photoelectron spectra reveal a significant amplitude enhancement and phase shift of the photoelectron streaking trace relative to calculations that exclude the induced plasmonic field. Both are most pronounced for streaking pulses tuned to the plasmon frequency and retrace the plasmonic electromagnetic field enhancement and phase shift near the nanosphere surface.

  20. Programmable rate modem utilizing digital signal processing techniques

    NASA Technical Reports Server (NTRS)

    Naveh, Arad

    1992-01-01

    The need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK) modulation is discussed. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. The design trade-offs in each portion of the modulator and demodulator subsystem are outlined.

  1. Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model

    PubMed Central

    Joshi, Chaitanya; Irish, Elinor K.; Spiller, Timothy P.

    2017-01-01

    Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities. PMID:28358025

  2. Secret information reconciliation based on punctured low-density parity-check codes for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Jiang, Xue-Qin; Huang, Peng; Huang, Duan; Lin, Dakai; Zeng, Guihua

    2017-02-01

    Achieving information theoretic security with practical complexity is of great interest to continuous-variable quantum key distribution in the postprocessing procedure. In this paper, we propose a reconciliation scheme based on the punctured low-density parity-check (LDPC) codes. Compared to the well-known multidimensional reconciliation scheme, the present scheme has lower time complexity. Especially when the chosen punctured LDPC code achieves the Shannon capacity, the proposed reconciliation scheme can remove the information that has been leaked to an eavesdropper in the quantum transmission phase. Therefore, there is no information leaked to the eavesdropper after the reconciliation stage. This indicates that the privacy amplification algorithm of the postprocessing procedure is no more needed after the reconciliation process. These features lead to a higher secret key rate, optimal performance, and availability for the involved quantum key distribution scheme.

  3. pH-dependent Differential Scanning Calorimetry and Dynamic Light Scattering Studies of 21:0 PC and 18:0 PS Lipid Binary System

    NASA Astrophysics Data System (ADS)

    Ali, Rejwan

    2010-03-01

    Large unilamallar vesicle has been a model system to study many membrane functions. High Tg lipid systems offer many potential biomedical applications in lipid-based delivery applications. While the optimized vesicle functionalities are achieved by Polyethylene Glycol (PEG) polymer, modified PEG and other functional molecule incorporation, however, the host binary lipid system plays the pivotal role in pH-dependent phase transition based lipid vehicular methods. We have investigated a lipid binary system composed of 21:0 PC (1,2-dihenarachidoyl-sn-glycero-3-phosphocholine) and 18:0 PS(1,2-distearoyl-sn-glycero-3-phospho-L-serine). Preliminary studies implementing differential scanning calorimetry shows pH plays key role in temperature shift and thermotropic phase behavior of the binary system. While dynamic light scattering study shows lipid vesicle size is almost independent of pH changes. We will also present pH-dependent thermodynamic parameters to correlate underlying molecular mechanism in relevant pH-range.

  4. Experimental Implementation of a Quantum Optical State Comparison Amplifier

    NASA Astrophysics Data System (ADS)

    Donaldson, Ross J.; Collins, Robert J.; Eleftheriadou, Electra; Barnett, Stephen M.; Jeffers, John; Buller, Gerald S.

    2015-03-01

    We present an experimental demonstration of a practical nondeterministic quantum optical amplification scheme that employs two mature technologies, state comparison and photon subtraction, to achieve amplification of known sets of coherent states with high fidelity. The amplifier uses coherent states as a resource rather than single photons, which allows for a relatively simple light source, such as a diode laser, providing an increased rate of amplification. The amplifier is not restricted to low amplitude states. With respect to the two key parameters, fidelity and the amplified state production rate, we demonstrate significant improvements over previous experimental implementations, without the requirement of complex photonic components. Such a system may form the basis of trusted quantum repeaters in nonentanglement-based quantum communications systems with known phase alphabets, such as quantum key distribution or quantum digital signatures.

  5. Evaluation of quadrature-phase-shift-keying signal characteristics in W-band radio-over-fiber transmission using direct in-phase/quadrature-phase conversion technique

    NASA Astrophysics Data System (ADS)

    Suzuki, Meisaku; Kanno, Atsushi; Yamamoto, Naokatsu; Sotobayashi, Hideyuki

    2016-02-01

    The effects of in-phase/quadrature-phase (IQ) imbalances are evaluated with a direct IQ down-converter in the W-band (75-110 GHz). The IQ imbalance of the converter is measured within a range of +/-10 degrees in an intermediate frequency of DC-26.5 GHz. 1-8-G-baud quadrature phase-shift keying (QPSK) signals are transmitted successfully with observed bit error rates within a forward error correction limit of 2×10-3 using radio over fiber (RoF) techniques. The direct down-conversion technique is applicable to next-generation high-speed wireless access communication systems in the millimeter-wave band.

  6. The quantum defect: Early history and recent developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, A.R.; Inokuti, M.

    1997-03-01

    The notion of the quantum defect is important in atomic and molecular spectroscopy and also in unifying spectroscopy with collision theory. In the latter context, the quantum defect may be viewed as an ancestor of the phase shift. However, the origin of the term {open_quotes}quantum defect{close_quotes} does not seem to be explained in standard textbooks. It occurred in a 1921 paper by Schr{umlt o}dinger, preceding quantum mechanics, yet giving the correct meaning as an index of the short-range interactions with the core of an atom. We present the early history of the quantum-defect idea, and sketch its recent developments. {copyright}more » {ital 1997 American Association of Physics Teachers.}« less

  7. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    PubMed

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.

  8. Ramsey's method of separated oscillating fields and its application to gravitationally induced quantum phase shifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abele, H.; Jenke, T.; Leeb, H.

    2010-03-15

    We propose to apply Ramsey's method of separated oscillating fields to the spectroscopy of the quantum states in the gravity potential above a horizontal mirror. This method allows a precise measurement of quantum mechanical phaseshifts of a Schroedinger wave packet bouncing off a hard surface in the gravitational field of the Earth. Measurements with ultracold neutrons will offer a sensitivity to Newton's law or hypothetical short-ranged interactions, which is about 21 orders of magnitude below the energy scale of electromagnetism.

  9. Quantum Secure Group Communication.

    PubMed

    Li, Zheng-Hong; Zubairy, M Suhail; Al-Amri, M

    2018-03-01

    We propose a quantum secure group communication protocol for the purpose of sharing the same message among multiple authorized users. Our protocol can remove the need for key management that is needed for the quantum network built on quantum key distribution. Comparing with the secure quantum network based on BB84, we show our protocol is more efficient and securer. Particularly, in the security analysis, we introduce a new way of attack, i.e., the counterfactual quantum attack, which can steal information by "invisible" photons. This invisible photon can reveal a single-photon detector in the photon path without triggering the detector. Moreover, the photon can identify phase operations applied to itself, thereby stealing information. To defeat this counterfactual quantum attack, we propose a quantum multi-user authorization system. It allows us to precisely control the communication time so that the attack can not be completed in time.

  10. A large-alphabet three-party quantum key distribution protocol based on orbital and spin angular momenta hybrid entanglement

    NASA Astrophysics Data System (ADS)

    Lai, Hong; Luo, Mingxing; Zhang, Jun; Pieprzyk, Josef; Pan, Lei; Orgun, Mehmet A.

    2018-07-01

    The orthogonality of the orbital angular momentum (OAM) eigenstates enables a single photon carry an arbitrary number of bits. Moreover, additional degrees of freedom (DOFs) of OAM can span a high-dimensional Hilbert space, which could greatly increase information capacity and security. Moreover, the use of the spin angular momentum-OAM hybrid entangled state can increase Shannon dimensionality, because photons can be hybrid entangled in multiple DOFs. Based on these observations, we develop a hybrid entanglement quantum key distribution (QKD) protocol to achieve three-party quantum key distribution without classical message exchanges. In our proposed protocol, a communicating party uses a spatial light modulator (SLM) and a specific phase hologram to modulate photons' OAM state. Similarly, the other communicating parties use their SLMs and the fixed different phase holograms to modulate the OAM entangled photon pairs, producing the shared key among the parties Alice, Bob and Charlie without classical message exchanges. More importantly, when the same operation is repeated for every party, our protocol could be extended to a multiple-party QKD protocol.

  11. Quantum-field-theoretical approach to phase-space techniques: Generalizing the positive-P representation

    NASA Astrophysics Data System (ADS)

    Plimak, L. I.; Fleischhauer, M.; Olsen, M. K.; Collett, M. J.

    2003-01-01

    We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (SΔE). Second, we show that introducing sources into the SDE’s (or SΔE’s) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo’s linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.

  12. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice

    PubMed Central

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-01-01

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures. PMID:24253589

  13. FPGA based digital phase-coding quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Lu, XiaoMing; Zhang, LiJun; Wang, YongGang; Chen, Wei; Huang, DaJun; Li, Deng; Wang, Shuang; He, DeYong; Yin, ZhenQiang; Zhou, Yu; Hui, Cong; Han, ZhengFu

    2015-12-01

    Quantum key distribution (QKD) is a technology with the potential capability to achieve information-theoretic security. Phasecoding is an important approach to develop practical QKD systems in fiber channel. In order to improve the phase-coding modulation rate, we proposed a new digital-modulation method in this paper and constructed a compact and robust prototype of QKD system using currently available components in our lab to demonstrate the effectiveness of the method. The system was deployed in laboratory environment over a 50 km fiber and continuously operated during 87 h without manual interaction. The quantum bit error rate (QBER) of the system was stable with an average value of 3.22% and the secure key generation rate is 8.91 kbps. Although the modulation rate of the photon in the demo system was only 200 MHz, which was limited by the Faraday-Michelson interferometer (FMI) structure, the proposed method and the field programmable gate array (FPGA) based electronics scheme have a great potential for high speed QKD systems with Giga-bits/second modulation rate.

  14. Nonrelativistic Quantum Mechanics with Fundamental Environment

    NASA Astrophysics Data System (ADS)

    Gevorkyan, Ashot S.

    2011-03-01

    Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations ( fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum system (QS) + FE" is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the extended space R 3 ⊗ R { ξ}, where R 3 and R { ξ} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system.

  15. Subcycle quantum physics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Leitenstorfer, Alfred

    2017-02-01

    A time-domain approach to quantum electrodynamics is presented, covering the entire mid-infrared and terahertz frequency ranges. Ultrabroadband electro-optic sampling with few-femtosecond laser pulses allows direct detection of the vacuum fluctuations of the electric field in free space [1,2]. Besides the Planck and electric field fundamental constants, the variance of the ground state is determined solely by the inverse of the four-dimensional space-time volume over which a measurement or physical process integrates. Therefore, we can vary the contribution of multi-terahertz vacuum fluctuations and discriminate against the trivial shot noise due to the constant flux of near-infrared probe photons. Subcycle temporal resolution based on a nonlinear phase shift provides signals from purely virtual photons for accessing the ground-state wave function without amplification to finite intensity. Recently, we have succeeded in generation and analysis of mid-infrared squeezed transients with quantum noise patterns that are time-locked to the intensity envelope of the probe pulses. We find subcycle temporal positions with a noise level distinctly below the bare vacuum which serves as a direct reference. Delay times with increased differential noise indicate generation of highly correlated quantum fields by spontaneous parametric fluorescence. Our time-domain approach offers a generalized understanding of spontaneous emission processes as a consequence of local anomalies in the co-propagating reference frame modulating the quantum vacuum, in combination with the boundary conditions set by Heisenberg's uncertainty principle. [1] C. Riek et al., Science 350, 420 (2015) [2] A. S. Moskalenko et al., Phys. Rev. Lett. 115, 263601 (2015)

  16. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-01

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p →q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  17. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels.

    PubMed

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-21

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p→q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  18. A scattering model for rain depolarization

    NASA Technical Reports Server (NTRS)

    Wiley, P. H.; Stutzman, W. L.; Bostian, C. W.

    1973-01-01

    A method is presented for calculating the amount of depolarization caused by precipitation for a propagation path. In the model the effects of each scatterer and their interactions are accounted for by using a series of simplifying steps. It is necessary only to know the forward scattering properties of a single scatterer. For the case of rain the results of this model for attenuation, differential phase shift, and cross polarization agree very well with the results of the only other model available, that of differential attenuation and differential phase shift. Calculations presented here show that horizontal polarization is more sensitive to depolarization than is vertical polarization for small rain drop canting angle changes. This effect increases with increasing path length.

  19. In-line digital holography with phase-shifting Greek-ladder sieves

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang

    2018-04-01

    Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.

  20. Manipulating Nonlinear Emission and Cooperative Effect of CdSe/ZnS Quantum Dots by Coupling to a Silver Nanorod Complex Cavity

    PubMed Central

    Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan

    2014-01-01

    Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617

  1. Basis for a neuronal version of Grover's quantum algorithm

    PubMed Central

    Clark, Kevin B.

    2014-01-01

    Grover's quantum (search) algorithm exploits principles of quantum information theory and computation to surpass the strong Church–Turing limit governing classical computers. The algorithm initializes a search field into superposed N (eigen)states to later execute nonclassical “subroutines” involving unitary phase shifts of measured states and to produce root-rate or quadratic gain in the algorithmic time (O(N1/2)) needed to find some “target” solution m. Akin to this fast technological search algorithm, single eukaryotic cells, such as differentiated neurons, perform natural quadratic speed-up in the search for appropriate store-operated Ca2+ response regulation of, among other processes, protein and lipid biosynthesis, cell energetics, stress responses, cell fate and death, synaptic plasticity, and immunoprotection. Such speed-up in cellular decision making results from spatiotemporal dynamics of networked intracellular Ca2+-induced Ca2+ release and the search (or signaling) velocity of Ca2+ wave propagation. As chemical processes, such as the duration of Ca2+ mobilization, become rate-limiting over interstore distances, Ca2+ waves quadratically decrease interstore-travel time from slow saltatory to fast continuous gradients proportional to the square-root of the classical Ca2+ diffusion coefficient, D1/2, matching the computing efficiency of Grover's quantum algorithm. In this Hypothesis and Theory article, I elaborate on these traits using a fire-diffuse-fire model of store-operated cytosolic Ca2+ signaling valid for glutamatergic neurons. Salient model features corresponding to Grover's quantum algorithm are parameterized to meet requirements for the Oracle Hadamard transform and Grover's iteration. A neuronal version of Grover's quantum algorithm figures to benefit signal coincidence detection and integration, bidirectional synaptic plasticity, and other vital cell functions by rapidly selecting, ordering, and/or counting optional response regulation choices. PMID:24860419

  2. Quantum mechanical streamlines. I - Square potential barrier

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

    1974-01-01

    Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

  3. Berry phase dependent quantum trajectories of electron-hole pairs in semiconductors under intense terahertz fields

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Liu, Ren-Bao

    2013-03-01

    Quantum evolution of particles under strong fields can be approximated by the quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integrals. The quantum trajectories are the key concept to understand strong-field optics phenomena, such as high-order harmonic generation (HHG), above-threshold ionization (ATI), and high-order terahertz siedeband generation (HSG). The HSG in semiconductors may have a wealth of physics due to the possible nontrivial ``vacuum'' states of band materials. We find that in a spin-orbit-coupled semiconductor, the cyclic quantum trajectories of an electron-hole pair under a strong terahertz field accumulates nontrivial Berry phases. We study the monolayer MoS2 as a model system and find that the Berry phases are given by the Faraday rotation angles of the pulse emission from the material under short-pulse excitation. This result demonstrates an interesting Berry phase dependent effect in the extremely nonlinear optics of semiconductors. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.

  4. EDITORIAL: Focus on Quantum Cryptography: Theory and Practice FOCUS ON QUANTUM CRYPTOGRAPHY: THEORY AND PRACTICE

    NASA Astrophysics Data System (ADS)

    Lütkenhaus, N.; Shields, A. J.

    2009-04-01

    Quantum cryptography, and especially quantum key distribution (QKD), is steadily progressing to become a viable tool for cryptographic services. In recent years we have witnessed a dramatic increase in the secure bit rate of QKD, as well as its extension to ever longer fibre- and air-based links and the emergence of metro-scale trusted networks. In the foreseeable future even global-scale communications may be possible using quantum repeaters or Earth-satellite links. A handful of start-ups and some bigger companies are already active in the field. The launch of an initiative to form industrial standards for QKD, under the auspices of the European Telecommunication Standards Institute, described in the paper by Laenger and Lenhart in this Focus Issue, can be taken as a sign of the growing commercial interest. Recent progress has seen an increase in the secure bit rate of QKD links, by orders of magnitude, to over 1 Mb s-1. This has resulted mainly from an improvement in the detection technology. Here changes in the way conventional semiconductor detectors are gated, as well as the development of novel devices based on non-linear processes and superconducting materials, are leading the way. Additional challenges for QKD at GHz clock rates include the design of high speed electronics, remote synchronization and high rate random number generation. Substantial effort is being devoted to increasing the range of individual links, which is limited by attenuation and other losses in optical fibres and air links. An important advance in the past few years has been the introduction of protocols with the same scaling as an ideal single-photon set-up. The good news is that these schemes use standard optical devices, such as weak laser pulses. Thanks to these new protocols and improvements in the detection technology, the range of a single fibre link can exceed a few hundred km. Outstanding issues include proving the unconditional security of some of the schemes. Much of the work done to date relates to point-to-point links. Another recent advance has been the development of trusted networks for QKD. This is important for further increasing the range of the technology, and for overcoming denial-of-service attacks on an individual link. It is interesting to see that the optimization of QKD devices differs for point-to-point and network applications. Network operation is essential for widespread adoption of the technology, as it can dramatically reduce the deployment costs and allow connection flexibility. Also important is the multiplexing of the quantum signals with conventional network traffic. For the future, quantum repeaters should be developed for longer range links. On the theoretical side, different approaches to security proofs have recently started to converge, offering several paradigms of the same basic idea. Our improved theoretical understanding places more stringent demands on the QKD devices. We are aware by now that finite size effects in key generation arise not only from parameter estimation. It will not be possible to generate a key from just a few hundred received signals. It is a stimulating challenge for the theory of security proofs to develop lean proof strategies that work with finite signal block sizes. As QKD advances to a real-world cryptographic solution, side channel attacks must be carefully analysed. Theoretical security proofs for QKD schemes are so far based on physical models of these devices. It is in the nature of models that any real implementation will deviate from this model, creating a potential weakness for an eavesdropper to exploit. There are two solutions to this problem: the traditional path of refining the models to reduce the deviations, or the radically different approach of device-independent security proofs, in which none or only a few well controlled assumptions about the devices are made. Clearly, it is desirable to find security proofs that require only minimal or fairly general model descriptions and are based on observable tests during the run of QKD sessions. It is now 25 years since the first proposal for QKD was published and 20 since the first experimental realization. The intervening years have brought several technological and theoretical advances, which have driven new insights into the application of quantum theory to the wider field of information technology. We are looking forward to the new twists and turns this field will take in the next 25 years! Focus on Quantum Cryptography: Theory and Practice Contents Security of continuous-variable quantum key distribution: towards a de Finetti theorem for rotation symmetry in phase space A Leverrier, E Karpov, P Grangier and N J Cerf Optical networking for quantum key distribution and quantum communications T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L Mercer and H Dardy Proof-of-concept of real-world quantum key distribution with quantum frames I Lucio-Martinez, P Chan, X Mo, S Hosier and W Tittel Composability in quantum cryptography Jörn Müller-Quade and Renato Renner Distributed authentication for randomly compromised networks Travis R Beals, Kevin P Hynes and Barry C Sanders Feasibility of 300 km quantum key distribution with entangled states Thomas Scheidl, Rupert Ursin, Alessandro Fedrizzi, Sven Ramelow, Xiao-Song Ma, Thomas Herbst, Robert Prevedel, Lothar Ratschbacher, Johannes Kofler, Thomas Jennewein and Anton Zeilinger Decoy-state quantum key distribution with both source errors and statistical fluctuations Xiang-Bin Wang, Lin Yang, Cheng-Zhi Peng and Jian-Wei Pan High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres D Stucki, N Walenta, F Vannel, R T Thew, N Gisin, H Zbinden, S Gray, C R Towery and S Ten Topological optimization of quantum key distribution networks R Alléaume, F Roueff, E Diamanti and N Lütkenhaus The SECOQC quantum key distribution network in Vienna M Peev, C Pacher, R Alléaume, C Barreiro, J Bouda, W Boxleitner, T Debuisschert, E Diamanti, M Dianati, J F Dynes, S Fasel, S Fossier, M Fürst, J-D Gautier, O Gay, N Gisin, P Grangier, A Happe, Y Hasani, M Hentschel, H Hübel, G Humer, T Länger, M Legré, R Lieger, J Lodewyck, T Lorünser, N Lütkenhaus, A Marhold, T Matyus, O Maurhart, L Monat, S Nauerth, J-B Page, A Poppe, E Querasser, G Ribordy, S Robyr, L Salvail, A W Sharpe, A J Shields, D Stucki, M Suda, C Tamas, T Themel, R T Thew, Y Thoma, A Treiber, P Trinkler, R Tualle-Brouri, F Vannel, N Walenta, H Weier, H Weinfurter, I Wimberger, Z L Yuan, H Zbinden and A Zeilinger Stable quantum key distribution with active polarization control based on time-division multiplexing J Chen, G Wu, L Xu, X Gu, E Wu and H Zeng Controlling passively quenched single photon detectors by bright light Vadim Makarov Information leakage via side channels in freespace BB84 quantum cryptography Sebastian Nauerth, Martin Fürst, Tobias Schmitt-Manderbach, Henning Weier and Harald Weinfurter Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD Thomas Länger and Gaby Lenhart Entangled quantum key distribution with a biased basis choice Chris Erven, Xiongfeng Ma, Raymond Laflamme and Gregor Weihs Finite-key analysis for practical implementations of quantum key distribution Raymond Y Q Cai and Valerio Scarani Field test of a continuous-variable quantum key distribution prototype S Fossier, E Diamanti, T Debuisschert, A Villing, R Tualle-Brouri and P Grangier Physics and application of photon number resolving detectors based on superconducting parallel nanowires F Marsili, D Bitauld, A Gaggero, S Jahanmirinejad, R Leoni, F Mattioli and A Fiore Device-independent quantum key distribution secure against collective attacks Stefano Pironio, Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge Massar and Valerio Scarani 1310 nm differential-phase-shift QKD system using superconducting single-photon detectors Lijun Ma, S Nam, Hai Xu, B Baek, Tiejun Chang, O Slattery, A Mink and Xiao Tang Practical gigahertz quantum key distribution based on avalanche photodiodes Z L Yuan, A R Dixon, J F Dynes, A W Sharpe and A J Shields Simple security proof of quantum key distribution based on complementarity M Koashi Feasibility of satellite quantum key distribution C Bonato, A Tomaello, V Da Deppo, G Naletto and P Villoresi Programmable instrumentation and gigahertz signaling for single-photon quantum communication systems Alan Mink, Joshua C Bienfang, Robert Carpenter, Lijun Ma, Barry Hershman, Alessandro Restelli and Xiao Tang Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation G B Xavier, N Walenta, G Vilela de Faria, G P Temporão, N Gisin, H Zbinden and J P von der Weid Feasibility of free space quantum key distribution with coherent polarization states D Elser, T Bartley, B Heim, Ch Wittmann, D Sych and G Leuchs A fully automated entanglement-based quantum cryptography system for telecom fiber networks Alexander Treiber, Andreas Poppe, Michael Hentschel, Daniele Ferrini, Thomas Lorünser, Edwin Querasser, Thomas Matyus, Hannes Hübel and Anton Zeilinger Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments N A Peters, P Toliver, T E Chapuran, R J Runser, S R McNown, C G Peterson, D Rosenberg, N Dallmann, R J Hughes, K P McCabe, J E Nordholt and K T Tyagi Clock synchronization by remote detection of correlated photon pairs Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Megabits secure key rate quantum key distribution Q Zhang, H Takesue, T Honjo, K Wen, T Hirohata, M Suyama, Y Takiguchi, H Kamada, Y Tokura, O Tadanaga, Y Nishida, M Asobe and Y Yamamoto Practical long-distance quantum key distribution system using decoy levels D Rosenberg, C G Peterson, J W Harrington, P R Rice, N Dallmann, K T Tyagi, K P McCabe, S Nam, B Baek, R H Hadfield, R J Hughes and J E Nordholt Detector decoy quantum key distribution Tobias Moroder, Marcos Curty and Norbert Lütkenhaus Daylight operation of a free space, entanglement-based quantum key distribution system Matthew P Peloso, Ilja Gerhardt, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes Benjamin Miquel and Hiroki Takesue

  5. Security proof of counterfactual quantum cryptography against general intercept-resend attacks and its vulnerability

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Wang, Jian; Tang, Chao-Jing

    2012-06-01

    Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal particles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-splitting attack. In this paper, the theoretical security of counterfactual quantum cryptography protocol against the general intercept-resend attacks is proved by bounding the information of an eavesdropper Eve more tightly than in Yin's proposal [Phys. Rev. A 82 042335 (2010)]. It is also shown that practical counterfactual quantum cryptography implementations may be vulnerable when equipped with imperfect apparatuses, by proving that a negative key rate can be achieved when Eve launches a time-shift attack based on imperfect detector efficiency.

  6. Magnetic quantum phase transition in Cr-doped Bi 2(Se xTe 1-x) 3 driven by the Stark effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing

    The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less

  7. Magnetic quantum phase transition in Cr-doped Bi 2(Se xTe 1-x) 3 driven by the Stark effect

    DOE PAGES

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing; ...

    2017-08-07

    The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less

  8. Probing strong electroweak symmetry breaking dynamics through quantum interferometry at the LHC

    DOE PAGES

    Murayama, Hitoshi; Rentala, Vikram; Shu, Jing

    2015-12-07

    Here, we present a new probe of strongly coupled electroweak symmetry breaking at the 14 TeV LHC by measuring a phase shift in the event distribution of the decay azimuthal angles in massive gauge boson scattering. One generically expects a large phase shift in the longitudinal gauge boson scattering amplitude due to the presence of broad resonances. This phase shift is observable as an interference effect between the strongly interacting longitudinal modes and the transverse modes of the gauge bosons. We find that even very broad resonances of masses up to 900 GeV can be probed at 3σ significance withmore » a 3000 fb -1 run of the LHC by using this technique. We also present the estimated reach for a future 50 TeV proton-proton collider.« less

  9. Uncertainty relations with quantum memory for the Wehrl entropy

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo

    2018-03-01

    We prove two new fundamental uncertainty relations with quantum memory for the Wehrl entropy. The first relation applies to the bipartite memory scenario. It determines the minimum conditional Wehrl entropy among all the quantum states with a given conditional von Neumann entropy and proves that this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The second relation applies to the tripartite memory scenario. It determines the minimum of the sum of the Wehrl entropy of a quantum state conditioned on the first memory quantum system with the Wehrl entropy of the same state conditioned on the second memory quantum system and proves that also this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The Wehrl entropy of a quantum state is the Shannon differential entropy of the outcome of a heterodyne measurement performed on the state. The heterodyne measurement is one of the main measurements in quantum optics and lies at the basis of one of the most promising protocols for quantum key distribution. These fundamental entropic uncertainty relations will be a valuable tool in quantum information and will, for example, find application in security proofs of quantum key distribution protocols in the asymptotic regime and in entanglement witnessing in quantum optics.

  10. Fully differential cross sections for the single ionization of helium by fast ions: Classical model calculations

    NASA Astrophysics Data System (ADS)

    Sarkadi, L.

    2018-04-01

    Fully differential cross sections (FDCSs) have been calculated for the single ionization of helium by 1- and 3-MeV proton and 100-MeV/u C6 + ion impact using the classical trajectory Monte Carlo (CTMC) method in the nonrelativistic, three-body approximation. The calculations were made employing a Wigner-type model in which the quantum-mechanical position distribution of the electron is approximated by a weighted integral of the microcanonical distribution over a range of the binding energy of the electron. In the scattering plane, the model satisfactorily reproduces the observed shape of the binary peak. In the region of the peak the calculated FDCSs agree well with the results of continuum-distorted-wave calculations for all the investigated collisions. For 1-MeV proton impact the experimentally observed shift of the binary peak with respect to the first Born approximation is compared with the shifts obtained by different higher-order quantum-mechanical theories and the present CTMC method. The best result was achieved by CTMC, but still a large part of the shift remained unexplained. Furthermore, it was found that the classical theory failed to reproduce the shape of the recoil peak observed in the experiments, it predicts a much narrower peak. This indicates that the formation of the recoil peak is dominated by quantum-mechanical effects. For 100-MeV/u C6 + ion impact the present CTMC calculations confirmed the existence of the "double-peak" structure of the angular distribution of the electron in the plane perpendicular to the momentum transfer, in accordance with the observation, the prediction of an incoherent semiclassical model, and previous CTMC results. This finding together with wave-packet calculations suggests that the "C6 + puzzle" may be solved by considering the loss of the projectile coherence. Experiments to be conducted using ion beams of anisotropic coherence are proposed for a more differential investigation of the ionization dynamics.

  11. Quantum Communication Using Macroscopic Phase Entangled States

    DTIC Science & Technology

    2015-12-10

    distribution with entanglement witnessing”, Physical Review A, v. 89, 012315 (2014). • David Simon , Gregg Jaeger, and Alexander Sergienko ’’Quantum...8217’Entanglement sudden death: a threat to advanced quantum key distribution?’’, Natural Computing, .v. 13, pp. 459-467 (2014). • David Simon and Alexander...What in the (quantum) world is macroscopic?”, Am. J. Phys. 82, 896 (2014) • Gregg Jaeger, David Simon , and Alexander V. Sergienko”, Implications

  12. Design of an anti-Rician-fading modem for mobile satellite communication systems

    NASA Technical Reports Server (NTRS)

    Kojima, Toshiharu; Ishizu, Fumio; Miyake, Makoto; Murakami, Keishi; Fujino, Tadashi

    1995-01-01

    To design a demodulator applicable to mobile satellite communication systems using differential phase shift keying modulation, we have developed key technologies including an anti-Rician-fading demodulation scheme, an initial acquisition scheme, automatic gain control (AGC), automatic frequency control (AFC), and bit timing recovery (BTR). Using these technologies, we have developed one-chip digital signal processor (DSP) modem for mobile terminal, which is compact, of light weight, and of low power consumption. Results of performance test show that the developed DSP modem achieves good performance in terms of bit error ratio in mobile satellite communication environment, i.e., Rician fading channel. It is also shown that the initial acquisition scheme acquires received signal rapidly even if the carrier-to-noise power ratio (CNR) of the received signal is considerably low.

  13. Teleportation-based quantum information processing with Majorana zero modes

    DOE PAGES

    Vijay, Sagar; Fu, Liang

    2016-12-29

    In this work, we present a measurement-based scheme for performing braiding operations on Majorana zero modes in mesoscopic superconductor islands and for detecting their non-Abelian statistics without moving or hybridizing them. In our scheme for “braiding without braiding”, the topological qubit encoded in any pair of well-separated Majorana zero modes is read out from the transmission phase shift in electron teleportation through the island in the Coulomb-blockade regime. Finally, we propose experimental setups to measure the teleportation phase shift via conductance in an electron interferometer or persistent current in a closed loop.

  14. Teleportation-based quantum information processing with Majorana zero modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijay, Sagar; Fu, Liang

    In this work, we present a measurement-based scheme for performing braiding operations on Majorana zero modes in mesoscopic superconductor islands and for detecting their non-Abelian statistics without moving or hybridizing them. In our scheme for “braiding without braiding”, the topological qubit encoded in any pair of well-separated Majorana zero modes is read out from the transmission phase shift in electron teleportation through the island in the Coulomb-blockade regime. Finally, we propose experimental setups to measure the teleportation phase shift via conductance in an electron interferometer or persistent current in a closed loop.

  15. Epitaxy of advanced nanowire quantum devices

    NASA Astrophysics Data System (ADS)

    Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.

    2017-08-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

  16. A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere

    PubMed Central

    Rossi, Sergio; Anfodillo, Tommaso; Čufar, Katarina; Cuny, Henri E.; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gričar, Jožica; Gruber, Andreas; King, Gregory M.; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B. K.

    2013-01-01

    Background and Aims Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Methods Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1–9 years per site from 1998 to 2011. Key Results The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern Conclusions The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions. PMID:24201138

  17. Magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 driven by the Stark effect

    NASA Astrophysics Data System (ADS)

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing; Lian, Biao; Zhang, Jinsong; Chang, Cuizu; Guo, Minghua; Ou, Yunbo; Feng, Yang; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2017-10-01

    The recent experimental observation of the quantum anomalous Hall effect has cast significant attention on magnetic topological insulators. In these magnetic counterparts of conventional topological insulators such as Bi2Te3, a long-range ferromagnetic state can be established by chemical doping with transition-metal elements. However, a much richer electronic phase diagram can emerge and, in the specific case of Cr-doped Bi2(SexTe1-x)3, a magnetic quantum phase transition tuned by the actual chemical composition has been reported. From an application-oriented perspective, the relevance of these results hinges on the possibility to manipulate magnetism and electronic band topology by external perturbations such as an electric field generated by gate electrodes—similar to what has been achieved in conventional diluted magnetic semiconductors. Here, we investigate the magneto-transport properties of Cr-doped Bi2(SexTe1-x)3 with different compositions under the effect of a gate voltage. The electric field has a negligible effect on magnetic order for all investigated compositions, with the remarkable exception of the sample close to the topological quantum critical point, where the gate voltage reversibly drives a ferromagnetic-to-paramagnetic phase transition. Theoretical calculations show that a perpendicular electric field causes a shift in the electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and, in turn, a magnetic phase transition.

  18. Strong electron-hole exchange in coherently coupled quantum dots.

    PubMed

    Fält, Stefan; Atatüre, Mete; Türeci, Hakan E; Zhao, Yong; Badolato, Antonio; Imamoglu, Atac

    2008-03-14

    We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole-spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where a conditional exciton energy shift in one dot identifies the charging state of the coupled partner.

  19. Efficient entanglement distillation without quantum memory.

    PubMed

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-31

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  20. Efficient entanglement distillation without quantum memory

    PubMed Central

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  1. Protein Structure Validation and Refinement Using Amide Proton Chemical Shifts Derived from Quantum Mechanics

    PubMed Central

    Christensen, Anders S.; Linnet, Troels E.; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H.

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3 JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding. PMID:24391900

  2. Distributed parametric amplifier for RZ-DPSK signal transmission system.

    PubMed

    Xu, Xing; Zhang, Chi; Yuk, T I; Wong, Kenneth K Y

    2012-08-13

    We have experimentally demonstrated a single pump distributed parametric amplification (DPA) system for differential phase shift keying (DPSK) signal in a spool of dispersion-shifted fiber (DSF). The gain spectrum of single pump DPA is thoroughly investigated by both simulation and experiment, and a possible reference for optimal input pump power and fiber length relationship is provided to DPA based applications. Furthermore, DPSK format is compared with on-off keying (OOK) within DPA scheme. Eight WDM signal channels at 10-Gb/s are utilized, and approximately 0.5-dB power penalties at the bit-error rate (BER) of 10(-9) are achieved for return-to-zero DPSK (RZ-DPSK), comparing to larger than 1.5-dB with OOK format. In order to improve the system power efficiency, at the receiver, the pump is recycled by a photovoltaic cell and the converted energy can be used by potential low-power-consuming devices, i.e sensors or small-scale electronic circuits. Additionally, with suitable components, the whole DPA concept could be directly applied to the 1.3-μm telecommunication window along the most commonly used single-mode fiber (SMF).

  3. Phase noise characterization of a QD-based diode laser frequency comb.

    PubMed

    Vedala, Govind; Al-Qadi, Mustafa; O'Sullivan, Maurice; Cartledge, John; Hui, Rongqing

    2017-07-10

    We measure, simultaneously, the phases of a large set of comb lines from a passively mode locked, InAs/InP, quantum dot laser frequency comb (QDLFC) by comparing the lines to a stable comb reference using multi-heterodyne coherent detection. Simultaneity permits the separation of differential and common mode phase noise and a straightforward determination of the wavelength corresponding to the minimum width of the comb line. We find that the common mode and differential phases are uncorrelated, and measure for the first time for a QDLFC that the intrinsic differential-mode phase (IDMP) between adjacent subcarriers is substantially the same for all subcarrier pairs. The latter observation supports an interpretation of 4.4ps as the standard deviation of IDMP on a 200µs time interval for this laser.

  4. Augmenting Phase Space Quantization to Introduce Additional Physical Effects

    NASA Astrophysics Data System (ADS)

    Robbins, Matthew P. G.

    Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.

  5. High-dimensional Controlled-phase Gate Between a 2 N -dimensional Photon and N Three-level Artificial Atoms

    NASA Astrophysics Data System (ADS)

    Ma, Yun-Ming; Wang, Tie-Jun

    2017-10-01

    Higher-dimensional quantum system is of great interest owing to the outstanding features exhibited in the implementation of novel fundamental tests of nature and application in various quantum information tasks. High-dimensional quantum logic gate is a key element in scalable quantum computation and quantum communication. In this paper, we propose a scheme to implement a controlled-phase gate between a 2 N -dimensional photon and N three-level artificial atoms. This high-dimensional controlled-phase gate can serve as crucial components of the high-capacity, long-distance quantum communication. We use the high-dimensional Bell state analysis as an example to show the application of this device. Estimates on the system requirements indicate that our protocol is realizable with existing or near-further technologies. This scheme is ideally suited to solid-state integrated optical approaches to quantum information processing, and it can be applied to various system, such as superconducting qubits coupled to a resonator or nitrogen-vacancy centers coupled to a photonic-band-gap structures.

  6. All-optical XNOR/NOT logic gates and LATCH based on a reflective vertical cavity semiconductor saturable absorber.

    PubMed

    Pradhan, Rajib

    2014-06-10

    This work proposes a scheme of all-optical XNOR/NOT logic gates based on a reflective vertical cavity semiconductor (quantum wells, QWs) saturable absorber (VCSSA). In a semiconductor Fabry-Perot cavity operated with a low-intensity resonance wavelength, both intensity-dependent saturating phase-shift and thermal phase-shift occur, which are considered in the proposed logic operations. The VCSSA-based logics are possible using the saturable behavior of reflectivity under the typical operating conditions. The low-intensity saturable reflectivity is reported for all-optical logic operations where all possible nonlinear phase-shifts are ignored. Here, saturable absorption (SA) and the nonlinear phase-shift-based all-optical XNOR/NOT gates and one-bit memory or LATCH are proposed under new operating conditions. All operations are demonstrated for a VCSSA based on InGaAs/InP QWs. These types of SA-based logic devices can be comfortably used for a signal bit rate of about 10 GHz corresponding to the carrier recovery time of the semiconductor material.

  7. Compact transmission system using single-sideband modulation of light for quantum cryptography.

    PubMed

    Duraffourg, L; Merolla, J M; Goedgebuer, J P; Mazurenko, Y; Rhodes, W T

    2001-09-15

    We report a new transmission that can be used for quantum key distribution. The system uses single-sideband-modulated light in an implementation of the BB84 quantum cryptography protocol. The system is formed by two integrated unbalanced Mach-Zehnder interferometers and is based on interference between phase-modulated sidebands in the spectral domain. Experiments show that high interference visibility can be obtained.

  8. High-speed polarization-encoded quantum key distribution based on silicon photonic integrated devices

    NASA Astrophysics Data System (ADS)

    Bunandar, Darius; Urayama, Junji; Boynton, Nicholas; Martinez, Nicholas; Derose, Christopher; Lentine, Anthony; Davids, Paul; Camacho, Ryan; Wong, Franco; Englund, Dirk

    We present a compact polarization-encoded quantum key distribution (QKD) transmitter near a 1550-nm wavelength implemented on a CMOS-compatible silicon-on-insulator photonics platform. The transmitter generates arbitrary polarization qubits at gigahertz bandwidth with an extinction ratio better than 30 dB using high-speed carrier-depletion phase modulators. We demonstrate the performance of this device by generating secret keys at a rate of 1 Mbps in a complete QKD field test. Our work shows the potential of using advanced photonic integrated circuits to enable high-speed quantum-secure communications. This work was supported by the SECANT QKD Grand Challenge, the Samsung Global Research Outreach Program, and the Air Force Office of Scientific Research.

  9. Analytical results for a conditional phase shift between single-photon pulses in a nonlocal nonlinear medium

    NASA Astrophysics Data System (ADS)

    Viswanathan, Balakrishnan; Gea-Banacloche, Julio

    2018-03-01

    It has been suggested that second-order nonlinearities could be used for quantum logic at the single-photon level. Specifically, successive two-photon processes in principle could accomplish the phase shift (conditioned on the presence of two photons in the low-frequency modes) |011 〉→i |100 〉→-|011 〉 . We have analyzed a recent scheme proposed by Xia et al. [Phys. Rev. Lett. 116, 023601 (2016)], 10.1103/PhysRevLett.116.023601 to induce such a conditional phase shift between two single-photon pulses propagating at different speeds through a nonlinear medium with a nonlocal response. We present here an analytical solution for the most general case, i.e., for an arbitrary response function, initial state, and pulse velocity, which supports their numerical observation that a π phase shift with unit fidelity is possible, in principle, in an appropriate limit. We also discuss why this is possible in this system, despite the theoretical objections to the possibility of conditional phase shifts on single photons that were raised some time ago by Shapiro [Phys. Rev. A 73, 062305 (2006)], 10.1103/PhysRevA.73.062305 and by Gea-Banacloche [Phys. Rev. A 81, 043823 (2010)], 10.1103/PhysRevA.81.043823 one of us.

  10. Controlled initialization of superconducting π-phaseshifters and possible applications

    NASA Astrophysics Data System (ADS)

    Mielke, Olaf; Ortlepp, Thomas; Kunert, Juergen; Meyer, Hans-Georg; Toepfer, Hannes

    2010-05-01

    The rapid single-flux quantum electronics (RSFQ) is a superconducting, naturally digital circuit family which is currently close to being commercially applied. RSFQ is outstanding because of its very low switching energy resulting in very low power consumption. This advantage causes, however, a significant influence of thermal noise. For industrial applications, a certain noise immunity is required which is still a challenge, especially for circuits of higher complexity. Integrating phase-shifting elements is a new concept for further improvements concerning stability against the influence of thermal noise. We have already shown that the implementation of phase-shifting elements significantly reduces the influence of thermal noise on circuit behavior by experimentally analyzing the bit-error rate (Mielke et al 2009 IEEE Trans. Appl. Supercond. 19 621-5). Concepts which are easily implementable in standard niobium technology are especially promising. The π-phaseshifter consists of a superconducting loop which is able to store a single flux quantum. The loop current related to the stored flux creates a well-defined phase shift. To achieve the correct functionality of complex circuits it is essential to store exactly one flux quantum in each π-phaseshifter during the cooling down of the chip. Thus, for studying the feasibility of this new approach, the initialization reliability of the π-phaseshifter needs to be verified. We present an experimental investigation of this reliability to obtain a general assessment for the application of the π-phaseshifter in niobium technology. Furthermore, we compare the configuration shielded by a solid ground plane with a configuration with a ground-plane hole below the π-phaseshifter. Justified by the experimental results we suggest programmable RSFQ circuits based on π-phaseshifters. The characteristics of these devices can be influenced by a controlled initialization of the π-phaseshifter. The fabrication was performed by FLUXONICS Foundry.

  11. Nitrogen Incorporation Effects On Site-Controlled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Juska, G.; Dimastrodonato, V.; Mereni, L. O.; Pelucchi, E.

    2011-12-01

    We report here on the optical properties of site-controlled diluted nitride In0.25Ga0.75As1-xNx quantum dots grown by metalorganic vapour phase epitaxy (MOVPE). We show photoluminescence energy shift as a function of nitrogen precursor U-dimethylhydrazine, with a maximum value of 35 meV achieved. Optical features, substantially different from the counterpart nitrogen-free dots, are presented: an antibinding biexciton, a large distribution of lifetimes, significantly reduced fine structure splitting.

  12. Automatic oscillator frequency control system

    NASA Technical Reports Server (NTRS)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  13. Self-homodyne free-space optical communication system based on orthogonally polarized binary phase shift keying.

    PubMed

    Cai, Guangyu; Sun, Jianfeng; Li, Guangyuan; Zhang, Guo; Xu, Mengmeng; Zhang, Bo; Yue, Chaolei; Liu, Liren

    2016-06-10

    A self-homodyne laser communication system based on orthogonally polarized binary phase shift keying is demonstrated. The working principles of this method and the structure of a transceiver are described using theoretical calculations. Moreover, the signal-to-noise ratio, sensitivity, and bit error rate are analyzed for the amplifier-noise-limited case. The reported experiment validates the feasibility of the proposed method and demonstrates its advantageous sensitivity as a self-homodyne communication system.

  14. Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin

    2016-10-01

    Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.

  15. Generating the Local Oscillator "Locally" in Continuous-Variable Quantum Key Distribution Based on Coherent Detection

    NASA Astrophysics Data System (ADS)

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael; Grice, Warren; Bobrek, Miljko

    2015-10-01

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a "locally" generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct a coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad2 ), which is small enough to enable secure key distribution. This technology also opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.

  16. From polariton condensates to highly photonic quantum degenerate states of bosonic matter

    PubMed Central

    Aßmann, Marc; Tempel, Jean-Sebastian; Veit, Franziska; Bayer, Manfred; Rahimi-Iman, Arash; Löffler, Andreas; Höfling, Sven; Reitzenstein, Stephan; Worschech, Lukas; Forchel, Alfred

    2011-01-01

    Bose–Einstein condensation (BEC) is a thermodynamic phase transition of an interacting Bose gas. Its key signatures are remarkable quantum effects like superfluidity and a phonon-like Bogoliubov excitation spectrum, which have been verified for atomic BECs. In the solid state, BEC of exciton–polaritons has been reported. Polaritons are strongly coupled light-matter quasiparticles in semiconductor microcavities and composite bosons. However, they are subject to dephasing and decay and need external pumping to reach a steady state. Accordingly the polariton BEC is a nonequilibrium process of a degenerate polariton gas in self-equilibrium, but out of equilibrium with the baths it is coupled to and therefore deviates from the thermodynamic phase transition seen in atomic BECs. Here we show that key signatures of BEC can even be observed without fulfilling the self-equilibrium condition in a highly photonic quantum degenerate nonequilibrium system. PMID:21245353

  17. Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Li, Renjie; Liao, Qin; Zhou, Jian; Huang, Duan

    2018-02-01

    Discrete modulation is proven to be beneficial to improving the performance of continuous-variable quantum key distribution (CVQKD) in long-distance transmission. In this paper, we suggest a construct to improve the maximal generated secret key rate of discretely modulated eight-state CVQKD using an optical amplifier (OA) with a slight cost of transmission distance. In the proposed scheme, an optical amplifier is exploited to compensate imperfection of Bob's apparatus, so that the generated secret key rate of eight-state protocol is enhanced. Specifically, we investigate two types of optical amplifiers, phase-insensitive amplifier (PIA) and phase-sensitive amplifier (PSA), and thereby obtain approximately equivalent improved performance for eight-state CVQKD system when applying these two different amplifiers. Numeric simulation shows that the proposed scheme can well improve the generated secret key rate of eight-state CVQKD in both asymptotic limit and finite-size regime. We also show that the proposed scheme can achieve the relatively high-rate transmission at long-distance communication system.

  18. Noisy processing and distillation of private quantum States.

    PubMed

    Renes, Joseph M; Smith, Graeme

    2007-01-12

    We provide a simple security proof for prepare and measure quantum key distribution protocols employing noisy processing and one-way postprocessing of the key. This is achieved by showing that the security of such a protocol is equivalent to that of an associated key distribution protocol in which, instead of the usual maximally entangled states, a more general private state is distilled. In addition to a more general target state, the usual entanglement distillation tools are employed (in particular, Calderbank-Shor-Steane-like codes), with the crucial difference that noisy processing allows some phase errors to be left uncorrected without compromising the privacy of the key.

  19. First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction

    NASA Astrophysics Data System (ADS)

    Zhao, Xiu-Qin; Liu, Ni; Liang, Jiu-Qing

    2017-05-01

    In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. Supported by the National Natural Science Foundation of China under Grant Nos. 11275118, 11404198, 91430109, 61505100, 51502189, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (STIP) under Grant No. 2014102, and the Launch of the Scientific Research of Shanxi University under Grant No. 011151801004, and the National Fundamental Fund of Personnel Training under Grant No. J1103210. The Natural Science Foundation of Shanxi Province under Grant No. 2015011008

  20. Relativistic Quark Model Based Description of Low Energy NN Scattering

    NASA Astrophysics Data System (ADS)

    Antalik, R.; Lyubovitskij, V. E.

    A model describing the NN scattering phase shifts is developed. Two nucleon interactions induced by meson exchange forces are constructed starting from π, η, η‧ pseudoscalar-, the ρ, ϕ, ω vector-, and the ɛ(600), a0, f0(1400) scalar — meson-nucleon coupling constants, which we obtained within a relativistic quantum field theory based quark model. Working within the Blankenbecler-Sugar-Logunov-Tavkhelidze quasipotential dynamics, we describe the NN phase shifts in a relativistically invariant way. In this procedure we use phenomenological form factor cutoff masses and effective ɛ and ω meson-nucleon coupling constants, only. Resulting NN phase shifts are in a good agreement with both, the empirical data, and the entirely phenomenological Bonn OBEP model fit. While the quality of our description, evaluated as a ratio of our results to the Bonn OBEP model χ2 ones is about 1.2, other existing (semi)microscopic results gave qualitative results only.

  1. High-sensitivity DPSK receiver for high-bandwidth free-space optical communication links.

    PubMed

    Juarez, Juan C; Young, David W; Sluz, Joseph E; Stotts, Larry B

    2011-05-23

    A high-sensitivity modem and high-dynamic range optical automatic gain controller (OAGC) have been developed to provide maximum link margin and to overcome the dynamic nature of free-space optical links. A sensitivity of -48.9 dBm (10 photons per bit) at 10 Gbps was achieved employing a return-to-zero differential phase shift keying based modem and a commercial Reed-Solomon forward error correction system. Low-noise optical gain was provided by an OAGC with a noise figure of 4.1 dB (including system required input loses) and a dynamic range of greater than 60 dB.

  2. Coherent UDWDM PON with joint subcarrier reception at OLT.

    PubMed

    Kottke, Christoph; Fischer, Johannes Karl; Elschner, Robert; Frey, Felix; Hilt, Jonas; Schubert, Colja; Schmidt, Daniel; Wu, Zifeng; Lankl, Berthold

    2014-07-14

    In this contribution, we report on the experimental investigation of an ultra-dense wavelength-division multiplexing (UDWDM) upstream link with up to 700 × 2.488 Gb/s polarization-division multiplexing differential quadrature phase-shift keying parallel upstream user channels transmitted over 80 km of standard single-mode fiber. We discuss challenges of the digital signal processing in the optical line terminal arising from the joint reception of several upstream user channels. We present solutions for resource and cost-efficient realization of the required channel separation, matched filtering, down-conversion and decimation as well as realization of the clock recovery and polarization demultiplexing for each individual channel.

  3. Performance of DPSK with convolutional encoding on time-varying fading channels

    NASA Technical Reports Server (NTRS)

    Mui, S. Y.; Modestino, J. W.

    1977-01-01

    The bit error probability performance of a differentially-coherent phase-shift keyed (DPSK) modem with convolutional encoding and Viterbi decoding on time-varying fading channels is examined. Both the Rician and the lognormal channels are considered. Bit error probability upper bounds on fully-interleaved (zero-memory) fading channels are derived and substantiated by computer simulation. It is shown that the resulting coded system performance is a relatively insensitive function of the choice of channel model provided that the channel parameters are related according to the correspondence developed as part of this paper. Finally, a comparison of DPSK with a number of other modulation strategies is provided.

  4. Spectral amplitude code label switching system for IM, DQPSK and PDM-DQPSK with frequency swept coherent detection

    NASA Astrophysics Data System (ADS)

    Isaac, Aboagye Adjaye; Yongsheng, Cao; Fushen, Chen

    2018-05-01

    We present and compare the outcome of implicit and explicit labels using intensity modulation (IM), differential quadrature phase shift keying (DQPSK), and polarization division multiplexed (PDM-DQPSK). A payload bit rate of 1, 2, and 5 Gb/s is considered for IM implicit labels, while payloads of 40, 80, and 112 Gb/s are considered in DQPSK and PDM-DQPSK explicit labels by stimulating a 4-code 156-Mb/s SAC label. The generated label and payloads are observed by assessing the eye diagram, received optical power (ROP), and optical signal to noise ratio (OSNR).

  5. Rectangular QPSK for generation of optical eight-ary phase-shift keying.

    PubMed

    Lu, Guo-Wei; Sakamoto, Takahide; Kawanishi, Tetsuya

    2011-09-12

    Quadrature phase-shift keying (QPSK) is usually generated using an in-phase/quadrature (IQ) modulator in a balanced driving-condition, showing a square-shape constellation in complex plane. This conventional QPSK is referred to as square QPSK (S-QPSK) in this paper. On the other hand, when an IQ modulator is driven in an un-balanced manner with different amplitudes in in-phase (I) and quadrature (Q) branches, a rectangular QPSK (R-QPSK) could be synthesized. The concept of R-QPSK is proposed for the first time and applied to optical eight-ary phase-shift keying (8PSK) transmitter. By cascading an S-QPSK and an R-QPSK, an optical 8PSK could be synthesized. The transmitter configuration is based on two cascaded IQ modulators, which also could be used to generate other advanced multi-level formats like quadrature amplitude modulation (QAM) when different driving and bias conditions are applied. Therefore, the proposed transmitter structure has potential to be deployed as a versatile transmitter for synthesis of several different multi-level modulation formats for the future dynamic optical networks. A 30-Gb/s optical 8PSK is experimentally demonstrated using the proposed solution.

  6. Reduction of Phase Ambiguity in an Offset-QPSK Receiver

    NASA Technical Reports Server (NTRS)

    Berner, Jeff; Kinman, Peter

    2004-01-01

    Proposed modifications of an offset-quadri-phase-shift keying (offset-QPSK) transmitter and receiver would reduce the amount of signal processing that must be done in the receiver to resolve the QPSK fourfold phase ambiguity. Resolution of the phase ambiguity is necessary in order to synchronize, with the received carrier signal, the signal generated by a local oscillator in a carrier-tracking loop in the receiver. Without resolution of the fourfold phase ambiguity, the loop could lock to any of four possible phase points, only one of which has the proper phase relationship with the carrier. The proposal applies, more specifically, to an offset-QPSK receiver that contains a carrier-tracking loop like that shown in Figure 1. This carrier-tracking loop does not resolve or reduce the phase ambiguity. A carrier-tracking loop of a different design optimized for the reception of offset QPSK could reduce the phase ambiguity from fourfold to twofold, but would be more complex. Alternatively, one could resolve the fourfold phase ambiguity by use of differential coding in the transmitter, at a cost of reduced power efficiency. The proposed modifications would make it possible to reduce the fourfold phase ambiguity to twofold, with no loss in power efficiency and only relatively simple additional signal-processing steps in the transmitter and receiver. The twofold phase ambiguity would then be resolved by use of a unique synchronization word, as is commonly done in binary phase-shift keying (BPSK). Although the mathematical and signal-processing principles underlying the modifications are too complex to explain in detail here, the modifications themselves would be relatively simple and are best described with the help of simple block diagrams (see Figure 2). In the transmitter, one would add a unit that would periodically invert bits going into the QPSK modulator; in the receiver, one would add a unit that would effect different but corresponding inversions of bits coming out of the QPSK demodulator. The net effect of all the inversions would be that depending on which lock point the carrier-tracking loop had selected, all the output bits would be either inverted or non-inverted together; hence, the ambiguity would be reduced from fourfold to twofold, as desired.

  7. Low-Complexity, Digital Encoder/Modulator Developed for High-Data-Rate Satellite B-ISDN Applications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Electronics Division at the NASA Lewis Research Center is developing advanced electronic technologies for the space communications and remote sensing systems of tomorrow. As part of the continuing effort to advance the state-of-the-art in satellite communications and remote sensing systems, Lewis developed a low-cost, modular, programmable, and reconfigurable all-digital encoder-modulator (DEM) for medium- to high-data-rate radiofrequency communication links. The DEM is particularly well suited to high-data-rate downlinks to ground terminals or direct data downlinks from near-Earth science platforms. It can support data rates up to 250 megabits per second (Mbps) and several modulation schemes, including the traditional binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK) modes, as well as higher order schemes such as 8 phase-shift keying (8PSK) and 16 quadrature amplitude modulation (16QAM). The DEM architecture also can precompensate for channel disturbances and alleviate amplitude degradations caused by nonlinear transponder characteristics.

  8. Upper bounds on secret-key agreement over lossy thermal bosonic channels

    NASA Astrophysics Data System (ADS)

    Kaur, Eneet; Wilde, Mark M.

    2017-12-01

    Upper bounds on the secret-key-agreement capacity of a quantum channel serve as a way to assess the performance of practical quantum-key-distribution protocols conducted over that channel. In particular, if a protocol employs a quantum repeater, achieving secret-key rates exceeding these upper bounds is evidence of having a working quantum repeater. In this paper, we extend a recent advance [Liuzzo-Scorpo et al., Phys. Rev. Lett. 119, 120503 (2017), 10.1103/PhysRevLett.119.120503] in the theory of the teleportation simulation of single-mode phase-insensitive Gaussian channels such that it now applies to the relative entropy of entanglement measure. As a consequence of this extension, we find tighter upper bounds on the nonasymptotic secret-key-agreement capacity of the lossy thermal bosonic channel than were previously known. The lossy thermal bosonic channel serves as a more realistic model of communication than the pure-loss bosonic channel, because it can model the effects of eavesdropper tampering and imperfect detectors. An implication of our result is that the previously known upper bounds on the secret-key-agreement capacity of the thermal channel are too pessimistic for the practical finite-size regime in which the channel is used a finite number of times, and so it should now be somewhat easier to witness a working quantum repeater when using secret-key-agreement capacity upper bounds as a benchmark.

  9. Differential detection of Gaussian MSK in a mobile radio environment

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Wang, C. C.

    1984-01-01

    Minimum shift keying with Gaussian shaped transmit pulses is a strong candidate for a modulation technique that satisfies the stringent out-of-band radiated power requirements of the mobil radio application. Numerous studies and field experiments have been conducted by the Japanese on urban and suburban mobile radio channels with systems employing Gaussian minimum-shift keying (GMSK) transmission and differentially coherent reception. A comprehensive analytical treatment is presented of the performance of such systems emphasizing the important trade-offs among the various system design parameters such as transmit and receiver filter bandwidths and detection threshold level. It is shown that two-bit differential detection of GMSK is capable of offering far superior performance to the more conventional one-bit detection method both in the presence of an additive Gaussian noise background and Rician fading.

  10. Differential detection of Gaussian MSK in a mobile radio environment

    NASA Astrophysics Data System (ADS)

    Simon, M. K.; Wang, C. C.

    1984-11-01

    Minimum shift keying with Gaussian shaped transmit pulses is a strong candidate for a modulation technique that satisfies the stringent out-of-band radiated power requirements of the mobil radio application. Numerous studies and field experiments have been conducted by the Japanese on urban and suburban mobile radio channels with systems employing Gaussian minimum-shift keying (GMSK) transmission and differentially coherent reception. A comprehensive analytical treatment is presented of the performance of such systems emphasizing the important trade-offs among the various system design parameters such as transmit and receiver filter bandwidths and detection threshold level. It is shown that two-bit differential detection of GMSK is capable of offering far superior performance to the more conventional one-bit detection method both in the presence of an additive Gaussian noise background and Rician fading.

  11. Beam splitter phase shifts: Wave optics approach

    NASA Astrophysics Data System (ADS)

    Agnesi, Antonio; Degiorgio, Vittorio

    2017-10-01

    We investigate the phase relationships between transmitted and reflected waves in a lossless beam splitter having a multilayer structure, using the matrix approach as outlined in classical optics books. Contrarily to the case of the quantum optics formalism generally employed to describe beam splitters, these matrices are not unitary. In this note we point out the existence of general relations among the elements of the transfer matrix that describes the multilayer beam splitter. Such relations, which are independent of the detailed structure of the beam splitter, fix the phase shifts between reflected and transmitted waves. It is instructive to see how the results obtained by Zeilinger by using spinor algebra and Pauli matrices can be easily derived from our general relations.

  12. Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng

    2018-03-01

    Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1-4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6-8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9-21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose-Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.

  13. Quantum state detection and state preparation based on cavity-enhanced nonlinear interaction of atoms with single photon

    NASA Astrophysics Data System (ADS)

    Hosseini, Mahdi

    Our ability to engineer quantum states of light and matter has significantly advanced over the past two decades, resulting in the production of both Gaussian and non-Gaussian optical states. The resulting tailored quantum states enable quantum technologies such as quantum optical communication, quantum sensing as well as quantum photonic computation. The strong nonlinear light-atom interaction is the key to deterministic quantum state preparation and quantum photonic processing. One route to enhancing the usually weak nonlinear light-atom interactions is to approach the regime of cavity quantum electrodynamics (cQED) interaction by means of high finesse optical resonators. I present results from the MIT experiment of large conditional cross-phase modulation between a signal photon, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. I also present a scheme to probabilistically change the amplitude and phase of a signal photon qubit to, in principle, arbitrary values by postselection on a control photon that has interacted with that state. Notably, small changes of the control photon polarization measurement basis by few degrees can substantially change the amplitude and phase of the signal state. Finally, I present our ongoing effort at Purdue to realize similar peculiar quantum phenomena at the single photon level on chip scale photonic systems.

  14. RF-subcarrier-assisted four-state continuous-variable QKD based on coherent detection.

    PubMed

    Qu, Zhen; Djordjevic, Ivan B; Neifeld, Mark A

    2016-12-01

    We theoretically investigate and experimentally demonstrate a RF-assisted four-state continuous-variable quantum key distribution (CV-QKD) system. Classical coherent detection is implemented with a simple digital phase noise cancelation scheme. In the proposed system, there is no need for frequency and phase locking between the quantum signals and the local oscillator laser. Moreover, in principle, there is no residual phase noise, and a mean excess noise of 0.0115 (in shot-noise units) can be acquired experimentally. In addition, the minimum transmittance of 0.45 is reached experimentally for secure transmission with commercial photodetectors, and the maximum secret key rate (SKR) of >12  Mbit/s can be obtained. The proposed RF-assisted CV-QKD system opens the door of incorporating microwave photonics into a CV-QKD system and improving the SKR significantly.

  15. Security proof of a three-state quantum-key-distribution protocol without rotational symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, C.-H.F.; Lo, H.-K.

    2006-10-15

    Standard security proofs of quantum-key-distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states |0{sub z}> and |1{sub z}> can contribute to key generation, and the third state |+>=(|0{sub z}>+|1{sub z}>)/{radical}(2) is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that thesemore » QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result in the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the Bennett-Brassard 1984 (BB84) protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol, while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.« less

  16. A contradictory phenomenon of deshelving pulses in a dilute medium used for lengthened photon storage time.

    PubMed

    Ham, Byoung S

    2010-08-16

    Lengthening of photon storage time has been an important issue in quantum memories for long distance quantum communications utilizing quantum repeaters. Atom population transfer into an auxiliary spin state has been adapted to increase photon storage time of photon echoes. In this population transfer process phase shift to the collective atoms is inevitable, where the phase recovery condition must be multiple of 2pi to satisfy rephasing mechanism. Recent adaptation of the population transfer method to atomic frequency comb (AFC) echoes [Afzelius et al., Phys. Rev. Lett. 104, 040503 (2010)], where the population transfer method is originated in a controlled reversible inhomogeneous broadening technique [Moiseev and Kroll, Phys. Rev. Lett. 87, 173601 (2001)], however, shows contradictory phenomenon violating the phase recovery condition. This contradiction in AFC is reviewed as a general case of optical locking applied to a dilute medium for an optical depth-dependent coherence leakage resulting in partial retrieval efficiency.

  17. Quantum criticality of a spin-1 XY model with easy-plane single-ion anisotropy via a two-time Green function approach avoiding the Anderson-Callen decoupling

    NASA Astrophysics Data System (ADS)

    Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.

    2016-04-01

    In this work we study the quantum phase transition, the phase diagram and the quantum criticality induced by the easy-plane single-ion anisotropy in a d-dimensional quantum spin-1 XY model in absence of an external longitudinal magnetic field. We employ the two-time Green function method by avoiding the Anderson-Callen decoupling of spin operators at the same sites which is of doubtful accuracy. Following the original Devlin procedure we treat exactly the higher order single-site anisotropy Green functions and use Tyablikov-like decouplings for the exchange higher order ones. The related self-consistent equations appear suitable for an analysis of the thermodynamic properties at and around second order phase transition points. Remarkably, the equivalence between the microscopic spin model and the continuous O(2) -vector model with transverse-Ising model (TIM)-like dynamics, characterized by a dynamic critical exponent z=1, emerges at low temperatures close to the quantum critical point with the single-ion anisotropy parameter D as the non-thermal control parameter. The zero-temperature critic anisotropy parameter Dc is obtained for dimensionalities d > 1 as a function of the microscopic exchange coupling parameter and the related numerical data for different lattices are found to be in reasonable agreement with those obtained by means of alternative analytical and numerical methods. For d > 2, and in particular for d=3, we determine the finite-temperature critical line ending in the quantum critical point and the related TIM-like shift exponent, consistently with recent renormalization group predictions. The main crossover lines between different asymptotic regimes around the quantum critical point are also estimated providing a global phase diagram and a quantum criticality very similar to the conventional ones.

  18. 2001 Gordon Research Conference on Quantum Control of Light and Matter. Final progress report [agenda and attendee list

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, Moshe

    2001-08-03

    The Gordon Research Conference on Quantum Control of Light and Matter [Quantum Control of Atomic and Molecular Motion] was held at Mount Holyoke College, South Hadley, Massachusetts, July 29 - August 3, 2001. The conference was attended by 119 participants. The attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and included US and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate discussion about the key issues in themore » field today. Session topics included the following: General perspectives, Phase control, Optimal control, Quantum information, Light manipulation and manipulation with light, Control in the condensed phase, Strong field control, Laser cooling and Bose-Einstein Condensate dynamics, and Control in the solid phase.« less

  19. LDPC coded OFDM over the atmospheric turbulence channel.

    PubMed

    Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A

    2007-05-14

    Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).

  20. Security of continuous-variable quantum key distribution against general attacks.

    PubMed

    Leverrier, Anthony; García-Patrón, Raúl; Renner, Renato; Cerf, Nicolas J

    2013-01-18

    We prove the security of Gaussian continuous-variable quantum key distribution with coherent states against arbitrary attacks in the finite-size regime. In contrast to previously known proofs of principle (based on the de Finetti theorem), our result is applicable in the practically relevant finite-size regime. This is achieved using a novel proof approach, which exploits phase-space symmetries of the protocols as well as the postselection technique introduced by Christandl, Koenig, and Renner [Phys. Rev. Lett. 102, 020504 (2009)].

  1. Controlling the thermoelectric effect by mechanical manipulation of the electron's quantum phase in atomic junctions.

    PubMed

    Aiba, Akira; Demir, Firuz; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Saffarzadeh, Alireza; Kirczenow, George; Kiguchi, Manabu

    2017-08-11

    The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.

  2. A special attack on the multiparty quantum secret sharing of secure direct communication using single photons

    NASA Astrophysics Data System (ADS)

    Qin, Su-Juan; Gao, Fei; Wen, Qiao-Yan; Zhu, Fu-Chen

    2008-11-01

    The security of a multiparty quantum secret sharing protocol [L.F. Han, Y.M. Liu, J. Liu, Z.J. Zhang, Opt. Commun. 281 (2008) 2690] is reexamined. It is shown that any one dishonest participant can obtain all the transmitted secret bits by a special attack, where the controlled- (-iσy) gate is employed to invalidate the role of the random phase shift operation. Furthermore, a possible way to resist this attack is discussed.

  3. Optical bistability in a single-sided cavity coupled to a quantum channel

    NASA Astrophysics Data System (ADS)

    Payravi, M.; Solookinejad, Gh; Jabbari, M.; Nafar, M.; Ahmadi Sangachin, E.

    2018-06-01

    In this paper, we discuss the long wavelength optical reflection and bistable behavior of an InGaN/GaN quantum dot nanostructure coupled to a single-sided cavity. It is found that due to the presence of a strong coupling field, the reflection coefficient can be controlled at long wavelength, which is essential for adjusting the threshold of reflected optical bistability. Moreover, the phase shift features of the reflection pulse inside an electromagnetically induced transparency window are also discussed.

  4. MWP phase shifters integrated in PbS-SU8 waveguides.

    PubMed

    Hervás, Javier; Suárez, Isaac; Pérez, Joaquín; Cantó, Pedro J Rodríguez; Abargues, Rafael; Martínez-Pastor, Juan P; Sales, Salvador; Capmany, José

    2015-06-01

    We present new kind of microwave phase shifters (MPS) based on dispersion of PbS colloidal quantum dots (QDs) in commercially available photoresist SU8 after a ligand exchange process. Ridge PbS-SU8 waveguides are implemented by integration of the nanocomposite in a silicon platform. When these waveguides are pumped at wavelengths below the band-gap of the PbS QDs, a phase shift in an optically conveyed (at 1550 nm) microwave signal is produced. The strong light confinement produced in the ridge waveguides allows an improvement of the phase shift as compared to the case of planar structures. Moreover, a novel ridge bilayer waveguide composed by a PbS-SU8 nanocomposite and a SU8 passive layer is proposed to decrease the propagation losses of the pump beam and in consequence to improve the microwave phase shift up to 36.5° at 25 GHz. Experimental results are reproduced by a theoretical model based on the slow light effect produced in a semiconductor waveguide due to the coherent population oscillations. The resulting device shows potential benefits respect to the current MPS technologies since it allows a fast tunability of the phase shift and a high level of integration due to its small size.

  5. Exploring the Use of Radar for a Physically Based Lightning Cessation Nowcasting Tool

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.

    2011-01-01

    NASA s Marshall Space Flight Center (MSFC) and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and hydrometeors. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far, our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature encompassed the period of the polarimetric negative phase shift signature. To the extent this behavior is repeatable in other cases, even if only in a substantial fraction of those cases, the case analyses suggests that differential propagation phase may prove to be a useful parameter for future lightning cessation algorithms. Indeed, analysis of 15+ cases has shown additional indications of the weakening and disappearance of this ice alignment signature with lightning cessation. A summary of results will be presented.

  6. Simple Adaptive Single Differential Coherence Detection of BPSK Signals in IEEE 802.15.4 Wireless Sensor Networks

    PubMed Central

    Wen, Hong; Wang, Longye; Xie, Ping; Song, Liang; Tang, Jie; Liao, Runfa

    2017-01-01

    In this paper, we propose an adaptive single differential coherent detection (SDCD) scheme for the binary phase shift keying (BPSK) signals in IEEE 802.15.4 Wireless Sensor Networks (WSNs). In particular, the residual carrier frequency offset effect (CFOE) for differential detection is adaptively estimated, with only linear operation, according to the changing channel conditions. It was found that the carrier frequency offset (CFO) and chip signal-to-noise ratio (SNR) conditions do not need a priori knowledge. This partly benefits from that the combination of the trigonometric approximation sin−1(x)≈x and a useful assumption, namely, the asymptotic or high chip SNR, is considered for simplification of the full estimation scheme. Simulation results demonstrate that the proposed algorithm can achieve an accurate estimation and the detection performance can completely meet the requirement of the IEEE 802.15.4 standard, although with a little loss of reliability and robustness as compared with the conventional optimal single-symbol detector. PMID:29278404

  7. Simple Adaptive Single Differential Coherence Detection of BPSK Signals in IEEE 802.15.4 Wireless Sensor Networks.

    PubMed

    Zhang, Gaoyuan; Wen, Hong; Wang, Longye; Xie, Ping; Song, Liang; Tang, Jie; Liao, Runfa

    2017-12-26

    In this paper, we propose an adaptive single differential coherent detection (SDCD) scheme for the binary phase shift keying (BPSK) signals in IEEE 802.15.4 Wireless Sensor Networks (WSNs). In particular, the residual carrier frequency offset effect (CFOE) for differential detection is adaptively estimated, with only linear operation, according to the changing channel conditions. It was found that the carrier frequency offset (CFO) and chip signal-to-noise ratio (SNR) conditions do not need a priori knowledge. This partly benefits from that the combination of the trigonometric approximation sin - 1 ( x ) ≈ x and a useful assumption, namely, the asymptotic or high chip SNR, is considered for simplification of the full estimation scheme. Simulation results demonstrate that the proposed algorithm can achieve an accurate estimation and the detection performance can completely meet the requirement of the IEEE 802.15.4 standard, although with a little loss of reliability and robustness as compared with the conventional optimal single-symbol detector.

  8. Low-temperature breakdown of antiferromagnetic quantum critical behavior in FeSe

    NASA Astrophysics Data System (ADS)

    Grinenko, V.; Sarkar, R.; Materne, P.; Kamusella, S.; Yamamshita, A.; Takano, Y.; Sun, Y.; Tamegai, T.; Efremov, D. V.; Drechsler, S.-L.; Orain, J.-C.; Goko, T.; Scheuermann, R.; Luetkens, H.; Klauss, H.-H.

    2018-05-01

    A nematic transition preceding a long-range spin density wave antiferromagnetic phase is a common feature of many parent compounds of Fe-based superconductors. However, in the FeSe system with a nematic transition at Ts≈90 K, no evidence for long-range static magnetism is found down to very low temperatures. The lack of magnetism is a challenge for the theoretical description of FeSe. We investigated high-quality single crystals of FeSe using high-field (up to 9.5 T) muon spin rotation (μ SR ) measurements. The μ SR Knight shift and the bulk susceptibility linearly scale at high temperatures but deviate from this behavior around T*˜10 -20 K, where the Knight shift exhibits a kink. In the temperature range Ts≳T ≳T* , the muon spin depolarization rate shows a quantum critical behavior Λ ∝T-0.4 . The observed critical scaling indicates that FeSe is in the vicinity of an itinerant antiferromagnetic quantum critical point. Below T* the quantum critical behavior breaks down. We argue that this breakdown is caused by a temperature-induced Lifschitz transition.

  9. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry.

    PubMed

    Zhang, Zheshen; Mower, Jacob; Englund, Dirk; Wong, Franco N C; Shapiro, Jeffrey H

    2014-03-28

    High-dimensional quantum key distribution (HDQKD) offers the possibility of high secure-key rate with high photon-information efficiency. We consider HDQKD based on the time-energy entanglement produced by spontaneous parametric down-conversion and show that it is secure against collective attacks. Its security rests upon visibility data-obtained from Franson and conjugate-Franson interferometers-that probe photon-pair frequency correlations and arrival-time correlations. From these measurements, an upper bound can be established on the eavesdropper's Holevo information by translating the Gaussian-state security analysis for continuous-variable quantum key distribution so that it applies to our protocol. We show that visibility data from just the Franson interferometer provides a weaker, but nonetheless useful, secure-key rate lower bound. To handle multiple-pair emissions, we incorporate the decoy-state approach into our protocol. Our results show that over a 200-km transmission distance in optical fiber, time-energy entanglement HDQKD could permit a 700-bit/sec secure-key rate and a photon information efficiency of 2 secure-key bits per photon coincidence in the key-generation phase using receivers with a 15% system efficiency.

  10. Electrically-Tunable Group Delays Using Quantum Wells in a Distributed Bragg Reflector

    NASA Technical Reports Server (NTRS)

    Nelson, Thomas R., Jr.; Loehr, John P.; Fork, Richard L.; Cole, Spencer; Jones, Darryl K.; Keys, Andrew

    1999-01-01

    There is a growing interest in the fabrication of semiconductor optical group delay lines for the development of phased arrays of Vertical-Cavity Surface-Emitting Lasers (VCSELs). We present a novel structure incorporating In(x)GA(1-x)As quantum wells in the GaAs quarter-wave layers of a GaAs/AlAs distributed Bragg reflector (DBR). Application of an electric field across the quantum wells leads to red shifting and peak broadening of the el-hhl exciton peak via the quantum-confined Stark effect. Resultant changes in the index of refraction thereby provide a means for altering the group delay of an incident laser pulse. We discuss the tradeoffs between the maximum amount of change in group delay versus absorption losses for such a device. We also compare a simple theoretical model to experimental results, and discuss both angle and position tuning of the BDR band edge resonance relative to the exciton absorption peak. The advantages of such monolithically grown devices for phased-array VCSEL applications will be detailed.

  11. Super-sensitive phase estimation with coherent boosted light using parity measurements

    NASA Astrophysics Data System (ADS)

    Xu, Lan; Tan, Qing-Shou

    2018-01-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11665010), the Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, China (Grant No. QSQC1414), and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 17B055).

  12. Photonic quantum simulator for unbiased phase covariant cloning

    NASA Astrophysics Data System (ADS)

    Knoll, Laura T.; López Grande, Ignacio H.; Larotonda, Miguel A.

    2018-01-01

    We present the results of a linear optics photonic implementation of a quantum circuit that simulates a phase covariant cloner, using two different degrees of freedom of a single photon. We experimentally simulate the action of two mirrored 1→ 2 cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of noise added to the original input state and therefore, prepare clones with no bias, but with the same individual fidelity, masking its presence in a quantum key distribution protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which is identified as a potential eavesdropper in a quantum key distribution protocol. The device has the flexibility to produce mirrored versions that optimally clone states on either the northern or southern hemispheres of the Bloch sphere, as well as to simulate optimal and non-optimal cloning machines by tuning the asymmetry on each of the cloning machines.

  13. O+OH-->O(2)+H: A key reaction for interstellar chemistry. New theoretical results and comparison with experiment.

    PubMed

    Lique, F; Jorfi, M; Honvault, P; Halvick, P; Lin, S Y; Guo, H; Xie, D Q; Dagdigian, P J; Kłos, J; Alexander, M H

    2009-12-14

    We report extensive, fully quantum, time-independent (TID) calculations of cross sections at low collision energies and rate constants at low temperatures for the O+OH reaction, of key importance in the production of molecular oxygen in cold, dark, interstellar clouds and in the chemistry of the Earth's atmosphere. Our calculations are compared with TID calculations within the J-shifting approximation, with wave-packet calculations, and with quasiclassical trajectory calculations. The fully quantum TID calculations yield rate constants higher than those from the more approximate methods and are qualitatively consistent with a low-temperature extrapolation of earlier experimental values but not with the most recent experiments at the lowest temperatures.

  14. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel

    PubMed Central

    Wang, Chao; Huang, Duan; Huang, Peng; Lin, Dakai; Peng, Jinye; Zeng, Guihua

    2015-01-01

    In this paper, a practical continuous-variable quantum key distribution system is developed and it runs in the real-world conditions with 25 MHz clock rate. To reach high-rate, we have employed a homodyne detector with maximal bandwidth to 300 MHz and an optimal high-efficiency error reconciliation algorithm with processing speed up to 25 Mbps. To optimize the stability of the system, several key techniques are developed, which include a novel phase compensation algorithm, a polarization feedback algorithm, and related stability method on the modulators. Practically, our system is tested for more than 12 hours with a final secret key rate of 52 kbps over 50 km transmission distance, which is the highest rate so far in such distance. Our system may pave the road for practical broadband secure quantum communication with continuous variables in the commercial conditions. PMID:26419413

  15. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel.

    PubMed

    Wang, Chao; Huang, Duan; Huang, Peng; Lin, Dakai; Peng, Jinye; Zeng, Guihua

    2015-09-30

    In this paper, a practical continuous-variable quantum key distribution system is developed and it runs in the real-world conditions with 25 MHz clock rate. To reach high-rate, we have employed a homodyne detector with maximal bandwidth to 300 MHz and an optimal high-efficiency error reconciliation algorithm with processing speed up to 25 Mbps. To optimize the stability of the system, several key techniques are developed, which include a novel phase compensation algorithm, a polarization feedback algorithm, and related stability method on the modulators. Practically, our system is tested for more than 12 hours with a final secret key rate of 52 kbps over 50 km transmission distance, which is the highest rate so far in such distance. Our system may pave the road for practical broadband secure quantum communication with continuous variables in the commercial conditions.

  16. Choice of phase in the CS and IOS approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snider, R.F.

    1982-04-01

    With the recognition that the angular momentum representations of unit position and momentum directional states must have different but uniquely related phases, the previously presented expression of scattering amplitude in terms of IOS angle dependent phase shifts must be modified. This resolves a major disagreement between IOS and close coupled degeneracy averaged differential cross sections. It is found that the phase factors appearing in the differential cross section have nothing to do with any particular choice of decoupling parameter. As a consequence, the differential cross section is relatively insensitive to the choice of CS decoupling parameter. The phase relations obtainedmore » are also in agreement with those deduced from the Born approximation.« less

  17. Energy-constrained two-way assisted private and quantum capacities of quantum channels

    NASA Astrophysics Data System (ADS)

    Davis, Noah; Shirokov, Maksim E.; Wilde, Mark M.

    2018-06-01

    With the rapid growth of quantum technologies, knowing the fundamental characteristics of quantum systems and protocols is essential for their effective implementation. A particular communication setting that has received increased focus is related to quantum key distribution and distributed quantum computation. In this setting, a quantum channel connects a sender to a receiver, and their goal is to distill either a secret key or entanglement, along with the help of arbitrary local operations and classical communication (LOCC). In this work, we establish a general theory of energy-constrained, LOCC-assisted private and quantum capacities of quantum channels, which are the maximum rates at which an LOCC-assisted quantum channel can reliably establish a secret key or entanglement, respectively, subject to an energy constraint on the channel input states. We prove that the energy-constrained squashed entanglement of a channel is an upper bound on these capacities. We also explicitly prove that a thermal state maximizes a relaxation of the squashed entanglement of all phase-insensitive, single-mode input bosonic Gaussian channels, generalizing results from prior work. After doing so, we prove that a variation of the method introduced by Goodenough et al. [New J. Phys. 18, 063005 (2016), 10.1088/1367-2630/18/6/063005] leads to improved upper bounds on the energy-constrained secret-key-agreement capacity of a bosonic thermal channel. We then consider a multipartite setting and prove that two known multipartite generalizations of the squashed entanglement are in fact equal. We finally show that the energy-constrained, multipartite squashed entanglement plays a role in bounding the energy-constrained LOCC-assisted private and quantum capacity regions of quantum broadcast channels.

  18. Readout for phase qubits without Josephson junctions

    NASA Astrophysics Data System (ADS)

    Steffen, Matthias; Kumar, Shwetank; DiVincenzo, David; Keefe, George; Ketchen, Mark; Rothwell, Mary Beth; Rozen, Jim

    2010-03-01

    We present a readout scheme for phase qubits which eliminates the read-out superconducting quantum interference device so that the entire qubit and measurement circuitry only require a single Josephson junction. Our scheme capacitively couples the phase qubit directly to a transmission line and detects its state after the measurement pulse by determining a frequency shift observable in the forward scattering parameter of the readout microwaves. This readout is extendable to multiple phase qubits coupled to a common readout line and can in principle be used for other flux biased qubits having two quasistable readout configurations.

  19. Atomic spin-chain realization of a model for quantum criticality

    NASA Astrophysics Data System (ADS)

    Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I. S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A. F.

    2016-07-01

    The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be used as fundamental building blocks for the realization of textbook many-body quantum models, illustrating key concepts such as quantum phase transitions, topological order or frustration as a function of system size. Here, we use low-temperature scanning tunnelling microscopy to construct arrays of magnetic atoms on a surface, designed to behave like spin-1/2 XXZ Heisenberg chains in a transverse field, for which a quantum phase transition from an antiferromagnetic to a paramagnetic phase is predicted in the thermodynamic limit. Site-resolved measurements on these finite-size realizations reveal a number of sudden ground state changes when the field approaches the critical value, each corresponding to a new domain wall entering the chains. We observe that these state crossings become closer for longer chains, suggesting the onset of critical behaviour. Our results present opportunities for further studies on quantum behaviour of many-body systems, as a function of their size and structural complexity.

  20. Effect of source tampering in the security of quantum cryptography

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Xu, Feihu; Jiang, Mu-Sheng; Ma, Xiang-Chun; Lo, Hoi-Kwong; Liang, Lin-Mei

    2015-08-01

    The security of source has become an increasingly important issue in quantum cryptography. Based on the framework of measurement-device-independent quantum key distribution (MDI-QKD), the source becomes the only region exploitable by a potential eavesdropper (Eve). Phase randomization is a cornerstone assumption in most discrete-variable (DV) quantum communication protocols (e.g., QKD, quantum coin tossing, weak-coherent-state blind quantum computing, and so on), and the violation of such an assumption is thus fatal to the security of those protocols. In this paper, we show a simple quantum hacking strategy, with commercial and homemade pulsed lasers, by Eve that allows her to actively tamper with the source and violate such an assumption, without leaving a trace afterwards. Furthermore, our attack may also be valid for continuous-variable (CV) QKD, which is another main class of QKD protocol, since, excepting the phase random assumption, other parameters (e.g., intensity) could also be changed, which directly determine the security of CV-QKD.

  1. Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals.

    PubMed

    Kleis, Sebastian; Rueckmann, Max; Schaeffer, Christian G

    2017-04-15

    In this Letter, we propose a novel implementation of continuous variable quantum key distribution that operates with a real local oscillator placed at the receiver site. In addition, pulsing of the continuous wave laser sources is not required, leading to an extraordinary practical and secure setup. It is suitable for arbitrary schemes based on modulated coherent states and heterodyne detection. The shown results include transmission experiments, as well as an excess noise analysis applying a discrete 8-state phase modulation. Achievable key rates under collective attacks are estimated. The results demonstrate the high potential of the approach to achieve high secret key rates at relatively low effort and cost.

  2. Measurements of the intrinsic quantum efficiency and absorption length of tetraphenyl butadiene thin films in the vacuum ultraviolet regime

    NASA Astrophysics Data System (ADS)

    Benson, Christopher; Gann, Gabriel Orebi; Gehman, Victor

    2018-04-01

    A key enabling technology for many liquid noble gas (LNG) detectors is the use of the common wavelength shifting medium tetraphenyl butadiene (TPB). TPB thin films are used to shift ultraviolet scintillation light into the visible spectrum for detection and event reconstruction. Understanding the wavelength shifting efficiency and optical properties of these films are critical aspects in detector performance and modeling and hence in the ultimate physics sensitivity of such experiments. This article presents the first measurements of the room-temperature microphysical quantum efficiency for vacuum-deposited TPB thin films - a result that is independent of the optics of the TPB or substrate. Also presented are measurements of the absorption length in the vacuum ultraviolet regime, the secondary re-emission efficiency, and more precise results for the "black-box" efficiency across a broader spectrum of wavelengths than previous results. The low-wavelength sensitivity, in particular, would allow construction of LNG scintillator detectors with lighter elements (Ne, He) to target light mass WIMPs.

  3. Multi-mode of Four and Six Wave Parametric Amplified Process

    NASA Astrophysics Data System (ADS)

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-01

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  4. Multi-mode of Four and Six Wave Parametric Amplified Process.

    PubMed

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-03

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  5. Gradient Echo Quantum Memory in Warm Atomic Vapor

    PubMed Central

    Pinel, Olivier; Hosseini, Mahdi; Sparkes, Ben M.; Everett, Jesse L.; Higginbottom, Daniel; Campbell, Geoff T.; Lam, Ping Koy; Buchler, Ben C.

    2013-01-01

    Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain. PMID:24300586

  6. Gradient echo quantum memory in warm atomic vapor.

    PubMed

    Pinel, Olivier; Hosseini, Mahdi; Sparkes, Ben M; Everett, Jesse L; Higginbottom, Daniel; Campbell, Geoff T; Lam, Ping Koy; Buchler, Ben C

    2013-11-11

    Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.

  7. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer

    PubMed Central

    Sturm, C.; Tanese, D.; Nguyen, H.S.; Flayac, H.; Galopin, E.; Lemaître, A.; Sagnes, I.; Solnyshkov, D.; Amo, A.; Malpuech, G.; Bloch, J.

    2014-01-01

    Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-optical approach for controlling the phase of a flow of cavity-polaritons, making use of their strong interactions with localized excitons. Here we illustrate the potential of this method by implementing a compact exciton–polariton interferometer, which output intensity and polarization can be optically controlled. This interferometer is cascadable with already reported polariton devices and is promising for future polaritonic quantum optic experiments. Complex phase patterns could be also engineered using this optical method, providing a key tool to build photonic artificial gauge fields. PMID:24513781

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing

    The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less

  9. Improved phase shift approach to the energy correction of the infinite order sudden approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, B.; Eno, L.; Rabitz, H.

    1980-07-15

    A new method is presented for obtaining energy corrections to the infinite order sudden (IOS) approximation by incorporating the effect of the internal molecular Hamiltonian into the IOS wave function. This is done by utilizing the JWKB approximation to transform the Schroedinger equation into a differential equation for the phase. It is found that the internal Hamiltonian generates an effective potential from which a new improved phase shift is obtained. This phase shift is then used in place of the IOS phase shift to generate new transition probabilities. As an illustration the resulting improved phase shift (IPS) method is appliedmore » to the Secrest--Johnson model for the collinear collision of an atom and diatom. In the vicinity of the sudden limit, the IPS method gives results for transition probabilities, P/sub n/..-->..n+..delta..n, in significantly better agreement with the 'exact' close coupling calculations than the IOS method, particularly for large ..delta..n. However, when the IOS results are not even qualitatively correct, the IPS method is unable to satisfactorily provide improvements.« less

  10. Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems.

    PubMed

    Tan, Kang; Shao, Jing; Sun, Junqiang; Wang, Jian

    2012-01-16

    We propose and demonstrate a scheme for optical ultrawideband (UWB) pulse generation by exploiting a half-carrier-suppressed Mach-Zehnder modulator (MZM) and a delay-interferometer- and wavelength-division-multiplexer-based, reconfigurable and multi-channel differentiator (DWRMD). Multi-wavelength, polarity- and shape-switchable UWB pulses of monocycle, doublet, triplet, and quadruplet are experimentally generated simply by tuning two bias voltages to modify the carrier-suppression ratio of MZM and the differential order of DWRMD respectively. The pulse position modulation, pulse shape modulation, pulse amplitude modulation and binary phase-shift keying modulation of UWB pulses can also be conveniently realized with the same scheme structure, which indicates that the hybrid modulation of those four formats can be achieved. Consequently, the proposed approach has potential applications in multi-shape, multi-modulation and multi-access UWB-over-fiber communication systems.

  11. Quantum size effects in the size-temperature phase diagram of gallium: structural characterization of shape-shifting clusters.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2015-02-09

    Finite temperature analysis of cluster structures is used to identify signatures of the low-temperature polymorphs of gallium, based on the results of first-principle Born-Oppenheimer molecular dynamics simulations. Pre-melting structural transitions proceed from either the β- and/or the δ-phase to the γ- or δ-phase, with a size- dependent phase progression. We relate the stability of each isomer to the electronic structures of the different phases, giving new insight into the origin of polymorphism in this complicated element. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules.

    PubMed

    Park, Jee Woo; Yan, Zoe Z; Loh, Huanqian; Will, Sebastian A; Zwierlein, Martin W

    2017-07-28

    Coherence, the stability of the relative phase between quantum states, is central to quantum mechanics and its applications. For ultracold dipolar molecules at sub-microkelvin temperatures, internal states with robust coherence are predicted to offer rich prospects for quantum many-body physics and quantum information processing. We report the observation of stable coherence between nuclear spin states of ultracold fermionic sodium-potassium (NaK) molecules in the singlet rovibrational ground state. Ramsey spectroscopy reveals coherence times on the scale of 1 second; this enables high-resolution spectroscopy of the molecular gas. Collisional shifts are shown to be absent down to the 100-millihertz level. This work opens the door to the use of molecules as a versatile quantum memory and for precision measurements on dipolar quantum matter. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection

    DOE PAGES

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael C.; ...

    2015-10-21

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In our paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a “locally” generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct amore » coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad 2), which is small enough to enable secure key distribution. This technology opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.« less

  14. A universal matter-wave interferometer with optical ionization gratings in the time-domain

    PubMed Central

    Haslinger, Philipp; Dörre, Nadine; Geyer, Philipp; Rodewald, Jonas; Nimmrichter, Stefan; Arndt, Markus

    2015-01-01

    Matter-wave interferometry with atoms1 and molecules2 has attracted a rapidly growing interest throughout the last two decades both in demonstrations of fundamental quantum phenomena and in quantum-enhanced precision measurements. Such experiments exploit the non-classical superposition of two or more position and momentum states which are coherently split and rejoined to interfere3-11. Here, we present the experimental realization of a universal near-field interferometer built from three short-pulse single-photon ionization gratings12,13. We observe quantum interference of fast molecular clusters, with a composite de Broglie wavelength as small as 275 fm. Optical ionization gratings are largely independent of the specific internal level structure and are therefore universally applicable to different kinds of nanoparticles, ranging from atoms to clusters, molecules and nanospheres. The interferometer is sensitive to fringe shifts as small as a few nanometers and yet robust against velocity-dependent phase shifts, since the gratings exist only for nanoseconds and form an interferometer in the time-domain. PMID:25983851

  15. Theory and implementation of a very high throughput true random number generator in field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Hui, Cong; Liu, Chong

    The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving,more » so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.« less

  16. Theory and implementation of a very high throughput true random number generator in field programmable gate array.

    PubMed

    Wang, Yonggang; Hui, Cong; Liu, Chong; Xu, Chao

    2016-04-01

    The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.

  17. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    NASA Astrophysics Data System (ADS)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the laboratory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  18. Spin-Orbit Coupled Quantum Magnetism in the 3D-Honeycomb Iridates

    NASA Astrophysics Data System (ADS)

    Kimchi, Itamar

    In this doctoral dissertation, we consider the significance of spin-orbit coupling for the phases of matter which arise for strongly correlated electrons. We explore emergent behavior in quantum many-body systems, including symmetry-breaking orders, quantum spin liquids, and unconventional superconductivity. Our study is cemented by a particular class of Mott-insulating materials, centered around a family of two- and three-dimensional iridium oxides, whose honeycomb-like lattice structure admits peculiar magnetic interactions, the so-called Kitaev exchange. By analyzing recent experiments on these compounds, we show that this unconventional exchange is the key ingredient in describing their magnetism, and then use a combination of numerical and analytical techniques to investigate the implications for the phase diagram as well as the physics of the proximate three-dimensional quantum spin liquid phases. These long-ranged-entangled fractionalized phases should exhibit special features, including finite-temperature stability as well as unconventional high-Tc superconductivity upon charge-doping, which should aid future experimental searches for spin liquid physics. Our study explores the nature of frustration and fractionalization which can arise in quantum systems in the presence of strong spin-orbit coupling.

  19. Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations

    NASA Astrophysics Data System (ADS)

    Reid, M. D.

    2000-12-01

    Correlations of the type discussed by EPR in their original 1935 paradox for continuous variables exist for the quadrature phase amplitudes of two spatially separated fields. These correlations were first experimentally reported in 1992. We propose to use such EPR beams in quantum cryptography, to transmit with high efficiency messages in such a way that the receiver and sender may later determine whether eavesdropping has occurred. The merit of the new proposal is in the possibility of transmitting a reasonably secure yet predetermined key. This would allow relay of a cryptographic key over long distances in the presence of lossy channels.

  20. Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blandino, Rémi; Etesse, Jean; Grangier, Philippe

    2014-12-04

    We show that the maximum transmission distance of continuous-variable quantum key distribution in presence of a Gaussian noisy lossy channel can be arbitrarily increased using a heralded noiseless linear amplifier. We explicitly consider a protocol using amplitude and phase modulated coherent states with reverse reconciliation. Assuming that the secret key rate drops to zero for a line transmittance T{sub lim}, we find that a noiseless amplifier with amplitude gain g can improve this value to T{sub lim}/g{sup 2}, corresponding to an increase in distance proportional to log g. We also show that the tolerance against noise is increased.

  1. Dynamics of the quantum search and quench-induced first-order phase transitions.

    PubMed

    Coulamy, Ivan B; Saguia, Andreia; Sarandy, Marcelo S

    2017-02-01

    We investigate the excitation dynamics at a first-order quantum phase transition (QPT). More specifically, we consider the quench-induced QPT in the quantum search algorithm, which aims at finding out a marked element in an unstructured list. We begin by deriving the exact dynamics of the model, which is shown to obey a Riccati differential equation. Then, we discuss the probabilities of success by adopting either global or local adiabaticity strategies. Moreover, we determine the disturbance of the quantum criticality as a function of the system size. In particular, we show that the critical point exponentially converges to its thermodynamic limit even in a fast evolution regime, which is characterized by both entanglement QPT estimators and the Schmidt gap. The excitation pattern is manifested in terms of quantum domain walls separated by kinks. The kink density is then shown to follow an exponential scaling as a function of the evolution speed, which can be interpreted as a Kibble-Zurek mechanism for first-order QPTs.

  2. Stem Cell Differentiation Stage Factors and Their Role in Triggering Symmetry Breaking Processes during Cancer Development: A Quantum Field Theory Model for Reprogramming Cancer Cells to Healthy Phenotypes.

    PubMed

    Biava, Pier Mario; Burigana, Fabio; Germano, Roberto; Kurian, Philip; Verzegnassi, Claudio; Vitiello, Giuseppe

    2017-09-20

    A long history of research has pursued the use of embryonic factors isolated during cell differentiation processes for the express purpose of transforming cancer cells back to healthy phenotypes. Recent results have clarified that the substances present at different stages of cell differentiation-which we call stem cell differentiation stage factors (SCDSFs)-are proteins with low molecular weight and nucleic acids that regulate genomic expression. The present review summarizes how these substances, taken at different stages of cellular maturation, are able to retard proliferation of many human tumor cell lines and thereby reprogram cancer cells to healthy phenotypes. The model presented here is a quantum field theory (QFT) model in which SCDSFs are able to trigger symmetry breaking processes during cancer development. These symmetry breaking processes, which lie at the root of many phenomena in elementary particle physics and condensed matter physics, govern the phase transitions of totipotent cells to higher degrees of diversity and order, resulting in cell differentiation. In cancers, which share many genomic and metabolic similarities with embryonic stem cells, stimulated re-differentiation often signifies the phenotypic reversion back to health and non-proliferation. In addition to acting on key components of the cellular cycle, SCDSFs are able to reprogram cancer cells by delicately influencing the cancer microenvironment, modulating the electrochemistry and thus the collective electrodynamic behaviors between dipole networks in biomacromolecules and the interstitial water field. Coherent effects in biological water, which are derived from a dissipative QFT framework, may offer new diagnostic and therapeutic targets at a systemic level, before tumor instantiation occurs in specific tissues or organs. Thus, by including the environment as an essential component of our model, we may push the prevailing paradigm of mutation-driven oncogenesis toward a closer description of reality. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Optical ranging and communication method based on all-phase FFT

    NASA Astrophysics Data System (ADS)

    Li, Zening; Chen, Gang

    2014-10-01

    This paper describes an optical ranging and communication method based on all-phase fast fourier transform (FFT). This kind of system is mainly designed for vehicle safety application. Particularly, the phase shift of the reflecting orthogonal frequency division multiplexing (OFDM) symbol is measured to determine the signal time of flight. Then the distance is calculated according to the time of flight. Several key factors affecting the phase measurement accuracy are studied. The all-phase FFT, which can reduce the effects of frequency offset, phase noise and the inter-carrier interference (ICI), is applied to measure the OFDM symbol phase shift.

  4. Experimentally feasible quantum-key-distribution scheme using qubit-like qudits and its comparison with existing qubit- and qudit-based protocols

    NASA Astrophysics Data System (ADS)

    Chau, H. F.; Wang, Qinan; Wong, Cardythy

    2017-02-01

    Recently, Chau [Phys. Rev. A 92, 062324 (2015), 10.1103/PhysRevA.92.062324] introduced an experimentally feasible qudit-based quantum-key-distribution (QKD) scheme. In that scheme, one bit of information is phase encoded in the prepared state in a 2n-dimensional Hilbert space in the form (|i > ±|j >) /√{2 } with n ≥2 . For each qudit prepared and measured in the same two-dimensional Hilbert subspace, one bit of raw secret key is obtained in the absence of transmission error. Here we show that by modifying the basis announcement procedure, the same experimental setup can generate n bits of raw key for each qudit prepared and measured in the same basis in the noiseless situation. The reason is that in addition to the phase information, each qudit also carries information on the Hilbert subspace used. The additional (n -1 ) bits of raw key comes from a clever utilization of this extra piece of information. We prove the unconditional security of this modified protocol and compare its performance with other existing provably secure qubit- and qudit-based protocols on market in the one-way classical communication setting. Interestingly, we find that for the case of n =2 , the secret key rate of this modified protocol using nondegenerate random quantum code to perform one-way entanglement distillation is equal to that of the six-state scheme.

  5. An AWG-based 10 Gbit/s colorless WDM-PON system using a chirp-managed directly modulated laser

    NASA Astrophysics Data System (ADS)

    Latif, Abdul; Yu, Chong-xiu; Xin, Xiang-jun; Husain, Aftab; Hussain, Ashiq; Munir, Abid; Khan, Yousaf

    2012-09-01

    We propose an arrayed waveguide grating (AWG)-based 10 Gbit/s per channel full duplex wavelength division multiplexing passive optical network (WDM-PON). A chirp managed directly modulated laser with return-to-zero (RZ) differential phase shift keying (DPSK) modulation technique is utilized for downlink (DL) direction, and then the downlink signal is re-modulated for the uplink (UL) direction using intensity modulation technique with the data rate of 10 Gbit/s per channel. A successful WDM-PON transmission operation with the data rate of 10 Gbit/s per channel over a distance of 25 km without any optical amplification or dispersion compensation is demonstrated with low power penalty.

  6. 10.7 Gb/s uncompensated transmission over a 470 km hybrid fiber link with in-line SOAs using MLSE and duobinary signals.

    PubMed

    Downie, John D; Hurley, Jason; Mauro, Yihong

    2008-09-29

    We experimentally demonstrate uncompensated 8-channel wavelength division multiplexing (WDM) and single channel transmission at 10.7 Gb/s over a 470 km hybrid fiber link with in-line semiconductor optical amplifiers (SOAs). Two different forms of the duobinary modulation format are investigated and compared. Maximum Likelihood Sequence Estimation (MLSE) receiver technology is found to significantly mitigate nonlinear effects from the SOAs and to enable the long transmission, especially for optical duobinary signals derived from differential phase shift keying (DPSK) signals directly detected after narrowband optical filter demodulation. The MLSE also helps to compensate for a non-optimal Fabry-Perot optical filter demodulator.

  7. Quantitative surface topography determination by Nomarski reflection microscopy I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lessor, D.L.; Hartman, J.S.; Gordon, R.L.

    1979-02-01

    The Nomarksi differential interference contrast microscope is examined as a tool for determination of metallic mirror surface topography. This discussion includes the development of an optical model for the Nomarski system, an examination of the key results of the model's application to sloped sample surfaces, and recommended procedures for implementation. The functional relationship is developed between image intensity and the component of surface slope along the Nomarski shear direction, the fixed parameters in the Nimarksi system, and the adjustable phase shifts related to Nomarski prism position. Equations are also developed to allow the determination of surface slope from relative imagemore » intensity when sample reflectively is uniform and slopes are small.« less

  8. The performance of trellis coded multilevel DPSK on a fading mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.; Divsalar, Dariush

    1987-01-01

    The performance of trellis coded multilevel differential phase-shift-keying (MDPSK) over Rician and Rayleigh fading channels is discussed. For operation at L-Band, this signalling technique leads to a more robust system than the coherent system with dual pilot tone calibration previously proposed for UHF. The results are obtained using a combination of analysis and simulation. The analysis shows that the design criterion for trellis codes to be operated on fading channels with interleaving/deinterleaving is no longer free Euclidean distance. The correct design criterion for optimizing bit error probability of trellis coded MDPSK over fading channels will be presented along with examples illustrating its application.

  9. Digital 8-DPSK Modem For Trellis-Coded Communication

    NASA Technical Reports Server (NTRS)

    Jedrey, T. C.; Lay, N. E.; Rafferty, W.

    1989-01-01

    Digital real-time modem processes octuple differential-phase-shift-keyed trellis-coded modulation. Intended for use in communicating data at rate up to 4.8 kb/s in land-mobile satellite channel (Rician fading) of 5-kHz bandwidth at carrier frequency of 1 to 2 GHz. Modulator and demodulator contain digital signal processors performing modem functions. Design flexible in that functions altered via software. Modem successfully tested and evaluated in both laboratory and field experiments, including recent full-scale satellite experiment. In all cases, modem performed within 1 dB of theory. Other communication systems benefitting from this type of modem include land mobile (without satellites), paging, digitized voice, and frequency-modulation subcarrier data broadcasting.

  10. Role of Inflammatory Signaling in the Differential Effects of Saturated and Poly-unsaturated Fatty Acids on Peripheral Circadian Clocks.

    PubMed

    Kim, Sam-Moon; Neuendorff, Nichole; Chapkin, Robert S; Earnest, David J

    2016-05-01

    Inflammatory signaling may play a role in high-fat diet (HFD)-related circadian clock disturbances that contribute to systemic metabolic dysregulation. Therefore, palmitate, the prevalent proinflammatory saturated fatty acid (SFA) in HFD and the anti-inflammatory, poly-unsaturated fatty acid (PUFA), docosahexaenoic acid (DHA), were analyzed for effects on circadian timekeeping and inflammatory responses in peripheral clocks. Prolonged palmitate, but not DHA, exposure increased the period of fibroblast Bmal1-dLuc rhythms. Acute palmitate treatment produced phase shifts of the Bmal1-dLuc rhythm that were larger in amplitude as compared to DHA. These phase-shifting effects were time-dependent and contemporaneous with rhythmic changes in palmitate-induced inflammatory responses. Fibroblast and differentiated adipocyte clocks exhibited cell-specific differences in the time-dependent nature of palmitate-induced shifts and inflammation. DHA and other inhibitors of inflammatory signaling (AICAR, cardamonin) repressed palmitate-induced proinflammatory responses and phase shifts of the fibroblast clock, suggesting that SFA-mediated inflammatory signaling may feed back to modulate circadian timekeeping in peripheral clocks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Quadrature-quadrature phase-shift keying

    NASA Astrophysics Data System (ADS)

    Saha, Debabrata; Birdsall, Theodore G.

    1989-05-01

    Quadrature-quadrature phase-shift keying (Q2PSK) is a spectrally efficient modulation scheme which utilizes available signal space dimensions in a more efficient way than two-dimensional schemes such as QPSK and MSK (minimum-shift keying). It uses two data shaping pulses and two carriers, which are pairwise quadrature in phase, to create a four-dimensional signal space and increases the transmission rate by a factor of two over QPSK and MSK. However, the bit error rate performance depends on the choice of pulse pair. With simple sinusoidal and cosinusoidal data pulses, the Eb/N0 requirement for Pb(E) = 10 to the -5 is approximately 1.6 dB higher than that of MSK. Without additional constraints, Q2PSK does not maintain constant envelope. However, a simple block coding provides a constant envelope. This coded signal substantially outperforms MSKS and TFM (time-frequency multiplexing) in bandwidth efficiency. Like MSK, Q2PSK also has self-clocking and self-synchronizing ability. An optimum class of pulse shapes for use in Q2PSK-format is presented. One suboptimum realization achieves the Nyquist rate of 2 bits/s/Hz using binary detection.

  12. Quantum oscillations in a biaxial pair density wave state.

    PubMed

    Norman, M R; Davis, J C Séamus

    2018-05-22

    There has been growing speculation that a pair density wave state is a key component of the phenomenology of the pseudogap phase in the cuprates. Recently, direct evidence for such a state has emerged from an analysis of scanning tunneling microscopy data in halos around the vortex cores. By extrapolation, these vortex halos would then overlap at a magnetic-field scale where quantum oscillations have been observed. Here, we show that a biaxial pair density wave state gives a unique description of the quantum oscillation data, bolstering the case that the pseudogap phase in the cuprates may be a pair density wave state. Copyright © 2018 the Author(s). Published by PNAS.

  13. Quantum-enhanced multiparameter estimation in multiarm interferometers

    PubMed Central

    Ciampini, Mario A.; Spagnolo, Nicolò; Vitelli, Chiara; Pezzè, Luca; Smerzi, Augusto; Sciarrino, Fabio

    2016-01-01

    Quantum metrology is the state-of-the-art measurement technology. It uses quantum resources to enhance the sensitivity of phase estimation over that achievable by classical physics. While single parameter estimation theory has been widely investigated, much less is known about the simultaneous estimation of multiple phases, which finds key applications in imaging and sensing. In this manuscript we provide conditions of useful particle (qudit) entanglement for multiphase estimation and adapt them to multiarm Mach-Zehnder interferometry. We theoretically discuss benchmark multimode Fock states containing useful qudit entanglement and overcoming the sensitivity of separable qudit states in three and four arm Mach-Zehnder-like interferometers - currently within the reach of integrated photonics technology. PMID:27381743

  14. The general theory of three-party quantum secret sharing protocols over phase-damping channels

    NASA Astrophysics Data System (ADS)

    Song, Ting-Ting; Wen, Qiao-Yan; Qin, Su-Juan; Zhang, Wei-Wei; Sun, Ying

    2013-10-01

    The general theory of three-party QSS protocols with the noisy quantum channels is discussed. When the particles are transmitted through the noisy quantum channels, the initial pure three-qubit tripartite entangled states would be changed into mixed states. We analyze the security of QSS protocols with the different kinds of three-qubit tripartite entangled states under phase-damping channels and figure out, for different kinds of initial states, the successful probabilities that Alice's secret can be recovered by legal agents are different. Comparing with one recent QSS protocol based on GHZ states, our scheme is secure, and has a little smaller key rate than that of the recent protocol.

  15. A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format

    NASA Astrophysics Data System (ADS)

    Tian, Yue; Leng, Lufeng; Su, Yikai

    2008-11-01

    All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.

  16. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation.

    PubMed

    Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong

    2017-06-01

    The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.

  17. Differential Resonant Ring YIG Tuned Oscillator

    NASA Technical Reports Server (NTRS)

    Parrott, Ronald A.

    2010-01-01

    A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n-p-n transistors. At the input of the oscillator s feedback loop is a pair of differentially connected n-p-n SiGe transistors that provides extremely high gain, and because they are bulk-effect devices, extremely low 1/f noise (leading to ultralow RF phase noise). The 1/f corner frequency for n-p-n SiGe transistors is approximately 500 Hz. The RF energy from the transistor s collector output is connected directly to the top-coupling loop (the excitation loop) of a single-sphere YIG tuned filter. A uniform magnetic field to bias the YIG must be at a right angle to any vector associated with an RF current in a coupling loop in order for the precession to interact with the RF currents.

  18. Power Budget Analysis of Colorless Hybrid WDM/TDM-PON Scheme Using Downstream DPSK and Re-modulated Upstream OOK Data Signals

    NASA Astrophysics Data System (ADS)

    Khan, Yousaf; Afridi, Muhammad Idrees; Khan, Ahmed Mudassir; Rehman, Waheed Ur; Khan, Jahanzeb

    2014-09-01

    Hybrid wavelength-division multiplexed/time-division multiplexed passive optical access networks (WDM/TDM-PONs) combine the advance features of both WDM and TDM PONs to provide a cost-effective access network solution. We demonstrate and analyze the transmission performances and power budget issues of a colorless hybrid WDM/TDM-PON scheme. A 10-Gb/s downstream differential phase shift keying (DPSK) and remodulated upstream on/off keying (OOK) data signals are transmitted over 25 km standard single mode fiber. Simulation results show error free transmission having adequate power margins in both downstream and upstream transmission, which prove the applicability of the proposed scheme to future passive optical access networks. The power budget confines both the PON splitting ratio and the distance between the Optical Line Terminal (OLT) and Optical Network Unit (ONU).

  19. A WDM-PON with DPSK modulated downstream and OOK modulated upstream signals based on symmetric 10 Gbit/s wavelength reused bidirectional reflective SOA

    NASA Astrophysics Data System (ADS)

    El-Nahal, Fady I.

    2017-01-01

    We investigate a wavelength-division-multiplexing passive optical network (WDM-PON) with centralized lightwave and direct detection. The system is demonstrated for symmetric 10 Gbit/s differential phase-shift keying (DPSK) downstream signals and on-off keying (OOK) upstream signals, respectively. A wavelength reused scheme is employed to carry the upstream data by using a reflective semiconductor optical amplifier (RSOA) as an intensity modulator at the optical network unit (ONU). The constant-intensity property of the DPSK modulation format can keep high extinction ratio ( ER) of downstream signal and reduce the crosstalk to the upstream signal. The bit error rate ( BER) performance of our scheme shows that the proposed 10 Gbit/s symmetric WDM-PON can achieve error free transmission over 25-km-long fiber transmission with low power penalty.

  20. Two-nucleon higher partial-wave scattering from lattice QCD

    DOE PAGES

    Berkowitz, Evan; Kurth, Thorsten; Nicholson, Amy; ...

    2016-12-14

    Here, we present a determination of nucleon-nucleon scattering phase shifts for L>0. The S,P,D and F phase shifts for both the spin-triplet and spin-singlet channels are computed for the first time with lattice Quantum ChromoDynamics. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. In order to demonstrate the utility of our approach, the calculations were performed in the SU(3)-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to m π=m K≈800~MeV. Two spatial volumes of V ≈ (3.5 fm) 3 and V ≈more » (4.6 fm) 3 were used. Furthermore, the finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Luscher formalism for two-nucleon systems.« less

  1. A surprisingly simple correlation between the classical and quantum structural networks in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, Peter; Fanourgakis, George S.; Xantheas, Sotiris S.

    Nuclear quantum effects in liquid water have profound implications for several of its macroscopic properties related to structure, dynamics, spectroscopy and transport. Although several of water’s macroscopic properties can be reproduced by classical descriptions of the nuclei using potentials effectively parameterized for a narrow range of its phase diagram, a proper account of the nuclear quantum effects is required in order to ensure that the underlying molecular interactions are transferable across a wide temperature range covering different regions of that diagram. When performing an analysis of the hydrogen bonded structural networks in liquid water resulting from the classical (class.) andmore » quantum (q.m.) descriptions of the nuclei with the transferable, flexible, polarizable TTM3-F interaction potential, we found that the two results can be superimposed over the temperature range of T=270-350 K using a surprisingly simple, linear scaling of the two temperatures according to T(q.m.)=aT(class)- T , where a=1.2 and T=51 K. The linear scaling and constant shift of the temperature scale can be considered as a generalization of the previously reported temperature shifts (corresponding to structural changes and the melting T) induced by quantum effects in liquid water.« less

  2. Exploring the Use of Radar for Physically-Based Nowcasting of Lightning Cessation

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.

    2011-01-01

    NASA's Marshall Space Flight Center and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically-based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms driven primarily by trending in the actual total lightning flash rate, we believe that dual polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and ice-microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can propagation phase-based ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature was encompassed in the period of the polarimetric negative phase shift signature. To the extent this behavior is repeatable in other cases, even if only in a substantial fraction of those cases, the analysis suggests that differential propagation phase may prove to be a useful parameter for future lightning cessation algorithms. Indeed, a preliminary analysis of 15+ cases has shown additional indications of the weakening and disappearance of this ice alignment signature with lightning cessation. A summary of these case-study results is presented.

  3. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-16

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  4. Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-01

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  5. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution.

    PubMed

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-16

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  6. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    PubMed Central

    Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés

    2011-01-01

    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems. PMID:22163907

  7. Single-photon superradiance and cooperative Lamb shift in an optoelectronic device (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sirtori, Carlo

    2017-02-01

    Superradiance is one of the many fascinating phenomena predicted by quantum electrodynamics that have first been experimentally demonstrated in atomic systems and more recently in condensed matter systems like quantum dots, superconducting q-bits, cyclotron transitions and plasma oscillations in quantum wells (QWs). It occurs when a dense collection of N identical two-level emitters are phased via the exchange of photons, giving rise to enhanced light-matter interaction, hence to a faster emission rate. Of great interest is the regime where the ensemble interacts with one photon only and therefore all of the atoms, but one, are in the ground state. In this case the quantum superposition of all possible configurations produces a symmetric state that decays radiatively with a rate N times larger than that of the individual oscillators. This phenomenon, called single photon superradiance, results from the exchange of real photons among the N emitters. Yet, to single photon superradiance is also associated another collective effect that renormalizes the emission frequency, known as cooperative Lamb shift. In this work, we show that single photon superradiance and cooperative Lamb shift can be engineered in a semiconductor device by coupling spatially separated plasma resonances arising from the collective motion of confined electrons in QWs. These resonances hold a giant dipole along the growth direction z and have no mutual Coulomb coupling. They thus behave as a collection of macro-atoms on different positions along the z axis. Our device is therefore a test bench to simulate the low excitation regime of quantum electrodynamics.

  8. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging.

    PubMed

    Dracínský, Martin; Kaminský, Jakub; Bour, Petr

    2009-03-07

    Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in future quantum chemistry packages is desirable.

  9. Single-photon frequency conversion via cascaded quadratic nonlinear processes

    NASA Astrophysics Data System (ADS)

    Xiang, Tong; Sun, Qi-Chao; Li, Yuanhua; Zheng, Yuanlin; Chen, Xianfeng

    2018-06-01

    Frequency conversion of single photons is an important technology for quantum interface and quantum communication networks. Here, single-photon frequency conversion in the telecommunication band is experimentally demonstrated via cascaded quadratic nonlinear processes. Using cascaded quasi-phase-matched sum and difference frequency generation in a periodically poled lithium niobate waveguide, the signal photon of a photon pair from spontaneous down-conversion is precisely shifted to identically match its counterpart, i.e., the idler photon, in frequency to manifest a clear nonclassical dip in the Hong-Ou-Mandel interference. Moreover, quantum entanglement between the photon pair is maintained after the frequency conversion, as is proved in time-energy entanglement measurement. The scheme is used to switch single photons between dense wavelength-division multiplexing channels, which holds great promise in applications in realistic quantum networks.

  10. On-chip WDM mode-division multiplexing interconnection with optional demodulation function.

    PubMed

    Ye, Mengyuan; Yu, Yu; Chen, Guanyu; Luo, Yuchan; Zhang, Xinliang

    2015-12-14

    We propose and fabricate a wavelength-division-multiplexing (WDM) compatible and multi-functional mode-division-multiplexing (MDM) integrated circuit, which can perform the mode conversion and multiplexing for the incoming multipath WDM signals, avoiding the wavelength conflict. An phase-to-intensity demodulation function can be optionally applied within the circuit while performing the mode multiplexing. For demonstration, 4 × 10 Gb/s non-return-to-zero differential phase shift keying (NRZ-DPSK) signals are successfully processed, with open and clear eye diagrams. Measured bit error ratio (BER) results show less than 1 dB receive sensitivity variation for three modes and four wavelengths with demodulation. In the case without demodulation, the average power penalties at 4 wavelengths are -1.5, -3 and -3.5 dB for TE₀-TE₀, TE₀-TE₁ and TE₀-TE₂ mode conversions, respectively. The proposed flexible scheme can be used at the interface of long-haul and on-chip communication systems.

  11. Cooperative single-photon subradiant states in a three-dimensional atomic array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2016-11-15

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative schememore » for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.« less

  12. Temporal shaping of quantum states released from a superconducting cavity memory

    NASA Astrophysics Data System (ADS)

    Burkhart, L.; Axline, C.; Pfaff, W.; Zou, C.; Zhang, M.; Narla, A.; Frunzio, L.; Devoret, M. H.; Jiang, L.; Schoelkopf, R. J.

    State transfer and entanglement distribution are essential primitives in network-based quantum information processing. We have previously demonstrated an interface between a quantum memory and propagating light fields in the microwave domain: by parametric conversion in a single Josephson junction, we have coherently released quantum states from a superconducting cavity resonator into a transmission line. Protocols for state transfer mediated by propagating fields typically rely on temporal mode-matching of couplings at both sender and receiver. However, parametric driving on a single junction results in dynamic frequency shifts, raising the question of whether the pumps alone provide enough control for achieving this mode-matching. We show, in theory and experiment, that phase and amplitude shaping of the parametric drives allows arbitrary control over the propagating field, limited only by the drives bandwidth and amplitude constraints. This temporal mode shaping technique allows for release and capture of quantum states, providing a credible route towards state transfer and entanglement generation in quantum networks in which quantum states are stored and processed in cavities.

  13. Combined Monte Carlo and quantum mechanics study of the solvatochromism of phenol in water. The origin of the blue shift of the lowest pi-pi* transition.

    PubMed

    Barreto, Rafael C; Coutinho, Kaline; Georg, Herbert C; Canuto, Sylvio

    2009-03-07

    A combined and sequential use of Monte Carlo simulations and quantum mechanical calculations is made to analyze the spectral shift of the lowest pi-pi* transition of phenol in water. The solute polarization is included using electrostatic embedded calculations at the MP2/aug-cc-pVDZ level giving a dipole moment of 2.25 D, corresponding to an increase of 76% compared to the calculated gas-phase value. Using statistically uncorrelated configurations sampled from the MC simulation, first-principle size-extensive calculations are performed to obtain the solvatochromic shift. Analysis is then made of the origin of the blue shift. Results both at the optimized geometry and in room-temperature liquid water show that hydrogen bonds of water with phenol promote a red shift when phenol is the proton-donor and a blue shift when phenol is the proton-acceptor. In the case of the optimized clusters the calculated shifts are in very good agreement with results obtained from mass-selected free jet expansion experiments. In the liquid case the contribution of the solute-solvent hydrogen bonds partially cancels and the total shift obtained is dominated by the contribution of the outer solvent water molecules. Our best result, including both inner and outer water molecules, is 570 +/- 35 cm(-1), in very good agreement with the small experimental shift of 460 cm(-1) for the absorption maximum.

  14. Quantum-classical analogies in waveguide arrays: From Fourier transforms to ion-laser interactions

    NASA Astrophysics Data System (ADS)

    Moya-Cessa, Héctor M.

    2018-04-01

    By using the fact that infinite and semi-infinite systems of differential equations may be casted as Schrödinger-like equations we show how quantum-classical analogies may be achieved. In particular we show how the analogies of ion-laser, functions of a phase operator and quantised-field-two-level-atom interactions may be emulated. We also show a realization of the fractional discrete Fourier transform.

  15. JOURNAL SCOPE GUIDELINES: Paper classification scheme

    NASA Astrophysics Data System (ADS)

    2005-06-01

    This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas

  16. Multiple-Bit Differential Detection of OQPSK

    NASA Technical Reports Server (NTRS)

    Simon, Marvin

    2005-01-01

    A multiple-bit differential-detection method has been proposed for the reception of radio signals modulated with offset quadrature phase-shift keying (offset QPSK or OQPSK). The method is also applicable to other spectrally efficient offset quadrature modulations. This method is based partly on the same principles as those of a multiple-symbol differential-detection method for M-ary QPSK, which includes QPSK (that is, non-offset QPSK) as a special case. That method was introduced more than a decade ago by the author of the present method as a means of improving performance relative to a traditional (two-symbol observation) differential-detection scheme. Instead of symbol-by-symbol detection, both that method and the present one are based on a concept of maximum-likelihood sequence estimation (MLSE). As applied to the modulations in question, MLSE involves consideration of (1) all possible binary data sequences that could have been received during an observation time of some number, N, of symbol periods and (2) selection of the sequence that yields the best match to the noise-corrupted signal received during that time. The performance of the prior method was shown to range from that of traditional differential detection for short observation times (small N) to that of ideal coherent detection (with differential encoding) for long observation times (large N).

  17. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack.

    PubMed

    Miroshnichenko, G P; Kozubov, A V; Gaidash, A A; Gleim, A V; Horoshko, D B

    2018-04-30

    We consider a subcarrier wave quantum key distribution (QKD) system, where quantum encoding is carried out at weak sidebands generated around a coherent optical beam as a result of electro-optical phase modulation. We study security of two protocols, B92 and BB84, against one of the most powerful attacks for this class of systems, the collective beam-splitting attack. Our analysis includes the case of high modulation index, where the sidebands are essentially multimode. We demonstrate numerically and experimentally that a subcarrier wave QKD system with realistic parameters is capable of distributing cryptographic keys over large distances in presence of collective attacks. We also show that BB84 protocol modification with discrimination of only one state in each basis performs not worse than the original BB84 protocol in this class of QKD systems, thus significantly simplifying the development of cryptographic networks using the considered QKD technique.

  18. Noise Analysis of Simultaneous Quantum Key Distribution and Classical Communication Scheme Using a True Local Oscillator

    DOE PAGES

    Qi, Bing; Lim, Charles Ci Wen

    2018-05-07

    Recently, we proposed a simultaneous quantum and classical communication (SQCC) protocol where random numbers for quantum key distribution and bits for classical communication are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Such a scheme could be appealing in practice since a single coherent communication system can be used for multiple purposes. However, previous studies show that the SQCC protocol can tolerate only very small phase noise. This makes it incompatible with the coherent communication scheme using a true local oscillator (LO), which presents a relatively high phase noise due to the fact thatmore » the signal and the LO are generated from two independent lasers. We improve the phase noise tolerance of the SQCC scheme using a true LO by adopting a refined noise model where phase noises originating from different sources are treated differently: on the one hand, phase noise associated with the coherent receiver may be regarded as trusted noise since the detector can be calibrated locally and the photon statistics of the detected signals can be determined from the measurement results; on the other hand, phase noise due to the instability of fiber interferometers may be regarded as untrusted noise since its randomness (from the adversary’s point of view) is hard to justify. Simulation results show the tolerable phase noise in this refined noise model is significantly higher than that in the previous study, where all of the phase noises are assumed to be untrusted. In conclusion, we conduct an experiment to show that the required phase stability can be achieved in a coherent communication system using a true LO.« less

  19. Noise Analysis of Simultaneous Quantum Key Distribution and Classical Communication Scheme Using a True Local Oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Bing; Lim, Charles Ci Wen

    Recently, we proposed a simultaneous quantum and classical communication (SQCC) protocol where random numbers for quantum key distribution and bits for classical communication are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Such a scheme could be appealing in practice since a single coherent communication system can be used for multiple purposes. However, previous studies show that the SQCC protocol can tolerate only very small phase noise. This makes it incompatible with the coherent communication scheme using a true local oscillator (LO), which presents a relatively high phase noise due to the fact thatmore » the signal and the LO are generated from two independent lasers. We improve the phase noise tolerance of the SQCC scheme using a true LO by adopting a refined noise model where phase noises originating from different sources are treated differently: on the one hand, phase noise associated with the coherent receiver may be regarded as trusted noise since the detector can be calibrated locally and the photon statistics of the detected signals can be determined from the measurement results; on the other hand, phase noise due to the instability of fiber interferometers may be regarded as untrusted noise since its randomness (from the adversary’s point of view) is hard to justify. Simulation results show the tolerable phase noise in this refined noise model is significantly higher than that in the previous study, where all of the phase noises are assumed to be untrusted. In conclusion, we conduct an experiment to show that the required phase stability can be achieved in a coherent communication system using a true LO.« less

  20. Noise Analysis of Simultaneous Quantum Key Distribution and Classical Communication Scheme Using a True Local Oscillator

    NASA Astrophysics Data System (ADS)

    Qi, Bing; Lim, Charles Ci Wen

    2018-05-01

    Recently, we proposed a simultaneous quantum and classical communication (SQCC) protocol where random numbers for quantum key distribution and bits for classical communication are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Such a scheme could be appealing in practice since a single coherent communication system can be used for multiple purposes. However, previous studies show that the SQCC protocol can tolerate only very small phase noise. This makes it incompatible with the coherent communication scheme using a true local oscillator (LO), which presents a relatively high phase noise due to the fact that the signal and the LO are generated from two independent lasers. We improve the phase noise tolerance of the SQCC scheme using a true LO by adopting a refined noise model where phase noises originating from different sources are treated differently: on the one hand, phase noise associated with the coherent receiver may be regarded as trusted noise since the detector can be calibrated locally and the photon statistics of the detected signals can be determined from the measurement results; on the other hand, phase noise due to the instability of fiber interferometers may be regarded as untrusted noise since its randomness (from the adversary's point of view) is hard to justify. Simulation results show the tolerable phase noise in this refined noise model is significantly higher than that in the previous study, where all of the phase noises are assumed to be untrusted. We conduct an experiment to show that the required phase stability can be achieved in a coherent communication system using a true LO.

  1. All-optical simultaneous multichannel quadrature phase shift keying signal regeneration based on phase-sensitive amplification

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiang; Wang, Qi; Bai, Lin; Ji, Yuefeng

    2018-01-01

    A scheme is proposed to realize the all-optical phase regeneration of four-channel quadrature phase shift keying (QPSK) signal based on phase-sensitive amplification. By utilizing conjugate pump and common pump in a highly nonlinear optical fiber, degenerate four-wave mixing process is observed, and QPSK signals are regenerated. The number of waves is reduced to decrease the cross talk caused by undesired nonlinear interaction during the coherent superposition process. In addition, to avoid the effect of overlapping frequency, frequency spans between pumps and signals are set to be nonintegral multiples. Optical signal-to-noise ratio improvement is validated by bit error rate measurements. Compared with single-channel regeneration, multichannel regeneration brings 0.4-dB OSNR penalty when the value of BER is 10-3, which shows the cross talk in regeneration process is negligible.

  2. Quantum theory of open systems based on stochastic differential equations of generalized Langevin (non-Wiener) type

    NASA Astrophysics Data System (ADS)

    Basharov, A. M.

    2012-09-01

    It is shown that the effective Hamiltonian representation, as it is formulated in author's papers, serves as a basis for distinguishing, in a broadband environment of an open quantum system, independent noise sources that determine, in terms of the stationary quantum Wiener and Poisson processes in the Markov approximation, the effective Hamiltonian and the equation for the evolution operator of the open system and its environment. General stochastic differential equations of generalized Langevin (non-Wiener) type for the evolution operator and the kinetic equation for the density matrix of an open system are obtained, which allow one to analyze the dynamics of a wide class of localized open systems in the Markov approximation. The main distinctive features of the dynamics of open quantum systems described in this way are the stabilization of excited states with respect to collective processes and an additional frequency shift of the spectrum of the open system. As an illustration of the general approach developed, the photon dynamics in a single-mode cavity without losses on the mirrors is considered, which contains identical intracavity atoms coupled to the external vacuum electromagnetic field. For some atomic densities, the photons of the cavity mode are "locked" inside the cavity, thus exhibiting a new phenomenon of radiation trapping and non-Wiener dynamics.

  3. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices.

    PubMed

    Su, Tiehui; Scott, Ryan P; Djordjevic, Stevan S; Fontaine, Nicolas K; Geisler, David J; Cai, Xinran; Yoo, S J B

    2012-04-23

    We propose and demonstrate silicon photonic integrated circuits (PICs) for free-space spatial-division-multiplexing (SDM) optical transmission with multiplexed orbital angular momentum (OAM) states over a topological charge range of -2 to +2. The silicon PIC fabricated using a CMOS-compatible process exploits tunable-phase arrayed waveguides with vertical grating couplers to achieve space division multiplexing and demultiplexing. The experimental results utilizing two silicon PICs achieve SDM mux/demux bit-error-rate performance for 1‑b/s/Hz, 10-Gb/s binary phase shifted keying (BPSK) data and 2-b/s/Hz, 20-Gb/s quadrature phase shifted keying (QPSK) data for individual and two simultaneous OAM states. © 2012 Optical Society of America

  4. Precision requirements and innovative manufacturing for ultrahigh precision laser interferometry of gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou; Han, Sen; Jin, Tao

    2016-11-01

    With the LIGO announcement of the first direct detection of gravitational waves (GWs), the GW Astronomy was formally ushered into our age. After one-hundred years of theoretical investigation and fifty years of experimental endeavor, this is a historical landmark not just for physics and astronomy, but also for industry and manufacturing. The challenge and opportunity for industry is precision and innovative manufacturing in large size - production of large and homogeneous optical components, optical diagnosis of large components, high reflectance dielectric coating on large mirrors, manufacturing of components for ultrahigh vacuum of large volume, manufacturing of high attenuating vibration isolation system, production of high-power high-stability single-frequency lasers, production of high-resolution positioning systems etc. In this talk, we address the requirements and methods to satisfy these requirements. Optical diagnosis of large optical components requires large phase-shifting interferometer; the 1.06 μm Phase Shifting Interferometer for testing LIGO optics and the recently built 24" phase-shifting Interferometer in Chengdu, China are examples. High quality mirrors are crucial for laser interferometric GW detection, so as for ring laser gyroscope, high precision laser stabilization via optical cavities, quantum optomechanics, cavity quantum electrodynamics and vacuum birefringence measurement. There are stringent requirements on the substrate materials and coating methods. For cryogenic GW interferometer, appropriate coating on sapphire or silicon are required for good thermal and homogeneity properties. Large ultrahigh vacuum components and high attenuating vibration system together with an efficient metrology system are required and will be addressed. For space interferometry, drag-free technology and weak-light manipulation technology are must. Drag-free technology is well-developed. Weak-light phase locking is demonstrated in the laboratories while weak-light manipulation technology still needs developments.

  5. Single-ion quantum lock-in amplifier.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Keselman, Anna; Ozeri, Roee

    2011-05-05

    Quantum metrology uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations--modulation, detection and mixing--are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr(+) ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz(-1/2) (corresponding to a magnetic field measurement sensitivity of 15 pT Hz(-1/2)), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor. ©2011 Macmillan Publishers Limited. All rights reserved

  6. Two-party secret key distribution via a modified quantum secret sharing protocol.

    PubMed

    Grice, W P; Evans, P G; Lawrie, B; Legré, M; Lougovski, P; Ray, W; Williams, B P; Qi, B; Smith, A M

    2015-03-23

    We present and demonstrate a novel protocol for distributing secret keys between two and only two parties based on N-party single-qubit Quantum Secret Sharing (QSS). We demonstrate our new protocol with N = 3 parties using phase-encoded photons. We show that any two out of N parties can build a secret key based on partial information from each other and with collaboration from the remaining N - 2 parties. Our implementation allows for an accessible transition between N-party QSS and arbitrary two party QKD without modification of hardware. In addition, our approach significantly reduces the number of resources such as single photon detectors, lasers and dark fiber connections needed to implement QKD.

  7. Practical gigahertz quantum key distribution robust against channel disturbance.

    PubMed

    Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; He, De-Yong; Hui, Cong; Hao, Peng-Lei; Fan-Yuan, Guan-Jie; Wang, Chao; Zhang, Li-Jun; Kuang, Jie; Liu, Shu-Feng; Zhou, Zheng; Wang, Yong-Gang; Guo, Guang-Can; Han, Zheng-Fu

    2018-05-01

    Quantum key distribution (QKD) provides an attractive solution for secure communication. However, channel disturbance severely limits its application when a QKD system is transferred from the laboratory to the field. Here a high-speed Faraday-Sagnac-Michelson QKD system is proposed that can automatically compensate for the channel polarization disturbance, which largely avoids the intermittency limitations of environment mutation. Over a 50 km fiber channel with 30 Hz polarization scrambling, the practicality of this phase-coding QKD system was characterized with an interference fringe visibility of 99.35% over 24 h and a stable secure key rate of 306 k bits/s over seven days without active polarization alignment.

  8. Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2.

    PubMed

    Adesso, Gerardo; Girolami, Davide; Serafini, Alessio

    2012-11-09

    We demonstrate that the Rényi-2 entropy provides a natural measure of information for any multimode Gaussian state of quantum harmonic systems, operationally linked to the phase-space Shannon sampling entropy of the Wigner distribution of the state. We prove that, in the Gaussian scenario, such an entropy satisfies the strong subadditivity inequality, a key requirement for quantum information theory. This allows us to define and analyze measures of Gaussian entanglement and more general quantum correlations based on such an entropy, which are shown to satisfy relevant properties such as monogamy.

  9. Apparent bandgap shift in the internal quantum efficiency for solar cells with back reflectors

    NASA Astrophysics Data System (ADS)

    Steiner, M. A.; Perl, E. E.; Geisz, J. F.; Friedman, D. J.; Jain, N.; Levi, D.; Horner, G.

    2017-04-01

    We demonstrate that in solar cells with highly reflective back mirrors, the measured internal quantum efficiency exhibits a shift in bandgap relative to the measured external quantum efficiency. The shift arises from the fact that the measured reflectance at the front surface includes a superposition of waves reflecting from the front and back surfaces. We quantify the magnitude of the apparent shift and discuss the errors that can result in determination of quantities such as the photocurrent. Because of this apparent shift, it is important the bandgap be determined from the external quantum efficiency.

  10. Apparent bandgap shift in the internal quantum efficiency for solar cells with back reflectors

    DOE PAGES

    Steiner, Myles A.; Perl, E. E.; Geisz, J. F.; ...

    2017-04-28

    Here, we demonstrate that in solar cells with highly reflective back mirrors, the measured internal quantum efficiency exhibits a shift in bandgap relative to the measured external quantum efficiency. The shift arises from the fact that the measured reflectance at the front surface includes a superposition of waves reflecting from the front and back surfaces. We quantify the magnitude of the apparent shift and discuss the errors that can result in determination of quantities such as the photocurrent. Because of this apparent shift, it is important that the bandgap be determined from the external quantum efficiency.

  11. Resolution Of Phase Ambiguities In QPSK

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1992-01-01

    Report discusses several techniques for resolution of phase ambiguities in detection and decoding of radio signals modulated by coherent quadrature phase-shift keying (QPSK) and offset QPSK (OQPSK). Eight ambiguities: four associated with phase of carrier signal in absence of ambiguity in direction of rotation of carrier phase, and another four associated with carrier phase in presence of phase-rotation ambiguity.

  12. Nuclear quantum shape-phase transitions in odd-mass systems

    NASA Astrophysics Data System (ADS)

    Quan, S.; Li, Z. P.; Vretenar, D.; Meng, J.

    2018-03-01

    Microscopic signatures of nuclear ground-state shape-phase transitions in odd-mass Eu isotopes are explored starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter—the number of nucleons—theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts, spectroscopic quadrupole moments, and E 2 reduced transition matrix elements accurately reproduce available data and exhibit more-pronounced discontinuities at neutron number N =90 compared with the adjacent even-even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker proton pairing correlations compared with the corresponding Sm isotopes.

  13. Phase Transition in Protocols Minimizing Work Fluctuations

    NASA Astrophysics Data System (ADS)

    Solon, Alexandre P.; Horowitz, Jordan M.

    2018-05-01

    For two canonical examples of driven mesoscopic systems—a harmonically trapped Brownian particle and a quantum dot—we numerically determine the finite-time protocols that optimize the compromise between the standard deviation and the mean of the dissipated work. In the case of the oscillator, we observe a collection of protocols that smoothly trade off between average work and its fluctuations. However, for the quantum dot, we find that as we shift the weight of our optimization objective from average work to work standard deviation, there is an analog of a first-order phase transition in protocol space: two distinct protocols exchange global optimality with mixed protocols akin to phase coexistence. As a result, the two types of protocols possess qualitatively different properties and remain distinct even in the infinite duration limit: optimal-work-fluctuation protocols never coalesce with the minimal-work protocols, which therefore never become quasistatic.

  14. Monolithically integrated all-optical gate switch using intersubband transition in InGaAs/AlAsSb coupled double quantum wells.

    PubMed

    Akimoto, Ryoichi; Gozu, Shin-ichiro; Mozume, Teruo; Ishikawa, Hiroshi

    2011-07-04

    We have developed a compact all-optical gate switch with a footprint less than 1 mm2, in which an optical nonlinear waveguide using cross-phase-modulation associated with intersubband transition in InGaAs/AlGaAs/AlAsSb coupled double quantum wells and a Michelson interferometer (MI) are monolithically integrated on an InP chip. The MI configuration allows a transverse magnetic pump light direct access to an MI arm for phase modulation while passive photonic integrated circuits serve a transverse electric signal light. Full switching of the π-rad nonlinear phase shift is achieved with a pump pulse energy of 8.6 pJ at a 10-GHz repetition rate. We also demonstrate all-optical demultiplexing of a 160-Gb/s signal to a 40-Gb/s signal.

  15. Explicit Filtering Based Low-Dose Differential Phase Reconstruction Algorithm with the Grating Interferometry.

    PubMed

    Jiang, Xiaolei; Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang

    2015-01-01

    X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm.

  16. Explicit Filtering Based Low-Dose Differential Phase Reconstruction Algorithm with the Grating Interferometry

    PubMed Central

    Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang

    2015-01-01

    X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm. PMID:26089971

  17. N-Consecutive-Phase Encoder

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Lee, Ho-Kyoung; Weber, Charles

    1995-01-01

    N-consecutive-phase encoder (NCPE) is conceptual encoder for generating alphabet of N consecutive full-response continuous-phase-modulation (CPM) signals. Enables use of binary preencoder of higher rate than used with simple continuous-phase encoder (CPE). NCPE makes possible to achieve power efficiencies and bandwidth efficiencies greater than conventional trellis coders with continuous-phase frequency-shift keying (CPFSK).

  18. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  19. Electronic confining effects in Sierpiński triangle fractals

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhang, Xue; Jiang, Zhuoling; Wang, Yongfeng; Hou, Shimin

    2018-03-01

    Electron confinement in fractal Sierpiński triangles (STs) on Ag(111) is investigated using scanning tunneling spectroscopy and theoretically simulated by employing an improved two-dimensional (2D) multiple scattering theory in which the energy-dependent phase shifts are explicitly calculated from the electrostatic potentials of the molecular building block of STs. Well-defined bound surface states are observed in three kinds of triangular cavities with their sides changing at a scale factor of 2. The decrease in length of the cavities results in an upshift of the resonances that deviates from an expected inverse quadratic dependence on the cavity length due to the less efficient confinement of smaller triangular cavities. Differential conductance maps at some specific biases present a series of alternative bright and dark rounded triangles preserving the symmetry of the boundary. Our improved 2D multiple scattering model reproduces the characteristics of the standing wave patterns and all features in the differential conductance spectra measured in experiments, illustrating that the elastic loss boundary scattering dominates the resonance broadening in these ST quantum corrals. Moreover, the self-similar structure of STs, that a larger central cavity is surrounded by three smaller ones with a half side length, gives rise to interactions of surface states confined in neighboring cavities, which are helpful for the suppression of the linewidth in differential conductance spectra.

  20. 0-π phase-controllable thermal Josephson junction

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco

    2017-05-01

    Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| < π/2 (refs 2-4). The direction of both the Josephson charge and heat currents can be inverted by adding a π shift to ϕ. In the static electrical case, this effect has been obtained in a few systems, for example via a ferromagnetic coupling or a non-equilibrium distribution in the weak link. These structures opened new possibilities for superconducting quantum logic and ultralow-power superconducting computers. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from 0 to π. This is obtained thanks to a superconducting quantum interferometer that allows full control of the direction of the coherent energy transfer through the junction. This possibility, in conjunction with the completely superconducting nature of our system, provides temperature modulations with an unprecedented amplitude of ∼100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.

  1. Learning phase transitions by confusion

    NASA Astrophysics Data System (ADS)

    van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.

    2017-02-01

    Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.

  2. Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2011-05-01

    A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems.

  3. Study of geometric phase using classical coupled oscillators

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sharba; Dey, Biprateep; Mohapatra, Ashok K.

    2018-05-01

    We illustrate the geometric phase associated with the cyclic dynamics of a classical system of coupled oscillators. We use an analogy between a classical coupled oscillator and a two-state quantum mechanical system to represent the evolution of the oscillator on an equivalent Hilbert space, which may be represented as a trajectory on the surface of a sphere. The cyclic evolution of the system leads to a change in phase, which consists of a dynamic phase along with an additional phase shift dependent on the geometry of the evolution. A simple experiment suitable for advanced undergraduate students is designed to study the geometric phase incurred during cyclic evolution of a coupled oscillator.

  4. An Iterative Information-Reduced Quadriphase-Shift-Keyed Carrier Synchronization Scheme Using Decision Feedback for Low Signal-to-Noise Ratio Applications

    NASA Technical Reports Server (NTRS)

    Simon, M.; Tkacenko, A.

    2006-01-01

    In a previous publication [1], an iterative closed-loop carrier synchronization scheme for binary phase-shift keyed (BPSK) modulation was proposed that was based on feeding back data decisions to the input of the loop, the purpose being to remove the modulation prior to carrier synchronization as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. The idea there was that, with sufficient independence between the received data and the decisions on it that are fed back (as would occur in an error-correction coding environment with sufficient decoding delay), a pure tone in the presence of noise would ultimately be produced (after sufficient iteration and low enough error probability) and thus could be tracked without any squaring loss. This article demonstrates that, with some modification, the same idea of iterative information reduction through decision feedback can be applied to quadrature phase-shift keyed (QPSK) modulation, something that was mentioned in the previous publication but never pursued.

  5. Observation of FeGe skyrmions by electron phase microscopy with hole-free phase plate

    NASA Astrophysics Data System (ADS)

    Kotani, Atsuhiro; Harada, Ken; Malac, Marek; Salomons, Mark; Hayashida, Misa; Mori, Shigeo

    2018-05-01

    We report application of hole-free phase plate (HFPP) to imaging of magnetic skyrmion lattices. Using HFPP imaging, we observed skyrmions in FeGe, and succeeded in obtaining phase contrast images that reflect the sample magnetization distribution. According to the Aharonov-Bohm effect, the electron phase is shifted by the magnetic flux due to sample magnetization. The differential processing of the intensity in a HFPP image allows us to successfully reconstruct the magnetization map of the skyrmion lattice. Furthermore, the calculated phase shift due to the magnetization of the thin film was consistent with that measured by electron holography experiment, which demonstrates that HFPP imaging can be utilized for analysis of magnetic fields and electrostatic potential distribution at the nanoscale.

  6. l-5-hydroxytryptophan resets the circadian locomotor activity rhythm of the nocturnal Indian pygmy field mouse, Mus terricolor

    NASA Astrophysics Data System (ADS)

    Basu, Priyoneel; Singaravel, Muniyandi; Haldar, Chandana

    2012-03-01

    We report that l-5-hydroxytryptophan (5-HTP), a serotonin precursor, resets the overt circadian rhythm in the Indian pygmy field mouse, Mus terricolor, in a phase- and dose-dependent manner. We used wheel running to assess phase shifts in the free-running locomotor activity rhythm. Following entrainment to a 12:12 h light-dark cycle, 5-HTP (100 mg/kg in saline) was intraperitoneally administered in complete darkness at circadian time (CT)s 0, 3, 6, 9, 12, 15, 18, and 21, and the ensuing phase shifts in the locomotor activity rhythm were calculated. The results show that 5-HTP differentially shifts the phase of the rhythm, causing phase advances from CT 0 to CT 12 and phase delays from CT 12 to CT 21. Maximum advance phase shift was at CT 6 (1.18 ± 0.37 h) and maximum delay was at CT 18 (-2.36 ± 0.56 h). No extended dead zone is apparent. Vehicle (saline) at any CT did not evoke a significant phase shift. Investigations with different doses (10, 50, 100, and 200 mg/kg) of 5-HTP revealed that the phase resetting effect is dose-dependent. The shape of the phase-response curve (PRC) has a strong similarity to PRCs obtained using some serotonergic agents. There was no significant increase in wheel-running activity after 5-HTP injection, ruling out behavioral arousal-dependent shifts. This suggests that this phase resetting does not completely depend on feedback of the overt rhythmic behavior on the circadian clock. A mechanistic explanation of these shifts is currently lacking.

  7. High-speed free-space optical continuous-variable quantum key distribution enabled by three-dimensional multiplexing.

    PubMed

    Qu, Zhen; Djordjevic, Ivan B

    2017-04-03

    A high-speed four-state continuous-variable quantum key distribution (CV-QKD) system, enabled by wavelength-division multiplexing, polarization multiplexing, and orbital angular momentum (OAM) multiplexing, is studied in the presence of atmospheric turbulence. The atmospheric turbulence channel is emulated by two spatial light modulators (SLMs) on which two randomly generated azimuthal phase patterns yielding Andrews' spectrum are recorded. The phase noise is mitigated by the phase noise cancellation (PNC) stage, and channel transmittance can be monitored directly by the D.C. level in our PNC stage. After the system calibration, a total SKR of >1.68 Gbit/s can be reached in the ideal system, featured with lossless channel and free of excess noise. In our experiment, based on commercial photodetectors, the minimum transmittances of 0.21 and 0.29 are required for OAM states of 2 (or -2) and 6 (or -6), respectively, to guarantee the secure transmission, while a total SKR of 120 Mbit/s can be obtained in case of mean transmittances.

  8. High-Fidelity Single-Shot Toffoli Gate via Quantum Control.

    PubMed

    Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C

    2015-05-22

    A single-shot Toffoli, or controlled-controlled-not, gate is desirable for classical and quantum information processing. The Toffoli gate alone is universal for reversible computing and, accompanied by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by decomposing into sequentially implemented single- and two-qubit gates, which require much longer times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled superconducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure using our enhanced version of the differential evolution algorithm.

  9. Single-slit electron diffraction with Aharonov-Bohm phase: Feynman's thought experiment with quantum point contacts.

    PubMed

    Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan

    2014-01-10

    In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics.

  10. Photoluminescence investigation of type-II GaSb/GaAs quantum dots grown by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Hu, Shuhong; Xie, Hao; Lin, Hongyu; lu, Hongbo; Wang, Chao; Sun, Yan; Dai, Ning

    2018-06-01

    GaSb quantum dots (QDs) with an areal density of ∼1 × 1010 cm-2 are successfully grown by the modified (rapid slider) liquid phase epitaxy technique. The morphology of the QDs has been investigated by scanning electron microscope (SEM) and atom force microscope (AFM). The power-dependence and temperature-dependence photoluminescence (PL) spectra have been studied. The bright room-temperature PL suggests a good luminescence quality of GaSb QDs/GaAs matrix system. The type-II alignment of the GaSb QDs/GaAs matrix system is verified by the blue-shift of the QDs peak with the increase of excitation power. From the temperature-dependence PL spectra, the activation energy of QDs is determined to be 111 meV.

  11. Cooperative single-photon subradiant states in a three-dimensional atomic array

    NASA Astrophysics Data System (ADS)

    Jen, H. H.

    2016-11-01

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing.

  12. Frequency-doubled microwave waveforms generation using a dual-polarization quadrature phase shift keying modulator driven by a single frequency radio frequency signal

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao

    2018-01-01

    A photonic approach to generate frequency-doubled microwave waveforms using an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator driven by a sinusoidal radio frequency (RF) signal is proposed. By adjusting the dc bias points of the DP-QPSK modulator, the obtained second-order and six-order harmonics are in phase while the fourth-order harmonics are complementary when the orthogonal polarized outputs of the modulator are photodetected. After properly setting the modulation indices of the modulator, the amplitude of the second-order harmonic is 9 times of that of the six-order harmonic, indicating a frequency-doubled triangular waveform is generated. If a broadband 90° microwave phase shifter is attached after the photodetector (PD) to introduce a 90° phase shift, a frequency-doubled square waveform can be obtained after adjusting the amplitude of the second-order harmonic 3 times of that of the six-order harmonic. The proposal is first theoretically analyzed and then validated by simulation. Simulation results show that a 10 GHz triangular and square waveform sequences are successfully generated from a 5 GHz sinusoidal RF drive signal.

  13. Structured FBG filters for 10-Gb/s DPSK signal demodulation in single ended applications

    NASA Astrophysics Data System (ADS)

    Marazzi, L.; Boffi, P.; Parolari, P.; Martinelli, M.; Gatti, D.; Coluccelli, N.; Longhi, S.

    2011-05-01

    Differential phase-shift keying (DPSK) demodulations operated by a structured fiber Bragg grating (FBG) filter and by a Mach-Zehnder delay interferometer (MZDI) in a single-ended configuration are compared. Experimental measurements at 10 Gb/s demonstrate that a specially designed FBG outperforms an integrated-optic MZDI of ˜4 dB and ˜3.5 dB in back-to-back and after 25-km propagation, respectively. Both demodulators show low polarization sensitivity and signal frequency detuning dependence, but only MZDI operating point requires a thermal control. FBG filter proves an interesting solution for DPSK demodulation in low-cost applications and, moreover, can be designed to match colorless requirements of wave division multiplexed passive optical network (WDM-PON) applications.

  14. Generation and transmission of DPSK signals using a directly modulated passive feedback laser.

    PubMed

    Karar, Abdullah S; Gao, Ying; Zhong, Kang Ping; Ke, Jian Hong; Cartledge, John C

    2012-12-10

    The generation of differential-phase-shift keying (DPSK) signals is demonstrated using a directly modulated passive feedback laser at 10.709-Gb/s, 14-Gb/s and 16-Gb/s. The quality of the DPSK signals is assessed using both noncoherent detection for a bit rate of 10.709-Gb/s and coherent detection with digital signal processing involving a look-up table pattern-dependent distortion compensator. Transmission over a passive link consisting of 100 km of single mode fiber at a bit rate of 10.709-Gb/s is achieved with a received optical power of -45 dBm at a bit-error-ratio of 3.8 × 10(-3) and a 49 dB loss margin.

  15. Correlation of Hall and Shubnikov-de Haas Oscillations and Impurity States in Sn- and I- Doped Single Crystals p-Bi 2 Te 3

    NASA Astrophysics Data System (ADS)

    Tahar, M. Z.; Popov, D. I.; Nemov, S. A.

    2018-03-01

    Oscillations of the Hall coefficient and Shubnikov-de Haas (SdH) were observed in p-Bi2Te3 crystals doped with Sn (acceptor) and with I (donor) in magnetic fields up to 9 T parallel to the C3 trigonal axis at low temperatures (2 K < T < 20K), which is an evidence of the spatial homogeneity of carriers in complex solid solutions. This supports the existence of a narrow band of Sn states (partially filled) against the background of the valence band acting as a reservoir with high density of states partially filled with electrons. Previously, in these systems in which the Fermi level was in the light-hole valence band, both large Hall and SdH oscillations were observed, with ∼π phase shift between them, whereas when the Fermi level was in the heavy-hole valence band (larger acceptor content), no quantum oscillations were observed. It was concluded that the observed low amplitude quantum oscillations may be attributed to the shifting of the reservoir from the light-hole band to the heavy-hole, and the observed phase shift in the range 0 - π/2 between Hall and SdH oscillations may be attributed to filling factor of the reservoir with electrons, which varies with I content. Experimental results along with theoretical explanation of these correlations are presented.

  16. Optical image encryption by random shifting in fractional Fourier domains

    NASA Astrophysics Data System (ADS)

    Hennelly, B.; Sheridan, J. T.

    2003-02-01

    A number of methods have recently been proposed in the literature for the encryption of two-dimensional information by use of optical systems based on the fractional Fourier transform. Typically, these methods require random phase screen keys for decrypting the data, which must be stored at the receiver and must be carefully aligned with the received encrypted data. A new technique based on a random shifting, or jigsaw, algorithm is proposed. This method does not require the use of phase keys. The image is encrypted by juxtaposition of sections of the image in fractional Fourier domains. The new method has been compared with existing methods and shows comparable or superior robustness to blind decryption. Optical implementation is discussed, and the sensitivity of the various encryption keys to blind decryption is examined.

  17. Nanoscale phase engineering of thermal transport with a Josephson heat modulator.

    PubMed

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  18. Reentrant behaviors in the phase diagram of spin-1 planar ferromagnet with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.; Mercaldo, M. T.

    2018-05-01

    We used the two-time Green function framework to investigate the role played by the easy-axis single-ion anisotropy on the phase diagram of (d > 2)-dimensional spin-1planar ferromagnets, which exhibit a magnetic field induced quantum phase transition. We tackled the problem using two different kind of approximations: the Anderson-Callen decoupling scheme and the Devlin approach. In the latter scheme, the exchange anisotropy terms in the equations of motion are treated at the Tyablikov decoupling level while the crystal field anisotropy contribution is handled exactly. The emerging key result is a reentrant structure of the phase diagram close to the quantum critical point, for certain values of the single-ion anisotropy parameter. We compare the results obtained within the two approximation schemes. In particular, we recover the same qualitative behavior. We show the phase diagram, close to the field-induced quantum critical point and the behavior of the susceptibility for different values of the single-ion anisotropy parameter, enhancing the differences between the two different scenarios (i.e. with and without reentrant behavior).

  19. Nanoscale phase engineering of thermal transport with a Josephson heat modulator

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  20. Phosphorene quantum dots

    NASA Astrophysics Data System (ADS)

    Vishnoi, Pratap; Mazumder, Madhulika; Barua, Manaswee; Pati, Swapan K.; Rao, C. N. R.

    2018-05-01

    Phosphorene, a two-dimensional material, has been a subject of recent investigations. In the present study, we have prepared blue fluorescent phosphorene quantum dots (PQDs) by liquid phase exfoliation of black phosphorus in two non-polar solvents, toluene and mesitylene. The average particle sizes of PQDs decrease from 5.0 to 1.0 nm on increasing the sonicator power from 150 to 225 W. The photoluminescence spectrum of the PQDs is red-shifted in the 395-470 nm range on increasing the excitation-wavelength from 300 to 480 nm. Electron donor and acceptor molecules quench the photoluminescence, with the acceptors showing more marked effects.

  1. Effects of pharmacological agents on subcortical resistance shifts

    NASA Technical Reports Server (NTRS)

    Klivington, K. A.

    1975-01-01

    Microliter quantities of tetrodotoxin, tetraethylammonium chloride, and picrotoxin injected into the inferior colliculus and superior olive of unanesthetized cats differentially affect the amplitude and waveform of click-evoked potentials and evoked resistance shifts. Tetrodotoxin simultaneously reduces the negative phase of the evoked potential and eliminates the evoked resistance shift. Tetraethylammonium enhances the negative evoked potential component, presumably of postsynaptic origin, without significantly altering evoked resistance shift amplitude. Picrotoxin also enhances the negative evoked potential wave but increases evoked resistance shift amplitude. These findings implicate events associated with postsynaptic membrane depolarization in the production of the evoked resistance shift.

  2. Continuous-variable Measurement-device-independent Quantum Relay Network with Phase-sensitive Amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Fei; Zhao, Wei; Guo, Ying

    2018-01-01

    Continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is now heading towards solving the practical problem of implementing scalable quantum networks. In this paper, we show that a solution can come from deploying an optical amplifier in the CV-MDI system, aiming to establish a high-rate quantum network. We suggest an improved CV-MDI protocol using the EPR states coupled with optical amplifiers. It can implement a practical quantum network scheme, where the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Despite the possibility that the relay could be completely tampered with and imperfect links are subject to the powerful attacks, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Furthermore, we show that the use of optical amplifiers can compensate the inherent imperfections and improve the secret key rate of the CV-MDI system.

  3. Threshold secret sharing scheme based on phase-shifting interferometry.

    PubMed

    Deng, Xiaopeng; Shi, Zhengang; Wen, Wei

    2016-11-01

    We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.

  4. Enhanced autocompensating quantum cryptography system.

    PubMed

    Bethune, Donald S; Navarro, Martha; Risk, William P

    2002-03-20

    We have improved the hardware and software of our autocompensating system for quantum key distribution by replacing bulk optical components at the end stations with fiber-optic equivalents and implementing software that synchronizes end-station activities, communicates basis choices, corrects errors, and performs privacy amplification over a local area network. The all-fiber-optic arrangement provides stable, efficient, and high-contrast routing of the photons. The low-bit error rate leads to high error-correction efficiency and minimizes data sacrifice during privacy amplification. Characterization measurements made on a number of commercial avalanche photodiodes are presented that highlight the need for improved devices tailored specifically for quantum information applications. A scheme for frequency shifting the photons returning from Alice's station to allow them to be distinguished from backscattered noise photons is also described.

  5. Vertical resonant tunneling transistors with molecular quantum dots for large-scale integration.

    PubMed

    Hayakawa, Ryoma; Chikyow, Toyohiro; Wakayama, Yutaka

    2017-08-10

    Quantum molecular devices have a potential for the construction of new data processing architectures that cannot be achieved using current complementary metal-oxide-semiconductor (CMOS) technology. The relevant basic quantum transport properties have been examined by specific methods such as scanning probe and break-junction techniques. However, these methodologies are not compatible with current CMOS applications, and the development of practical molecular devices remains a persistent challenge. Here, we demonstrate a new vertical resonant tunneling transistor for large-scale integration. The transistor channel is comprised of a MOS structure with C 60 molecules as quantum dots, and the structure behaves like a double tunnel junction. Notably, the transistors enabled the observation of stepwise drain currents, which originated from resonant tunneling via the discrete molecular orbitals. Applying side-gate voltages produced depletion layers in Si substrates, to achieve effective modulation of the drain currents and obvious peak shifts in the differential conductance curves. Our device configuration thus provides a promising means of integrating molecular functions into future CMOS applications.

  6. Decoy-state quantum key distribution with biased basis choice

    PubMed Central

    Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng

    2013-01-01

    We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states. PMID:23948999

  7. Decoy-state quantum key distribution with biased basis choice.

    PubMed

    Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng

    2013-01-01

    We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states.

  8. Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark.

    PubMed

    Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto

    2016-06-16

    This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.

  9. Triangular Quantum Loop Topography for Machine Learning

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Kim, Eun-Ah

    Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems there has been little success in training neural networks to identify topological phases. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targeting topological phases, this task becomes particularly challenging as topological phases are defined in terms of non-local properties. Here we introduce triangular quantum loop (TQL) topography: a procedure of constructing a multi-dimensional image from the ''sample'' Hamiltonian or wave function using two-point functions that form triangles. Feeding the TQL topography to a fully-connected neural network with a single hidden layer, we demonstrate that the architecture can be effectively trained to distinguish Chern insulator and fractional Chern insulator from trivial insulators with high fidelity. Given the versatility of the TQL topography procedure that can handle different lattice geometries, disorder, interaction and even degeneracy our work paves the route towards powerful applications of machine learning in the study of topological quantum matters.

  10. Quantum criticality and universal scaling of strongly attractive spin-imbalanced Fermi gases in a one-dimensional harmonic trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Xiangguo; Chen Shu; Guan Xiwen

    2011-07-15

    We investigate quantum criticality and universal scaling of strongly attractive Fermi gases confined in a one-dimensional harmonic trap. We demonstrate from the power-law scaling of the thermodynamic properties that current experiments on this system are capable of measuring universal features at quantum criticality, such as universal scaling and Tomonaga-Luttinger liquid physics. The results also provide insights on recent measurements of key features of the phase diagram of a spin-imbalanced atomic Fermi gas [Y. Liao et al., Nature (London) 467, 567 (2010)] and point to further study of quantum critical phenomena in ultracold atomic Fermi gases.

  11. Universal Topological Quantum Computation from a Superconductor-Abelian Quantum Hall Heterostructure

    NASA Astrophysics Data System (ADS)

    Mong, Roger S. K.; Clarke, David J.; Alicea, Jason; Lindner, Netanel H.; Fendley, Paul; Nayak, Chetan; Oreg, Yuval; Stern, Ady; Berg, Erez; Shtengel, Kirill; Fisher, Matthew P. A.

    2014-01-01

    Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately provide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit of these exotic particles originated from Read and Green's observation that the Moore-Read quantum Hall state and a (relatively simple) two-dimensional p+ip superconductor both support so-called Ising non-Abelian anyons. Here, we establish a similar correspondence between the Z3 Read-Rezayi quantum Hall state and a novel two-dimensional superconductor in which charge-2e Cooper pairs are built from fractionalized quasiparticles. In particular, both phases harbor Fibonacci anyons that—unlike Ising anyons—allow for universal topological quantum computation solely through braiding. Using a variant of Teo and Kane's construction of non-Abelian phases from weakly coupled chains, we provide a blueprint for such a superconductor using Abelian quantum Hall states interlaced with an array of superconducting islands. Fibonacci anyons appear as neutral deconfined particles that lead to a twofold ground-state degeneracy on a torus. In contrast to a p+ip superconductor, vortices do not yield additional particle types, yet depending on nonuniversal energetics can serve as a trap for Fibonacci anyons. These results imply that one can, in principle, combine well-understood and widely available phases of matter to realize non-Abelian anyons with universal braid statistics. Numerous future directions are discussed, including speculations on alternative realizations with fewer experimental requirements.

  12. InAs/GaAs quantum-dot intermixing: comparison of various dielectric encapsulants

    NASA Astrophysics Data System (ADS)

    Alhashim, Hala H.; Khan, Mohammed Zahed Mustafa; Majid, Mohammed A.; Ng, Tien K.; Ooi, Boon S.

    2015-10-01

    We report on the impurity-free vacancy-disordering effect in InAs/GaAs quantum-dot (QD) laser structure based on seven dielectric capping layers. Compared to the typical SiO2 and Si3N4 films, HfO2 and SrTiO3 dielectric layers showed superior enhancement and suppression of intermixing up to 725°C, respectively. A QD peak ground-state differential blue shift of >175 nm (>148 meV) is obtained for HfO2 capped sample. Likewise, investigation of TiO2, Al2O3, and ZnO capping films showed unusual characteristics, such as intermixing-control caps at low annealing temperature (650°C) and interdiffusion-promoting caps at high temperatures (≥675°C). We qualitatively compared the degree of intermixing induced by these films by extracting the rate of intermixing and the temperature for ground-state and excited-state convergences. Based on our systematic characterization, we established reference intermixing processes based on seven different dielectric encapsulation materials. The tailored wavelength emission of ˜1060-1200 nm at room temperature and improved optical quality exhibited from intermixed QDs would serve as key materials for eventual realization of low-cost, compact, and agile lasers. Applications include solid-state laser pumping, optical communications, gas sensing, biomedical imaging, green-yellow-orange coherent light generation, as well as addressing photonic integration via area-selective, and postgrowth bandgap engineering.

  13. About approximation of integer factorization problem by the combination fixed-point iteration method and Bayesian rounding for quantum cryptography

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, Yuri; Khachay, Michael; Pljonkin, Anton

    2018-04-01

    We describe the possibility of employing the special case of the 3-SAT problem stemming from the well known integer factorization problem for the quantum cryptography. It is known, that for every instance of our 3-SAT setting the given 3-CNF is satisfiable by a unique truth assignment, and the goal is to find this assignment. Since the complexity status of the factorization problem is still undefined, development of approximation algorithms and heuristics adopts interest of numerous researchers. One of promising approaches to construction of approximation techniques is based on real-valued relaxation of the given 3-CNF followed by minimizing of the appropriate differentiable loss function, and subsequent rounding of the fractional minimizer obtained. Actually, algorithms developed this way differ by the rounding scheme applied on their final stage. We propose a new rounding scheme based on Bayesian learning. The article shows that the proposed method can be used to determine the security in quantum key distribution systems. In the quantum distribution the Shannon rules is applied and the factorization problem is paramount when decrypting secret keys.

  14. Multi-delay, phase coherent pulse pair generation for precision Ramsey-frequency comb spectroscopy.

    PubMed

    Morgenweg, J; Eikema, K S E

    2013-03-11

    We demonstrate the generation of phase-stable mJ-pulse pairs at programmable inter-pulse delays up to hundreds of nanoseconds. A detailed investigation of potential sources for phase shifts during the parametric amplification of the selected pulses from a Ti:Sapphire frequency comb is presented, both numerically and experimentally. It is shown that within the statistical error of the phase measurement of 10 mrad, there is no dependence of the differential phase shift over the investigated inter-pulse delay range of more than 300 ns. In combination with nonlinear upconversion of the amplified pulses, the presented system will potentially enable short wavelength (<100 nm), multi-transition Ramsey-frequency comb spectroscopy at the kHz-level.

  15. Near-IR photon number resolving detector design

    NASA Astrophysics Data System (ADS)

    Bogdanski, Jan; Huntington, Elanor H.

    2013-05-01

    Photon-Number-Resolving-Detection (PNRD) capability is crucial for many Quantum-Information (QI) applications, e.g. for Coherent-State-Quantum-Computing, Linear-Optics-Quantum-Computing. In Quantum-Key-Distribution and Quantum-Secret-Sharing over 1310/1550 nm fiber, two other important, defense and information security related, QI applications, it's crucial for the information transmission security to guarantee that the information carriers (photons) are single. Thus a PNRD can provide an additional security level against eavesdropping. Currently, there are at least a couple of promising PNRD technologies in the Near-Infrared, but all of them require cryogenic cooling. Thus a compact, portable PNRD, based on commercial Avalanche-Photo-Diodes (APDs), could be a very useful instrument for many QI experiments. For an APD-based PNRD, it is crucial to measure the APD-current in the beginning of the avalanche. Thus an efficient cancellation of the APD capacitive spikes is a necessary condition for the very weak APD current measurement. The detector's principle is based on two commercial, pair-matched InGaAs/InP APDs, connected in series. It leads to a great cancelation of the capacitive spikes caused by the narrow (300 ps), differential gate-pulses of maximum 4V amplitude assuming that both pulses are perfectly matched in regards to their phases, amplitudes, and shapes. The cancellation scheme could be used for other APD-technologies, e.g. Silicon, extending the detection spectrum from visible to NIR. The design distinguishes itself from other, APD-based, schemes by its scalability feature and its computer controlled cancellation of the capacitive spikes. Furthermore, both APDs could be equally used for the detection purpose, which opens a possibility for the odd-even photon number parity detection.

  16. Partial wave analysis for folded differential cross sections

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; McEachran, R. P.

    2018-03-01

    The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.

  17. Gouy phase for relativistic quantum particles

    NASA Astrophysics Data System (ADS)

    Ducharme, R.; da Paz, I. G.

    2015-08-01

    Exact Hermite-Gaussian solutions to the Klein-Gordon equation for particle beams are obtained here that depend on the 4-position of the beam waist. These are Bateman-Hillion solutions that are shown to include Gouy phase and preserve their forms under Lorentz transformations. As the wave function contains two time coordinates, the particle current must be interpreted in a constraint space to reduce the number of independent coordinates. The form of the constraint space is not certain except in the nonrelativistic limit, but a trial form is proposed, enabling the observable properties of the beam to be calculated for future comparison to experiment. These results can be relevant in the theoretical development of singular electron optics since it was shown that the Gouy phase is crucial in this field as well as to investigate a possible Gouy phase effect in Zitterbewegung phenomenon of spin-zero particles. Additionally, the traditional argument that beam solutions belong to a complex shifted spacetime is shown to necessitate a corresponding Born reciprocal shift in 4-momentum space.

  18. Double-image storage optimized by cross-phase modulation in a cold atomic system

    NASA Astrophysics Data System (ADS)

    Qiu, Tianhui; Xie, Min

    2017-09-01

    A tripod-type cold atomic system driven by double-probe fields and a coupling field is explored to store double images based on the electromagnetically induced transparency (EIT). During the storage time, an intensity-dependent signal field is applied further to extend the system with the fifth level involved, then the cross-phase modulation is introduced for coherently manipulating the stored images. Both analytical analysis and numerical simulation clearly demonstrate a tunable phase shift with low nonlinear absorption can be imprinted on the stored images, which effectively can improve the visibility of the reconstructed images. The phase shift and the energy retrieving rate of the probe fields are immune to the coupling intensity and the atomic optical density. The proposed scheme can easily be extended to the simultaneous storage of multiple images. This work may be exploited toward the end of EIT-based multiple-image storage devices for all-optical classical and quantum information processings.

  19. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference.

    PubMed

    Gleim, A V; Egorov, V I; Nazarov, Yu V; Smirnov, S V; Chistyakov, V V; Bannik, O I; Anisimov, A A; Kynev, S M; Ivanova, A E; Collins, R J; Kozlov, S A; Buller, G S

    2016-02-08

    A quantum key distribution system based on the subcarrier wave modulation method has been demonstrated which employs the BB84 protocol with a strong reference to generate secure bits at a rate of 16.5 kbit/s with an error of 0.5% over an optical channel of 10 dB loss, and 18 bits/s with an error of 0.75% over 25 dB of channel loss. To the best of our knowledge, these results represent the highest channel loss reported for secure quantum key distribution using the subcarrier wave approach. A passive unidirectional scheme has been used to compensate for the polarization dependence of the phase modulators in the receiver module, which resulted in a high visibility of 98.8%. The system is thus fully insensitive to polarization fluctuations and robust to environmental changes, making the approach promising for use in optical telecommunication networks. Further improvements in secure key rate and transmission distance can be achieved by implementing the decoy states protocol or by optimizing the mean photon number used in line with experimental parameters.

  20. Excitonic Transitions and Off-resonant Optical Limiting in CdS Quantum Dots Stabilized in a Synthetic Glue Matrix

    PubMed Central

    2007-01-01

    Stable films containing CdS quantum dots of mean size 3.4 nm embedded in a solid host matrix are prepared using a room temperature chemical route of synthesis. CdS/synthetic glue nanocomposites are characterized using high resolution transmission electron microscopy, infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Significant blue shift from the bulk absorption edge is observed in optical absorption as well as photoacoustic spectra indicating strong quantum confinement. The exciton transitions are better resolved in photoacoustic spectroscopy compared to optical absorption spectroscopy. We assign the first four bands observed in photoacoustic spectroscopy to 1se–1sh, 1pe–1ph, 1de–1dhand 2pe–2phtransitions using a non interacting particle model. Nonlinear absorption studies are done using z-scan technique with nanosecond pulses in the off resonant regime. The origin of optical limiting is predominantly two photon absorption mechanism.

  1. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imany, Poolad; Jaramillo-Villegas, Jose A.; Odele, Ogaga D.

    Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-binmore » encoded quantum computing, as well as dense quantum key distribution.« less

  2. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator

    DOE PAGES

    Imany, Poolad; Jaramillo-Villegas, Jose A.; Odele, Ogaga D.; ...

    2018-01-18

    Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-binmore » encoded quantum computing, as well as dense quantum key distribution.« less

  3. Respiratory and metabolic acidosis differentially affect the respiratory neuronal network in the ventral medulla of neonatal rats.

    PubMed

    Okada, Yasumasa; Masumiya, Haruko; Tamura, Yoshiyasu; Oku, Yoshitaka

    2007-11-01

    Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the medullary respiratory neuronal network to respiratory and metabolic acidosis are different. To test these hypotheses, we analysed respiratory-related activity in the pFRG/RTN and preBötC/VRG of the neonatal rat brainstem-spinal cord in vitro by optical imaging using a voltage-sensitive dye, and compared the effects of respiratory and metabolic acidosis on these two populations. We found that the spatiotemporal responses of respiratory-related regional activities to respiratory and metabolic acidosis are fundamentally different, although both acidosis similarly augmented respiratory output by increasing respiratory frequency. PreBötC/VRG activity, which is mainly inspiratory, was augmented by respiratory acidosis. Respiratory-modulated pixels increased in the preBötC/VRG area in response to respiratory acidosis. Metabolic acidosis shifted the respiratory phase in the pFRG/RTN; the pre-inspiratory dominant pattern shifted to inspiratory dominant. The responses of the pFRG/RTN activity to respiratory and metabolic acidosis are complex, and involve either augmentation or reduction in the size of respiratory-related areas. Furthermore, the activation pattern in the pFRG/RTN switched bi-directionally between pre-inspiratory/inspiratory and post-inspiratory. Electrophysiological study supported the results of our optical imaging study. We conclude that respiratory and metabolic acidosis differentially affect activities of the pFRG/RTN and preBötC/VRG, inducing switching and shifts of the respiratory phase. We suggest that they differently influence the coupling states between the pFRG/RTN and preBötC/VRG.

  4. Network-Forming Nanoclusters in Binary As-S/Se Glasses: From Ab Initio Quantum Chemical Modeling to Experimental Evidences.

    PubMed

    Hyla, M

    2017-12-01

    Network-forming As 2 (S/Se) m nanoclusters are employed to recognize expected variations in a vicinity of some remarkable compositions in binary As-Se/S glassy systems accepted as signatures of optimally constrained intermediate topological phases in earlier temperature-modulated differential scanning calorimetry experiments. The ab initio quantum chemical calculations performed using the cation-interlinking network cluster approach show similar oscillating character in tendency to local chemical decomposition but obvious step-like behavior in preference to global phase separation on boundary chemical compounds (pure chalcogen and stoichiometric arsenic chalcogenides). The onsets of stability are defined for chalcogen-rich glasses, these being connected with As 2 Se 5 (Z = 2.29) and As 2 S 6 (Z = 2.25) nanoclusters for As-Se and As-S glasses, respectively. The physical aging effects result preferentially from global phase separation in As-S glass system due to high localization of covalent bonding and local demixing on neighboring As 2 Se m+1 and As 2 Se m-1 nanoclusters in As-Se system. These nanoclusters well explain the lower limits of reversibility windows in temperature-modulated differential scanning calorimetry, but they cannot be accepted as signatures of topological phase transitions in respect to the rigidity theory.

  5. Analysis of the secrecy of the running key in quantum encryption channels using coherent states of light

    NASA Astrophysics Data System (ADS)

    Nikulin, Vladimir V.; Hughes, David H.; Malowicki, John; Bedi, Vijit

    2015-05-01

    Free-space optical communication channels offer secure links with low probability of interception and detection. Despite their point-to-point topology, additional security features may be required in privacy-critical applications. Encryption can be achieved at the physical layer by using quantized values of photons, which makes exploitation of such quantum communication links extremely difficult. One example of such technology is keyed communication in quantum noise, a novel quantum modulation protocol that offers ultra-secure communication with competitive performance characteristics. Its utilization relies on specific coherent measurements to decrypt the signal. The process of measurements is complicated by the inherent and irreducible quantum noise of coherent states. This problem is different from traditional laser communication with coherent detection; therefore continuous efforts are being made to improve the measurement techniques. Quantum-based encryption systems that use the phase of the signal as the information carrier impose aggressive requirements on the accuracy of the measurements when an unauthorized party attempts intercepting the data stream. Therefore, analysis of the secrecy of the data becomes extremely important. In this paper, we present the results of a study that had a goal of assessment of potential vulnerability of the running key. Basic results of the laboratory measurements are combined with simulation studies and statistical analysis that can be used for both conceptual improvement of the encryption approach and for quantitative comparison of secrecy of different quantum communication protocols.

  6. Retrieving plasmonic field information from metallic nanospheres using attosecond photoelectron streaking spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2017-04-01

    Streaked photoemission by attosecond extreme ultraviolet (XUV) pulses into an infrared (IR) or visible streaking pulse, holds promise for imaging with sub-fs time resolution the dielectric plasmonic response of metallic nanoparticles to the IR or visible streaking pulse. We calculated the plasmonic field induced by streaking pulses for 10 to 200 nm diameter Au, Ag, and Cu nanospheres and obtained streaked photoelectron spectra by employing our quantum-mechanical model. Our simulated spectra show significant oscillation-amplitude enhancements and phase shifts for all three metals (relative to spectra that are calculated without including the induced plasmonic field) and allow the reconstruction of the plasmonic field enhancements and phase shifts for each material. Supported by the US NSD-EPSCoR program, NSF, and DoE.

  7. Experimental demonstration of polarization encoding quantum key distribution system based on intrinsically stable polarization-modulated units.

    PubMed

    Wang, Jindong; Qin, Xiaojuan; Jiang, Yinzhu; Wang, Xiaojing; Chen, Liwei; Zhao, Feng; Wei, Zhengjun; Zhang, Zhiming

    2016-04-18

    A proof-of-principle demonstration of a one-way polarization encoding quantum key distribution (QKD) system is demonstrated. This approach can automatically compensate for birefringence and phase drift. This is achieved by constructing intrinsically stable polarization-modulated units (PMUs) to perform the encoding and decoding, which can be used with four-state protocol, six-state protocol, and the measurement-device-independent (MDI) scheme. A polarization extinction ratio of about 30 dB was maintained for several hours over a 50 km optical fiber without any adjustments to our setup, which evidences its potential for use in practical applications.

  8. 60-GHz integrated-circuit high data rate quadriphase shift keying exciter and modulator

    NASA Technical Reports Server (NTRS)

    Grote, A.; Chang, K.

    1984-01-01

    An integrated-circuit quadriphase shift keying (QPSK) exciter and modulator have demonstrated excellent performance directly modulating a carrier frequency of 60 GHz with an output phase error of less than 3 degrees and maximum amplitude error of 0.5 dB. The circuit consists of a 60-GHz Gunn VCO phase-locked to a low-frequency reference source, a 4th subharmonic mixer, and a QPSK modlator packaged into a small volume of 1.8 x 2.5 x 0.35 in. The use of microstrip has the advantages of small size, light-weight, and low-cost fabrication. The unit has the potential for multigigabit data rate applications.

  9. Decoy-state quantum key distribution with a leaky source

    NASA Astrophysics Data System (ADS)

    Tamaki, Kiyoshi; Curty, Marcos; Lucamarini, Marco

    2016-06-01

    In recent years, there has been a great effort to prove the security of quantum key distribution (QKD) with a minimum number of assumptions. Besides its intrinsic theoretical interest, this would allow for larger tolerance against device imperfections in the actual implementations. However, even in this device-independent scenario, one assumption seems unavoidable, that is, the presence of a protected space devoid of any unwanted information leakage in which the legitimate parties can privately generate, process and store their classical data. In this paper we relax this unrealistic and hardly feasible assumption and introduce a general formalism to tackle the information leakage problem in most of existing QKD systems. More specifically, we prove the security of optical QKD systems using phase and intensity modulators in their transmitters, which leak the setting information in an arbitrary manner. We apply our security proof to cases of practical interest and show key rates similar to those obtained in a perfectly shielded environment. Our work constitutes a fundamental step forward in guaranteeing implementation security of quantum communication systems.

  10. Waveguide-type optical circuits for recognition of optical 8QAM-coded label

    NASA Astrophysics Data System (ADS)

    Surenkhorol, Tumendemberel; Kishikawa, Hiroki; Goto, Nobuo; Gonchigsumlaa, Khishigjargal

    2017-10-01

    Optical signal processing is expected to be applied in network nodes. In photonic routers, label recognition is one of the important functions. We have studied different kinds of label recognition methods so far for on-off keying, binary phase-shift keying, quadrature phase-shift keying, and 16 quadrature amplitude modulation-coded labels. We propose a method based on waveguide circuits to recognize an optical eight quadrature amplitude modulation (8QAM)-coded label by simple passive optical signal processing. The recognition of the proposed method is theoretically analyzed and numerically simulated by the finite difference beam propagation method. The noise tolerance is discussed, and bit-error rate against optical signal-to-noise ratio is evaluated. The scalability of the proposed method is also discussed theoretically for two-symbol length 8QAM-coded labels.

  11. Coherent detection of frequency-hopped quadrature modulations in the presence of jamming. II - QPR Class I modulation. [Quadrature Partial Response

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1981-01-01

    This paper considers the performance of quadrature partial response (QPR) in the presence of jamming. Although a QPR system employs a single sample detector in its receiver, while quadrature amplitude shift keying (or quadrature phase shift keying) requires a matched-filter type of receiver, it is shown that the coherent detection performances of the two in the presence of the intentional jammer have definite similarities.

  12. Quantum criticality among entangled spin chains

    DOE PAGES

    Blanc, N.; Trinh, J.; Dong, L.; ...

    2017-12-11

    Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less

  13. Quantum criticality among entangled spin chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, N.; Trinh, J.; Dong, L.

    Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less

  14. Quantum criticality among entangled spin chains

    NASA Astrophysics Data System (ADS)

    Blanc, N.; Trinh, J.; Dong, L.; Bai, X.; Aczel, A. A.; Mourigal, M.; Balents, L.; Siegrist, T.; Ramirez, A. P.

    2018-03-01

    An important challenge in magnetism is the unambiguous identification of a quantum spin liquid1,2, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems3,4 wherein classical order is suppressed by a frustrating lattice5, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at the quantum critical point, with little entropy available for quantum fluctuations6. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K2PbCu(NO2)6. Across the temperature-magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.

  15. Scalable Engineering of Quantum Optical Information Processing Architectures (SEQUOIA)

    DTIC Science & Technology

    2016-12-13

    arrays. Figure 4: An 8-channel fiber-coupled SNSPD array. 1.4 Post -fabrication-tunable linear optic fabrication We have analyzed the...performance of the programmable nanophotonic processor (PNP) that is dynamically tunable via post -fabrication active phase tuning to predict the scaling of...various device losses. PACS numbers: 42.50. Ex , 03.67.Dd, 03.67.Lx, 42.50.Dv I. INTRODUCTION Quantum key distribution (QKD) enables two distant authenticated

  16. Quantum measurement of a rapidly rotating spin qubit in diamond.

    PubMed

    Wood, Alexander A; Lilette, Emmanuel; Fein, Yaakov Y; Tomek, Nikolas; McGuinness, Liam P; Hollenberg, Lloyd C L; Scholten, Robert E; Martin, Andy M

    2018-05-01

    A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T 2 . We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors.

  17. Quantum measurement of a rapidly rotating spin qubit in diamond

    PubMed Central

    Fein, Yaakov Y.; Hollenberg, Lloyd C. L.; Scholten, Robert E.

    2018-01-01

    A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T2. We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors. PMID:29736417

  18. Universal quantum computation using all-optical hybrid encoding

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Cheng, Liu-Yong; Wang, Hong-Fu; Zhang, Shou

    2015-04-01

    By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing. Project supported by the National Natural Science Foundation of China (Grant Nos. 61465013, 11465020, and 11264042).

  19. Threshold quantum secret sharing based on single qubit

    NASA Astrophysics Data System (ADS)

    Lu, Changbin; Miao, Fuyou; Meng, Keju; Yu, Yue

    2018-03-01

    Based on unitary phase shift operation on single qubit in association with Shamir's ( t, n) secret sharing, a ( t, n) threshold quantum secret sharing scheme (or ( t, n)-QSS) is proposed to share both classical information and quantum states. The scheme uses decoy photons to prevent eavesdropping and employs the secret in Shamir's scheme as the private value to guarantee the correctness of secret reconstruction. Analyses show it is resistant to typical intercept-and-resend attack, entangle-and-measure attack and participant attacks such as entanglement swapping attack. Moreover, it is easier to realize in physic and more practical in applications when compared with related ones. By the method in our scheme, new ( t, n)-QSS schemes can be easily constructed using other classical ( t, n) secret sharing.

  20. Security of quantum key distribution with multiphoton components

    PubMed Central

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  1. Grassmann phase space theory and the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Garraway, B. M.; Jeffers, J.; Barnett, S. M.

    2013-07-01

    The Jaynes-Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes-Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker-Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker-Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes-Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker-Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker-Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions-that are also equivalent to the canonical Grassmann distribution function-to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum-atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes-Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum-atom optics.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael C.

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In our paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a “locally” generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct amore » coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad 2), which is small enough to enable secure key distribution. This technology opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.« less

  3. Pulsed laser-based optical frequency comb generator for high capacity wavelength division multiplexed passive optical network supporting 1.2 Tbps

    NASA Astrophysics Data System (ADS)

    Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun

    2016-09-01

    An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.

  4. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

  5. Quasi-Particle Relaxation and Quantum Femtosecond Magnetism in Non-Equilibrium Phases of Insulating Manganites

    NASA Astrophysics Data System (ADS)

    Perakis, Ilias; Kapetanakis, Myron; Lingos, Panagiotis; Barmparis, George; Patz, A.; Li, T.; Wang, Jigang

    We study the role of spin quantum fluctuations driven by photoelectrons during 100fs photo-excitation of colossal magneto-resistive manganites in anti-ferromagnetic (AFM) charge-ordered insulating states with Jahn-Teller distortions. Our mean-field calculation of composite fermion excitations demonstrates that spin fluctuations reduce the energy gap by quasi-instantaneously deforming the AFM background, thus opening a conductive electronic pathway via FM correlation. We obtain two quasi-particle bands with distinct spin-charge dynamics and dependence on lattice distortions. To connect with fs-resolved spectroscopy experiments, we note the emergence of fs magnetization in the low-temperature magneto-optical signal, with threshold dependence on laser intensity characteristic of a photo-induced phase transition. Simultaneously, the differential reflectivity shows bi-exponential relaxation, with fs component, small at low intensity, exceeding ps component above threshold for fs AFM-to-FM switching. This suggests the emergence of a non-equilibrium metallic FM phase prior to establishment of a new lattice structure, linked with quantum magnetism via spin/charge/lattice couplings for weak magnetic fields.

  6. Proposal and proof-of-principle demonstration of non-destructive detection of photonic qubits using a Tm:LiNbO3 waveguide

    PubMed Central

    Sinclair, N.; Heshami, K.; Deshmukh, C.; Oblak, D.; Simon, C.; Tittel, W.

    2016-01-01

    Non-destructive detection of photonic qubits is an enabling technology for quantum information processing and quantum communication. For practical applications, such as quantum repeaters and networks, it is desirable to implement such detection in a way that allows some form of multiplexing as well as easy integration with other components such as solid-state quantum memories. Here, we propose an approach to non-destructive photonic qubit detection that promises to have all the mentioned features. Mediated by an impurity-doped crystal, a signal photon in an arbitrary time-bin qubit state modulates the phase of an intense probe pulse that is stored during the interaction. Using a thulium-doped waveguide in LiNbO3, we perform a proof-of-principle experiment with macroscopic signal pulses, demonstrating the expected cross-phase modulation as well as the ability to preserve the coherence between temporal modes. Our findings open the path to a new key component of quantum photonics based on rare-earth-ion-doped crystals. PMID:27853153

  7. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive SU(w) Fermi Gases

    NASA Astrophysics Data System (ADS)

    Yu, Yi-Cong; Guan, Xi-Wen

    2017-06-01

    We present a unified derivation of the pressure equation of states, thermodynamics and scaling functions for the one-dimensional (1D) strongly attractive Fermi gases with SU(w) symmetry. These physical quantities provide a rigorous understanding on a universality class of quantum criticality characterized by the critical exponents z = 2 and correlation length exponent ν = 1/2. Such a universality class of quantum criticality can occur when the Fermi sea of one branch of charge bound states starts to fill or becomes gapped at zero temperature. The quantum critical cone can be determined by the double peaks in specific heat, which serve to mark two crossover temperatures fanning out from the critical point. Our method opens to further study on quantum phases and phase transitions in strongly interacting fermions with large SU(w) and non-SU(w) symmetries in one dimension. Supported by the National Natural Science Foundation of China under Grant No 11374331 and the key NSFC under Grant No 11534014. XWG has been partially supported by the Australian Research Council.

  8. Level statistics of disordered spin-1/2 systems and materials with localized Cooper pairs.

    PubMed

    Cuevas, Emilio; Feigel'man, Mikhail; Ioffe, Lev; Mezard, Marc

    2012-01-01

    The origin of continuous energy spectra in large disordered interacting quantum systems is one of the key unsolved problems in quantum physics. Although small quantum systems with discrete energy levels are noiseless and stay coherent forever in the absence of any coupling to external world, most large-scale quantum systems are able to produce a thermal bath and excitation decay. This intrinsic decoherence is manifested by a broadening of energy levels, which aquire a finite width. The important question is: what is the driving force and the mechanism of transition(s) between these two types of many-body systems - with and without intrinsic decoherence? Here we address this question via the numerical study of energy-level statistics of a system of interacting spin-1/2 with random transverse fields. We present the first evidence for a well-defined quantum phase transition between domains of discrete and continous many-body spectra in such spin models, implying the appearance of novel insulating phases in the vicinity of the superconductor-insulator transition in InO(x) and similar materials.

  9. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  10. π Spin Berry Phase in a Quantum-Spin-Hall-Insulator-Based Interferometer: Evidence for the Helical Spin Texture of the Edge States

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Deng, Wei-Yin; Hou, Jing-Min; Shi, D. N.; Sheng, L.; Xing, D. Y.

    2016-08-01

    The quantum spin Hall insulator is characterized by helical edge states, with the spin polarization of the electron being locked to its direction of motion. Although the edge-state conduction has been observed, unambiguous evidence of the helical spin texture is still lacking. Here, we investigate the coherent edge-state transport in an interference loop pinched by two point contacts. Because of the helical character, the forward interedge scattering enforces a π spin rotation. Two successive processes can only produce a nontrivial 2 π or trivial 0 spin rotation, which can be controlled by the Rashba spin-orbit coupling. The nontrivial spin rotation results in a geometric π Berry phase, which can be detected by a π phase shift of the conductance oscillation relative to the trivial case. Our results provide smoking gun evidence for the helical spin texture of the edge states. Moreover, it also provides the opportunity to all electrically explore the trajectory-dependent spin Berry phase in condensed matter.

  11. Quantum key management

    DOEpatents

    Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth

    2016-11-29

    Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.

  12. Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction

    DTIC Science & Technology

    2016-02-25

    Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  13. Non-Abelian Berry phase, instantons, and N=(0,4) supersymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laia, Joao N.

    2010-12-15

    In supersymmetric quantum mechanics, the non-Abelian Berry phase is known to obey certain differential equations. Here we study N=(0,4) systems and show that the non-Abelian Berry connection over R{sup 4n} satisfies a generalization of the self-dual Yang-Mills equations. Upon dimensional reduction, these become the tt* equations. We further study the Berry connection in N=(4,4) theories and show that the curvature is covariantly constant.

  14. A high speed sequential decoder

    NASA Technical Reports Server (NTRS)

    Lum, H., Jr.

    1972-01-01

    The performance and theory of operation for the High Speed Hard Decision Sequential Decoder are delineated. The decoder is a forward error correction system which is capable of accepting data from binary-phase-shift-keyed and quadriphase-shift-keyed modems at input data rates up to 30 megabits per second. Test results show that the decoder is capable of maintaining a composite error rate of 0.00001 at an input E sub b/N sub o of 5.6 db. This performance has been obtained with minimum circuit complexity.

  15. Berry phase in Heisenberg representation

    NASA Technical Reports Server (NTRS)

    Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.

    1994-01-01

    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.

  16. Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light

    PubMed Central

    Clarke, Patrick J.; Collins, Robert J.; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S.

    2012-01-01

    Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called ‘one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850 nm. PMID:23132024

  17. Nationwide differential global positioning system (NDGPS) : capabilities and potential.

    DOT National Transportation Integrated Search

    2009-06-01

    NDGPS is a National PNT Utility: : -Operated/managed by Coast Guard as a Combined NDGPS (Maritime + DOT + ACOE sites) : -System Specifications : --Corrections broadcast at 285 and 325 kHz using Minimum shift Keying (MSK) modulation : --Real-time diff...

  18. Higher-order stochastic differential equations and the positive Wigner function

    NASA Astrophysics Data System (ADS)

    Drummond, P. D.

    2017-12-01

    General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.

  19. Homodyne locking of a squeezer.

    PubMed

    Heurs, M; Petersen, I R; James, M R; Huntington, E H

    2009-08-15

    We report on the successful implementation of an approach to locking the frequencies of an optical parametric oscillator (OPO)-based squeezed-vacuum source and its driving laser. The technique allows the simultaneous measurement of the phase shifts induced by a cavity, which may be used for the purposes of frequency locking, as well as the simultaneous measurement of the sub-quantum-noise-limited (sub-QNL) phase quadrature output of the OPO. The homodyne locking technique is cheap, easy to implement, and has the distinct advantage that subsequent homodyne measurements are automatically phase locked. The homodyne locking technique is also unique in that it is a sub-QNL frequency discriminator.

  20. Method for solvent extraction with near-equal density solutions

    DOEpatents

    Birdwell, Joseph F.; Randolph, John D.; Singh, S. Paul

    2001-01-01

    Disclosed is a modified centrifugal contactor for separating solutions of near equal density. The modified contactor has a pressure differential establishing means that allows the application of a pressure differential across fluid in the rotor of the contactor. The pressure differential is such that it causes the boundary between solutions of near-equal density to shift, thereby facilitating separation of the phases. Also disclosed is a method of separating solutions of near-equal density.

Top